xref: /openbmc/linux/drivers/net/wireless/ath/wil6210/txrx.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /*
2  * Copyright (c) 2012-2016 Qualcomm Atheros, Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/etherdevice.h>
18 #include <net/ieee80211_radiotap.h>
19 #include <linux/if_arp.h>
20 #include <linux/moduleparam.h>
21 #include <linux/ip.h>
22 #include <linux/ipv6.h>
23 #include <net/ipv6.h>
24 #include <linux/prefetch.h>
25 
26 #include "wil6210.h"
27 #include "wmi.h"
28 #include "txrx.h"
29 #include "trace.h"
30 
31 static bool rtap_include_phy_info;
32 module_param(rtap_include_phy_info, bool, S_IRUGO);
33 MODULE_PARM_DESC(rtap_include_phy_info,
34 		 " Include PHY info in the radiotap header, default - no");
35 
36 bool rx_align_2;
37 module_param(rx_align_2, bool, S_IRUGO);
38 MODULE_PARM_DESC(rx_align_2, " align Rx buffers on 4*n+2, default - no");
39 
40 static inline uint wil_rx_snaplen(void)
41 {
42 	return rx_align_2 ? 6 : 0;
43 }
44 
45 static inline int wil_vring_is_empty(struct vring *vring)
46 {
47 	return vring->swhead == vring->swtail;
48 }
49 
50 static inline u32 wil_vring_next_tail(struct vring *vring)
51 {
52 	return (vring->swtail + 1) % vring->size;
53 }
54 
55 static inline void wil_vring_advance_head(struct vring *vring, int n)
56 {
57 	vring->swhead = (vring->swhead + n) % vring->size;
58 }
59 
60 static inline int wil_vring_is_full(struct vring *vring)
61 {
62 	return wil_vring_next_tail(vring) == vring->swhead;
63 }
64 
65 /* Used space in Tx Vring */
66 static inline int wil_vring_used_tx(struct vring *vring)
67 {
68 	u32 swhead = vring->swhead;
69 	u32 swtail = vring->swtail;
70 	return (vring->size + swhead - swtail) % vring->size;
71 }
72 
73 /* Available space in Tx Vring */
74 static inline int wil_vring_avail_tx(struct vring *vring)
75 {
76 	return vring->size - wil_vring_used_tx(vring) - 1;
77 }
78 
79 /* wil_vring_wmark_low - low watermark for available descriptor space */
80 static inline int wil_vring_wmark_low(struct vring *vring)
81 {
82 	return vring->size/8;
83 }
84 
85 /* wil_vring_wmark_high - high watermark for available descriptor space */
86 static inline int wil_vring_wmark_high(struct vring *vring)
87 {
88 	return vring->size/4;
89 }
90 
91 /* returns true if num avail descriptors is lower than wmark_low */
92 static inline int wil_vring_avail_low(struct vring *vring)
93 {
94 	return wil_vring_avail_tx(vring) < wil_vring_wmark_low(vring);
95 }
96 
97 /* returns true if num avail descriptors is higher than wmark_high */
98 static inline int wil_vring_avail_high(struct vring *vring)
99 {
100 	return wil_vring_avail_tx(vring) > wil_vring_wmark_high(vring);
101 }
102 
103 /* wil_val_in_range - check if value in [min,max) */
104 static inline bool wil_val_in_range(int val, int min, int max)
105 {
106 	return val >= min && val < max;
107 }
108 
109 static int wil_vring_alloc(struct wil6210_priv *wil, struct vring *vring)
110 {
111 	struct device *dev = wil_to_dev(wil);
112 	size_t sz = vring->size * sizeof(vring->va[0]);
113 	uint i;
114 
115 	wil_dbg_misc(wil, "%s()\n", __func__);
116 
117 	BUILD_BUG_ON(sizeof(vring->va[0]) != 32);
118 
119 	vring->swhead = 0;
120 	vring->swtail = 0;
121 	vring->ctx = kcalloc(vring->size, sizeof(vring->ctx[0]), GFP_KERNEL);
122 	if (!vring->ctx) {
123 		vring->va = NULL;
124 		return -ENOMEM;
125 	}
126 	/* vring->va should be aligned on its size rounded up to power of 2
127 	 * This is granted by the dma_alloc_coherent
128 	 */
129 	vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL);
130 	if (!vring->va) {
131 		kfree(vring->ctx);
132 		vring->ctx = NULL;
133 		return -ENOMEM;
134 	}
135 	/* initially, all descriptors are SW owned
136 	 * For Tx and Rx, ownership bit is at the same location, thus
137 	 * we can use any
138 	 */
139 	for (i = 0; i < vring->size; i++) {
140 		volatile struct vring_tx_desc *_d = &vring->va[i].tx;
141 
142 		_d->dma.status = TX_DMA_STATUS_DU;
143 	}
144 
145 	wil_dbg_misc(wil, "vring[%d] 0x%p:%pad 0x%p\n", vring->size,
146 		     vring->va, &vring->pa, vring->ctx);
147 
148 	return 0;
149 }
150 
151 static void wil_txdesc_unmap(struct device *dev, struct vring_tx_desc *d,
152 			     struct wil_ctx *ctx)
153 {
154 	dma_addr_t pa = wil_desc_addr(&d->dma.addr);
155 	u16 dmalen = le16_to_cpu(d->dma.length);
156 
157 	switch (ctx->mapped_as) {
158 	case wil_mapped_as_single:
159 		dma_unmap_single(dev, pa, dmalen, DMA_TO_DEVICE);
160 		break;
161 	case wil_mapped_as_page:
162 		dma_unmap_page(dev, pa, dmalen, DMA_TO_DEVICE);
163 		break;
164 	default:
165 		break;
166 	}
167 }
168 
169 static void wil_vring_free(struct wil6210_priv *wil, struct vring *vring,
170 			   int tx)
171 {
172 	struct device *dev = wil_to_dev(wil);
173 	size_t sz = vring->size * sizeof(vring->va[0]);
174 
175 	lockdep_assert_held(&wil->mutex);
176 	if (tx) {
177 		int vring_index = vring - wil->vring_tx;
178 
179 		wil_dbg_misc(wil, "free Tx vring %d [%d] 0x%p:%pad 0x%p\n",
180 			     vring_index, vring->size, vring->va,
181 			     &vring->pa, vring->ctx);
182 	} else {
183 		wil_dbg_misc(wil, "free Rx vring [%d] 0x%p:%pad 0x%p\n",
184 			     vring->size, vring->va,
185 			     &vring->pa, vring->ctx);
186 	}
187 
188 	while (!wil_vring_is_empty(vring)) {
189 		dma_addr_t pa;
190 		u16 dmalen;
191 		struct wil_ctx *ctx;
192 
193 		if (tx) {
194 			struct vring_tx_desc dd, *d = &dd;
195 			volatile struct vring_tx_desc *_d =
196 					&vring->va[vring->swtail].tx;
197 
198 			ctx = &vring->ctx[vring->swtail];
199 			if (!ctx) {
200 				wil_dbg_txrx(wil,
201 					     "ctx(%d) was already completed\n",
202 					     vring->swtail);
203 				vring->swtail = wil_vring_next_tail(vring);
204 				continue;
205 			}
206 			*d = *_d;
207 			wil_txdesc_unmap(dev, d, ctx);
208 			if (ctx->skb)
209 				dev_kfree_skb_any(ctx->skb);
210 			vring->swtail = wil_vring_next_tail(vring);
211 		} else { /* rx */
212 			struct vring_rx_desc dd, *d = &dd;
213 			volatile struct vring_rx_desc *_d =
214 					&vring->va[vring->swhead].rx;
215 
216 			ctx = &vring->ctx[vring->swhead];
217 			*d = *_d;
218 			pa = wil_desc_addr(&d->dma.addr);
219 			dmalen = le16_to_cpu(d->dma.length);
220 			dma_unmap_single(dev, pa, dmalen, DMA_FROM_DEVICE);
221 			kfree_skb(ctx->skb);
222 			wil_vring_advance_head(vring, 1);
223 		}
224 	}
225 	dma_free_coherent(dev, sz, (void *)vring->va, vring->pa);
226 	kfree(vring->ctx);
227 	vring->pa = 0;
228 	vring->va = NULL;
229 	vring->ctx = NULL;
230 }
231 
232 /**
233  * Allocate one skb for Rx VRING
234  *
235  * Safe to call from IRQ
236  */
237 static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct vring *vring,
238 			       u32 i, int headroom)
239 {
240 	struct device *dev = wil_to_dev(wil);
241 	unsigned int sz = mtu_max + ETH_HLEN + wil_rx_snaplen();
242 	struct vring_rx_desc dd, *d = &dd;
243 	volatile struct vring_rx_desc *_d = &vring->va[i].rx;
244 	dma_addr_t pa;
245 	struct sk_buff *skb = dev_alloc_skb(sz + headroom);
246 
247 	if (unlikely(!skb))
248 		return -ENOMEM;
249 
250 	skb_reserve(skb, headroom);
251 	skb_put(skb, sz);
252 
253 	pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE);
254 	if (unlikely(dma_mapping_error(dev, pa))) {
255 		kfree_skb(skb);
256 		return -ENOMEM;
257 	}
258 
259 	d->dma.d0 = RX_DMA_D0_CMD_DMA_RT | RX_DMA_D0_CMD_DMA_IT;
260 	wil_desc_addr_set(&d->dma.addr, pa);
261 	/* ip_length don't care */
262 	/* b11 don't care */
263 	/* error don't care */
264 	d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
265 	d->dma.length = cpu_to_le16(sz);
266 	*_d = *d;
267 	vring->ctx[i].skb = skb;
268 
269 	return 0;
270 }
271 
272 /**
273  * Adds radiotap header
274  *
275  * Any error indicated as "Bad FCS"
276  *
277  * Vendor data for 04:ce:14-1 (Wilocity-1) consists of:
278  *  - Rx descriptor: 32 bytes
279  *  - Phy info
280  */
281 static void wil_rx_add_radiotap_header(struct wil6210_priv *wil,
282 				       struct sk_buff *skb)
283 {
284 	struct wireless_dev *wdev = wil->wdev;
285 	struct wil6210_rtap {
286 		struct ieee80211_radiotap_header rthdr;
287 		/* fields should be in the order of bits in rthdr.it_present */
288 		/* flags */
289 		u8 flags;
290 		/* channel */
291 		__le16 chnl_freq __aligned(2);
292 		__le16 chnl_flags;
293 		/* MCS */
294 		u8 mcs_present;
295 		u8 mcs_flags;
296 		u8 mcs_index;
297 	} __packed;
298 	struct wil6210_rtap_vendor {
299 		struct wil6210_rtap rtap;
300 		/* vendor */
301 		u8 vendor_oui[3] __aligned(2);
302 		u8 vendor_ns;
303 		__le16 vendor_skip;
304 		u8 vendor_data[0];
305 	} __packed;
306 	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
307 	struct wil6210_rtap_vendor *rtap_vendor;
308 	int rtap_len = sizeof(struct wil6210_rtap);
309 	int phy_length = 0; /* phy info header size, bytes */
310 	static char phy_data[128];
311 	struct ieee80211_channel *ch = wdev->preset_chandef.chan;
312 
313 	if (rtap_include_phy_info) {
314 		rtap_len = sizeof(*rtap_vendor) + sizeof(*d);
315 		/* calculate additional length */
316 		if (d->dma.status & RX_DMA_STATUS_PHY_INFO) {
317 			/**
318 			 * PHY info starts from 8-byte boundary
319 			 * there are 8-byte lines, last line may be partially
320 			 * written (HW bug), thus FW configures for last line
321 			 * to be excessive. Driver skips this last line.
322 			 */
323 			int len = min_t(int, 8 + sizeof(phy_data),
324 					wil_rxdesc_phy_length(d));
325 
326 			if (len > 8) {
327 				void *p = skb_tail_pointer(skb);
328 				void *pa = PTR_ALIGN(p, 8);
329 
330 				if (skb_tailroom(skb) >= len + (pa - p)) {
331 					phy_length = len - 8;
332 					memcpy(phy_data, pa, phy_length);
333 				}
334 			}
335 		}
336 		rtap_len += phy_length;
337 	}
338 
339 	if (skb_headroom(skb) < rtap_len &&
340 	    pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) {
341 		wil_err(wil, "Unable to expand headrom to %d\n", rtap_len);
342 		return;
343 	}
344 
345 	rtap_vendor = (void *)skb_push(skb, rtap_len);
346 	memset(rtap_vendor, 0, rtap_len);
347 
348 	rtap_vendor->rtap.rthdr.it_version = PKTHDR_RADIOTAP_VERSION;
349 	rtap_vendor->rtap.rthdr.it_len = cpu_to_le16(rtap_len);
350 	rtap_vendor->rtap.rthdr.it_present = cpu_to_le32(
351 			(1 << IEEE80211_RADIOTAP_FLAGS) |
352 			(1 << IEEE80211_RADIOTAP_CHANNEL) |
353 			(1 << IEEE80211_RADIOTAP_MCS));
354 	if (d->dma.status & RX_DMA_STATUS_ERROR)
355 		rtap_vendor->rtap.flags |= IEEE80211_RADIOTAP_F_BADFCS;
356 
357 	rtap_vendor->rtap.chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320);
358 	rtap_vendor->rtap.chnl_flags = cpu_to_le16(0);
359 
360 	rtap_vendor->rtap.mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS;
361 	rtap_vendor->rtap.mcs_flags = 0;
362 	rtap_vendor->rtap.mcs_index = wil_rxdesc_mcs(d);
363 
364 	if (rtap_include_phy_info) {
365 		rtap_vendor->rtap.rthdr.it_present |= cpu_to_le32(1 <<
366 				IEEE80211_RADIOTAP_VENDOR_NAMESPACE);
367 		/* OUI for Wilocity 04:ce:14 */
368 		rtap_vendor->vendor_oui[0] = 0x04;
369 		rtap_vendor->vendor_oui[1] = 0xce;
370 		rtap_vendor->vendor_oui[2] = 0x14;
371 		rtap_vendor->vendor_ns = 1;
372 		/* Rx descriptor + PHY data  */
373 		rtap_vendor->vendor_skip = cpu_to_le16(sizeof(*d) +
374 						       phy_length);
375 		memcpy(rtap_vendor->vendor_data, (void *)d, sizeof(*d));
376 		memcpy(rtap_vendor->vendor_data + sizeof(*d), phy_data,
377 		       phy_length);
378 	}
379 }
380 
381 /* similar to ieee80211_ version, but FC contain only 1-st byte */
382 static inline int wil_is_back_req(u8 fc)
383 {
384 	return (fc & (IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
385 	       (IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK_REQ);
386 }
387 
388 /**
389  * reap 1 frame from @swhead
390  *
391  * Rx descriptor copied to skb->cb
392  *
393  * Safe to call from IRQ
394  */
395 static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil,
396 					 struct vring *vring)
397 {
398 	struct device *dev = wil_to_dev(wil);
399 	struct net_device *ndev = wil_to_ndev(wil);
400 	volatile struct vring_rx_desc *_d;
401 	struct vring_rx_desc *d;
402 	struct sk_buff *skb;
403 	dma_addr_t pa;
404 	unsigned int snaplen = wil_rx_snaplen();
405 	unsigned int sz = mtu_max + ETH_HLEN + snaplen;
406 	u16 dmalen;
407 	u8 ftype;
408 	int cid;
409 	int i;
410 	struct wil_net_stats *stats;
411 
412 	BUILD_BUG_ON(sizeof(struct vring_rx_desc) > sizeof(skb->cb));
413 
414 again:
415 	if (unlikely(wil_vring_is_empty(vring)))
416 		return NULL;
417 
418 	i = (int)vring->swhead;
419 	_d = &vring->va[i].rx;
420 	if (unlikely(!(_d->dma.status & RX_DMA_STATUS_DU))) {
421 		/* it is not error, we just reached end of Rx done area */
422 		return NULL;
423 	}
424 
425 	skb = vring->ctx[i].skb;
426 	vring->ctx[i].skb = NULL;
427 	wil_vring_advance_head(vring, 1);
428 	if (!skb) {
429 		wil_err(wil, "No Rx skb at [%d]\n", i);
430 		goto again;
431 	}
432 	d = wil_skb_rxdesc(skb);
433 	*d = *_d;
434 	pa = wil_desc_addr(&d->dma.addr);
435 
436 	dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE);
437 	dmalen = le16_to_cpu(d->dma.length);
438 
439 	trace_wil6210_rx(i, d);
440 	wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", i, dmalen);
441 	wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
442 			  (const void *)d, sizeof(*d), false);
443 
444 	cid = wil_rxdesc_cid(d);
445 	stats = &wil->sta[cid].stats;
446 
447 	if (unlikely(dmalen > sz)) {
448 		wil_err(wil, "Rx size too large: %d bytes!\n", dmalen);
449 		stats->rx_large_frame++;
450 		kfree_skb(skb);
451 		goto again;
452 	}
453 	skb_trim(skb, dmalen);
454 
455 	prefetch(skb->data);
456 
457 	wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
458 			  skb->data, skb_headlen(skb), false);
459 
460 	stats->last_mcs_rx = wil_rxdesc_mcs(d);
461 	if (stats->last_mcs_rx < ARRAY_SIZE(stats->rx_per_mcs))
462 		stats->rx_per_mcs[stats->last_mcs_rx]++;
463 
464 	/* use radiotap header only if required */
465 	if (ndev->type == ARPHRD_IEEE80211_RADIOTAP)
466 		wil_rx_add_radiotap_header(wil, skb);
467 
468 	/* no extra checks if in sniffer mode */
469 	if (ndev->type != ARPHRD_ETHER)
470 		return skb;
471 	/* Non-data frames may be delivered through Rx DMA channel (ex: BAR)
472 	 * Driver should recognize it by frame type, that is found
473 	 * in Rx descriptor. If type is not data, it is 802.11 frame as is
474 	 */
475 	ftype = wil_rxdesc_ftype(d) << 2;
476 	if (unlikely(ftype != IEEE80211_FTYPE_DATA)) {
477 		u8 fc1 = wil_rxdesc_fc1(d);
478 		int mid = wil_rxdesc_mid(d);
479 		int tid = wil_rxdesc_tid(d);
480 		u16 seq = wil_rxdesc_seq(d);
481 
482 		wil_dbg_txrx(wil,
483 			     "Non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
484 			     fc1, mid, cid, tid, seq);
485 		stats->rx_non_data_frame++;
486 		if (wil_is_back_req(fc1)) {
487 			wil_dbg_txrx(wil,
488 				     "BAR: MID %d CID %d TID %d Seq 0x%03x\n",
489 				     mid, cid, tid, seq);
490 			wil_rx_bar(wil, cid, tid, seq);
491 		} else {
492 			/* print again all info. One can enable only this
493 			 * without overhead for printing every Rx frame
494 			 */
495 			wil_dbg_txrx(wil,
496 				     "Unhandled non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
497 				     fc1, mid, cid, tid, seq);
498 			wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
499 					  (const void *)d, sizeof(*d), false);
500 			wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
501 					  skb->data, skb_headlen(skb), false);
502 		}
503 		kfree_skb(skb);
504 		goto again;
505 	}
506 
507 	if (unlikely(skb->len < ETH_HLEN + snaplen)) {
508 		wil_err(wil, "Short frame, len = %d\n", skb->len);
509 		stats->rx_short_frame++;
510 		kfree_skb(skb);
511 		goto again;
512 	}
513 
514 	/* L4 IDENT is on when HW calculated checksum, check status
515 	 * and in case of error drop the packet
516 	 * higher stack layers will handle retransmission (if required)
517 	 */
518 	if (likely(d->dma.status & RX_DMA_STATUS_L4I)) {
519 		/* L4 protocol identified, csum calculated */
520 		if (likely((d->dma.error & RX_DMA_ERROR_L4_ERR) == 0))
521 			skb->ip_summed = CHECKSUM_UNNECESSARY;
522 		/* If HW reports bad checksum, let IP stack re-check it
523 		 * For example, HW don't understand Microsoft IP stack that
524 		 * mis-calculates TCP checksum - if it should be 0x0,
525 		 * it writes 0xffff in violation of RFC 1624
526 		 */
527 	}
528 
529 	if (snaplen) {
530 		/* Packet layout
531 		 * +-------+-------+---------+------------+------+
532 		 * | SA(6) | DA(6) | SNAP(6) | ETHTYPE(2) | DATA |
533 		 * +-------+-------+---------+------------+------+
534 		 * Need to remove SNAP, shifting SA and DA forward
535 		 */
536 		memmove(skb->data + snaplen, skb->data, 2 * ETH_ALEN);
537 		skb_pull(skb, snaplen);
538 	}
539 
540 	return skb;
541 }
542 
543 /**
544  * allocate and fill up to @count buffers in rx ring
545  * buffers posted at @swtail
546  */
547 static int wil_rx_refill(struct wil6210_priv *wil, int count)
548 {
549 	struct net_device *ndev = wil_to_ndev(wil);
550 	struct vring *v = &wil->vring_rx;
551 	u32 next_tail;
552 	int rc = 0;
553 	int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ?
554 			WIL6210_RTAP_SIZE : 0;
555 
556 	for (; next_tail = wil_vring_next_tail(v),
557 			(next_tail != v->swhead) && (count-- > 0);
558 			v->swtail = next_tail) {
559 		rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom);
560 		if (unlikely(rc)) {
561 			wil_err(wil, "Error %d in wil_rx_refill[%d]\n",
562 				rc, v->swtail);
563 			break;
564 		}
565 	}
566 
567 	/* make sure all writes to descriptors (shared memory) are done before
568 	 * committing them to HW
569 	 */
570 	wmb();
571 
572 	wil_w(wil, v->hwtail, v->swtail);
573 
574 	return rc;
575 }
576 
577 /**
578  * reverse_memcmp - Compare two areas of memory, in reverse order
579  * @cs: One area of memory
580  * @ct: Another area of memory
581  * @count: The size of the area.
582  *
583  * Cut'n'paste from original memcmp (see lib/string.c)
584  * with minimal modifications
585  */
586 static int reverse_memcmp(const void *cs, const void *ct, size_t count)
587 {
588 	const unsigned char *su1, *su2;
589 	int res = 0;
590 
591 	for (su1 = cs + count - 1, su2 = ct + count - 1; count > 0;
592 	     --su1, --su2, count--) {
593 		res = *su1 - *su2;
594 		if (res)
595 			break;
596 	}
597 	return res;
598 }
599 
600 static int wil_rx_crypto_check(struct wil6210_priv *wil, struct sk_buff *skb)
601 {
602 	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
603 	int cid = wil_rxdesc_cid(d);
604 	int tid = wil_rxdesc_tid(d);
605 	int key_id = wil_rxdesc_key_id(d);
606 	int mc = wil_rxdesc_mcast(d);
607 	struct wil_sta_info *s = &wil->sta[cid];
608 	struct wil_tid_crypto_rx *c = mc ? &s->group_crypto_rx :
609 				      &s->tid_crypto_rx[tid];
610 	struct wil_tid_crypto_rx_single *cc = &c->key_id[key_id];
611 	const u8 *pn = (u8 *)&d->mac.pn_15_0;
612 
613 	if (!cc->key_set) {
614 		wil_err_ratelimited(wil,
615 				    "Key missing. CID %d TID %d MCast %d KEY_ID %d\n",
616 				    cid, tid, mc, key_id);
617 		return -EINVAL;
618 	}
619 
620 	if (reverse_memcmp(pn, cc->pn, IEEE80211_GCMP_PN_LEN) <= 0) {
621 		wil_err_ratelimited(wil,
622 				    "Replay attack. CID %d TID %d MCast %d KEY_ID %d PN %6phN last %6phN\n",
623 				    cid, tid, mc, key_id, pn, cc->pn);
624 		return -EINVAL;
625 	}
626 	memcpy(cc->pn, pn, IEEE80211_GCMP_PN_LEN);
627 
628 	return 0;
629 }
630 
631 /*
632  * Pass Rx packet to the netif. Update statistics.
633  * Called in softirq context (NAPI poll).
634  */
635 void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev)
636 {
637 	gro_result_t rc = GRO_NORMAL;
638 	struct wil6210_priv *wil = ndev_to_wil(ndev);
639 	struct wireless_dev *wdev = wil_to_wdev(wil);
640 	unsigned int len = skb->len;
641 	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
642 	int cid = wil_rxdesc_cid(d); /* always 0..7, no need to check */
643 	int security = wil_rxdesc_security(d);
644 	struct ethhdr *eth = (void *)skb->data;
645 	/* here looking for DA, not A1, thus Rxdesc's 'mcast' indication
646 	 * is not suitable, need to look at data
647 	 */
648 	int mcast = is_multicast_ether_addr(eth->h_dest);
649 	struct wil_net_stats *stats = &wil->sta[cid].stats;
650 	struct sk_buff *xmit_skb = NULL;
651 	static const char * const gro_res_str[] = {
652 		[GRO_MERGED]		= "GRO_MERGED",
653 		[GRO_MERGED_FREE]	= "GRO_MERGED_FREE",
654 		[GRO_HELD]		= "GRO_HELD",
655 		[GRO_NORMAL]		= "GRO_NORMAL",
656 		[GRO_DROP]		= "GRO_DROP",
657 	};
658 
659 	if (ndev->features & NETIF_F_RXHASH)
660 		/* fake L4 to ensure it won't be re-calculated later
661 		 * set hash to any non-zero value to activate rps
662 		 * mechanism, core will be chosen according
663 		 * to user-level rps configuration.
664 		 */
665 		skb_set_hash(skb, 1, PKT_HASH_TYPE_L4);
666 
667 	skb_orphan(skb);
668 
669 	if (security && (wil_rx_crypto_check(wil, skb) != 0)) {
670 		rc = GRO_DROP;
671 		dev_kfree_skb(skb);
672 		stats->rx_replay++;
673 		goto stats;
674 	}
675 
676 	if (wdev->iftype == NL80211_IFTYPE_AP && !wil->ap_isolate) {
677 		if (mcast) {
678 			/* send multicast frames both to higher layers in
679 			 * local net stack and back to the wireless medium
680 			 */
681 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
682 		} else {
683 			int xmit_cid = wil_find_cid(wil, eth->h_dest);
684 
685 			if (xmit_cid >= 0) {
686 				/* The destination station is associated to
687 				 * this AP (in this VLAN), so send the frame
688 				 * directly to it and do not pass it to local
689 				 * net stack.
690 				 */
691 				xmit_skb = skb;
692 				skb = NULL;
693 			}
694 		}
695 	}
696 	if (xmit_skb) {
697 		/* Send to wireless media and increase priority by 256 to
698 		 * keep the received priority instead of reclassifying
699 		 * the frame (see cfg80211_classify8021d).
700 		 */
701 		xmit_skb->dev = ndev;
702 		xmit_skb->priority += 256;
703 		xmit_skb->protocol = htons(ETH_P_802_3);
704 		skb_reset_network_header(xmit_skb);
705 		skb_reset_mac_header(xmit_skb);
706 		wil_dbg_txrx(wil, "Rx -> Tx %d bytes\n", len);
707 		dev_queue_xmit(xmit_skb);
708 	}
709 
710 	if (skb) { /* deliver to local stack */
711 
712 		skb->protocol = eth_type_trans(skb, ndev);
713 		rc = napi_gro_receive(&wil->napi_rx, skb);
714 		wil_dbg_txrx(wil, "Rx complete %d bytes => %s\n",
715 			     len, gro_res_str[rc]);
716 	}
717 stats:
718 	/* statistics. rc set to GRO_NORMAL for AP bridging */
719 	if (unlikely(rc == GRO_DROP)) {
720 		ndev->stats.rx_dropped++;
721 		stats->rx_dropped++;
722 		wil_dbg_txrx(wil, "Rx drop %d bytes\n", len);
723 	} else {
724 		ndev->stats.rx_packets++;
725 		stats->rx_packets++;
726 		ndev->stats.rx_bytes += len;
727 		stats->rx_bytes += len;
728 		if (mcast)
729 			ndev->stats.multicast++;
730 	}
731 }
732 
733 /**
734  * Proceed all completed skb's from Rx VRING
735  *
736  * Safe to call from NAPI poll, i.e. softirq with interrupts enabled
737  */
738 void wil_rx_handle(struct wil6210_priv *wil, int *quota)
739 {
740 	struct net_device *ndev = wil_to_ndev(wil);
741 	struct vring *v = &wil->vring_rx;
742 	struct sk_buff *skb;
743 
744 	if (unlikely(!v->va)) {
745 		wil_err(wil, "Rx IRQ while Rx not yet initialized\n");
746 		return;
747 	}
748 	wil_dbg_txrx(wil, "%s()\n", __func__);
749 	while ((*quota > 0) && (NULL != (skb = wil_vring_reap_rx(wil, v)))) {
750 		(*quota)--;
751 
752 		if (wil->wdev->iftype == NL80211_IFTYPE_MONITOR) {
753 			skb->dev = ndev;
754 			skb_reset_mac_header(skb);
755 			skb->ip_summed = CHECKSUM_UNNECESSARY;
756 			skb->pkt_type = PACKET_OTHERHOST;
757 			skb->protocol = htons(ETH_P_802_2);
758 			wil_netif_rx_any(skb, ndev);
759 		} else {
760 			wil_rx_reorder(wil, skb);
761 		}
762 	}
763 	wil_rx_refill(wil, v->size);
764 }
765 
766 int wil_rx_init(struct wil6210_priv *wil, u16 size)
767 {
768 	struct vring *vring = &wil->vring_rx;
769 	int rc;
770 
771 	wil_dbg_misc(wil, "%s()\n", __func__);
772 
773 	if (vring->va) {
774 		wil_err(wil, "Rx ring already allocated\n");
775 		return -EINVAL;
776 	}
777 
778 	vring->size = size;
779 	rc = wil_vring_alloc(wil, vring);
780 	if (rc)
781 		return rc;
782 
783 	rc = wmi_rx_chain_add(wil, vring);
784 	if (rc)
785 		goto err_free;
786 
787 	rc = wil_rx_refill(wil, vring->size);
788 	if (rc)
789 		goto err_free;
790 
791 	return 0;
792  err_free:
793 	wil_vring_free(wil, vring, 0);
794 
795 	return rc;
796 }
797 
798 void wil_rx_fini(struct wil6210_priv *wil)
799 {
800 	struct vring *vring = &wil->vring_rx;
801 
802 	wil_dbg_misc(wil, "%s()\n", __func__);
803 
804 	if (vring->va)
805 		wil_vring_free(wil, vring, 0);
806 }
807 
808 static inline void wil_tx_data_init(struct vring_tx_data *txdata)
809 {
810 	spin_lock_bh(&txdata->lock);
811 	txdata->dot1x_open = 0;
812 	txdata->enabled = 0;
813 	txdata->idle = 0;
814 	txdata->last_idle = 0;
815 	txdata->begin = 0;
816 	txdata->agg_wsize = 0;
817 	txdata->agg_timeout = 0;
818 	txdata->agg_amsdu = 0;
819 	txdata->addba_in_progress = false;
820 	spin_unlock_bh(&txdata->lock);
821 }
822 
823 int wil_vring_init_tx(struct wil6210_priv *wil, int id, int size,
824 		      int cid, int tid)
825 {
826 	int rc;
827 	struct wmi_vring_cfg_cmd cmd = {
828 		.action = cpu_to_le32(WMI_VRING_CMD_ADD),
829 		.vring_cfg = {
830 			.tx_sw_ring = {
831 				.max_mpdu_size =
832 					cpu_to_le16(wil_mtu2macbuf(mtu_max)),
833 				.ring_size = cpu_to_le16(size),
834 			},
835 			.ringid = id,
836 			.cidxtid = mk_cidxtid(cid, tid),
837 			.encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
838 			.mac_ctrl = 0,
839 			.to_resolution = 0,
840 			.agg_max_wsize = 0,
841 			.schd_params = {
842 				.priority = cpu_to_le16(0),
843 				.timeslot_us = cpu_to_le16(0xfff),
844 			},
845 		},
846 	};
847 	struct {
848 		struct wmi_cmd_hdr wmi;
849 		struct wmi_vring_cfg_done_event cmd;
850 	} __packed reply;
851 	struct vring *vring = &wil->vring_tx[id];
852 	struct vring_tx_data *txdata = &wil->vring_tx_data[id];
853 
854 	wil_dbg_misc(wil, "%s() max_mpdu_size %d\n", __func__,
855 		     cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
856 	lockdep_assert_held(&wil->mutex);
857 
858 	if (vring->va) {
859 		wil_err(wil, "Tx ring [%d] already allocated\n", id);
860 		rc = -EINVAL;
861 		goto out;
862 	}
863 
864 	wil_tx_data_init(txdata);
865 	vring->size = size;
866 	rc = wil_vring_alloc(wil, vring);
867 	if (rc)
868 		goto out;
869 
870 	wil->vring2cid_tid[id][0] = cid;
871 	wil->vring2cid_tid[id][1] = tid;
872 
873 	cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
874 
875 	if (!wil->privacy)
876 		txdata->dot1x_open = true;
877 	rc = wmi_call(wil, WMI_VRING_CFG_CMDID, &cmd, sizeof(cmd),
878 		      WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
879 	if (rc)
880 		goto out_free;
881 
882 	if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
883 		wil_err(wil, "Tx config failed, status 0x%02x\n",
884 			reply.cmd.status);
885 		rc = -EINVAL;
886 		goto out_free;
887 	}
888 
889 	spin_lock_bh(&txdata->lock);
890 	vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
891 	txdata->enabled = 1;
892 	spin_unlock_bh(&txdata->lock);
893 
894 	if (txdata->dot1x_open && (agg_wsize >= 0))
895 		wil_addba_tx_request(wil, id, agg_wsize);
896 
897 	return 0;
898  out_free:
899 	spin_lock_bh(&txdata->lock);
900 	txdata->dot1x_open = false;
901 	txdata->enabled = 0;
902 	spin_unlock_bh(&txdata->lock);
903 	wil_vring_free(wil, vring, 1);
904 	wil->vring2cid_tid[id][0] = WIL6210_MAX_CID;
905 	wil->vring2cid_tid[id][1] = 0;
906 
907  out:
908 
909 	return rc;
910 }
911 
912 int wil_vring_init_bcast(struct wil6210_priv *wil, int id, int size)
913 {
914 	int rc;
915 	struct wmi_bcast_vring_cfg_cmd cmd = {
916 		.action = cpu_to_le32(WMI_VRING_CMD_ADD),
917 		.vring_cfg = {
918 			.tx_sw_ring = {
919 				.max_mpdu_size =
920 					cpu_to_le16(wil_mtu2macbuf(mtu_max)),
921 				.ring_size = cpu_to_le16(size),
922 			},
923 			.ringid = id,
924 			.encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
925 		},
926 	};
927 	struct {
928 		struct wmi_cmd_hdr wmi;
929 		struct wmi_vring_cfg_done_event cmd;
930 	} __packed reply;
931 	struct vring *vring = &wil->vring_tx[id];
932 	struct vring_tx_data *txdata = &wil->vring_tx_data[id];
933 
934 	wil_dbg_misc(wil, "%s() max_mpdu_size %d\n", __func__,
935 		     cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
936 	lockdep_assert_held(&wil->mutex);
937 
938 	if (vring->va) {
939 		wil_err(wil, "Tx ring [%d] already allocated\n", id);
940 		rc = -EINVAL;
941 		goto out;
942 	}
943 
944 	wil_tx_data_init(txdata);
945 	vring->size = size;
946 	rc = wil_vring_alloc(wil, vring);
947 	if (rc)
948 		goto out;
949 
950 	wil->vring2cid_tid[id][0] = WIL6210_MAX_CID; /* CID */
951 	wil->vring2cid_tid[id][1] = 0; /* TID */
952 
953 	cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
954 
955 	if (!wil->privacy)
956 		txdata->dot1x_open = true;
957 	rc = wmi_call(wil, WMI_BCAST_VRING_CFG_CMDID, &cmd, sizeof(cmd),
958 		      WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
959 	if (rc)
960 		goto out_free;
961 
962 	if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
963 		wil_err(wil, "Tx config failed, status 0x%02x\n",
964 			reply.cmd.status);
965 		rc = -EINVAL;
966 		goto out_free;
967 	}
968 
969 	spin_lock_bh(&txdata->lock);
970 	vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
971 	txdata->enabled = 1;
972 	spin_unlock_bh(&txdata->lock);
973 
974 	return 0;
975  out_free:
976 	spin_lock_bh(&txdata->lock);
977 	txdata->enabled = 0;
978 	txdata->dot1x_open = false;
979 	spin_unlock_bh(&txdata->lock);
980 	wil_vring_free(wil, vring, 1);
981  out:
982 
983 	return rc;
984 }
985 
986 void wil_vring_fini_tx(struct wil6210_priv *wil, int id)
987 {
988 	struct vring *vring = &wil->vring_tx[id];
989 	struct vring_tx_data *txdata = &wil->vring_tx_data[id];
990 
991 	lockdep_assert_held(&wil->mutex);
992 
993 	if (!vring->va)
994 		return;
995 
996 	wil_dbg_misc(wil, "%s() id=%d\n", __func__, id);
997 
998 	spin_lock_bh(&txdata->lock);
999 	txdata->dot1x_open = false;
1000 	txdata->enabled = 0; /* no Tx can be in progress or start anew */
1001 	spin_unlock_bh(&txdata->lock);
1002 	/* napi_synchronize waits for completion of the current NAPI but will
1003 	 * not prevent the next NAPI run.
1004 	 * Add a memory barrier to guarantee that txdata->enabled is zeroed
1005 	 * before napi_synchronize so that the next scheduled NAPI will not
1006 	 * handle this vring
1007 	 */
1008 	wmb();
1009 	/* make sure NAPI won't touch this vring */
1010 	if (test_bit(wil_status_napi_en, wil->status))
1011 		napi_synchronize(&wil->napi_tx);
1012 
1013 	wil_vring_free(wil, vring, 1);
1014 }
1015 
1016 static struct vring *wil_find_tx_ucast(struct wil6210_priv *wil,
1017 				       struct sk_buff *skb)
1018 {
1019 	int i;
1020 	struct ethhdr *eth = (void *)skb->data;
1021 	int cid = wil_find_cid(wil, eth->h_dest);
1022 
1023 	if (cid < 0)
1024 		return NULL;
1025 
1026 	/* TODO: fix for multiple TID */
1027 	for (i = 0; i < ARRAY_SIZE(wil->vring2cid_tid); i++) {
1028 		if (!wil->vring_tx_data[i].dot1x_open &&
1029 		    (skb->protocol != cpu_to_be16(ETH_P_PAE)))
1030 			continue;
1031 		if (wil->vring2cid_tid[i][0] == cid) {
1032 			struct vring *v = &wil->vring_tx[i];
1033 			struct vring_tx_data *txdata = &wil->vring_tx_data[i];
1034 
1035 			wil_dbg_txrx(wil, "%s(%pM) -> [%d]\n",
1036 				     __func__, eth->h_dest, i);
1037 			if (v->va && txdata->enabled) {
1038 				return v;
1039 			} else {
1040 				wil_dbg_txrx(wil, "vring[%d] not valid\n", i);
1041 				return NULL;
1042 			}
1043 		}
1044 	}
1045 
1046 	return NULL;
1047 }
1048 
1049 static int wil_tx_vring(struct wil6210_priv *wil, struct vring *vring,
1050 			struct sk_buff *skb);
1051 
1052 static struct vring *wil_find_tx_vring_sta(struct wil6210_priv *wil,
1053 					   struct sk_buff *skb)
1054 {
1055 	struct vring *v;
1056 	int i;
1057 	u8 cid;
1058 	struct vring_tx_data *txdata;
1059 
1060 	/* In the STA mode, it is expected to have only 1 VRING
1061 	 * for the AP we connected to.
1062 	 * find 1-st vring eligible for this skb and use it.
1063 	 */
1064 	for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
1065 		v = &wil->vring_tx[i];
1066 		txdata = &wil->vring_tx_data[i];
1067 		if (!v->va || !txdata->enabled)
1068 			continue;
1069 
1070 		cid = wil->vring2cid_tid[i][0];
1071 		if (cid >= WIL6210_MAX_CID) /* skip BCAST */
1072 			continue;
1073 
1074 		if (!wil->vring_tx_data[i].dot1x_open &&
1075 		    (skb->protocol != cpu_to_be16(ETH_P_PAE)))
1076 			continue;
1077 
1078 		wil_dbg_txrx(wil, "Tx -> ring %d\n", i);
1079 
1080 		return v;
1081 	}
1082 
1083 	wil_dbg_txrx(wil, "Tx while no vrings active?\n");
1084 
1085 	return NULL;
1086 }
1087 
1088 /* Use one of 2 strategies:
1089  *
1090  * 1. New (real broadcast):
1091  *    use dedicated broadcast vring
1092  * 2. Old (pseudo-DMS):
1093  *    Find 1-st vring and return it;
1094  *    duplicate skb and send it to other active vrings;
1095  *    in all cases override dest address to unicast peer's address
1096  * Use old strategy when new is not supported yet:
1097  *  - for PBSS
1098  */
1099 static struct vring *wil_find_tx_bcast_1(struct wil6210_priv *wil,
1100 					 struct sk_buff *skb)
1101 {
1102 	struct vring *v;
1103 	struct vring_tx_data *txdata;
1104 	int i = wil->bcast_vring;
1105 
1106 	if (i < 0)
1107 		return NULL;
1108 	v = &wil->vring_tx[i];
1109 	txdata = &wil->vring_tx_data[i];
1110 	if (!v->va || !txdata->enabled)
1111 		return NULL;
1112 	if (!wil->vring_tx_data[i].dot1x_open &&
1113 	    (skb->protocol != cpu_to_be16(ETH_P_PAE)))
1114 		return NULL;
1115 
1116 	return v;
1117 }
1118 
1119 static void wil_set_da_for_vring(struct wil6210_priv *wil,
1120 				 struct sk_buff *skb, int vring_index)
1121 {
1122 	struct ethhdr *eth = (void *)skb->data;
1123 	int cid = wil->vring2cid_tid[vring_index][0];
1124 
1125 	ether_addr_copy(eth->h_dest, wil->sta[cid].addr);
1126 }
1127 
1128 static struct vring *wil_find_tx_bcast_2(struct wil6210_priv *wil,
1129 					 struct sk_buff *skb)
1130 {
1131 	struct vring *v, *v2;
1132 	struct sk_buff *skb2;
1133 	int i;
1134 	u8 cid;
1135 	struct ethhdr *eth = (void *)skb->data;
1136 	char *src = eth->h_source;
1137 	struct vring_tx_data *txdata;
1138 
1139 	/* find 1-st vring eligible for data */
1140 	for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
1141 		v = &wil->vring_tx[i];
1142 		txdata = &wil->vring_tx_data[i];
1143 		if (!v->va || !txdata->enabled)
1144 			continue;
1145 
1146 		cid = wil->vring2cid_tid[i][0];
1147 		if (cid >= WIL6210_MAX_CID) /* skip BCAST */
1148 			continue;
1149 		if (!wil->vring_tx_data[i].dot1x_open &&
1150 		    (skb->protocol != cpu_to_be16(ETH_P_PAE)))
1151 			continue;
1152 
1153 		/* don't Tx back to source when re-routing Rx->Tx at the AP */
1154 		if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1155 			continue;
1156 
1157 		goto found;
1158 	}
1159 
1160 	wil_dbg_txrx(wil, "Tx while no vrings active?\n");
1161 
1162 	return NULL;
1163 
1164 found:
1165 	wil_dbg_txrx(wil, "BCAST -> ring %d\n", i);
1166 	wil_set_da_for_vring(wil, skb, i);
1167 
1168 	/* find other active vrings and duplicate skb for each */
1169 	for (i++; i < WIL6210_MAX_TX_RINGS; i++) {
1170 		v2 = &wil->vring_tx[i];
1171 		if (!v2->va)
1172 			continue;
1173 		cid = wil->vring2cid_tid[i][0];
1174 		if (cid >= WIL6210_MAX_CID) /* skip BCAST */
1175 			continue;
1176 		if (!wil->vring_tx_data[i].dot1x_open &&
1177 		    (skb->protocol != cpu_to_be16(ETH_P_PAE)))
1178 			continue;
1179 
1180 		if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1181 			continue;
1182 
1183 		skb2 = skb_copy(skb, GFP_ATOMIC);
1184 		if (skb2) {
1185 			wil_dbg_txrx(wil, "BCAST DUP -> ring %d\n", i);
1186 			wil_set_da_for_vring(wil, skb2, i);
1187 			wil_tx_vring(wil, v2, skb2);
1188 		} else {
1189 			wil_err(wil, "skb_copy failed\n");
1190 		}
1191 	}
1192 
1193 	return v;
1194 }
1195 
1196 static struct vring *wil_find_tx_bcast(struct wil6210_priv *wil,
1197 				       struct sk_buff *skb)
1198 {
1199 	struct wireless_dev *wdev = wil->wdev;
1200 
1201 	if (wdev->iftype != NL80211_IFTYPE_AP)
1202 		return wil_find_tx_bcast_2(wil, skb);
1203 
1204 	return wil_find_tx_bcast_1(wil, skb);
1205 }
1206 
1207 static int wil_tx_desc_map(struct vring_tx_desc *d, dma_addr_t pa, u32 len,
1208 			   int vring_index)
1209 {
1210 	wil_desc_addr_set(&d->dma.addr, pa);
1211 	d->dma.ip_length = 0;
1212 	/* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/
1213 	d->dma.b11 = 0/*14 | BIT(7)*/;
1214 	d->dma.error = 0;
1215 	d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
1216 	d->dma.length = cpu_to_le16((u16)len);
1217 	d->dma.d0 = (vring_index << DMA_CFG_DESC_TX_0_QID_POS);
1218 	d->mac.d[0] = 0;
1219 	d->mac.d[1] = 0;
1220 	d->mac.d[2] = 0;
1221 	d->mac.ucode_cmd = 0;
1222 	/* translation type:  0 - bypass; 1 - 802.3; 2 - native wifi */
1223 	d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) |
1224 		      (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS);
1225 
1226 	return 0;
1227 }
1228 
1229 static inline
1230 void wil_tx_desc_set_nr_frags(struct vring_tx_desc *d, int nr_frags)
1231 {
1232 	d->mac.d[2] |= (nr_frags << MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS);
1233 }
1234 
1235 /**
1236  * Sets the descriptor @d up for csum and/or TSO offloading. The corresponding
1237  * @skb is used to obtain the protocol and headers length.
1238  * @tso_desc_type is a descriptor type for TSO: 0 - a header, 1 - first data,
1239  * 2 - middle, 3 - last descriptor.
1240  */
1241 
1242 static void wil_tx_desc_offload_setup_tso(struct vring_tx_desc *d,
1243 					  struct sk_buff *skb,
1244 					  int tso_desc_type, bool is_ipv4,
1245 					  int tcp_hdr_len, int skb_net_hdr_len)
1246 {
1247 	d->dma.b11 = ETH_HLEN; /* MAC header length */
1248 	d->dma.b11 |= is_ipv4 << DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS;
1249 
1250 	d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1251 	/* L4 header len: TCP header length */
1252 	d->dma.d0 |= (tcp_hdr_len & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1253 
1254 	/* Setup TSO: bit and desc type */
1255 	d->dma.d0 |= (BIT(DMA_CFG_DESC_TX_0_TCP_SEG_EN_POS)) |
1256 		(tso_desc_type << DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS);
1257 	d->dma.d0 |= (is_ipv4 << DMA_CFG_DESC_TX_0_IPV4_CHECKSUM_EN_POS);
1258 
1259 	d->dma.ip_length = skb_net_hdr_len;
1260 	/* Enable TCP/UDP checksum */
1261 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1262 	/* Calculate pseudo-header */
1263 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1264 }
1265 
1266 /**
1267  * Sets the descriptor @d up for csum. The corresponding
1268  * @skb is used to obtain the protocol and headers length.
1269  * Returns the protocol: 0 - not TCP, 1 - TCPv4, 2 - TCPv6.
1270  * Note, if d==NULL, the function only returns the protocol result.
1271  *
1272  * It is very similar to previous wil_tx_desc_offload_setup_tso. This
1273  * is "if unrolling" to optimize the critical path.
1274  */
1275 
1276 static int wil_tx_desc_offload_setup(struct vring_tx_desc *d,
1277 				     struct sk_buff *skb){
1278 	int protocol;
1279 
1280 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1281 		return 0;
1282 
1283 	d->dma.b11 = ETH_HLEN; /* MAC header length */
1284 
1285 	switch (skb->protocol) {
1286 	case cpu_to_be16(ETH_P_IP):
1287 		protocol = ip_hdr(skb)->protocol;
1288 		d->dma.b11 |= BIT(DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS);
1289 		break;
1290 	case cpu_to_be16(ETH_P_IPV6):
1291 		protocol = ipv6_hdr(skb)->nexthdr;
1292 		break;
1293 	default:
1294 		return -EINVAL;
1295 	}
1296 
1297 	switch (protocol) {
1298 	case IPPROTO_TCP:
1299 		d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1300 		/* L4 header len: TCP header length */
1301 		d->dma.d0 |=
1302 		(tcp_hdrlen(skb) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1303 		break;
1304 	case IPPROTO_UDP:
1305 		/* L4 header len: UDP header length */
1306 		d->dma.d0 |=
1307 		(sizeof(struct udphdr) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1308 		break;
1309 	default:
1310 		return -EINVAL;
1311 	}
1312 
1313 	d->dma.ip_length = skb_network_header_len(skb);
1314 	/* Enable TCP/UDP checksum */
1315 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1316 	/* Calculate pseudo-header */
1317 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1318 
1319 	return 0;
1320 }
1321 
1322 static inline void wil_tx_last_desc(struct vring_tx_desc *d)
1323 {
1324 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS) |
1325 	      BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS) |
1326 	      BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
1327 }
1328 
1329 static inline void wil_set_tx_desc_last_tso(volatile struct vring_tx_desc *d)
1330 {
1331 	d->dma.d0 |= wil_tso_type_lst <<
1332 		  DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS;
1333 }
1334 
1335 static int __wil_tx_vring_tso(struct wil6210_priv *wil, struct vring *vring,
1336 			      struct sk_buff *skb)
1337 {
1338 	struct device *dev = wil_to_dev(wil);
1339 
1340 	/* point to descriptors in shared memory */
1341 	volatile struct vring_tx_desc *_desc = NULL, *_hdr_desc,
1342 				      *_first_desc = NULL;
1343 
1344 	/* pointers to shadow descriptors */
1345 	struct vring_tx_desc desc_mem, hdr_desc_mem, first_desc_mem,
1346 			     *d = &hdr_desc_mem, *hdr_desc = &hdr_desc_mem,
1347 			     *first_desc = &first_desc_mem;
1348 
1349 	/* pointer to shadow descriptors' context */
1350 	struct wil_ctx *hdr_ctx, *first_ctx = NULL;
1351 
1352 	int descs_used = 0; /* total number of used descriptors */
1353 	int sg_desc_cnt = 0; /* number of descriptors for current mss*/
1354 
1355 	u32 swhead = vring->swhead;
1356 	int used, avail = wil_vring_avail_tx(vring);
1357 	int nr_frags = skb_shinfo(skb)->nr_frags;
1358 	int min_desc_required = nr_frags + 1;
1359 	int mss = skb_shinfo(skb)->gso_size;	/* payload size w/o headers */
1360 	int f, len, hdrlen, headlen;
1361 	int vring_index = vring - wil->vring_tx;
1362 	struct vring_tx_data *txdata = &wil->vring_tx_data[vring_index];
1363 	uint i = swhead;
1364 	dma_addr_t pa;
1365 	const skb_frag_t *frag = NULL;
1366 	int rem_data = mss;
1367 	int lenmss;
1368 	int hdr_compensation_need = true;
1369 	int desc_tso_type = wil_tso_type_first;
1370 	bool is_ipv4;
1371 	int tcp_hdr_len;
1372 	int skb_net_hdr_len;
1373 	int gso_type;
1374 	int rc = -EINVAL;
1375 
1376 	wil_dbg_txrx(wil, "%s() %d bytes to vring %d\n",
1377 		     __func__, skb->len, vring_index);
1378 
1379 	if (unlikely(!txdata->enabled))
1380 		return -EINVAL;
1381 
1382 	/* A typical page 4K is 3-4 payloads, we assume each fragment
1383 	 * is a full payload, that's how min_desc_required has been
1384 	 * calculated. In real we might need more or less descriptors,
1385 	 * this is the initial check only.
1386 	 */
1387 	if (unlikely(avail < min_desc_required)) {
1388 		wil_err_ratelimited(wil,
1389 				    "TSO: Tx ring[%2d] full. No space for %d fragments\n",
1390 				    vring_index, min_desc_required);
1391 		return -ENOMEM;
1392 	}
1393 
1394 	/* Header Length = MAC header len + IP header len + TCP header len*/
1395 	hdrlen = ETH_HLEN +
1396 		(int)skb_network_header_len(skb) +
1397 		tcp_hdrlen(skb);
1398 
1399 	gso_type = skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV6 | SKB_GSO_TCPV4);
1400 	switch (gso_type) {
1401 	case SKB_GSO_TCPV4:
1402 		/* TCP v4, zero out the IP length and IPv4 checksum fields
1403 		 * as required by the offloading doc
1404 		 */
1405 		ip_hdr(skb)->tot_len = 0;
1406 		ip_hdr(skb)->check = 0;
1407 		is_ipv4 = true;
1408 		break;
1409 	case SKB_GSO_TCPV6:
1410 		/* TCP v6, zero out the payload length */
1411 		ipv6_hdr(skb)->payload_len = 0;
1412 		is_ipv4 = false;
1413 		break;
1414 	default:
1415 		/* other than TCPv4 or TCPv6 types are not supported for TSO.
1416 		 * It is also illegal for both to be set simultaneously
1417 		 */
1418 		return -EINVAL;
1419 	}
1420 
1421 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1422 		return -EINVAL;
1423 
1424 	/* tcp header length and skb network header length are fixed for all
1425 	 * packet's descriptors - read then once here
1426 	 */
1427 	tcp_hdr_len = tcp_hdrlen(skb);
1428 	skb_net_hdr_len = skb_network_header_len(skb);
1429 
1430 	_hdr_desc = &vring->va[i].tx;
1431 
1432 	pa = dma_map_single(dev, skb->data, hdrlen, DMA_TO_DEVICE);
1433 	if (unlikely(dma_mapping_error(dev, pa))) {
1434 		wil_err(wil, "TSO: Skb head DMA map error\n");
1435 		goto err_exit;
1436 	}
1437 
1438 	wil_tx_desc_map(hdr_desc, pa, hdrlen, vring_index);
1439 	wil_tx_desc_offload_setup_tso(hdr_desc, skb, wil_tso_type_hdr, is_ipv4,
1440 				      tcp_hdr_len, skb_net_hdr_len);
1441 	wil_tx_last_desc(hdr_desc);
1442 
1443 	vring->ctx[i].mapped_as = wil_mapped_as_single;
1444 	hdr_ctx = &vring->ctx[i];
1445 
1446 	descs_used++;
1447 	headlen = skb_headlen(skb) - hdrlen;
1448 
1449 	for (f = headlen ? -1 : 0; f < nr_frags; f++)  {
1450 		if (headlen) {
1451 			len = headlen;
1452 			wil_dbg_txrx(wil, "TSO: process skb head, len %u\n",
1453 				     len);
1454 		} else {
1455 			frag = &skb_shinfo(skb)->frags[f];
1456 			len = frag->size;
1457 			wil_dbg_txrx(wil, "TSO: frag[%d]: len %u\n", f, len);
1458 		}
1459 
1460 		while (len) {
1461 			wil_dbg_txrx(wil,
1462 				     "TSO: len %d, rem_data %d, descs_used %d\n",
1463 				     len, rem_data, descs_used);
1464 
1465 			if (descs_used == avail)  {
1466 				wil_err_ratelimited(wil, "TSO: ring overflow\n");
1467 				rc = -ENOMEM;
1468 				goto mem_error;
1469 			}
1470 
1471 			lenmss = min_t(int, rem_data, len);
1472 			i = (swhead + descs_used) % vring->size;
1473 			wil_dbg_txrx(wil, "TSO: lenmss %d, i %d\n", lenmss, i);
1474 
1475 			if (!headlen) {
1476 				pa = skb_frag_dma_map(dev, frag,
1477 						      frag->size - len, lenmss,
1478 						      DMA_TO_DEVICE);
1479 				vring->ctx[i].mapped_as = wil_mapped_as_page;
1480 			} else {
1481 				pa = dma_map_single(dev,
1482 						    skb->data +
1483 						    skb_headlen(skb) - headlen,
1484 						    lenmss,
1485 						    DMA_TO_DEVICE);
1486 				vring->ctx[i].mapped_as = wil_mapped_as_single;
1487 				headlen -= lenmss;
1488 			}
1489 
1490 			if (unlikely(dma_mapping_error(dev, pa))) {
1491 				wil_err(wil, "TSO: DMA map page error\n");
1492 				goto mem_error;
1493 			}
1494 
1495 			_desc = &vring->va[i].tx;
1496 
1497 			if (!_first_desc) {
1498 				_first_desc = _desc;
1499 				first_ctx = &vring->ctx[i];
1500 				d = first_desc;
1501 			} else {
1502 				d = &desc_mem;
1503 			}
1504 
1505 			wil_tx_desc_map(d, pa, lenmss, vring_index);
1506 			wil_tx_desc_offload_setup_tso(d, skb, desc_tso_type,
1507 						      is_ipv4, tcp_hdr_len,
1508 						      skb_net_hdr_len);
1509 
1510 			/* use tso_type_first only once */
1511 			desc_tso_type = wil_tso_type_mid;
1512 
1513 			descs_used++;  /* desc used so far */
1514 			sg_desc_cnt++; /* desc used for this segment */
1515 			len -= lenmss;
1516 			rem_data -= lenmss;
1517 
1518 			wil_dbg_txrx(wil,
1519 				     "TSO: len %d, rem_data %d, descs_used %d, sg_desc_cnt %d,\n",
1520 				     len, rem_data, descs_used, sg_desc_cnt);
1521 
1522 			/* Close the segment if reached mss size or last frag*/
1523 			if (rem_data == 0 || (f == nr_frags - 1 && len == 0)) {
1524 				if (hdr_compensation_need) {
1525 					/* first segment include hdr desc for
1526 					 * release
1527 					 */
1528 					hdr_ctx->nr_frags = sg_desc_cnt;
1529 					wil_tx_desc_set_nr_frags(first_desc,
1530 								 sg_desc_cnt +
1531 								 1);
1532 					hdr_compensation_need = false;
1533 				} else {
1534 					wil_tx_desc_set_nr_frags(first_desc,
1535 								 sg_desc_cnt);
1536 				}
1537 				first_ctx->nr_frags = sg_desc_cnt - 1;
1538 
1539 				wil_tx_last_desc(d);
1540 
1541 				/* first descriptor may also be the last
1542 				 * for this mss - make sure not to copy
1543 				 * it twice
1544 				 */
1545 				if (first_desc != d)
1546 					*_first_desc = *first_desc;
1547 
1548 				/*last descriptor will be copied at the end
1549 				 * of this TS processing
1550 				 */
1551 				if (f < nr_frags - 1 || len > 0)
1552 					*_desc = *d;
1553 
1554 				rem_data = mss;
1555 				_first_desc = NULL;
1556 				sg_desc_cnt = 0;
1557 			} else if (first_desc != d) /* update mid descriptor */
1558 					*_desc = *d;
1559 		}
1560 	}
1561 
1562 	/* first descriptor may also be the last.
1563 	 * in this case d pointer is invalid
1564 	 */
1565 	if (_first_desc == _desc)
1566 		d = first_desc;
1567 
1568 	/* Last data descriptor */
1569 	wil_set_tx_desc_last_tso(d);
1570 	*_desc = *d;
1571 
1572 	/* Fill the total number of descriptors in first desc (hdr)*/
1573 	wil_tx_desc_set_nr_frags(hdr_desc, descs_used);
1574 	*_hdr_desc = *hdr_desc;
1575 
1576 	/* hold reference to skb
1577 	 * to prevent skb release before accounting
1578 	 * in case of immediate "tx done"
1579 	 */
1580 	vring->ctx[i].skb = skb_get(skb);
1581 
1582 	/* performance monitoring */
1583 	used = wil_vring_used_tx(vring);
1584 	if (wil_val_in_range(vring_idle_trsh,
1585 			     used, used + descs_used)) {
1586 		txdata->idle += get_cycles() - txdata->last_idle;
1587 		wil_dbg_txrx(wil,  "Ring[%2d] not idle %d -> %d\n",
1588 			     vring_index, used, used + descs_used);
1589 	}
1590 
1591 	/* Make sure to advance the head only after descriptor update is done.
1592 	 * This will prevent a race condition where the completion thread
1593 	 * will see the DU bit set from previous run and will handle the
1594 	 * skb before it was completed.
1595 	 */
1596 	wmb();
1597 
1598 	/* advance swhead */
1599 	wil_vring_advance_head(vring, descs_used);
1600 	wil_dbg_txrx(wil, "TSO: Tx swhead %d -> %d\n", swhead, vring->swhead);
1601 
1602 	/* make sure all writes to descriptors (shared memory) are done before
1603 	 * committing them to HW
1604 	 */
1605 	wmb();
1606 
1607 	wil_w(wil, vring->hwtail, vring->swhead);
1608 	return 0;
1609 
1610 mem_error:
1611 	while (descs_used > 0) {
1612 		struct wil_ctx *ctx;
1613 
1614 		i = (swhead + descs_used - 1) % vring->size;
1615 		d = (struct vring_tx_desc *)&vring->va[i].tx;
1616 		_desc = &vring->va[i].tx;
1617 		*d = *_desc;
1618 		_desc->dma.status = TX_DMA_STATUS_DU;
1619 		ctx = &vring->ctx[i];
1620 		wil_txdesc_unmap(dev, d, ctx);
1621 		memset(ctx, 0, sizeof(*ctx));
1622 		descs_used--;
1623 	}
1624 err_exit:
1625 	return rc;
1626 }
1627 
1628 static int __wil_tx_vring(struct wil6210_priv *wil, struct vring *vring,
1629 			  struct sk_buff *skb)
1630 {
1631 	struct device *dev = wil_to_dev(wil);
1632 	struct vring_tx_desc dd, *d = &dd;
1633 	volatile struct vring_tx_desc *_d;
1634 	u32 swhead = vring->swhead;
1635 	int avail = wil_vring_avail_tx(vring);
1636 	int nr_frags = skb_shinfo(skb)->nr_frags;
1637 	uint f = 0;
1638 	int vring_index = vring - wil->vring_tx;
1639 	struct vring_tx_data *txdata = &wil->vring_tx_data[vring_index];
1640 	uint i = swhead;
1641 	dma_addr_t pa;
1642 	int used;
1643 	bool mcast = (vring_index == wil->bcast_vring);
1644 	uint len = skb_headlen(skb);
1645 
1646 	wil_dbg_txrx(wil, "%s() %d bytes to vring %d\n",
1647 		     __func__, skb->len, vring_index);
1648 
1649 	if (unlikely(!txdata->enabled))
1650 		return -EINVAL;
1651 
1652 	if (unlikely(avail < 1 + nr_frags)) {
1653 		wil_err_ratelimited(wil,
1654 				    "Tx ring[%2d] full. No space for %d fragments\n",
1655 				    vring_index, 1 + nr_frags);
1656 		return -ENOMEM;
1657 	}
1658 	_d = &vring->va[i].tx;
1659 
1660 	pa = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
1661 
1662 	wil_dbg_txrx(wil, "Tx[%2d] skb %d bytes 0x%p -> %pad\n", vring_index,
1663 		     skb_headlen(skb), skb->data, &pa);
1664 	wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1,
1665 			  skb->data, skb_headlen(skb), false);
1666 
1667 	if (unlikely(dma_mapping_error(dev, pa)))
1668 		return -EINVAL;
1669 	vring->ctx[i].mapped_as = wil_mapped_as_single;
1670 	/* 1-st segment */
1671 	wil_tx_desc_map(d, pa, len, vring_index);
1672 	if (unlikely(mcast)) {
1673 		d->mac.d[0] |= BIT(MAC_CFG_DESC_TX_0_MCS_EN_POS); /* MCS 0 */
1674 		if (unlikely(len > WIL_BCAST_MCS0_LIMIT)) /* set MCS 1 */
1675 			d->mac.d[0] |= (1 << MAC_CFG_DESC_TX_0_MCS_INDEX_POS);
1676 	}
1677 	/* Process TCP/UDP checksum offloading */
1678 	if (unlikely(wil_tx_desc_offload_setup(d, skb))) {
1679 		wil_err(wil, "Tx[%2d] Failed to set cksum, drop packet\n",
1680 			vring_index);
1681 		goto dma_error;
1682 	}
1683 
1684 	vring->ctx[i].nr_frags = nr_frags;
1685 	wil_tx_desc_set_nr_frags(d, nr_frags + 1);
1686 
1687 	/* middle segments */
1688 	for (; f < nr_frags; f++) {
1689 		const struct skb_frag_struct *frag =
1690 				&skb_shinfo(skb)->frags[f];
1691 		int len = skb_frag_size(frag);
1692 
1693 		*_d = *d;
1694 		wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", vring_index, i);
1695 		wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
1696 				  (const void *)d, sizeof(*d), false);
1697 		i = (swhead + f + 1) % vring->size;
1698 		_d = &vring->va[i].tx;
1699 		pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag),
1700 				      DMA_TO_DEVICE);
1701 		if (unlikely(dma_mapping_error(dev, pa))) {
1702 			wil_err(wil, "Tx[%2d] failed to map fragment\n",
1703 				vring_index);
1704 			goto dma_error;
1705 		}
1706 		vring->ctx[i].mapped_as = wil_mapped_as_page;
1707 		wil_tx_desc_map(d, pa, len, vring_index);
1708 		/* no need to check return code -
1709 		 * if it succeeded for 1-st descriptor,
1710 		 * it will succeed here too
1711 		 */
1712 		wil_tx_desc_offload_setup(d, skb);
1713 	}
1714 	/* for the last seg only */
1715 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS);
1716 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS);
1717 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
1718 	*_d = *d;
1719 	wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", vring_index, i);
1720 	wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
1721 			  (const void *)d, sizeof(*d), false);
1722 
1723 	/* hold reference to skb
1724 	 * to prevent skb release before accounting
1725 	 * in case of immediate "tx done"
1726 	 */
1727 	vring->ctx[i].skb = skb_get(skb);
1728 
1729 	/* performance monitoring */
1730 	used = wil_vring_used_tx(vring);
1731 	if (wil_val_in_range(vring_idle_trsh,
1732 			     used, used + nr_frags + 1)) {
1733 		txdata->idle += get_cycles() - txdata->last_idle;
1734 		wil_dbg_txrx(wil,  "Ring[%2d] not idle %d -> %d\n",
1735 			     vring_index, used, used + nr_frags + 1);
1736 	}
1737 
1738 	/* Make sure to advance the head only after descriptor update is done.
1739 	 * This will prevent a race condition where the completion thread
1740 	 * will see the DU bit set from previous run and will handle the
1741 	 * skb before it was completed.
1742 	 */
1743 	wmb();
1744 
1745 	/* advance swhead */
1746 	wil_vring_advance_head(vring, nr_frags + 1);
1747 	wil_dbg_txrx(wil, "Tx[%2d] swhead %d -> %d\n", vring_index, swhead,
1748 		     vring->swhead);
1749 	trace_wil6210_tx(vring_index, swhead, skb->len, nr_frags);
1750 
1751 	/* make sure all writes to descriptors (shared memory) are done before
1752 	 * committing them to HW
1753 	 */
1754 	wmb();
1755 
1756 	wil_w(wil, vring->hwtail, vring->swhead);
1757 
1758 	return 0;
1759  dma_error:
1760 	/* unmap what we have mapped */
1761 	nr_frags = f + 1; /* frags mapped + one for skb head */
1762 	for (f = 0; f < nr_frags; f++) {
1763 		struct wil_ctx *ctx;
1764 
1765 		i = (swhead + f) % vring->size;
1766 		ctx = &vring->ctx[i];
1767 		_d = &vring->va[i].tx;
1768 		*d = *_d;
1769 		_d->dma.status = TX_DMA_STATUS_DU;
1770 		wil_txdesc_unmap(dev, d, ctx);
1771 
1772 		memset(ctx, 0, sizeof(*ctx));
1773 	}
1774 
1775 	return -EINVAL;
1776 }
1777 
1778 static int wil_tx_vring(struct wil6210_priv *wil, struct vring *vring,
1779 			struct sk_buff *skb)
1780 {
1781 	int vring_index = vring - wil->vring_tx;
1782 	struct vring_tx_data *txdata = &wil->vring_tx_data[vring_index];
1783 	int rc;
1784 
1785 	spin_lock(&txdata->lock);
1786 
1787 	rc = (skb_is_gso(skb) ? __wil_tx_vring_tso : __wil_tx_vring)
1788 	     (wil, vring, skb);
1789 
1790 	spin_unlock(&txdata->lock);
1791 
1792 	return rc;
1793 }
1794 
1795 /**
1796  * Check status of tx vrings and stop/wake net queues if needed
1797  *
1798  * This function does one of two checks:
1799  * In case check_stop is true, will check if net queues need to be stopped. If
1800  * the conditions for stopping are met, netif_tx_stop_all_queues() is called.
1801  * In case check_stop is false, will check if net queues need to be waked. If
1802  * the conditions for waking are met, netif_tx_wake_all_queues() is called.
1803  * vring is the vring which is currently being modified by either adding
1804  * descriptors (tx) into it or removing descriptors (tx complete) from it. Can
1805  * be null when irrelevant (e.g. connect/disconnect events).
1806  *
1807  * The implementation is to stop net queues if modified vring has low
1808  * descriptor availability. Wake if all vrings are not in low descriptor
1809  * availability and modified vring has high descriptor availability.
1810  */
1811 static inline void __wil_update_net_queues(struct wil6210_priv *wil,
1812 					   struct vring *vring,
1813 					   bool check_stop)
1814 {
1815 	int i;
1816 
1817 	if (vring)
1818 		wil_dbg_txrx(wil, "vring %d, check_stop=%d, stopped=%d",
1819 			     (int)(vring - wil->vring_tx), check_stop,
1820 			     wil->net_queue_stopped);
1821 	else
1822 		wil_dbg_txrx(wil, "check_stop=%d, stopped=%d",
1823 			     check_stop, wil->net_queue_stopped);
1824 
1825 	if (check_stop == wil->net_queue_stopped)
1826 		/* net queues already in desired state */
1827 		return;
1828 
1829 	if (check_stop) {
1830 		if (!vring || unlikely(wil_vring_avail_low(vring))) {
1831 			/* not enough room in the vring */
1832 			netif_tx_stop_all_queues(wil_to_ndev(wil));
1833 			wil->net_queue_stopped = true;
1834 			wil_dbg_txrx(wil, "netif_tx_stop called\n");
1835 		}
1836 		return;
1837 	}
1838 
1839 	/* check wake */
1840 	for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
1841 		struct vring *cur_vring = &wil->vring_tx[i];
1842 		struct vring_tx_data *txdata = &wil->vring_tx_data[i];
1843 
1844 		if (!cur_vring->va || !txdata->enabled || cur_vring == vring)
1845 			continue;
1846 
1847 		if (wil_vring_avail_low(cur_vring)) {
1848 			wil_dbg_txrx(wil, "vring %d full, can't wake\n",
1849 				     (int)(cur_vring - wil->vring_tx));
1850 			return;
1851 		}
1852 	}
1853 
1854 	if (!vring || wil_vring_avail_high(vring)) {
1855 		/* enough room in the vring */
1856 		wil_dbg_txrx(wil, "calling netif_tx_wake\n");
1857 		netif_tx_wake_all_queues(wil_to_ndev(wil));
1858 		wil->net_queue_stopped = false;
1859 	}
1860 }
1861 
1862 void wil_update_net_queues(struct wil6210_priv *wil, struct vring *vring,
1863 			   bool check_stop)
1864 {
1865 	spin_lock(&wil->net_queue_lock);
1866 	__wil_update_net_queues(wil, vring, check_stop);
1867 	spin_unlock(&wil->net_queue_lock);
1868 }
1869 
1870 void wil_update_net_queues_bh(struct wil6210_priv *wil, struct vring *vring,
1871 			      bool check_stop)
1872 {
1873 	spin_lock_bh(&wil->net_queue_lock);
1874 	__wil_update_net_queues(wil, vring, check_stop);
1875 	spin_unlock_bh(&wil->net_queue_lock);
1876 }
1877 
1878 netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1879 {
1880 	struct wil6210_priv *wil = ndev_to_wil(ndev);
1881 	struct ethhdr *eth = (void *)skb->data;
1882 	bool bcast = is_multicast_ether_addr(eth->h_dest);
1883 	struct vring *vring;
1884 	static bool pr_once_fw;
1885 	int rc;
1886 
1887 	wil_dbg_txrx(wil, "%s()\n", __func__);
1888 	if (unlikely(!test_bit(wil_status_fwready, wil->status))) {
1889 		if (!pr_once_fw) {
1890 			wil_err(wil, "FW not ready\n");
1891 			pr_once_fw = true;
1892 		}
1893 		goto drop;
1894 	}
1895 	if (unlikely(!test_bit(wil_status_fwconnected, wil->status))) {
1896 		wil_dbg_ratelimited(wil, "FW not connected, packet dropped\n");
1897 		goto drop;
1898 	}
1899 	if (unlikely(wil->wdev->iftype == NL80211_IFTYPE_MONITOR)) {
1900 		wil_err(wil, "Xmit in monitor mode not supported\n");
1901 		goto drop;
1902 	}
1903 	pr_once_fw = false;
1904 
1905 	/* find vring */
1906 	if (wil->wdev->iftype == NL80211_IFTYPE_STATION) {
1907 		/* in STA mode (ESS), all to same VRING */
1908 		vring = wil_find_tx_vring_sta(wil, skb);
1909 	} else { /* direct communication, find matching VRING */
1910 		vring = bcast ? wil_find_tx_bcast(wil, skb) :
1911 				wil_find_tx_ucast(wil, skb);
1912 	}
1913 	if (unlikely(!vring)) {
1914 		wil_dbg_txrx(wil, "No Tx VRING found for %pM\n", eth->h_dest);
1915 		goto drop;
1916 	}
1917 	/* set up vring entry */
1918 	rc = wil_tx_vring(wil, vring, skb);
1919 
1920 	switch (rc) {
1921 	case 0:
1922 		/* shall we stop net queues? */
1923 		wil_update_net_queues_bh(wil, vring, true);
1924 		/* statistics will be updated on the tx_complete */
1925 		dev_kfree_skb_any(skb);
1926 		return NETDEV_TX_OK;
1927 	case -ENOMEM:
1928 		return NETDEV_TX_BUSY;
1929 	default:
1930 		break; /* goto drop; */
1931 	}
1932  drop:
1933 	ndev->stats.tx_dropped++;
1934 	dev_kfree_skb_any(skb);
1935 
1936 	return NET_XMIT_DROP;
1937 }
1938 
1939 static inline bool wil_need_txstat(struct sk_buff *skb)
1940 {
1941 	struct ethhdr *eth = (void *)skb->data;
1942 
1943 	return is_unicast_ether_addr(eth->h_dest) && skb->sk &&
1944 	       (skb_shinfo(skb)->tx_flags & SKBTX_WIFI_STATUS);
1945 }
1946 
1947 static inline void wil_consume_skb(struct sk_buff *skb, bool acked)
1948 {
1949 	if (unlikely(wil_need_txstat(skb)))
1950 		skb_complete_wifi_ack(skb, acked);
1951 	else
1952 		acked ? dev_consume_skb_any(skb) : dev_kfree_skb_any(skb);
1953 }
1954 
1955 /**
1956  * Clean up transmitted skb's from the Tx VRING
1957  *
1958  * Return number of descriptors cleared
1959  *
1960  * Safe to call from IRQ
1961  */
1962 int wil_tx_complete(struct wil6210_priv *wil, int ringid)
1963 {
1964 	struct net_device *ndev = wil_to_ndev(wil);
1965 	struct device *dev = wil_to_dev(wil);
1966 	struct vring *vring = &wil->vring_tx[ringid];
1967 	struct vring_tx_data *txdata = &wil->vring_tx_data[ringid];
1968 	int done = 0;
1969 	int cid = wil->vring2cid_tid[ringid][0];
1970 	struct wil_net_stats *stats = NULL;
1971 	volatile struct vring_tx_desc *_d;
1972 	int used_before_complete;
1973 	int used_new;
1974 
1975 	if (unlikely(!vring->va)) {
1976 		wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid);
1977 		return 0;
1978 	}
1979 
1980 	if (unlikely(!txdata->enabled)) {
1981 		wil_info(wil, "Tx irq[%d]: vring disabled\n", ringid);
1982 		return 0;
1983 	}
1984 
1985 	wil_dbg_txrx(wil, "%s(%d)\n", __func__, ringid);
1986 
1987 	used_before_complete = wil_vring_used_tx(vring);
1988 
1989 	if (cid < WIL6210_MAX_CID)
1990 		stats = &wil->sta[cid].stats;
1991 
1992 	while (!wil_vring_is_empty(vring)) {
1993 		int new_swtail;
1994 		struct wil_ctx *ctx = &vring->ctx[vring->swtail];
1995 		/**
1996 		 * For the fragmented skb, HW will set DU bit only for the
1997 		 * last fragment. look for it.
1998 		 * In TSO the first DU will include hdr desc
1999 		 */
2000 		int lf = (vring->swtail + ctx->nr_frags) % vring->size;
2001 		/* TODO: check we are not past head */
2002 
2003 		_d = &vring->va[lf].tx;
2004 		if (unlikely(!(_d->dma.status & TX_DMA_STATUS_DU)))
2005 			break;
2006 
2007 		new_swtail = (lf + 1) % vring->size;
2008 		while (vring->swtail != new_swtail) {
2009 			struct vring_tx_desc dd, *d = &dd;
2010 			u16 dmalen;
2011 			struct sk_buff *skb;
2012 
2013 			ctx = &vring->ctx[vring->swtail];
2014 			skb = ctx->skb;
2015 			_d = &vring->va[vring->swtail].tx;
2016 
2017 			*d = *_d;
2018 
2019 			dmalen = le16_to_cpu(d->dma.length);
2020 			trace_wil6210_tx_done(ringid, vring->swtail, dmalen,
2021 					      d->dma.error);
2022 			wil_dbg_txrx(wil,
2023 				     "TxC[%2d][%3d] : %d bytes, status 0x%02x err 0x%02x\n",
2024 				     ringid, vring->swtail, dmalen,
2025 				     d->dma.status, d->dma.error);
2026 			wil_hex_dump_txrx("TxCD ", DUMP_PREFIX_NONE, 32, 4,
2027 					  (const void *)d, sizeof(*d), false);
2028 
2029 			wil_txdesc_unmap(dev, d, ctx);
2030 
2031 			if (skb) {
2032 				if (likely(d->dma.error == 0)) {
2033 					ndev->stats.tx_packets++;
2034 					ndev->stats.tx_bytes += skb->len;
2035 					if (stats) {
2036 						stats->tx_packets++;
2037 						stats->tx_bytes += skb->len;
2038 					}
2039 				} else {
2040 					ndev->stats.tx_errors++;
2041 					if (stats)
2042 						stats->tx_errors++;
2043 				}
2044 				wil_consume_skb(skb, d->dma.error == 0);
2045 			}
2046 			memset(ctx, 0, sizeof(*ctx));
2047 			/* Make sure the ctx is zeroed before updating the tail
2048 			 * to prevent a case where wil_tx_vring will see
2049 			 * this descriptor as used and handle it before ctx zero
2050 			 * is completed.
2051 			 */
2052 			wmb();
2053 			/* There is no need to touch HW descriptor:
2054 			 * - ststus bit TX_DMA_STATUS_DU is set by design,
2055 			 *   so hardware will not try to process this desc.,
2056 			 * - rest of descriptor will be initialized on Tx.
2057 			 */
2058 			vring->swtail = wil_vring_next_tail(vring);
2059 			done++;
2060 		}
2061 	}
2062 
2063 	/* performance monitoring */
2064 	used_new = wil_vring_used_tx(vring);
2065 	if (wil_val_in_range(vring_idle_trsh,
2066 			     used_new, used_before_complete)) {
2067 		wil_dbg_txrx(wil, "Ring[%2d] idle %d -> %d\n",
2068 			     ringid, used_before_complete, used_new);
2069 		txdata->last_idle = get_cycles();
2070 	}
2071 
2072 	/* shall we wake net queues? */
2073 	if (done)
2074 		wil_update_net_queues(wil, vring, false);
2075 
2076 	return done;
2077 }
2078