xref: /openbmc/linux/drivers/net/wireless/ath/wil6210/wmi.c (revision b0e55fef624e511e060fa05e4ca96cae6d902f04)
1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
4  * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
5  */
6 
7 #include <linux/moduleparam.h>
8 #include <linux/etherdevice.h>
9 #include <linux/if_arp.h>
10 
11 #include "wil6210.h"
12 #include "txrx.h"
13 #include "wmi.h"
14 #include "trace.h"
15 
16 /* set the default max assoc sta to max supported by driver */
17 uint max_assoc_sta = WIL6210_MAX_CID;
18 module_param(max_assoc_sta, uint, 0444);
19 MODULE_PARM_DESC(max_assoc_sta, " Max number of stations associated to the AP");
20 
21 int agg_wsize; /* = 0; */
22 module_param(agg_wsize, int, 0644);
23 MODULE_PARM_DESC(agg_wsize, " Window size for Tx Block Ack after connect;"
24 		 " 0 - use default; < 0 - don't auto-establish");
25 
26 u8 led_id = WIL_LED_INVALID_ID;
27 module_param(led_id, byte, 0444);
28 MODULE_PARM_DESC(led_id,
29 		 " 60G device led enablement. Set the led ID (0-2) to enable");
30 
31 #define WIL_WAIT_FOR_SUSPEND_RESUME_COMP 200
32 #define WIL_WMI_PCP_STOP_TO_MS 5000
33 
34 /**
35  * WMI event receiving - theory of operations
36  *
37  * When firmware about to report WMI event, it fills memory area
38  * in the mailbox and raises misc. IRQ. Thread interrupt handler invoked for
39  * the misc IRQ, function @wmi_recv_cmd called by thread IRQ handler.
40  *
41  * @wmi_recv_cmd reads event, allocates memory chunk  and attaches it to the
42  * event list @wil->pending_wmi_ev. Then, work queue @wil->wmi_wq wakes up
43  * and handles events within the @wmi_event_worker. Every event get detached
44  * from list, processed and deleted.
45  *
46  * Purpose for this mechanism is to release IRQ thread; otherwise,
47  * if WMI event handling involves another WMI command flow, this 2-nd flow
48  * won't be completed because of blocked IRQ thread.
49  */
50 
51 /**
52  * Addressing - theory of operations
53  *
54  * There are several buses present on the WIL6210 card.
55  * Same memory areas are visible at different address on
56  * the different busses. There are 3 main bus masters:
57  *  - MAC CPU (ucode)
58  *  - User CPU (firmware)
59  *  - AHB (host)
60  *
61  * On the PCI bus, there is one BAR (BAR0) of 2Mb size, exposing
62  * AHB addresses starting from 0x880000
63  *
64  * Internally, firmware uses addresses that allow faster access but
65  * are invisible from the host. To read from these addresses, alternative
66  * AHB address must be used.
67  */
68 
69 /**
70  * @sparrow_fw_mapping provides memory remapping table for sparrow
71  *
72  * array size should be in sync with the declaration in the wil6210.h
73  *
74  * Sparrow memory mapping:
75  * Linker address         PCI/Host address
76  *                        0x880000 .. 0xa80000  2Mb BAR0
77  * 0x800000 .. 0x808000   0x900000 .. 0x908000  32k DCCM
78  * 0x840000 .. 0x860000   0x908000 .. 0x928000  128k PERIPH
79  */
80 const struct fw_map sparrow_fw_mapping[] = {
81 	/* FW code RAM 256k */
82 	{0x000000, 0x040000, 0x8c0000, "fw_code", true, true},
83 	/* FW data RAM 32k */
84 	{0x800000, 0x808000, 0x900000, "fw_data", true, true},
85 	/* periph data 128k */
86 	{0x840000, 0x860000, 0x908000, "fw_peri", true, true},
87 	/* various RGF 40k */
88 	{0x880000, 0x88a000, 0x880000, "rgf", true, true},
89 	/* AGC table   4k */
90 	{0x88a000, 0x88b000, 0x88a000, "AGC_tbl", true, true},
91 	/* Pcie_ext_rgf 4k */
92 	{0x88b000, 0x88c000, 0x88b000, "rgf_ext", true, true},
93 	/* mac_ext_rgf 512b */
94 	{0x88c000, 0x88c200, 0x88c000, "mac_rgf_ext", true, true},
95 	/* upper area 548k */
96 	{0x8c0000, 0x949000, 0x8c0000, "upper", true, true},
97 	/* UCODE areas - accessible by debugfs blobs but not by
98 	 * wmi_addr_remap. UCODE areas MUST be added AFTER FW areas!
99 	 */
100 	/* ucode code RAM 128k */
101 	{0x000000, 0x020000, 0x920000, "uc_code", false, false},
102 	/* ucode data RAM 16k */
103 	{0x800000, 0x804000, 0x940000, "uc_data", false, false},
104 };
105 
106 /**
107  * @sparrow_d0_mac_rgf_ext - mac_rgf_ext section for Sparrow D0
108  * it is a bit larger to support extra features
109  */
110 const struct fw_map sparrow_d0_mac_rgf_ext = {
111 	0x88c000, 0x88c500, 0x88c000, "mac_rgf_ext", true, true
112 };
113 
114 /**
115  * @talyn_fw_mapping provides memory remapping table for Talyn
116  *
117  * array size should be in sync with the declaration in the wil6210.h
118  *
119  * Talyn memory mapping:
120  * Linker address         PCI/Host address
121  *                        0x880000 .. 0xc80000  4Mb BAR0
122  * 0x800000 .. 0x820000   0xa00000 .. 0xa20000  128k DCCM
123  * 0x840000 .. 0x858000   0xa20000 .. 0xa38000  96k PERIPH
124  */
125 const struct fw_map talyn_fw_mapping[] = {
126 	/* FW code RAM 1M */
127 	{0x000000, 0x100000, 0x900000, "fw_code", true, true},
128 	/* FW data RAM 128k */
129 	{0x800000, 0x820000, 0xa00000, "fw_data", true, true},
130 	/* periph. data RAM 96k */
131 	{0x840000, 0x858000, 0xa20000, "fw_peri", true, true},
132 	/* various RGF 40k */
133 	{0x880000, 0x88a000, 0x880000, "rgf", true, true},
134 	/* AGC table 4k */
135 	{0x88a000, 0x88b000, 0x88a000, "AGC_tbl", true, true},
136 	/* Pcie_ext_rgf 4k */
137 	{0x88b000, 0x88c000, 0x88b000, "rgf_ext", true, true},
138 	/* mac_ext_rgf 1344b */
139 	{0x88c000, 0x88c540, 0x88c000, "mac_rgf_ext", true, true},
140 	/* ext USER RGF 4k */
141 	{0x88d000, 0x88e000, 0x88d000, "ext_user_rgf", true, true},
142 	/* OTP 4k */
143 	{0x8a0000, 0x8a1000, 0x8a0000, "otp", true, false},
144 	/* DMA EXT RGF 64k */
145 	{0x8b0000, 0x8c0000, 0x8b0000, "dma_ext_rgf", true, true},
146 	/* upper area 1536k */
147 	{0x900000, 0xa80000, 0x900000, "upper", true, true},
148 	/* UCODE areas - accessible by debugfs blobs but not by
149 	 * wmi_addr_remap. UCODE areas MUST be added AFTER FW areas!
150 	 */
151 	/* ucode code RAM 256k */
152 	{0x000000, 0x040000, 0xa38000, "uc_code", false, false},
153 	/* ucode data RAM 32k */
154 	{0x800000, 0x808000, 0xa78000, "uc_data", false, false},
155 };
156 
157 /**
158  * @talyn_mb_fw_mapping provides memory remapping table for Talyn-MB
159  *
160  * array size should be in sync with the declaration in the wil6210.h
161  *
162  * Talyn MB memory mapping:
163  * Linker address         PCI/Host address
164  *                        0x880000 .. 0xc80000  4Mb BAR0
165  * 0x800000 .. 0x820000   0xa00000 .. 0xa20000  128k DCCM
166  * 0x840000 .. 0x858000   0xa20000 .. 0xa38000  96k PERIPH
167  */
168 const struct fw_map talyn_mb_fw_mapping[] = {
169 	/* FW code RAM 768k */
170 	{0x000000, 0x0c0000, 0x900000, "fw_code", true, true},
171 	/* FW data RAM 128k */
172 	{0x800000, 0x820000, 0xa00000, "fw_data", true, true},
173 	/* periph. data RAM 96k */
174 	{0x840000, 0x858000, 0xa20000, "fw_peri", true, true},
175 	/* various RGF 40k */
176 	{0x880000, 0x88a000, 0x880000, "rgf", true, true},
177 	/* AGC table 4k */
178 	{0x88a000, 0x88b000, 0x88a000, "AGC_tbl", true, true},
179 	/* Pcie_ext_rgf 4k */
180 	{0x88b000, 0x88c000, 0x88b000, "rgf_ext", true, true},
181 	/* mac_ext_rgf 2256b */
182 	{0x88c000, 0x88c8d0, 0x88c000, "mac_rgf_ext", true, true},
183 	/* ext USER RGF 4k */
184 	{0x88d000, 0x88e000, 0x88d000, "ext_user_rgf", true, true},
185 	/* SEC PKA 16k */
186 	{0x890000, 0x894000, 0x890000, "sec_pka", true, true},
187 	/* SEC KDF RGF 3096b */
188 	{0x898000, 0x898c18, 0x898000, "sec_kdf_rgf", true, true},
189 	/* SEC MAIN 2124b */
190 	{0x89a000, 0x89a84c, 0x89a000, "sec_main", true, true},
191 	/* OTP 4k */
192 	{0x8a0000, 0x8a1000, 0x8a0000, "otp", true, false},
193 	/* DMA EXT RGF 64k */
194 	{0x8b0000, 0x8c0000, 0x8b0000, "dma_ext_rgf", true, true},
195 	/* DUM USER RGF 528b */
196 	{0x8c0000, 0x8c0210, 0x8c0000, "dum_user_rgf", true, true},
197 	/* DMA OFU 296b */
198 	{0x8c2000, 0x8c2128, 0x8c2000, "dma_ofu", true, true},
199 	/* ucode debug 4k */
200 	{0x8c3000, 0x8c4000, 0x8c3000, "ucode_debug", true, true},
201 	/* upper area 1536k */
202 	{0x900000, 0xa80000, 0x900000, "upper", true, true},
203 	/* UCODE areas - accessible by debugfs blobs but not by
204 	 * wmi_addr_remap. UCODE areas MUST be added AFTER FW areas!
205 	 */
206 	/* ucode code RAM 256k */
207 	{0x000000, 0x040000, 0xa38000, "uc_code", false, false},
208 	/* ucode data RAM 32k */
209 	{0x800000, 0x808000, 0xa78000, "uc_data", false, false},
210 };
211 
212 struct fw_map fw_mapping[MAX_FW_MAPPING_TABLE_SIZE];
213 
214 struct blink_on_off_time led_blink_time[] = {
215 	{WIL_LED_BLINK_ON_SLOW_MS, WIL_LED_BLINK_OFF_SLOW_MS},
216 	{WIL_LED_BLINK_ON_MED_MS, WIL_LED_BLINK_OFF_MED_MS},
217 	{WIL_LED_BLINK_ON_FAST_MS, WIL_LED_BLINK_OFF_FAST_MS},
218 };
219 
220 struct auth_no_hdr {
221 	__le16 auth_alg;
222 	__le16 auth_transaction;
223 	__le16 status_code;
224 	/* possibly followed by Challenge text */
225 	u8 variable[0];
226 } __packed;
227 
228 u8 led_polarity = LED_POLARITY_LOW_ACTIVE;
229 
230 /**
231  * return AHB address for given firmware internal (linker) address
232  * @x - internal address
233  * If address have no valid AHB mapping, return 0
234  */
235 static u32 wmi_addr_remap(u32 x)
236 {
237 	uint i;
238 
239 	for (i = 0; i < ARRAY_SIZE(fw_mapping); i++) {
240 		if (fw_mapping[i].fw &&
241 		    ((x >= fw_mapping[i].from) && (x < fw_mapping[i].to)))
242 			return x + fw_mapping[i].host - fw_mapping[i].from;
243 	}
244 
245 	return 0;
246 }
247 
248 /**
249  * find fw_mapping entry by section name
250  * @section - section name
251  *
252  * Return pointer to section or NULL if not found
253  */
254 struct fw_map *wil_find_fw_mapping(const char *section)
255 {
256 	int i;
257 
258 	for (i = 0; i < ARRAY_SIZE(fw_mapping); i++)
259 		if (fw_mapping[i].name &&
260 		    !strcmp(section, fw_mapping[i].name))
261 			return &fw_mapping[i];
262 
263 	return NULL;
264 }
265 
266 /**
267  * Check address validity for WMI buffer; remap if needed
268  * @ptr - internal (linker) fw/ucode address
269  * @size - if non zero, validate the block does not
270  *  exceed the device memory (bar)
271  *
272  * Valid buffer should be DWORD aligned
273  *
274  * return address for accessing buffer from the host;
275  * if buffer is not valid, return NULL.
276  */
277 void __iomem *wmi_buffer_block(struct wil6210_priv *wil, __le32 ptr_, u32 size)
278 {
279 	u32 off;
280 	u32 ptr = le32_to_cpu(ptr_);
281 
282 	if (ptr % 4)
283 		return NULL;
284 
285 	ptr = wmi_addr_remap(ptr);
286 	if (ptr < WIL6210_FW_HOST_OFF)
287 		return NULL;
288 
289 	off = HOSTADDR(ptr);
290 	if (off > wil->bar_size - 4)
291 		return NULL;
292 	if (size && ((off + size > wil->bar_size) || (off + size < off)))
293 		return NULL;
294 
295 	return wil->csr + off;
296 }
297 
298 void __iomem *wmi_buffer(struct wil6210_priv *wil, __le32 ptr_)
299 {
300 	return wmi_buffer_block(wil, ptr_, 0);
301 }
302 
303 /**
304  * Check address validity
305  */
306 void __iomem *wmi_addr(struct wil6210_priv *wil, u32 ptr)
307 {
308 	u32 off;
309 
310 	if (ptr % 4)
311 		return NULL;
312 
313 	if (ptr < WIL6210_FW_HOST_OFF)
314 		return NULL;
315 
316 	off = HOSTADDR(ptr);
317 	if (off > wil->bar_size - 4)
318 		return NULL;
319 
320 	return wil->csr + off;
321 }
322 
323 int wmi_read_hdr(struct wil6210_priv *wil, __le32 ptr,
324 		 struct wil6210_mbox_hdr *hdr)
325 {
326 	void __iomem *src = wmi_buffer(wil, ptr);
327 
328 	if (!src)
329 		return -EINVAL;
330 
331 	wil_memcpy_fromio_32(hdr, src, sizeof(*hdr));
332 
333 	return 0;
334 }
335 
336 static const char *cmdid2name(u16 cmdid)
337 {
338 	switch (cmdid) {
339 	case WMI_NOTIFY_REQ_CMDID:
340 		return "WMI_NOTIFY_REQ_CMD";
341 	case WMI_START_SCAN_CMDID:
342 		return "WMI_START_SCAN_CMD";
343 	case WMI_CONNECT_CMDID:
344 		return "WMI_CONNECT_CMD";
345 	case WMI_DISCONNECT_CMDID:
346 		return "WMI_DISCONNECT_CMD";
347 	case WMI_SW_TX_REQ_CMDID:
348 		return "WMI_SW_TX_REQ_CMD";
349 	case WMI_GET_RF_SECTOR_PARAMS_CMDID:
350 		return "WMI_GET_RF_SECTOR_PARAMS_CMD";
351 	case WMI_SET_RF_SECTOR_PARAMS_CMDID:
352 		return "WMI_SET_RF_SECTOR_PARAMS_CMD";
353 	case WMI_GET_SELECTED_RF_SECTOR_INDEX_CMDID:
354 		return "WMI_GET_SELECTED_RF_SECTOR_INDEX_CMD";
355 	case WMI_SET_SELECTED_RF_SECTOR_INDEX_CMDID:
356 		return "WMI_SET_SELECTED_RF_SECTOR_INDEX_CMD";
357 	case WMI_BRP_SET_ANT_LIMIT_CMDID:
358 		return "WMI_BRP_SET_ANT_LIMIT_CMD";
359 	case WMI_TOF_SESSION_START_CMDID:
360 		return "WMI_TOF_SESSION_START_CMD";
361 	case WMI_AOA_MEAS_CMDID:
362 		return "WMI_AOA_MEAS_CMD";
363 	case WMI_PMC_CMDID:
364 		return "WMI_PMC_CMD";
365 	case WMI_TOF_GET_TX_RX_OFFSET_CMDID:
366 		return "WMI_TOF_GET_TX_RX_OFFSET_CMD";
367 	case WMI_TOF_SET_TX_RX_OFFSET_CMDID:
368 		return "WMI_TOF_SET_TX_RX_OFFSET_CMD";
369 	case WMI_VRING_CFG_CMDID:
370 		return "WMI_VRING_CFG_CMD";
371 	case WMI_BCAST_VRING_CFG_CMDID:
372 		return "WMI_BCAST_VRING_CFG_CMD";
373 	case WMI_TRAFFIC_SUSPEND_CMDID:
374 		return "WMI_TRAFFIC_SUSPEND_CMD";
375 	case WMI_TRAFFIC_RESUME_CMDID:
376 		return "WMI_TRAFFIC_RESUME_CMD";
377 	case WMI_ECHO_CMDID:
378 		return "WMI_ECHO_CMD";
379 	case WMI_SET_MAC_ADDRESS_CMDID:
380 		return "WMI_SET_MAC_ADDRESS_CMD";
381 	case WMI_LED_CFG_CMDID:
382 		return "WMI_LED_CFG_CMD";
383 	case WMI_PCP_START_CMDID:
384 		return "WMI_PCP_START_CMD";
385 	case WMI_PCP_STOP_CMDID:
386 		return "WMI_PCP_STOP_CMD";
387 	case WMI_SET_SSID_CMDID:
388 		return "WMI_SET_SSID_CMD";
389 	case WMI_GET_SSID_CMDID:
390 		return "WMI_GET_SSID_CMD";
391 	case WMI_SET_PCP_CHANNEL_CMDID:
392 		return "WMI_SET_PCP_CHANNEL_CMD";
393 	case WMI_GET_PCP_CHANNEL_CMDID:
394 		return "WMI_GET_PCP_CHANNEL_CMD";
395 	case WMI_P2P_CFG_CMDID:
396 		return "WMI_P2P_CFG_CMD";
397 	case WMI_PORT_ALLOCATE_CMDID:
398 		return "WMI_PORT_ALLOCATE_CMD";
399 	case WMI_PORT_DELETE_CMDID:
400 		return "WMI_PORT_DELETE_CMD";
401 	case WMI_START_LISTEN_CMDID:
402 		return "WMI_START_LISTEN_CMD";
403 	case WMI_START_SEARCH_CMDID:
404 		return "WMI_START_SEARCH_CMD";
405 	case WMI_DISCOVERY_STOP_CMDID:
406 		return "WMI_DISCOVERY_STOP_CMD";
407 	case WMI_DELETE_CIPHER_KEY_CMDID:
408 		return "WMI_DELETE_CIPHER_KEY_CMD";
409 	case WMI_ADD_CIPHER_KEY_CMDID:
410 		return "WMI_ADD_CIPHER_KEY_CMD";
411 	case WMI_SET_APPIE_CMDID:
412 		return "WMI_SET_APPIE_CMD";
413 	case WMI_CFG_RX_CHAIN_CMDID:
414 		return "WMI_CFG_RX_CHAIN_CMD";
415 	case WMI_TEMP_SENSE_CMDID:
416 		return "WMI_TEMP_SENSE_CMD";
417 	case WMI_DEL_STA_CMDID:
418 		return "WMI_DEL_STA_CMD";
419 	case WMI_DISCONNECT_STA_CMDID:
420 		return "WMI_DISCONNECT_STA_CMD";
421 	case WMI_RING_BA_EN_CMDID:
422 		return "WMI_RING_BA_EN_CMD";
423 	case WMI_RING_BA_DIS_CMDID:
424 		return "WMI_RING_BA_DIS_CMD";
425 	case WMI_RCP_DELBA_CMDID:
426 		return "WMI_RCP_DELBA_CMD";
427 	case WMI_RCP_ADDBA_RESP_CMDID:
428 		return "WMI_RCP_ADDBA_RESP_CMD";
429 	case WMI_RCP_ADDBA_RESP_EDMA_CMDID:
430 		return "WMI_RCP_ADDBA_RESP_EDMA_CMD";
431 	case WMI_PS_DEV_PROFILE_CFG_CMDID:
432 		return "WMI_PS_DEV_PROFILE_CFG_CMD";
433 	case WMI_SET_MGMT_RETRY_LIMIT_CMDID:
434 		return "WMI_SET_MGMT_RETRY_LIMIT_CMD";
435 	case WMI_GET_MGMT_RETRY_LIMIT_CMDID:
436 		return "WMI_GET_MGMT_RETRY_LIMIT_CMD";
437 	case WMI_ABORT_SCAN_CMDID:
438 		return "WMI_ABORT_SCAN_CMD";
439 	case WMI_NEW_STA_CMDID:
440 		return "WMI_NEW_STA_CMD";
441 	case WMI_SET_THERMAL_THROTTLING_CFG_CMDID:
442 		return "WMI_SET_THERMAL_THROTTLING_CFG_CMD";
443 	case WMI_GET_THERMAL_THROTTLING_CFG_CMDID:
444 		return "WMI_GET_THERMAL_THROTTLING_CFG_CMD";
445 	case WMI_LINK_MAINTAIN_CFG_WRITE_CMDID:
446 		return "WMI_LINK_MAINTAIN_CFG_WRITE_CMD";
447 	case WMI_LO_POWER_CALIB_FROM_OTP_CMDID:
448 		return "WMI_LO_POWER_CALIB_FROM_OTP_CMD";
449 	case WMI_START_SCHED_SCAN_CMDID:
450 		return "WMI_START_SCHED_SCAN_CMD";
451 	case WMI_STOP_SCHED_SCAN_CMDID:
452 		return "WMI_STOP_SCHED_SCAN_CMD";
453 	case WMI_TX_STATUS_RING_ADD_CMDID:
454 		return "WMI_TX_STATUS_RING_ADD_CMD";
455 	case WMI_RX_STATUS_RING_ADD_CMDID:
456 		return "WMI_RX_STATUS_RING_ADD_CMD";
457 	case WMI_TX_DESC_RING_ADD_CMDID:
458 		return "WMI_TX_DESC_RING_ADD_CMD";
459 	case WMI_RX_DESC_RING_ADD_CMDID:
460 		return "WMI_RX_DESC_RING_ADD_CMD";
461 	case WMI_BCAST_DESC_RING_ADD_CMDID:
462 		return "WMI_BCAST_DESC_RING_ADD_CMD";
463 	case WMI_CFG_DEF_RX_OFFLOAD_CMDID:
464 		return "WMI_CFG_DEF_RX_OFFLOAD_CMD";
465 	case WMI_LINK_STATS_CMDID:
466 		return "WMI_LINK_STATS_CMD";
467 	case WMI_SW_TX_REQ_EXT_CMDID:
468 		return "WMI_SW_TX_REQ_EXT_CMDID";
469 	case WMI_FT_AUTH_CMDID:
470 		return "WMI_FT_AUTH_CMD";
471 	case WMI_FT_REASSOC_CMDID:
472 		return "WMI_FT_REASSOC_CMD";
473 	case WMI_UPDATE_FT_IES_CMDID:
474 		return "WMI_UPDATE_FT_IES_CMD";
475 	case WMI_RBUFCAP_CFG_CMDID:
476 		return "WMI_RBUFCAP_CFG_CMD";
477 	case WMI_TEMP_SENSE_ALL_CMDID:
478 		return "WMI_TEMP_SENSE_ALL_CMDID";
479 	default:
480 		return "Untracked CMD";
481 	}
482 }
483 
484 static const char *eventid2name(u16 eventid)
485 {
486 	switch (eventid) {
487 	case WMI_NOTIFY_REQ_DONE_EVENTID:
488 		return "WMI_NOTIFY_REQ_DONE_EVENT";
489 	case WMI_DISCONNECT_EVENTID:
490 		return "WMI_DISCONNECT_EVENT";
491 	case WMI_SW_TX_COMPLETE_EVENTID:
492 		return "WMI_SW_TX_COMPLETE_EVENT";
493 	case WMI_GET_RF_SECTOR_PARAMS_DONE_EVENTID:
494 		return "WMI_GET_RF_SECTOR_PARAMS_DONE_EVENT";
495 	case WMI_SET_RF_SECTOR_PARAMS_DONE_EVENTID:
496 		return "WMI_SET_RF_SECTOR_PARAMS_DONE_EVENT";
497 	case WMI_GET_SELECTED_RF_SECTOR_INDEX_DONE_EVENTID:
498 		return "WMI_GET_SELECTED_RF_SECTOR_INDEX_DONE_EVENT";
499 	case WMI_SET_SELECTED_RF_SECTOR_INDEX_DONE_EVENTID:
500 		return "WMI_SET_SELECTED_RF_SECTOR_INDEX_DONE_EVENT";
501 	case WMI_BRP_SET_ANT_LIMIT_EVENTID:
502 		return "WMI_BRP_SET_ANT_LIMIT_EVENT";
503 	case WMI_FW_READY_EVENTID:
504 		return "WMI_FW_READY_EVENT";
505 	case WMI_TRAFFIC_RESUME_EVENTID:
506 		return "WMI_TRAFFIC_RESUME_EVENT";
507 	case WMI_TOF_GET_TX_RX_OFFSET_EVENTID:
508 		return "WMI_TOF_GET_TX_RX_OFFSET_EVENT";
509 	case WMI_TOF_SET_TX_RX_OFFSET_EVENTID:
510 		return "WMI_TOF_SET_TX_RX_OFFSET_EVENT";
511 	case WMI_VRING_CFG_DONE_EVENTID:
512 		return "WMI_VRING_CFG_DONE_EVENT";
513 	case WMI_READY_EVENTID:
514 		return "WMI_READY_EVENT";
515 	case WMI_RX_MGMT_PACKET_EVENTID:
516 		return "WMI_RX_MGMT_PACKET_EVENT";
517 	case WMI_TX_MGMT_PACKET_EVENTID:
518 		return "WMI_TX_MGMT_PACKET_EVENT";
519 	case WMI_SCAN_COMPLETE_EVENTID:
520 		return "WMI_SCAN_COMPLETE_EVENT";
521 	case WMI_ACS_PASSIVE_SCAN_COMPLETE_EVENTID:
522 		return "WMI_ACS_PASSIVE_SCAN_COMPLETE_EVENT";
523 	case WMI_CONNECT_EVENTID:
524 		return "WMI_CONNECT_EVENT";
525 	case WMI_EAPOL_RX_EVENTID:
526 		return "WMI_EAPOL_RX_EVENT";
527 	case WMI_BA_STATUS_EVENTID:
528 		return "WMI_BA_STATUS_EVENT";
529 	case WMI_RCP_ADDBA_REQ_EVENTID:
530 		return "WMI_RCP_ADDBA_REQ_EVENT";
531 	case WMI_DELBA_EVENTID:
532 		return "WMI_DELBA_EVENT";
533 	case WMI_RING_EN_EVENTID:
534 		return "WMI_RING_EN_EVENT";
535 	case WMI_DATA_PORT_OPEN_EVENTID:
536 		return "WMI_DATA_PORT_OPEN_EVENT";
537 	case WMI_AOA_MEAS_EVENTID:
538 		return "WMI_AOA_MEAS_EVENT";
539 	case WMI_TOF_SESSION_END_EVENTID:
540 		return "WMI_TOF_SESSION_END_EVENT";
541 	case WMI_TOF_GET_CAPABILITIES_EVENTID:
542 		return "WMI_TOF_GET_CAPABILITIES_EVENT";
543 	case WMI_TOF_SET_LCR_EVENTID:
544 		return "WMI_TOF_SET_LCR_EVENT";
545 	case WMI_TOF_SET_LCI_EVENTID:
546 		return "WMI_TOF_SET_LCI_EVENT";
547 	case WMI_TOF_FTM_PER_DEST_RES_EVENTID:
548 		return "WMI_TOF_FTM_PER_DEST_RES_EVENT";
549 	case WMI_TOF_CHANNEL_INFO_EVENTID:
550 		return "WMI_TOF_CHANNEL_INFO_EVENT";
551 	case WMI_TRAFFIC_SUSPEND_EVENTID:
552 		return "WMI_TRAFFIC_SUSPEND_EVENT";
553 	case WMI_ECHO_RSP_EVENTID:
554 		return "WMI_ECHO_RSP_EVENT";
555 	case WMI_LED_CFG_DONE_EVENTID:
556 		return "WMI_LED_CFG_DONE_EVENT";
557 	case WMI_PCP_STARTED_EVENTID:
558 		return "WMI_PCP_STARTED_EVENT";
559 	case WMI_PCP_STOPPED_EVENTID:
560 		return "WMI_PCP_STOPPED_EVENT";
561 	case WMI_GET_SSID_EVENTID:
562 		return "WMI_GET_SSID_EVENT";
563 	case WMI_GET_PCP_CHANNEL_EVENTID:
564 		return "WMI_GET_PCP_CHANNEL_EVENT";
565 	case WMI_P2P_CFG_DONE_EVENTID:
566 		return "WMI_P2P_CFG_DONE_EVENT";
567 	case WMI_PORT_ALLOCATED_EVENTID:
568 		return "WMI_PORT_ALLOCATED_EVENT";
569 	case WMI_PORT_DELETED_EVENTID:
570 		return "WMI_PORT_DELETED_EVENT";
571 	case WMI_LISTEN_STARTED_EVENTID:
572 		return "WMI_LISTEN_STARTED_EVENT";
573 	case WMI_SEARCH_STARTED_EVENTID:
574 		return "WMI_SEARCH_STARTED_EVENT";
575 	case WMI_DISCOVERY_STOPPED_EVENTID:
576 		return "WMI_DISCOVERY_STOPPED_EVENT";
577 	case WMI_CFG_RX_CHAIN_DONE_EVENTID:
578 		return "WMI_CFG_RX_CHAIN_DONE_EVENT";
579 	case WMI_TEMP_SENSE_DONE_EVENTID:
580 		return "WMI_TEMP_SENSE_DONE_EVENT";
581 	case WMI_RCP_ADDBA_RESP_SENT_EVENTID:
582 		return "WMI_RCP_ADDBA_RESP_SENT_EVENT";
583 	case WMI_PS_DEV_PROFILE_CFG_EVENTID:
584 		return "WMI_PS_DEV_PROFILE_CFG_EVENT";
585 	case WMI_SET_MGMT_RETRY_LIMIT_EVENTID:
586 		return "WMI_SET_MGMT_RETRY_LIMIT_EVENT";
587 	case WMI_GET_MGMT_RETRY_LIMIT_EVENTID:
588 		return "WMI_GET_MGMT_RETRY_LIMIT_EVENT";
589 	case WMI_SET_THERMAL_THROTTLING_CFG_EVENTID:
590 		return "WMI_SET_THERMAL_THROTTLING_CFG_EVENT";
591 	case WMI_GET_THERMAL_THROTTLING_CFG_EVENTID:
592 		return "WMI_GET_THERMAL_THROTTLING_CFG_EVENT";
593 	case WMI_LINK_MAINTAIN_CFG_WRITE_DONE_EVENTID:
594 		return "WMI_LINK_MAINTAIN_CFG_WRITE_DONE_EVENT";
595 	case WMI_LO_POWER_CALIB_FROM_OTP_EVENTID:
596 		return "WMI_LO_POWER_CALIB_FROM_OTP_EVENT";
597 	case WMI_START_SCHED_SCAN_EVENTID:
598 		return "WMI_START_SCHED_SCAN_EVENT";
599 	case WMI_STOP_SCHED_SCAN_EVENTID:
600 		return "WMI_STOP_SCHED_SCAN_EVENT";
601 	case WMI_SCHED_SCAN_RESULT_EVENTID:
602 		return "WMI_SCHED_SCAN_RESULT_EVENT";
603 	case WMI_TX_STATUS_RING_CFG_DONE_EVENTID:
604 		return "WMI_TX_STATUS_RING_CFG_DONE_EVENT";
605 	case WMI_RX_STATUS_RING_CFG_DONE_EVENTID:
606 		return "WMI_RX_STATUS_RING_CFG_DONE_EVENT";
607 	case WMI_TX_DESC_RING_CFG_DONE_EVENTID:
608 		return "WMI_TX_DESC_RING_CFG_DONE_EVENT";
609 	case WMI_RX_DESC_RING_CFG_DONE_EVENTID:
610 		return "WMI_RX_DESC_RING_CFG_DONE_EVENT";
611 	case WMI_CFG_DEF_RX_OFFLOAD_DONE_EVENTID:
612 		return "WMI_CFG_DEF_RX_OFFLOAD_DONE_EVENT";
613 	case WMI_LINK_STATS_CONFIG_DONE_EVENTID:
614 		return "WMI_LINK_STATS_CONFIG_DONE_EVENT";
615 	case WMI_LINK_STATS_EVENTID:
616 		return "WMI_LINK_STATS_EVENT";
617 	case WMI_COMMAND_NOT_SUPPORTED_EVENTID:
618 		return "WMI_COMMAND_NOT_SUPPORTED_EVENT";
619 	case WMI_FT_AUTH_STATUS_EVENTID:
620 		return "WMI_FT_AUTH_STATUS_EVENT";
621 	case WMI_FT_REASSOC_STATUS_EVENTID:
622 		return "WMI_FT_REASSOC_STATUS_EVENT";
623 	case WMI_RBUFCAP_CFG_EVENTID:
624 		return "WMI_RBUFCAP_CFG_EVENT";
625 	case WMI_TEMP_SENSE_ALL_DONE_EVENTID:
626 		return "WMI_TEMP_SENSE_ALL_DONE_EVENTID";
627 	default:
628 		return "Untracked EVENT";
629 	}
630 }
631 
632 static int __wmi_send(struct wil6210_priv *wil, u16 cmdid, u8 mid,
633 		      void *buf, u16 len)
634 {
635 	struct {
636 		struct wil6210_mbox_hdr hdr;
637 		struct wmi_cmd_hdr wmi;
638 	} __packed cmd = {
639 		.hdr = {
640 			.type = WIL_MBOX_HDR_TYPE_WMI,
641 			.flags = 0,
642 			.len = cpu_to_le16(sizeof(cmd.wmi) + len),
643 		},
644 		.wmi = {
645 			.mid = mid,
646 			.command_id = cpu_to_le16(cmdid),
647 		},
648 	};
649 	struct wil6210_mbox_ring *r = &wil->mbox_ctl.tx;
650 	struct wil6210_mbox_ring_desc d_head;
651 	u32 next_head;
652 	void __iomem *dst;
653 	void __iomem *head = wmi_addr(wil, r->head);
654 	uint retry;
655 	int rc = 0;
656 
657 	if (len > r->entry_size - sizeof(cmd)) {
658 		wil_err(wil, "WMI size too large: %d bytes, max is %d\n",
659 			(int)(sizeof(cmd) + len), r->entry_size);
660 		return -ERANGE;
661 	}
662 
663 	might_sleep();
664 
665 	if (!test_bit(wil_status_fwready, wil->status)) {
666 		wil_err(wil, "WMI: cannot send command while FW not ready\n");
667 		return -EAGAIN;
668 	}
669 
670 	/* Allow sending only suspend / resume commands during susepnd flow */
671 	if ((test_bit(wil_status_suspending, wil->status) ||
672 	     test_bit(wil_status_suspended, wil->status) ||
673 	     test_bit(wil_status_resuming, wil->status)) &&
674 	     ((cmdid != WMI_TRAFFIC_SUSPEND_CMDID) &&
675 	      (cmdid != WMI_TRAFFIC_RESUME_CMDID))) {
676 		wil_err(wil, "WMI: reject send_command during suspend\n");
677 		return -EINVAL;
678 	}
679 
680 	if (!head) {
681 		wil_err(wil, "WMI head is garbage: 0x%08x\n", r->head);
682 		return -EINVAL;
683 	}
684 
685 	wil_halp_vote(wil);
686 
687 	/* read Tx head till it is not busy */
688 	for (retry = 5; retry > 0; retry--) {
689 		wil_memcpy_fromio_32(&d_head, head, sizeof(d_head));
690 		if (d_head.sync == 0)
691 			break;
692 		msleep(20);
693 	}
694 	if (d_head.sync != 0) {
695 		wil_err(wil, "WMI head busy\n");
696 		rc = -EBUSY;
697 		goto out;
698 	}
699 	/* next head */
700 	next_head = r->base + ((r->head - r->base + sizeof(d_head)) % r->size);
701 	wil_dbg_wmi(wil, "Head 0x%08x -> 0x%08x\n", r->head, next_head);
702 	/* wait till FW finish with previous command */
703 	for (retry = 5; retry > 0; retry--) {
704 		if (!test_bit(wil_status_fwready, wil->status)) {
705 			wil_err(wil, "WMI: cannot send command while FW not ready\n");
706 			rc = -EAGAIN;
707 			goto out;
708 		}
709 		r->tail = wil_r(wil, RGF_MBOX +
710 				offsetof(struct wil6210_mbox_ctl, tx.tail));
711 		if (next_head != r->tail)
712 			break;
713 		msleep(20);
714 	}
715 	if (next_head == r->tail) {
716 		wil_err(wil, "WMI ring full\n");
717 		rc = -EBUSY;
718 		goto out;
719 	}
720 	dst = wmi_buffer(wil, d_head.addr);
721 	if (!dst) {
722 		wil_err(wil, "invalid WMI buffer: 0x%08x\n",
723 			le32_to_cpu(d_head.addr));
724 		rc = -EAGAIN;
725 		goto out;
726 	}
727 	cmd.hdr.seq = cpu_to_le16(++wil->wmi_seq);
728 	/* set command */
729 	wil_dbg_wmi(wil, "sending %s (0x%04x) [%d] mid %d\n",
730 		    cmdid2name(cmdid), cmdid, len, mid);
731 	wil_hex_dump_wmi("Cmd ", DUMP_PREFIX_OFFSET, 16, 1, &cmd,
732 			 sizeof(cmd), true);
733 	wil_hex_dump_wmi("cmd ", DUMP_PREFIX_OFFSET, 16, 1, buf,
734 			 len, true);
735 	wil_memcpy_toio_32(dst, &cmd, sizeof(cmd));
736 	wil_memcpy_toio_32(dst + sizeof(cmd), buf, len);
737 	/* mark entry as full */
738 	wil_w(wil, r->head + offsetof(struct wil6210_mbox_ring_desc, sync), 1);
739 	/* advance next ptr */
740 	wil_w(wil, RGF_MBOX + offsetof(struct wil6210_mbox_ctl, tx.head),
741 	      r->head = next_head);
742 
743 	trace_wil6210_wmi_cmd(&cmd.wmi, buf, len);
744 
745 	/* interrupt to FW */
746 	wil_w(wil, RGF_USER_USER_ICR + offsetof(struct RGF_ICR, ICS),
747 	      SW_INT_MBOX);
748 
749 out:
750 	wil_halp_unvote(wil);
751 	return rc;
752 }
753 
754 int wmi_send(struct wil6210_priv *wil, u16 cmdid, u8 mid, void *buf, u16 len)
755 {
756 	int rc;
757 
758 	mutex_lock(&wil->wmi_mutex);
759 	rc = __wmi_send(wil, cmdid, mid, buf, len);
760 	mutex_unlock(&wil->wmi_mutex);
761 
762 	return rc;
763 }
764 
765 /*=== Event handlers ===*/
766 static void wmi_evt_ready(struct wil6210_vif *vif, int id, void *d, int len)
767 {
768 	struct wil6210_priv *wil = vif_to_wil(vif);
769 	struct wiphy *wiphy = wil_to_wiphy(wil);
770 	struct wmi_ready_event *evt = d;
771 	u8 fw_max_assoc_sta;
772 
773 	wil_info(wil, "FW ver. %s(SW %d); MAC %pM; %d MID's\n",
774 		 wil->fw_version, le32_to_cpu(evt->sw_version),
775 		 evt->mac, evt->numof_additional_mids);
776 	if (evt->numof_additional_mids + 1 < wil->max_vifs) {
777 		wil_err(wil, "FW does not support enough MIDs (need %d)",
778 			wil->max_vifs - 1);
779 		return; /* FW load will fail after timeout */
780 	}
781 	/* ignore MAC address, we already have it from the boot loader */
782 	strlcpy(wiphy->fw_version, wil->fw_version, sizeof(wiphy->fw_version));
783 
784 	if (len > offsetof(struct wmi_ready_event, rfc_read_calib_result)) {
785 		wil_dbg_wmi(wil, "rfc calibration result %d\n",
786 			    evt->rfc_read_calib_result);
787 		wil->fw_calib_result = evt->rfc_read_calib_result;
788 	}
789 
790 	fw_max_assoc_sta = WIL6210_RX_DESC_MAX_CID;
791 	if (len > offsetof(struct wmi_ready_event, max_assoc_sta) &&
792 	    evt->max_assoc_sta > 0) {
793 		fw_max_assoc_sta = evt->max_assoc_sta;
794 		wil_dbg_wmi(wil, "fw reported max assoc sta %d\n",
795 			    fw_max_assoc_sta);
796 
797 		if (fw_max_assoc_sta > WIL6210_MAX_CID) {
798 			wil_dbg_wmi(wil,
799 				    "fw max assoc sta %d exceeds max driver supported %d\n",
800 				    fw_max_assoc_sta, WIL6210_MAX_CID);
801 			fw_max_assoc_sta = WIL6210_MAX_CID;
802 		}
803 	}
804 
805 	wil->max_assoc_sta = min_t(uint, max_assoc_sta, fw_max_assoc_sta);
806 	wil_dbg_wmi(wil, "setting max assoc sta to %d\n", wil->max_assoc_sta);
807 
808 	wil_set_recovery_state(wil, fw_recovery_idle);
809 	set_bit(wil_status_fwready, wil->status);
810 	/* let the reset sequence continue */
811 	complete(&wil->wmi_ready);
812 }
813 
814 static void wmi_evt_rx_mgmt(struct wil6210_vif *vif, int id, void *d, int len)
815 {
816 	struct wil6210_priv *wil = vif_to_wil(vif);
817 	struct wmi_rx_mgmt_packet_event *data = d;
818 	struct wiphy *wiphy = wil_to_wiphy(wil);
819 	struct ieee80211_mgmt *rx_mgmt_frame =
820 			(struct ieee80211_mgmt *)data->payload;
821 	int flen = len - offsetof(struct wmi_rx_mgmt_packet_event, payload);
822 	int ch_no;
823 	u32 freq;
824 	struct ieee80211_channel *channel;
825 	s32 signal;
826 	__le16 fc;
827 	u32 d_len;
828 	u16 d_status;
829 
830 	if (flen < 0) {
831 		wil_err(wil, "MGMT Rx: short event, len %d\n", len);
832 		return;
833 	}
834 
835 	d_len = le32_to_cpu(data->info.len);
836 	if (d_len != flen) {
837 		wil_err(wil,
838 			"MGMT Rx: length mismatch, d_len %d should be %d\n",
839 			d_len, flen);
840 		return;
841 	}
842 
843 	ch_no = data->info.channel + 1;
844 	freq = ieee80211_channel_to_frequency(ch_no, NL80211_BAND_60GHZ);
845 	channel = ieee80211_get_channel(wiphy, freq);
846 	if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities))
847 		signal = 100 * data->info.rssi;
848 	else
849 		signal = data->info.sqi;
850 	d_status = le16_to_cpu(data->info.status);
851 	fc = rx_mgmt_frame->frame_control;
852 
853 	wil_dbg_wmi(wil, "MGMT Rx: channel %d MCS %d RSSI %d SQI %d%%\n",
854 		    data->info.channel, data->info.mcs, data->info.rssi,
855 		    data->info.sqi);
856 	wil_dbg_wmi(wil, "status 0x%04x len %d fc 0x%04x\n", d_status, d_len,
857 		    le16_to_cpu(fc));
858 	wil_dbg_wmi(wil, "qid %d mid %d cid %d\n",
859 		    data->info.qid, data->info.mid, data->info.cid);
860 	wil_hex_dump_wmi("MGMT Rx ", DUMP_PREFIX_OFFSET, 16, 1, rx_mgmt_frame,
861 			 d_len, true);
862 
863 	if (!channel) {
864 		wil_err(wil, "Frame on unsupported channel\n");
865 		return;
866 	}
867 
868 	if (ieee80211_is_beacon(fc) || ieee80211_is_probe_resp(fc)) {
869 		struct cfg80211_bss *bss;
870 		struct cfg80211_inform_bss bss_data = {
871 			.chan = channel,
872 			.scan_width = NL80211_BSS_CHAN_WIDTH_20,
873 			.signal = signal,
874 			.boottime_ns = ktime_to_ns(ktime_get_boottime()),
875 		};
876 		u64 tsf = le64_to_cpu(rx_mgmt_frame->u.beacon.timestamp);
877 		u16 cap = le16_to_cpu(rx_mgmt_frame->u.beacon.capab_info);
878 		u16 bi = le16_to_cpu(rx_mgmt_frame->u.beacon.beacon_int);
879 		const u8 *ie_buf = rx_mgmt_frame->u.beacon.variable;
880 		size_t ie_len = d_len - offsetof(struct ieee80211_mgmt,
881 						 u.beacon.variable);
882 		wil_dbg_wmi(wil, "Capability info : 0x%04x\n", cap);
883 		wil_dbg_wmi(wil, "TSF : 0x%016llx\n", tsf);
884 		wil_dbg_wmi(wil, "Beacon interval : %d\n", bi);
885 		wil_hex_dump_wmi("IE ", DUMP_PREFIX_OFFSET, 16, 1, ie_buf,
886 				 ie_len, true);
887 
888 		wil_dbg_wmi(wil, "Capability info : 0x%04x\n", cap);
889 
890 		bss = cfg80211_inform_bss_frame_data(wiphy, &bss_data,
891 						     rx_mgmt_frame,
892 						     d_len, GFP_KERNEL);
893 		if (bss) {
894 			wil_dbg_wmi(wil, "Added BSS %pM\n",
895 				    rx_mgmt_frame->bssid);
896 			cfg80211_put_bss(wiphy, bss);
897 		} else {
898 			wil_err(wil, "cfg80211_inform_bss_frame() failed\n");
899 		}
900 	} else {
901 		mutex_lock(&wil->vif_mutex);
902 		cfg80211_rx_mgmt(vif_to_radio_wdev(wil, vif), freq, signal,
903 				 (void *)rx_mgmt_frame, d_len, 0);
904 		mutex_unlock(&wil->vif_mutex);
905 	}
906 }
907 
908 static void wmi_evt_tx_mgmt(struct wil6210_vif *vif, int id, void *d, int len)
909 {
910 	struct wmi_tx_mgmt_packet_event *data = d;
911 	struct ieee80211_mgmt *mgmt_frame =
912 			(struct ieee80211_mgmt *)data->payload;
913 	int flen = len - offsetof(struct wmi_tx_mgmt_packet_event, payload);
914 
915 	wil_hex_dump_wmi("MGMT Tx ", DUMP_PREFIX_OFFSET, 16, 1, mgmt_frame,
916 			 flen, true);
917 }
918 
919 static void wmi_evt_scan_complete(struct wil6210_vif *vif, int id,
920 				  void *d, int len)
921 {
922 	struct wil6210_priv *wil = vif_to_wil(vif);
923 
924 	mutex_lock(&wil->vif_mutex);
925 	if (vif->scan_request) {
926 		struct wmi_scan_complete_event *data = d;
927 		int status = le32_to_cpu(data->status);
928 		struct cfg80211_scan_info info = {
929 			.aborted = ((status != WMI_SCAN_SUCCESS) &&
930 				(status != WMI_SCAN_ABORT_REJECTED)),
931 		};
932 
933 		wil_dbg_wmi(wil, "SCAN_COMPLETE(0x%08x)\n", status);
934 		wil_dbg_misc(wil, "Complete scan_request 0x%p aborted %d\n",
935 			     vif->scan_request, info.aborted);
936 		del_timer_sync(&vif->scan_timer);
937 		cfg80211_scan_done(vif->scan_request, &info);
938 		if (vif->mid == 0)
939 			wil->radio_wdev = wil->main_ndev->ieee80211_ptr;
940 		vif->scan_request = NULL;
941 		wake_up_interruptible(&wil->wq);
942 		if (vif->p2p.pending_listen_wdev) {
943 			wil_dbg_misc(wil, "Scheduling delayed listen\n");
944 			schedule_work(&vif->p2p.delayed_listen_work);
945 		}
946 	} else {
947 		wil_err(wil, "SCAN_COMPLETE while not scanning\n");
948 	}
949 	mutex_unlock(&wil->vif_mutex);
950 }
951 
952 static void wmi_evt_connect(struct wil6210_vif *vif, int id, void *d, int len)
953 {
954 	struct wil6210_priv *wil = vif_to_wil(vif);
955 	struct net_device *ndev = vif_to_ndev(vif);
956 	struct wireless_dev *wdev = vif_to_wdev(vif);
957 	struct wmi_connect_event *evt = d;
958 	int ch; /* channel number */
959 	struct station_info *sinfo;
960 	u8 *assoc_req_ie, *assoc_resp_ie;
961 	size_t assoc_req_ielen, assoc_resp_ielen;
962 	/* capinfo(u16) + listen_interval(u16) + IEs */
963 	const size_t assoc_req_ie_offset = sizeof(u16) * 2;
964 	/* capinfo(u16) + status_code(u16) + associd(u16) + IEs */
965 	const size_t assoc_resp_ie_offset = sizeof(u16) * 3;
966 	int rc;
967 
968 	if (len < sizeof(*evt)) {
969 		wil_err(wil, "Connect event too short : %d bytes\n", len);
970 		return;
971 	}
972 	if (len != sizeof(*evt) + evt->beacon_ie_len + evt->assoc_req_len +
973 		   evt->assoc_resp_len) {
974 		wil_err(wil,
975 			"Connect event corrupted : %d != %d + %d + %d + %d\n",
976 			len, (int)sizeof(*evt), evt->beacon_ie_len,
977 			evt->assoc_req_len, evt->assoc_resp_len);
978 		return;
979 	}
980 	if (evt->cid >= wil->max_assoc_sta) {
981 		wil_err(wil, "Connect CID invalid : %d\n", evt->cid);
982 		return;
983 	}
984 
985 	ch = evt->channel + 1;
986 	wil_info(wil, "Connect %pM channel [%d] cid %d aid %d\n",
987 		 evt->bssid, ch, evt->cid, evt->aid);
988 	wil_hex_dump_wmi("connect AI : ", DUMP_PREFIX_OFFSET, 16, 1,
989 			 evt->assoc_info, len - sizeof(*evt), true);
990 
991 	/* figure out IE's */
992 	assoc_req_ie = &evt->assoc_info[evt->beacon_ie_len +
993 					assoc_req_ie_offset];
994 	assoc_req_ielen = evt->assoc_req_len - assoc_req_ie_offset;
995 	if (evt->assoc_req_len <= assoc_req_ie_offset) {
996 		assoc_req_ie = NULL;
997 		assoc_req_ielen = 0;
998 	}
999 
1000 	assoc_resp_ie = &evt->assoc_info[evt->beacon_ie_len +
1001 					 evt->assoc_req_len +
1002 					 assoc_resp_ie_offset];
1003 	assoc_resp_ielen = evt->assoc_resp_len - assoc_resp_ie_offset;
1004 	if (evt->assoc_resp_len <= assoc_resp_ie_offset) {
1005 		assoc_resp_ie = NULL;
1006 		assoc_resp_ielen = 0;
1007 	}
1008 
1009 	if (test_bit(wil_status_resetting, wil->status) ||
1010 	    !test_bit(wil_status_fwready, wil->status)) {
1011 		wil_err(wil, "status_resetting, cancel connect event, CID %d\n",
1012 			evt->cid);
1013 		/* no need for cleanup, wil_reset will do that */
1014 		return;
1015 	}
1016 
1017 	mutex_lock(&wil->mutex);
1018 
1019 	if ((wdev->iftype == NL80211_IFTYPE_STATION) ||
1020 	    (wdev->iftype == NL80211_IFTYPE_P2P_CLIENT)) {
1021 		if (!test_bit(wil_vif_fwconnecting, vif->status)) {
1022 			wil_err(wil, "Not in connecting state\n");
1023 			mutex_unlock(&wil->mutex);
1024 			return;
1025 		}
1026 		del_timer_sync(&vif->connect_timer);
1027 	} else if ((wdev->iftype == NL80211_IFTYPE_AP) ||
1028 		   (wdev->iftype == NL80211_IFTYPE_P2P_GO)) {
1029 		if (wil->sta[evt->cid].status != wil_sta_unused) {
1030 			wil_err(wil, "AP: Invalid status %d for CID %d\n",
1031 				wil->sta[evt->cid].status, evt->cid);
1032 			mutex_unlock(&wil->mutex);
1033 			return;
1034 		}
1035 	}
1036 
1037 	ether_addr_copy(wil->sta[evt->cid].addr, evt->bssid);
1038 	wil->sta[evt->cid].mid = vif->mid;
1039 	wil->sta[evt->cid].status = wil_sta_conn_pending;
1040 
1041 	rc = wil_ring_init_tx(vif, evt->cid);
1042 	if (rc) {
1043 		wil_err(wil, "config tx vring failed for CID %d, rc (%d)\n",
1044 			evt->cid, rc);
1045 		wmi_disconnect_sta(vif, wil->sta[evt->cid].addr,
1046 				   WLAN_REASON_UNSPECIFIED, false);
1047 	} else {
1048 		wil_info(wil, "successful connection to CID %d\n", evt->cid);
1049 	}
1050 
1051 	if ((wdev->iftype == NL80211_IFTYPE_STATION) ||
1052 	    (wdev->iftype == NL80211_IFTYPE_P2P_CLIENT)) {
1053 		if (rc) {
1054 			netif_carrier_off(ndev);
1055 			wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
1056 			wil_err(wil, "cfg80211_connect_result with failure\n");
1057 			cfg80211_connect_result(ndev, evt->bssid, NULL, 0,
1058 						NULL, 0,
1059 						WLAN_STATUS_UNSPECIFIED_FAILURE,
1060 						GFP_KERNEL);
1061 			goto out;
1062 		} else {
1063 			struct wiphy *wiphy = wil_to_wiphy(wil);
1064 
1065 			cfg80211_ref_bss(wiphy, vif->bss);
1066 			cfg80211_connect_bss(ndev, evt->bssid, vif->bss,
1067 					     assoc_req_ie, assoc_req_ielen,
1068 					     assoc_resp_ie, assoc_resp_ielen,
1069 					     WLAN_STATUS_SUCCESS, GFP_KERNEL,
1070 					     NL80211_TIMEOUT_UNSPECIFIED);
1071 		}
1072 		vif->bss = NULL;
1073 	} else if ((wdev->iftype == NL80211_IFTYPE_AP) ||
1074 		   (wdev->iftype == NL80211_IFTYPE_P2P_GO)) {
1075 
1076 		if (rc) {
1077 			if (disable_ap_sme)
1078 				/* notify new_sta has failed */
1079 				cfg80211_del_sta(ndev, evt->bssid, GFP_KERNEL);
1080 			goto out;
1081 		}
1082 
1083 		sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
1084 		if (!sinfo) {
1085 			rc = -ENOMEM;
1086 			goto out;
1087 		}
1088 
1089 		sinfo->generation = wil->sinfo_gen++;
1090 
1091 		if (assoc_req_ie) {
1092 			sinfo->assoc_req_ies = assoc_req_ie;
1093 			sinfo->assoc_req_ies_len = assoc_req_ielen;
1094 		}
1095 
1096 		cfg80211_new_sta(ndev, evt->bssid, sinfo, GFP_KERNEL);
1097 
1098 		kfree(sinfo);
1099 	} else {
1100 		wil_err(wil, "unhandled iftype %d for CID %d\n", wdev->iftype,
1101 			evt->cid);
1102 		goto out;
1103 	}
1104 
1105 	wil->sta[evt->cid].status = wil_sta_connected;
1106 	wil->sta[evt->cid].aid = evt->aid;
1107 	if (!test_and_set_bit(wil_vif_fwconnected, vif->status))
1108 		atomic_inc(&wil->connected_vifs);
1109 	wil_update_net_queues_bh(wil, vif, NULL, false);
1110 
1111 out:
1112 	if (rc) {
1113 		wil->sta[evt->cid].status = wil_sta_unused;
1114 		wil->sta[evt->cid].mid = U8_MAX;
1115 	}
1116 	clear_bit(wil_vif_fwconnecting, vif->status);
1117 	mutex_unlock(&wil->mutex);
1118 }
1119 
1120 static void wmi_evt_disconnect(struct wil6210_vif *vif, int id,
1121 			       void *d, int len)
1122 {
1123 	struct wil6210_priv *wil = vif_to_wil(vif);
1124 	struct wmi_disconnect_event *evt = d;
1125 	u16 reason_code = le16_to_cpu(evt->protocol_reason_status);
1126 
1127 	wil_info(wil, "Disconnect %pM reason [proto %d wmi %d]\n",
1128 		 evt->bssid, reason_code, evt->disconnect_reason);
1129 
1130 	wil->sinfo_gen++;
1131 
1132 	if (test_bit(wil_status_resetting, wil->status) ||
1133 	    !test_bit(wil_status_fwready, wil->status)) {
1134 		wil_err(wil, "status_resetting, cancel disconnect event\n");
1135 		/* no need for cleanup, wil_reset will do that */
1136 		return;
1137 	}
1138 
1139 	mutex_lock(&wil->mutex);
1140 	wil6210_disconnect_complete(vif, evt->bssid, reason_code);
1141 	if (disable_ap_sme) {
1142 		struct wireless_dev *wdev = vif_to_wdev(vif);
1143 		struct net_device *ndev = vif_to_ndev(vif);
1144 
1145 		/* disconnect event in disable_ap_sme mode means link loss */
1146 		switch (wdev->iftype) {
1147 		/* AP-like interface */
1148 		case NL80211_IFTYPE_AP:
1149 		case NL80211_IFTYPE_P2P_GO:
1150 			/* notify hostapd about link loss */
1151 			cfg80211_cqm_pktloss_notify(ndev, evt->bssid, 0,
1152 						    GFP_KERNEL);
1153 			break;
1154 		default:
1155 			break;
1156 		}
1157 	}
1158 	mutex_unlock(&wil->mutex);
1159 }
1160 
1161 /*
1162  * Firmware reports EAPOL frame using WME event.
1163  * Reconstruct Ethernet frame and deliver it via normal Rx
1164  */
1165 static void wmi_evt_eapol_rx(struct wil6210_vif *vif, int id, void *d, int len)
1166 {
1167 	struct wil6210_priv *wil = vif_to_wil(vif);
1168 	struct net_device *ndev = vif_to_ndev(vif);
1169 	struct wmi_eapol_rx_event *evt = d;
1170 	u16 eapol_len = le16_to_cpu(evt->eapol_len);
1171 	int sz = eapol_len + ETH_HLEN;
1172 	struct sk_buff *skb;
1173 	struct ethhdr *eth;
1174 	int cid;
1175 	struct wil_net_stats *stats = NULL;
1176 
1177 	wil_dbg_wmi(wil, "EAPOL len %d from %pM MID %d\n", eapol_len,
1178 		    evt->src_mac, vif->mid);
1179 
1180 	cid = wil_find_cid(wil, vif->mid, evt->src_mac);
1181 	if (cid >= 0)
1182 		stats = &wil->sta[cid].stats;
1183 
1184 	if (eapol_len > 196) { /* TODO: revisit size limit */
1185 		wil_err(wil, "EAPOL too large\n");
1186 		return;
1187 	}
1188 
1189 	skb = alloc_skb(sz, GFP_KERNEL);
1190 	if (!skb) {
1191 		wil_err(wil, "Failed to allocate skb\n");
1192 		return;
1193 	}
1194 
1195 	eth = skb_put(skb, ETH_HLEN);
1196 	ether_addr_copy(eth->h_dest, ndev->dev_addr);
1197 	ether_addr_copy(eth->h_source, evt->src_mac);
1198 	eth->h_proto = cpu_to_be16(ETH_P_PAE);
1199 	skb_put_data(skb, evt->eapol, eapol_len);
1200 	skb->protocol = eth_type_trans(skb, ndev);
1201 	if (likely(netif_rx_ni(skb) == NET_RX_SUCCESS)) {
1202 		ndev->stats.rx_packets++;
1203 		ndev->stats.rx_bytes += sz;
1204 		if (stats) {
1205 			stats->rx_packets++;
1206 			stats->rx_bytes += sz;
1207 		}
1208 	} else {
1209 		ndev->stats.rx_dropped++;
1210 		if (stats)
1211 			stats->rx_dropped++;
1212 	}
1213 }
1214 
1215 static void wmi_evt_ring_en(struct wil6210_vif *vif, int id, void *d, int len)
1216 {
1217 	struct wil6210_priv *wil = vif_to_wil(vif);
1218 	struct wmi_ring_en_event *evt = d;
1219 	u8 vri = evt->ring_index;
1220 	struct wireless_dev *wdev = vif_to_wdev(vif);
1221 	struct wil_sta_info *sta;
1222 	u8 cid;
1223 	struct key_params params;
1224 
1225 	wil_dbg_wmi(wil, "Enable vring %d MID %d\n", vri, vif->mid);
1226 
1227 	if (vri >= ARRAY_SIZE(wil->ring_tx)) {
1228 		wil_err(wil, "Enable for invalid vring %d\n", vri);
1229 		return;
1230 	}
1231 
1232 	if (wdev->iftype != NL80211_IFTYPE_AP || !disable_ap_sme ||
1233 	    test_bit(wil_vif_ft_roam, vif->status))
1234 		/* in AP mode with disable_ap_sme that is not FT,
1235 		 * this is done by wil_cfg80211_change_station()
1236 		 */
1237 		wil->ring_tx_data[vri].dot1x_open = true;
1238 	if (vri == vif->bcast_ring) /* no BA for bcast */
1239 		return;
1240 
1241 	cid = wil->ring2cid_tid[vri][0];
1242 	if (!wil_cid_valid(wil, cid)) {
1243 		wil_err(wil, "invalid cid %d for vring %d\n", cid, vri);
1244 		return;
1245 	}
1246 
1247 	/* In FT mode we get key but not store it as it is received
1248 	 * before WMI_CONNECT_EVENT received from FW.
1249 	 * wil_set_crypto_rx is called here to reset the security PN
1250 	 */
1251 	sta = &wil->sta[cid];
1252 	if (test_bit(wil_vif_ft_roam, vif->status)) {
1253 		memset(&params, 0, sizeof(params));
1254 		wil_set_crypto_rx(0, WMI_KEY_USE_PAIRWISE, sta, &params);
1255 		if (wdev->iftype != NL80211_IFTYPE_AP)
1256 			clear_bit(wil_vif_ft_roam, vif->status);
1257 	}
1258 
1259 	if (agg_wsize >= 0)
1260 		wil_addba_tx_request(wil, vri, agg_wsize);
1261 }
1262 
1263 static void wmi_evt_ba_status(struct wil6210_vif *vif, int id,
1264 			      void *d, int len)
1265 {
1266 	struct wil6210_priv *wil = vif_to_wil(vif);
1267 	struct wmi_ba_status_event *evt = d;
1268 	struct wil_ring_tx_data *txdata;
1269 
1270 	wil_dbg_wmi(wil, "BACK[%d] %s {%d} timeout %d AMSDU%s\n",
1271 		    evt->ringid,
1272 		    evt->status == WMI_BA_AGREED ? "OK" : "N/A",
1273 		    evt->agg_wsize, __le16_to_cpu(evt->ba_timeout),
1274 		    evt->amsdu ? "+" : "-");
1275 
1276 	if (evt->ringid >= WIL6210_MAX_TX_RINGS) {
1277 		wil_err(wil, "invalid ring id %d\n", evt->ringid);
1278 		return;
1279 	}
1280 
1281 	if (evt->status != WMI_BA_AGREED) {
1282 		evt->ba_timeout = 0;
1283 		evt->agg_wsize = 0;
1284 		evt->amsdu = 0;
1285 	}
1286 
1287 	txdata = &wil->ring_tx_data[evt->ringid];
1288 
1289 	txdata->agg_timeout = le16_to_cpu(evt->ba_timeout);
1290 	txdata->agg_wsize = evt->agg_wsize;
1291 	txdata->agg_amsdu = evt->amsdu;
1292 	txdata->addba_in_progress = false;
1293 }
1294 
1295 static void wmi_evt_addba_rx_req(struct wil6210_vif *vif, int id,
1296 				 void *d, int len)
1297 {
1298 	struct wil6210_priv *wil = vif_to_wil(vif);
1299 	u8 cid, tid;
1300 	struct wmi_rcp_addba_req_event *evt = d;
1301 
1302 	if (evt->cidxtid != CIDXTID_EXTENDED_CID_TID) {
1303 		parse_cidxtid(evt->cidxtid, &cid, &tid);
1304 	} else {
1305 		cid = evt->cid;
1306 		tid = evt->tid;
1307 	}
1308 	wil_addba_rx_request(wil, vif->mid, cid, tid, evt->dialog_token,
1309 			     evt->ba_param_set, evt->ba_timeout,
1310 			     evt->ba_seq_ctrl);
1311 }
1312 
1313 static void wmi_evt_delba(struct wil6210_vif *vif, int id, void *d, int len)
1314 __acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock)
1315 {
1316 	struct wil6210_priv *wil = vif_to_wil(vif);
1317 	struct wmi_delba_event *evt = d;
1318 	u8 cid, tid;
1319 	u16 reason = __le16_to_cpu(evt->reason);
1320 	struct wil_sta_info *sta;
1321 	struct wil_tid_ampdu_rx *r;
1322 
1323 	might_sleep();
1324 
1325 	if (evt->cidxtid != CIDXTID_EXTENDED_CID_TID) {
1326 		parse_cidxtid(evt->cidxtid, &cid, &tid);
1327 	} else {
1328 		cid = evt->cid;
1329 		tid = evt->tid;
1330 	}
1331 
1332 	if (!wil_cid_valid(wil, cid)) {
1333 		wil_err(wil, "DELBA: Invalid CID %d\n", cid);
1334 		return;
1335 	}
1336 
1337 	wil_dbg_wmi(wil, "DELBA MID %d CID %d TID %d from %s reason %d\n",
1338 		    vif->mid, cid, tid,
1339 		    evt->from_initiator ? "originator" : "recipient",
1340 		    reason);
1341 	if (!evt->from_initiator) {
1342 		int i;
1343 		/* find Tx vring it belongs to */
1344 		for (i = 0; i < ARRAY_SIZE(wil->ring2cid_tid); i++) {
1345 			if (wil->ring2cid_tid[i][0] == cid &&
1346 			    wil->ring2cid_tid[i][1] == tid) {
1347 				struct wil_ring_tx_data *txdata =
1348 					&wil->ring_tx_data[i];
1349 
1350 				wil_dbg_wmi(wil, "DELBA Tx vring %d\n", i);
1351 				txdata->agg_timeout = 0;
1352 				txdata->agg_wsize = 0;
1353 				txdata->addba_in_progress = false;
1354 
1355 				break; /* max. 1 matching ring */
1356 			}
1357 		}
1358 		if (i >= ARRAY_SIZE(wil->ring2cid_tid))
1359 			wil_err(wil, "DELBA: unable to find Tx vring\n");
1360 		return;
1361 	}
1362 
1363 	sta = &wil->sta[cid];
1364 
1365 	spin_lock_bh(&sta->tid_rx_lock);
1366 
1367 	r = sta->tid_rx[tid];
1368 	sta->tid_rx[tid] = NULL;
1369 	wil_tid_ampdu_rx_free(wil, r);
1370 
1371 	spin_unlock_bh(&sta->tid_rx_lock);
1372 }
1373 
1374 static void
1375 wmi_evt_sched_scan_result(struct wil6210_vif *vif, int id, void *d, int len)
1376 {
1377 	struct wil6210_priv *wil = vif_to_wil(vif);
1378 	struct wmi_sched_scan_result_event *data = d;
1379 	struct wiphy *wiphy = wil_to_wiphy(wil);
1380 	struct ieee80211_mgmt *rx_mgmt_frame =
1381 		(struct ieee80211_mgmt *)data->payload;
1382 	int flen = len - offsetof(struct wmi_sched_scan_result_event, payload);
1383 	int ch_no;
1384 	u32 freq;
1385 	struct ieee80211_channel *channel;
1386 	s32 signal;
1387 	__le16 fc;
1388 	u32 d_len;
1389 	struct cfg80211_bss *bss;
1390 	struct cfg80211_inform_bss bss_data = {
1391 		.scan_width = NL80211_BSS_CHAN_WIDTH_20,
1392 		.boottime_ns = ktime_to_ns(ktime_get_boottime()),
1393 	};
1394 
1395 	if (flen < 0) {
1396 		wil_err(wil, "sched scan result event too short, len %d\n",
1397 			len);
1398 		return;
1399 	}
1400 
1401 	d_len = le32_to_cpu(data->info.len);
1402 	if (d_len != flen) {
1403 		wil_err(wil,
1404 			"sched scan result length mismatch, d_len %d should be %d\n",
1405 			d_len, flen);
1406 		return;
1407 	}
1408 
1409 	fc = rx_mgmt_frame->frame_control;
1410 	if (!ieee80211_is_probe_resp(fc)) {
1411 		wil_err(wil, "sched scan result invalid frame, fc 0x%04x\n",
1412 			fc);
1413 		return;
1414 	}
1415 
1416 	ch_no = data->info.channel + 1;
1417 	freq = ieee80211_channel_to_frequency(ch_no, NL80211_BAND_60GHZ);
1418 	channel = ieee80211_get_channel(wiphy, freq);
1419 	if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities))
1420 		signal = 100 * data->info.rssi;
1421 	else
1422 		signal = data->info.sqi;
1423 
1424 	wil_dbg_wmi(wil, "sched scan result: channel %d MCS %d RSSI %d\n",
1425 		    data->info.channel, data->info.mcs, data->info.rssi);
1426 	wil_dbg_wmi(wil, "len %d qid %d mid %d cid %d\n",
1427 		    d_len, data->info.qid, data->info.mid, data->info.cid);
1428 	wil_hex_dump_wmi("PROBE ", DUMP_PREFIX_OFFSET, 16, 1, rx_mgmt_frame,
1429 			 d_len, true);
1430 
1431 	if (!channel) {
1432 		wil_err(wil, "Frame on unsupported channel\n");
1433 		return;
1434 	}
1435 
1436 	bss_data.signal = signal;
1437 	bss_data.chan = channel;
1438 	bss = cfg80211_inform_bss_frame_data(wiphy, &bss_data, rx_mgmt_frame,
1439 					     d_len, GFP_KERNEL);
1440 	if (bss) {
1441 		wil_dbg_wmi(wil, "Added BSS %pM\n", rx_mgmt_frame->bssid);
1442 		cfg80211_put_bss(wiphy, bss);
1443 	} else {
1444 		wil_err(wil, "cfg80211_inform_bss_frame() failed\n");
1445 	}
1446 
1447 	cfg80211_sched_scan_results(wiphy, 0);
1448 }
1449 
1450 static void wil_link_stats_store_basic(struct wil6210_vif *vif,
1451 				       struct wmi_link_stats_basic *basic)
1452 {
1453 	struct wil6210_priv *wil = vif_to_wil(vif);
1454 	u8 cid = basic->cid;
1455 	struct wil_sta_info *sta;
1456 
1457 	if (cid < 0 || cid >= wil->max_assoc_sta) {
1458 		wil_err(wil, "invalid cid %d\n", cid);
1459 		return;
1460 	}
1461 
1462 	sta = &wil->sta[cid];
1463 	sta->fw_stats_basic = *basic;
1464 }
1465 
1466 static void wil_link_stats_store_global(struct wil6210_vif *vif,
1467 					struct wmi_link_stats_global *global)
1468 {
1469 	struct wil6210_priv *wil = vif_to_wil(vif);
1470 
1471 	wil->fw_stats_global.stats = *global;
1472 }
1473 
1474 static void wmi_link_stats_parse(struct wil6210_vif *vif, u64 tsf,
1475 				 bool has_next, void *payload,
1476 				 size_t payload_size)
1477 {
1478 	struct wil6210_priv *wil = vif_to_wil(vif);
1479 	size_t hdr_size = sizeof(struct wmi_link_stats_record);
1480 	size_t stats_size, record_size, expected_size;
1481 	struct wmi_link_stats_record *hdr;
1482 
1483 	if (payload_size < hdr_size) {
1484 		wil_err(wil, "link stats wrong event size %zu\n", payload_size);
1485 		return;
1486 	}
1487 
1488 	while (payload_size >= hdr_size) {
1489 		hdr = payload;
1490 		stats_size = le16_to_cpu(hdr->record_size);
1491 		record_size = hdr_size + stats_size;
1492 
1493 		if (payload_size < record_size) {
1494 			wil_err(wil, "link stats payload ended unexpectedly, size %zu < %zu\n",
1495 				payload_size, record_size);
1496 			return;
1497 		}
1498 
1499 		switch (hdr->record_type_id) {
1500 		case WMI_LINK_STATS_TYPE_BASIC:
1501 			expected_size = sizeof(struct wmi_link_stats_basic);
1502 			if (stats_size < expected_size) {
1503 				wil_err(wil, "link stats invalid basic record size %zu < %zu\n",
1504 					stats_size, expected_size);
1505 				return;
1506 			}
1507 			if (vif->fw_stats_ready) {
1508 				/* clean old statistics */
1509 				vif->fw_stats_tsf = 0;
1510 				vif->fw_stats_ready = 0;
1511 			}
1512 
1513 			wil_link_stats_store_basic(vif, payload + hdr_size);
1514 
1515 			if (!has_next) {
1516 				vif->fw_stats_tsf = tsf;
1517 				vif->fw_stats_ready = 1;
1518 			}
1519 
1520 			break;
1521 		case WMI_LINK_STATS_TYPE_GLOBAL:
1522 			expected_size = sizeof(struct wmi_link_stats_global);
1523 			if (stats_size < sizeof(struct wmi_link_stats_global)) {
1524 				wil_err(wil, "link stats invalid global record size %zu < %zu\n",
1525 					stats_size, expected_size);
1526 				return;
1527 			}
1528 
1529 			if (wil->fw_stats_global.ready) {
1530 				/* clean old statistics */
1531 				wil->fw_stats_global.tsf = 0;
1532 				wil->fw_stats_global.ready = 0;
1533 			}
1534 
1535 			wil_link_stats_store_global(vif, payload + hdr_size);
1536 
1537 			if (!has_next) {
1538 				wil->fw_stats_global.tsf = tsf;
1539 				wil->fw_stats_global.ready = 1;
1540 			}
1541 
1542 			break;
1543 		default:
1544 			break;
1545 		}
1546 
1547 		/* skip to next record */
1548 		payload += record_size;
1549 		payload_size -= record_size;
1550 	}
1551 }
1552 
1553 static void
1554 wmi_evt_link_stats(struct wil6210_vif *vif, int id, void *d, int len)
1555 {
1556 	struct wil6210_priv *wil = vif_to_wil(vif);
1557 	struct wmi_link_stats_event *evt = d;
1558 	size_t payload_size;
1559 
1560 	if (len < offsetof(struct wmi_link_stats_event, payload)) {
1561 		wil_err(wil, "stats event way too short %d\n", len);
1562 		return;
1563 	}
1564 	payload_size = le16_to_cpu(evt->payload_size);
1565 	if (len < sizeof(struct wmi_link_stats_event) + payload_size) {
1566 		wil_err(wil, "stats event too short %d\n", len);
1567 		return;
1568 	}
1569 
1570 	wmi_link_stats_parse(vif, le64_to_cpu(evt->tsf), evt->has_next,
1571 			     evt->payload, payload_size);
1572 }
1573 
1574 /**
1575  * find cid and ringid for the station vif
1576  *
1577  * return error, if other interfaces are used or ring was not found
1578  */
1579 static int wil_find_cid_ringid_sta(struct wil6210_priv *wil,
1580 				   struct wil6210_vif *vif,
1581 				   int *cid,
1582 				   int *ringid)
1583 {
1584 	struct wil_ring *ring;
1585 	struct wil_ring_tx_data *txdata;
1586 	int min_ring_id = wil_get_min_tx_ring_id(wil);
1587 	int i;
1588 	u8 lcid;
1589 
1590 	if (!(vif->wdev.iftype == NL80211_IFTYPE_STATION ||
1591 	      vif->wdev.iftype == NL80211_IFTYPE_P2P_CLIENT)) {
1592 		wil_err(wil, "invalid interface type %d\n", vif->wdev.iftype);
1593 		return -EINVAL;
1594 	}
1595 
1596 	/* In the STA mode, it is expected to have only one ring
1597 	 * for the AP we are connected to.
1598 	 * find it and return the cid associated with it.
1599 	 */
1600 	for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
1601 		ring = &wil->ring_tx[i];
1602 		txdata = &wil->ring_tx_data[i];
1603 		if (!ring->va || !txdata->enabled || txdata->mid != vif->mid)
1604 			continue;
1605 
1606 		lcid = wil->ring2cid_tid[i][0];
1607 		if (lcid >= wil->max_assoc_sta) /* skip BCAST */
1608 			continue;
1609 
1610 		wil_dbg_wmi(wil, "find sta -> ringid %d cid %d\n", i, lcid);
1611 		*cid = lcid;
1612 		*ringid = i;
1613 		return 0;
1614 	}
1615 
1616 	wil_dbg_wmi(wil, "find sta cid while no rings active?\n");
1617 
1618 	return -ENOENT;
1619 }
1620 
1621 static void
1622 wmi_evt_auth_status(struct wil6210_vif *vif, int id, void *d, int len)
1623 {
1624 	struct wil6210_priv *wil = vif_to_wil(vif);
1625 	struct net_device *ndev = vif_to_ndev(vif);
1626 	struct wmi_ft_auth_status_event *data = d;
1627 	int ie_len = len - offsetof(struct wmi_ft_auth_status_event, ie_info);
1628 	int rc, cid = 0, ringid = 0;
1629 	struct cfg80211_ft_event_params ft;
1630 	u16 d_len;
1631 	/* auth_alg(u16) + auth_transaction(u16) + status_code(u16) */
1632 	const size_t auth_ie_offset = sizeof(u16) * 3;
1633 	struct auth_no_hdr *auth = (struct auth_no_hdr *)data->ie_info;
1634 
1635 	/* check the status */
1636 	if (ie_len >= 0 && data->status != WMI_FW_STATUS_SUCCESS) {
1637 		wil_err(wil, "FT: auth failed. status %d\n", data->status);
1638 		goto fail;
1639 	}
1640 
1641 	if (ie_len < auth_ie_offset) {
1642 		wil_err(wil, "FT: auth event too short, len %d\n", len);
1643 		goto fail;
1644 	}
1645 
1646 	d_len = le16_to_cpu(data->ie_len);
1647 	if (d_len != ie_len) {
1648 		wil_err(wil,
1649 			"FT: auth ie length mismatch, d_len %d should be %d\n",
1650 			d_len, ie_len);
1651 		goto fail;
1652 	}
1653 
1654 	if (!test_bit(wil_vif_ft_roam, wil->status)) {
1655 		wil_err(wil, "FT: Not in roaming state\n");
1656 		goto fail;
1657 	}
1658 
1659 	if (le16_to_cpu(auth->auth_transaction) != 2) {
1660 		wil_err(wil, "FT: auth error. auth_transaction %d\n",
1661 			le16_to_cpu(auth->auth_transaction));
1662 		goto fail;
1663 	}
1664 
1665 	if (le16_to_cpu(auth->auth_alg) != WLAN_AUTH_FT) {
1666 		wil_err(wil, "FT: auth error. auth_alg %d\n",
1667 			le16_to_cpu(auth->auth_alg));
1668 		goto fail;
1669 	}
1670 
1671 	wil_dbg_wmi(wil, "FT: Auth to %pM successfully\n", data->mac_addr);
1672 	wil_hex_dump_wmi("FT Auth ies : ", DUMP_PREFIX_OFFSET, 16, 1,
1673 			 data->ie_info, d_len, true);
1674 
1675 	/* find cid and ringid */
1676 	rc = wil_find_cid_ringid_sta(wil, vif, &cid, &ringid);
1677 	if (rc) {
1678 		wil_err(wil, "No valid cid found\n");
1679 		goto fail;
1680 	}
1681 
1682 	if (vif->privacy) {
1683 		/* For secure assoc, remove old keys */
1684 		rc = wmi_del_cipher_key(vif, 0, wil->sta[cid].addr,
1685 					WMI_KEY_USE_PAIRWISE);
1686 		if (rc) {
1687 			wil_err(wil, "WMI_DELETE_CIPHER_KEY_CMD(PTK) failed\n");
1688 			goto fail;
1689 		}
1690 		rc = wmi_del_cipher_key(vif, 0, wil->sta[cid].addr,
1691 					WMI_KEY_USE_RX_GROUP);
1692 		if (rc) {
1693 			wil_err(wil, "WMI_DELETE_CIPHER_KEY_CMD(GTK) failed\n");
1694 			goto fail;
1695 		}
1696 	}
1697 
1698 	memset(&ft, 0, sizeof(ft));
1699 	ft.ies = data->ie_info + auth_ie_offset;
1700 	ft.ies_len = d_len - auth_ie_offset;
1701 	ft.target_ap = data->mac_addr;
1702 	cfg80211_ft_event(ndev, &ft);
1703 
1704 	return;
1705 
1706 fail:
1707 	wil6210_disconnect(vif, NULL, WLAN_REASON_PREV_AUTH_NOT_VALID);
1708 }
1709 
1710 static void
1711 wmi_evt_reassoc_status(struct wil6210_vif *vif, int id, void *d, int len)
1712 {
1713 	struct wil6210_priv *wil = vif_to_wil(vif);
1714 	struct net_device *ndev = vif_to_ndev(vif);
1715 	struct wiphy *wiphy = wil_to_wiphy(wil);
1716 	struct wmi_ft_reassoc_status_event *data = d;
1717 	int ies_len = len - offsetof(struct wmi_ft_reassoc_status_event,
1718 				     ie_info);
1719 	int rc = -ENOENT, cid = 0, ringid = 0;
1720 	int ch; /* channel number (primary) */
1721 	size_t assoc_req_ie_len = 0, assoc_resp_ie_len = 0;
1722 	u8 *assoc_req_ie = NULL, *assoc_resp_ie = NULL;
1723 	/* capinfo(u16) + listen_interval(u16) + current_ap mac addr + IEs */
1724 	const size_t assoc_req_ie_offset = sizeof(u16) * 2 + ETH_ALEN;
1725 	/* capinfo(u16) + status_code(u16) + associd(u16) + IEs */
1726 	const size_t assoc_resp_ie_offset = sizeof(u16) * 3;
1727 	u16 d_len;
1728 	int freq;
1729 	struct cfg80211_roam_info info;
1730 
1731 	if (ies_len < 0) {
1732 		wil_err(wil, "ft reassoc event too short, len %d\n", len);
1733 		goto fail;
1734 	}
1735 
1736 	wil_dbg_wmi(wil, "Reasoc Status event: status=%d, aid=%d",
1737 		    data->status, data->aid);
1738 	wil_dbg_wmi(wil, "    mac_addr=%pM, beacon_ie_len=%d",
1739 		    data->mac_addr, data->beacon_ie_len);
1740 	wil_dbg_wmi(wil, "    reassoc_req_ie_len=%d, reassoc_resp_ie_len=%d",
1741 		    le16_to_cpu(data->reassoc_req_ie_len),
1742 		    le16_to_cpu(data->reassoc_resp_ie_len));
1743 
1744 	d_len = le16_to_cpu(data->beacon_ie_len) +
1745 		le16_to_cpu(data->reassoc_req_ie_len) +
1746 		le16_to_cpu(data->reassoc_resp_ie_len);
1747 	if (d_len != ies_len) {
1748 		wil_err(wil,
1749 			"ft reassoc ie length mismatch, d_len %d should be %d\n",
1750 			d_len, ies_len);
1751 		goto fail;
1752 	}
1753 
1754 	/* check the status */
1755 	if (data->status != WMI_FW_STATUS_SUCCESS) {
1756 		wil_err(wil, "ft reassoc failed. status %d\n", data->status);
1757 		goto fail;
1758 	}
1759 
1760 	/* find cid and ringid */
1761 	rc = wil_find_cid_ringid_sta(wil, vif, &cid, &ringid);
1762 	if (rc) {
1763 		wil_err(wil, "No valid cid found\n");
1764 		goto fail;
1765 	}
1766 
1767 	ch = data->channel + 1;
1768 	wil_info(wil, "FT: Roam %pM channel [%d] cid %d aid %d\n",
1769 		 data->mac_addr, ch, cid, data->aid);
1770 
1771 	wil_hex_dump_wmi("reassoc AI : ", DUMP_PREFIX_OFFSET, 16, 1,
1772 			 data->ie_info, len - sizeof(*data), true);
1773 
1774 	/* figure out IE's */
1775 	if (le16_to_cpu(data->reassoc_req_ie_len) > assoc_req_ie_offset) {
1776 		assoc_req_ie = &data->ie_info[assoc_req_ie_offset];
1777 		assoc_req_ie_len = le16_to_cpu(data->reassoc_req_ie_len) -
1778 			assoc_req_ie_offset;
1779 	}
1780 	if (le16_to_cpu(data->reassoc_resp_ie_len) <= assoc_resp_ie_offset) {
1781 		wil_err(wil, "FT: reassoc resp ie len is too short, len %d\n",
1782 			le16_to_cpu(data->reassoc_resp_ie_len));
1783 		goto fail;
1784 	}
1785 
1786 	assoc_resp_ie = &data->ie_info[le16_to_cpu(data->reassoc_req_ie_len) +
1787 		assoc_resp_ie_offset];
1788 	assoc_resp_ie_len = le16_to_cpu(data->reassoc_resp_ie_len) -
1789 		assoc_resp_ie_offset;
1790 
1791 	if (test_bit(wil_status_resetting, wil->status) ||
1792 	    !test_bit(wil_status_fwready, wil->status)) {
1793 		wil_err(wil, "FT: status_resetting, cancel reassoc event\n");
1794 		/* no need for cleanup, wil_reset will do that */
1795 		return;
1796 	}
1797 
1798 	mutex_lock(&wil->mutex);
1799 
1800 	/* ring modify to set the ring for the roamed AP settings */
1801 	wil_dbg_wmi(wil,
1802 		    "ft modify tx config for connection CID %d ring %d\n",
1803 		    cid, ringid);
1804 
1805 	rc = wil->txrx_ops.tx_ring_modify(vif, ringid, cid, 0);
1806 	if (rc) {
1807 		wil_err(wil, "modify TX for CID %d MID %d ring %d failed (%d)\n",
1808 			cid, vif->mid, ringid, rc);
1809 		mutex_unlock(&wil->mutex);
1810 		goto fail;
1811 	}
1812 
1813 	/* Update the driver STA members with the new bss */
1814 	wil->sta[cid].aid = data->aid;
1815 	wil->sta[cid].stats.ft_roams++;
1816 	ether_addr_copy(wil->sta[cid].addr, vif->bss->bssid);
1817 	mutex_unlock(&wil->mutex);
1818 	del_timer_sync(&vif->connect_timer);
1819 
1820 	cfg80211_ref_bss(wiphy, vif->bss);
1821 	freq = ieee80211_channel_to_frequency(ch, NL80211_BAND_60GHZ);
1822 
1823 	memset(&info, 0, sizeof(info));
1824 	info.channel = ieee80211_get_channel(wiphy, freq);
1825 	info.bss = vif->bss;
1826 	info.req_ie = assoc_req_ie;
1827 	info.req_ie_len = assoc_req_ie_len;
1828 	info.resp_ie = assoc_resp_ie;
1829 	info.resp_ie_len = assoc_resp_ie_len;
1830 	cfg80211_roamed(ndev, &info, GFP_KERNEL);
1831 	vif->bss = NULL;
1832 
1833 	return;
1834 
1835 fail:
1836 	wil6210_disconnect(vif, NULL, WLAN_REASON_PREV_AUTH_NOT_VALID);
1837 }
1838 
1839 /**
1840  * Some events are ignored for purpose; and need not be interpreted as
1841  * "unhandled events"
1842  */
1843 static void wmi_evt_ignore(struct wil6210_vif *vif, int id, void *d, int len)
1844 {
1845 	struct wil6210_priv *wil = vif_to_wil(vif);
1846 
1847 	wil_dbg_wmi(wil, "Ignore event 0x%04x len %d\n", id, len);
1848 }
1849 
1850 static const struct {
1851 	int eventid;
1852 	void (*handler)(struct wil6210_vif *vif,
1853 			int eventid, void *data, int data_len);
1854 } wmi_evt_handlers[] = {
1855 	{WMI_READY_EVENTID,		wmi_evt_ready},
1856 	{WMI_FW_READY_EVENTID,			wmi_evt_ignore},
1857 	{WMI_RX_MGMT_PACKET_EVENTID,	wmi_evt_rx_mgmt},
1858 	{WMI_TX_MGMT_PACKET_EVENTID,		wmi_evt_tx_mgmt},
1859 	{WMI_SCAN_COMPLETE_EVENTID,	wmi_evt_scan_complete},
1860 	{WMI_CONNECT_EVENTID,		wmi_evt_connect},
1861 	{WMI_DISCONNECT_EVENTID,	wmi_evt_disconnect},
1862 	{WMI_EAPOL_RX_EVENTID,		wmi_evt_eapol_rx},
1863 	{WMI_BA_STATUS_EVENTID,		wmi_evt_ba_status},
1864 	{WMI_RCP_ADDBA_REQ_EVENTID,	wmi_evt_addba_rx_req},
1865 	{WMI_DELBA_EVENTID,		wmi_evt_delba},
1866 	{WMI_RING_EN_EVENTID,		wmi_evt_ring_en},
1867 	{WMI_DATA_PORT_OPEN_EVENTID,		wmi_evt_ignore},
1868 	{WMI_SCHED_SCAN_RESULT_EVENTID,		wmi_evt_sched_scan_result},
1869 	{WMI_LINK_STATS_EVENTID,		wmi_evt_link_stats},
1870 	{WMI_FT_AUTH_STATUS_EVENTID,		wmi_evt_auth_status},
1871 	{WMI_FT_REASSOC_STATUS_EVENTID,		wmi_evt_reassoc_status},
1872 };
1873 
1874 /*
1875  * Run in IRQ context
1876  * Extract WMI command from mailbox. Queue it to the @wil->pending_wmi_ev
1877  * that will be eventually handled by the @wmi_event_worker in the thread
1878  * context of thread "wil6210_wmi"
1879  */
1880 void wmi_recv_cmd(struct wil6210_priv *wil)
1881 {
1882 	struct wil6210_mbox_ring_desc d_tail;
1883 	struct wil6210_mbox_hdr hdr;
1884 	struct wil6210_mbox_ring *r = &wil->mbox_ctl.rx;
1885 	struct pending_wmi_event *evt;
1886 	u8 *cmd;
1887 	void __iomem *src;
1888 	ulong flags;
1889 	unsigned n;
1890 	unsigned int num_immed_reply = 0;
1891 
1892 	if (!test_bit(wil_status_mbox_ready, wil->status)) {
1893 		wil_err(wil, "Reset in progress. Cannot handle WMI event\n");
1894 		return;
1895 	}
1896 
1897 	if (test_bit(wil_status_suspended, wil->status)) {
1898 		wil_err(wil, "suspended. cannot handle WMI event\n");
1899 		return;
1900 	}
1901 
1902 	for (n = 0;; n++) {
1903 		u16 len;
1904 		bool q;
1905 		bool immed_reply = false;
1906 
1907 		r->head = wil_r(wil, RGF_MBOX +
1908 				offsetof(struct wil6210_mbox_ctl, rx.head));
1909 		if (r->tail == r->head)
1910 			break;
1911 
1912 		wil_dbg_wmi(wil, "Mbox head %08x tail %08x\n",
1913 			    r->head, r->tail);
1914 		/* read cmd descriptor from tail */
1915 		wil_memcpy_fromio_32(&d_tail, wil->csr + HOSTADDR(r->tail),
1916 				     sizeof(struct wil6210_mbox_ring_desc));
1917 		if (d_tail.sync == 0) {
1918 			wil_err(wil, "Mbox evt not owned by FW?\n");
1919 			break;
1920 		}
1921 
1922 		/* read cmd header from descriptor */
1923 		if (0 != wmi_read_hdr(wil, d_tail.addr, &hdr)) {
1924 			wil_err(wil, "Mbox evt at 0x%08x?\n",
1925 				le32_to_cpu(d_tail.addr));
1926 			break;
1927 		}
1928 		len = le16_to_cpu(hdr.len);
1929 		wil_dbg_wmi(wil, "Mbox evt %04x %04x %04x %02x\n",
1930 			    le16_to_cpu(hdr.seq), len, le16_to_cpu(hdr.type),
1931 			    hdr.flags);
1932 
1933 		/* read cmd buffer from descriptor */
1934 		src = wmi_buffer(wil, d_tail.addr) +
1935 		      sizeof(struct wil6210_mbox_hdr);
1936 		evt = kmalloc(ALIGN(offsetof(struct pending_wmi_event,
1937 					     event.wmi) + len, 4),
1938 			      GFP_KERNEL);
1939 		if (!evt)
1940 			break;
1941 
1942 		evt->event.hdr = hdr;
1943 		cmd = (void *)&evt->event.wmi;
1944 		wil_memcpy_fromio_32(cmd, src, len);
1945 		/* mark entry as empty */
1946 		wil_w(wil, r->tail +
1947 		      offsetof(struct wil6210_mbox_ring_desc, sync), 0);
1948 		/* indicate */
1949 		if ((hdr.type == WIL_MBOX_HDR_TYPE_WMI) &&
1950 		    (len >= sizeof(struct wmi_cmd_hdr))) {
1951 			struct wmi_cmd_hdr *wmi = &evt->event.wmi;
1952 			u16 id = le16_to_cpu(wmi->command_id);
1953 			u8 mid = wmi->mid;
1954 			u32 tstamp = le32_to_cpu(wmi->fw_timestamp);
1955 			if (test_bit(wil_status_resuming, wil->status)) {
1956 				if (id == WMI_TRAFFIC_RESUME_EVENTID)
1957 					clear_bit(wil_status_resuming,
1958 						  wil->status);
1959 				else
1960 					wil_err(wil,
1961 						"WMI evt %d while resuming\n",
1962 						id);
1963 			}
1964 			spin_lock_irqsave(&wil->wmi_ev_lock, flags);
1965 			if (wil->reply_id && wil->reply_id == id &&
1966 			    wil->reply_mid == mid) {
1967 				if (wil->reply_buf) {
1968 					memcpy(wil->reply_buf, wmi,
1969 					       min(len, wil->reply_size));
1970 					immed_reply = true;
1971 				}
1972 				if (id == WMI_TRAFFIC_SUSPEND_EVENTID) {
1973 					wil_dbg_wmi(wil,
1974 						    "set suspend_resp_rcvd\n");
1975 					wil->suspend_resp_rcvd = true;
1976 				}
1977 			}
1978 			spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
1979 
1980 			wil_dbg_wmi(wil, "recv %s (0x%04x) MID %d @%d msec\n",
1981 				    eventid2name(id), id, wmi->mid, tstamp);
1982 			trace_wil6210_wmi_event(wmi, &wmi[1],
1983 						len - sizeof(*wmi));
1984 		}
1985 		wil_hex_dump_wmi("evt ", DUMP_PREFIX_OFFSET, 16, 1,
1986 				 &evt->event.hdr, sizeof(hdr) + len, true);
1987 
1988 		/* advance tail */
1989 		r->tail = r->base + ((r->tail - r->base +
1990 			  sizeof(struct wil6210_mbox_ring_desc)) % r->size);
1991 		wil_w(wil, RGF_MBOX +
1992 		      offsetof(struct wil6210_mbox_ctl, rx.tail), r->tail);
1993 
1994 		if (immed_reply) {
1995 			wil_dbg_wmi(wil, "recv_cmd: Complete WMI 0x%04x\n",
1996 				    wil->reply_id);
1997 			kfree(evt);
1998 			num_immed_reply++;
1999 			complete(&wil->wmi_call);
2000 		} else {
2001 			/* add to the pending list */
2002 			spin_lock_irqsave(&wil->wmi_ev_lock, flags);
2003 			list_add_tail(&evt->list, &wil->pending_wmi_ev);
2004 			spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
2005 			q = queue_work(wil->wmi_wq, &wil->wmi_event_worker);
2006 			wil_dbg_wmi(wil, "queue_work -> %d\n", q);
2007 		}
2008 	}
2009 	/* normally, 1 event per IRQ should be processed */
2010 	wil_dbg_wmi(wil, "recv_cmd: -> %d events queued, %d completed\n",
2011 		    n - num_immed_reply, num_immed_reply);
2012 }
2013 
2014 int wmi_call(struct wil6210_priv *wil, u16 cmdid, u8 mid, void *buf, u16 len,
2015 	     u16 reply_id, void *reply, u16 reply_size, int to_msec)
2016 {
2017 	int rc;
2018 	unsigned long remain;
2019 	ulong flags;
2020 
2021 	mutex_lock(&wil->wmi_mutex);
2022 
2023 	spin_lock_irqsave(&wil->wmi_ev_lock, flags);
2024 	wil->reply_id = reply_id;
2025 	wil->reply_mid = mid;
2026 	wil->reply_buf = reply;
2027 	wil->reply_size = reply_size;
2028 	reinit_completion(&wil->wmi_call);
2029 	spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
2030 
2031 	rc = __wmi_send(wil, cmdid, mid, buf, len);
2032 	if (rc)
2033 		goto out;
2034 
2035 	remain = wait_for_completion_timeout(&wil->wmi_call,
2036 					     msecs_to_jiffies(to_msec));
2037 	if (0 == remain) {
2038 		wil_err(wil, "wmi_call(0x%04x->0x%04x) timeout %d msec\n",
2039 			cmdid, reply_id, to_msec);
2040 		rc = -ETIME;
2041 	} else {
2042 		wil_dbg_wmi(wil,
2043 			    "wmi_call(0x%04x->0x%04x) completed in %d msec\n",
2044 			    cmdid, reply_id,
2045 			    to_msec - jiffies_to_msecs(remain));
2046 	}
2047 
2048 out:
2049 	spin_lock_irqsave(&wil->wmi_ev_lock, flags);
2050 	wil->reply_id = 0;
2051 	wil->reply_mid = U8_MAX;
2052 	wil->reply_buf = NULL;
2053 	wil->reply_size = 0;
2054 	spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
2055 
2056 	mutex_unlock(&wil->wmi_mutex);
2057 
2058 	return rc;
2059 }
2060 
2061 int wmi_echo(struct wil6210_priv *wil)
2062 {
2063 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
2064 	struct wmi_echo_cmd cmd = {
2065 		.value = cpu_to_le32(0x12345678),
2066 	};
2067 
2068 	return wmi_call(wil, WMI_ECHO_CMDID, vif->mid, &cmd, sizeof(cmd),
2069 			WMI_ECHO_RSP_EVENTID, NULL, 0,
2070 			WIL_WMI_CALL_GENERAL_TO_MS);
2071 }
2072 
2073 int wmi_set_mac_address(struct wil6210_priv *wil, void *addr)
2074 {
2075 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
2076 	struct wmi_set_mac_address_cmd cmd;
2077 
2078 	ether_addr_copy(cmd.mac, addr);
2079 
2080 	wil_dbg_wmi(wil, "Set MAC %pM\n", addr);
2081 
2082 	return wmi_send(wil, WMI_SET_MAC_ADDRESS_CMDID, vif->mid,
2083 			&cmd, sizeof(cmd));
2084 }
2085 
2086 int wmi_led_cfg(struct wil6210_priv *wil, bool enable)
2087 {
2088 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
2089 	int rc = 0;
2090 	struct wmi_led_cfg_cmd cmd = {
2091 		.led_mode = enable,
2092 		.id = led_id,
2093 		.slow_blink_cfg.blink_on =
2094 			cpu_to_le32(led_blink_time[WIL_LED_TIME_SLOW].on_ms),
2095 		.slow_blink_cfg.blink_off =
2096 			cpu_to_le32(led_blink_time[WIL_LED_TIME_SLOW].off_ms),
2097 		.medium_blink_cfg.blink_on =
2098 			cpu_to_le32(led_blink_time[WIL_LED_TIME_MED].on_ms),
2099 		.medium_blink_cfg.blink_off =
2100 			cpu_to_le32(led_blink_time[WIL_LED_TIME_MED].off_ms),
2101 		.fast_blink_cfg.blink_on =
2102 			cpu_to_le32(led_blink_time[WIL_LED_TIME_FAST].on_ms),
2103 		.fast_blink_cfg.blink_off =
2104 			cpu_to_le32(led_blink_time[WIL_LED_TIME_FAST].off_ms),
2105 		.led_polarity = led_polarity,
2106 	};
2107 	struct {
2108 		struct wmi_cmd_hdr wmi;
2109 		struct wmi_led_cfg_done_event evt;
2110 	} __packed reply = {
2111 		.evt = {.status = cpu_to_le32(WMI_FW_STATUS_FAILURE)},
2112 	};
2113 
2114 	if (led_id == WIL_LED_INVALID_ID)
2115 		goto out;
2116 
2117 	if (led_id > WIL_LED_MAX_ID) {
2118 		wil_err(wil, "Invalid led id %d\n", led_id);
2119 		rc = -EINVAL;
2120 		goto out;
2121 	}
2122 
2123 	wil_dbg_wmi(wil,
2124 		    "%s led %d\n",
2125 		    enable ? "enabling" : "disabling", led_id);
2126 
2127 	rc = wmi_call(wil, WMI_LED_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
2128 		      WMI_LED_CFG_DONE_EVENTID, &reply, sizeof(reply),
2129 		      WIL_WMI_CALL_GENERAL_TO_MS);
2130 	if (rc)
2131 		goto out;
2132 
2133 	if (reply.evt.status) {
2134 		wil_err(wil, "led %d cfg failed with status %d\n",
2135 			led_id, le32_to_cpu(reply.evt.status));
2136 		rc = -EINVAL;
2137 	}
2138 
2139 out:
2140 	return rc;
2141 }
2142 
2143 int wmi_rbufcap_cfg(struct wil6210_priv *wil, bool enable, u16 threshold)
2144 {
2145 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
2146 	int rc;
2147 
2148 	struct wmi_rbufcap_cfg_cmd cmd = {
2149 		.enable = enable,
2150 		.rx_desc_threshold = cpu_to_le16(threshold),
2151 	};
2152 	struct {
2153 		struct wmi_cmd_hdr wmi;
2154 		struct wmi_rbufcap_cfg_event evt;
2155 	} __packed reply = {
2156 		.evt = {.status = WMI_FW_STATUS_FAILURE},
2157 	};
2158 
2159 	rc = wmi_call(wil, WMI_RBUFCAP_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
2160 		      WMI_RBUFCAP_CFG_EVENTID, &reply, sizeof(reply),
2161 		      WIL_WMI_CALL_GENERAL_TO_MS);
2162 	if (rc)
2163 		return rc;
2164 
2165 	if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
2166 		wil_err(wil, "RBUFCAP_CFG failed. status %d\n",
2167 			reply.evt.status);
2168 		rc = -EINVAL;
2169 	}
2170 
2171 	return rc;
2172 }
2173 
2174 int wmi_pcp_start(struct wil6210_vif *vif, int bi, u8 wmi_nettype,
2175 		  u8 chan, u8 wmi_edmg_chan, u8 hidden_ssid, u8 is_go)
2176 {
2177 	struct wil6210_priv *wil = vif_to_wil(vif);
2178 	int rc;
2179 
2180 	struct wmi_pcp_start_cmd cmd = {
2181 		.bcon_interval = cpu_to_le16(bi),
2182 		.network_type = wmi_nettype,
2183 		.disable_sec_offload = 1,
2184 		.channel = chan - 1,
2185 		.edmg_channel = wmi_edmg_chan,
2186 		.pcp_max_assoc_sta = wil->max_assoc_sta,
2187 		.hidden_ssid = hidden_ssid,
2188 		.is_go = is_go,
2189 		.ap_sme_offload_mode = disable_ap_sme ?
2190 				       WMI_AP_SME_OFFLOAD_PARTIAL :
2191 				       WMI_AP_SME_OFFLOAD_FULL,
2192 		.abft_len = wil->abft_len,
2193 	};
2194 	struct {
2195 		struct wmi_cmd_hdr wmi;
2196 		struct wmi_pcp_started_event evt;
2197 	} __packed reply = {
2198 		.evt = {.status = WMI_FW_STATUS_FAILURE},
2199 	};
2200 
2201 	if (!vif->privacy)
2202 		cmd.disable_sec = 1;
2203 
2204 	if ((cmd.pcp_max_assoc_sta > WIL6210_MAX_CID) ||
2205 	    (cmd.pcp_max_assoc_sta <= 0)) {
2206 		wil_err(wil, "unexpected max_assoc_sta %d\n",
2207 			cmd.pcp_max_assoc_sta);
2208 		return -EOPNOTSUPP;
2209 	}
2210 
2211 	if (disable_ap_sme &&
2212 	    !test_bit(WMI_FW_CAPABILITY_AP_SME_OFFLOAD_PARTIAL,
2213 		      wil->fw_capabilities)) {
2214 		wil_err(wil, "disable_ap_sme not supported by FW\n");
2215 		return -EOPNOTSUPP;
2216 	}
2217 
2218 	/*
2219 	 * Processing time may be huge, in case of secure AP it takes about
2220 	 * 3500ms for FW to start AP
2221 	 */
2222 	rc = wmi_call(wil, WMI_PCP_START_CMDID, vif->mid, &cmd, sizeof(cmd),
2223 		      WMI_PCP_STARTED_EVENTID, &reply, sizeof(reply), 5000);
2224 	if (rc)
2225 		return rc;
2226 
2227 	if (reply.evt.status != WMI_FW_STATUS_SUCCESS)
2228 		rc = -EINVAL;
2229 
2230 	if (wmi_nettype != WMI_NETTYPE_P2P)
2231 		/* Don't fail due to error in the led configuration */
2232 		wmi_led_cfg(wil, true);
2233 
2234 	return rc;
2235 }
2236 
2237 int wmi_pcp_stop(struct wil6210_vif *vif)
2238 {
2239 	struct wil6210_priv *wil = vif_to_wil(vif);
2240 	int rc;
2241 
2242 	rc = wmi_led_cfg(wil, false);
2243 	if (rc)
2244 		return rc;
2245 
2246 	return wmi_call(wil, WMI_PCP_STOP_CMDID, vif->mid, NULL, 0,
2247 			WMI_PCP_STOPPED_EVENTID, NULL, 0,
2248 			WIL_WMI_PCP_STOP_TO_MS);
2249 }
2250 
2251 int wmi_set_ssid(struct wil6210_vif *vif, u8 ssid_len, const void *ssid)
2252 {
2253 	struct wil6210_priv *wil = vif_to_wil(vif);
2254 	struct wmi_set_ssid_cmd cmd = {
2255 		.ssid_len = cpu_to_le32(ssid_len),
2256 	};
2257 
2258 	if (ssid_len > sizeof(cmd.ssid))
2259 		return -EINVAL;
2260 
2261 	memcpy(cmd.ssid, ssid, ssid_len);
2262 
2263 	return wmi_send(wil, WMI_SET_SSID_CMDID, vif->mid, &cmd, sizeof(cmd));
2264 }
2265 
2266 int wmi_get_ssid(struct wil6210_vif *vif, u8 *ssid_len, void *ssid)
2267 {
2268 	struct wil6210_priv *wil = vif_to_wil(vif);
2269 	int rc;
2270 	struct {
2271 		struct wmi_cmd_hdr wmi;
2272 		struct wmi_set_ssid_cmd cmd;
2273 	} __packed reply;
2274 	int len; /* reply.cmd.ssid_len in CPU order */
2275 
2276 	memset(&reply, 0, sizeof(reply));
2277 
2278 	rc = wmi_call(wil, WMI_GET_SSID_CMDID, vif->mid, NULL, 0,
2279 		      WMI_GET_SSID_EVENTID, &reply, sizeof(reply),
2280 		      WIL_WMI_CALL_GENERAL_TO_MS);
2281 	if (rc)
2282 		return rc;
2283 
2284 	len = le32_to_cpu(reply.cmd.ssid_len);
2285 	if (len > sizeof(reply.cmd.ssid))
2286 		return -EINVAL;
2287 
2288 	*ssid_len = len;
2289 	memcpy(ssid, reply.cmd.ssid, len);
2290 
2291 	return 0;
2292 }
2293 
2294 int wmi_set_channel(struct wil6210_priv *wil, int channel)
2295 {
2296 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
2297 	struct wmi_set_pcp_channel_cmd cmd = {
2298 		.channel = channel - 1,
2299 	};
2300 
2301 	return wmi_send(wil, WMI_SET_PCP_CHANNEL_CMDID, vif->mid,
2302 			&cmd, sizeof(cmd));
2303 }
2304 
2305 int wmi_get_channel(struct wil6210_priv *wil, int *channel)
2306 {
2307 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
2308 	int rc;
2309 	struct {
2310 		struct wmi_cmd_hdr wmi;
2311 		struct wmi_set_pcp_channel_cmd cmd;
2312 	} __packed reply;
2313 
2314 	memset(&reply, 0, sizeof(reply));
2315 
2316 	rc = wmi_call(wil, WMI_GET_PCP_CHANNEL_CMDID, vif->mid, NULL, 0,
2317 		      WMI_GET_PCP_CHANNEL_EVENTID, &reply, sizeof(reply),
2318 		      WIL_WMI_CALL_GENERAL_TO_MS);
2319 	if (rc)
2320 		return rc;
2321 
2322 	if (reply.cmd.channel > 3)
2323 		return -EINVAL;
2324 
2325 	*channel = reply.cmd.channel + 1;
2326 
2327 	return 0;
2328 }
2329 
2330 int wmi_p2p_cfg(struct wil6210_vif *vif, int channel, int bi)
2331 {
2332 	struct wil6210_priv *wil = vif_to_wil(vif);
2333 	int rc;
2334 	struct wmi_p2p_cfg_cmd cmd = {
2335 		.discovery_mode = WMI_DISCOVERY_MODE_PEER2PEER,
2336 		.bcon_interval = cpu_to_le16(bi),
2337 		.channel = channel - 1,
2338 	};
2339 	struct {
2340 		struct wmi_cmd_hdr wmi;
2341 		struct wmi_p2p_cfg_done_event evt;
2342 	} __packed reply = {
2343 		.evt = {.status = WMI_FW_STATUS_FAILURE},
2344 	};
2345 
2346 	wil_dbg_wmi(wil, "sending WMI_P2P_CFG_CMDID\n");
2347 
2348 	rc = wmi_call(wil, WMI_P2P_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
2349 		      WMI_P2P_CFG_DONE_EVENTID, &reply, sizeof(reply), 300);
2350 	if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) {
2351 		wil_err(wil, "P2P_CFG failed. status %d\n", reply.evt.status);
2352 		rc = -EINVAL;
2353 	}
2354 
2355 	return rc;
2356 }
2357 
2358 int wmi_start_listen(struct wil6210_vif *vif)
2359 {
2360 	struct wil6210_priv *wil = vif_to_wil(vif);
2361 	int rc;
2362 	struct {
2363 		struct wmi_cmd_hdr wmi;
2364 		struct wmi_listen_started_event evt;
2365 	} __packed reply = {
2366 		.evt = {.status = WMI_FW_STATUS_FAILURE},
2367 	};
2368 
2369 	wil_dbg_wmi(wil, "sending WMI_START_LISTEN_CMDID\n");
2370 
2371 	rc = wmi_call(wil, WMI_START_LISTEN_CMDID, vif->mid, NULL, 0,
2372 		      WMI_LISTEN_STARTED_EVENTID, &reply, sizeof(reply), 300);
2373 	if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) {
2374 		wil_err(wil, "device failed to start listen. status %d\n",
2375 			reply.evt.status);
2376 		rc = -EINVAL;
2377 	}
2378 
2379 	return rc;
2380 }
2381 
2382 int wmi_start_search(struct wil6210_vif *vif)
2383 {
2384 	struct wil6210_priv *wil = vif_to_wil(vif);
2385 	int rc;
2386 	struct {
2387 		struct wmi_cmd_hdr wmi;
2388 		struct wmi_search_started_event evt;
2389 	} __packed reply = {
2390 		.evt = {.status = WMI_FW_STATUS_FAILURE},
2391 	};
2392 
2393 	wil_dbg_wmi(wil, "sending WMI_START_SEARCH_CMDID\n");
2394 
2395 	rc = wmi_call(wil, WMI_START_SEARCH_CMDID, vif->mid, NULL, 0,
2396 		      WMI_SEARCH_STARTED_EVENTID, &reply, sizeof(reply), 300);
2397 	if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) {
2398 		wil_err(wil, "device failed to start search. status %d\n",
2399 			reply.evt.status);
2400 		rc = -EINVAL;
2401 	}
2402 
2403 	return rc;
2404 }
2405 
2406 int wmi_stop_discovery(struct wil6210_vif *vif)
2407 {
2408 	struct wil6210_priv *wil = vif_to_wil(vif);
2409 	int rc;
2410 
2411 	wil_dbg_wmi(wil, "sending WMI_DISCOVERY_STOP_CMDID\n");
2412 
2413 	rc = wmi_call(wil, WMI_DISCOVERY_STOP_CMDID, vif->mid, NULL, 0,
2414 		      WMI_DISCOVERY_STOPPED_EVENTID, NULL, 0,
2415 		      WIL_WMI_CALL_GENERAL_TO_MS);
2416 
2417 	if (rc)
2418 		wil_err(wil, "Failed to stop discovery\n");
2419 
2420 	return rc;
2421 }
2422 
2423 int wmi_del_cipher_key(struct wil6210_vif *vif, u8 key_index,
2424 		       const void *mac_addr, int key_usage)
2425 {
2426 	struct wil6210_priv *wil = vif_to_wil(vif);
2427 	struct wmi_delete_cipher_key_cmd cmd = {
2428 		.key_index = key_index,
2429 	};
2430 
2431 	if (mac_addr)
2432 		memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
2433 
2434 	return wmi_send(wil, WMI_DELETE_CIPHER_KEY_CMDID, vif->mid,
2435 			&cmd, sizeof(cmd));
2436 }
2437 
2438 int wmi_add_cipher_key(struct wil6210_vif *vif, u8 key_index,
2439 		       const void *mac_addr, int key_len, const void *key,
2440 		       int key_usage)
2441 {
2442 	struct wil6210_priv *wil = vif_to_wil(vif);
2443 	struct wmi_add_cipher_key_cmd cmd = {
2444 		.key_index = key_index,
2445 		.key_usage = key_usage,
2446 		.key_len = key_len,
2447 	};
2448 
2449 	if (key_len > sizeof(cmd.key))
2450 		return -EINVAL;
2451 
2452 	/* key len = 0 is allowed only for usage of WMI_KEY_USE_APPLY */
2453 	if ((key_len == 0 || !key) &&
2454 	    key_usage != WMI_KEY_USE_APPLY_PTK)
2455 		return -EINVAL;
2456 
2457 	if (key)
2458 		memcpy(cmd.key, key, key_len);
2459 
2460 	if (mac_addr)
2461 		memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
2462 
2463 	return wmi_send(wil, WMI_ADD_CIPHER_KEY_CMDID, vif->mid,
2464 			&cmd, sizeof(cmd));
2465 }
2466 
2467 int wmi_set_ie(struct wil6210_vif *vif, u8 type, u16 ie_len, const void *ie)
2468 {
2469 	struct wil6210_priv *wil = vif_to_wil(vif);
2470 	static const char *const names[] = {
2471 		[WMI_FRAME_BEACON]	= "BEACON",
2472 		[WMI_FRAME_PROBE_REQ]	= "PROBE_REQ",
2473 		[WMI_FRAME_PROBE_RESP]	= "WMI_FRAME_PROBE_RESP",
2474 		[WMI_FRAME_ASSOC_REQ]	= "WMI_FRAME_ASSOC_REQ",
2475 		[WMI_FRAME_ASSOC_RESP]	= "WMI_FRAME_ASSOC_RESP",
2476 	};
2477 	int rc;
2478 	u16 len = sizeof(struct wmi_set_appie_cmd) + ie_len;
2479 	struct wmi_set_appie_cmd *cmd;
2480 
2481 	if (len < ie_len) {
2482 		rc = -EINVAL;
2483 		goto out;
2484 	}
2485 
2486 	cmd = kzalloc(len, GFP_KERNEL);
2487 	if (!cmd) {
2488 		rc = -ENOMEM;
2489 		goto out;
2490 	}
2491 	if (!ie)
2492 		ie_len = 0;
2493 
2494 	cmd->mgmt_frm_type = type;
2495 	/* BUG: FW API define ieLen as u8. Will fix FW */
2496 	cmd->ie_len = cpu_to_le16(ie_len);
2497 	if (ie_len)
2498 		memcpy(cmd->ie_info, ie, ie_len);
2499 	rc = wmi_send(wil, WMI_SET_APPIE_CMDID, vif->mid, cmd, len);
2500 	kfree(cmd);
2501 out:
2502 	if (rc) {
2503 		const char *name = type < ARRAY_SIZE(names) ?
2504 				   names[type] : "??";
2505 		wil_err(wil, "set_ie(%d %s) failed : %d\n", type, name, rc);
2506 	}
2507 
2508 	return rc;
2509 }
2510 
2511 int wmi_update_ft_ies(struct wil6210_vif *vif, u16 ie_len, const void *ie)
2512 {
2513 	struct wil6210_priv *wil = vif_to_wil(vif);
2514 	u16 len;
2515 	struct wmi_update_ft_ies_cmd *cmd;
2516 	int rc;
2517 
2518 	if (!ie)
2519 		ie_len = 0;
2520 
2521 	len = sizeof(struct wmi_update_ft_ies_cmd) + ie_len;
2522 	if (len < ie_len) {
2523 		wil_err(wil, "wraparound. ie len %d\n", ie_len);
2524 		return -EINVAL;
2525 	}
2526 
2527 	cmd = kzalloc(len, GFP_KERNEL);
2528 	if (!cmd) {
2529 		rc = -ENOMEM;
2530 		goto out;
2531 	}
2532 
2533 	cmd->ie_len = cpu_to_le16(ie_len);
2534 	if (ie_len)
2535 		memcpy(cmd->ie_info, ie, ie_len);
2536 	rc = wmi_send(wil, WMI_UPDATE_FT_IES_CMDID, vif->mid, cmd, len);
2537 	kfree(cmd);
2538 
2539 out:
2540 	if (rc)
2541 		wil_err(wil, "update ft ies failed : %d\n", rc);
2542 
2543 	return rc;
2544 }
2545 
2546 /**
2547  * wmi_rxon - turn radio on/off
2548  * @on:		turn on if true, off otherwise
2549  *
2550  * Only switch radio. Channel should be set separately.
2551  * No timeout for rxon - radio turned on forever unless some other call
2552  * turns it off
2553  */
2554 int wmi_rxon(struct wil6210_priv *wil, bool on)
2555 {
2556 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
2557 	int rc;
2558 	struct {
2559 		struct wmi_cmd_hdr wmi;
2560 		struct wmi_listen_started_event evt;
2561 	} __packed reply = {
2562 		.evt = {.status = WMI_FW_STATUS_FAILURE},
2563 	};
2564 
2565 	wil_info(wil, "(%s)\n", on ? "on" : "off");
2566 
2567 	if (on) {
2568 		rc = wmi_call(wil, WMI_START_LISTEN_CMDID, vif->mid, NULL, 0,
2569 			      WMI_LISTEN_STARTED_EVENTID,
2570 			      &reply, sizeof(reply),
2571 			      WIL_WMI_CALL_GENERAL_TO_MS);
2572 		if ((rc == 0) && (reply.evt.status != WMI_FW_STATUS_SUCCESS))
2573 			rc = -EINVAL;
2574 	} else {
2575 		rc = wmi_call(wil, WMI_DISCOVERY_STOP_CMDID, vif->mid, NULL, 0,
2576 			      WMI_DISCOVERY_STOPPED_EVENTID, NULL, 0,
2577 			      WIL_WMI_CALL_GENERAL_TO_MS);
2578 	}
2579 
2580 	return rc;
2581 }
2582 
2583 int wmi_rx_chain_add(struct wil6210_priv *wil, struct wil_ring *vring)
2584 {
2585 	struct net_device *ndev = wil->main_ndev;
2586 	struct wireless_dev *wdev = ndev->ieee80211_ptr;
2587 	struct wil6210_vif *vif = ndev_to_vif(ndev);
2588 	struct wmi_cfg_rx_chain_cmd cmd = {
2589 		.action = WMI_RX_CHAIN_ADD,
2590 		.rx_sw_ring = {
2591 			.max_mpdu_size = cpu_to_le16(
2592 				wil_mtu2macbuf(wil->rx_buf_len)),
2593 			.ring_mem_base = cpu_to_le64(vring->pa),
2594 			.ring_size = cpu_to_le16(vring->size),
2595 		},
2596 		.mid = 0, /* TODO - what is it? */
2597 		.decap_trans_type = WMI_DECAP_TYPE_802_3,
2598 		.reorder_type = WMI_RX_SW_REORDER,
2599 		.host_thrsh = cpu_to_le16(rx_ring_overflow_thrsh),
2600 	};
2601 	struct {
2602 		struct wmi_cmd_hdr wmi;
2603 		struct wmi_cfg_rx_chain_done_event evt;
2604 	} __packed evt;
2605 	int rc;
2606 
2607 	memset(&evt, 0, sizeof(evt));
2608 
2609 	if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
2610 		struct ieee80211_channel *ch = wil->monitor_chandef.chan;
2611 
2612 		cmd.sniffer_cfg.mode = cpu_to_le32(WMI_SNIFFER_ON);
2613 		if (ch)
2614 			cmd.sniffer_cfg.channel = ch->hw_value - 1;
2615 		cmd.sniffer_cfg.phy_info_mode =
2616 			cpu_to_le32(WMI_SNIFFER_PHY_INFO_DISABLED);
2617 		cmd.sniffer_cfg.phy_support =
2618 			cpu_to_le32((wil->monitor_flags & MONITOR_FLAG_CONTROL)
2619 				    ? WMI_SNIFFER_CP : WMI_SNIFFER_BOTH_PHYS);
2620 	} else {
2621 		/* Initialize offload (in non-sniffer mode).
2622 		 * Linux IP stack always calculates IP checksum
2623 		 * HW always calculate TCP/UDP checksum
2624 		 */
2625 		cmd.l3_l4_ctrl |= (1 << L3_L4_CTRL_TCPIP_CHECKSUM_EN_POS);
2626 	}
2627 
2628 	if (rx_align_2)
2629 		cmd.l2_802_3_offload_ctrl |=
2630 				L2_802_3_OFFLOAD_CTRL_SNAP_KEEP_MSK;
2631 
2632 	/* typical time for secure PCP is 840ms */
2633 	rc = wmi_call(wil, WMI_CFG_RX_CHAIN_CMDID, vif->mid, &cmd, sizeof(cmd),
2634 		      WMI_CFG_RX_CHAIN_DONE_EVENTID, &evt, sizeof(evt), 2000);
2635 	if (rc)
2636 		return rc;
2637 
2638 	if (le32_to_cpu(evt.evt.status) != WMI_CFG_RX_CHAIN_SUCCESS)
2639 		rc = -EINVAL;
2640 
2641 	vring->hwtail = le32_to_cpu(evt.evt.rx_ring_tail_ptr);
2642 
2643 	wil_dbg_misc(wil, "Rx init: status %d tail 0x%08x\n",
2644 		     le32_to_cpu(evt.evt.status), vring->hwtail);
2645 
2646 	return rc;
2647 }
2648 
2649 int wmi_get_temperature(struct wil6210_priv *wil, u32 *t_bb, u32 *t_rf)
2650 {
2651 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
2652 	int rc;
2653 	struct wmi_temp_sense_cmd cmd = {
2654 		.measure_baseband_en = cpu_to_le32(!!t_bb),
2655 		.measure_rf_en = cpu_to_le32(!!t_rf),
2656 		.measure_mode = cpu_to_le32(TEMPERATURE_MEASURE_NOW),
2657 	};
2658 	struct {
2659 		struct wmi_cmd_hdr wmi;
2660 		struct wmi_temp_sense_done_event evt;
2661 	} __packed reply;
2662 
2663 	memset(&reply, 0, sizeof(reply));
2664 
2665 	rc = wmi_call(wil, WMI_TEMP_SENSE_CMDID, vif->mid, &cmd, sizeof(cmd),
2666 		      WMI_TEMP_SENSE_DONE_EVENTID, &reply, sizeof(reply),
2667 		      WIL_WMI_CALL_GENERAL_TO_MS);
2668 	if (rc)
2669 		return rc;
2670 
2671 	if (t_bb)
2672 		*t_bb = le32_to_cpu(reply.evt.baseband_t1000);
2673 	if (t_rf)
2674 		*t_rf = le32_to_cpu(reply.evt.rf_t1000);
2675 
2676 	return 0;
2677 }
2678 
2679 int wmi_get_all_temperatures(struct wil6210_priv *wil,
2680 			     struct wmi_temp_sense_all_done_event
2681 			     *sense_all_evt)
2682 {
2683 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
2684 	int rc;
2685 	struct wmi_temp_sense_all_cmd cmd = {
2686 		.measure_baseband_en = true,
2687 		.measure_rf_en = true,
2688 		.measure_mode = TEMPERATURE_MEASURE_NOW,
2689 	};
2690 	struct {
2691 		struct wmi_cmd_hdr wmi;
2692 		struct wmi_temp_sense_all_done_event evt;
2693 	} __packed reply;
2694 
2695 	if (!sense_all_evt) {
2696 		wil_err(wil, "Invalid sense_all_evt value\n");
2697 		return -EINVAL;
2698 	}
2699 
2700 	memset(&reply, 0, sizeof(reply));
2701 	reply.evt.status = WMI_FW_STATUS_FAILURE;
2702 	rc = wmi_call(wil, WMI_TEMP_SENSE_ALL_CMDID, vif->mid, &cmd,
2703 		      sizeof(cmd), WMI_TEMP_SENSE_ALL_DONE_EVENTID,
2704 		      &reply, sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
2705 	if (rc)
2706 		return rc;
2707 
2708 	if (reply.evt.status == WMI_FW_STATUS_FAILURE) {
2709 		wil_err(wil, "Failed getting TEMP_SENSE_ALL\n");
2710 		return -EINVAL;
2711 	}
2712 
2713 	memcpy(sense_all_evt, &reply.evt, sizeof(reply.evt));
2714 	return 0;
2715 }
2716 
2717 int wmi_disconnect_sta(struct wil6210_vif *vif, const u8 *mac, u16 reason,
2718 		       bool del_sta)
2719 {
2720 	struct wil6210_priv *wil = vif_to_wil(vif);
2721 	int rc;
2722 	struct wmi_disconnect_sta_cmd disc_sta_cmd = {
2723 		.disconnect_reason = cpu_to_le16(reason),
2724 	};
2725 	struct wmi_del_sta_cmd del_sta_cmd = {
2726 		.disconnect_reason = cpu_to_le16(reason),
2727 	};
2728 	struct {
2729 		struct wmi_cmd_hdr wmi;
2730 		struct wmi_disconnect_event evt;
2731 	} __packed reply;
2732 
2733 	wil_dbg_wmi(wil, "disconnect_sta: (%pM, reason %d)\n", mac, reason);
2734 
2735 	memset(&reply, 0, sizeof(reply));
2736 	vif->locally_generated_disc = true;
2737 	if (del_sta) {
2738 		ether_addr_copy(del_sta_cmd.dst_mac, mac);
2739 		rc = wmi_call(wil, WMI_DEL_STA_CMDID, vif->mid, &del_sta_cmd,
2740 			      sizeof(del_sta_cmd), WMI_DISCONNECT_EVENTID,
2741 			      &reply, sizeof(reply), 1000);
2742 	} else {
2743 		ether_addr_copy(disc_sta_cmd.dst_mac, mac);
2744 		rc = wmi_call(wil, WMI_DISCONNECT_STA_CMDID, vif->mid,
2745 			      &disc_sta_cmd, sizeof(disc_sta_cmd),
2746 			      WMI_DISCONNECT_EVENTID,
2747 			      &reply, sizeof(reply), 1000);
2748 	}
2749 	/* failure to disconnect in reasonable time treated as FW error */
2750 	if (rc) {
2751 		wil_fw_error_recovery(wil);
2752 		return rc;
2753 	}
2754 	wil->sinfo_gen++;
2755 
2756 	return 0;
2757 }
2758 
2759 int wmi_addba(struct wil6210_priv *wil, u8 mid,
2760 	      u8 ringid, u8 size, u16 timeout)
2761 {
2762 	u8 amsdu = wil->use_enhanced_dma_hw && wil->use_rx_hw_reordering &&
2763 		test_bit(WMI_FW_CAPABILITY_AMSDU, wil->fw_capabilities) &&
2764 		wil->amsdu_en;
2765 	struct wmi_ring_ba_en_cmd cmd = {
2766 		.ring_id = ringid,
2767 		.agg_max_wsize = size,
2768 		.ba_timeout = cpu_to_le16(timeout),
2769 		.amsdu = amsdu,
2770 	};
2771 
2772 	wil_dbg_wmi(wil, "addba: (ring %d size %d timeout %d amsdu %d)\n",
2773 		    ringid, size, timeout, amsdu);
2774 
2775 	return wmi_send(wil, WMI_RING_BA_EN_CMDID, mid, &cmd, sizeof(cmd));
2776 }
2777 
2778 int wmi_delba_tx(struct wil6210_priv *wil, u8 mid, u8 ringid, u16 reason)
2779 {
2780 	struct wmi_ring_ba_dis_cmd cmd = {
2781 		.ring_id = ringid,
2782 		.reason = cpu_to_le16(reason),
2783 	};
2784 
2785 	wil_dbg_wmi(wil, "delba_tx: (ring %d reason %d)\n", ringid, reason);
2786 
2787 	return wmi_send(wil, WMI_RING_BA_DIS_CMDID, mid, &cmd, sizeof(cmd));
2788 }
2789 
2790 int wmi_delba_rx(struct wil6210_priv *wil, u8 mid, u8 cid, u8 tid, u16 reason)
2791 {
2792 	struct wmi_rcp_delba_cmd cmd = {
2793 		.reason = cpu_to_le16(reason),
2794 	};
2795 
2796 	if (cid >= WIL6210_RX_DESC_MAX_CID) {
2797 		cmd.cidxtid = CIDXTID_EXTENDED_CID_TID;
2798 		cmd.cid = cid;
2799 		cmd.tid = tid;
2800 	} else {
2801 		cmd.cidxtid = mk_cidxtid(cid, tid);
2802 	}
2803 
2804 	wil_dbg_wmi(wil, "delba_rx: (CID %d TID %d reason %d)\n", cid,
2805 		    tid, reason);
2806 
2807 	return wmi_send(wil, WMI_RCP_DELBA_CMDID, mid, &cmd, sizeof(cmd));
2808 }
2809 
2810 int wmi_addba_rx_resp(struct wil6210_priv *wil,
2811 		      u8 mid, u8 cid, u8 tid, u8 token,
2812 		      u16 status, bool amsdu, u16 agg_wsize, u16 timeout)
2813 {
2814 	int rc;
2815 	struct wmi_rcp_addba_resp_cmd cmd = {
2816 		.dialog_token = token,
2817 		.status_code = cpu_to_le16(status),
2818 		/* bit 0: A-MSDU supported
2819 		 * bit 1: policy (controlled by FW)
2820 		 * bits 2..5: TID
2821 		 * bits 6..15: buffer size
2822 		 */
2823 		.ba_param_set = cpu_to_le16((amsdu ? 1 : 0) | (tid << 2) |
2824 					    (agg_wsize << 6)),
2825 		.ba_timeout = cpu_to_le16(timeout),
2826 	};
2827 	struct {
2828 		struct wmi_cmd_hdr wmi;
2829 		struct wmi_rcp_addba_resp_sent_event evt;
2830 	} __packed reply = {
2831 		.evt = {.status = cpu_to_le16(WMI_FW_STATUS_FAILURE)},
2832 	};
2833 
2834 	if (cid >= WIL6210_RX_DESC_MAX_CID) {
2835 		cmd.cidxtid = CIDXTID_EXTENDED_CID_TID;
2836 		cmd.cid = cid;
2837 		cmd.tid = tid;
2838 	} else {
2839 		cmd.cidxtid = mk_cidxtid(cid, tid);
2840 	}
2841 
2842 	wil_dbg_wmi(wil,
2843 		    "ADDBA response for MID %d CID %d TID %d size %d timeout %d status %d AMSDU%s\n",
2844 		    mid, cid, tid, agg_wsize,
2845 		    timeout, status, amsdu ? "+" : "-");
2846 
2847 	rc = wmi_call(wil, WMI_RCP_ADDBA_RESP_CMDID, mid, &cmd, sizeof(cmd),
2848 		      WMI_RCP_ADDBA_RESP_SENT_EVENTID, &reply, sizeof(reply),
2849 		      WIL_WMI_CALL_GENERAL_TO_MS);
2850 	if (rc)
2851 		return rc;
2852 
2853 	if (reply.evt.status) {
2854 		wil_err(wil, "ADDBA response failed with status %d\n",
2855 			le16_to_cpu(reply.evt.status));
2856 		rc = -EINVAL;
2857 	}
2858 
2859 	return rc;
2860 }
2861 
2862 int wmi_addba_rx_resp_edma(struct wil6210_priv *wil, u8 mid, u8 cid, u8 tid,
2863 			   u8 token, u16 status, bool amsdu, u16 agg_wsize,
2864 			   u16 timeout)
2865 {
2866 	int rc;
2867 	struct wmi_rcp_addba_resp_edma_cmd cmd = {
2868 		.cid = cid,
2869 		.tid = tid,
2870 		.dialog_token = token,
2871 		.status_code = cpu_to_le16(status),
2872 		/* bit 0: A-MSDU supported
2873 		 * bit 1: policy (controlled by FW)
2874 		 * bits 2..5: TID
2875 		 * bits 6..15: buffer size
2876 		 */
2877 		.ba_param_set = cpu_to_le16((amsdu ? 1 : 0) | (tid << 2) |
2878 					    (agg_wsize << 6)),
2879 		.ba_timeout = cpu_to_le16(timeout),
2880 		/* route all the connections to status ring 0 */
2881 		.status_ring_id = WIL_DEFAULT_RX_STATUS_RING_ID,
2882 	};
2883 	struct {
2884 		struct wmi_cmd_hdr wmi;
2885 		struct wmi_rcp_addba_resp_sent_event evt;
2886 	} __packed reply = {
2887 		.evt = {.status = cpu_to_le16(WMI_FW_STATUS_FAILURE)},
2888 	};
2889 
2890 	wil_dbg_wmi(wil,
2891 		    "ADDBA response for CID %d TID %d size %d timeout %d status %d AMSDU%s, sring_id %d\n",
2892 		    cid, tid, agg_wsize, timeout, status, amsdu ? "+" : "-",
2893 		    WIL_DEFAULT_RX_STATUS_RING_ID);
2894 
2895 	rc = wmi_call(wil, WMI_RCP_ADDBA_RESP_EDMA_CMDID, mid, &cmd,
2896 		      sizeof(cmd), WMI_RCP_ADDBA_RESP_SENT_EVENTID, &reply,
2897 		      sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
2898 	if (rc)
2899 		return rc;
2900 
2901 	if (reply.evt.status) {
2902 		wil_err(wil, "ADDBA response failed with status %d\n",
2903 			le16_to_cpu(reply.evt.status));
2904 		rc = -EINVAL;
2905 	}
2906 
2907 	return rc;
2908 }
2909 
2910 int wmi_ps_dev_profile_cfg(struct wil6210_priv *wil,
2911 			   enum wmi_ps_profile_type ps_profile)
2912 {
2913 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
2914 	int rc;
2915 	struct wmi_ps_dev_profile_cfg_cmd cmd = {
2916 		.ps_profile = ps_profile,
2917 	};
2918 	struct {
2919 		struct wmi_cmd_hdr wmi;
2920 		struct wmi_ps_dev_profile_cfg_event evt;
2921 	} __packed reply = {
2922 		.evt = {.status = cpu_to_le32(WMI_PS_CFG_CMD_STATUS_ERROR)},
2923 	};
2924 	u32 status;
2925 
2926 	wil_dbg_wmi(wil, "Setting ps dev profile %d\n", ps_profile);
2927 
2928 	rc = wmi_call(wil, WMI_PS_DEV_PROFILE_CFG_CMDID, vif->mid,
2929 		      &cmd, sizeof(cmd),
2930 		      WMI_PS_DEV_PROFILE_CFG_EVENTID, &reply, sizeof(reply),
2931 		      WIL_WMI_CALL_GENERAL_TO_MS);
2932 	if (rc)
2933 		return rc;
2934 
2935 	status = le32_to_cpu(reply.evt.status);
2936 
2937 	if (status != WMI_PS_CFG_CMD_STATUS_SUCCESS) {
2938 		wil_err(wil, "ps dev profile cfg failed with status %d\n",
2939 			status);
2940 		rc = -EINVAL;
2941 	}
2942 
2943 	return rc;
2944 }
2945 
2946 int wmi_set_mgmt_retry(struct wil6210_priv *wil, u8 retry_short)
2947 {
2948 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
2949 	int rc;
2950 	struct wmi_set_mgmt_retry_limit_cmd cmd = {
2951 		.mgmt_retry_limit = retry_short,
2952 	};
2953 	struct {
2954 		struct wmi_cmd_hdr wmi;
2955 		struct wmi_set_mgmt_retry_limit_event evt;
2956 	} __packed reply = {
2957 		.evt = {.status = WMI_FW_STATUS_FAILURE},
2958 	};
2959 
2960 	wil_dbg_wmi(wil, "Setting mgmt retry short %d\n", retry_short);
2961 
2962 	if (!test_bit(WMI_FW_CAPABILITY_MGMT_RETRY_LIMIT, wil->fw_capabilities))
2963 		return -ENOTSUPP;
2964 
2965 	rc = wmi_call(wil, WMI_SET_MGMT_RETRY_LIMIT_CMDID, vif->mid,
2966 		      &cmd, sizeof(cmd),
2967 		      WMI_SET_MGMT_RETRY_LIMIT_EVENTID, &reply, sizeof(reply),
2968 		      WIL_WMI_CALL_GENERAL_TO_MS);
2969 	if (rc)
2970 		return rc;
2971 
2972 	if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
2973 		wil_err(wil, "set mgmt retry limit failed with status %d\n",
2974 			reply.evt.status);
2975 		rc = -EINVAL;
2976 	}
2977 
2978 	return rc;
2979 }
2980 
2981 int wmi_get_mgmt_retry(struct wil6210_priv *wil, u8 *retry_short)
2982 {
2983 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
2984 	int rc;
2985 	struct {
2986 		struct wmi_cmd_hdr wmi;
2987 		struct wmi_get_mgmt_retry_limit_event evt;
2988 	} __packed reply;
2989 
2990 	wil_dbg_wmi(wil, "getting mgmt retry short\n");
2991 
2992 	if (!test_bit(WMI_FW_CAPABILITY_MGMT_RETRY_LIMIT, wil->fw_capabilities))
2993 		return -ENOTSUPP;
2994 
2995 	memset(&reply, 0, sizeof(reply));
2996 	rc = wmi_call(wil, WMI_GET_MGMT_RETRY_LIMIT_CMDID, vif->mid, NULL, 0,
2997 		      WMI_GET_MGMT_RETRY_LIMIT_EVENTID, &reply, sizeof(reply),
2998 		      WIL_WMI_CALL_GENERAL_TO_MS);
2999 	if (rc)
3000 		return rc;
3001 
3002 	if (retry_short)
3003 		*retry_short = reply.evt.mgmt_retry_limit;
3004 
3005 	return 0;
3006 }
3007 
3008 int wmi_abort_scan(struct wil6210_vif *vif)
3009 {
3010 	struct wil6210_priv *wil = vif_to_wil(vif);
3011 	int rc;
3012 
3013 	wil_dbg_wmi(wil, "sending WMI_ABORT_SCAN_CMDID\n");
3014 
3015 	rc = wmi_send(wil, WMI_ABORT_SCAN_CMDID, vif->mid, NULL, 0);
3016 	if (rc)
3017 		wil_err(wil, "Failed to abort scan (%d)\n", rc);
3018 
3019 	return rc;
3020 }
3021 
3022 int wmi_new_sta(struct wil6210_vif *vif, const u8 *mac, u8 aid)
3023 {
3024 	struct wil6210_priv *wil = vif_to_wil(vif);
3025 	int rc;
3026 	struct wmi_new_sta_cmd cmd = {
3027 		.aid = aid,
3028 	};
3029 
3030 	wil_dbg_wmi(wil, "new sta %pM, aid %d\n", mac, aid);
3031 
3032 	ether_addr_copy(cmd.dst_mac, mac);
3033 
3034 	rc = wmi_send(wil, WMI_NEW_STA_CMDID, vif->mid, &cmd, sizeof(cmd));
3035 	if (rc)
3036 		wil_err(wil, "Failed to send new sta (%d)\n", rc);
3037 
3038 	return rc;
3039 }
3040 
3041 void wmi_event_flush(struct wil6210_priv *wil)
3042 {
3043 	ulong flags;
3044 	struct pending_wmi_event *evt, *t;
3045 
3046 	wil_dbg_wmi(wil, "event_flush\n");
3047 
3048 	spin_lock_irqsave(&wil->wmi_ev_lock, flags);
3049 
3050 	list_for_each_entry_safe(evt, t, &wil->pending_wmi_ev, list) {
3051 		list_del(&evt->list);
3052 		kfree(evt);
3053 	}
3054 
3055 	spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
3056 }
3057 
3058 static const char *suspend_status2name(u8 status)
3059 {
3060 	switch (status) {
3061 	case WMI_TRAFFIC_SUSPEND_REJECTED_LINK_NOT_IDLE:
3062 		return "LINK_NOT_IDLE";
3063 	case WMI_TRAFFIC_SUSPEND_REJECTED_DISCONNECT:
3064 		return "DISCONNECT";
3065 	case WMI_TRAFFIC_SUSPEND_REJECTED_OTHER:
3066 		return "OTHER";
3067 	default:
3068 		return "Untracked status";
3069 	}
3070 }
3071 
3072 int wmi_suspend(struct wil6210_priv *wil)
3073 {
3074 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
3075 	int rc;
3076 	struct wmi_traffic_suspend_cmd cmd = {
3077 		.wakeup_trigger = wil->wakeup_trigger,
3078 	};
3079 	struct {
3080 		struct wmi_cmd_hdr wmi;
3081 		struct wmi_traffic_suspend_event evt;
3082 	} __packed reply = {
3083 		.evt = {.status = WMI_TRAFFIC_SUSPEND_REJECTED_LINK_NOT_IDLE},
3084 	};
3085 
3086 	u32 suspend_to = WIL_WAIT_FOR_SUSPEND_RESUME_COMP;
3087 
3088 	wil->suspend_resp_rcvd = false;
3089 	wil->suspend_resp_comp = false;
3090 
3091 	rc = wmi_call(wil, WMI_TRAFFIC_SUSPEND_CMDID, vif->mid,
3092 		      &cmd, sizeof(cmd),
3093 		      WMI_TRAFFIC_SUSPEND_EVENTID, &reply, sizeof(reply),
3094 		      suspend_to);
3095 	if (rc) {
3096 		wil_err(wil, "wmi_call for suspend req failed, rc=%d\n", rc);
3097 		if (rc == -ETIME)
3098 			/* wmi_call TO */
3099 			wil->suspend_stats.rejected_by_device++;
3100 		else
3101 			wil->suspend_stats.rejected_by_host++;
3102 		goto out;
3103 	}
3104 
3105 	wil_dbg_wmi(wil, "waiting for suspend_response_completed\n");
3106 
3107 	rc = wait_event_interruptible_timeout(wil->wq,
3108 					      wil->suspend_resp_comp,
3109 					      msecs_to_jiffies(suspend_to));
3110 	if (rc == 0) {
3111 		wil_err(wil, "TO waiting for suspend_response_completed\n");
3112 		if (wil->suspend_resp_rcvd)
3113 			/* Device responded but we TO due to another reason */
3114 			wil->suspend_stats.rejected_by_host++;
3115 		else
3116 			wil->suspend_stats.rejected_by_device++;
3117 		rc = -EBUSY;
3118 		goto out;
3119 	}
3120 
3121 	wil_dbg_wmi(wil, "suspend_response_completed rcvd\n");
3122 	if (reply.evt.status != WMI_TRAFFIC_SUSPEND_APPROVED) {
3123 		wil_dbg_pm(wil, "device rejected the suspend, %s\n",
3124 			   suspend_status2name(reply.evt.status));
3125 		wil->suspend_stats.rejected_by_device++;
3126 	}
3127 	rc = reply.evt.status;
3128 
3129 out:
3130 	wil->suspend_resp_rcvd = false;
3131 	wil->suspend_resp_comp = false;
3132 
3133 	return rc;
3134 }
3135 
3136 static void resume_triggers2string(u32 triggers, char *string, int str_size)
3137 {
3138 	string[0] = '\0';
3139 
3140 	if (!triggers) {
3141 		strlcat(string, " UNKNOWN", str_size);
3142 		return;
3143 	}
3144 
3145 	if (triggers & WMI_RESUME_TRIGGER_HOST)
3146 		strlcat(string, " HOST", str_size);
3147 
3148 	if (triggers & WMI_RESUME_TRIGGER_UCAST_RX)
3149 		strlcat(string, " UCAST_RX", str_size);
3150 
3151 	if (triggers & WMI_RESUME_TRIGGER_BCAST_RX)
3152 		strlcat(string, " BCAST_RX", str_size);
3153 
3154 	if (triggers & WMI_RESUME_TRIGGER_WMI_EVT)
3155 		strlcat(string, " WMI_EVT", str_size);
3156 
3157 	if (triggers & WMI_RESUME_TRIGGER_DISCONNECT)
3158 		strlcat(string, " DISCONNECT", str_size);
3159 }
3160 
3161 int wmi_resume(struct wil6210_priv *wil)
3162 {
3163 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
3164 	int rc;
3165 	char string[100];
3166 	struct {
3167 		struct wmi_cmd_hdr wmi;
3168 		struct wmi_traffic_resume_event evt;
3169 	} __packed reply = {
3170 		.evt = {.status = WMI_TRAFFIC_RESUME_FAILED,
3171 			.resume_triggers =
3172 				cpu_to_le32(WMI_RESUME_TRIGGER_UNKNOWN)},
3173 	};
3174 
3175 	rc = wmi_call(wil, WMI_TRAFFIC_RESUME_CMDID, vif->mid, NULL, 0,
3176 		      WMI_TRAFFIC_RESUME_EVENTID, &reply, sizeof(reply),
3177 		      WIL_WAIT_FOR_SUSPEND_RESUME_COMP);
3178 	if (rc)
3179 		return rc;
3180 	resume_triggers2string(le32_to_cpu(reply.evt.resume_triggers), string,
3181 			       sizeof(string));
3182 	wil_dbg_pm(wil, "device resume %s, resume triggers:%s (0x%x)\n",
3183 		   reply.evt.status ? "failed" : "passed", string,
3184 		   le32_to_cpu(reply.evt.resume_triggers));
3185 
3186 	return reply.evt.status;
3187 }
3188 
3189 int wmi_port_allocate(struct wil6210_priv *wil, u8 mid,
3190 		      const u8 *mac, enum nl80211_iftype iftype)
3191 {
3192 	int rc;
3193 	struct wmi_port_allocate_cmd cmd = {
3194 		.mid = mid,
3195 	};
3196 	struct {
3197 		struct wmi_cmd_hdr wmi;
3198 		struct wmi_port_allocated_event evt;
3199 	} __packed reply = {
3200 		.evt = {.status = WMI_FW_STATUS_FAILURE},
3201 	};
3202 
3203 	wil_dbg_misc(wil, "port allocate, mid %d iftype %d, mac %pM\n",
3204 		     mid, iftype, mac);
3205 
3206 	ether_addr_copy(cmd.mac, mac);
3207 	switch (iftype) {
3208 	case NL80211_IFTYPE_STATION:
3209 		cmd.port_role = WMI_PORT_STA;
3210 		break;
3211 	case NL80211_IFTYPE_AP:
3212 		cmd.port_role = WMI_PORT_AP;
3213 		break;
3214 	case NL80211_IFTYPE_P2P_CLIENT:
3215 		cmd.port_role = WMI_PORT_P2P_CLIENT;
3216 		break;
3217 	case NL80211_IFTYPE_P2P_GO:
3218 		cmd.port_role = WMI_PORT_P2P_GO;
3219 		break;
3220 	/* what about monitor??? */
3221 	default:
3222 		wil_err(wil, "unsupported iftype: %d\n", iftype);
3223 		return -EINVAL;
3224 	}
3225 
3226 	rc = wmi_call(wil, WMI_PORT_ALLOCATE_CMDID, mid,
3227 		      &cmd, sizeof(cmd),
3228 		      WMI_PORT_ALLOCATED_EVENTID, &reply,
3229 		      sizeof(reply), 300);
3230 	if (rc) {
3231 		wil_err(wil, "failed to allocate port, status %d\n", rc);
3232 		return rc;
3233 	}
3234 	if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
3235 		wil_err(wil, "WMI_PORT_ALLOCATE returned status %d\n",
3236 			reply.evt.status);
3237 		return -EINVAL;
3238 	}
3239 
3240 	return 0;
3241 }
3242 
3243 int wmi_port_delete(struct wil6210_priv *wil, u8 mid)
3244 {
3245 	int rc;
3246 	struct wmi_port_delete_cmd cmd = {
3247 		.mid = mid,
3248 	};
3249 	struct {
3250 		struct wmi_cmd_hdr wmi;
3251 		struct wmi_port_deleted_event evt;
3252 	} __packed reply = {
3253 		.evt = {.status = WMI_FW_STATUS_FAILURE},
3254 	};
3255 
3256 	wil_dbg_misc(wil, "port delete, mid %d\n", mid);
3257 
3258 	rc = wmi_call(wil, WMI_PORT_DELETE_CMDID, mid,
3259 		      &cmd, sizeof(cmd),
3260 		      WMI_PORT_DELETED_EVENTID, &reply,
3261 		      sizeof(reply), 2000);
3262 	if (rc) {
3263 		wil_err(wil, "failed to delete port, status %d\n", rc);
3264 		return rc;
3265 	}
3266 	if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
3267 		wil_err(wil, "WMI_PORT_DELETE returned status %d\n",
3268 			reply.evt.status);
3269 		return -EINVAL;
3270 	}
3271 
3272 	return 0;
3273 }
3274 
3275 static bool wmi_evt_call_handler(struct wil6210_vif *vif, int id,
3276 				 void *d, int len)
3277 {
3278 	uint i;
3279 
3280 	for (i = 0; i < ARRAY_SIZE(wmi_evt_handlers); i++) {
3281 		if (wmi_evt_handlers[i].eventid == id) {
3282 			wmi_evt_handlers[i].handler(vif, id, d, len);
3283 			return true;
3284 		}
3285 	}
3286 
3287 	return false;
3288 }
3289 
3290 static void wmi_event_handle(struct wil6210_priv *wil,
3291 			     struct wil6210_mbox_hdr *hdr)
3292 {
3293 	u16 len = le16_to_cpu(hdr->len);
3294 	struct wil6210_vif *vif;
3295 
3296 	if ((hdr->type == WIL_MBOX_HDR_TYPE_WMI) &&
3297 	    (len >= sizeof(struct wmi_cmd_hdr))) {
3298 		struct wmi_cmd_hdr *wmi = (void *)(&hdr[1]);
3299 		void *evt_data = (void *)(&wmi[1]);
3300 		u16 id = le16_to_cpu(wmi->command_id);
3301 		u8 mid = wmi->mid;
3302 
3303 		wil_dbg_wmi(wil, "Handle %s (0x%04x) (reply_id 0x%04x,%d)\n",
3304 			    eventid2name(id), id, wil->reply_id,
3305 			    wil->reply_mid);
3306 
3307 		if (mid == MID_BROADCAST)
3308 			mid = 0;
3309 		if (mid >= GET_MAX_VIFS(wil)) {
3310 			wil_dbg_wmi(wil, "invalid mid %d, event skipped\n",
3311 				    mid);
3312 			return;
3313 		}
3314 		vif = wil->vifs[mid];
3315 		if (!vif) {
3316 			wil_dbg_wmi(wil, "event for empty VIF(%d), skipped\n",
3317 				    mid);
3318 			return;
3319 		}
3320 
3321 		/* check if someone waits for this event */
3322 		if (wil->reply_id && wil->reply_id == id &&
3323 		    wil->reply_mid == mid) {
3324 			if (wil->reply_buf) {
3325 				/* event received while wmi_call is waiting
3326 				 * with a buffer. Such event should be handled
3327 				 * in wmi_recv_cmd function. Handling the event
3328 				 * here means a previous wmi_call was timeout.
3329 				 * Drop the event and do not handle it.
3330 				 */
3331 				wil_err(wil,
3332 					"Old event (%d, %s) while wmi_call is waiting. Drop it and Continue waiting\n",
3333 					id, eventid2name(id));
3334 				return;
3335 			}
3336 
3337 			wmi_evt_call_handler(vif, id, evt_data,
3338 					     len - sizeof(*wmi));
3339 			wil_dbg_wmi(wil, "event_handle: Complete WMI 0x%04x\n",
3340 				    id);
3341 			complete(&wil->wmi_call);
3342 			return;
3343 		}
3344 		/* unsolicited event */
3345 		/* search for handler */
3346 		if (!wmi_evt_call_handler(vif, id, evt_data,
3347 					  len - sizeof(*wmi))) {
3348 			wil_info(wil, "Unhandled event 0x%04x\n", id);
3349 		}
3350 	} else {
3351 		wil_err(wil, "Unknown event type\n");
3352 		print_hex_dump(KERN_ERR, "evt?? ", DUMP_PREFIX_OFFSET, 16, 1,
3353 			       hdr, sizeof(*hdr) + len, true);
3354 	}
3355 }
3356 
3357 /*
3358  * Retrieve next WMI event from the pending list
3359  */
3360 static struct list_head *next_wmi_ev(struct wil6210_priv *wil)
3361 {
3362 	ulong flags;
3363 	struct list_head *ret = NULL;
3364 
3365 	spin_lock_irqsave(&wil->wmi_ev_lock, flags);
3366 
3367 	if (!list_empty(&wil->pending_wmi_ev)) {
3368 		ret = wil->pending_wmi_ev.next;
3369 		list_del(ret);
3370 	}
3371 
3372 	spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
3373 
3374 	return ret;
3375 }
3376 
3377 /*
3378  * Handler for the WMI events
3379  */
3380 void wmi_event_worker(struct work_struct *work)
3381 {
3382 	struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
3383 						 wmi_event_worker);
3384 	struct pending_wmi_event *evt;
3385 	struct list_head *lh;
3386 
3387 	wil_dbg_wmi(wil, "event_worker: Start\n");
3388 	while ((lh = next_wmi_ev(wil)) != NULL) {
3389 		evt = list_entry(lh, struct pending_wmi_event, list);
3390 		wmi_event_handle(wil, &evt->event.hdr);
3391 		kfree(evt);
3392 	}
3393 	wil_dbg_wmi(wil, "event_worker: Finished\n");
3394 }
3395 
3396 bool wil_is_wmi_idle(struct wil6210_priv *wil)
3397 {
3398 	ulong flags;
3399 	struct wil6210_mbox_ring *r = &wil->mbox_ctl.rx;
3400 	bool rc = false;
3401 
3402 	spin_lock_irqsave(&wil->wmi_ev_lock, flags);
3403 
3404 	/* Check if there are pending WMI events in the events queue */
3405 	if (!list_empty(&wil->pending_wmi_ev)) {
3406 		wil_dbg_pm(wil, "Pending WMI events in queue\n");
3407 		goto out;
3408 	}
3409 
3410 	/* Check if there is a pending WMI call */
3411 	if (wil->reply_id) {
3412 		wil_dbg_pm(wil, "Pending WMI call\n");
3413 		goto out;
3414 	}
3415 
3416 	/* Check if there are pending RX events in mbox */
3417 	r->head = wil_r(wil, RGF_MBOX +
3418 			offsetof(struct wil6210_mbox_ctl, rx.head));
3419 	if (r->tail != r->head)
3420 		wil_dbg_pm(wil, "Pending WMI mbox events\n");
3421 	else
3422 		rc = true;
3423 
3424 out:
3425 	spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
3426 	return rc;
3427 }
3428 
3429 static void
3430 wmi_sched_scan_set_ssids(struct wil6210_priv *wil,
3431 			 struct wmi_start_sched_scan_cmd *cmd,
3432 			 struct cfg80211_ssid *ssids, int n_ssids,
3433 			 struct cfg80211_match_set *match_sets,
3434 			 int n_match_sets)
3435 {
3436 	int i;
3437 
3438 	if (n_match_sets > WMI_MAX_PNO_SSID_NUM) {
3439 		wil_dbg_wmi(wil, "too many match sets (%d), use first %d\n",
3440 			    n_match_sets, WMI_MAX_PNO_SSID_NUM);
3441 		n_match_sets = WMI_MAX_PNO_SSID_NUM;
3442 	}
3443 	cmd->num_of_ssids = n_match_sets;
3444 
3445 	for (i = 0; i < n_match_sets; i++) {
3446 		struct wmi_sched_scan_ssid_match *wmi_match =
3447 			&cmd->ssid_for_match[i];
3448 		struct cfg80211_match_set *cfg_match = &match_sets[i];
3449 		int j;
3450 
3451 		wmi_match->ssid_len = cfg_match->ssid.ssid_len;
3452 		memcpy(wmi_match->ssid, cfg_match->ssid.ssid,
3453 		       min_t(u8, wmi_match->ssid_len, WMI_MAX_SSID_LEN));
3454 		wmi_match->rssi_threshold = S8_MIN;
3455 		if (cfg_match->rssi_thold >= S8_MIN &&
3456 		    cfg_match->rssi_thold <= S8_MAX)
3457 			wmi_match->rssi_threshold = cfg_match->rssi_thold;
3458 
3459 		for (j = 0; j < n_ssids; j++)
3460 			if (wmi_match->ssid_len == ssids[j].ssid_len &&
3461 			    memcmp(wmi_match->ssid, ssids[j].ssid,
3462 				   wmi_match->ssid_len) == 0)
3463 				wmi_match->add_ssid_to_probe = true;
3464 	}
3465 }
3466 
3467 static void
3468 wmi_sched_scan_set_channels(struct wil6210_priv *wil,
3469 			    struct wmi_start_sched_scan_cmd *cmd,
3470 			    u32 n_channels,
3471 			    struct ieee80211_channel **channels)
3472 {
3473 	int i;
3474 
3475 	if (n_channels > WMI_MAX_CHANNEL_NUM) {
3476 		wil_dbg_wmi(wil, "too many channels (%d), use first %d\n",
3477 			    n_channels, WMI_MAX_CHANNEL_NUM);
3478 		n_channels = WMI_MAX_CHANNEL_NUM;
3479 	}
3480 	cmd->num_of_channels = n_channels;
3481 
3482 	for (i = 0; i < n_channels; i++) {
3483 		struct ieee80211_channel *cfg_chan = channels[i];
3484 
3485 		cmd->channel_list[i] = cfg_chan->hw_value - 1;
3486 	}
3487 }
3488 
3489 static void
3490 wmi_sched_scan_set_plans(struct wil6210_priv *wil,
3491 			 struct wmi_start_sched_scan_cmd *cmd,
3492 			 struct cfg80211_sched_scan_plan *scan_plans,
3493 			 int n_scan_plans)
3494 {
3495 	int i;
3496 
3497 	if (n_scan_plans > WMI_MAX_PLANS_NUM) {
3498 		wil_dbg_wmi(wil, "too many plans (%d), use first %d\n",
3499 			    n_scan_plans, WMI_MAX_PLANS_NUM);
3500 		n_scan_plans = WMI_MAX_PLANS_NUM;
3501 	}
3502 
3503 	for (i = 0; i < n_scan_plans; i++) {
3504 		struct cfg80211_sched_scan_plan *cfg_plan = &scan_plans[i];
3505 
3506 		cmd->scan_plans[i].interval_sec =
3507 			cpu_to_le16(cfg_plan->interval);
3508 		cmd->scan_plans[i].num_of_iterations =
3509 			cpu_to_le16(cfg_plan->iterations);
3510 	}
3511 }
3512 
3513 int wmi_start_sched_scan(struct wil6210_priv *wil,
3514 			 struct cfg80211_sched_scan_request *request)
3515 {
3516 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
3517 	int rc;
3518 	struct wmi_start_sched_scan_cmd cmd = {
3519 		.min_rssi_threshold = S8_MIN,
3520 		.initial_delay_sec = cpu_to_le16(request->delay),
3521 	};
3522 	struct {
3523 		struct wmi_cmd_hdr wmi;
3524 		struct wmi_start_sched_scan_event evt;
3525 	} __packed reply = {
3526 		.evt = {.result = WMI_PNO_REJECT},
3527 	};
3528 
3529 	if (!test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities))
3530 		return -ENOTSUPP;
3531 
3532 	if (request->min_rssi_thold >= S8_MIN &&
3533 	    request->min_rssi_thold <= S8_MAX)
3534 		cmd.min_rssi_threshold = request->min_rssi_thold;
3535 
3536 	wmi_sched_scan_set_ssids(wil, &cmd, request->ssids, request->n_ssids,
3537 				 request->match_sets, request->n_match_sets);
3538 	wmi_sched_scan_set_channels(wil, &cmd,
3539 				    request->n_channels, request->channels);
3540 	wmi_sched_scan_set_plans(wil, &cmd,
3541 				 request->scan_plans, request->n_scan_plans);
3542 
3543 	rc = wmi_call(wil, WMI_START_SCHED_SCAN_CMDID, vif->mid,
3544 		      &cmd, sizeof(cmd),
3545 		      WMI_START_SCHED_SCAN_EVENTID, &reply, sizeof(reply),
3546 		      WIL_WMI_CALL_GENERAL_TO_MS);
3547 	if (rc)
3548 		return rc;
3549 
3550 	if (reply.evt.result != WMI_PNO_SUCCESS) {
3551 		wil_err(wil, "start sched scan failed, result %d\n",
3552 			reply.evt.result);
3553 		return -EINVAL;
3554 	}
3555 
3556 	return 0;
3557 }
3558 
3559 int wmi_stop_sched_scan(struct wil6210_priv *wil)
3560 {
3561 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
3562 	int rc;
3563 	struct {
3564 		struct wmi_cmd_hdr wmi;
3565 		struct wmi_stop_sched_scan_event evt;
3566 	} __packed reply = {
3567 		.evt = {.result = WMI_PNO_REJECT},
3568 	};
3569 
3570 	if (!test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities))
3571 		return -ENOTSUPP;
3572 
3573 	rc = wmi_call(wil, WMI_STOP_SCHED_SCAN_CMDID, vif->mid, NULL, 0,
3574 		      WMI_STOP_SCHED_SCAN_EVENTID, &reply, sizeof(reply),
3575 		      WIL_WMI_CALL_GENERAL_TO_MS);
3576 	if (rc)
3577 		return rc;
3578 
3579 	if (reply.evt.result != WMI_PNO_SUCCESS) {
3580 		wil_err(wil, "stop sched scan failed, result %d\n",
3581 			reply.evt.result);
3582 		return -EINVAL;
3583 	}
3584 
3585 	return 0;
3586 }
3587 
3588 int wmi_mgmt_tx(struct wil6210_vif *vif, const u8 *buf, size_t len)
3589 {
3590 	size_t total;
3591 	struct wil6210_priv *wil = vif_to_wil(vif);
3592 	struct ieee80211_mgmt *mgmt_frame = (void *)buf;
3593 	struct wmi_sw_tx_req_cmd *cmd;
3594 	struct {
3595 		struct wmi_cmd_hdr wmi;
3596 		struct wmi_sw_tx_complete_event evt;
3597 	} __packed evt = {
3598 		.evt = {.status = WMI_FW_STATUS_FAILURE},
3599 	};
3600 	int rc;
3601 
3602 	wil_dbg_misc(wil, "mgmt_tx mid %d\n", vif->mid);
3603 	wil_hex_dump_misc("mgmt tx frame ", DUMP_PREFIX_OFFSET, 16, 1, buf,
3604 			  len, true);
3605 
3606 	if (len < sizeof(struct ieee80211_hdr_3addr))
3607 		return -EINVAL;
3608 
3609 	total = sizeof(*cmd) + len;
3610 	if (total < len) {
3611 		wil_err(wil, "mgmt_tx invalid len %zu\n", len);
3612 		return -EINVAL;
3613 	}
3614 
3615 	cmd = kmalloc(total, GFP_KERNEL);
3616 	if (!cmd)
3617 		return -ENOMEM;
3618 
3619 	memcpy(cmd->dst_mac, mgmt_frame->da, WMI_MAC_LEN);
3620 	cmd->len = cpu_to_le16(len);
3621 	memcpy(cmd->payload, buf, len);
3622 
3623 	rc = wmi_call(wil, WMI_SW_TX_REQ_CMDID, vif->mid, cmd, total,
3624 		      WMI_SW_TX_COMPLETE_EVENTID, &evt, sizeof(evt), 2000);
3625 	if (!rc && evt.evt.status != WMI_FW_STATUS_SUCCESS) {
3626 		wil_dbg_wmi(wil, "mgmt_tx failed with status %d\n",
3627 			    evt.evt.status);
3628 		rc = -EAGAIN;
3629 	}
3630 
3631 	kfree(cmd);
3632 
3633 	return rc;
3634 }
3635 
3636 int wmi_mgmt_tx_ext(struct wil6210_vif *vif, const u8 *buf, size_t len,
3637 		    u8 channel, u16 duration_ms)
3638 {
3639 	size_t total;
3640 	struct wil6210_priv *wil = vif_to_wil(vif);
3641 	struct ieee80211_mgmt *mgmt_frame = (void *)buf;
3642 	struct wmi_sw_tx_req_ext_cmd *cmd;
3643 	struct {
3644 		struct wmi_cmd_hdr wmi;
3645 		struct wmi_sw_tx_complete_event evt;
3646 	} __packed evt = {
3647 		.evt = {.status = WMI_FW_STATUS_FAILURE},
3648 	};
3649 	int rc;
3650 
3651 	wil_dbg_wmi(wil, "mgmt_tx_ext mid %d channel %d duration %d\n",
3652 		    vif->mid, channel, duration_ms);
3653 	wil_hex_dump_wmi("mgmt_tx_ext frame ", DUMP_PREFIX_OFFSET, 16, 1, buf,
3654 			 len, true);
3655 
3656 	if (len < sizeof(struct ieee80211_hdr_3addr)) {
3657 		wil_err(wil, "short frame. len %zu\n", len);
3658 		return -EINVAL;
3659 	}
3660 
3661 	total = sizeof(*cmd) + len;
3662 	if (total < len) {
3663 		wil_err(wil, "mgmt_tx_ext invalid len %zu\n", len);
3664 		return -EINVAL;
3665 	}
3666 
3667 	cmd = kzalloc(total, GFP_KERNEL);
3668 	if (!cmd)
3669 		return -ENOMEM;
3670 
3671 	memcpy(cmd->dst_mac, mgmt_frame->da, WMI_MAC_LEN);
3672 	cmd->len = cpu_to_le16(len);
3673 	memcpy(cmd->payload, buf, len);
3674 	cmd->channel = channel - 1;
3675 	cmd->duration_ms = cpu_to_le16(duration_ms);
3676 
3677 	rc = wmi_call(wil, WMI_SW_TX_REQ_EXT_CMDID, vif->mid, cmd, total,
3678 		      WMI_SW_TX_COMPLETE_EVENTID, &evt, sizeof(evt), 2000);
3679 	if (!rc && evt.evt.status != WMI_FW_STATUS_SUCCESS) {
3680 		wil_dbg_wmi(wil, "mgmt_tx_ext failed with status %d\n",
3681 			    evt.evt.status);
3682 		rc = -EAGAIN;
3683 	}
3684 
3685 	kfree(cmd);
3686 
3687 	return rc;
3688 }
3689 
3690 int wil_wmi_tx_sring_cfg(struct wil6210_priv *wil, int ring_id)
3691 {
3692 	int rc;
3693 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
3694 	struct wil_status_ring *sring = &wil->srings[ring_id];
3695 	struct wmi_tx_status_ring_add_cmd cmd = {
3696 		.ring_cfg = {
3697 			.ring_size = cpu_to_le16(sring->size),
3698 		},
3699 		.irq_index = WIL_TX_STATUS_IRQ_IDX
3700 	};
3701 	struct {
3702 		struct wmi_cmd_hdr hdr;
3703 		struct wmi_tx_status_ring_cfg_done_event evt;
3704 	} __packed reply = {
3705 		.evt = {.status = WMI_FW_STATUS_FAILURE},
3706 	};
3707 
3708 	cmd.ring_cfg.ring_id = ring_id;
3709 
3710 	cmd.ring_cfg.ring_mem_base = cpu_to_le64(sring->pa);
3711 	rc = wmi_call(wil, WMI_TX_STATUS_RING_ADD_CMDID, vif->mid, &cmd,
3712 		      sizeof(cmd), WMI_TX_STATUS_RING_CFG_DONE_EVENTID,
3713 		      &reply, sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
3714 	if (rc) {
3715 		wil_err(wil, "TX_STATUS_RING_ADD_CMD failed, rc %d\n", rc);
3716 		return rc;
3717 	}
3718 
3719 	if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
3720 		wil_err(wil, "TX_STATUS_RING_ADD_CMD failed, status %d\n",
3721 			reply.evt.status);
3722 		return -EINVAL;
3723 	}
3724 
3725 	sring->hwtail = le32_to_cpu(reply.evt.ring_tail_ptr);
3726 
3727 	return 0;
3728 }
3729 
3730 int wil_wmi_cfg_def_rx_offload(struct wil6210_priv *wil, u16 max_rx_pl_per_desc)
3731 {
3732 	struct net_device *ndev = wil->main_ndev;
3733 	struct wil6210_vif *vif = ndev_to_vif(ndev);
3734 	int rc;
3735 	struct wmi_cfg_def_rx_offload_cmd cmd = {
3736 		.max_msdu_size = cpu_to_le16(wil_mtu2macbuf(WIL_MAX_ETH_MTU)),
3737 		.max_rx_pl_per_desc = cpu_to_le16(max_rx_pl_per_desc),
3738 		.decap_trans_type = WMI_DECAP_TYPE_802_3,
3739 		.l2_802_3_offload_ctrl = 0,
3740 		.l3_l4_ctrl = 1 << L3_L4_CTRL_TCPIP_CHECKSUM_EN_POS,
3741 	};
3742 	struct {
3743 		struct wmi_cmd_hdr hdr;
3744 		struct wmi_cfg_def_rx_offload_done_event evt;
3745 	} __packed reply = {
3746 		.evt = {.status = WMI_FW_STATUS_FAILURE},
3747 	};
3748 
3749 	rc = wmi_call(wil, WMI_CFG_DEF_RX_OFFLOAD_CMDID, vif->mid, &cmd,
3750 		      sizeof(cmd), WMI_CFG_DEF_RX_OFFLOAD_DONE_EVENTID, &reply,
3751 		      sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
3752 	if (rc) {
3753 		wil_err(wil, "WMI_CFG_DEF_RX_OFFLOAD_CMD failed, rc %d\n", rc);
3754 		return rc;
3755 	}
3756 
3757 	if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
3758 		wil_err(wil, "WMI_CFG_DEF_RX_OFFLOAD_CMD failed, status %d\n",
3759 			reply.evt.status);
3760 		return -EINVAL;
3761 	}
3762 
3763 	return 0;
3764 }
3765 
3766 int wil_wmi_rx_sring_add(struct wil6210_priv *wil, u16 ring_id)
3767 {
3768 	struct net_device *ndev = wil->main_ndev;
3769 	struct wil6210_vif *vif = ndev_to_vif(ndev);
3770 	struct wil_status_ring *sring = &wil->srings[ring_id];
3771 	int rc;
3772 	struct wmi_rx_status_ring_add_cmd cmd = {
3773 		.ring_cfg = {
3774 			.ring_size = cpu_to_le16(sring->size),
3775 			.ring_id = ring_id,
3776 		},
3777 		.rx_msg_type = wil->use_compressed_rx_status ?
3778 			WMI_RX_MSG_TYPE_COMPRESSED :
3779 			WMI_RX_MSG_TYPE_EXTENDED,
3780 		.irq_index = WIL_RX_STATUS_IRQ_IDX,
3781 	};
3782 	struct {
3783 		struct wmi_cmd_hdr hdr;
3784 		struct wmi_rx_status_ring_cfg_done_event evt;
3785 	} __packed reply = {
3786 		.evt = {.status = WMI_FW_STATUS_FAILURE},
3787 	};
3788 
3789 	cmd.ring_cfg.ring_mem_base = cpu_to_le64(sring->pa);
3790 	rc = wmi_call(wil, WMI_RX_STATUS_RING_ADD_CMDID, vif->mid, &cmd,
3791 		      sizeof(cmd), WMI_RX_STATUS_RING_CFG_DONE_EVENTID, &reply,
3792 		      sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
3793 	if (rc) {
3794 		wil_err(wil, "RX_STATUS_RING_ADD_CMD failed, rc %d\n", rc);
3795 		return rc;
3796 	}
3797 
3798 	if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
3799 		wil_err(wil, "RX_STATUS_RING_ADD_CMD failed, status %d\n",
3800 			reply.evt.status);
3801 		return -EINVAL;
3802 	}
3803 
3804 	sring->hwtail = le32_to_cpu(reply.evt.ring_tail_ptr);
3805 
3806 	return 0;
3807 }
3808 
3809 int wil_wmi_rx_desc_ring_add(struct wil6210_priv *wil, int status_ring_id)
3810 {
3811 	struct net_device *ndev = wil->main_ndev;
3812 	struct wil6210_vif *vif = ndev_to_vif(ndev);
3813 	struct wil_ring *ring = &wil->ring_rx;
3814 	int rc;
3815 	struct wmi_rx_desc_ring_add_cmd cmd = {
3816 		.ring_cfg = {
3817 			.ring_size = cpu_to_le16(ring->size),
3818 			.ring_id = WIL_RX_DESC_RING_ID,
3819 		},
3820 		.status_ring_id = status_ring_id,
3821 		.irq_index = WIL_RX_STATUS_IRQ_IDX,
3822 	};
3823 	struct {
3824 		struct wmi_cmd_hdr hdr;
3825 		struct wmi_rx_desc_ring_cfg_done_event evt;
3826 	} __packed reply = {
3827 		.evt = {.status = WMI_FW_STATUS_FAILURE},
3828 	};
3829 
3830 	cmd.ring_cfg.ring_mem_base = cpu_to_le64(ring->pa);
3831 	cmd.sw_tail_host_addr = cpu_to_le64(ring->edma_rx_swtail.pa);
3832 	rc = wmi_call(wil, WMI_RX_DESC_RING_ADD_CMDID, vif->mid, &cmd,
3833 		      sizeof(cmd), WMI_RX_DESC_RING_CFG_DONE_EVENTID, &reply,
3834 		      sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
3835 	if (rc) {
3836 		wil_err(wil, "WMI_RX_DESC_RING_ADD_CMD failed, rc %d\n", rc);
3837 		return rc;
3838 	}
3839 
3840 	if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
3841 		wil_err(wil, "WMI_RX_DESC_RING_ADD_CMD failed, status %d\n",
3842 			reply.evt.status);
3843 		return -EINVAL;
3844 	}
3845 
3846 	ring->hwtail = le32_to_cpu(reply.evt.ring_tail_ptr);
3847 
3848 	return 0;
3849 }
3850 
3851 int wil_wmi_tx_desc_ring_add(struct wil6210_vif *vif, int ring_id, int cid,
3852 			     int tid)
3853 {
3854 	struct wil6210_priv *wil = vif_to_wil(vif);
3855 	int sring_id = wil->tx_sring_idx; /* there is only one TX sring */
3856 	int rc;
3857 	struct wil_ring *ring = &wil->ring_tx[ring_id];
3858 	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_id];
3859 	struct wmi_tx_desc_ring_add_cmd cmd = {
3860 		.ring_cfg = {
3861 			.ring_size = cpu_to_le16(ring->size),
3862 			.ring_id = ring_id,
3863 		},
3864 		.status_ring_id = sring_id,
3865 		.cid = cid,
3866 		.tid = tid,
3867 		.encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
3868 		.max_msdu_size = cpu_to_le16(wil_mtu2macbuf(mtu_max)),
3869 		.schd_params = {
3870 			.priority = cpu_to_le16(0),
3871 			.timeslot_us = cpu_to_le16(0xfff),
3872 		}
3873 	};
3874 	struct {
3875 		struct wmi_cmd_hdr hdr;
3876 		struct wmi_tx_desc_ring_cfg_done_event evt;
3877 	} __packed reply = {
3878 		.evt = {.status = WMI_FW_STATUS_FAILURE},
3879 	};
3880 
3881 	cmd.ring_cfg.ring_mem_base = cpu_to_le64(ring->pa);
3882 	rc = wmi_call(wil, WMI_TX_DESC_RING_ADD_CMDID, vif->mid, &cmd,
3883 		      sizeof(cmd), WMI_TX_DESC_RING_CFG_DONE_EVENTID, &reply,
3884 		      sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
3885 	if (rc) {
3886 		wil_err(wil, "WMI_TX_DESC_RING_ADD_CMD failed, rc %d\n", rc);
3887 		return rc;
3888 	}
3889 
3890 	if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
3891 		wil_err(wil, "WMI_TX_DESC_RING_ADD_CMD failed, status %d\n",
3892 			reply.evt.status);
3893 		return -EINVAL;
3894 	}
3895 
3896 	spin_lock_bh(&txdata->lock);
3897 	ring->hwtail = le32_to_cpu(reply.evt.ring_tail_ptr);
3898 	txdata->mid = vif->mid;
3899 	txdata->enabled = 1;
3900 	spin_unlock_bh(&txdata->lock);
3901 
3902 	return 0;
3903 }
3904 
3905 int wil_wmi_bcast_desc_ring_add(struct wil6210_vif *vif, int ring_id)
3906 {
3907 	struct wil6210_priv *wil = vif_to_wil(vif);
3908 	struct wil_ring *ring = &wil->ring_tx[ring_id];
3909 	int rc;
3910 	struct wmi_bcast_desc_ring_add_cmd cmd = {
3911 		.ring_cfg = {
3912 			.ring_size = cpu_to_le16(ring->size),
3913 			.ring_id = ring_id,
3914 		},
3915 		.max_msdu_size = cpu_to_le16(wil_mtu2macbuf(mtu_max)),
3916 		.status_ring_id = wil->tx_sring_idx,
3917 		.encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
3918 	};
3919 	struct {
3920 		struct wmi_cmd_hdr hdr;
3921 		struct wmi_rx_desc_ring_cfg_done_event evt;
3922 	} __packed reply = {
3923 		.evt = {.status = WMI_FW_STATUS_FAILURE},
3924 	};
3925 	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_id];
3926 
3927 	cmd.ring_cfg.ring_mem_base = cpu_to_le64(ring->pa);
3928 	rc = wmi_call(wil, WMI_BCAST_DESC_RING_ADD_CMDID, vif->mid, &cmd,
3929 		      sizeof(cmd), WMI_TX_DESC_RING_CFG_DONE_EVENTID, &reply,
3930 		      sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
3931 	if (rc) {
3932 		wil_err(wil, "WMI_BCAST_DESC_RING_ADD_CMD failed, rc %d\n", rc);
3933 		return rc;
3934 	}
3935 
3936 	if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
3937 		wil_err(wil, "Broadcast Tx config failed, status %d\n",
3938 			reply.evt.status);
3939 		return -EINVAL;
3940 	}
3941 
3942 	spin_lock_bh(&txdata->lock);
3943 	ring->hwtail = le32_to_cpu(reply.evt.ring_tail_ptr);
3944 	txdata->mid = vif->mid;
3945 	txdata->enabled = 1;
3946 	spin_unlock_bh(&txdata->lock);
3947 
3948 	return 0;
3949 }
3950 
3951 int wmi_link_stats_cfg(struct wil6210_vif *vif, u32 type, u8 cid, u32 interval)
3952 {
3953 	struct wil6210_priv *wil = vif_to_wil(vif);
3954 	struct wmi_link_stats_cmd cmd = {
3955 		.record_type_mask = cpu_to_le32(type),
3956 		.cid = cid,
3957 		.action = WMI_LINK_STATS_SNAPSHOT,
3958 		.interval_msec = cpu_to_le32(interval),
3959 	};
3960 	struct {
3961 		struct wmi_cmd_hdr wmi;
3962 		struct wmi_link_stats_config_done_event evt;
3963 	} __packed reply = {
3964 		.evt = {.status = WMI_FW_STATUS_FAILURE},
3965 	};
3966 	int rc;
3967 
3968 	rc = wmi_call(wil, WMI_LINK_STATS_CMDID, vif->mid, &cmd, sizeof(cmd),
3969 		      WMI_LINK_STATS_CONFIG_DONE_EVENTID, &reply,
3970 		      sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
3971 	if (rc) {
3972 		wil_err(wil, "WMI_LINK_STATS_CMDID failed, rc %d\n", rc);
3973 		return rc;
3974 	}
3975 
3976 	if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
3977 		wil_err(wil, "Link statistics config failed, status %d\n",
3978 			reply.evt.status);
3979 		return -EINVAL;
3980 	}
3981 
3982 	return 0;
3983 }
3984