1 /* 2 * Copyright (c) 2012-2017 Qualcomm Atheros, Inc. 3 * Copyright (c) 2018, The Linux Foundation. All rights reserved. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 */ 17 18 #include <linux/moduleparam.h> 19 #include <linux/etherdevice.h> 20 #include <linux/if_arp.h> 21 22 #include "wil6210.h" 23 #include "txrx.h" 24 #include "wmi.h" 25 #include "trace.h" 26 27 static uint max_assoc_sta = WIL6210_MAX_CID; 28 module_param(max_assoc_sta, uint, 0644); 29 MODULE_PARM_DESC(max_assoc_sta, " Max number of stations associated to the AP"); 30 31 int agg_wsize; /* = 0; */ 32 module_param(agg_wsize, int, 0644); 33 MODULE_PARM_DESC(agg_wsize, " Window size for Tx Block Ack after connect;" 34 " 0 - use default; < 0 - don't auto-establish"); 35 36 u8 led_id = WIL_LED_INVALID_ID; 37 module_param(led_id, byte, 0444); 38 MODULE_PARM_DESC(led_id, 39 " 60G device led enablement. Set the led ID (0-2) to enable"); 40 41 #define WIL_WAIT_FOR_SUSPEND_RESUME_COMP 200 42 #define WIL_WMI_CALL_GENERAL_TO_MS 100 43 44 /** 45 * WMI event receiving - theory of operations 46 * 47 * When firmware about to report WMI event, it fills memory area 48 * in the mailbox and raises misc. IRQ. Thread interrupt handler invoked for 49 * the misc IRQ, function @wmi_recv_cmd called by thread IRQ handler. 50 * 51 * @wmi_recv_cmd reads event, allocates memory chunk and attaches it to the 52 * event list @wil->pending_wmi_ev. Then, work queue @wil->wmi_wq wakes up 53 * and handles events within the @wmi_event_worker. Every event get detached 54 * from list, processed and deleted. 55 * 56 * Purpose for this mechanism is to release IRQ thread; otherwise, 57 * if WMI event handling involves another WMI command flow, this 2-nd flow 58 * won't be completed because of blocked IRQ thread. 59 */ 60 61 /** 62 * Addressing - theory of operations 63 * 64 * There are several buses present on the WIL6210 card. 65 * Same memory areas are visible at different address on 66 * the different busses. There are 3 main bus masters: 67 * - MAC CPU (ucode) 68 * - User CPU (firmware) 69 * - AHB (host) 70 * 71 * On the PCI bus, there is one BAR (BAR0) of 2Mb size, exposing 72 * AHB addresses starting from 0x880000 73 * 74 * Internally, firmware uses addresses that allow faster access but 75 * are invisible from the host. To read from these addresses, alternative 76 * AHB address must be used. 77 */ 78 79 /** 80 * @sparrow_fw_mapping provides memory remapping table for sparrow 81 * 82 * array size should be in sync with the declaration in the wil6210.h 83 * 84 * Sparrow memory mapping: 85 * Linker address PCI/Host address 86 * 0x880000 .. 0xa80000 2Mb BAR0 87 * 0x800000 .. 0x808000 0x900000 .. 0x908000 32k DCCM 88 * 0x840000 .. 0x860000 0x908000 .. 0x928000 128k PERIPH 89 */ 90 const struct fw_map sparrow_fw_mapping[] = { 91 /* FW code RAM 256k */ 92 {0x000000, 0x040000, 0x8c0000, "fw_code", true}, 93 /* FW data RAM 32k */ 94 {0x800000, 0x808000, 0x900000, "fw_data", true}, 95 /* periph data 128k */ 96 {0x840000, 0x860000, 0x908000, "fw_peri", true}, 97 /* various RGF 40k */ 98 {0x880000, 0x88a000, 0x880000, "rgf", true}, 99 /* AGC table 4k */ 100 {0x88a000, 0x88b000, 0x88a000, "AGC_tbl", true}, 101 /* Pcie_ext_rgf 4k */ 102 {0x88b000, 0x88c000, 0x88b000, "rgf_ext", true}, 103 /* mac_ext_rgf 512b */ 104 {0x88c000, 0x88c200, 0x88c000, "mac_rgf_ext", true}, 105 /* upper area 548k */ 106 {0x8c0000, 0x949000, 0x8c0000, "upper", true}, 107 /* UCODE areas - accessible by debugfs blobs but not by 108 * wmi_addr_remap. UCODE areas MUST be added AFTER FW areas! 109 */ 110 /* ucode code RAM 128k */ 111 {0x000000, 0x020000, 0x920000, "uc_code", false}, 112 /* ucode data RAM 16k */ 113 {0x800000, 0x804000, 0x940000, "uc_data", false}, 114 }; 115 116 /** 117 * @sparrow_d0_mac_rgf_ext - mac_rgf_ext section for Sparrow D0 118 * it is a bit larger to support extra features 119 */ 120 const struct fw_map sparrow_d0_mac_rgf_ext = { 121 0x88c000, 0x88c500, 0x88c000, "mac_rgf_ext", true 122 }; 123 124 /** 125 * @talyn_fw_mapping provides memory remapping table for Talyn 126 * 127 * array size should be in sync with the declaration in the wil6210.h 128 * 129 * Talyn memory mapping: 130 * Linker address PCI/Host address 131 * 0x880000 .. 0xc80000 4Mb BAR0 132 * 0x800000 .. 0x820000 0xa00000 .. 0xa20000 128k DCCM 133 * 0x840000 .. 0x858000 0xa20000 .. 0xa38000 96k PERIPH 134 */ 135 const struct fw_map talyn_fw_mapping[] = { 136 /* FW code RAM 1M */ 137 {0x000000, 0x100000, 0x900000, "fw_code", true}, 138 /* FW data RAM 128k */ 139 {0x800000, 0x820000, 0xa00000, "fw_data", true}, 140 /* periph. data RAM 96k */ 141 {0x840000, 0x858000, 0xa20000, "fw_peri", true}, 142 /* various RGF 40k */ 143 {0x880000, 0x88a000, 0x880000, "rgf", true}, 144 /* AGC table 4k */ 145 {0x88a000, 0x88b000, 0x88a000, "AGC_tbl", true}, 146 /* Pcie_ext_rgf 4k */ 147 {0x88b000, 0x88c000, 0x88b000, "rgf_ext", true}, 148 /* mac_ext_rgf 1344b */ 149 {0x88c000, 0x88c540, 0x88c000, "mac_rgf_ext", true}, 150 /* ext USER RGF 4k */ 151 {0x88d000, 0x88e000, 0x88d000, "ext_user_rgf", true}, 152 /* OTP 4k */ 153 {0x8a0000, 0x8a1000, 0x8a0000, "otp", true}, 154 /* DMA EXT RGF 64k */ 155 {0x8b0000, 0x8c0000, 0x8b0000, "dma_ext_rgf", true}, 156 /* upper area 1536k */ 157 {0x900000, 0xa80000, 0x900000, "upper", true}, 158 /* UCODE areas - accessible by debugfs blobs but not by 159 * wmi_addr_remap. UCODE areas MUST be added AFTER FW areas! 160 */ 161 /* ucode code RAM 256k */ 162 {0x000000, 0x040000, 0xa38000, "uc_code", false}, 163 /* ucode data RAM 32k */ 164 {0x800000, 0x808000, 0xa78000, "uc_data", false}, 165 }; 166 167 struct fw_map fw_mapping[MAX_FW_MAPPING_TABLE_SIZE]; 168 169 struct blink_on_off_time led_blink_time[] = { 170 {WIL_LED_BLINK_ON_SLOW_MS, WIL_LED_BLINK_OFF_SLOW_MS}, 171 {WIL_LED_BLINK_ON_MED_MS, WIL_LED_BLINK_OFF_MED_MS}, 172 {WIL_LED_BLINK_ON_FAST_MS, WIL_LED_BLINK_OFF_FAST_MS}, 173 }; 174 175 u8 led_polarity = LED_POLARITY_LOW_ACTIVE; 176 177 /** 178 * return AHB address for given firmware internal (linker) address 179 * @x - internal address 180 * If address have no valid AHB mapping, return 0 181 */ 182 static u32 wmi_addr_remap(u32 x) 183 { 184 uint i; 185 186 for (i = 0; i < ARRAY_SIZE(fw_mapping); i++) { 187 if (fw_mapping[i].fw && 188 ((x >= fw_mapping[i].from) && (x < fw_mapping[i].to))) 189 return x + fw_mapping[i].host - fw_mapping[i].from; 190 } 191 192 return 0; 193 } 194 195 /** 196 * find fw_mapping entry by section name 197 * @section - section name 198 * 199 * Return pointer to section or NULL if not found 200 */ 201 struct fw_map *wil_find_fw_mapping(const char *section) 202 { 203 int i; 204 205 for (i = 0; i < ARRAY_SIZE(fw_mapping); i++) 206 if (fw_mapping[i].name && 207 !strcmp(section, fw_mapping[i].name)) 208 return &fw_mapping[i]; 209 210 return NULL; 211 } 212 213 /** 214 * Check address validity for WMI buffer; remap if needed 215 * @ptr - internal (linker) fw/ucode address 216 * @size - if non zero, validate the block does not 217 * exceed the device memory (bar) 218 * 219 * Valid buffer should be DWORD aligned 220 * 221 * return address for accessing buffer from the host; 222 * if buffer is not valid, return NULL. 223 */ 224 void __iomem *wmi_buffer_block(struct wil6210_priv *wil, __le32 ptr_, u32 size) 225 { 226 u32 off; 227 u32 ptr = le32_to_cpu(ptr_); 228 229 if (ptr % 4) 230 return NULL; 231 232 ptr = wmi_addr_remap(ptr); 233 if (ptr < WIL6210_FW_HOST_OFF) 234 return NULL; 235 236 off = HOSTADDR(ptr); 237 if (off > wil->bar_size - 4) 238 return NULL; 239 if (size && ((off + size > wil->bar_size) || (off + size < off))) 240 return NULL; 241 242 return wil->csr + off; 243 } 244 245 void __iomem *wmi_buffer(struct wil6210_priv *wil, __le32 ptr_) 246 { 247 return wmi_buffer_block(wil, ptr_, 0); 248 } 249 250 /** 251 * Check address validity 252 */ 253 void __iomem *wmi_addr(struct wil6210_priv *wil, u32 ptr) 254 { 255 u32 off; 256 257 if (ptr % 4) 258 return NULL; 259 260 if (ptr < WIL6210_FW_HOST_OFF) 261 return NULL; 262 263 off = HOSTADDR(ptr); 264 if (off > wil->bar_size - 4) 265 return NULL; 266 267 return wil->csr + off; 268 } 269 270 int wmi_read_hdr(struct wil6210_priv *wil, __le32 ptr, 271 struct wil6210_mbox_hdr *hdr) 272 { 273 void __iomem *src = wmi_buffer(wil, ptr); 274 275 if (!src) 276 return -EINVAL; 277 278 wil_memcpy_fromio_32(hdr, src, sizeof(*hdr)); 279 280 return 0; 281 } 282 283 static const char *cmdid2name(u16 cmdid) 284 { 285 switch (cmdid) { 286 case WMI_NOTIFY_REQ_CMDID: 287 return "WMI_NOTIFY_REQ_CMD"; 288 case WMI_START_SCAN_CMDID: 289 return "WMI_START_SCAN_CMD"; 290 case WMI_CONNECT_CMDID: 291 return "WMI_CONNECT_CMD"; 292 case WMI_DISCONNECT_CMDID: 293 return "WMI_DISCONNECT_CMD"; 294 case WMI_SW_TX_REQ_CMDID: 295 return "WMI_SW_TX_REQ_CMD"; 296 case WMI_GET_RF_SECTOR_PARAMS_CMDID: 297 return "WMI_GET_RF_SECTOR_PARAMS_CMD"; 298 case WMI_SET_RF_SECTOR_PARAMS_CMDID: 299 return "WMI_SET_RF_SECTOR_PARAMS_CMD"; 300 case WMI_GET_SELECTED_RF_SECTOR_INDEX_CMDID: 301 return "WMI_GET_SELECTED_RF_SECTOR_INDEX_CMD"; 302 case WMI_SET_SELECTED_RF_SECTOR_INDEX_CMDID: 303 return "WMI_SET_SELECTED_RF_SECTOR_INDEX_CMD"; 304 case WMI_BRP_SET_ANT_LIMIT_CMDID: 305 return "WMI_BRP_SET_ANT_LIMIT_CMD"; 306 case WMI_TOF_SESSION_START_CMDID: 307 return "WMI_TOF_SESSION_START_CMD"; 308 case WMI_AOA_MEAS_CMDID: 309 return "WMI_AOA_MEAS_CMD"; 310 case WMI_PMC_CMDID: 311 return "WMI_PMC_CMD"; 312 case WMI_TOF_GET_TX_RX_OFFSET_CMDID: 313 return "WMI_TOF_GET_TX_RX_OFFSET_CMD"; 314 case WMI_TOF_SET_TX_RX_OFFSET_CMDID: 315 return "WMI_TOF_SET_TX_RX_OFFSET_CMD"; 316 case WMI_VRING_CFG_CMDID: 317 return "WMI_VRING_CFG_CMD"; 318 case WMI_BCAST_VRING_CFG_CMDID: 319 return "WMI_BCAST_VRING_CFG_CMD"; 320 case WMI_TRAFFIC_SUSPEND_CMDID: 321 return "WMI_TRAFFIC_SUSPEND_CMD"; 322 case WMI_TRAFFIC_RESUME_CMDID: 323 return "WMI_TRAFFIC_RESUME_CMD"; 324 case WMI_ECHO_CMDID: 325 return "WMI_ECHO_CMD"; 326 case WMI_SET_MAC_ADDRESS_CMDID: 327 return "WMI_SET_MAC_ADDRESS_CMD"; 328 case WMI_LED_CFG_CMDID: 329 return "WMI_LED_CFG_CMD"; 330 case WMI_PCP_START_CMDID: 331 return "WMI_PCP_START_CMD"; 332 case WMI_PCP_STOP_CMDID: 333 return "WMI_PCP_STOP_CMD"; 334 case WMI_SET_SSID_CMDID: 335 return "WMI_SET_SSID_CMD"; 336 case WMI_GET_SSID_CMDID: 337 return "WMI_GET_SSID_CMD"; 338 case WMI_SET_PCP_CHANNEL_CMDID: 339 return "WMI_SET_PCP_CHANNEL_CMD"; 340 case WMI_GET_PCP_CHANNEL_CMDID: 341 return "WMI_GET_PCP_CHANNEL_CMD"; 342 case WMI_P2P_CFG_CMDID: 343 return "WMI_P2P_CFG_CMD"; 344 case WMI_PORT_ALLOCATE_CMDID: 345 return "WMI_PORT_ALLOCATE_CMD"; 346 case WMI_PORT_DELETE_CMDID: 347 return "WMI_PORT_DELETE_CMD"; 348 case WMI_START_LISTEN_CMDID: 349 return "WMI_START_LISTEN_CMD"; 350 case WMI_START_SEARCH_CMDID: 351 return "WMI_START_SEARCH_CMD"; 352 case WMI_DISCOVERY_STOP_CMDID: 353 return "WMI_DISCOVERY_STOP_CMD"; 354 case WMI_DELETE_CIPHER_KEY_CMDID: 355 return "WMI_DELETE_CIPHER_KEY_CMD"; 356 case WMI_ADD_CIPHER_KEY_CMDID: 357 return "WMI_ADD_CIPHER_KEY_CMD"; 358 case WMI_SET_APPIE_CMDID: 359 return "WMI_SET_APPIE_CMD"; 360 case WMI_CFG_RX_CHAIN_CMDID: 361 return "WMI_CFG_RX_CHAIN_CMD"; 362 case WMI_TEMP_SENSE_CMDID: 363 return "WMI_TEMP_SENSE_CMD"; 364 case WMI_DEL_STA_CMDID: 365 return "WMI_DEL_STA_CMD"; 366 case WMI_DISCONNECT_STA_CMDID: 367 return "WMI_DISCONNECT_STA_CMD"; 368 case WMI_VRING_BA_EN_CMDID: 369 return "WMI_VRING_BA_EN_CMD"; 370 case WMI_VRING_BA_DIS_CMDID: 371 return "WMI_VRING_BA_DIS_CMD"; 372 case WMI_RCP_DELBA_CMDID: 373 return "WMI_RCP_DELBA_CMD"; 374 case WMI_RCP_ADDBA_RESP_CMDID: 375 return "WMI_RCP_ADDBA_RESP_CMD"; 376 case WMI_PS_DEV_PROFILE_CFG_CMDID: 377 return "WMI_PS_DEV_PROFILE_CFG_CMD"; 378 case WMI_SET_MGMT_RETRY_LIMIT_CMDID: 379 return "WMI_SET_MGMT_RETRY_LIMIT_CMD"; 380 case WMI_GET_MGMT_RETRY_LIMIT_CMDID: 381 return "WMI_GET_MGMT_RETRY_LIMIT_CMD"; 382 case WMI_ABORT_SCAN_CMDID: 383 return "WMI_ABORT_SCAN_CMD"; 384 case WMI_NEW_STA_CMDID: 385 return "WMI_NEW_STA_CMD"; 386 case WMI_SET_THERMAL_THROTTLING_CFG_CMDID: 387 return "WMI_SET_THERMAL_THROTTLING_CFG_CMD"; 388 case WMI_GET_THERMAL_THROTTLING_CFG_CMDID: 389 return "WMI_GET_THERMAL_THROTTLING_CFG_CMD"; 390 case WMI_LINK_MAINTAIN_CFG_WRITE_CMDID: 391 return "WMI_LINK_MAINTAIN_CFG_WRITE_CMD"; 392 case WMI_LO_POWER_CALIB_FROM_OTP_CMDID: 393 return "WMI_LO_POWER_CALIB_FROM_OTP_CMD"; 394 case WMI_START_SCHED_SCAN_CMDID: 395 return "WMI_START_SCHED_SCAN_CMD"; 396 case WMI_STOP_SCHED_SCAN_CMDID: 397 return "WMI_STOP_SCHED_SCAN_CMD"; 398 default: 399 return "Untracked CMD"; 400 } 401 } 402 403 static const char *eventid2name(u16 eventid) 404 { 405 switch (eventid) { 406 case WMI_NOTIFY_REQ_DONE_EVENTID: 407 return "WMI_NOTIFY_REQ_DONE_EVENT"; 408 case WMI_DISCONNECT_EVENTID: 409 return "WMI_DISCONNECT_EVENT"; 410 case WMI_SW_TX_COMPLETE_EVENTID: 411 return "WMI_SW_TX_COMPLETE_EVENT"; 412 case WMI_GET_RF_SECTOR_PARAMS_DONE_EVENTID: 413 return "WMI_GET_RF_SECTOR_PARAMS_DONE_EVENT"; 414 case WMI_SET_RF_SECTOR_PARAMS_DONE_EVENTID: 415 return "WMI_SET_RF_SECTOR_PARAMS_DONE_EVENT"; 416 case WMI_GET_SELECTED_RF_SECTOR_INDEX_DONE_EVENTID: 417 return "WMI_GET_SELECTED_RF_SECTOR_INDEX_DONE_EVENT"; 418 case WMI_SET_SELECTED_RF_SECTOR_INDEX_DONE_EVENTID: 419 return "WMI_SET_SELECTED_RF_SECTOR_INDEX_DONE_EVENT"; 420 case WMI_BRP_SET_ANT_LIMIT_EVENTID: 421 return "WMI_BRP_SET_ANT_LIMIT_EVENT"; 422 case WMI_FW_READY_EVENTID: 423 return "WMI_FW_READY_EVENT"; 424 case WMI_TRAFFIC_RESUME_EVENTID: 425 return "WMI_TRAFFIC_RESUME_EVENT"; 426 case WMI_TOF_GET_TX_RX_OFFSET_EVENTID: 427 return "WMI_TOF_GET_TX_RX_OFFSET_EVENT"; 428 case WMI_TOF_SET_TX_RX_OFFSET_EVENTID: 429 return "WMI_TOF_SET_TX_RX_OFFSET_EVENT"; 430 case WMI_VRING_CFG_DONE_EVENTID: 431 return "WMI_VRING_CFG_DONE_EVENT"; 432 case WMI_READY_EVENTID: 433 return "WMI_READY_EVENT"; 434 case WMI_RX_MGMT_PACKET_EVENTID: 435 return "WMI_RX_MGMT_PACKET_EVENT"; 436 case WMI_TX_MGMT_PACKET_EVENTID: 437 return "WMI_TX_MGMT_PACKET_EVENT"; 438 case WMI_SCAN_COMPLETE_EVENTID: 439 return "WMI_SCAN_COMPLETE_EVENT"; 440 case WMI_ACS_PASSIVE_SCAN_COMPLETE_EVENTID: 441 return "WMI_ACS_PASSIVE_SCAN_COMPLETE_EVENT"; 442 case WMI_CONNECT_EVENTID: 443 return "WMI_CONNECT_EVENT"; 444 case WMI_EAPOL_RX_EVENTID: 445 return "WMI_EAPOL_RX_EVENT"; 446 case WMI_BA_STATUS_EVENTID: 447 return "WMI_BA_STATUS_EVENT"; 448 case WMI_RCP_ADDBA_REQ_EVENTID: 449 return "WMI_RCP_ADDBA_REQ_EVENT"; 450 case WMI_DELBA_EVENTID: 451 return "WMI_DELBA_EVENT"; 452 case WMI_VRING_EN_EVENTID: 453 return "WMI_VRING_EN_EVENT"; 454 case WMI_DATA_PORT_OPEN_EVENTID: 455 return "WMI_DATA_PORT_OPEN_EVENT"; 456 case WMI_AOA_MEAS_EVENTID: 457 return "WMI_AOA_MEAS_EVENT"; 458 case WMI_TOF_SESSION_END_EVENTID: 459 return "WMI_TOF_SESSION_END_EVENT"; 460 case WMI_TOF_GET_CAPABILITIES_EVENTID: 461 return "WMI_TOF_GET_CAPABILITIES_EVENT"; 462 case WMI_TOF_SET_LCR_EVENTID: 463 return "WMI_TOF_SET_LCR_EVENT"; 464 case WMI_TOF_SET_LCI_EVENTID: 465 return "WMI_TOF_SET_LCI_EVENT"; 466 case WMI_TOF_FTM_PER_DEST_RES_EVENTID: 467 return "WMI_TOF_FTM_PER_DEST_RES_EVENT"; 468 case WMI_TOF_CHANNEL_INFO_EVENTID: 469 return "WMI_TOF_CHANNEL_INFO_EVENT"; 470 case WMI_TRAFFIC_SUSPEND_EVENTID: 471 return "WMI_TRAFFIC_SUSPEND_EVENT"; 472 case WMI_ECHO_RSP_EVENTID: 473 return "WMI_ECHO_RSP_EVENT"; 474 case WMI_LED_CFG_DONE_EVENTID: 475 return "WMI_LED_CFG_DONE_EVENT"; 476 case WMI_PCP_STARTED_EVENTID: 477 return "WMI_PCP_STARTED_EVENT"; 478 case WMI_PCP_STOPPED_EVENTID: 479 return "WMI_PCP_STOPPED_EVENT"; 480 case WMI_GET_SSID_EVENTID: 481 return "WMI_GET_SSID_EVENT"; 482 case WMI_GET_PCP_CHANNEL_EVENTID: 483 return "WMI_GET_PCP_CHANNEL_EVENT"; 484 case WMI_P2P_CFG_DONE_EVENTID: 485 return "WMI_P2P_CFG_DONE_EVENT"; 486 case WMI_PORT_ALLOCATED_EVENTID: 487 return "WMI_PORT_ALLOCATED_EVENT"; 488 case WMI_PORT_DELETED_EVENTID: 489 return "WMI_PORT_DELETED_EVENT"; 490 case WMI_LISTEN_STARTED_EVENTID: 491 return "WMI_LISTEN_STARTED_EVENT"; 492 case WMI_SEARCH_STARTED_EVENTID: 493 return "WMI_SEARCH_STARTED_EVENT"; 494 case WMI_DISCOVERY_STOPPED_EVENTID: 495 return "WMI_DISCOVERY_STOPPED_EVENT"; 496 case WMI_CFG_RX_CHAIN_DONE_EVENTID: 497 return "WMI_CFG_RX_CHAIN_DONE_EVENT"; 498 case WMI_TEMP_SENSE_DONE_EVENTID: 499 return "WMI_TEMP_SENSE_DONE_EVENT"; 500 case WMI_RCP_ADDBA_RESP_SENT_EVENTID: 501 return "WMI_RCP_ADDBA_RESP_SENT_EVENT"; 502 case WMI_PS_DEV_PROFILE_CFG_EVENTID: 503 return "WMI_PS_DEV_PROFILE_CFG_EVENT"; 504 case WMI_SET_MGMT_RETRY_LIMIT_EVENTID: 505 return "WMI_SET_MGMT_RETRY_LIMIT_EVENT"; 506 case WMI_GET_MGMT_RETRY_LIMIT_EVENTID: 507 return "WMI_GET_MGMT_RETRY_LIMIT_EVENT"; 508 case WMI_SET_THERMAL_THROTTLING_CFG_EVENTID: 509 return "WMI_SET_THERMAL_THROTTLING_CFG_EVENT"; 510 case WMI_GET_THERMAL_THROTTLING_CFG_EVENTID: 511 return "WMI_GET_THERMAL_THROTTLING_CFG_EVENT"; 512 case WMI_LINK_MAINTAIN_CFG_WRITE_DONE_EVENTID: 513 return "WMI_LINK_MAINTAIN_CFG_WRITE_DONE_EVENT"; 514 case WMI_LO_POWER_CALIB_FROM_OTP_EVENTID: 515 return "WMI_LO_POWER_CALIB_FROM_OTP_EVENT"; 516 case WMI_START_SCHED_SCAN_EVENTID: 517 return "WMI_START_SCHED_SCAN_EVENT"; 518 case WMI_STOP_SCHED_SCAN_EVENTID: 519 return "WMI_STOP_SCHED_SCAN_EVENT"; 520 case WMI_SCHED_SCAN_RESULT_EVENTID: 521 return "WMI_SCHED_SCAN_RESULT_EVENT"; 522 default: 523 return "Untracked EVENT"; 524 } 525 } 526 527 static int __wmi_send(struct wil6210_priv *wil, u16 cmdid, u8 mid, 528 void *buf, u16 len) 529 { 530 struct { 531 struct wil6210_mbox_hdr hdr; 532 struct wmi_cmd_hdr wmi; 533 } __packed cmd = { 534 .hdr = { 535 .type = WIL_MBOX_HDR_TYPE_WMI, 536 .flags = 0, 537 .len = cpu_to_le16(sizeof(cmd.wmi) + len), 538 }, 539 .wmi = { 540 .mid = mid, 541 .command_id = cpu_to_le16(cmdid), 542 }, 543 }; 544 struct wil6210_mbox_ring *r = &wil->mbox_ctl.tx; 545 struct wil6210_mbox_ring_desc d_head; 546 u32 next_head; 547 void __iomem *dst; 548 void __iomem *head = wmi_addr(wil, r->head); 549 uint retry; 550 int rc = 0; 551 552 if (len > r->entry_size - sizeof(cmd)) { 553 wil_err(wil, "WMI size too large: %d bytes, max is %d\n", 554 (int)(sizeof(cmd) + len), r->entry_size); 555 return -ERANGE; 556 } 557 558 might_sleep(); 559 560 if (!test_bit(wil_status_fwready, wil->status)) { 561 wil_err(wil, "WMI: cannot send command while FW not ready\n"); 562 return -EAGAIN; 563 } 564 565 /* Allow sending only suspend / resume commands during susepnd flow */ 566 if ((test_bit(wil_status_suspending, wil->status) || 567 test_bit(wil_status_suspended, wil->status) || 568 test_bit(wil_status_resuming, wil->status)) && 569 ((cmdid != WMI_TRAFFIC_SUSPEND_CMDID) && 570 (cmdid != WMI_TRAFFIC_RESUME_CMDID))) { 571 wil_err(wil, "WMI: reject send_command during suspend\n"); 572 return -EINVAL; 573 } 574 575 if (!head) { 576 wil_err(wil, "WMI head is garbage: 0x%08x\n", r->head); 577 return -EINVAL; 578 } 579 580 wil_halp_vote(wil); 581 582 /* read Tx head till it is not busy */ 583 for (retry = 5; retry > 0; retry--) { 584 wil_memcpy_fromio_32(&d_head, head, sizeof(d_head)); 585 if (d_head.sync == 0) 586 break; 587 msleep(20); 588 } 589 if (d_head.sync != 0) { 590 wil_err(wil, "WMI head busy\n"); 591 rc = -EBUSY; 592 goto out; 593 } 594 /* next head */ 595 next_head = r->base + ((r->head - r->base + sizeof(d_head)) % r->size); 596 wil_dbg_wmi(wil, "Head 0x%08x -> 0x%08x\n", r->head, next_head); 597 /* wait till FW finish with previous command */ 598 for (retry = 5; retry > 0; retry--) { 599 if (!test_bit(wil_status_fwready, wil->status)) { 600 wil_err(wil, "WMI: cannot send command while FW not ready\n"); 601 rc = -EAGAIN; 602 goto out; 603 } 604 r->tail = wil_r(wil, RGF_MBOX + 605 offsetof(struct wil6210_mbox_ctl, tx.tail)); 606 if (next_head != r->tail) 607 break; 608 msleep(20); 609 } 610 if (next_head == r->tail) { 611 wil_err(wil, "WMI ring full\n"); 612 rc = -EBUSY; 613 goto out; 614 } 615 dst = wmi_buffer(wil, d_head.addr); 616 if (!dst) { 617 wil_err(wil, "invalid WMI buffer: 0x%08x\n", 618 le32_to_cpu(d_head.addr)); 619 rc = -EAGAIN; 620 goto out; 621 } 622 cmd.hdr.seq = cpu_to_le16(++wil->wmi_seq); 623 /* set command */ 624 wil_dbg_wmi(wil, "sending %s (0x%04x) [%d] mid %d\n", 625 cmdid2name(cmdid), cmdid, len, mid); 626 wil_hex_dump_wmi("Cmd ", DUMP_PREFIX_OFFSET, 16, 1, &cmd, 627 sizeof(cmd), true); 628 wil_hex_dump_wmi("cmd ", DUMP_PREFIX_OFFSET, 16, 1, buf, 629 len, true); 630 wil_memcpy_toio_32(dst, &cmd, sizeof(cmd)); 631 wil_memcpy_toio_32(dst + sizeof(cmd), buf, len); 632 /* mark entry as full */ 633 wil_w(wil, r->head + offsetof(struct wil6210_mbox_ring_desc, sync), 1); 634 /* advance next ptr */ 635 wil_w(wil, RGF_MBOX + offsetof(struct wil6210_mbox_ctl, tx.head), 636 r->head = next_head); 637 638 trace_wil6210_wmi_cmd(&cmd.wmi, buf, len); 639 640 /* interrupt to FW */ 641 wil_w(wil, RGF_USER_USER_ICR + offsetof(struct RGF_ICR, ICS), 642 SW_INT_MBOX); 643 644 out: 645 wil_halp_unvote(wil); 646 return rc; 647 } 648 649 int wmi_send(struct wil6210_priv *wil, u16 cmdid, u8 mid, void *buf, u16 len) 650 { 651 int rc; 652 653 mutex_lock(&wil->wmi_mutex); 654 rc = __wmi_send(wil, cmdid, mid, buf, len); 655 mutex_unlock(&wil->wmi_mutex); 656 657 return rc; 658 } 659 660 /*=== Event handlers ===*/ 661 static void wmi_evt_ready(struct wil6210_vif *vif, int id, void *d, int len) 662 { 663 struct wil6210_priv *wil = vif_to_wil(vif); 664 struct wiphy *wiphy = wil_to_wiphy(wil); 665 struct wmi_ready_event *evt = d; 666 667 wil_info(wil, "FW ver. %s(SW %d); MAC %pM; %d MID's\n", 668 wil->fw_version, le32_to_cpu(evt->sw_version), 669 evt->mac, evt->numof_additional_mids); 670 if (evt->numof_additional_mids + 1 < wil->max_vifs) { 671 wil_err(wil, "FW does not support enough MIDs (need %d)", 672 wil->max_vifs - 1); 673 return; /* FW load will fail after timeout */ 674 } 675 /* ignore MAC address, we already have it from the boot loader */ 676 strlcpy(wiphy->fw_version, wil->fw_version, sizeof(wiphy->fw_version)); 677 678 if (len > offsetof(struct wmi_ready_event, rfc_read_calib_result)) { 679 wil_dbg_wmi(wil, "rfc calibration result %d\n", 680 evt->rfc_read_calib_result); 681 wil->fw_calib_result = evt->rfc_read_calib_result; 682 } 683 wil_set_recovery_state(wil, fw_recovery_idle); 684 set_bit(wil_status_fwready, wil->status); 685 /* let the reset sequence continue */ 686 complete(&wil->wmi_ready); 687 } 688 689 static void wmi_evt_rx_mgmt(struct wil6210_vif *vif, int id, void *d, int len) 690 { 691 struct wil6210_priv *wil = vif_to_wil(vif); 692 struct wmi_rx_mgmt_packet_event *data = d; 693 struct wiphy *wiphy = wil_to_wiphy(wil); 694 struct ieee80211_mgmt *rx_mgmt_frame = 695 (struct ieee80211_mgmt *)data->payload; 696 int flen = len - offsetof(struct wmi_rx_mgmt_packet_event, payload); 697 int ch_no; 698 u32 freq; 699 struct ieee80211_channel *channel; 700 s32 signal; 701 __le16 fc; 702 u32 d_len; 703 u16 d_status; 704 705 if (flen < 0) { 706 wil_err(wil, "MGMT Rx: short event, len %d\n", len); 707 return; 708 } 709 710 d_len = le32_to_cpu(data->info.len); 711 if (d_len != flen) { 712 wil_err(wil, 713 "MGMT Rx: length mismatch, d_len %d should be %d\n", 714 d_len, flen); 715 return; 716 } 717 718 ch_no = data->info.channel + 1; 719 freq = ieee80211_channel_to_frequency(ch_no, NL80211_BAND_60GHZ); 720 channel = ieee80211_get_channel(wiphy, freq); 721 if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities)) 722 signal = 100 * data->info.rssi; 723 else 724 signal = data->info.sqi; 725 d_status = le16_to_cpu(data->info.status); 726 fc = rx_mgmt_frame->frame_control; 727 728 wil_dbg_wmi(wil, "MGMT Rx: channel %d MCS %d RSSI %d SQI %d%%\n", 729 data->info.channel, data->info.mcs, data->info.rssi, 730 data->info.sqi); 731 wil_dbg_wmi(wil, "status 0x%04x len %d fc 0x%04x\n", d_status, d_len, 732 le16_to_cpu(fc)); 733 wil_dbg_wmi(wil, "qid %d mid %d cid %d\n", 734 data->info.qid, data->info.mid, data->info.cid); 735 wil_hex_dump_wmi("MGMT Rx ", DUMP_PREFIX_OFFSET, 16, 1, rx_mgmt_frame, 736 d_len, true); 737 738 if (!channel) { 739 wil_err(wil, "Frame on unsupported channel\n"); 740 return; 741 } 742 743 if (ieee80211_is_beacon(fc) || ieee80211_is_probe_resp(fc)) { 744 struct cfg80211_bss *bss; 745 u64 tsf = le64_to_cpu(rx_mgmt_frame->u.beacon.timestamp); 746 u16 cap = le16_to_cpu(rx_mgmt_frame->u.beacon.capab_info); 747 u16 bi = le16_to_cpu(rx_mgmt_frame->u.beacon.beacon_int); 748 const u8 *ie_buf = rx_mgmt_frame->u.beacon.variable; 749 size_t ie_len = d_len - offsetof(struct ieee80211_mgmt, 750 u.beacon.variable); 751 wil_dbg_wmi(wil, "Capability info : 0x%04x\n", cap); 752 wil_dbg_wmi(wil, "TSF : 0x%016llx\n", tsf); 753 wil_dbg_wmi(wil, "Beacon interval : %d\n", bi); 754 wil_hex_dump_wmi("IE ", DUMP_PREFIX_OFFSET, 16, 1, ie_buf, 755 ie_len, true); 756 757 wil_dbg_wmi(wil, "Capability info : 0x%04x\n", cap); 758 759 bss = cfg80211_inform_bss_frame(wiphy, channel, rx_mgmt_frame, 760 d_len, signal, GFP_KERNEL); 761 if (bss) { 762 wil_dbg_wmi(wil, "Added BSS %pM\n", 763 rx_mgmt_frame->bssid); 764 cfg80211_put_bss(wiphy, bss); 765 } else { 766 wil_err(wil, "cfg80211_inform_bss_frame() failed\n"); 767 } 768 } else { 769 mutex_lock(&wil->vif_mutex); 770 cfg80211_rx_mgmt(vif_to_radio_wdev(wil, vif), freq, signal, 771 (void *)rx_mgmt_frame, d_len, 0); 772 mutex_unlock(&wil->vif_mutex); 773 } 774 } 775 776 static void wmi_evt_tx_mgmt(struct wil6210_vif *vif, int id, void *d, int len) 777 { 778 struct wmi_tx_mgmt_packet_event *data = d; 779 struct ieee80211_mgmt *mgmt_frame = 780 (struct ieee80211_mgmt *)data->payload; 781 int flen = len - offsetof(struct wmi_tx_mgmt_packet_event, payload); 782 783 wil_hex_dump_wmi("MGMT Tx ", DUMP_PREFIX_OFFSET, 16, 1, mgmt_frame, 784 flen, true); 785 } 786 787 static void wmi_evt_scan_complete(struct wil6210_vif *vif, int id, 788 void *d, int len) 789 { 790 struct wil6210_priv *wil = vif_to_wil(vif); 791 792 mutex_lock(&wil->vif_mutex); 793 if (vif->scan_request) { 794 struct wmi_scan_complete_event *data = d; 795 int status = le32_to_cpu(data->status); 796 struct cfg80211_scan_info info = { 797 .aborted = ((status != WMI_SCAN_SUCCESS) && 798 (status != WMI_SCAN_ABORT_REJECTED)), 799 }; 800 801 wil_dbg_wmi(wil, "SCAN_COMPLETE(0x%08x)\n", status); 802 wil_dbg_misc(wil, "Complete scan_request 0x%p aborted %d\n", 803 vif->scan_request, info.aborted); 804 del_timer_sync(&vif->scan_timer); 805 cfg80211_scan_done(vif->scan_request, &info); 806 if (vif->mid == 0) 807 wil->radio_wdev = wil->main_ndev->ieee80211_ptr; 808 vif->scan_request = NULL; 809 wake_up_interruptible(&wil->wq); 810 if (vif->p2p.pending_listen_wdev) { 811 wil_dbg_misc(wil, "Scheduling delayed listen\n"); 812 schedule_work(&vif->p2p.delayed_listen_work); 813 } 814 } else { 815 wil_err(wil, "SCAN_COMPLETE while not scanning\n"); 816 } 817 mutex_unlock(&wil->vif_mutex); 818 } 819 820 static void wmi_evt_connect(struct wil6210_vif *vif, int id, void *d, int len) 821 { 822 struct wil6210_priv *wil = vif_to_wil(vif); 823 struct net_device *ndev = vif_to_ndev(vif); 824 struct wireless_dev *wdev = vif_to_wdev(vif); 825 struct wmi_connect_event *evt = d; 826 int ch; /* channel number */ 827 struct station_info *sinfo; 828 u8 *assoc_req_ie, *assoc_resp_ie; 829 size_t assoc_req_ielen, assoc_resp_ielen; 830 /* capinfo(u16) + listen_interval(u16) + IEs */ 831 const size_t assoc_req_ie_offset = sizeof(u16) * 2; 832 /* capinfo(u16) + status_code(u16) + associd(u16) + IEs */ 833 const size_t assoc_resp_ie_offset = sizeof(u16) * 3; 834 int rc; 835 836 if (len < sizeof(*evt)) { 837 wil_err(wil, "Connect event too short : %d bytes\n", len); 838 return; 839 } 840 if (len != sizeof(*evt) + evt->beacon_ie_len + evt->assoc_req_len + 841 evt->assoc_resp_len) { 842 wil_err(wil, 843 "Connect event corrupted : %d != %d + %d + %d + %d\n", 844 len, (int)sizeof(*evt), evt->beacon_ie_len, 845 evt->assoc_req_len, evt->assoc_resp_len); 846 return; 847 } 848 if (evt->cid >= WIL6210_MAX_CID) { 849 wil_err(wil, "Connect CID invalid : %d\n", evt->cid); 850 return; 851 } 852 853 ch = evt->channel + 1; 854 wil_info(wil, "Connect %pM channel [%d] cid %d aid %d\n", 855 evt->bssid, ch, evt->cid, evt->aid); 856 wil_hex_dump_wmi("connect AI : ", DUMP_PREFIX_OFFSET, 16, 1, 857 evt->assoc_info, len - sizeof(*evt), true); 858 859 /* figure out IE's */ 860 assoc_req_ie = &evt->assoc_info[evt->beacon_ie_len + 861 assoc_req_ie_offset]; 862 assoc_req_ielen = evt->assoc_req_len - assoc_req_ie_offset; 863 if (evt->assoc_req_len <= assoc_req_ie_offset) { 864 assoc_req_ie = NULL; 865 assoc_req_ielen = 0; 866 } 867 868 assoc_resp_ie = &evt->assoc_info[evt->beacon_ie_len + 869 evt->assoc_req_len + 870 assoc_resp_ie_offset]; 871 assoc_resp_ielen = evt->assoc_resp_len - assoc_resp_ie_offset; 872 if (evt->assoc_resp_len <= assoc_resp_ie_offset) { 873 assoc_resp_ie = NULL; 874 assoc_resp_ielen = 0; 875 } 876 877 if (test_bit(wil_status_resetting, wil->status) || 878 !test_bit(wil_status_fwready, wil->status)) { 879 wil_err(wil, "status_resetting, cancel connect event, CID %d\n", 880 evt->cid); 881 /* no need for cleanup, wil_reset will do that */ 882 return; 883 } 884 885 mutex_lock(&wil->mutex); 886 887 if ((wdev->iftype == NL80211_IFTYPE_STATION) || 888 (wdev->iftype == NL80211_IFTYPE_P2P_CLIENT)) { 889 if (!test_bit(wil_vif_fwconnecting, vif->status)) { 890 wil_err(wil, "Not in connecting state\n"); 891 mutex_unlock(&wil->mutex); 892 return; 893 } 894 del_timer_sync(&vif->connect_timer); 895 } else if ((wdev->iftype == NL80211_IFTYPE_AP) || 896 (wdev->iftype == NL80211_IFTYPE_P2P_GO)) { 897 if (wil->sta[evt->cid].status != wil_sta_unused) { 898 wil_err(wil, "AP: Invalid status %d for CID %d\n", 899 wil->sta[evt->cid].status, evt->cid); 900 mutex_unlock(&wil->mutex); 901 return; 902 } 903 } 904 905 ether_addr_copy(wil->sta[evt->cid].addr, evt->bssid); 906 wil->sta[evt->cid].mid = vif->mid; 907 wil->sta[evt->cid].status = wil_sta_conn_pending; 908 909 rc = wil_tx_init(vif, evt->cid); 910 if (rc) { 911 wil_err(wil, "config tx vring failed for CID %d, rc (%d)\n", 912 evt->cid, rc); 913 wmi_disconnect_sta(vif, wil->sta[evt->cid].addr, 914 WLAN_REASON_UNSPECIFIED, false, false); 915 } else { 916 wil_info(wil, "successful connection to CID %d\n", evt->cid); 917 } 918 919 if ((wdev->iftype == NL80211_IFTYPE_STATION) || 920 (wdev->iftype == NL80211_IFTYPE_P2P_CLIENT)) { 921 if (rc) { 922 netif_carrier_off(ndev); 923 wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS); 924 wil_err(wil, "cfg80211_connect_result with failure\n"); 925 cfg80211_connect_result(ndev, evt->bssid, NULL, 0, 926 NULL, 0, 927 WLAN_STATUS_UNSPECIFIED_FAILURE, 928 GFP_KERNEL); 929 goto out; 930 } else { 931 struct wiphy *wiphy = wil_to_wiphy(wil); 932 933 cfg80211_ref_bss(wiphy, vif->bss); 934 cfg80211_connect_bss(ndev, evt->bssid, vif->bss, 935 assoc_req_ie, assoc_req_ielen, 936 assoc_resp_ie, assoc_resp_ielen, 937 WLAN_STATUS_SUCCESS, GFP_KERNEL, 938 NL80211_TIMEOUT_UNSPECIFIED); 939 } 940 vif->bss = NULL; 941 } else if ((wdev->iftype == NL80211_IFTYPE_AP) || 942 (wdev->iftype == NL80211_IFTYPE_P2P_GO)) { 943 944 if (rc) { 945 if (disable_ap_sme) 946 /* notify new_sta has failed */ 947 cfg80211_del_sta(ndev, evt->bssid, GFP_KERNEL); 948 goto out; 949 } 950 951 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL); 952 if (!sinfo) { 953 rc = -ENOMEM; 954 goto out; 955 } 956 957 sinfo->generation = wil->sinfo_gen++; 958 959 if (assoc_req_ie) { 960 sinfo->assoc_req_ies = assoc_req_ie; 961 sinfo->assoc_req_ies_len = assoc_req_ielen; 962 } 963 964 cfg80211_new_sta(ndev, evt->bssid, sinfo, GFP_KERNEL); 965 966 kfree(sinfo); 967 } else { 968 wil_err(wil, "unhandled iftype %d for CID %d\n", wdev->iftype, 969 evt->cid); 970 goto out; 971 } 972 973 wil->sta[evt->cid].status = wil_sta_connected; 974 wil->sta[evt->cid].aid = evt->aid; 975 if (!test_and_set_bit(wil_vif_fwconnected, vif->status)) 976 atomic_inc(&wil->connected_vifs); 977 wil_update_net_queues_bh(wil, vif, NULL, false); 978 979 out: 980 if (rc) { 981 wil->sta[evt->cid].status = wil_sta_unused; 982 wil->sta[evt->cid].mid = U8_MAX; 983 } 984 clear_bit(wil_vif_fwconnecting, vif->status); 985 mutex_unlock(&wil->mutex); 986 } 987 988 static void wmi_evt_disconnect(struct wil6210_vif *vif, int id, 989 void *d, int len) 990 { 991 struct wil6210_priv *wil = vif_to_wil(vif); 992 struct wmi_disconnect_event *evt = d; 993 u16 reason_code = le16_to_cpu(evt->protocol_reason_status); 994 995 wil_info(wil, "Disconnect %pM reason [proto %d wmi %d]\n", 996 evt->bssid, reason_code, evt->disconnect_reason); 997 998 wil->sinfo_gen++; 999 1000 if (test_bit(wil_status_resetting, wil->status) || 1001 !test_bit(wil_status_fwready, wil->status)) { 1002 wil_err(wil, "status_resetting, cancel disconnect event\n"); 1003 /* no need for cleanup, wil_reset will do that */ 1004 return; 1005 } 1006 1007 mutex_lock(&wil->mutex); 1008 wil6210_disconnect(vif, evt->bssid, reason_code, true); 1009 mutex_unlock(&wil->mutex); 1010 } 1011 1012 /* 1013 * Firmware reports EAPOL frame using WME event. 1014 * Reconstruct Ethernet frame and deliver it via normal Rx 1015 */ 1016 static void wmi_evt_eapol_rx(struct wil6210_vif *vif, int id, void *d, int len) 1017 { 1018 struct wil6210_priv *wil = vif_to_wil(vif); 1019 struct net_device *ndev = vif_to_ndev(vif); 1020 struct wmi_eapol_rx_event *evt = d; 1021 u16 eapol_len = le16_to_cpu(evt->eapol_len); 1022 int sz = eapol_len + ETH_HLEN; 1023 struct sk_buff *skb; 1024 struct ethhdr *eth; 1025 int cid; 1026 struct wil_net_stats *stats = NULL; 1027 1028 wil_dbg_wmi(wil, "EAPOL len %d from %pM MID %d\n", eapol_len, 1029 evt->src_mac, vif->mid); 1030 1031 cid = wil_find_cid(wil, vif->mid, evt->src_mac); 1032 if (cid >= 0) 1033 stats = &wil->sta[cid].stats; 1034 1035 if (eapol_len > 196) { /* TODO: revisit size limit */ 1036 wil_err(wil, "EAPOL too large\n"); 1037 return; 1038 } 1039 1040 skb = alloc_skb(sz, GFP_KERNEL); 1041 if (!skb) { 1042 wil_err(wil, "Failed to allocate skb\n"); 1043 return; 1044 } 1045 1046 eth = skb_put(skb, ETH_HLEN); 1047 ether_addr_copy(eth->h_dest, ndev->dev_addr); 1048 ether_addr_copy(eth->h_source, evt->src_mac); 1049 eth->h_proto = cpu_to_be16(ETH_P_PAE); 1050 skb_put_data(skb, evt->eapol, eapol_len); 1051 skb->protocol = eth_type_trans(skb, ndev); 1052 if (likely(netif_rx_ni(skb) == NET_RX_SUCCESS)) { 1053 ndev->stats.rx_packets++; 1054 ndev->stats.rx_bytes += sz; 1055 if (stats) { 1056 stats->rx_packets++; 1057 stats->rx_bytes += sz; 1058 } 1059 } else { 1060 ndev->stats.rx_dropped++; 1061 if (stats) 1062 stats->rx_dropped++; 1063 } 1064 } 1065 1066 static void wmi_evt_vring_en(struct wil6210_vif *vif, int id, void *d, int len) 1067 { 1068 struct wil6210_priv *wil = vif_to_wil(vif); 1069 struct wmi_vring_en_event *evt = d; 1070 u8 vri = evt->vring_index; 1071 struct wireless_dev *wdev = vif_to_wdev(vif); 1072 1073 wil_dbg_wmi(wil, "Enable vring %d MID %d\n", vri, vif->mid); 1074 1075 if (vri >= ARRAY_SIZE(wil->vring_tx)) { 1076 wil_err(wil, "Enable for invalid vring %d\n", vri); 1077 return; 1078 } 1079 1080 if (wdev->iftype != NL80211_IFTYPE_AP || !disable_ap_sme) 1081 /* in AP mode with disable_ap_sme, this is done by 1082 * wil_cfg80211_change_station() 1083 */ 1084 wil->vring_tx_data[vri].dot1x_open = true; 1085 if (vri == vif->bcast_vring) /* no BA for bcast */ 1086 return; 1087 if (agg_wsize >= 0) 1088 wil_addba_tx_request(wil, vri, agg_wsize); 1089 } 1090 1091 static void wmi_evt_ba_status(struct wil6210_vif *vif, int id, 1092 void *d, int len) 1093 { 1094 struct wil6210_priv *wil = vif_to_wil(vif); 1095 struct wmi_ba_status_event *evt = d; 1096 struct vring_tx_data *txdata; 1097 1098 wil_dbg_wmi(wil, "BACK[%d] %s {%d} timeout %d AMSDU%s\n", 1099 evt->ringid, 1100 evt->status == WMI_BA_AGREED ? "OK" : "N/A", 1101 evt->agg_wsize, __le16_to_cpu(evt->ba_timeout), 1102 evt->amsdu ? "+" : "-"); 1103 1104 if (evt->ringid >= WIL6210_MAX_TX_RINGS) { 1105 wil_err(wil, "invalid ring id %d\n", evt->ringid); 1106 return; 1107 } 1108 1109 if (evt->status != WMI_BA_AGREED) { 1110 evt->ba_timeout = 0; 1111 evt->agg_wsize = 0; 1112 evt->amsdu = 0; 1113 } 1114 1115 txdata = &wil->vring_tx_data[evt->ringid]; 1116 1117 txdata->agg_timeout = le16_to_cpu(evt->ba_timeout); 1118 txdata->agg_wsize = evt->agg_wsize; 1119 txdata->agg_amsdu = evt->amsdu; 1120 txdata->addba_in_progress = false; 1121 } 1122 1123 static void wmi_evt_addba_rx_req(struct wil6210_vif *vif, int id, 1124 void *d, int len) 1125 { 1126 struct wil6210_priv *wil = vif_to_wil(vif); 1127 struct wmi_rcp_addba_req_event *evt = d; 1128 1129 wil_addba_rx_request(wil, vif->mid, evt->cidxtid, evt->dialog_token, 1130 evt->ba_param_set, evt->ba_timeout, 1131 evt->ba_seq_ctrl); 1132 } 1133 1134 static void wmi_evt_delba(struct wil6210_vif *vif, int id, void *d, int len) 1135 __acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock) 1136 { 1137 struct wil6210_priv *wil = vif_to_wil(vif); 1138 struct wmi_delba_event *evt = d; 1139 u8 cid, tid; 1140 u16 reason = __le16_to_cpu(evt->reason); 1141 struct wil_sta_info *sta; 1142 struct wil_tid_ampdu_rx *r; 1143 1144 might_sleep(); 1145 parse_cidxtid(evt->cidxtid, &cid, &tid); 1146 wil_dbg_wmi(wil, "DELBA MID %d CID %d TID %d from %s reason %d\n", 1147 vif->mid, cid, tid, 1148 evt->from_initiator ? "originator" : "recipient", 1149 reason); 1150 if (!evt->from_initiator) { 1151 int i; 1152 /* find Tx vring it belongs to */ 1153 for (i = 0; i < ARRAY_SIZE(wil->vring2cid_tid); i++) { 1154 if ((wil->vring2cid_tid[i][0] == cid) && 1155 (wil->vring2cid_tid[i][1] == tid)) { 1156 struct vring_tx_data *txdata = 1157 &wil->vring_tx_data[i]; 1158 1159 wil_dbg_wmi(wil, "DELBA Tx vring %d\n", i); 1160 txdata->agg_timeout = 0; 1161 txdata->agg_wsize = 0; 1162 txdata->addba_in_progress = false; 1163 1164 break; /* max. 1 matching ring */ 1165 } 1166 } 1167 if (i >= ARRAY_SIZE(wil->vring2cid_tid)) 1168 wil_err(wil, "DELBA: unable to find Tx vring\n"); 1169 return; 1170 } 1171 1172 sta = &wil->sta[cid]; 1173 1174 spin_lock_bh(&sta->tid_rx_lock); 1175 1176 r = sta->tid_rx[tid]; 1177 sta->tid_rx[tid] = NULL; 1178 wil_tid_ampdu_rx_free(wil, r); 1179 1180 spin_unlock_bh(&sta->tid_rx_lock); 1181 } 1182 1183 static void 1184 wmi_evt_sched_scan_result(struct wil6210_vif *vif, int id, void *d, int len) 1185 { 1186 struct wil6210_priv *wil = vif_to_wil(vif); 1187 struct wmi_sched_scan_result_event *data = d; 1188 struct wiphy *wiphy = wil_to_wiphy(wil); 1189 struct ieee80211_mgmt *rx_mgmt_frame = 1190 (struct ieee80211_mgmt *)data->payload; 1191 int flen = len - offsetof(struct wmi_sched_scan_result_event, payload); 1192 int ch_no; 1193 u32 freq; 1194 struct ieee80211_channel *channel; 1195 s32 signal; 1196 __le16 fc; 1197 u32 d_len; 1198 struct cfg80211_bss *bss; 1199 1200 if (flen < 0) { 1201 wil_err(wil, "sched scan result event too short, len %d\n", 1202 len); 1203 return; 1204 } 1205 1206 d_len = le32_to_cpu(data->info.len); 1207 if (d_len != flen) { 1208 wil_err(wil, 1209 "sched scan result length mismatch, d_len %d should be %d\n", 1210 d_len, flen); 1211 return; 1212 } 1213 1214 fc = rx_mgmt_frame->frame_control; 1215 if (!ieee80211_is_probe_resp(fc)) { 1216 wil_err(wil, "sched scan result invalid frame, fc 0x%04x\n", 1217 fc); 1218 return; 1219 } 1220 1221 ch_no = data->info.channel + 1; 1222 freq = ieee80211_channel_to_frequency(ch_no, NL80211_BAND_60GHZ); 1223 channel = ieee80211_get_channel(wiphy, freq); 1224 if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities)) 1225 signal = 100 * data->info.rssi; 1226 else 1227 signal = data->info.sqi; 1228 1229 wil_dbg_wmi(wil, "sched scan result: channel %d MCS %d RSSI %d\n", 1230 data->info.channel, data->info.mcs, data->info.rssi); 1231 wil_dbg_wmi(wil, "len %d qid %d mid %d cid %d\n", 1232 d_len, data->info.qid, data->info.mid, data->info.cid); 1233 wil_hex_dump_wmi("PROBE ", DUMP_PREFIX_OFFSET, 16, 1, rx_mgmt_frame, 1234 d_len, true); 1235 1236 if (!channel) { 1237 wil_err(wil, "Frame on unsupported channel\n"); 1238 return; 1239 } 1240 1241 bss = cfg80211_inform_bss_frame(wiphy, channel, rx_mgmt_frame, 1242 d_len, signal, GFP_KERNEL); 1243 if (bss) { 1244 wil_dbg_wmi(wil, "Added BSS %pM\n", rx_mgmt_frame->bssid); 1245 cfg80211_put_bss(wiphy, bss); 1246 } else { 1247 wil_err(wil, "cfg80211_inform_bss_frame() failed\n"); 1248 } 1249 1250 cfg80211_sched_scan_results(wiphy, 0); 1251 } 1252 1253 /** 1254 * Some events are ignored for purpose; and need not be interpreted as 1255 * "unhandled events" 1256 */ 1257 static void wmi_evt_ignore(struct wil6210_vif *vif, int id, void *d, int len) 1258 { 1259 struct wil6210_priv *wil = vif_to_wil(vif); 1260 1261 wil_dbg_wmi(wil, "Ignore event 0x%04x len %d\n", id, len); 1262 } 1263 1264 static const struct { 1265 int eventid; 1266 void (*handler)(struct wil6210_vif *vif, 1267 int eventid, void *data, int data_len); 1268 } wmi_evt_handlers[] = { 1269 {WMI_READY_EVENTID, wmi_evt_ready}, 1270 {WMI_FW_READY_EVENTID, wmi_evt_ignore}, 1271 {WMI_RX_MGMT_PACKET_EVENTID, wmi_evt_rx_mgmt}, 1272 {WMI_TX_MGMT_PACKET_EVENTID, wmi_evt_tx_mgmt}, 1273 {WMI_SCAN_COMPLETE_EVENTID, wmi_evt_scan_complete}, 1274 {WMI_CONNECT_EVENTID, wmi_evt_connect}, 1275 {WMI_DISCONNECT_EVENTID, wmi_evt_disconnect}, 1276 {WMI_EAPOL_RX_EVENTID, wmi_evt_eapol_rx}, 1277 {WMI_BA_STATUS_EVENTID, wmi_evt_ba_status}, 1278 {WMI_RCP_ADDBA_REQ_EVENTID, wmi_evt_addba_rx_req}, 1279 {WMI_DELBA_EVENTID, wmi_evt_delba}, 1280 {WMI_VRING_EN_EVENTID, wmi_evt_vring_en}, 1281 {WMI_DATA_PORT_OPEN_EVENTID, wmi_evt_ignore}, 1282 {WMI_SCHED_SCAN_RESULT_EVENTID, wmi_evt_sched_scan_result}, 1283 }; 1284 1285 /* 1286 * Run in IRQ context 1287 * Extract WMI command from mailbox. Queue it to the @wil->pending_wmi_ev 1288 * that will be eventually handled by the @wmi_event_worker in the thread 1289 * context of thread "wil6210_wmi" 1290 */ 1291 void wmi_recv_cmd(struct wil6210_priv *wil) 1292 { 1293 struct wil6210_mbox_ring_desc d_tail; 1294 struct wil6210_mbox_hdr hdr; 1295 struct wil6210_mbox_ring *r = &wil->mbox_ctl.rx; 1296 struct pending_wmi_event *evt; 1297 u8 *cmd; 1298 void __iomem *src; 1299 ulong flags; 1300 unsigned n; 1301 unsigned int num_immed_reply = 0; 1302 1303 if (!test_bit(wil_status_mbox_ready, wil->status)) { 1304 wil_err(wil, "Reset in progress. Cannot handle WMI event\n"); 1305 return; 1306 } 1307 1308 if (test_bit(wil_status_suspended, wil->status)) { 1309 wil_err(wil, "suspended. cannot handle WMI event\n"); 1310 return; 1311 } 1312 1313 for (n = 0;; n++) { 1314 u16 len; 1315 bool q; 1316 bool immed_reply = false; 1317 1318 r->head = wil_r(wil, RGF_MBOX + 1319 offsetof(struct wil6210_mbox_ctl, rx.head)); 1320 if (r->tail == r->head) 1321 break; 1322 1323 wil_dbg_wmi(wil, "Mbox head %08x tail %08x\n", 1324 r->head, r->tail); 1325 /* read cmd descriptor from tail */ 1326 wil_memcpy_fromio_32(&d_tail, wil->csr + HOSTADDR(r->tail), 1327 sizeof(struct wil6210_mbox_ring_desc)); 1328 if (d_tail.sync == 0) { 1329 wil_err(wil, "Mbox evt not owned by FW?\n"); 1330 break; 1331 } 1332 1333 /* read cmd header from descriptor */ 1334 if (0 != wmi_read_hdr(wil, d_tail.addr, &hdr)) { 1335 wil_err(wil, "Mbox evt at 0x%08x?\n", 1336 le32_to_cpu(d_tail.addr)); 1337 break; 1338 } 1339 len = le16_to_cpu(hdr.len); 1340 wil_dbg_wmi(wil, "Mbox evt %04x %04x %04x %02x\n", 1341 le16_to_cpu(hdr.seq), len, le16_to_cpu(hdr.type), 1342 hdr.flags); 1343 1344 /* read cmd buffer from descriptor */ 1345 src = wmi_buffer(wil, d_tail.addr) + 1346 sizeof(struct wil6210_mbox_hdr); 1347 evt = kmalloc(ALIGN(offsetof(struct pending_wmi_event, 1348 event.wmi) + len, 4), 1349 GFP_KERNEL); 1350 if (!evt) 1351 break; 1352 1353 evt->event.hdr = hdr; 1354 cmd = (void *)&evt->event.wmi; 1355 wil_memcpy_fromio_32(cmd, src, len); 1356 /* mark entry as empty */ 1357 wil_w(wil, r->tail + 1358 offsetof(struct wil6210_mbox_ring_desc, sync), 0); 1359 /* indicate */ 1360 if ((hdr.type == WIL_MBOX_HDR_TYPE_WMI) && 1361 (len >= sizeof(struct wmi_cmd_hdr))) { 1362 struct wmi_cmd_hdr *wmi = &evt->event.wmi; 1363 u16 id = le16_to_cpu(wmi->command_id); 1364 u8 mid = wmi->mid; 1365 u32 tstamp = le32_to_cpu(wmi->fw_timestamp); 1366 if (test_bit(wil_status_resuming, wil->status)) { 1367 if (id == WMI_TRAFFIC_RESUME_EVENTID) 1368 clear_bit(wil_status_resuming, 1369 wil->status); 1370 else 1371 wil_err(wil, 1372 "WMI evt %d while resuming\n", 1373 id); 1374 } 1375 spin_lock_irqsave(&wil->wmi_ev_lock, flags); 1376 if (wil->reply_id && wil->reply_id == id && 1377 wil->reply_mid == mid) { 1378 if (wil->reply_buf) { 1379 memcpy(wil->reply_buf, wmi, 1380 min(len, wil->reply_size)); 1381 immed_reply = true; 1382 } 1383 if (id == WMI_TRAFFIC_SUSPEND_EVENTID) { 1384 wil_dbg_wmi(wil, 1385 "set suspend_resp_rcvd\n"); 1386 wil->suspend_resp_rcvd = true; 1387 } 1388 } 1389 spin_unlock_irqrestore(&wil->wmi_ev_lock, flags); 1390 1391 wil_dbg_wmi(wil, "recv %s (0x%04x) MID %d @%d msec\n", 1392 eventid2name(id), id, wmi->mid, tstamp); 1393 trace_wil6210_wmi_event(wmi, &wmi[1], 1394 len - sizeof(*wmi)); 1395 } 1396 wil_hex_dump_wmi("evt ", DUMP_PREFIX_OFFSET, 16, 1, 1397 &evt->event.hdr, sizeof(hdr) + len, true); 1398 1399 /* advance tail */ 1400 r->tail = r->base + ((r->tail - r->base + 1401 sizeof(struct wil6210_mbox_ring_desc)) % r->size); 1402 wil_w(wil, RGF_MBOX + 1403 offsetof(struct wil6210_mbox_ctl, rx.tail), r->tail); 1404 1405 if (immed_reply) { 1406 wil_dbg_wmi(wil, "recv_cmd: Complete WMI 0x%04x\n", 1407 wil->reply_id); 1408 kfree(evt); 1409 num_immed_reply++; 1410 complete(&wil->wmi_call); 1411 } else { 1412 /* add to the pending list */ 1413 spin_lock_irqsave(&wil->wmi_ev_lock, flags); 1414 list_add_tail(&evt->list, &wil->pending_wmi_ev); 1415 spin_unlock_irqrestore(&wil->wmi_ev_lock, flags); 1416 q = queue_work(wil->wmi_wq, &wil->wmi_event_worker); 1417 wil_dbg_wmi(wil, "queue_work -> %d\n", q); 1418 } 1419 } 1420 /* normally, 1 event per IRQ should be processed */ 1421 wil_dbg_wmi(wil, "recv_cmd: -> %d events queued, %d completed\n", 1422 n - num_immed_reply, num_immed_reply); 1423 } 1424 1425 int wmi_call(struct wil6210_priv *wil, u16 cmdid, u8 mid, void *buf, u16 len, 1426 u16 reply_id, void *reply, u16 reply_size, int to_msec) 1427 { 1428 int rc; 1429 unsigned long remain; 1430 1431 mutex_lock(&wil->wmi_mutex); 1432 1433 spin_lock(&wil->wmi_ev_lock); 1434 wil->reply_id = reply_id; 1435 wil->reply_mid = mid; 1436 wil->reply_buf = reply; 1437 wil->reply_size = reply_size; 1438 reinit_completion(&wil->wmi_call); 1439 spin_unlock(&wil->wmi_ev_lock); 1440 1441 rc = __wmi_send(wil, cmdid, mid, buf, len); 1442 if (rc) 1443 goto out; 1444 1445 remain = wait_for_completion_timeout(&wil->wmi_call, 1446 msecs_to_jiffies(to_msec)); 1447 if (0 == remain) { 1448 wil_err(wil, "wmi_call(0x%04x->0x%04x) timeout %d msec\n", 1449 cmdid, reply_id, to_msec); 1450 rc = -ETIME; 1451 } else { 1452 wil_dbg_wmi(wil, 1453 "wmi_call(0x%04x->0x%04x) completed in %d msec\n", 1454 cmdid, reply_id, 1455 to_msec - jiffies_to_msecs(remain)); 1456 } 1457 1458 out: 1459 spin_lock(&wil->wmi_ev_lock); 1460 wil->reply_id = 0; 1461 wil->reply_mid = U8_MAX; 1462 wil->reply_buf = NULL; 1463 wil->reply_size = 0; 1464 spin_unlock(&wil->wmi_ev_lock); 1465 1466 mutex_unlock(&wil->wmi_mutex); 1467 1468 return rc; 1469 } 1470 1471 int wmi_echo(struct wil6210_priv *wil) 1472 { 1473 struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); 1474 struct wmi_echo_cmd cmd = { 1475 .value = cpu_to_le32(0x12345678), 1476 }; 1477 1478 return wmi_call(wil, WMI_ECHO_CMDID, vif->mid, &cmd, sizeof(cmd), 1479 WMI_ECHO_RSP_EVENTID, NULL, 0, 50); 1480 } 1481 1482 int wmi_set_mac_address(struct wil6210_priv *wil, void *addr) 1483 { 1484 struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); 1485 struct wmi_set_mac_address_cmd cmd; 1486 1487 ether_addr_copy(cmd.mac, addr); 1488 1489 wil_dbg_wmi(wil, "Set MAC %pM\n", addr); 1490 1491 return wmi_send(wil, WMI_SET_MAC_ADDRESS_CMDID, vif->mid, 1492 &cmd, sizeof(cmd)); 1493 } 1494 1495 int wmi_led_cfg(struct wil6210_priv *wil, bool enable) 1496 { 1497 struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); 1498 int rc = 0; 1499 struct wmi_led_cfg_cmd cmd = { 1500 .led_mode = enable, 1501 .id = led_id, 1502 .slow_blink_cfg.blink_on = 1503 cpu_to_le32(led_blink_time[WIL_LED_TIME_SLOW].on_ms), 1504 .slow_blink_cfg.blink_off = 1505 cpu_to_le32(led_blink_time[WIL_LED_TIME_SLOW].off_ms), 1506 .medium_blink_cfg.blink_on = 1507 cpu_to_le32(led_blink_time[WIL_LED_TIME_MED].on_ms), 1508 .medium_blink_cfg.blink_off = 1509 cpu_to_le32(led_blink_time[WIL_LED_TIME_MED].off_ms), 1510 .fast_blink_cfg.blink_on = 1511 cpu_to_le32(led_blink_time[WIL_LED_TIME_FAST].on_ms), 1512 .fast_blink_cfg.blink_off = 1513 cpu_to_le32(led_blink_time[WIL_LED_TIME_FAST].off_ms), 1514 .led_polarity = led_polarity, 1515 }; 1516 struct { 1517 struct wmi_cmd_hdr wmi; 1518 struct wmi_led_cfg_done_event evt; 1519 } __packed reply = { 1520 .evt = {.status = cpu_to_le32(WMI_FW_STATUS_FAILURE)}, 1521 }; 1522 1523 if (led_id == WIL_LED_INVALID_ID) 1524 goto out; 1525 1526 if (led_id > WIL_LED_MAX_ID) { 1527 wil_err(wil, "Invalid led id %d\n", led_id); 1528 rc = -EINVAL; 1529 goto out; 1530 } 1531 1532 wil_dbg_wmi(wil, 1533 "%s led %d\n", 1534 enable ? "enabling" : "disabling", led_id); 1535 1536 rc = wmi_call(wil, WMI_LED_CFG_CMDID, vif->mid, &cmd, sizeof(cmd), 1537 WMI_LED_CFG_DONE_EVENTID, &reply, sizeof(reply), 1538 100); 1539 if (rc) 1540 goto out; 1541 1542 if (reply.evt.status) { 1543 wil_err(wil, "led %d cfg failed with status %d\n", 1544 led_id, le32_to_cpu(reply.evt.status)); 1545 rc = -EINVAL; 1546 } 1547 1548 out: 1549 return rc; 1550 } 1551 1552 int wmi_pcp_start(struct wil6210_vif *vif, 1553 int bi, u8 wmi_nettype, u8 chan, u8 hidden_ssid, u8 is_go) 1554 { 1555 struct wil6210_priv *wil = vif_to_wil(vif); 1556 int rc; 1557 1558 struct wmi_pcp_start_cmd cmd = { 1559 .bcon_interval = cpu_to_le16(bi), 1560 .network_type = wmi_nettype, 1561 .disable_sec_offload = 1, 1562 .channel = chan - 1, 1563 .pcp_max_assoc_sta = max_assoc_sta, 1564 .hidden_ssid = hidden_ssid, 1565 .is_go = is_go, 1566 .ap_sme_offload_mode = disable_ap_sme ? 1567 WMI_AP_SME_OFFLOAD_PARTIAL : 1568 WMI_AP_SME_OFFLOAD_FULL, 1569 .abft_len = wil->abft_len, 1570 }; 1571 struct { 1572 struct wmi_cmd_hdr wmi; 1573 struct wmi_pcp_started_event evt; 1574 } __packed reply = { 1575 .evt = {.status = WMI_FW_STATUS_FAILURE}, 1576 }; 1577 1578 if (!vif->privacy) 1579 cmd.disable_sec = 1; 1580 1581 if ((cmd.pcp_max_assoc_sta > WIL6210_MAX_CID) || 1582 (cmd.pcp_max_assoc_sta <= 0)) { 1583 wil_info(wil, 1584 "Requested connection limit %u, valid values are 1 - %d. Setting to %d\n", 1585 max_assoc_sta, WIL6210_MAX_CID, WIL6210_MAX_CID); 1586 cmd.pcp_max_assoc_sta = WIL6210_MAX_CID; 1587 } 1588 1589 if (disable_ap_sme && 1590 !test_bit(WMI_FW_CAPABILITY_AP_SME_OFFLOAD_PARTIAL, 1591 wil->fw_capabilities)) { 1592 wil_err(wil, "disable_ap_sme not supported by FW\n"); 1593 return -EOPNOTSUPP; 1594 } 1595 1596 /* 1597 * Processing time may be huge, in case of secure AP it takes about 1598 * 3500ms for FW to start AP 1599 */ 1600 rc = wmi_call(wil, WMI_PCP_START_CMDID, vif->mid, &cmd, sizeof(cmd), 1601 WMI_PCP_STARTED_EVENTID, &reply, sizeof(reply), 5000); 1602 if (rc) 1603 return rc; 1604 1605 if (reply.evt.status != WMI_FW_STATUS_SUCCESS) 1606 rc = -EINVAL; 1607 1608 if (wmi_nettype != WMI_NETTYPE_P2P) 1609 /* Don't fail due to error in the led configuration */ 1610 wmi_led_cfg(wil, true); 1611 1612 return rc; 1613 } 1614 1615 int wmi_pcp_stop(struct wil6210_vif *vif) 1616 { 1617 struct wil6210_priv *wil = vif_to_wil(vif); 1618 int rc; 1619 1620 rc = wmi_led_cfg(wil, false); 1621 if (rc) 1622 return rc; 1623 1624 return wmi_call(wil, WMI_PCP_STOP_CMDID, vif->mid, NULL, 0, 1625 WMI_PCP_STOPPED_EVENTID, NULL, 0, 20); 1626 } 1627 1628 int wmi_set_ssid(struct wil6210_vif *vif, u8 ssid_len, const void *ssid) 1629 { 1630 struct wil6210_priv *wil = vif_to_wil(vif); 1631 struct wmi_set_ssid_cmd cmd = { 1632 .ssid_len = cpu_to_le32(ssid_len), 1633 }; 1634 1635 if (ssid_len > sizeof(cmd.ssid)) 1636 return -EINVAL; 1637 1638 memcpy(cmd.ssid, ssid, ssid_len); 1639 1640 return wmi_send(wil, WMI_SET_SSID_CMDID, vif->mid, &cmd, sizeof(cmd)); 1641 } 1642 1643 int wmi_get_ssid(struct wil6210_vif *vif, u8 *ssid_len, void *ssid) 1644 { 1645 struct wil6210_priv *wil = vif_to_wil(vif); 1646 int rc; 1647 struct { 1648 struct wmi_cmd_hdr wmi; 1649 struct wmi_set_ssid_cmd cmd; 1650 } __packed reply; 1651 int len; /* reply.cmd.ssid_len in CPU order */ 1652 1653 memset(&reply, 0, sizeof(reply)); 1654 1655 rc = wmi_call(wil, WMI_GET_SSID_CMDID, vif->mid, NULL, 0, 1656 WMI_GET_SSID_EVENTID, &reply, sizeof(reply), 20); 1657 if (rc) 1658 return rc; 1659 1660 len = le32_to_cpu(reply.cmd.ssid_len); 1661 if (len > sizeof(reply.cmd.ssid)) 1662 return -EINVAL; 1663 1664 *ssid_len = len; 1665 memcpy(ssid, reply.cmd.ssid, len); 1666 1667 return 0; 1668 } 1669 1670 int wmi_set_channel(struct wil6210_priv *wil, int channel) 1671 { 1672 struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); 1673 struct wmi_set_pcp_channel_cmd cmd = { 1674 .channel = channel - 1, 1675 }; 1676 1677 return wmi_send(wil, WMI_SET_PCP_CHANNEL_CMDID, vif->mid, 1678 &cmd, sizeof(cmd)); 1679 } 1680 1681 int wmi_get_channel(struct wil6210_priv *wil, int *channel) 1682 { 1683 struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); 1684 int rc; 1685 struct { 1686 struct wmi_cmd_hdr wmi; 1687 struct wmi_set_pcp_channel_cmd cmd; 1688 } __packed reply; 1689 1690 memset(&reply, 0, sizeof(reply)); 1691 1692 rc = wmi_call(wil, WMI_GET_PCP_CHANNEL_CMDID, vif->mid, NULL, 0, 1693 WMI_GET_PCP_CHANNEL_EVENTID, &reply, sizeof(reply), 20); 1694 if (rc) 1695 return rc; 1696 1697 if (reply.cmd.channel > 3) 1698 return -EINVAL; 1699 1700 *channel = reply.cmd.channel + 1; 1701 1702 return 0; 1703 } 1704 1705 int wmi_p2p_cfg(struct wil6210_vif *vif, int channel, int bi) 1706 { 1707 struct wil6210_priv *wil = vif_to_wil(vif); 1708 int rc; 1709 struct wmi_p2p_cfg_cmd cmd = { 1710 .discovery_mode = WMI_DISCOVERY_MODE_PEER2PEER, 1711 .bcon_interval = cpu_to_le16(bi), 1712 .channel = channel - 1, 1713 }; 1714 struct { 1715 struct wmi_cmd_hdr wmi; 1716 struct wmi_p2p_cfg_done_event evt; 1717 } __packed reply = { 1718 .evt = {.status = WMI_FW_STATUS_FAILURE}, 1719 }; 1720 1721 wil_dbg_wmi(wil, "sending WMI_P2P_CFG_CMDID\n"); 1722 1723 rc = wmi_call(wil, WMI_P2P_CFG_CMDID, vif->mid, &cmd, sizeof(cmd), 1724 WMI_P2P_CFG_DONE_EVENTID, &reply, sizeof(reply), 300); 1725 if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) { 1726 wil_err(wil, "P2P_CFG failed. status %d\n", reply.evt.status); 1727 rc = -EINVAL; 1728 } 1729 1730 return rc; 1731 } 1732 1733 int wmi_start_listen(struct wil6210_vif *vif) 1734 { 1735 struct wil6210_priv *wil = vif_to_wil(vif); 1736 int rc; 1737 struct { 1738 struct wmi_cmd_hdr wmi; 1739 struct wmi_listen_started_event evt; 1740 } __packed reply = { 1741 .evt = {.status = WMI_FW_STATUS_FAILURE}, 1742 }; 1743 1744 wil_dbg_wmi(wil, "sending WMI_START_LISTEN_CMDID\n"); 1745 1746 rc = wmi_call(wil, WMI_START_LISTEN_CMDID, vif->mid, NULL, 0, 1747 WMI_LISTEN_STARTED_EVENTID, &reply, sizeof(reply), 300); 1748 if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) { 1749 wil_err(wil, "device failed to start listen. status %d\n", 1750 reply.evt.status); 1751 rc = -EINVAL; 1752 } 1753 1754 return rc; 1755 } 1756 1757 int wmi_start_search(struct wil6210_vif *vif) 1758 { 1759 struct wil6210_priv *wil = vif_to_wil(vif); 1760 int rc; 1761 struct { 1762 struct wmi_cmd_hdr wmi; 1763 struct wmi_search_started_event evt; 1764 } __packed reply = { 1765 .evt = {.status = WMI_FW_STATUS_FAILURE}, 1766 }; 1767 1768 wil_dbg_wmi(wil, "sending WMI_START_SEARCH_CMDID\n"); 1769 1770 rc = wmi_call(wil, WMI_START_SEARCH_CMDID, vif->mid, NULL, 0, 1771 WMI_SEARCH_STARTED_EVENTID, &reply, sizeof(reply), 300); 1772 if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) { 1773 wil_err(wil, "device failed to start search. status %d\n", 1774 reply.evt.status); 1775 rc = -EINVAL; 1776 } 1777 1778 return rc; 1779 } 1780 1781 int wmi_stop_discovery(struct wil6210_vif *vif) 1782 { 1783 struct wil6210_priv *wil = vif_to_wil(vif); 1784 int rc; 1785 1786 wil_dbg_wmi(wil, "sending WMI_DISCOVERY_STOP_CMDID\n"); 1787 1788 rc = wmi_call(wil, WMI_DISCOVERY_STOP_CMDID, vif->mid, NULL, 0, 1789 WMI_DISCOVERY_STOPPED_EVENTID, NULL, 0, 100); 1790 1791 if (rc) 1792 wil_err(wil, "Failed to stop discovery\n"); 1793 1794 return rc; 1795 } 1796 1797 int wmi_del_cipher_key(struct wil6210_vif *vif, u8 key_index, 1798 const void *mac_addr, int key_usage) 1799 { 1800 struct wil6210_priv *wil = vif_to_wil(vif); 1801 struct wmi_delete_cipher_key_cmd cmd = { 1802 .key_index = key_index, 1803 }; 1804 1805 if (mac_addr) 1806 memcpy(cmd.mac, mac_addr, WMI_MAC_LEN); 1807 1808 return wmi_send(wil, WMI_DELETE_CIPHER_KEY_CMDID, vif->mid, 1809 &cmd, sizeof(cmd)); 1810 } 1811 1812 int wmi_add_cipher_key(struct wil6210_vif *vif, u8 key_index, 1813 const void *mac_addr, int key_len, const void *key, 1814 int key_usage) 1815 { 1816 struct wil6210_priv *wil = vif_to_wil(vif); 1817 struct wmi_add_cipher_key_cmd cmd = { 1818 .key_index = key_index, 1819 .key_usage = key_usage, 1820 .key_len = key_len, 1821 }; 1822 1823 if (!key || (key_len > sizeof(cmd.key))) 1824 return -EINVAL; 1825 1826 memcpy(cmd.key, key, key_len); 1827 if (mac_addr) 1828 memcpy(cmd.mac, mac_addr, WMI_MAC_LEN); 1829 1830 return wmi_send(wil, WMI_ADD_CIPHER_KEY_CMDID, vif->mid, 1831 &cmd, sizeof(cmd)); 1832 } 1833 1834 int wmi_set_ie(struct wil6210_vif *vif, u8 type, u16 ie_len, const void *ie) 1835 { 1836 struct wil6210_priv *wil = vif_to_wil(vif); 1837 static const char *const names[] = { 1838 [WMI_FRAME_BEACON] = "BEACON", 1839 [WMI_FRAME_PROBE_REQ] = "PROBE_REQ", 1840 [WMI_FRAME_PROBE_RESP] = "WMI_FRAME_PROBE_RESP", 1841 [WMI_FRAME_ASSOC_REQ] = "WMI_FRAME_ASSOC_REQ", 1842 [WMI_FRAME_ASSOC_RESP] = "WMI_FRAME_ASSOC_RESP", 1843 }; 1844 int rc; 1845 u16 len = sizeof(struct wmi_set_appie_cmd) + ie_len; 1846 struct wmi_set_appie_cmd *cmd; 1847 1848 if (len < ie_len) { 1849 rc = -EINVAL; 1850 goto out; 1851 } 1852 1853 cmd = kzalloc(len, GFP_KERNEL); 1854 if (!cmd) { 1855 rc = -ENOMEM; 1856 goto out; 1857 } 1858 if (!ie) 1859 ie_len = 0; 1860 1861 cmd->mgmt_frm_type = type; 1862 /* BUG: FW API define ieLen as u8. Will fix FW */ 1863 cmd->ie_len = cpu_to_le16(ie_len); 1864 memcpy(cmd->ie_info, ie, ie_len); 1865 rc = wmi_send(wil, WMI_SET_APPIE_CMDID, vif->mid, cmd, len); 1866 kfree(cmd); 1867 out: 1868 if (rc) { 1869 const char *name = type < ARRAY_SIZE(names) ? 1870 names[type] : "??"; 1871 wil_err(wil, "set_ie(%d %s) failed : %d\n", type, name, rc); 1872 } 1873 1874 return rc; 1875 } 1876 1877 /** 1878 * wmi_rxon - turn radio on/off 1879 * @on: turn on if true, off otherwise 1880 * 1881 * Only switch radio. Channel should be set separately. 1882 * No timeout for rxon - radio turned on forever unless some other call 1883 * turns it off 1884 */ 1885 int wmi_rxon(struct wil6210_priv *wil, bool on) 1886 { 1887 struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); 1888 int rc; 1889 struct { 1890 struct wmi_cmd_hdr wmi; 1891 struct wmi_listen_started_event evt; 1892 } __packed reply = { 1893 .evt = {.status = WMI_FW_STATUS_FAILURE}, 1894 }; 1895 1896 wil_info(wil, "(%s)\n", on ? "on" : "off"); 1897 1898 if (on) { 1899 rc = wmi_call(wil, WMI_START_LISTEN_CMDID, vif->mid, NULL, 0, 1900 WMI_LISTEN_STARTED_EVENTID, 1901 &reply, sizeof(reply), 100); 1902 if ((rc == 0) && (reply.evt.status != WMI_FW_STATUS_SUCCESS)) 1903 rc = -EINVAL; 1904 } else { 1905 rc = wmi_call(wil, WMI_DISCOVERY_STOP_CMDID, vif->mid, NULL, 0, 1906 WMI_DISCOVERY_STOPPED_EVENTID, NULL, 0, 20); 1907 } 1908 1909 return rc; 1910 } 1911 1912 int wmi_rx_chain_add(struct wil6210_priv *wil, struct vring *vring) 1913 { 1914 struct net_device *ndev = wil->main_ndev; 1915 struct wireless_dev *wdev = ndev->ieee80211_ptr; 1916 struct wil6210_vif *vif = ndev_to_vif(ndev); 1917 struct wmi_cfg_rx_chain_cmd cmd = { 1918 .action = WMI_RX_CHAIN_ADD, 1919 .rx_sw_ring = { 1920 .max_mpdu_size = cpu_to_le16( 1921 wil_mtu2macbuf(wil->rx_buf_len)), 1922 .ring_mem_base = cpu_to_le64(vring->pa), 1923 .ring_size = cpu_to_le16(vring->size), 1924 }, 1925 .mid = 0, /* TODO - what is it? */ 1926 .decap_trans_type = WMI_DECAP_TYPE_802_3, 1927 .reorder_type = WMI_RX_SW_REORDER, 1928 .host_thrsh = cpu_to_le16(rx_ring_overflow_thrsh), 1929 }; 1930 struct { 1931 struct wmi_cmd_hdr wmi; 1932 struct wmi_cfg_rx_chain_done_event evt; 1933 } __packed evt; 1934 int rc; 1935 1936 memset(&evt, 0, sizeof(evt)); 1937 1938 if (wdev->iftype == NL80211_IFTYPE_MONITOR) { 1939 struct ieee80211_channel *ch = wil->monitor_chandef.chan; 1940 1941 cmd.sniffer_cfg.mode = cpu_to_le32(WMI_SNIFFER_ON); 1942 if (ch) 1943 cmd.sniffer_cfg.channel = ch->hw_value - 1; 1944 cmd.sniffer_cfg.phy_info_mode = 1945 cpu_to_le32(ndev->type == ARPHRD_IEEE80211_RADIOTAP); 1946 cmd.sniffer_cfg.phy_support = 1947 cpu_to_le32((wil->monitor_flags & MONITOR_FLAG_CONTROL) 1948 ? WMI_SNIFFER_CP : WMI_SNIFFER_BOTH_PHYS); 1949 } else { 1950 /* Initialize offload (in non-sniffer mode). 1951 * Linux IP stack always calculates IP checksum 1952 * HW always calculate TCP/UDP checksum 1953 */ 1954 cmd.l3_l4_ctrl |= (1 << L3_L4_CTRL_TCPIP_CHECKSUM_EN_POS); 1955 } 1956 1957 if (rx_align_2) 1958 cmd.l2_802_3_offload_ctrl |= 1959 L2_802_3_OFFLOAD_CTRL_SNAP_KEEP_MSK; 1960 1961 /* typical time for secure PCP is 840ms */ 1962 rc = wmi_call(wil, WMI_CFG_RX_CHAIN_CMDID, vif->mid, &cmd, sizeof(cmd), 1963 WMI_CFG_RX_CHAIN_DONE_EVENTID, &evt, sizeof(evt), 2000); 1964 if (rc) 1965 return rc; 1966 1967 if (le32_to_cpu(evt.evt.status) != WMI_CFG_RX_CHAIN_SUCCESS) 1968 rc = -EINVAL; 1969 1970 vring->hwtail = le32_to_cpu(evt.evt.rx_ring_tail_ptr); 1971 1972 wil_dbg_misc(wil, "Rx init: status %d tail 0x%08x\n", 1973 le32_to_cpu(evt.evt.status), vring->hwtail); 1974 1975 return rc; 1976 } 1977 1978 int wmi_get_temperature(struct wil6210_priv *wil, u32 *t_bb, u32 *t_rf) 1979 { 1980 struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); 1981 int rc; 1982 struct wmi_temp_sense_cmd cmd = { 1983 .measure_baseband_en = cpu_to_le32(!!t_bb), 1984 .measure_rf_en = cpu_to_le32(!!t_rf), 1985 .measure_mode = cpu_to_le32(TEMPERATURE_MEASURE_NOW), 1986 }; 1987 struct { 1988 struct wmi_cmd_hdr wmi; 1989 struct wmi_temp_sense_done_event evt; 1990 } __packed reply; 1991 1992 memset(&reply, 0, sizeof(reply)); 1993 1994 rc = wmi_call(wil, WMI_TEMP_SENSE_CMDID, vif->mid, &cmd, sizeof(cmd), 1995 WMI_TEMP_SENSE_DONE_EVENTID, &reply, sizeof(reply), 100); 1996 if (rc) 1997 return rc; 1998 1999 if (t_bb) 2000 *t_bb = le32_to_cpu(reply.evt.baseband_t1000); 2001 if (t_rf) 2002 *t_rf = le32_to_cpu(reply.evt.rf_t1000); 2003 2004 return 0; 2005 } 2006 2007 int wmi_disconnect_sta(struct wil6210_vif *vif, const u8 *mac, 2008 u16 reason, bool full_disconnect, bool del_sta) 2009 { 2010 struct wil6210_priv *wil = vif_to_wil(vif); 2011 int rc; 2012 u16 reason_code; 2013 struct wmi_disconnect_sta_cmd disc_sta_cmd = { 2014 .disconnect_reason = cpu_to_le16(reason), 2015 }; 2016 struct wmi_del_sta_cmd del_sta_cmd = { 2017 .disconnect_reason = cpu_to_le16(reason), 2018 }; 2019 struct { 2020 struct wmi_cmd_hdr wmi; 2021 struct wmi_disconnect_event evt; 2022 } __packed reply; 2023 2024 wil_dbg_wmi(wil, "disconnect_sta: (%pM, reason %d)\n", mac, reason); 2025 2026 memset(&reply, 0, sizeof(reply)); 2027 vif->locally_generated_disc = true; 2028 if (del_sta) { 2029 ether_addr_copy(del_sta_cmd.dst_mac, mac); 2030 rc = wmi_call(wil, WMI_DEL_STA_CMDID, vif->mid, &del_sta_cmd, 2031 sizeof(del_sta_cmd), WMI_DISCONNECT_EVENTID, 2032 &reply, sizeof(reply), 1000); 2033 } else { 2034 ether_addr_copy(disc_sta_cmd.dst_mac, mac); 2035 rc = wmi_call(wil, WMI_DISCONNECT_STA_CMDID, vif->mid, 2036 &disc_sta_cmd, sizeof(disc_sta_cmd), 2037 WMI_DISCONNECT_EVENTID, 2038 &reply, sizeof(reply), 1000); 2039 } 2040 /* failure to disconnect in reasonable time treated as FW error */ 2041 if (rc) { 2042 wil_fw_error_recovery(wil); 2043 return rc; 2044 } 2045 2046 if (full_disconnect) { 2047 /* call event handler manually after processing wmi_call, 2048 * to avoid deadlock - disconnect event handler acquires 2049 * wil->mutex while it is already held here 2050 */ 2051 reason_code = le16_to_cpu(reply.evt.protocol_reason_status); 2052 2053 wil_dbg_wmi(wil, "Disconnect %pM reason [proto %d wmi %d]\n", 2054 reply.evt.bssid, reason_code, 2055 reply.evt.disconnect_reason); 2056 2057 wil->sinfo_gen++; 2058 wil6210_disconnect(vif, reply.evt.bssid, reason_code, true); 2059 } 2060 return 0; 2061 } 2062 2063 int wmi_addba(struct wil6210_priv *wil, u8 mid, 2064 u8 ringid, u8 size, u16 timeout) 2065 { 2066 struct wmi_vring_ba_en_cmd cmd = { 2067 .ringid = ringid, 2068 .agg_max_wsize = size, 2069 .ba_timeout = cpu_to_le16(timeout), 2070 .amsdu = 0, 2071 }; 2072 2073 wil_dbg_wmi(wil, "addba: (ring %d size %d timeout %d)\n", ringid, size, 2074 timeout); 2075 2076 return wmi_send(wil, WMI_VRING_BA_EN_CMDID, mid, &cmd, sizeof(cmd)); 2077 } 2078 2079 int wmi_delba_tx(struct wil6210_priv *wil, u8 mid, u8 ringid, u16 reason) 2080 { 2081 struct wmi_vring_ba_dis_cmd cmd = { 2082 .ringid = ringid, 2083 .reason = cpu_to_le16(reason), 2084 }; 2085 2086 wil_dbg_wmi(wil, "delba_tx: (ring %d reason %d)\n", ringid, reason); 2087 2088 return wmi_send(wil, WMI_VRING_BA_DIS_CMDID, mid, &cmd, sizeof(cmd)); 2089 } 2090 2091 int wmi_delba_rx(struct wil6210_priv *wil, u8 mid, u8 cidxtid, u16 reason) 2092 { 2093 struct wmi_rcp_delba_cmd cmd = { 2094 .cidxtid = cidxtid, 2095 .reason = cpu_to_le16(reason), 2096 }; 2097 2098 wil_dbg_wmi(wil, "delba_rx: (CID %d TID %d reason %d)\n", cidxtid & 0xf, 2099 (cidxtid >> 4) & 0xf, reason); 2100 2101 return wmi_send(wil, WMI_RCP_DELBA_CMDID, mid, &cmd, sizeof(cmd)); 2102 } 2103 2104 int wmi_addba_rx_resp(struct wil6210_priv *wil, 2105 u8 mid, u8 cid, u8 tid, u8 token, 2106 u16 status, bool amsdu, u16 agg_wsize, u16 timeout) 2107 { 2108 int rc; 2109 struct wmi_rcp_addba_resp_cmd cmd = { 2110 .cidxtid = mk_cidxtid(cid, tid), 2111 .dialog_token = token, 2112 .status_code = cpu_to_le16(status), 2113 /* bit 0: A-MSDU supported 2114 * bit 1: policy (should be 0 for us) 2115 * bits 2..5: TID 2116 * bits 6..15: buffer size 2117 */ 2118 .ba_param_set = cpu_to_le16((amsdu ? 1 : 0) | (tid << 2) | 2119 (agg_wsize << 6)), 2120 .ba_timeout = cpu_to_le16(timeout), 2121 }; 2122 struct { 2123 struct wmi_cmd_hdr wmi; 2124 struct wmi_rcp_addba_resp_sent_event evt; 2125 } __packed reply = { 2126 .evt = {.status = cpu_to_le16(WMI_FW_STATUS_FAILURE)}, 2127 }; 2128 2129 wil_dbg_wmi(wil, 2130 "ADDBA response for MID %d CID %d TID %d size %d timeout %d status %d AMSDU%s\n", 2131 mid, cid, tid, agg_wsize, 2132 timeout, status, amsdu ? "+" : "-"); 2133 2134 rc = wmi_call(wil, WMI_RCP_ADDBA_RESP_CMDID, mid, &cmd, sizeof(cmd), 2135 WMI_RCP_ADDBA_RESP_SENT_EVENTID, &reply, sizeof(reply), 2136 100); 2137 if (rc) 2138 return rc; 2139 2140 if (reply.evt.status) { 2141 wil_err(wil, "ADDBA response failed with status %d\n", 2142 le16_to_cpu(reply.evt.status)); 2143 rc = -EINVAL; 2144 } 2145 2146 return rc; 2147 } 2148 2149 int wmi_ps_dev_profile_cfg(struct wil6210_priv *wil, 2150 enum wmi_ps_profile_type ps_profile) 2151 { 2152 struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); 2153 int rc; 2154 struct wmi_ps_dev_profile_cfg_cmd cmd = { 2155 .ps_profile = ps_profile, 2156 }; 2157 struct { 2158 struct wmi_cmd_hdr wmi; 2159 struct wmi_ps_dev_profile_cfg_event evt; 2160 } __packed reply = { 2161 .evt = {.status = cpu_to_le32(WMI_PS_CFG_CMD_STATUS_ERROR)}, 2162 }; 2163 u32 status; 2164 2165 wil_dbg_wmi(wil, "Setting ps dev profile %d\n", ps_profile); 2166 2167 rc = wmi_call(wil, WMI_PS_DEV_PROFILE_CFG_CMDID, vif->mid, 2168 &cmd, sizeof(cmd), 2169 WMI_PS_DEV_PROFILE_CFG_EVENTID, &reply, sizeof(reply), 2170 100); 2171 if (rc) 2172 return rc; 2173 2174 status = le32_to_cpu(reply.evt.status); 2175 2176 if (status != WMI_PS_CFG_CMD_STATUS_SUCCESS) { 2177 wil_err(wil, "ps dev profile cfg failed with status %d\n", 2178 status); 2179 rc = -EINVAL; 2180 } 2181 2182 return rc; 2183 } 2184 2185 int wmi_set_mgmt_retry(struct wil6210_priv *wil, u8 retry_short) 2186 { 2187 struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); 2188 int rc; 2189 struct wmi_set_mgmt_retry_limit_cmd cmd = { 2190 .mgmt_retry_limit = retry_short, 2191 }; 2192 struct { 2193 struct wmi_cmd_hdr wmi; 2194 struct wmi_set_mgmt_retry_limit_event evt; 2195 } __packed reply = { 2196 .evt = {.status = WMI_FW_STATUS_FAILURE}, 2197 }; 2198 2199 wil_dbg_wmi(wil, "Setting mgmt retry short %d\n", retry_short); 2200 2201 if (!test_bit(WMI_FW_CAPABILITY_MGMT_RETRY_LIMIT, wil->fw_capabilities)) 2202 return -ENOTSUPP; 2203 2204 rc = wmi_call(wil, WMI_SET_MGMT_RETRY_LIMIT_CMDID, vif->mid, 2205 &cmd, sizeof(cmd), 2206 WMI_SET_MGMT_RETRY_LIMIT_EVENTID, &reply, sizeof(reply), 2207 100); 2208 if (rc) 2209 return rc; 2210 2211 if (reply.evt.status != WMI_FW_STATUS_SUCCESS) { 2212 wil_err(wil, "set mgmt retry limit failed with status %d\n", 2213 reply.evt.status); 2214 rc = -EINVAL; 2215 } 2216 2217 return rc; 2218 } 2219 2220 int wmi_get_mgmt_retry(struct wil6210_priv *wil, u8 *retry_short) 2221 { 2222 struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); 2223 int rc; 2224 struct { 2225 struct wmi_cmd_hdr wmi; 2226 struct wmi_get_mgmt_retry_limit_event evt; 2227 } __packed reply; 2228 2229 wil_dbg_wmi(wil, "getting mgmt retry short\n"); 2230 2231 if (!test_bit(WMI_FW_CAPABILITY_MGMT_RETRY_LIMIT, wil->fw_capabilities)) 2232 return -ENOTSUPP; 2233 2234 memset(&reply, 0, sizeof(reply)); 2235 rc = wmi_call(wil, WMI_GET_MGMT_RETRY_LIMIT_CMDID, vif->mid, NULL, 0, 2236 WMI_GET_MGMT_RETRY_LIMIT_EVENTID, &reply, sizeof(reply), 2237 100); 2238 if (rc) 2239 return rc; 2240 2241 if (retry_short) 2242 *retry_short = reply.evt.mgmt_retry_limit; 2243 2244 return 0; 2245 } 2246 2247 int wmi_abort_scan(struct wil6210_vif *vif) 2248 { 2249 struct wil6210_priv *wil = vif_to_wil(vif); 2250 int rc; 2251 2252 wil_dbg_wmi(wil, "sending WMI_ABORT_SCAN_CMDID\n"); 2253 2254 rc = wmi_send(wil, WMI_ABORT_SCAN_CMDID, vif->mid, NULL, 0); 2255 if (rc) 2256 wil_err(wil, "Failed to abort scan (%d)\n", rc); 2257 2258 return rc; 2259 } 2260 2261 int wmi_new_sta(struct wil6210_vif *vif, const u8 *mac, u8 aid) 2262 { 2263 struct wil6210_priv *wil = vif_to_wil(vif); 2264 int rc; 2265 struct wmi_new_sta_cmd cmd = { 2266 .aid = aid, 2267 }; 2268 2269 wil_dbg_wmi(wil, "new sta %pM, aid %d\n", mac, aid); 2270 2271 ether_addr_copy(cmd.dst_mac, mac); 2272 2273 rc = wmi_send(wil, WMI_NEW_STA_CMDID, vif->mid, &cmd, sizeof(cmd)); 2274 if (rc) 2275 wil_err(wil, "Failed to send new sta (%d)\n", rc); 2276 2277 return rc; 2278 } 2279 2280 void wmi_event_flush(struct wil6210_priv *wil) 2281 { 2282 ulong flags; 2283 struct pending_wmi_event *evt, *t; 2284 2285 wil_dbg_wmi(wil, "event_flush\n"); 2286 2287 spin_lock_irqsave(&wil->wmi_ev_lock, flags); 2288 2289 list_for_each_entry_safe(evt, t, &wil->pending_wmi_ev, list) { 2290 list_del(&evt->list); 2291 kfree(evt); 2292 } 2293 2294 spin_unlock_irqrestore(&wil->wmi_ev_lock, flags); 2295 } 2296 2297 static const char *suspend_status2name(u8 status) 2298 { 2299 switch (status) { 2300 case WMI_TRAFFIC_SUSPEND_REJECTED_LINK_NOT_IDLE: 2301 return "LINK_NOT_IDLE"; 2302 default: 2303 return "Untracked status"; 2304 } 2305 } 2306 2307 int wmi_suspend(struct wil6210_priv *wil) 2308 { 2309 struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); 2310 int rc; 2311 struct wmi_traffic_suspend_cmd cmd = { 2312 .wakeup_trigger = wil->wakeup_trigger, 2313 }; 2314 struct { 2315 struct wmi_cmd_hdr wmi; 2316 struct wmi_traffic_suspend_event evt; 2317 } __packed reply = { 2318 .evt = {.status = WMI_TRAFFIC_SUSPEND_REJECTED_LINK_NOT_IDLE}, 2319 }; 2320 2321 u32 suspend_to = WIL_WAIT_FOR_SUSPEND_RESUME_COMP; 2322 2323 wil->suspend_resp_rcvd = false; 2324 wil->suspend_resp_comp = false; 2325 2326 rc = wmi_call(wil, WMI_TRAFFIC_SUSPEND_CMDID, vif->mid, 2327 &cmd, sizeof(cmd), 2328 WMI_TRAFFIC_SUSPEND_EVENTID, &reply, sizeof(reply), 2329 suspend_to); 2330 if (rc) { 2331 wil_err(wil, "wmi_call for suspend req failed, rc=%d\n", rc); 2332 if (rc == -ETIME) 2333 /* wmi_call TO */ 2334 wil->suspend_stats.rejected_by_device++; 2335 else 2336 wil->suspend_stats.rejected_by_host++; 2337 goto out; 2338 } 2339 2340 wil_dbg_wmi(wil, "waiting for suspend_response_completed\n"); 2341 2342 rc = wait_event_interruptible_timeout(wil->wq, 2343 wil->suspend_resp_comp, 2344 msecs_to_jiffies(suspend_to)); 2345 if (rc == 0) { 2346 wil_err(wil, "TO waiting for suspend_response_completed\n"); 2347 if (wil->suspend_resp_rcvd) 2348 /* Device responded but we TO due to another reason */ 2349 wil->suspend_stats.rejected_by_host++; 2350 else 2351 wil->suspend_stats.rejected_by_device++; 2352 rc = -EBUSY; 2353 goto out; 2354 } 2355 2356 wil_dbg_wmi(wil, "suspend_response_completed rcvd\n"); 2357 if (reply.evt.status != WMI_TRAFFIC_SUSPEND_APPROVED) { 2358 wil_dbg_pm(wil, "device rejected the suspend, %s\n", 2359 suspend_status2name(reply.evt.status)); 2360 wil->suspend_stats.rejected_by_device++; 2361 } 2362 rc = reply.evt.status; 2363 2364 out: 2365 wil->suspend_resp_rcvd = false; 2366 wil->suspend_resp_comp = false; 2367 2368 return rc; 2369 } 2370 2371 static void resume_triggers2string(u32 triggers, char *string, int str_size) 2372 { 2373 string[0] = '\0'; 2374 2375 if (!triggers) { 2376 strlcat(string, " UNKNOWN", str_size); 2377 return; 2378 } 2379 2380 if (triggers & WMI_RESUME_TRIGGER_HOST) 2381 strlcat(string, " HOST", str_size); 2382 2383 if (triggers & WMI_RESUME_TRIGGER_UCAST_RX) 2384 strlcat(string, " UCAST_RX", str_size); 2385 2386 if (triggers & WMI_RESUME_TRIGGER_BCAST_RX) 2387 strlcat(string, " BCAST_RX", str_size); 2388 2389 if (triggers & WMI_RESUME_TRIGGER_WMI_EVT) 2390 strlcat(string, " WMI_EVT", str_size); 2391 } 2392 2393 int wmi_resume(struct wil6210_priv *wil) 2394 { 2395 struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); 2396 int rc; 2397 char string[100]; 2398 struct { 2399 struct wmi_cmd_hdr wmi; 2400 struct wmi_traffic_resume_event evt; 2401 } __packed reply = { 2402 .evt = {.status = WMI_TRAFFIC_RESUME_FAILED, 2403 .resume_triggers = 2404 cpu_to_le32(WMI_RESUME_TRIGGER_UNKNOWN)}, 2405 }; 2406 2407 rc = wmi_call(wil, WMI_TRAFFIC_RESUME_CMDID, vif->mid, NULL, 0, 2408 WMI_TRAFFIC_RESUME_EVENTID, &reply, sizeof(reply), 2409 WIL_WAIT_FOR_SUSPEND_RESUME_COMP); 2410 if (rc) 2411 return rc; 2412 resume_triggers2string(le32_to_cpu(reply.evt.resume_triggers), string, 2413 sizeof(string)); 2414 wil_dbg_pm(wil, "device resume %s, resume triggers:%s (0x%x)\n", 2415 reply.evt.status ? "failed" : "passed", string, 2416 le32_to_cpu(reply.evt.resume_triggers)); 2417 2418 return reply.evt.status; 2419 } 2420 2421 int wmi_port_allocate(struct wil6210_priv *wil, u8 mid, 2422 const u8 *mac, enum nl80211_iftype iftype) 2423 { 2424 int rc; 2425 struct wmi_port_allocate_cmd cmd = { 2426 .mid = mid, 2427 }; 2428 struct { 2429 struct wmi_cmd_hdr wmi; 2430 struct wmi_port_allocated_event evt; 2431 } __packed reply = { 2432 .evt = {.status = WMI_FW_STATUS_FAILURE}, 2433 }; 2434 2435 wil_dbg_misc(wil, "port allocate, mid %d iftype %d, mac %pM\n", 2436 mid, iftype, mac); 2437 2438 ether_addr_copy(cmd.mac, mac); 2439 switch (iftype) { 2440 case NL80211_IFTYPE_STATION: 2441 cmd.port_role = WMI_PORT_STA; 2442 break; 2443 case NL80211_IFTYPE_AP: 2444 cmd.port_role = WMI_PORT_AP; 2445 break; 2446 case NL80211_IFTYPE_P2P_CLIENT: 2447 cmd.port_role = WMI_PORT_P2P_CLIENT; 2448 break; 2449 case NL80211_IFTYPE_P2P_GO: 2450 cmd.port_role = WMI_PORT_P2P_GO; 2451 break; 2452 /* what about monitor??? */ 2453 default: 2454 wil_err(wil, "unsupported iftype: %d\n", iftype); 2455 return -EINVAL; 2456 } 2457 2458 rc = wmi_call(wil, WMI_PORT_ALLOCATE_CMDID, mid, 2459 &cmd, sizeof(cmd), 2460 WMI_PORT_ALLOCATED_EVENTID, &reply, 2461 sizeof(reply), 300); 2462 if (rc) { 2463 wil_err(wil, "failed to allocate port, status %d\n", rc); 2464 return rc; 2465 } 2466 if (reply.evt.status != WMI_FW_STATUS_SUCCESS) { 2467 wil_err(wil, "WMI_PORT_ALLOCATE returned status %d\n", 2468 reply.evt.status); 2469 return -EINVAL; 2470 } 2471 2472 return 0; 2473 } 2474 2475 int wmi_port_delete(struct wil6210_priv *wil, u8 mid) 2476 { 2477 int rc; 2478 struct wmi_port_delete_cmd cmd = { 2479 .mid = mid, 2480 }; 2481 struct { 2482 struct wmi_cmd_hdr wmi; 2483 struct wmi_port_deleted_event evt; 2484 } __packed reply = { 2485 .evt = {.status = WMI_FW_STATUS_FAILURE}, 2486 }; 2487 2488 wil_dbg_misc(wil, "port delete, mid %d\n", mid); 2489 2490 rc = wmi_call(wil, WMI_PORT_DELETE_CMDID, mid, 2491 &cmd, sizeof(cmd), 2492 WMI_PORT_DELETED_EVENTID, &reply, 2493 sizeof(reply), 2000); 2494 if (rc) { 2495 wil_err(wil, "failed to delete port, status %d\n", rc); 2496 return rc; 2497 } 2498 if (reply.evt.status != WMI_FW_STATUS_SUCCESS) { 2499 wil_err(wil, "WMI_PORT_DELETE returned status %d\n", 2500 reply.evt.status); 2501 return -EINVAL; 2502 } 2503 2504 return 0; 2505 } 2506 2507 static bool wmi_evt_call_handler(struct wil6210_vif *vif, int id, 2508 void *d, int len) 2509 { 2510 uint i; 2511 2512 for (i = 0; i < ARRAY_SIZE(wmi_evt_handlers); i++) { 2513 if (wmi_evt_handlers[i].eventid == id) { 2514 wmi_evt_handlers[i].handler(vif, id, d, len); 2515 return true; 2516 } 2517 } 2518 2519 return false; 2520 } 2521 2522 static void wmi_event_handle(struct wil6210_priv *wil, 2523 struct wil6210_mbox_hdr *hdr) 2524 { 2525 u16 len = le16_to_cpu(hdr->len); 2526 struct wil6210_vif *vif; 2527 2528 if ((hdr->type == WIL_MBOX_HDR_TYPE_WMI) && 2529 (len >= sizeof(struct wmi_cmd_hdr))) { 2530 struct wmi_cmd_hdr *wmi = (void *)(&hdr[1]); 2531 void *evt_data = (void *)(&wmi[1]); 2532 u16 id = le16_to_cpu(wmi->command_id); 2533 u8 mid = wmi->mid; 2534 2535 wil_dbg_wmi(wil, "Handle %s (0x%04x) (reply_id 0x%04x,%d)\n", 2536 eventid2name(id), id, wil->reply_id, 2537 wil->reply_mid); 2538 2539 if (mid == MID_BROADCAST) 2540 mid = 0; 2541 if (mid >= wil->max_vifs) { 2542 wil_dbg_wmi(wil, "invalid mid %d, event skipped\n", 2543 mid); 2544 return; 2545 } 2546 vif = wil->vifs[mid]; 2547 if (!vif) { 2548 wil_dbg_wmi(wil, "event for empty VIF(%d), skipped\n", 2549 mid); 2550 return; 2551 } 2552 2553 /* check if someone waits for this event */ 2554 if (wil->reply_id && wil->reply_id == id && 2555 wil->reply_mid == mid) { 2556 WARN_ON(wil->reply_buf); 2557 2558 wmi_evt_call_handler(vif, id, evt_data, 2559 len - sizeof(*wmi)); 2560 wil_dbg_wmi(wil, "event_handle: Complete WMI 0x%04x\n", 2561 id); 2562 complete(&wil->wmi_call); 2563 return; 2564 } 2565 /* unsolicited event */ 2566 /* search for handler */ 2567 if (!wmi_evt_call_handler(vif, id, evt_data, 2568 len - sizeof(*wmi))) { 2569 wil_info(wil, "Unhandled event 0x%04x\n", id); 2570 } 2571 } else { 2572 wil_err(wil, "Unknown event type\n"); 2573 print_hex_dump(KERN_ERR, "evt?? ", DUMP_PREFIX_OFFSET, 16, 1, 2574 hdr, sizeof(*hdr) + len, true); 2575 } 2576 } 2577 2578 /* 2579 * Retrieve next WMI event from the pending list 2580 */ 2581 static struct list_head *next_wmi_ev(struct wil6210_priv *wil) 2582 { 2583 ulong flags; 2584 struct list_head *ret = NULL; 2585 2586 spin_lock_irqsave(&wil->wmi_ev_lock, flags); 2587 2588 if (!list_empty(&wil->pending_wmi_ev)) { 2589 ret = wil->pending_wmi_ev.next; 2590 list_del(ret); 2591 } 2592 2593 spin_unlock_irqrestore(&wil->wmi_ev_lock, flags); 2594 2595 return ret; 2596 } 2597 2598 /* 2599 * Handler for the WMI events 2600 */ 2601 void wmi_event_worker(struct work_struct *work) 2602 { 2603 struct wil6210_priv *wil = container_of(work, struct wil6210_priv, 2604 wmi_event_worker); 2605 struct pending_wmi_event *evt; 2606 struct list_head *lh; 2607 2608 wil_dbg_wmi(wil, "event_worker: Start\n"); 2609 while ((lh = next_wmi_ev(wil)) != NULL) { 2610 evt = list_entry(lh, struct pending_wmi_event, list); 2611 wmi_event_handle(wil, &evt->event.hdr); 2612 kfree(evt); 2613 } 2614 wil_dbg_wmi(wil, "event_worker: Finished\n"); 2615 } 2616 2617 bool wil_is_wmi_idle(struct wil6210_priv *wil) 2618 { 2619 ulong flags; 2620 struct wil6210_mbox_ring *r = &wil->mbox_ctl.rx; 2621 bool rc = false; 2622 2623 spin_lock_irqsave(&wil->wmi_ev_lock, flags); 2624 2625 /* Check if there are pending WMI events in the events queue */ 2626 if (!list_empty(&wil->pending_wmi_ev)) { 2627 wil_dbg_pm(wil, "Pending WMI events in queue\n"); 2628 goto out; 2629 } 2630 2631 /* Check if there is a pending WMI call */ 2632 if (wil->reply_id) { 2633 wil_dbg_pm(wil, "Pending WMI call\n"); 2634 goto out; 2635 } 2636 2637 /* Check if there are pending RX events in mbox */ 2638 r->head = wil_r(wil, RGF_MBOX + 2639 offsetof(struct wil6210_mbox_ctl, rx.head)); 2640 if (r->tail != r->head) 2641 wil_dbg_pm(wil, "Pending WMI mbox events\n"); 2642 else 2643 rc = true; 2644 2645 out: 2646 spin_unlock_irqrestore(&wil->wmi_ev_lock, flags); 2647 return rc; 2648 } 2649 2650 static void 2651 wmi_sched_scan_set_ssids(struct wil6210_priv *wil, 2652 struct wmi_start_sched_scan_cmd *cmd, 2653 struct cfg80211_ssid *ssids, int n_ssids, 2654 struct cfg80211_match_set *match_sets, 2655 int n_match_sets) 2656 { 2657 int i; 2658 2659 if (n_match_sets > WMI_MAX_PNO_SSID_NUM) { 2660 wil_dbg_wmi(wil, "too many match sets (%d), use first %d\n", 2661 n_match_sets, WMI_MAX_PNO_SSID_NUM); 2662 n_match_sets = WMI_MAX_PNO_SSID_NUM; 2663 } 2664 cmd->num_of_ssids = n_match_sets; 2665 2666 for (i = 0; i < n_match_sets; i++) { 2667 struct wmi_sched_scan_ssid_match *wmi_match = 2668 &cmd->ssid_for_match[i]; 2669 struct cfg80211_match_set *cfg_match = &match_sets[i]; 2670 int j; 2671 2672 wmi_match->ssid_len = cfg_match->ssid.ssid_len; 2673 memcpy(wmi_match->ssid, cfg_match->ssid.ssid, 2674 min_t(u8, wmi_match->ssid_len, WMI_MAX_SSID_LEN)); 2675 wmi_match->rssi_threshold = S8_MIN; 2676 if (cfg_match->rssi_thold >= S8_MIN && 2677 cfg_match->rssi_thold <= S8_MAX) 2678 wmi_match->rssi_threshold = cfg_match->rssi_thold; 2679 2680 for (j = 0; j < n_ssids; j++) 2681 if (wmi_match->ssid_len == ssids[j].ssid_len && 2682 memcmp(wmi_match->ssid, ssids[j].ssid, 2683 wmi_match->ssid_len) == 0) 2684 wmi_match->add_ssid_to_probe = true; 2685 } 2686 } 2687 2688 static void 2689 wmi_sched_scan_set_channels(struct wil6210_priv *wil, 2690 struct wmi_start_sched_scan_cmd *cmd, 2691 u32 n_channels, 2692 struct ieee80211_channel **channels) 2693 { 2694 int i; 2695 2696 if (n_channels > WMI_MAX_CHANNEL_NUM) { 2697 wil_dbg_wmi(wil, "too many channels (%d), use first %d\n", 2698 n_channels, WMI_MAX_CHANNEL_NUM); 2699 n_channels = WMI_MAX_CHANNEL_NUM; 2700 } 2701 cmd->num_of_channels = n_channels; 2702 2703 for (i = 0; i < n_channels; i++) { 2704 struct ieee80211_channel *cfg_chan = channels[i]; 2705 2706 cmd->channel_list[i] = cfg_chan->hw_value - 1; 2707 } 2708 } 2709 2710 static void 2711 wmi_sched_scan_set_plans(struct wil6210_priv *wil, 2712 struct wmi_start_sched_scan_cmd *cmd, 2713 struct cfg80211_sched_scan_plan *scan_plans, 2714 int n_scan_plans) 2715 { 2716 int i; 2717 2718 if (n_scan_plans > WMI_MAX_PLANS_NUM) { 2719 wil_dbg_wmi(wil, "too many plans (%d), use first %d\n", 2720 n_scan_plans, WMI_MAX_PLANS_NUM); 2721 n_scan_plans = WMI_MAX_PLANS_NUM; 2722 } 2723 2724 for (i = 0; i < n_scan_plans; i++) { 2725 struct cfg80211_sched_scan_plan *cfg_plan = &scan_plans[i]; 2726 2727 cmd->scan_plans[i].interval_sec = 2728 cpu_to_le16(cfg_plan->interval); 2729 cmd->scan_plans[i].num_of_iterations = 2730 cpu_to_le16(cfg_plan->iterations); 2731 } 2732 } 2733 2734 int wmi_start_sched_scan(struct wil6210_priv *wil, 2735 struct cfg80211_sched_scan_request *request) 2736 { 2737 struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); 2738 int rc; 2739 struct wmi_start_sched_scan_cmd cmd = { 2740 .min_rssi_threshold = S8_MIN, 2741 .initial_delay_sec = cpu_to_le16(request->delay), 2742 }; 2743 struct { 2744 struct wmi_cmd_hdr wmi; 2745 struct wmi_start_sched_scan_event evt; 2746 } __packed reply = { 2747 .evt = {.result = WMI_PNO_REJECT}, 2748 }; 2749 2750 if (!test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities)) 2751 return -ENOTSUPP; 2752 2753 if (request->min_rssi_thold >= S8_MIN && 2754 request->min_rssi_thold <= S8_MAX) 2755 cmd.min_rssi_threshold = request->min_rssi_thold; 2756 2757 wmi_sched_scan_set_ssids(wil, &cmd, request->ssids, request->n_ssids, 2758 request->match_sets, request->n_match_sets); 2759 wmi_sched_scan_set_channels(wil, &cmd, 2760 request->n_channels, request->channels); 2761 wmi_sched_scan_set_plans(wil, &cmd, 2762 request->scan_plans, request->n_scan_plans); 2763 2764 rc = wmi_call(wil, WMI_START_SCHED_SCAN_CMDID, vif->mid, 2765 &cmd, sizeof(cmd), 2766 WMI_START_SCHED_SCAN_EVENTID, &reply, sizeof(reply), 2767 WIL_WMI_CALL_GENERAL_TO_MS); 2768 if (rc) 2769 return rc; 2770 2771 if (reply.evt.result != WMI_PNO_SUCCESS) { 2772 wil_err(wil, "start sched scan failed, result %d\n", 2773 reply.evt.result); 2774 return -EINVAL; 2775 } 2776 2777 return 0; 2778 } 2779 2780 int wmi_stop_sched_scan(struct wil6210_priv *wil) 2781 { 2782 struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); 2783 int rc; 2784 struct { 2785 struct wmi_cmd_hdr wmi; 2786 struct wmi_stop_sched_scan_event evt; 2787 } __packed reply = { 2788 .evt = {.result = WMI_PNO_REJECT}, 2789 }; 2790 2791 if (!test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities)) 2792 return -ENOTSUPP; 2793 2794 rc = wmi_call(wil, WMI_STOP_SCHED_SCAN_CMDID, vif->mid, NULL, 0, 2795 WMI_STOP_SCHED_SCAN_EVENTID, &reply, sizeof(reply), 2796 WIL_WMI_CALL_GENERAL_TO_MS); 2797 if (rc) 2798 return rc; 2799 2800 if (reply.evt.result != WMI_PNO_SUCCESS) { 2801 wil_err(wil, "stop sched scan failed, result %d\n", 2802 reply.evt.result); 2803 return -EINVAL; 2804 } 2805 2806 return 0; 2807 } 2808 2809 int wmi_mgmt_tx(struct wil6210_vif *vif, const u8 *buf, size_t len) 2810 { 2811 size_t total; 2812 struct wil6210_priv *wil = vif_to_wil(vif); 2813 struct ieee80211_mgmt *mgmt_frame = (void *)buf; 2814 struct wmi_sw_tx_req_cmd *cmd; 2815 struct { 2816 struct wmi_cmd_hdr wmi; 2817 struct wmi_sw_tx_complete_event evt; 2818 } __packed evt = { 2819 .evt = {.status = WMI_FW_STATUS_FAILURE}, 2820 }; 2821 int rc; 2822 2823 wil_dbg_misc(wil, "mgmt_tx mid %d\n", vif->mid); 2824 wil_hex_dump_misc("mgmt tx frame ", DUMP_PREFIX_OFFSET, 16, 1, buf, 2825 len, true); 2826 2827 if (len < sizeof(struct ieee80211_hdr_3addr)) 2828 return -EINVAL; 2829 2830 total = sizeof(*cmd) + len; 2831 if (total < len) { 2832 wil_err(wil, "mgmt_tx invalid len %zu\n", len); 2833 return -EINVAL; 2834 } 2835 2836 cmd = kmalloc(total, GFP_KERNEL); 2837 if (!cmd) 2838 return -ENOMEM; 2839 2840 memcpy(cmd->dst_mac, mgmt_frame->da, WMI_MAC_LEN); 2841 cmd->len = cpu_to_le16(len); 2842 memcpy(cmd->payload, buf, len); 2843 2844 rc = wmi_call(wil, WMI_SW_TX_REQ_CMDID, vif->mid, cmd, total, 2845 WMI_SW_TX_COMPLETE_EVENTID, &evt, sizeof(evt), 2000); 2846 if (!rc && evt.evt.status != WMI_FW_STATUS_SUCCESS) { 2847 wil_err(wil, "mgmt_tx failed with status %d\n", evt.evt.status); 2848 rc = -EINVAL; 2849 } 2850 2851 kfree(cmd); 2852 2853 return rc; 2854 } 2855