1 /*
2  * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
3  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/moduleparam.h>
19 #include <linux/etherdevice.h>
20 #include <linux/if_arp.h>
21 
22 #include "wil6210.h"
23 #include "txrx.h"
24 #include "wmi.h"
25 #include "trace.h"
26 
27 static uint max_assoc_sta = WIL6210_MAX_CID;
28 module_param(max_assoc_sta, uint, 0644);
29 MODULE_PARM_DESC(max_assoc_sta, " Max number of stations associated to the AP");
30 
31 int agg_wsize; /* = 0; */
32 module_param(agg_wsize, int, 0644);
33 MODULE_PARM_DESC(agg_wsize, " Window size for Tx Block Ack after connect;"
34 		 " 0 - use default; < 0 - don't auto-establish");
35 
36 u8 led_id = WIL_LED_INVALID_ID;
37 module_param(led_id, byte, 0444);
38 MODULE_PARM_DESC(led_id,
39 		 " 60G device led enablement. Set the led ID (0-2) to enable");
40 
41 #define WIL_WAIT_FOR_SUSPEND_RESUME_COMP 200
42 #define WIL_WMI_CALL_GENERAL_TO_MS 100
43 
44 /**
45  * WMI event receiving - theory of operations
46  *
47  * When firmware about to report WMI event, it fills memory area
48  * in the mailbox and raises misc. IRQ. Thread interrupt handler invoked for
49  * the misc IRQ, function @wmi_recv_cmd called by thread IRQ handler.
50  *
51  * @wmi_recv_cmd reads event, allocates memory chunk  and attaches it to the
52  * event list @wil->pending_wmi_ev. Then, work queue @wil->wmi_wq wakes up
53  * and handles events within the @wmi_event_worker. Every event get detached
54  * from list, processed and deleted.
55  *
56  * Purpose for this mechanism is to release IRQ thread; otherwise,
57  * if WMI event handling involves another WMI command flow, this 2-nd flow
58  * won't be completed because of blocked IRQ thread.
59  */
60 
61 /**
62  * Addressing - theory of operations
63  *
64  * There are several buses present on the WIL6210 card.
65  * Same memory areas are visible at different address on
66  * the different busses. There are 3 main bus masters:
67  *  - MAC CPU (ucode)
68  *  - User CPU (firmware)
69  *  - AHB (host)
70  *
71  * On the PCI bus, there is one BAR (BAR0) of 2Mb size, exposing
72  * AHB addresses starting from 0x880000
73  *
74  * Internally, firmware uses addresses that allow faster access but
75  * are invisible from the host. To read from these addresses, alternative
76  * AHB address must be used.
77  */
78 
79 /**
80  * @sparrow_fw_mapping provides memory remapping table for sparrow
81  *
82  * array size should be in sync with the declaration in the wil6210.h
83  *
84  * Sparrow memory mapping:
85  * Linker address         PCI/Host address
86  *                        0x880000 .. 0xa80000  2Mb BAR0
87  * 0x800000 .. 0x808000   0x900000 .. 0x908000  32k DCCM
88  * 0x840000 .. 0x860000   0x908000 .. 0x928000  128k PERIPH
89  */
90 const struct fw_map sparrow_fw_mapping[] = {
91 	/* FW code RAM 256k */
92 	{0x000000, 0x040000, 0x8c0000, "fw_code", true},
93 	/* FW data RAM 32k */
94 	{0x800000, 0x808000, 0x900000, "fw_data", true},
95 	/* periph data 128k */
96 	{0x840000, 0x860000, 0x908000, "fw_peri", true},
97 	/* various RGF 40k */
98 	{0x880000, 0x88a000, 0x880000, "rgf", true},
99 	/* AGC table   4k */
100 	{0x88a000, 0x88b000, 0x88a000, "AGC_tbl", true},
101 	/* Pcie_ext_rgf 4k */
102 	{0x88b000, 0x88c000, 0x88b000, "rgf_ext", true},
103 	/* mac_ext_rgf 512b */
104 	{0x88c000, 0x88c200, 0x88c000, "mac_rgf_ext", true},
105 	/* upper area 548k */
106 	{0x8c0000, 0x949000, 0x8c0000, "upper", true},
107 	/* UCODE areas - accessible by debugfs blobs but not by
108 	 * wmi_addr_remap. UCODE areas MUST be added AFTER FW areas!
109 	 */
110 	/* ucode code RAM 128k */
111 	{0x000000, 0x020000, 0x920000, "uc_code", false},
112 	/* ucode data RAM 16k */
113 	{0x800000, 0x804000, 0x940000, "uc_data", false},
114 };
115 
116 /**
117  * @sparrow_d0_mac_rgf_ext - mac_rgf_ext section for Sparrow D0
118  * it is a bit larger to support extra features
119  */
120 const struct fw_map sparrow_d0_mac_rgf_ext = {
121 	0x88c000, 0x88c500, 0x88c000, "mac_rgf_ext", true
122 };
123 
124 /**
125  * @talyn_fw_mapping provides memory remapping table for Talyn
126  *
127  * array size should be in sync with the declaration in the wil6210.h
128  *
129  * Talyn memory mapping:
130  * Linker address         PCI/Host address
131  *                        0x880000 .. 0xc80000  4Mb BAR0
132  * 0x800000 .. 0x820000   0xa00000 .. 0xa20000  128k DCCM
133  * 0x840000 .. 0x858000   0xa20000 .. 0xa38000  96k PERIPH
134  */
135 const struct fw_map talyn_fw_mapping[] = {
136 	/* FW code RAM 1M */
137 	{0x000000, 0x100000, 0x900000, "fw_code", true},
138 	/* FW data RAM 128k */
139 	{0x800000, 0x820000, 0xa00000, "fw_data", true},
140 	/* periph. data RAM 96k */
141 	{0x840000, 0x858000, 0xa20000, "fw_peri", true},
142 	/* various RGF 40k */
143 	{0x880000, 0x88a000, 0x880000, "rgf", true},
144 	/* AGC table 4k */
145 	{0x88a000, 0x88b000, 0x88a000, "AGC_tbl", true},
146 	/* Pcie_ext_rgf 4k */
147 	{0x88b000, 0x88c000, 0x88b000, "rgf_ext", true},
148 	/* mac_ext_rgf 1344b */
149 	{0x88c000, 0x88c540, 0x88c000, "mac_rgf_ext", true},
150 	/* ext USER RGF 4k */
151 	{0x88d000, 0x88e000, 0x88d000, "ext_user_rgf", true},
152 	/* OTP 4k */
153 	{0x8a0000, 0x8a1000, 0x8a0000, "otp", true},
154 	/* DMA EXT RGF 64k */
155 	{0x8b0000, 0x8c0000, 0x8b0000, "dma_ext_rgf", true},
156 	/* upper area 1536k */
157 	{0x900000, 0xa80000, 0x900000, "upper", true},
158 	/* UCODE areas - accessible by debugfs blobs but not by
159 	 * wmi_addr_remap. UCODE areas MUST be added AFTER FW areas!
160 	 */
161 	/* ucode code RAM 256k */
162 	{0x000000, 0x040000, 0xa38000, "uc_code", false},
163 	/* ucode data RAM 32k */
164 	{0x800000, 0x808000, 0xa78000, "uc_data", false},
165 };
166 
167 struct fw_map fw_mapping[MAX_FW_MAPPING_TABLE_SIZE];
168 
169 struct blink_on_off_time led_blink_time[] = {
170 	{WIL_LED_BLINK_ON_SLOW_MS, WIL_LED_BLINK_OFF_SLOW_MS},
171 	{WIL_LED_BLINK_ON_MED_MS, WIL_LED_BLINK_OFF_MED_MS},
172 	{WIL_LED_BLINK_ON_FAST_MS, WIL_LED_BLINK_OFF_FAST_MS},
173 };
174 
175 u8 led_polarity = LED_POLARITY_LOW_ACTIVE;
176 
177 /**
178  * return AHB address for given firmware internal (linker) address
179  * @x - internal address
180  * If address have no valid AHB mapping, return 0
181  */
182 static u32 wmi_addr_remap(u32 x)
183 {
184 	uint i;
185 
186 	for (i = 0; i < ARRAY_SIZE(fw_mapping); i++) {
187 		if (fw_mapping[i].fw &&
188 		    ((x >= fw_mapping[i].from) && (x < fw_mapping[i].to)))
189 			return x + fw_mapping[i].host - fw_mapping[i].from;
190 	}
191 
192 	return 0;
193 }
194 
195 /**
196  * find fw_mapping entry by section name
197  * @section - section name
198  *
199  * Return pointer to section or NULL if not found
200  */
201 struct fw_map *wil_find_fw_mapping(const char *section)
202 {
203 	int i;
204 
205 	for (i = 0; i < ARRAY_SIZE(fw_mapping); i++)
206 		if (fw_mapping[i].name &&
207 		    !strcmp(section, fw_mapping[i].name))
208 			return &fw_mapping[i];
209 
210 	return NULL;
211 }
212 
213 /**
214  * Check address validity for WMI buffer; remap if needed
215  * @ptr - internal (linker) fw/ucode address
216  * @size - if non zero, validate the block does not
217  *  exceed the device memory (bar)
218  *
219  * Valid buffer should be DWORD aligned
220  *
221  * return address for accessing buffer from the host;
222  * if buffer is not valid, return NULL.
223  */
224 void __iomem *wmi_buffer_block(struct wil6210_priv *wil, __le32 ptr_, u32 size)
225 {
226 	u32 off;
227 	u32 ptr = le32_to_cpu(ptr_);
228 
229 	if (ptr % 4)
230 		return NULL;
231 
232 	ptr = wmi_addr_remap(ptr);
233 	if (ptr < WIL6210_FW_HOST_OFF)
234 		return NULL;
235 
236 	off = HOSTADDR(ptr);
237 	if (off > wil->bar_size - 4)
238 		return NULL;
239 	if (size && ((off + size > wil->bar_size) || (off + size < off)))
240 		return NULL;
241 
242 	return wil->csr + off;
243 }
244 
245 void __iomem *wmi_buffer(struct wil6210_priv *wil, __le32 ptr_)
246 {
247 	return wmi_buffer_block(wil, ptr_, 0);
248 }
249 
250 /**
251  * Check address validity
252  */
253 void __iomem *wmi_addr(struct wil6210_priv *wil, u32 ptr)
254 {
255 	u32 off;
256 
257 	if (ptr % 4)
258 		return NULL;
259 
260 	if (ptr < WIL6210_FW_HOST_OFF)
261 		return NULL;
262 
263 	off = HOSTADDR(ptr);
264 	if (off > wil->bar_size - 4)
265 		return NULL;
266 
267 	return wil->csr + off;
268 }
269 
270 int wmi_read_hdr(struct wil6210_priv *wil, __le32 ptr,
271 		 struct wil6210_mbox_hdr *hdr)
272 {
273 	void __iomem *src = wmi_buffer(wil, ptr);
274 
275 	if (!src)
276 		return -EINVAL;
277 
278 	wil_memcpy_fromio_32(hdr, src, sizeof(*hdr));
279 
280 	return 0;
281 }
282 
283 static const char *cmdid2name(u16 cmdid)
284 {
285 	switch (cmdid) {
286 	case WMI_NOTIFY_REQ_CMDID:
287 		return "WMI_NOTIFY_REQ_CMD";
288 	case WMI_START_SCAN_CMDID:
289 		return "WMI_START_SCAN_CMD";
290 	case WMI_CONNECT_CMDID:
291 		return "WMI_CONNECT_CMD";
292 	case WMI_DISCONNECT_CMDID:
293 		return "WMI_DISCONNECT_CMD";
294 	case WMI_SW_TX_REQ_CMDID:
295 		return "WMI_SW_TX_REQ_CMD";
296 	case WMI_GET_RF_SECTOR_PARAMS_CMDID:
297 		return "WMI_GET_RF_SECTOR_PARAMS_CMD";
298 	case WMI_SET_RF_SECTOR_PARAMS_CMDID:
299 		return "WMI_SET_RF_SECTOR_PARAMS_CMD";
300 	case WMI_GET_SELECTED_RF_SECTOR_INDEX_CMDID:
301 		return "WMI_GET_SELECTED_RF_SECTOR_INDEX_CMD";
302 	case WMI_SET_SELECTED_RF_SECTOR_INDEX_CMDID:
303 		return "WMI_SET_SELECTED_RF_SECTOR_INDEX_CMD";
304 	case WMI_BRP_SET_ANT_LIMIT_CMDID:
305 		return "WMI_BRP_SET_ANT_LIMIT_CMD";
306 	case WMI_TOF_SESSION_START_CMDID:
307 		return "WMI_TOF_SESSION_START_CMD";
308 	case WMI_AOA_MEAS_CMDID:
309 		return "WMI_AOA_MEAS_CMD";
310 	case WMI_PMC_CMDID:
311 		return "WMI_PMC_CMD";
312 	case WMI_TOF_GET_TX_RX_OFFSET_CMDID:
313 		return "WMI_TOF_GET_TX_RX_OFFSET_CMD";
314 	case WMI_TOF_SET_TX_RX_OFFSET_CMDID:
315 		return "WMI_TOF_SET_TX_RX_OFFSET_CMD";
316 	case WMI_VRING_CFG_CMDID:
317 		return "WMI_VRING_CFG_CMD";
318 	case WMI_BCAST_VRING_CFG_CMDID:
319 		return "WMI_BCAST_VRING_CFG_CMD";
320 	case WMI_TRAFFIC_SUSPEND_CMDID:
321 		return "WMI_TRAFFIC_SUSPEND_CMD";
322 	case WMI_TRAFFIC_RESUME_CMDID:
323 		return "WMI_TRAFFIC_RESUME_CMD";
324 	case WMI_ECHO_CMDID:
325 		return "WMI_ECHO_CMD";
326 	case WMI_SET_MAC_ADDRESS_CMDID:
327 		return "WMI_SET_MAC_ADDRESS_CMD";
328 	case WMI_LED_CFG_CMDID:
329 		return "WMI_LED_CFG_CMD";
330 	case WMI_PCP_START_CMDID:
331 		return "WMI_PCP_START_CMD";
332 	case WMI_PCP_STOP_CMDID:
333 		return "WMI_PCP_STOP_CMD";
334 	case WMI_SET_SSID_CMDID:
335 		return "WMI_SET_SSID_CMD";
336 	case WMI_GET_SSID_CMDID:
337 		return "WMI_GET_SSID_CMD";
338 	case WMI_SET_PCP_CHANNEL_CMDID:
339 		return "WMI_SET_PCP_CHANNEL_CMD";
340 	case WMI_GET_PCP_CHANNEL_CMDID:
341 		return "WMI_GET_PCP_CHANNEL_CMD";
342 	case WMI_P2P_CFG_CMDID:
343 		return "WMI_P2P_CFG_CMD";
344 	case WMI_PORT_ALLOCATE_CMDID:
345 		return "WMI_PORT_ALLOCATE_CMD";
346 	case WMI_PORT_DELETE_CMDID:
347 		return "WMI_PORT_DELETE_CMD";
348 	case WMI_START_LISTEN_CMDID:
349 		return "WMI_START_LISTEN_CMD";
350 	case WMI_START_SEARCH_CMDID:
351 		return "WMI_START_SEARCH_CMD";
352 	case WMI_DISCOVERY_STOP_CMDID:
353 		return "WMI_DISCOVERY_STOP_CMD";
354 	case WMI_DELETE_CIPHER_KEY_CMDID:
355 		return "WMI_DELETE_CIPHER_KEY_CMD";
356 	case WMI_ADD_CIPHER_KEY_CMDID:
357 		return "WMI_ADD_CIPHER_KEY_CMD";
358 	case WMI_SET_APPIE_CMDID:
359 		return "WMI_SET_APPIE_CMD";
360 	case WMI_CFG_RX_CHAIN_CMDID:
361 		return "WMI_CFG_RX_CHAIN_CMD";
362 	case WMI_TEMP_SENSE_CMDID:
363 		return "WMI_TEMP_SENSE_CMD";
364 	case WMI_DEL_STA_CMDID:
365 		return "WMI_DEL_STA_CMD";
366 	case WMI_DISCONNECT_STA_CMDID:
367 		return "WMI_DISCONNECT_STA_CMD";
368 	case WMI_VRING_BA_EN_CMDID:
369 		return "WMI_VRING_BA_EN_CMD";
370 	case WMI_VRING_BA_DIS_CMDID:
371 		return "WMI_VRING_BA_DIS_CMD";
372 	case WMI_RCP_DELBA_CMDID:
373 		return "WMI_RCP_DELBA_CMD";
374 	case WMI_RCP_ADDBA_RESP_CMDID:
375 		return "WMI_RCP_ADDBA_RESP_CMD";
376 	case WMI_PS_DEV_PROFILE_CFG_CMDID:
377 		return "WMI_PS_DEV_PROFILE_CFG_CMD";
378 	case WMI_SET_MGMT_RETRY_LIMIT_CMDID:
379 		return "WMI_SET_MGMT_RETRY_LIMIT_CMD";
380 	case WMI_GET_MGMT_RETRY_LIMIT_CMDID:
381 		return "WMI_GET_MGMT_RETRY_LIMIT_CMD";
382 	case WMI_ABORT_SCAN_CMDID:
383 		return "WMI_ABORT_SCAN_CMD";
384 	case WMI_NEW_STA_CMDID:
385 		return "WMI_NEW_STA_CMD";
386 	case WMI_SET_THERMAL_THROTTLING_CFG_CMDID:
387 		return "WMI_SET_THERMAL_THROTTLING_CFG_CMD";
388 	case WMI_GET_THERMAL_THROTTLING_CFG_CMDID:
389 		return "WMI_GET_THERMAL_THROTTLING_CFG_CMD";
390 	case WMI_LINK_MAINTAIN_CFG_WRITE_CMDID:
391 		return "WMI_LINK_MAINTAIN_CFG_WRITE_CMD";
392 	case WMI_LO_POWER_CALIB_FROM_OTP_CMDID:
393 		return "WMI_LO_POWER_CALIB_FROM_OTP_CMD";
394 	case WMI_START_SCHED_SCAN_CMDID:
395 		return "WMI_START_SCHED_SCAN_CMD";
396 	case WMI_STOP_SCHED_SCAN_CMDID:
397 		return "WMI_STOP_SCHED_SCAN_CMD";
398 	default:
399 		return "Untracked CMD";
400 	}
401 }
402 
403 static const char *eventid2name(u16 eventid)
404 {
405 	switch (eventid) {
406 	case WMI_NOTIFY_REQ_DONE_EVENTID:
407 		return "WMI_NOTIFY_REQ_DONE_EVENT";
408 	case WMI_DISCONNECT_EVENTID:
409 		return "WMI_DISCONNECT_EVENT";
410 	case WMI_SW_TX_COMPLETE_EVENTID:
411 		return "WMI_SW_TX_COMPLETE_EVENT";
412 	case WMI_GET_RF_SECTOR_PARAMS_DONE_EVENTID:
413 		return "WMI_GET_RF_SECTOR_PARAMS_DONE_EVENT";
414 	case WMI_SET_RF_SECTOR_PARAMS_DONE_EVENTID:
415 		return "WMI_SET_RF_SECTOR_PARAMS_DONE_EVENT";
416 	case WMI_GET_SELECTED_RF_SECTOR_INDEX_DONE_EVENTID:
417 		return "WMI_GET_SELECTED_RF_SECTOR_INDEX_DONE_EVENT";
418 	case WMI_SET_SELECTED_RF_SECTOR_INDEX_DONE_EVENTID:
419 		return "WMI_SET_SELECTED_RF_SECTOR_INDEX_DONE_EVENT";
420 	case WMI_BRP_SET_ANT_LIMIT_EVENTID:
421 		return "WMI_BRP_SET_ANT_LIMIT_EVENT";
422 	case WMI_FW_READY_EVENTID:
423 		return "WMI_FW_READY_EVENT";
424 	case WMI_TRAFFIC_RESUME_EVENTID:
425 		return "WMI_TRAFFIC_RESUME_EVENT";
426 	case WMI_TOF_GET_TX_RX_OFFSET_EVENTID:
427 		return "WMI_TOF_GET_TX_RX_OFFSET_EVENT";
428 	case WMI_TOF_SET_TX_RX_OFFSET_EVENTID:
429 		return "WMI_TOF_SET_TX_RX_OFFSET_EVENT";
430 	case WMI_VRING_CFG_DONE_EVENTID:
431 		return "WMI_VRING_CFG_DONE_EVENT";
432 	case WMI_READY_EVENTID:
433 		return "WMI_READY_EVENT";
434 	case WMI_RX_MGMT_PACKET_EVENTID:
435 		return "WMI_RX_MGMT_PACKET_EVENT";
436 	case WMI_TX_MGMT_PACKET_EVENTID:
437 		return "WMI_TX_MGMT_PACKET_EVENT";
438 	case WMI_SCAN_COMPLETE_EVENTID:
439 		return "WMI_SCAN_COMPLETE_EVENT";
440 	case WMI_ACS_PASSIVE_SCAN_COMPLETE_EVENTID:
441 		return "WMI_ACS_PASSIVE_SCAN_COMPLETE_EVENT";
442 	case WMI_CONNECT_EVENTID:
443 		return "WMI_CONNECT_EVENT";
444 	case WMI_EAPOL_RX_EVENTID:
445 		return "WMI_EAPOL_RX_EVENT";
446 	case WMI_BA_STATUS_EVENTID:
447 		return "WMI_BA_STATUS_EVENT";
448 	case WMI_RCP_ADDBA_REQ_EVENTID:
449 		return "WMI_RCP_ADDBA_REQ_EVENT";
450 	case WMI_DELBA_EVENTID:
451 		return "WMI_DELBA_EVENT";
452 	case WMI_VRING_EN_EVENTID:
453 		return "WMI_VRING_EN_EVENT";
454 	case WMI_DATA_PORT_OPEN_EVENTID:
455 		return "WMI_DATA_PORT_OPEN_EVENT";
456 	case WMI_AOA_MEAS_EVENTID:
457 		return "WMI_AOA_MEAS_EVENT";
458 	case WMI_TOF_SESSION_END_EVENTID:
459 		return "WMI_TOF_SESSION_END_EVENT";
460 	case WMI_TOF_GET_CAPABILITIES_EVENTID:
461 		return "WMI_TOF_GET_CAPABILITIES_EVENT";
462 	case WMI_TOF_SET_LCR_EVENTID:
463 		return "WMI_TOF_SET_LCR_EVENT";
464 	case WMI_TOF_SET_LCI_EVENTID:
465 		return "WMI_TOF_SET_LCI_EVENT";
466 	case WMI_TOF_FTM_PER_DEST_RES_EVENTID:
467 		return "WMI_TOF_FTM_PER_DEST_RES_EVENT";
468 	case WMI_TOF_CHANNEL_INFO_EVENTID:
469 		return "WMI_TOF_CHANNEL_INFO_EVENT";
470 	case WMI_TRAFFIC_SUSPEND_EVENTID:
471 		return "WMI_TRAFFIC_SUSPEND_EVENT";
472 	case WMI_ECHO_RSP_EVENTID:
473 		return "WMI_ECHO_RSP_EVENT";
474 	case WMI_LED_CFG_DONE_EVENTID:
475 		return "WMI_LED_CFG_DONE_EVENT";
476 	case WMI_PCP_STARTED_EVENTID:
477 		return "WMI_PCP_STARTED_EVENT";
478 	case WMI_PCP_STOPPED_EVENTID:
479 		return "WMI_PCP_STOPPED_EVENT";
480 	case WMI_GET_SSID_EVENTID:
481 		return "WMI_GET_SSID_EVENT";
482 	case WMI_GET_PCP_CHANNEL_EVENTID:
483 		return "WMI_GET_PCP_CHANNEL_EVENT";
484 	case WMI_P2P_CFG_DONE_EVENTID:
485 		return "WMI_P2P_CFG_DONE_EVENT";
486 	case WMI_PORT_ALLOCATED_EVENTID:
487 		return "WMI_PORT_ALLOCATED_EVENT";
488 	case WMI_PORT_DELETED_EVENTID:
489 		return "WMI_PORT_DELETED_EVENT";
490 	case WMI_LISTEN_STARTED_EVENTID:
491 		return "WMI_LISTEN_STARTED_EVENT";
492 	case WMI_SEARCH_STARTED_EVENTID:
493 		return "WMI_SEARCH_STARTED_EVENT";
494 	case WMI_DISCOVERY_STOPPED_EVENTID:
495 		return "WMI_DISCOVERY_STOPPED_EVENT";
496 	case WMI_CFG_RX_CHAIN_DONE_EVENTID:
497 		return "WMI_CFG_RX_CHAIN_DONE_EVENT";
498 	case WMI_TEMP_SENSE_DONE_EVENTID:
499 		return "WMI_TEMP_SENSE_DONE_EVENT";
500 	case WMI_RCP_ADDBA_RESP_SENT_EVENTID:
501 		return "WMI_RCP_ADDBA_RESP_SENT_EVENT";
502 	case WMI_PS_DEV_PROFILE_CFG_EVENTID:
503 		return "WMI_PS_DEV_PROFILE_CFG_EVENT";
504 	case WMI_SET_MGMT_RETRY_LIMIT_EVENTID:
505 		return "WMI_SET_MGMT_RETRY_LIMIT_EVENT";
506 	case WMI_GET_MGMT_RETRY_LIMIT_EVENTID:
507 		return "WMI_GET_MGMT_RETRY_LIMIT_EVENT";
508 	case WMI_SET_THERMAL_THROTTLING_CFG_EVENTID:
509 		return "WMI_SET_THERMAL_THROTTLING_CFG_EVENT";
510 	case WMI_GET_THERMAL_THROTTLING_CFG_EVENTID:
511 		return "WMI_GET_THERMAL_THROTTLING_CFG_EVENT";
512 	case WMI_LINK_MAINTAIN_CFG_WRITE_DONE_EVENTID:
513 		return "WMI_LINK_MAINTAIN_CFG_WRITE_DONE_EVENT";
514 	case WMI_LO_POWER_CALIB_FROM_OTP_EVENTID:
515 		return "WMI_LO_POWER_CALIB_FROM_OTP_EVENT";
516 	case WMI_START_SCHED_SCAN_EVENTID:
517 		return "WMI_START_SCHED_SCAN_EVENT";
518 	case WMI_STOP_SCHED_SCAN_EVENTID:
519 		return "WMI_STOP_SCHED_SCAN_EVENT";
520 	case WMI_SCHED_SCAN_RESULT_EVENTID:
521 		return "WMI_SCHED_SCAN_RESULT_EVENT";
522 	default:
523 		return "Untracked EVENT";
524 	}
525 }
526 
527 static int __wmi_send(struct wil6210_priv *wil, u16 cmdid, u8 mid,
528 		      void *buf, u16 len)
529 {
530 	struct {
531 		struct wil6210_mbox_hdr hdr;
532 		struct wmi_cmd_hdr wmi;
533 	} __packed cmd = {
534 		.hdr = {
535 			.type = WIL_MBOX_HDR_TYPE_WMI,
536 			.flags = 0,
537 			.len = cpu_to_le16(sizeof(cmd.wmi) + len),
538 		},
539 		.wmi = {
540 			.mid = mid,
541 			.command_id = cpu_to_le16(cmdid),
542 		},
543 	};
544 	struct wil6210_mbox_ring *r = &wil->mbox_ctl.tx;
545 	struct wil6210_mbox_ring_desc d_head;
546 	u32 next_head;
547 	void __iomem *dst;
548 	void __iomem *head = wmi_addr(wil, r->head);
549 	uint retry;
550 	int rc = 0;
551 
552 	if (len > r->entry_size - sizeof(cmd)) {
553 		wil_err(wil, "WMI size too large: %d bytes, max is %d\n",
554 			(int)(sizeof(cmd) + len), r->entry_size);
555 		return -ERANGE;
556 	}
557 
558 	might_sleep();
559 
560 	if (!test_bit(wil_status_fwready, wil->status)) {
561 		wil_err(wil, "WMI: cannot send command while FW not ready\n");
562 		return -EAGAIN;
563 	}
564 
565 	/* Allow sending only suspend / resume commands during susepnd flow */
566 	if ((test_bit(wil_status_suspending, wil->status) ||
567 	     test_bit(wil_status_suspended, wil->status) ||
568 	     test_bit(wil_status_resuming, wil->status)) &&
569 	     ((cmdid != WMI_TRAFFIC_SUSPEND_CMDID) &&
570 	      (cmdid != WMI_TRAFFIC_RESUME_CMDID))) {
571 		wil_err(wil, "WMI: reject send_command during suspend\n");
572 		return -EINVAL;
573 	}
574 
575 	if (!head) {
576 		wil_err(wil, "WMI head is garbage: 0x%08x\n", r->head);
577 		return -EINVAL;
578 	}
579 
580 	wil_halp_vote(wil);
581 
582 	/* read Tx head till it is not busy */
583 	for (retry = 5; retry > 0; retry--) {
584 		wil_memcpy_fromio_32(&d_head, head, sizeof(d_head));
585 		if (d_head.sync == 0)
586 			break;
587 		msleep(20);
588 	}
589 	if (d_head.sync != 0) {
590 		wil_err(wil, "WMI head busy\n");
591 		rc = -EBUSY;
592 		goto out;
593 	}
594 	/* next head */
595 	next_head = r->base + ((r->head - r->base + sizeof(d_head)) % r->size);
596 	wil_dbg_wmi(wil, "Head 0x%08x -> 0x%08x\n", r->head, next_head);
597 	/* wait till FW finish with previous command */
598 	for (retry = 5; retry > 0; retry--) {
599 		if (!test_bit(wil_status_fwready, wil->status)) {
600 			wil_err(wil, "WMI: cannot send command while FW not ready\n");
601 			rc = -EAGAIN;
602 			goto out;
603 		}
604 		r->tail = wil_r(wil, RGF_MBOX +
605 				offsetof(struct wil6210_mbox_ctl, tx.tail));
606 		if (next_head != r->tail)
607 			break;
608 		msleep(20);
609 	}
610 	if (next_head == r->tail) {
611 		wil_err(wil, "WMI ring full\n");
612 		rc = -EBUSY;
613 		goto out;
614 	}
615 	dst = wmi_buffer(wil, d_head.addr);
616 	if (!dst) {
617 		wil_err(wil, "invalid WMI buffer: 0x%08x\n",
618 			le32_to_cpu(d_head.addr));
619 		rc = -EAGAIN;
620 		goto out;
621 	}
622 	cmd.hdr.seq = cpu_to_le16(++wil->wmi_seq);
623 	/* set command */
624 	wil_dbg_wmi(wil, "sending %s (0x%04x) [%d] mid %d\n",
625 		    cmdid2name(cmdid), cmdid, len, mid);
626 	wil_hex_dump_wmi("Cmd ", DUMP_PREFIX_OFFSET, 16, 1, &cmd,
627 			 sizeof(cmd), true);
628 	wil_hex_dump_wmi("cmd ", DUMP_PREFIX_OFFSET, 16, 1, buf,
629 			 len, true);
630 	wil_memcpy_toio_32(dst, &cmd, sizeof(cmd));
631 	wil_memcpy_toio_32(dst + sizeof(cmd), buf, len);
632 	/* mark entry as full */
633 	wil_w(wil, r->head + offsetof(struct wil6210_mbox_ring_desc, sync), 1);
634 	/* advance next ptr */
635 	wil_w(wil, RGF_MBOX + offsetof(struct wil6210_mbox_ctl, tx.head),
636 	      r->head = next_head);
637 
638 	trace_wil6210_wmi_cmd(&cmd.wmi, buf, len);
639 
640 	/* interrupt to FW */
641 	wil_w(wil, RGF_USER_USER_ICR + offsetof(struct RGF_ICR, ICS),
642 	      SW_INT_MBOX);
643 
644 out:
645 	wil_halp_unvote(wil);
646 	return rc;
647 }
648 
649 int wmi_send(struct wil6210_priv *wil, u16 cmdid, u8 mid, void *buf, u16 len)
650 {
651 	int rc;
652 
653 	mutex_lock(&wil->wmi_mutex);
654 	rc = __wmi_send(wil, cmdid, mid, buf, len);
655 	mutex_unlock(&wil->wmi_mutex);
656 
657 	return rc;
658 }
659 
660 /*=== Event handlers ===*/
661 static void wmi_evt_ready(struct wil6210_vif *vif, int id, void *d, int len)
662 {
663 	struct wil6210_priv *wil = vif_to_wil(vif);
664 	struct wiphy *wiphy = wil_to_wiphy(wil);
665 	struct wmi_ready_event *evt = d;
666 
667 	wil_info(wil, "FW ver. %s(SW %d); MAC %pM; %d MID's\n",
668 		 wil->fw_version, le32_to_cpu(evt->sw_version),
669 		 evt->mac, evt->numof_additional_mids);
670 	if (evt->numof_additional_mids + 1 < wil->max_vifs) {
671 		wil_err(wil, "FW does not support enough MIDs (need %d)",
672 			wil->max_vifs - 1);
673 		return; /* FW load will fail after timeout */
674 	}
675 	/* ignore MAC address, we already have it from the boot loader */
676 	strlcpy(wiphy->fw_version, wil->fw_version, sizeof(wiphy->fw_version));
677 
678 	if (len > offsetof(struct wmi_ready_event, rfc_read_calib_result)) {
679 		wil_dbg_wmi(wil, "rfc calibration result %d\n",
680 			    evt->rfc_read_calib_result);
681 		wil->fw_calib_result = evt->rfc_read_calib_result;
682 	}
683 	wil_set_recovery_state(wil, fw_recovery_idle);
684 	set_bit(wil_status_fwready, wil->status);
685 	/* let the reset sequence continue */
686 	complete(&wil->wmi_ready);
687 }
688 
689 static void wmi_evt_rx_mgmt(struct wil6210_vif *vif, int id, void *d, int len)
690 {
691 	struct wil6210_priv *wil = vif_to_wil(vif);
692 	struct wmi_rx_mgmt_packet_event *data = d;
693 	struct wiphy *wiphy = wil_to_wiphy(wil);
694 	struct ieee80211_mgmt *rx_mgmt_frame =
695 			(struct ieee80211_mgmt *)data->payload;
696 	int flen = len - offsetof(struct wmi_rx_mgmt_packet_event, payload);
697 	int ch_no;
698 	u32 freq;
699 	struct ieee80211_channel *channel;
700 	s32 signal;
701 	__le16 fc;
702 	u32 d_len;
703 	u16 d_status;
704 
705 	if (flen < 0) {
706 		wil_err(wil, "MGMT Rx: short event, len %d\n", len);
707 		return;
708 	}
709 
710 	d_len = le32_to_cpu(data->info.len);
711 	if (d_len != flen) {
712 		wil_err(wil,
713 			"MGMT Rx: length mismatch, d_len %d should be %d\n",
714 			d_len, flen);
715 		return;
716 	}
717 
718 	ch_no = data->info.channel + 1;
719 	freq = ieee80211_channel_to_frequency(ch_no, NL80211_BAND_60GHZ);
720 	channel = ieee80211_get_channel(wiphy, freq);
721 	if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities))
722 		signal = 100 * data->info.rssi;
723 	else
724 		signal = data->info.sqi;
725 	d_status = le16_to_cpu(data->info.status);
726 	fc = rx_mgmt_frame->frame_control;
727 
728 	wil_dbg_wmi(wil, "MGMT Rx: channel %d MCS %d RSSI %d SQI %d%%\n",
729 		    data->info.channel, data->info.mcs, data->info.rssi,
730 		    data->info.sqi);
731 	wil_dbg_wmi(wil, "status 0x%04x len %d fc 0x%04x\n", d_status, d_len,
732 		    le16_to_cpu(fc));
733 	wil_dbg_wmi(wil, "qid %d mid %d cid %d\n",
734 		    data->info.qid, data->info.mid, data->info.cid);
735 	wil_hex_dump_wmi("MGMT Rx ", DUMP_PREFIX_OFFSET, 16, 1, rx_mgmt_frame,
736 			 d_len, true);
737 
738 	if (!channel) {
739 		wil_err(wil, "Frame on unsupported channel\n");
740 		return;
741 	}
742 
743 	if (ieee80211_is_beacon(fc) || ieee80211_is_probe_resp(fc)) {
744 		struct cfg80211_bss *bss;
745 		u64 tsf = le64_to_cpu(rx_mgmt_frame->u.beacon.timestamp);
746 		u16 cap = le16_to_cpu(rx_mgmt_frame->u.beacon.capab_info);
747 		u16 bi = le16_to_cpu(rx_mgmt_frame->u.beacon.beacon_int);
748 		const u8 *ie_buf = rx_mgmt_frame->u.beacon.variable;
749 		size_t ie_len = d_len - offsetof(struct ieee80211_mgmt,
750 						 u.beacon.variable);
751 		wil_dbg_wmi(wil, "Capability info : 0x%04x\n", cap);
752 		wil_dbg_wmi(wil, "TSF : 0x%016llx\n", tsf);
753 		wil_dbg_wmi(wil, "Beacon interval : %d\n", bi);
754 		wil_hex_dump_wmi("IE ", DUMP_PREFIX_OFFSET, 16, 1, ie_buf,
755 				 ie_len, true);
756 
757 		wil_dbg_wmi(wil, "Capability info : 0x%04x\n", cap);
758 
759 		bss = cfg80211_inform_bss_frame(wiphy, channel, rx_mgmt_frame,
760 						d_len, signal, GFP_KERNEL);
761 		if (bss) {
762 			wil_dbg_wmi(wil, "Added BSS %pM\n",
763 				    rx_mgmt_frame->bssid);
764 			cfg80211_put_bss(wiphy, bss);
765 		} else {
766 			wil_err(wil, "cfg80211_inform_bss_frame() failed\n");
767 		}
768 	} else {
769 		mutex_lock(&wil->vif_mutex);
770 		cfg80211_rx_mgmt(vif_to_radio_wdev(wil, vif), freq, signal,
771 				 (void *)rx_mgmt_frame, d_len, 0);
772 		mutex_unlock(&wil->vif_mutex);
773 	}
774 }
775 
776 static void wmi_evt_tx_mgmt(struct wil6210_vif *vif, int id, void *d, int len)
777 {
778 	struct wmi_tx_mgmt_packet_event *data = d;
779 	struct ieee80211_mgmt *mgmt_frame =
780 			(struct ieee80211_mgmt *)data->payload;
781 	int flen = len - offsetof(struct wmi_tx_mgmt_packet_event, payload);
782 
783 	wil_hex_dump_wmi("MGMT Tx ", DUMP_PREFIX_OFFSET, 16, 1, mgmt_frame,
784 			 flen, true);
785 }
786 
787 static void wmi_evt_scan_complete(struct wil6210_vif *vif, int id,
788 				  void *d, int len)
789 {
790 	struct wil6210_priv *wil = vif_to_wil(vif);
791 
792 	mutex_lock(&wil->vif_mutex);
793 	if (vif->scan_request) {
794 		struct wmi_scan_complete_event *data = d;
795 		int status = le32_to_cpu(data->status);
796 		struct cfg80211_scan_info info = {
797 			.aborted = ((status != WMI_SCAN_SUCCESS) &&
798 				(status != WMI_SCAN_ABORT_REJECTED)),
799 		};
800 
801 		wil_dbg_wmi(wil, "SCAN_COMPLETE(0x%08x)\n", status);
802 		wil_dbg_misc(wil, "Complete scan_request 0x%p aborted %d\n",
803 			     vif->scan_request, info.aborted);
804 		del_timer_sync(&vif->scan_timer);
805 		cfg80211_scan_done(vif->scan_request, &info);
806 		if (vif->mid == 0)
807 			wil->radio_wdev = wil->main_ndev->ieee80211_ptr;
808 		vif->scan_request = NULL;
809 		wake_up_interruptible(&wil->wq);
810 		if (vif->p2p.pending_listen_wdev) {
811 			wil_dbg_misc(wil, "Scheduling delayed listen\n");
812 			schedule_work(&vif->p2p.delayed_listen_work);
813 		}
814 	} else {
815 		wil_err(wil, "SCAN_COMPLETE while not scanning\n");
816 	}
817 	mutex_unlock(&wil->vif_mutex);
818 }
819 
820 static void wmi_evt_connect(struct wil6210_vif *vif, int id, void *d, int len)
821 {
822 	struct wil6210_priv *wil = vif_to_wil(vif);
823 	struct net_device *ndev = vif_to_ndev(vif);
824 	struct wireless_dev *wdev = vif_to_wdev(vif);
825 	struct wmi_connect_event *evt = d;
826 	int ch; /* channel number */
827 	struct station_info sinfo;
828 	u8 *assoc_req_ie, *assoc_resp_ie;
829 	size_t assoc_req_ielen, assoc_resp_ielen;
830 	/* capinfo(u16) + listen_interval(u16) + IEs */
831 	const size_t assoc_req_ie_offset = sizeof(u16) * 2;
832 	/* capinfo(u16) + status_code(u16) + associd(u16) + IEs */
833 	const size_t assoc_resp_ie_offset = sizeof(u16) * 3;
834 	int rc;
835 
836 	if (len < sizeof(*evt)) {
837 		wil_err(wil, "Connect event too short : %d bytes\n", len);
838 		return;
839 	}
840 	if (len != sizeof(*evt) + evt->beacon_ie_len + evt->assoc_req_len +
841 		   evt->assoc_resp_len) {
842 		wil_err(wil,
843 			"Connect event corrupted : %d != %d + %d + %d + %d\n",
844 			len, (int)sizeof(*evt), evt->beacon_ie_len,
845 			evt->assoc_req_len, evt->assoc_resp_len);
846 		return;
847 	}
848 	if (evt->cid >= WIL6210_MAX_CID) {
849 		wil_err(wil, "Connect CID invalid : %d\n", evt->cid);
850 		return;
851 	}
852 
853 	ch = evt->channel + 1;
854 	wil_info(wil, "Connect %pM channel [%d] cid %d aid %d\n",
855 		 evt->bssid, ch, evt->cid, evt->aid);
856 	wil_hex_dump_wmi("connect AI : ", DUMP_PREFIX_OFFSET, 16, 1,
857 			 evt->assoc_info, len - sizeof(*evt), true);
858 
859 	/* figure out IE's */
860 	assoc_req_ie = &evt->assoc_info[evt->beacon_ie_len +
861 					assoc_req_ie_offset];
862 	assoc_req_ielen = evt->assoc_req_len - assoc_req_ie_offset;
863 	if (evt->assoc_req_len <= assoc_req_ie_offset) {
864 		assoc_req_ie = NULL;
865 		assoc_req_ielen = 0;
866 	}
867 
868 	assoc_resp_ie = &evt->assoc_info[evt->beacon_ie_len +
869 					 evt->assoc_req_len +
870 					 assoc_resp_ie_offset];
871 	assoc_resp_ielen = evt->assoc_resp_len - assoc_resp_ie_offset;
872 	if (evt->assoc_resp_len <= assoc_resp_ie_offset) {
873 		assoc_resp_ie = NULL;
874 		assoc_resp_ielen = 0;
875 	}
876 
877 	if (test_bit(wil_status_resetting, wil->status) ||
878 	    !test_bit(wil_status_fwready, wil->status)) {
879 		wil_err(wil, "status_resetting, cancel connect event, CID %d\n",
880 			evt->cid);
881 		/* no need for cleanup, wil_reset will do that */
882 		return;
883 	}
884 
885 	mutex_lock(&wil->mutex);
886 
887 	if ((wdev->iftype == NL80211_IFTYPE_STATION) ||
888 	    (wdev->iftype == NL80211_IFTYPE_P2P_CLIENT)) {
889 		if (!test_bit(wil_vif_fwconnecting, vif->status)) {
890 			wil_err(wil, "Not in connecting state\n");
891 			mutex_unlock(&wil->mutex);
892 			return;
893 		}
894 		del_timer_sync(&vif->connect_timer);
895 	} else if ((wdev->iftype == NL80211_IFTYPE_AP) ||
896 		   (wdev->iftype == NL80211_IFTYPE_P2P_GO)) {
897 		if (wil->sta[evt->cid].status != wil_sta_unused) {
898 			wil_err(wil, "AP: Invalid status %d for CID %d\n",
899 				wil->sta[evt->cid].status, evt->cid);
900 			mutex_unlock(&wil->mutex);
901 			return;
902 		}
903 	}
904 
905 	ether_addr_copy(wil->sta[evt->cid].addr, evt->bssid);
906 	wil->sta[evt->cid].mid = vif->mid;
907 	wil->sta[evt->cid].status = wil_sta_conn_pending;
908 
909 	rc = wil_tx_init(vif, evt->cid);
910 	if (rc) {
911 		wil_err(wil, "config tx vring failed for CID %d, rc (%d)\n",
912 			evt->cid, rc);
913 		wmi_disconnect_sta(vif, wil->sta[evt->cid].addr,
914 				   WLAN_REASON_UNSPECIFIED, false, false);
915 	} else {
916 		wil_info(wil, "successful connection to CID %d\n", evt->cid);
917 	}
918 
919 	if ((wdev->iftype == NL80211_IFTYPE_STATION) ||
920 	    (wdev->iftype == NL80211_IFTYPE_P2P_CLIENT)) {
921 		if (rc) {
922 			netif_carrier_off(ndev);
923 			wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
924 			wil_err(wil, "cfg80211_connect_result with failure\n");
925 			cfg80211_connect_result(ndev, evt->bssid, NULL, 0,
926 						NULL, 0,
927 						WLAN_STATUS_UNSPECIFIED_FAILURE,
928 						GFP_KERNEL);
929 			goto out;
930 		} else {
931 			struct wiphy *wiphy = wil_to_wiphy(wil);
932 
933 			cfg80211_ref_bss(wiphy, vif->bss);
934 			cfg80211_connect_bss(ndev, evt->bssid, vif->bss,
935 					     assoc_req_ie, assoc_req_ielen,
936 					     assoc_resp_ie, assoc_resp_ielen,
937 					     WLAN_STATUS_SUCCESS, GFP_KERNEL,
938 					     NL80211_TIMEOUT_UNSPECIFIED);
939 		}
940 		vif->bss = NULL;
941 	} else if ((wdev->iftype == NL80211_IFTYPE_AP) ||
942 		   (wdev->iftype == NL80211_IFTYPE_P2P_GO)) {
943 		if (rc) {
944 			if (disable_ap_sme)
945 				/* notify new_sta has failed */
946 				cfg80211_del_sta(ndev, evt->bssid, GFP_KERNEL);
947 			goto out;
948 		}
949 
950 		memset(&sinfo, 0, sizeof(sinfo));
951 
952 		sinfo.generation = wil->sinfo_gen++;
953 
954 		if (assoc_req_ie) {
955 			sinfo.assoc_req_ies = assoc_req_ie;
956 			sinfo.assoc_req_ies_len = assoc_req_ielen;
957 		}
958 
959 		cfg80211_new_sta(ndev, evt->bssid, &sinfo, GFP_KERNEL);
960 	} else {
961 		wil_err(wil, "unhandled iftype %d for CID %d\n", wdev->iftype,
962 			evt->cid);
963 		goto out;
964 	}
965 
966 	wil->sta[evt->cid].status = wil_sta_connected;
967 	wil->sta[evt->cid].aid = evt->aid;
968 	if (!test_and_set_bit(wil_vif_fwconnected, vif->status))
969 		atomic_inc(&wil->connected_vifs);
970 	wil_update_net_queues_bh(wil, vif, NULL, false);
971 
972 out:
973 	if (rc) {
974 		wil->sta[evt->cid].status = wil_sta_unused;
975 		wil->sta[evt->cid].mid = U8_MAX;
976 	}
977 	clear_bit(wil_vif_fwconnecting, vif->status);
978 	mutex_unlock(&wil->mutex);
979 }
980 
981 static void wmi_evt_disconnect(struct wil6210_vif *vif, int id,
982 			       void *d, int len)
983 {
984 	struct wil6210_priv *wil = vif_to_wil(vif);
985 	struct wmi_disconnect_event *evt = d;
986 	u16 reason_code = le16_to_cpu(evt->protocol_reason_status);
987 
988 	wil_info(wil, "Disconnect %pM reason [proto %d wmi %d]\n",
989 		 evt->bssid, reason_code, evt->disconnect_reason);
990 
991 	wil->sinfo_gen++;
992 
993 	if (test_bit(wil_status_resetting, wil->status) ||
994 	    !test_bit(wil_status_fwready, wil->status)) {
995 		wil_err(wil, "status_resetting, cancel disconnect event\n");
996 		/* no need for cleanup, wil_reset will do that */
997 		return;
998 	}
999 
1000 	mutex_lock(&wil->mutex);
1001 	wil6210_disconnect(vif, evt->bssid, reason_code, true);
1002 	mutex_unlock(&wil->mutex);
1003 }
1004 
1005 /*
1006  * Firmware reports EAPOL frame using WME event.
1007  * Reconstruct Ethernet frame and deliver it via normal Rx
1008  */
1009 static void wmi_evt_eapol_rx(struct wil6210_vif *vif, int id, void *d, int len)
1010 {
1011 	struct wil6210_priv *wil = vif_to_wil(vif);
1012 	struct net_device *ndev = vif_to_ndev(vif);
1013 	struct wmi_eapol_rx_event *evt = d;
1014 	u16 eapol_len = le16_to_cpu(evt->eapol_len);
1015 	int sz = eapol_len + ETH_HLEN;
1016 	struct sk_buff *skb;
1017 	struct ethhdr *eth;
1018 	int cid;
1019 	struct wil_net_stats *stats = NULL;
1020 
1021 	wil_dbg_wmi(wil, "EAPOL len %d from %pM MID %d\n", eapol_len,
1022 		    evt->src_mac, vif->mid);
1023 
1024 	cid = wil_find_cid(wil, vif->mid, evt->src_mac);
1025 	if (cid >= 0)
1026 		stats = &wil->sta[cid].stats;
1027 
1028 	if (eapol_len > 196) { /* TODO: revisit size limit */
1029 		wil_err(wil, "EAPOL too large\n");
1030 		return;
1031 	}
1032 
1033 	skb = alloc_skb(sz, GFP_KERNEL);
1034 	if (!skb) {
1035 		wil_err(wil, "Failed to allocate skb\n");
1036 		return;
1037 	}
1038 
1039 	eth = skb_put(skb, ETH_HLEN);
1040 	ether_addr_copy(eth->h_dest, ndev->dev_addr);
1041 	ether_addr_copy(eth->h_source, evt->src_mac);
1042 	eth->h_proto = cpu_to_be16(ETH_P_PAE);
1043 	skb_put_data(skb, evt->eapol, eapol_len);
1044 	skb->protocol = eth_type_trans(skb, ndev);
1045 	if (likely(netif_rx_ni(skb) == NET_RX_SUCCESS)) {
1046 		ndev->stats.rx_packets++;
1047 		ndev->stats.rx_bytes += sz;
1048 		if (stats) {
1049 			stats->rx_packets++;
1050 			stats->rx_bytes += sz;
1051 		}
1052 	} else {
1053 		ndev->stats.rx_dropped++;
1054 		if (stats)
1055 			stats->rx_dropped++;
1056 	}
1057 }
1058 
1059 static void wmi_evt_vring_en(struct wil6210_vif *vif, int id, void *d, int len)
1060 {
1061 	struct wil6210_priv *wil = vif_to_wil(vif);
1062 	struct wmi_vring_en_event *evt = d;
1063 	u8 vri = evt->vring_index;
1064 	struct wireless_dev *wdev = vif_to_wdev(vif);
1065 
1066 	wil_dbg_wmi(wil, "Enable vring %d MID %d\n", vri, vif->mid);
1067 
1068 	if (vri >= ARRAY_SIZE(wil->vring_tx)) {
1069 		wil_err(wil, "Enable for invalid vring %d\n", vri);
1070 		return;
1071 	}
1072 
1073 	if (wdev->iftype != NL80211_IFTYPE_AP || !disable_ap_sme)
1074 		/* in AP mode with disable_ap_sme, this is done by
1075 		 * wil_cfg80211_change_station()
1076 		 */
1077 		wil->vring_tx_data[vri].dot1x_open = true;
1078 	if (vri == vif->bcast_vring) /* no BA for bcast */
1079 		return;
1080 	if (agg_wsize >= 0)
1081 		wil_addba_tx_request(wil, vri, agg_wsize);
1082 }
1083 
1084 static void wmi_evt_ba_status(struct wil6210_vif *vif, int id,
1085 			      void *d, int len)
1086 {
1087 	struct wil6210_priv *wil = vif_to_wil(vif);
1088 	struct wmi_ba_status_event *evt = d;
1089 	struct vring_tx_data *txdata;
1090 
1091 	wil_dbg_wmi(wil, "BACK[%d] %s {%d} timeout %d AMSDU%s\n",
1092 		    evt->ringid,
1093 		    evt->status == WMI_BA_AGREED ? "OK" : "N/A",
1094 		    evt->agg_wsize, __le16_to_cpu(evt->ba_timeout),
1095 		    evt->amsdu ? "+" : "-");
1096 
1097 	if (evt->ringid >= WIL6210_MAX_TX_RINGS) {
1098 		wil_err(wil, "invalid ring id %d\n", evt->ringid);
1099 		return;
1100 	}
1101 
1102 	if (evt->status != WMI_BA_AGREED) {
1103 		evt->ba_timeout = 0;
1104 		evt->agg_wsize = 0;
1105 		evt->amsdu = 0;
1106 	}
1107 
1108 	txdata = &wil->vring_tx_data[evt->ringid];
1109 
1110 	txdata->agg_timeout = le16_to_cpu(evt->ba_timeout);
1111 	txdata->agg_wsize = evt->agg_wsize;
1112 	txdata->agg_amsdu = evt->amsdu;
1113 	txdata->addba_in_progress = false;
1114 }
1115 
1116 static void wmi_evt_addba_rx_req(struct wil6210_vif *vif, int id,
1117 				 void *d, int len)
1118 {
1119 	struct wil6210_priv *wil = vif_to_wil(vif);
1120 	struct wmi_rcp_addba_req_event *evt = d;
1121 
1122 	wil_addba_rx_request(wil, vif->mid, evt->cidxtid, evt->dialog_token,
1123 			     evt->ba_param_set, evt->ba_timeout,
1124 			     evt->ba_seq_ctrl);
1125 }
1126 
1127 static void wmi_evt_delba(struct wil6210_vif *vif, int id, void *d, int len)
1128 __acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock)
1129 {
1130 	struct wil6210_priv *wil = vif_to_wil(vif);
1131 	struct wmi_delba_event *evt = d;
1132 	u8 cid, tid;
1133 	u16 reason = __le16_to_cpu(evt->reason);
1134 	struct wil_sta_info *sta;
1135 	struct wil_tid_ampdu_rx *r;
1136 
1137 	might_sleep();
1138 	parse_cidxtid(evt->cidxtid, &cid, &tid);
1139 	wil_dbg_wmi(wil, "DELBA MID %d CID %d TID %d from %s reason %d\n",
1140 		    vif->mid, cid, tid,
1141 		    evt->from_initiator ? "originator" : "recipient",
1142 		    reason);
1143 	if (!evt->from_initiator) {
1144 		int i;
1145 		/* find Tx vring it belongs to */
1146 		for (i = 0; i < ARRAY_SIZE(wil->vring2cid_tid); i++) {
1147 			if ((wil->vring2cid_tid[i][0] == cid) &&
1148 			    (wil->vring2cid_tid[i][1] == tid)) {
1149 				struct vring_tx_data *txdata =
1150 					&wil->vring_tx_data[i];
1151 
1152 				wil_dbg_wmi(wil, "DELBA Tx vring %d\n", i);
1153 				txdata->agg_timeout = 0;
1154 				txdata->agg_wsize = 0;
1155 				txdata->addba_in_progress = false;
1156 
1157 				break; /* max. 1 matching ring */
1158 			}
1159 		}
1160 		if (i >= ARRAY_SIZE(wil->vring2cid_tid))
1161 			wil_err(wil, "DELBA: unable to find Tx vring\n");
1162 		return;
1163 	}
1164 
1165 	sta = &wil->sta[cid];
1166 
1167 	spin_lock_bh(&sta->tid_rx_lock);
1168 
1169 	r = sta->tid_rx[tid];
1170 	sta->tid_rx[tid] = NULL;
1171 	wil_tid_ampdu_rx_free(wil, r);
1172 
1173 	spin_unlock_bh(&sta->tid_rx_lock);
1174 }
1175 
1176 static void
1177 wmi_evt_sched_scan_result(struct wil6210_vif *vif, int id, void *d, int len)
1178 {
1179 	struct wil6210_priv *wil = vif_to_wil(vif);
1180 	struct wmi_sched_scan_result_event *data = d;
1181 	struct wiphy *wiphy = wil_to_wiphy(wil);
1182 	struct ieee80211_mgmt *rx_mgmt_frame =
1183 		(struct ieee80211_mgmt *)data->payload;
1184 	int flen = len - offsetof(struct wmi_sched_scan_result_event, payload);
1185 	int ch_no;
1186 	u32 freq;
1187 	struct ieee80211_channel *channel;
1188 	s32 signal;
1189 	__le16 fc;
1190 	u32 d_len;
1191 	struct cfg80211_bss *bss;
1192 
1193 	if (flen < 0) {
1194 		wil_err(wil, "sched scan result event too short, len %d\n",
1195 			len);
1196 		return;
1197 	}
1198 
1199 	d_len = le32_to_cpu(data->info.len);
1200 	if (d_len != flen) {
1201 		wil_err(wil,
1202 			"sched scan result length mismatch, d_len %d should be %d\n",
1203 			d_len, flen);
1204 		return;
1205 	}
1206 
1207 	fc = rx_mgmt_frame->frame_control;
1208 	if (!ieee80211_is_probe_resp(fc)) {
1209 		wil_err(wil, "sched scan result invalid frame, fc 0x%04x\n",
1210 			fc);
1211 		return;
1212 	}
1213 
1214 	ch_no = data->info.channel + 1;
1215 	freq = ieee80211_channel_to_frequency(ch_no, NL80211_BAND_60GHZ);
1216 	channel = ieee80211_get_channel(wiphy, freq);
1217 	if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities))
1218 		signal = 100 * data->info.rssi;
1219 	else
1220 		signal = data->info.sqi;
1221 
1222 	wil_dbg_wmi(wil, "sched scan result: channel %d MCS %d RSSI %d\n",
1223 		    data->info.channel, data->info.mcs, data->info.rssi);
1224 	wil_dbg_wmi(wil, "len %d qid %d mid %d cid %d\n",
1225 		    d_len, data->info.qid, data->info.mid, data->info.cid);
1226 	wil_hex_dump_wmi("PROBE ", DUMP_PREFIX_OFFSET, 16, 1, rx_mgmt_frame,
1227 			 d_len, true);
1228 
1229 	if (!channel) {
1230 		wil_err(wil, "Frame on unsupported channel\n");
1231 		return;
1232 	}
1233 
1234 	bss = cfg80211_inform_bss_frame(wiphy, channel, rx_mgmt_frame,
1235 					d_len, signal, GFP_KERNEL);
1236 	if (bss) {
1237 		wil_dbg_wmi(wil, "Added BSS %pM\n", rx_mgmt_frame->bssid);
1238 		cfg80211_put_bss(wiphy, bss);
1239 	} else {
1240 		wil_err(wil, "cfg80211_inform_bss_frame() failed\n");
1241 	}
1242 
1243 	cfg80211_sched_scan_results(wiphy, 0);
1244 }
1245 
1246 /**
1247  * Some events are ignored for purpose; and need not be interpreted as
1248  * "unhandled events"
1249  */
1250 static void wmi_evt_ignore(struct wil6210_vif *vif, int id, void *d, int len)
1251 {
1252 	struct wil6210_priv *wil = vif_to_wil(vif);
1253 
1254 	wil_dbg_wmi(wil, "Ignore event 0x%04x len %d\n", id, len);
1255 }
1256 
1257 static const struct {
1258 	int eventid;
1259 	void (*handler)(struct wil6210_vif *vif,
1260 			int eventid, void *data, int data_len);
1261 } wmi_evt_handlers[] = {
1262 	{WMI_READY_EVENTID,		wmi_evt_ready},
1263 	{WMI_FW_READY_EVENTID,			wmi_evt_ignore},
1264 	{WMI_RX_MGMT_PACKET_EVENTID,	wmi_evt_rx_mgmt},
1265 	{WMI_TX_MGMT_PACKET_EVENTID,		wmi_evt_tx_mgmt},
1266 	{WMI_SCAN_COMPLETE_EVENTID,	wmi_evt_scan_complete},
1267 	{WMI_CONNECT_EVENTID,		wmi_evt_connect},
1268 	{WMI_DISCONNECT_EVENTID,	wmi_evt_disconnect},
1269 	{WMI_EAPOL_RX_EVENTID,		wmi_evt_eapol_rx},
1270 	{WMI_BA_STATUS_EVENTID,		wmi_evt_ba_status},
1271 	{WMI_RCP_ADDBA_REQ_EVENTID,	wmi_evt_addba_rx_req},
1272 	{WMI_DELBA_EVENTID,		wmi_evt_delba},
1273 	{WMI_VRING_EN_EVENTID,		wmi_evt_vring_en},
1274 	{WMI_DATA_PORT_OPEN_EVENTID,		wmi_evt_ignore},
1275 	{WMI_SCHED_SCAN_RESULT_EVENTID,		wmi_evt_sched_scan_result},
1276 };
1277 
1278 /*
1279  * Run in IRQ context
1280  * Extract WMI command from mailbox. Queue it to the @wil->pending_wmi_ev
1281  * that will be eventually handled by the @wmi_event_worker in the thread
1282  * context of thread "wil6210_wmi"
1283  */
1284 void wmi_recv_cmd(struct wil6210_priv *wil)
1285 {
1286 	struct wil6210_mbox_ring_desc d_tail;
1287 	struct wil6210_mbox_hdr hdr;
1288 	struct wil6210_mbox_ring *r = &wil->mbox_ctl.rx;
1289 	struct pending_wmi_event *evt;
1290 	u8 *cmd;
1291 	void __iomem *src;
1292 	ulong flags;
1293 	unsigned n;
1294 	unsigned int num_immed_reply = 0;
1295 
1296 	if (!test_bit(wil_status_mbox_ready, wil->status)) {
1297 		wil_err(wil, "Reset in progress. Cannot handle WMI event\n");
1298 		return;
1299 	}
1300 
1301 	if (test_bit(wil_status_suspended, wil->status)) {
1302 		wil_err(wil, "suspended. cannot handle WMI event\n");
1303 		return;
1304 	}
1305 
1306 	for (n = 0;; n++) {
1307 		u16 len;
1308 		bool q;
1309 		bool immed_reply = false;
1310 
1311 		r->head = wil_r(wil, RGF_MBOX +
1312 				offsetof(struct wil6210_mbox_ctl, rx.head));
1313 		if (r->tail == r->head)
1314 			break;
1315 
1316 		wil_dbg_wmi(wil, "Mbox head %08x tail %08x\n",
1317 			    r->head, r->tail);
1318 		/* read cmd descriptor from tail */
1319 		wil_memcpy_fromio_32(&d_tail, wil->csr + HOSTADDR(r->tail),
1320 				     sizeof(struct wil6210_mbox_ring_desc));
1321 		if (d_tail.sync == 0) {
1322 			wil_err(wil, "Mbox evt not owned by FW?\n");
1323 			break;
1324 		}
1325 
1326 		/* read cmd header from descriptor */
1327 		if (0 != wmi_read_hdr(wil, d_tail.addr, &hdr)) {
1328 			wil_err(wil, "Mbox evt at 0x%08x?\n",
1329 				le32_to_cpu(d_tail.addr));
1330 			break;
1331 		}
1332 		len = le16_to_cpu(hdr.len);
1333 		wil_dbg_wmi(wil, "Mbox evt %04x %04x %04x %02x\n",
1334 			    le16_to_cpu(hdr.seq), len, le16_to_cpu(hdr.type),
1335 			    hdr.flags);
1336 
1337 		/* read cmd buffer from descriptor */
1338 		src = wmi_buffer(wil, d_tail.addr) +
1339 		      sizeof(struct wil6210_mbox_hdr);
1340 		evt = kmalloc(ALIGN(offsetof(struct pending_wmi_event,
1341 					     event.wmi) + len, 4),
1342 			      GFP_KERNEL);
1343 		if (!evt)
1344 			break;
1345 
1346 		evt->event.hdr = hdr;
1347 		cmd = (void *)&evt->event.wmi;
1348 		wil_memcpy_fromio_32(cmd, src, len);
1349 		/* mark entry as empty */
1350 		wil_w(wil, r->tail +
1351 		      offsetof(struct wil6210_mbox_ring_desc, sync), 0);
1352 		/* indicate */
1353 		if ((hdr.type == WIL_MBOX_HDR_TYPE_WMI) &&
1354 		    (len >= sizeof(struct wmi_cmd_hdr))) {
1355 			struct wmi_cmd_hdr *wmi = &evt->event.wmi;
1356 			u16 id = le16_to_cpu(wmi->command_id);
1357 			u8 mid = wmi->mid;
1358 			u32 tstamp = le32_to_cpu(wmi->fw_timestamp);
1359 			if (test_bit(wil_status_resuming, wil->status)) {
1360 				if (id == WMI_TRAFFIC_RESUME_EVENTID)
1361 					clear_bit(wil_status_resuming,
1362 						  wil->status);
1363 				else
1364 					wil_err(wil,
1365 						"WMI evt %d while resuming\n",
1366 						id);
1367 			}
1368 			spin_lock_irqsave(&wil->wmi_ev_lock, flags);
1369 			if (wil->reply_id && wil->reply_id == id &&
1370 			    wil->reply_mid == mid) {
1371 				if (wil->reply_buf) {
1372 					memcpy(wil->reply_buf, wmi,
1373 					       min(len, wil->reply_size));
1374 					immed_reply = true;
1375 				}
1376 				if (id == WMI_TRAFFIC_SUSPEND_EVENTID) {
1377 					wil_dbg_wmi(wil,
1378 						    "set suspend_resp_rcvd\n");
1379 					wil->suspend_resp_rcvd = true;
1380 				}
1381 			}
1382 			spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
1383 
1384 			wil_dbg_wmi(wil, "recv %s (0x%04x) MID %d @%d msec\n",
1385 				    eventid2name(id), id, wmi->mid, tstamp);
1386 			trace_wil6210_wmi_event(wmi, &wmi[1],
1387 						len - sizeof(*wmi));
1388 		}
1389 		wil_hex_dump_wmi("evt ", DUMP_PREFIX_OFFSET, 16, 1,
1390 				 &evt->event.hdr, sizeof(hdr) + len, true);
1391 
1392 		/* advance tail */
1393 		r->tail = r->base + ((r->tail - r->base +
1394 			  sizeof(struct wil6210_mbox_ring_desc)) % r->size);
1395 		wil_w(wil, RGF_MBOX +
1396 		      offsetof(struct wil6210_mbox_ctl, rx.tail), r->tail);
1397 
1398 		if (immed_reply) {
1399 			wil_dbg_wmi(wil, "recv_cmd: Complete WMI 0x%04x\n",
1400 				    wil->reply_id);
1401 			kfree(evt);
1402 			num_immed_reply++;
1403 			complete(&wil->wmi_call);
1404 		} else {
1405 			/* add to the pending list */
1406 			spin_lock_irqsave(&wil->wmi_ev_lock, flags);
1407 			list_add_tail(&evt->list, &wil->pending_wmi_ev);
1408 			spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
1409 			q = queue_work(wil->wmi_wq, &wil->wmi_event_worker);
1410 			wil_dbg_wmi(wil, "queue_work -> %d\n", q);
1411 		}
1412 	}
1413 	/* normally, 1 event per IRQ should be processed */
1414 	wil_dbg_wmi(wil, "recv_cmd: -> %d events queued, %d completed\n",
1415 		    n - num_immed_reply, num_immed_reply);
1416 }
1417 
1418 int wmi_call(struct wil6210_priv *wil, u16 cmdid, u8 mid, void *buf, u16 len,
1419 	     u16 reply_id, void *reply, u16 reply_size, int to_msec)
1420 {
1421 	int rc;
1422 	unsigned long remain;
1423 
1424 	mutex_lock(&wil->wmi_mutex);
1425 
1426 	spin_lock(&wil->wmi_ev_lock);
1427 	wil->reply_id = reply_id;
1428 	wil->reply_mid = mid;
1429 	wil->reply_buf = reply;
1430 	wil->reply_size = reply_size;
1431 	reinit_completion(&wil->wmi_call);
1432 	spin_unlock(&wil->wmi_ev_lock);
1433 
1434 	rc = __wmi_send(wil, cmdid, mid, buf, len);
1435 	if (rc)
1436 		goto out;
1437 
1438 	remain = wait_for_completion_timeout(&wil->wmi_call,
1439 					     msecs_to_jiffies(to_msec));
1440 	if (0 == remain) {
1441 		wil_err(wil, "wmi_call(0x%04x->0x%04x) timeout %d msec\n",
1442 			cmdid, reply_id, to_msec);
1443 		rc = -ETIME;
1444 	} else {
1445 		wil_dbg_wmi(wil,
1446 			    "wmi_call(0x%04x->0x%04x) completed in %d msec\n",
1447 			    cmdid, reply_id,
1448 			    to_msec - jiffies_to_msecs(remain));
1449 	}
1450 
1451 out:
1452 	spin_lock(&wil->wmi_ev_lock);
1453 	wil->reply_id = 0;
1454 	wil->reply_mid = U8_MAX;
1455 	wil->reply_buf = NULL;
1456 	wil->reply_size = 0;
1457 	spin_unlock(&wil->wmi_ev_lock);
1458 
1459 	mutex_unlock(&wil->wmi_mutex);
1460 
1461 	return rc;
1462 }
1463 
1464 int wmi_echo(struct wil6210_priv *wil)
1465 {
1466 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
1467 	struct wmi_echo_cmd cmd = {
1468 		.value = cpu_to_le32(0x12345678),
1469 	};
1470 
1471 	return wmi_call(wil, WMI_ECHO_CMDID, vif->mid, &cmd, sizeof(cmd),
1472 			WMI_ECHO_RSP_EVENTID, NULL, 0, 50);
1473 }
1474 
1475 int wmi_set_mac_address(struct wil6210_priv *wil, void *addr)
1476 {
1477 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
1478 	struct wmi_set_mac_address_cmd cmd;
1479 
1480 	ether_addr_copy(cmd.mac, addr);
1481 
1482 	wil_dbg_wmi(wil, "Set MAC %pM\n", addr);
1483 
1484 	return wmi_send(wil, WMI_SET_MAC_ADDRESS_CMDID, vif->mid,
1485 			&cmd, sizeof(cmd));
1486 }
1487 
1488 int wmi_led_cfg(struct wil6210_priv *wil, bool enable)
1489 {
1490 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
1491 	int rc = 0;
1492 	struct wmi_led_cfg_cmd cmd = {
1493 		.led_mode = enable,
1494 		.id = led_id,
1495 		.slow_blink_cfg.blink_on =
1496 			cpu_to_le32(led_blink_time[WIL_LED_TIME_SLOW].on_ms),
1497 		.slow_blink_cfg.blink_off =
1498 			cpu_to_le32(led_blink_time[WIL_LED_TIME_SLOW].off_ms),
1499 		.medium_blink_cfg.blink_on =
1500 			cpu_to_le32(led_blink_time[WIL_LED_TIME_MED].on_ms),
1501 		.medium_blink_cfg.blink_off =
1502 			cpu_to_le32(led_blink_time[WIL_LED_TIME_MED].off_ms),
1503 		.fast_blink_cfg.blink_on =
1504 			cpu_to_le32(led_blink_time[WIL_LED_TIME_FAST].on_ms),
1505 		.fast_blink_cfg.blink_off =
1506 			cpu_to_le32(led_blink_time[WIL_LED_TIME_FAST].off_ms),
1507 		.led_polarity = led_polarity,
1508 	};
1509 	struct {
1510 		struct wmi_cmd_hdr wmi;
1511 		struct wmi_led_cfg_done_event evt;
1512 	} __packed reply;
1513 
1514 	if (led_id == WIL_LED_INVALID_ID)
1515 		goto out;
1516 
1517 	if (led_id > WIL_LED_MAX_ID) {
1518 		wil_err(wil, "Invalid led id %d\n", led_id);
1519 		rc = -EINVAL;
1520 		goto out;
1521 	}
1522 
1523 	wil_dbg_wmi(wil,
1524 		    "%s led %d\n",
1525 		    enable ? "enabling" : "disabling", led_id);
1526 
1527 	rc = wmi_call(wil, WMI_LED_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
1528 		      WMI_LED_CFG_DONE_EVENTID, &reply, sizeof(reply),
1529 		      100);
1530 	if (rc)
1531 		goto out;
1532 
1533 	if (reply.evt.status) {
1534 		wil_err(wil, "led %d cfg failed with status %d\n",
1535 			led_id, le32_to_cpu(reply.evt.status));
1536 		rc = -EINVAL;
1537 	}
1538 
1539 out:
1540 	return rc;
1541 }
1542 
1543 int wmi_pcp_start(struct wil6210_vif *vif,
1544 		  int bi, u8 wmi_nettype, u8 chan, u8 hidden_ssid, u8 is_go)
1545 {
1546 	struct wil6210_priv *wil = vif_to_wil(vif);
1547 	int rc;
1548 
1549 	struct wmi_pcp_start_cmd cmd = {
1550 		.bcon_interval = cpu_to_le16(bi),
1551 		.network_type = wmi_nettype,
1552 		.disable_sec_offload = 1,
1553 		.channel = chan - 1,
1554 		.pcp_max_assoc_sta = max_assoc_sta,
1555 		.hidden_ssid = hidden_ssid,
1556 		.is_go = is_go,
1557 		.ap_sme_offload_mode = disable_ap_sme ?
1558 				       WMI_AP_SME_OFFLOAD_PARTIAL :
1559 				       WMI_AP_SME_OFFLOAD_FULL,
1560 		.abft_len = wil->abft_len,
1561 	};
1562 	struct {
1563 		struct wmi_cmd_hdr wmi;
1564 		struct wmi_pcp_started_event evt;
1565 	} __packed reply;
1566 
1567 	if (!vif->privacy)
1568 		cmd.disable_sec = 1;
1569 
1570 	if ((cmd.pcp_max_assoc_sta > WIL6210_MAX_CID) ||
1571 	    (cmd.pcp_max_assoc_sta <= 0)) {
1572 		wil_info(wil,
1573 			 "Requested connection limit %u, valid values are 1 - %d. Setting to %d\n",
1574 			 max_assoc_sta, WIL6210_MAX_CID, WIL6210_MAX_CID);
1575 		cmd.pcp_max_assoc_sta = WIL6210_MAX_CID;
1576 	}
1577 
1578 	if (disable_ap_sme &&
1579 	    !test_bit(WMI_FW_CAPABILITY_AP_SME_OFFLOAD_PARTIAL,
1580 		      wil->fw_capabilities)) {
1581 		wil_err(wil, "disable_ap_sme not supported by FW\n");
1582 		return -EOPNOTSUPP;
1583 	}
1584 
1585 	/*
1586 	 * Processing time may be huge, in case of secure AP it takes about
1587 	 * 3500ms for FW to start AP
1588 	 */
1589 	rc = wmi_call(wil, WMI_PCP_START_CMDID, vif->mid, &cmd, sizeof(cmd),
1590 		      WMI_PCP_STARTED_EVENTID, &reply, sizeof(reply), 5000);
1591 	if (rc)
1592 		return rc;
1593 
1594 	if (reply.evt.status != WMI_FW_STATUS_SUCCESS)
1595 		rc = -EINVAL;
1596 
1597 	if (wmi_nettype != WMI_NETTYPE_P2P)
1598 		/* Don't fail due to error in the led configuration */
1599 		wmi_led_cfg(wil, true);
1600 
1601 	return rc;
1602 }
1603 
1604 int wmi_pcp_stop(struct wil6210_vif *vif)
1605 {
1606 	struct wil6210_priv *wil = vif_to_wil(vif);
1607 	int rc;
1608 
1609 	rc = wmi_led_cfg(wil, false);
1610 	if (rc)
1611 		return rc;
1612 
1613 	return wmi_call(wil, WMI_PCP_STOP_CMDID, vif->mid, NULL, 0,
1614 			WMI_PCP_STOPPED_EVENTID, NULL, 0, 20);
1615 }
1616 
1617 int wmi_set_ssid(struct wil6210_vif *vif, u8 ssid_len, const void *ssid)
1618 {
1619 	struct wil6210_priv *wil = vif_to_wil(vif);
1620 	struct wmi_set_ssid_cmd cmd = {
1621 		.ssid_len = cpu_to_le32(ssid_len),
1622 	};
1623 
1624 	if (ssid_len > sizeof(cmd.ssid))
1625 		return -EINVAL;
1626 
1627 	memcpy(cmd.ssid, ssid, ssid_len);
1628 
1629 	return wmi_send(wil, WMI_SET_SSID_CMDID, vif->mid, &cmd, sizeof(cmd));
1630 }
1631 
1632 int wmi_get_ssid(struct wil6210_vif *vif, u8 *ssid_len, void *ssid)
1633 {
1634 	struct wil6210_priv *wil = vif_to_wil(vif);
1635 	int rc;
1636 	struct {
1637 		struct wmi_cmd_hdr wmi;
1638 		struct wmi_set_ssid_cmd cmd;
1639 	} __packed reply;
1640 	int len; /* reply.cmd.ssid_len in CPU order */
1641 
1642 	rc = wmi_call(wil, WMI_GET_SSID_CMDID, vif->mid, NULL, 0,
1643 		      WMI_GET_SSID_EVENTID, &reply, sizeof(reply), 20);
1644 	if (rc)
1645 		return rc;
1646 
1647 	len = le32_to_cpu(reply.cmd.ssid_len);
1648 	if (len > sizeof(reply.cmd.ssid))
1649 		return -EINVAL;
1650 
1651 	*ssid_len = len;
1652 	memcpy(ssid, reply.cmd.ssid, len);
1653 
1654 	return 0;
1655 }
1656 
1657 int wmi_set_channel(struct wil6210_priv *wil, int channel)
1658 {
1659 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
1660 	struct wmi_set_pcp_channel_cmd cmd = {
1661 		.channel = channel - 1,
1662 	};
1663 
1664 	return wmi_send(wil, WMI_SET_PCP_CHANNEL_CMDID, vif->mid,
1665 			&cmd, sizeof(cmd));
1666 }
1667 
1668 int wmi_get_channel(struct wil6210_priv *wil, int *channel)
1669 {
1670 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
1671 	int rc;
1672 	struct {
1673 		struct wmi_cmd_hdr wmi;
1674 		struct wmi_set_pcp_channel_cmd cmd;
1675 	} __packed reply;
1676 
1677 	rc = wmi_call(wil, WMI_GET_PCP_CHANNEL_CMDID, vif->mid, NULL, 0,
1678 		      WMI_GET_PCP_CHANNEL_EVENTID, &reply, sizeof(reply), 20);
1679 	if (rc)
1680 		return rc;
1681 
1682 	if (reply.cmd.channel > 3)
1683 		return -EINVAL;
1684 
1685 	*channel = reply.cmd.channel + 1;
1686 
1687 	return 0;
1688 }
1689 
1690 int wmi_p2p_cfg(struct wil6210_vif *vif, int channel, int bi)
1691 {
1692 	struct wil6210_priv *wil = vif_to_wil(vif);
1693 	int rc;
1694 	struct wmi_p2p_cfg_cmd cmd = {
1695 		.discovery_mode = WMI_DISCOVERY_MODE_PEER2PEER,
1696 		.bcon_interval = cpu_to_le16(bi),
1697 		.channel = channel - 1,
1698 	};
1699 	struct {
1700 		struct wmi_cmd_hdr wmi;
1701 		struct wmi_p2p_cfg_done_event evt;
1702 	} __packed reply;
1703 
1704 	wil_dbg_wmi(wil, "sending WMI_P2P_CFG_CMDID\n");
1705 
1706 	rc = wmi_call(wil, WMI_P2P_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
1707 		      WMI_P2P_CFG_DONE_EVENTID, &reply, sizeof(reply), 300);
1708 	if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) {
1709 		wil_err(wil, "P2P_CFG failed. status %d\n", reply.evt.status);
1710 		rc = -EINVAL;
1711 	}
1712 
1713 	return rc;
1714 }
1715 
1716 int wmi_start_listen(struct wil6210_vif *vif)
1717 {
1718 	struct wil6210_priv *wil = vif_to_wil(vif);
1719 	int rc;
1720 	struct {
1721 		struct wmi_cmd_hdr wmi;
1722 		struct wmi_listen_started_event evt;
1723 	} __packed reply;
1724 
1725 	wil_dbg_wmi(wil, "sending WMI_START_LISTEN_CMDID\n");
1726 
1727 	rc = wmi_call(wil, WMI_START_LISTEN_CMDID, vif->mid, NULL, 0,
1728 		      WMI_LISTEN_STARTED_EVENTID, &reply, sizeof(reply), 300);
1729 	if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) {
1730 		wil_err(wil, "device failed to start listen. status %d\n",
1731 			reply.evt.status);
1732 		rc = -EINVAL;
1733 	}
1734 
1735 	return rc;
1736 }
1737 
1738 int wmi_start_search(struct wil6210_vif *vif)
1739 {
1740 	struct wil6210_priv *wil = vif_to_wil(vif);
1741 	int rc;
1742 	struct {
1743 		struct wmi_cmd_hdr wmi;
1744 		struct wmi_search_started_event evt;
1745 	} __packed reply;
1746 
1747 	wil_dbg_wmi(wil, "sending WMI_START_SEARCH_CMDID\n");
1748 
1749 	rc = wmi_call(wil, WMI_START_SEARCH_CMDID, vif->mid, NULL, 0,
1750 		      WMI_SEARCH_STARTED_EVENTID, &reply, sizeof(reply), 300);
1751 	if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) {
1752 		wil_err(wil, "device failed to start search. status %d\n",
1753 			reply.evt.status);
1754 		rc = -EINVAL;
1755 	}
1756 
1757 	return rc;
1758 }
1759 
1760 int wmi_stop_discovery(struct wil6210_vif *vif)
1761 {
1762 	struct wil6210_priv *wil = vif_to_wil(vif);
1763 	int rc;
1764 
1765 	wil_dbg_wmi(wil, "sending WMI_DISCOVERY_STOP_CMDID\n");
1766 
1767 	rc = wmi_call(wil, WMI_DISCOVERY_STOP_CMDID, vif->mid, NULL, 0,
1768 		      WMI_DISCOVERY_STOPPED_EVENTID, NULL, 0, 100);
1769 
1770 	if (rc)
1771 		wil_err(wil, "Failed to stop discovery\n");
1772 
1773 	return rc;
1774 }
1775 
1776 int wmi_del_cipher_key(struct wil6210_vif *vif, u8 key_index,
1777 		       const void *mac_addr, int key_usage)
1778 {
1779 	struct wil6210_priv *wil = vif_to_wil(vif);
1780 	struct wmi_delete_cipher_key_cmd cmd = {
1781 		.key_index = key_index,
1782 	};
1783 
1784 	if (mac_addr)
1785 		memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
1786 
1787 	return wmi_send(wil, WMI_DELETE_CIPHER_KEY_CMDID, vif->mid,
1788 			&cmd, sizeof(cmd));
1789 }
1790 
1791 int wmi_add_cipher_key(struct wil6210_vif *vif, u8 key_index,
1792 		       const void *mac_addr, int key_len, const void *key,
1793 		       int key_usage)
1794 {
1795 	struct wil6210_priv *wil = vif_to_wil(vif);
1796 	struct wmi_add_cipher_key_cmd cmd = {
1797 		.key_index = key_index,
1798 		.key_usage = key_usage,
1799 		.key_len = key_len,
1800 	};
1801 
1802 	if (!key || (key_len > sizeof(cmd.key)))
1803 		return -EINVAL;
1804 
1805 	memcpy(cmd.key, key, key_len);
1806 	if (mac_addr)
1807 		memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
1808 
1809 	return wmi_send(wil, WMI_ADD_CIPHER_KEY_CMDID, vif->mid,
1810 			&cmd, sizeof(cmd));
1811 }
1812 
1813 int wmi_set_ie(struct wil6210_vif *vif, u8 type, u16 ie_len, const void *ie)
1814 {
1815 	struct wil6210_priv *wil = vif_to_wil(vif);
1816 	static const char *const names[] = {
1817 		[WMI_FRAME_BEACON]	= "BEACON",
1818 		[WMI_FRAME_PROBE_REQ]	= "PROBE_REQ",
1819 		[WMI_FRAME_PROBE_RESP]	= "WMI_FRAME_PROBE_RESP",
1820 		[WMI_FRAME_ASSOC_REQ]	= "WMI_FRAME_ASSOC_REQ",
1821 		[WMI_FRAME_ASSOC_RESP]	= "WMI_FRAME_ASSOC_RESP",
1822 	};
1823 	int rc;
1824 	u16 len = sizeof(struct wmi_set_appie_cmd) + ie_len;
1825 	struct wmi_set_appie_cmd *cmd;
1826 
1827 	if (len < ie_len) {
1828 		rc = -EINVAL;
1829 		goto out;
1830 	}
1831 
1832 	cmd = kzalloc(len, GFP_KERNEL);
1833 	if (!cmd) {
1834 		rc = -ENOMEM;
1835 		goto out;
1836 	}
1837 	if (!ie)
1838 		ie_len = 0;
1839 
1840 	cmd->mgmt_frm_type = type;
1841 	/* BUG: FW API define ieLen as u8. Will fix FW */
1842 	cmd->ie_len = cpu_to_le16(ie_len);
1843 	memcpy(cmd->ie_info, ie, ie_len);
1844 	rc = wmi_send(wil, WMI_SET_APPIE_CMDID, vif->mid, cmd, len);
1845 	kfree(cmd);
1846 out:
1847 	if (rc) {
1848 		const char *name = type < ARRAY_SIZE(names) ?
1849 				   names[type] : "??";
1850 		wil_err(wil, "set_ie(%d %s) failed : %d\n", type, name, rc);
1851 	}
1852 
1853 	return rc;
1854 }
1855 
1856 /**
1857  * wmi_rxon - turn radio on/off
1858  * @on:		turn on if true, off otherwise
1859  *
1860  * Only switch radio. Channel should be set separately.
1861  * No timeout for rxon - radio turned on forever unless some other call
1862  * turns it off
1863  */
1864 int wmi_rxon(struct wil6210_priv *wil, bool on)
1865 {
1866 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
1867 	int rc;
1868 	struct {
1869 		struct wmi_cmd_hdr wmi;
1870 		struct wmi_listen_started_event evt;
1871 	} __packed reply;
1872 
1873 	wil_info(wil, "(%s)\n", on ? "on" : "off");
1874 
1875 	if (on) {
1876 		rc = wmi_call(wil, WMI_START_LISTEN_CMDID, vif->mid, NULL, 0,
1877 			      WMI_LISTEN_STARTED_EVENTID,
1878 			      &reply, sizeof(reply), 100);
1879 		if ((rc == 0) && (reply.evt.status != WMI_FW_STATUS_SUCCESS))
1880 			rc = -EINVAL;
1881 	} else {
1882 		rc = wmi_call(wil, WMI_DISCOVERY_STOP_CMDID, vif->mid, NULL, 0,
1883 			      WMI_DISCOVERY_STOPPED_EVENTID, NULL, 0, 20);
1884 	}
1885 
1886 	return rc;
1887 }
1888 
1889 int wmi_rx_chain_add(struct wil6210_priv *wil, struct vring *vring)
1890 {
1891 	struct net_device *ndev = wil->main_ndev;
1892 	struct wireless_dev *wdev = ndev->ieee80211_ptr;
1893 	struct wil6210_vif *vif = ndev_to_vif(ndev);
1894 	struct wmi_cfg_rx_chain_cmd cmd = {
1895 		.action = WMI_RX_CHAIN_ADD,
1896 		.rx_sw_ring = {
1897 			.max_mpdu_size = cpu_to_le16(
1898 				wil_mtu2macbuf(wil->rx_buf_len)),
1899 			.ring_mem_base = cpu_to_le64(vring->pa),
1900 			.ring_size = cpu_to_le16(vring->size),
1901 		},
1902 		.mid = 0, /* TODO - what is it? */
1903 		.decap_trans_type = WMI_DECAP_TYPE_802_3,
1904 		.reorder_type = WMI_RX_SW_REORDER,
1905 		.host_thrsh = cpu_to_le16(rx_ring_overflow_thrsh),
1906 	};
1907 	struct {
1908 		struct wmi_cmd_hdr wmi;
1909 		struct wmi_cfg_rx_chain_done_event evt;
1910 	} __packed evt;
1911 	int rc;
1912 
1913 	if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
1914 		struct ieee80211_channel *ch = wil->monitor_chandef.chan;
1915 
1916 		cmd.sniffer_cfg.mode = cpu_to_le32(WMI_SNIFFER_ON);
1917 		if (ch)
1918 			cmd.sniffer_cfg.channel = ch->hw_value - 1;
1919 		cmd.sniffer_cfg.phy_info_mode =
1920 			cpu_to_le32(ndev->type == ARPHRD_IEEE80211_RADIOTAP);
1921 		cmd.sniffer_cfg.phy_support =
1922 			cpu_to_le32((wil->monitor_flags & MONITOR_FLAG_CONTROL)
1923 				    ? WMI_SNIFFER_CP : WMI_SNIFFER_BOTH_PHYS);
1924 	} else {
1925 		/* Initialize offload (in non-sniffer mode).
1926 		 * Linux IP stack always calculates IP checksum
1927 		 * HW always calculate TCP/UDP checksum
1928 		 */
1929 		cmd.l3_l4_ctrl |= (1 << L3_L4_CTRL_TCPIP_CHECKSUM_EN_POS);
1930 	}
1931 
1932 	if (rx_align_2)
1933 		cmd.l2_802_3_offload_ctrl |=
1934 				L2_802_3_OFFLOAD_CTRL_SNAP_KEEP_MSK;
1935 
1936 	/* typical time for secure PCP is 840ms */
1937 	rc = wmi_call(wil, WMI_CFG_RX_CHAIN_CMDID, vif->mid, &cmd, sizeof(cmd),
1938 		      WMI_CFG_RX_CHAIN_DONE_EVENTID, &evt, sizeof(evt), 2000);
1939 	if (rc)
1940 		return rc;
1941 
1942 	vring->hwtail = le32_to_cpu(evt.evt.rx_ring_tail_ptr);
1943 
1944 	wil_dbg_misc(wil, "Rx init: status %d tail 0x%08x\n",
1945 		     le32_to_cpu(evt.evt.status), vring->hwtail);
1946 
1947 	if (le32_to_cpu(evt.evt.status) != WMI_CFG_RX_CHAIN_SUCCESS)
1948 		rc = -EINVAL;
1949 
1950 	return rc;
1951 }
1952 
1953 int wmi_get_temperature(struct wil6210_priv *wil, u32 *t_bb, u32 *t_rf)
1954 {
1955 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
1956 	int rc;
1957 	struct wmi_temp_sense_cmd cmd = {
1958 		.measure_baseband_en = cpu_to_le32(!!t_bb),
1959 		.measure_rf_en = cpu_to_le32(!!t_rf),
1960 		.measure_mode = cpu_to_le32(TEMPERATURE_MEASURE_NOW),
1961 	};
1962 	struct {
1963 		struct wmi_cmd_hdr wmi;
1964 		struct wmi_temp_sense_done_event evt;
1965 	} __packed reply;
1966 
1967 	rc = wmi_call(wil, WMI_TEMP_SENSE_CMDID, vif->mid, &cmd, sizeof(cmd),
1968 		      WMI_TEMP_SENSE_DONE_EVENTID, &reply, sizeof(reply), 100);
1969 	if (rc)
1970 		return rc;
1971 
1972 	if (t_bb)
1973 		*t_bb = le32_to_cpu(reply.evt.baseband_t1000);
1974 	if (t_rf)
1975 		*t_rf = le32_to_cpu(reply.evt.rf_t1000);
1976 
1977 	return 0;
1978 }
1979 
1980 int wmi_disconnect_sta(struct wil6210_vif *vif, const u8 *mac,
1981 		       u16 reason, bool full_disconnect, bool del_sta)
1982 {
1983 	struct wil6210_priv *wil = vif_to_wil(vif);
1984 	int rc;
1985 	u16 reason_code;
1986 	struct wmi_disconnect_sta_cmd disc_sta_cmd = {
1987 		.disconnect_reason = cpu_to_le16(reason),
1988 	};
1989 	struct wmi_del_sta_cmd del_sta_cmd = {
1990 		.disconnect_reason = cpu_to_le16(reason),
1991 	};
1992 	struct {
1993 		struct wmi_cmd_hdr wmi;
1994 		struct wmi_disconnect_event evt;
1995 	} __packed reply;
1996 
1997 	wil_dbg_wmi(wil, "disconnect_sta: (%pM, reason %d)\n", mac, reason);
1998 
1999 	vif->locally_generated_disc = true;
2000 	if (del_sta) {
2001 		ether_addr_copy(del_sta_cmd.dst_mac, mac);
2002 		rc = wmi_call(wil, WMI_DEL_STA_CMDID, vif->mid, &del_sta_cmd,
2003 			      sizeof(del_sta_cmd), WMI_DISCONNECT_EVENTID,
2004 			      &reply, sizeof(reply), 1000);
2005 	} else {
2006 		ether_addr_copy(disc_sta_cmd.dst_mac, mac);
2007 		rc = wmi_call(wil, WMI_DISCONNECT_STA_CMDID, vif->mid,
2008 			      &disc_sta_cmd, sizeof(disc_sta_cmd),
2009 			      WMI_DISCONNECT_EVENTID,
2010 			      &reply, sizeof(reply), 1000);
2011 	}
2012 	/* failure to disconnect in reasonable time treated as FW error */
2013 	if (rc) {
2014 		wil_fw_error_recovery(wil);
2015 		return rc;
2016 	}
2017 
2018 	if (full_disconnect) {
2019 		/* call event handler manually after processing wmi_call,
2020 		 * to avoid deadlock - disconnect event handler acquires
2021 		 * wil->mutex while it is already held here
2022 		 */
2023 		reason_code = le16_to_cpu(reply.evt.protocol_reason_status);
2024 
2025 		wil_dbg_wmi(wil, "Disconnect %pM reason [proto %d wmi %d]\n",
2026 			    reply.evt.bssid, reason_code,
2027 			    reply.evt.disconnect_reason);
2028 
2029 		wil->sinfo_gen++;
2030 		wil6210_disconnect(vif, reply.evt.bssid, reason_code, true);
2031 	}
2032 	return 0;
2033 }
2034 
2035 int wmi_addba(struct wil6210_priv *wil, u8 mid,
2036 	      u8 ringid, u8 size, u16 timeout)
2037 {
2038 	struct wmi_vring_ba_en_cmd cmd = {
2039 		.ringid = ringid,
2040 		.agg_max_wsize = size,
2041 		.ba_timeout = cpu_to_le16(timeout),
2042 		.amsdu = 0,
2043 	};
2044 
2045 	wil_dbg_wmi(wil, "addba: (ring %d size %d timeout %d)\n", ringid, size,
2046 		    timeout);
2047 
2048 	return wmi_send(wil, WMI_VRING_BA_EN_CMDID, mid, &cmd, sizeof(cmd));
2049 }
2050 
2051 int wmi_delba_tx(struct wil6210_priv *wil, u8 mid, u8 ringid, u16 reason)
2052 {
2053 	struct wmi_vring_ba_dis_cmd cmd = {
2054 		.ringid = ringid,
2055 		.reason = cpu_to_le16(reason),
2056 	};
2057 
2058 	wil_dbg_wmi(wil, "delba_tx: (ring %d reason %d)\n", ringid, reason);
2059 
2060 	return wmi_send(wil, WMI_VRING_BA_DIS_CMDID, mid, &cmd, sizeof(cmd));
2061 }
2062 
2063 int wmi_delba_rx(struct wil6210_priv *wil, u8 mid, u8 cidxtid, u16 reason)
2064 {
2065 	struct wmi_rcp_delba_cmd cmd = {
2066 		.cidxtid = cidxtid,
2067 		.reason = cpu_to_le16(reason),
2068 	};
2069 
2070 	wil_dbg_wmi(wil, "delba_rx: (CID %d TID %d reason %d)\n", cidxtid & 0xf,
2071 		    (cidxtid >> 4) & 0xf, reason);
2072 
2073 	return wmi_send(wil, WMI_RCP_DELBA_CMDID, mid, &cmd, sizeof(cmd));
2074 }
2075 
2076 int wmi_addba_rx_resp(struct wil6210_priv *wil,
2077 		      u8 mid, u8 cid, u8 tid, u8 token,
2078 		      u16 status, bool amsdu, u16 agg_wsize, u16 timeout)
2079 {
2080 	int rc;
2081 	struct wmi_rcp_addba_resp_cmd cmd = {
2082 		.cidxtid = mk_cidxtid(cid, tid),
2083 		.dialog_token = token,
2084 		.status_code = cpu_to_le16(status),
2085 		/* bit 0: A-MSDU supported
2086 		 * bit 1: policy (should be 0 for us)
2087 		 * bits 2..5: TID
2088 		 * bits 6..15: buffer size
2089 		 */
2090 		.ba_param_set = cpu_to_le16((amsdu ? 1 : 0) | (tid << 2) |
2091 					    (agg_wsize << 6)),
2092 		.ba_timeout = cpu_to_le16(timeout),
2093 	};
2094 	struct {
2095 		struct wmi_cmd_hdr wmi;
2096 		struct wmi_rcp_addba_resp_sent_event evt;
2097 	} __packed reply;
2098 
2099 	wil_dbg_wmi(wil,
2100 		    "ADDBA response for MID %d CID %d TID %d size %d timeout %d status %d AMSDU%s\n",
2101 		    mid, cid, tid, agg_wsize,
2102 		    timeout, status, amsdu ? "+" : "-");
2103 
2104 	rc = wmi_call(wil, WMI_RCP_ADDBA_RESP_CMDID, mid, &cmd, sizeof(cmd),
2105 		      WMI_RCP_ADDBA_RESP_SENT_EVENTID, &reply, sizeof(reply),
2106 		      100);
2107 	if (rc)
2108 		return rc;
2109 
2110 	if (reply.evt.status) {
2111 		wil_err(wil, "ADDBA response failed with status %d\n",
2112 			le16_to_cpu(reply.evt.status));
2113 		rc = -EINVAL;
2114 	}
2115 
2116 	return rc;
2117 }
2118 
2119 int wmi_ps_dev_profile_cfg(struct wil6210_priv *wil,
2120 			   enum wmi_ps_profile_type ps_profile)
2121 {
2122 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
2123 	int rc;
2124 	struct wmi_ps_dev_profile_cfg_cmd cmd = {
2125 		.ps_profile = ps_profile,
2126 	};
2127 	struct {
2128 		struct wmi_cmd_hdr wmi;
2129 		struct wmi_ps_dev_profile_cfg_event evt;
2130 	} __packed reply;
2131 	u32 status;
2132 
2133 	wil_dbg_wmi(wil, "Setting ps dev profile %d\n", ps_profile);
2134 
2135 	reply.evt.status = cpu_to_le32(WMI_PS_CFG_CMD_STATUS_ERROR);
2136 
2137 	rc = wmi_call(wil, WMI_PS_DEV_PROFILE_CFG_CMDID, vif->mid,
2138 		      &cmd, sizeof(cmd),
2139 		      WMI_PS_DEV_PROFILE_CFG_EVENTID, &reply, sizeof(reply),
2140 		      100);
2141 	if (rc)
2142 		return rc;
2143 
2144 	status = le32_to_cpu(reply.evt.status);
2145 
2146 	if (status != WMI_PS_CFG_CMD_STATUS_SUCCESS) {
2147 		wil_err(wil, "ps dev profile cfg failed with status %d\n",
2148 			status);
2149 		rc = -EINVAL;
2150 	}
2151 
2152 	return rc;
2153 }
2154 
2155 int wmi_set_mgmt_retry(struct wil6210_priv *wil, u8 retry_short)
2156 {
2157 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
2158 	int rc;
2159 	struct wmi_set_mgmt_retry_limit_cmd cmd = {
2160 		.mgmt_retry_limit = retry_short,
2161 	};
2162 	struct {
2163 		struct wmi_cmd_hdr wmi;
2164 		struct wmi_set_mgmt_retry_limit_event evt;
2165 	} __packed reply;
2166 
2167 	wil_dbg_wmi(wil, "Setting mgmt retry short %d\n", retry_short);
2168 
2169 	if (!test_bit(WMI_FW_CAPABILITY_MGMT_RETRY_LIMIT, wil->fw_capabilities))
2170 		return -ENOTSUPP;
2171 
2172 	reply.evt.status = WMI_FW_STATUS_FAILURE;
2173 
2174 	rc = wmi_call(wil, WMI_SET_MGMT_RETRY_LIMIT_CMDID, vif->mid,
2175 		      &cmd, sizeof(cmd),
2176 		      WMI_SET_MGMT_RETRY_LIMIT_EVENTID, &reply, sizeof(reply),
2177 		      100);
2178 	if (rc)
2179 		return rc;
2180 
2181 	if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
2182 		wil_err(wil, "set mgmt retry limit failed with status %d\n",
2183 			reply.evt.status);
2184 		rc = -EINVAL;
2185 	}
2186 
2187 	return rc;
2188 }
2189 
2190 int wmi_get_mgmt_retry(struct wil6210_priv *wil, u8 *retry_short)
2191 {
2192 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
2193 	int rc;
2194 	struct {
2195 		struct wmi_cmd_hdr wmi;
2196 		struct wmi_get_mgmt_retry_limit_event evt;
2197 	} __packed reply;
2198 
2199 	wil_dbg_wmi(wil, "getting mgmt retry short\n");
2200 
2201 	if (!test_bit(WMI_FW_CAPABILITY_MGMT_RETRY_LIMIT, wil->fw_capabilities))
2202 		return -ENOTSUPP;
2203 
2204 	reply.evt.mgmt_retry_limit = 0;
2205 	rc = wmi_call(wil, WMI_GET_MGMT_RETRY_LIMIT_CMDID, vif->mid, NULL, 0,
2206 		      WMI_GET_MGMT_RETRY_LIMIT_EVENTID, &reply, sizeof(reply),
2207 		      100);
2208 	if (rc)
2209 		return rc;
2210 
2211 	if (retry_short)
2212 		*retry_short = reply.evt.mgmt_retry_limit;
2213 
2214 	return 0;
2215 }
2216 
2217 int wmi_abort_scan(struct wil6210_vif *vif)
2218 {
2219 	struct wil6210_priv *wil = vif_to_wil(vif);
2220 	int rc;
2221 
2222 	wil_dbg_wmi(wil, "sending WMI_ABORT_SCAN_CMDID\n");
2223 
2224 	rc = wmi_send(wil, WMI_ABORT_SCAN_CMDID, vif->mid, NULL, 0);
2225 	if (rc)
2226 		wil_err(wil, "Failed to abort scan (%d)\n", rc);
2227 
2228 	return rc;
2229 }
2230 
2231 int wmi_new_sta(struct wil6210_vif *vif, const u8 *mac, u8 aid)
2232 {
2233 	struct wil6210_priv *wil = vif_to_wil(vif);
2234 	int rc;
2235 	struct wmi_new_sta_cmd cmd = {
2236 		.aid = aid,
2237 	};
2238 
2239 	wil_dbg_wmi(wil, "new sta %pM, aid %d\n", mac, aid);
2240 
2241 	ether_addr_copy(cmd.dst_mac, mac);
2242 
2243 	rc = wmi_send(wil, WMI_NEW_STA_CMDID, vif->mid, &cmd, sizeof(cmd));
2244 	if (rc)
2245 		wil_err(wil, "Failed to send new sta (%d)\n", rc);
2246 
2247 	return rc;
2248 }
2249 
2250 void wmi_event_flush(struct wil6210_priv *wil)
2251 {
2252 	ulong flags;
2253 	struct pending_wmi_event *evt, *t;
2254 
2255 	wil_dbg_wmi(wil, "event_flush\n");
2256 
2257 	spin_lock_irqsave(&wil->wmi_ev_lock, flags);
2258 
2259 	list_for_each_entry_safe(evt, t, &wil->pending_wmi_ev, list) {
2260 		list_del(&evt->list);
2261 		kfree(evt);
2262 	}
2263 
2264 	spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
2265 }
2266 
2267 static const char *suspend_status2name(u8 status)
2268 {
2269 	switch (status) {
2270 	case WMI_TRAFFIC_SUSPEND_REJECTED_LINK_NOT_IDLE:
2271 		return "LINK_NOT_IDLE";
2272 	default:
2273 		return "Untracked status";
2274 	}
2275 }
2276 
2277 int wmi_suspend(struct wil6210_priv *wil)
2278 {
2279 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
2280 	int rc;
2281 	struct wmi_traffic_suspend_cmd cmd = {
2282 		.wakeup_trigger = wil->wakeup_trigger,
2283 	};
2284 	struct {
2285 		struct wmi_cmd_hdr wmi;
2286 		struct wmi_traffic_suspend_event evt;
2287 	} __packed reply;
2288 	u32 suspend_to = WIL_WAIT_FOR_SUSPEND_RESUME_COMP;
2289 
2290 	wil->suspend_resp_rcvd = false;
2291 	wil->suspend_resp_comp = false;
2292 
2293 	reply.evt.status = WMI_TRAFFIC_SUSPEND_REJECTED_LINK_NOT_IDLE;
2294 
2295 	rc = wmi_call(wil, WMI_TRAFFIC_SUSPEND_CMDID, vif->mid,
2296 		      &cmd, sizeof(cmd),
2297 		      WMI_TRAFFIC_SUSPEND_EVENTID, &reply, sizeof(reply),
2298 		      suspend_to);
2299 	if (rc) {
2300 		wil_err(wil, "wmi_call for suspend req failed, rc=%d\n", rc);
2301 		if (rc == -ETIME)
2302 			/* wmi_call TO */
2303 			wil->suspend_stats.rejected_by_device++;
2304 		else
2305 			wil->suspend_stats.rejected_by_host++;
2306 		goto out;
2307 	}
2308 
2309 	wil_dbg_wmi(wil, "waiting for suspend_response_completed\n");
2310 
2311 	rc = wait_event_interruptible_timeout(wil->wq,
2312 					      wil->suspend_resp_comp,
2313 					      msecs_to_jiffies(suspend_to));
2314 	if (rc == 0) {
2315 		wil_err(wil, "TO waiting for suspend_response_completed\n");
2316 		if (wil->suspend_resp_rcvd)
2317 			/* Device responded but we TO due to another reason */
2318 			wil->suspend_stats.rejected_by_host++;
2319 		else
2320 			wil->suspend_stats.rejected_by_device++;
2321 		rc = -EBUSY;
2322 		goto out;
2323 	}
2324 
2325 	wil_dbg_wmi(wil, "suspend_response_completed rcvd\n");
2326 	if (reply.evt.status != WMI_TRAFFIC_SUSPEND_APPROVED) {
2327 		wil_dbg_pm(wil, "device rejected the suspend, %s\n",
2328 			   suspend_status2name(reply.evt.status));
2329 		wil->suspend_stats.rejected_by_device++;
2330 	}
2331 	rc = reply.evt.status;
2332 
2333 out:
2334 	wil->suspend_resp_rcvd = false;
2335 	wil->suspend_resp_comp = false;
2336 
2337 	return rc;
2338 }
2339 
2340 static void resume_triggers2string(u32 triggers, char *string, int str_size)
2341 {
2342 	string[0] = '\0';
2343 
2344 	if (!triggers) {
2345 		strlcat(string, " UNKNOWN", str_size);
2346 		return;
2347 	}
2348 
2349 	if (triggers & WMI_RESUME_TRIGGER_HOST)
2350 		strlcat(string, " HOST", str_size);
2351 
2352 	if (triggers & WMI_RESUME_TRIGGER_UCAST_RX)
2353 		strlcat(string, " UCAST_RX", str_size);
2354 
2355 	if (triggers & WMI_RESUME_TRIGGER_BCAST_RX)
2356 		strlcat(string, " BCAST_RX", str_size);
2357 
2358 	if (triggers & WMI_RESUME_TRIGGER_WMI_EVT)
2359 		strlcat(string, " WMI_EVT", str_size);
2360 }
2361 
2362 int wmi_resume(struct wil6210_priv *wil)
2363 {
2364 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
2365 	int rc;
2366 	char string[100];
2367 	struct {
2368 		struct wmi_cmd_hdr wmi;
2369 		struct wmi_traffic_resume_event evt;
2370 	} __packed reply;
2371 
2372 	reply.evt.status = WMI_TRAFFIC_RESUME_FAILED;
2373 	reply.evt.resume_triggers = WMI_RESUME_TRIGGER_UNKNOWN;
2374 
2375 	rc = wmi_call(wil, WMI_TRAFFIC_RESUME_CMDID, vif->mid, NULL, 0,
2376 		      WMI_TRAFFIC_RESUME_EVENTID, &reply, sizeof(reply),
2377 		      WIL_WAIT_FOR_SUSPEND_RESUME_COMP);
2378 	if (rc)
2379 		return rc;
2380 	resume_triggers2string(le32_to_cpu(reply.evt.resume_triggers), string,
2381 			       sizeof(string));
2382 	wil_dbg_pm(wil, "device resume %s, resume triggers:%s (0x%x)\n",
2383 		   reply.evt.status ? "failed" : "passed", string,
2384 		   le32_to_cpu(reply.evt.resume_triggers));
2385 
2386 	return reply.evt.status;
2387 }
2388 
2389 int wmi_port_allocate(struct wil6210_priv *wil, u8 mid,
2390 		      const u8 *mac, enum nl80211_iftype iftype)
2391 {
2392 	int rc;
2393 	struct wmi_port_allocate_cmd cmd = {
2394 		.mid = mid,
2395 	};
2396 	struct {
2397 		struct wmi_cmd_hdr wmi;
2398 		struct wmi_port_allocated_event evt;
2399 	} __packed reply;
2400 
2401 	wil_dbg_misc(wil, "port allocate, mid %d iftype %d, mac %pM\n",
2402 		     mid, iftype, mac);
2403 
2404 	ether_addr_copy(cmd.mac, mac);
2405 	switch (iftype) {
2406 	case NL80211_IFTYPE_STATION:
2407 		cmd.port_role = WMI_PORT_STA;
2408 		break;
2409 	case NL80211_IFTYPE_AP:
2410 		cmd.port_role = WMI_PORT_AP;
2411 		break;
2412 	case NL80211_IFTYPE_P2P_CLIENT:
2413 		cmd.port_role = WMI_PORT_P2P_CLIENT;
2414 		break;
2415 	case NL80211_IFTYPE_P2P_GO:
2416 		cmd.port_role = WMI_PORT_P2P_GO;
2417 		break;
2418 	/* what about monitor??? */
2419 	default:
2420 		wil_err(wil, "unsupported iftype: %d\n", iftype);
2421 		return -EINVAL;
2422 	}
2423 
2424 	reply.evt.status = WMI_FW_STATUS_FAILURE;
2425 
2426 	rc = wmi_call(wil, WMI_PORT_ALLOCATE_CMDID, mid,
2427 		      &cmd, sizeof(cmd),
2428 		      WMI_PORT_ALLOCATED_EVENTID, &reply,
2429 		      sizeof(reply), 300);
2430 	if (rc) {
2431 		wil_err(wil, "failed to allocate port, status %d\n", rc);
2432 		return rc;
2433 	}
2434 	if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
2435 		wil_err(wil, "WMI_PORT_ALLOCATE returned status %d\n",
2436 			reply.evt.status);
2437 		return -EINVAL;
2438 	}
2439 
2440 	return 0;
2441 }
2442 
2443 int wmi_port_delete(struct wil6210_priv *wil, u8 mid)
2444 {
2445 	int rc;
2446 	struct wmi_port_delete_cmd cmd = {
2447 		.mid = mid,
2448 	};
2449 	struct {
2450 		struct wmi_cmd_hdr wmi;
2451 		struct wmi_port_deleted_event evt;
2452 	} __packed reply;
2453 
2454 	wil_dbg_misc(wil, "port delete, mid %d\n", mid);
2455 
2456 	reply.evt.status = WMI_FW_STATUS_FAILURE;
2457 
2458 	rc = wmi_call(wil, WMI_PORT_DELETE_CMDID, mid,
2459 		      &cmd, sizeof(cmd),
2460 		      WMI_PORT_DELETED_EVENTID, &reply,
2461 		      sizeof(reply), 2000);
2462 	if (rc) {
2463 		wil_err(wil, "failed to delete port, status %d\n", rc);
2464 		return rc;
2465 	}
2466 	if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
2467 		wil_err(wil, "WMI_PORT_DELETE returned status %d\n",
2468 			reply.evt.status);
2469 		return -EINVAL;
2470 	}
2471 
2472 	return 0;
2473 }
2474 
2475 static bool wmi_evt_call_handler(struct wil6210_vif *vif, int id,
2476 				 void *d, int len)
2477 {
2478 	uint i;
2479 
2480 	for (i = 0; i < ARRAY_SIZE(wmi_evt_handlers); i++) {
2481 		if (wmi_evt_handlers[i].eventid == id) {
2482 			wmi_evt_handlers[i].handler(vif, id, d, len);
2483 			return true;
2484 		}
2485 	}
2486 
2487 	return false;
2488 }
2489 
2490 static void wmi_event_handle(struct wil6210_priv *wil,
2491 			     struct wil6210_mbox_hdr *hdr)
2492 {
2493 	u16 len = le16_to_cpu(hdr->len);
2494 	struct wil6210_vif *vif;
2495 
2496 	if ((hdr->type == WIL_MBOX_HDR_TYPE_WMI) &&
2497 	    (len >= sizeof(struct wmi_cmd_hdr))) {
2498 		struct wmi_cmd_hdr *wmi = (void *)(&hdr[1]);
2499 		void *evt_data = (void *)(&wmi[1]);
2500 		u16 id = le16_to_cpu(wmi->command_id);
2501 		u8 mid = wmi->mid;
2502 
2503 		wil_dbg_wmi(wil, "Handle %s (0x%04x) (reply_id 0x%04x,%d)\n",
2504 			    eventid2name(id), id, wil->reply_id,
2505 			    wil->reply_mid);
2506 
2507 		if (mid == MID_BROADCAST)
2508 			mid = 0;
2509 		if (mid >= wil->max_vifs) {
2510 			wil_dbg_wmi(wil, "invalid mid %d, event skipped\n",
2511 				    mid);
2512 			return;
2513 		}
2514 		vif = wil->vifs[mid];
2515 		if (!vif) {
2516 			wil_dbg_wmi(wil, "event for empty VIF(%d), skipped\n",
2517 				    mid);
2518 			return;
2519 		}
2520 
2521 		/* check if someone waits for this event */
2522 		if (wil->reply_id && wil->reply_id == id &&
2523 		    wil->reply_mid == mid) {
2524 			WARN_ON(wil->reply_buf);
2525 
2526 			wmi_evt_call_handler(vif, id, evt_data,
2527 					     len - sizeof(*wmi));
2528 			wil_dbg_wmi(wil, "event_handle: Complete WMI 0x%04x\n",
2529 				    id);
2530 			complete(&wil->wmi_call);
2531 			return;
2532 		}
2533 		/* unsolicited event */
2534 		/* search for handler */
2535 		if (!wmi_evt_call_handler(vif, id, evt_data,
2536 					  len - sizeof(*wmi))) {
2537 			wil_info(wil, "Unhandled event 0x%04x\n", id);
2538 		}
2539 	} else {
2540 		wil_err(wil, "Unknown event type\n");
2541 		print_hex_dump(KERN_ERR, "evt?? ", DUMP_PREFIX_OFFSET, 16, 1,
2542 			       hdr, sizeof(*hdr) + len, true);
2543 	}
2544 }
2545 
2546 /*
2547  * Retrieve next WMI event from the pending list
2548  */
2549 static struct list_head *next_wmi_ev(struct wil6210_priv *wil)
2550 {
2551 	ulong flags;
2552 	struct list_head *ret = NULL;
2553 
2554 	spin_lock_irqsave(&wil->wmi_ev_lock, flags);
2555 
2556 	if (!list_empty(&wil->pending_wmi_ev)) {
2557 		ret = wil->pending_wmi_ev.next;
2558 		list_del(ret);
2559 	}
2560 
2561 	spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
2562 
2563 	return ret;
2564 }
2565 
2566 /*
2567  * Handler for the WMI events
2568  */
2569 void wmi_event_worker(struct work_struct *work)
2570 {
2571 	struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
2572 						 wmi_event_worker);
2573 	struct pending_wmi_event *evt;
2574 	struct list_head *lh;
2575 
2576 	wil_dbg_wmi(wil, "event_worker: Start\n");
2577 	while ((lh = next_wmi_ev(wil)) != NULL) {
2578 		evt = list_entry(lh, struct pending_wmi_event, list);
2579 		wmi_event_handle(wil, &evt->event.hdr);
2580 		kfree(evt);
2581 	}
2582 	wil_dbg_wmi(wil, "event_worker: Finished\n");
2583 }
2584 
2585 bool wil_is_wmi_idle(struct wil6210_priv *wil)
2586 {
2587 	ulong flags;
2588 	struct wil6210_mbox_ring *r = &wil->mbox_ctl.rx;
2589 	bool rc = false;
2590 
2591 	spin_lock_irqsave(&wil->wmi_ev_lock, flags);
2592 
2593 	/* Check if there are pending WMI events in the events queue */
2594 	if (!list_empty(&wil->pending_wmi_ev)) {
2595 		wil_dbg_pm(wil, "Pending WMI events in queue\n");
2596 		goto out;
2597 	}
2598 
2599 	/* Check if there is a pending WMI call */
2600 	if (wil->reply_id) {
2601 		wil_dbg_pm(wil, "Pending WMI call\n");
2602 		goto out;
2603 	}
2604 
2605 	/* Check if there are pending RX events in mbox */
2606 	r->head = wil_r(wil, RGF_MBOX +
2607 			offsetof(struct wil6210_mbox_ctl, rx.head));
2608 	if (r->tail != r->head)
2609 		wil_dbg_pm(wil, "Pending WMI mbox events\n");
2610 	else
2611 		rc = true;
2612 
2613 out:
2614 	spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
2615 	return rc;
2616 }
2617 
2618 static void
2619 wmi_sched_scan_set_ssids(struct wil6210_priv *wil,
2620 			 struct wmi_start_sched_scan_cmd *cmd,
2621 			 struct cfg80211_ssid *ssids, int n_ssids,
2622 			 struct cfg80211_match_set *match_sets,
2623 			 int n_match_sets)
2624 {
2625 	int i;
2626 
2627 	if (n_match_sets > WMI_MAX_PNO_SSID_NUM) {
2628 		wil_dbg_wmi(wil, "too many match sets (%d), use first %d\n",
2629 			    n_match_sets, WMI_MAX_PNO_SSID_NUM);
2630 		n_match_sets = WMI_MAX_PNO_SSID_NUM;
2631 	}
2632 	cmd->num_of_ssids = n_match_sets;
2633 
2634 	for (i = 0; i < n_match_sets; i++) {
2635 		struct wmi_sched_scan_ssid_match *wmi_match =
2636 			&cmd->ssid_for_match[i];
2637 		struct cfg80211_match_set *cfg_match = &match_sets[i];
2638 		int j;
2639 
2640 		wmi_match->ssid_len = cfg_match->ssid.ssid_len;
2641 		memcpy(wmi_match->ssid, cfg_match->ssid.ssid,
2642 		       min_t(u8, wmi_match->ssid_len, WMI_MAX_SSID_LEN));
2643 		wmi_match->rssi_threshold = S8_MIN;
2644 		if (cfg_match->rssi_thold >= S8_MIN &&
2645 		    cfg_match->rssi_thold <= S8_MAX)
2646 			wmi_match->rssi_threshold = cfg_match->rssi_thold;
2647 
2648 		for (j = 0; j < n_ssids; j++)
2649 			if (wmi_match->ssid_len == ssids[j].ssid_len &&
2650 			    memcmp(wmi_match->ssid, ssids[j].ssid,
2651 				   wmi_match->ssid_len) == 0)
2652 				wmi_match->add_ssid_to_probe = true;
2653 	}
2654 }
2655 
2656 static void
2657 wmi_sched_scan_set_channels(struct wil6210_priv *wil,
2658 			    struct wmi_start_sched_scan_cmd *cmd,
2659 			    u32 n_channels,
2660 			    struct ieee80211_channel **channels)
2661 {
2662 	int i;
2663 
2664 	if (n_channels > WMI_MAX_CHANNEL_NUM) {
2665 		wil_dbg_wmi(wil, "too many channels (%d), use first %d\n",
2666 			    n_channels, WMI_MAX_CHANNEL_NUM);
2667 		n_channels = WMI_MAX_CHANNEL_NUM;
2668 	}
2669 	cmd->num_of_channels = n_channels;
2670 
2671 	for (i = 0; i < n_channels; i++) {
2672 		struct ieee80211_channel *cfg_chan = channels[i];
2673 
2674 		cmd->channel_list[i] = cfg_chan->hw_value - 1;
2675 	}
2676 }
2677 
2678 static void
2679 wmi_sched_scan_set_plans(struct wil6210_priv *wil,
2680 			 struct wmi_start_sched_scan_cmd *cmd,
2681 			 struct cfg80211_sched_scan_plan *scan_plans,
2682 			 int n_scan_plans)
2683 {
2684 	int i;
2685 
2686 	if (n_scan_plans > WMI_MAX_PLANS_NUM) {
2687 		wil_dbg_wmi(wil, "too many plans (%d), use first %d\n",
2688 			    n_scan_plans, WMI_MAX_PLANS_NUM);
2689 		n_scan_plans = WMI_MAX_PLANS_NUM;
2690 	}
2691 
2692 	for (i = 0; i < n_scan_plans; i++) {
2693 		struct cfg80211_sched_scan_plan *cfg_plan = &scan_plans[i];
2694 
2695 		cmd->scan_plans[i].interval_sec =
2696 			cpu_to_le16(cfg_plan->interval);
2697 		cmd->scan_plans[i].num_of_iterations =
2698 			cpu_to_le16(cfg_plan->iterations);
2699 	}
2700 }
2701 
2702 int wmi_start_sched_scan(struct wil6210_priv *wil,
2703 			 struct cfg80211_sched_scan_request *request)
2704 {
2705 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
2706 	int rc;
2707 	struct wmi_start_sched_scan_cmd cmd = {
2708 		.min_rssi_threshold = S8_MIN,
2709 		.initial_delay_sec = cpu_to_le16(request->delay),
2710 	};
2711 	struct {
2712 		struct wmi_cmd_hdr wmi;
2713 		struct wmi_start_sched_scan_event evt;
2714 	} __packed reply;
2715 
2716 	if (!test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities))
2717 		return -ENOTSUPP;
2718 
2719 	if (request->min_rssi_thold >= S8_MIN &&
2720 	    request->min_rssi_thold <= S8_MAX)
2721 		cmd.min_rssi_threshold = request->min_rssi_thold;
2722 
2723 	wmi_sched_scan_set_ssids(wil, &cmd, request->ssids, request->n_ssids,
2724 				 request->match_sets, request->n_match_sets);
2725 	wmi_sched_scan_set_channels(wil, &cmd,
2726 				    request->n_channels, request->channels);
2727 	wmi_sched_scan_set_plans(wil, &cmd,
2728 				 request->scan_plans, request->n_scan_plans);
2729 
2730 	reply.evt.result = WMI_PNO_REJECT;
2731 
2732 	rc = wmi_call(wil, WMI_START_SCHED_SCAN_CMDID, vif->mid,
2733 		      &cmd, sizeof(cmd),
2734 		      WMI_START_SCHED_SCAN_EVENTID, &reply, sizeof(reply),
2735 		      WIL_WMI_CALL_GENERAL_TO_MS);
2736 	if (rc)
2737 		return rc;
2738 
2739 	if (reply.evt.result != WMI_PNO_SUCCESS) {
2740 		wil_err(wil, "start sched scan failed, result %d\n",
2741 			reply.evt.result);
2742 		return -EINVAL;
2743 	}
2744 
2745 	return 0;
2746 }
2747 
2748 int wmi_stop_sched_scan(struct wil6210_priv *wil)
2749 {
2750 	struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
2751 	int rc;
2752 	struct {
2753 		struct wmi_cmd_hdr wmi;
2754 		struct wmi_stop_sched_scan_event evt;
2755 	} __packed reply;
2756 
2757 	if (!test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities))
2758 		return -ENOTSUPP;
2759 
2760 	reply.evt.result = WMI_PNO_REJECT;
2761 
2762 	rc = wmi_call(wil, WMI_STOP_SCHED_SCAN_CMDID, vif->mid, NULL, 0,
2763 		      WMI_STOP_SCHED_SCAN_EVENTID, &reply, sizeof(reply),
2764 		      WIL_WMI_CALL_GENERAL_TO_MS);
2765 	if (rc)
2766 		return rc;
2767 
2768 	if (reply.evt.result != WMI_PNO_SUCCESS) {
2769 		wil_err(wil, "stop sched scan failed, result %d\n",
2770 			reply.evt.result);
2771 		return -EINVAL;
2772 	}
2773 
2774 	return 0;
2775 }
2776