1 /* 2 * Copyright (c) 2012-2017 Qualcomm Atheros, Inc. 3 * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 */ 17 18 #include <linux/etherdevice.h> 19 #include <net/ieee80211_radiotap.h> 20 #include <linux/if_arp.h> 21 #include <linux/moduleparam.h> 22 #include <linux/ip.h> 23 #include <linux/ipv6.h> 24 #include <net/ipv6.h> 25 #include <linux/prefetch.h> 26 27 #include "wil6210.h" 28 #include "wmi.h" 29 #include "txrx.h" 30 #include "trace.h" 31 #include "txrx_edma.h" 32 33 bool rx_align_2; 34 module_param(rx_align_2, bool, 0444); 35 MODULE_PARM_DESC(rx_align_2, " align Rx buffers on 4*n+2, default - no"); 36 37 bool rx_large_buf; 38 module_param(rx_large_buf, bool, 0444); 39 MODULE_PARM_DESC(rx_large_buf, " allocate 8KB RX buffers, default - no"); 40 41 /* Drop Tx packets in case Tx ring is full */ 42 bool drop_if_ring_full; 43 44 static inline uint wil_rx_snaplen(void) 45 { 46 return rx_align_2 ? 6 : 0; 47 } 48 49 /* wil_ring_wmark_low - low watermark for available descriptor space */ 50 static inline int wil_ring_wmark_low(struct wil_ring *ring) 51 { 52 return ring->size / 8; 53 } 54 55 /* wil_ring_wmark_high - high watermark for available descriptor space */ 56 static inline int wil_ring_wmark_high(struct wil_ring *ring) 57 { 58 return ring->size / 4; 59 } 60 61 /* returns true if num avail descriptors is lower than wmark_low */ 62 static inline int wil_ring_avail_low(struct wil_ring *ring) 63 { 64 return wil_ring_avail_tx(ring) < wil_ring_wmark_low(ring); 65 } 66 67 /* returns true if num avail descriptors is higher than wmark_high */ 68 static inline int wil_ring_avail_high(struct wil_ring *ring) 69 { 70 return wil_ring_avail_tx(ring) > wil_ring_wmark_high(ring); 71 } 72 73 /* returns true when all tx vrings are empty */ 74 bool wil_is_tx_idle(struct wil6210_priv *wil) 75 { 76 int i; 77 unsigned long data_comp_to; 78 int min_ring_id = wil_get_min_tx_ring_id(wil); 79 80 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) { 81 struct wil_ring *vring = &wil->ring_tx[i]; 82 int vring_index = vring - wil->ring_tx; 83 struct wil_ring_tx_data *txdata = 84 &wil->ring_tx_data[vring_index]; 85 86 spin_lock(&txdata->lock); 87 88 if (!vring->va || !txdata->enabled) { 89 spin_unlock(&txdata->lock); 90 continue; 91 } 92 93 data_comp_to = jiffies + msecs_to_jiffies( 94 WIL_DATA_COMPLETION_TO_MS); 95 if (test_bit(wil_status_napi_en, wil->status)) { 96 while (!wil_ring_is_empty(vring)) { 97 if (time_after(jiffies, data_comp_to)) { 98 wil_dbg_pm(wil, 99 "TO waiting for idle tx\n"); 100 spin_unlock(&txdata->lock); 101 return false; 102 } 103 wil_dbg_ratelimited(wil, 104 "tx vring is not empty -> NAPI\n"); 105 spin_unlock(&txdata->lock); 106 napi_synchronize(&wil->napi_tx); 107 msleep(20); 108 spin_lock(&txdata->lock); 109 if (!vring->va || !txdata->enabled) 110 break; 111 } 112 } 113 114 spin_unlock(&txdata->lock); 115 } 116 117 return true; 118 } 119 120 static int wil_vring_alloc(struct wil6210_priv *wil, struct wil_ring *vring) 121 { 122 struct device *dev = wil_to_dev(wil); 123 size_t sz = vring->size * sizeof(vring->va[0]); 124 uint i; 125 126 wil_dbg_misc(wil, "vring_alloc:\n"); 127 128 BUILD_BUG_ON(sizeof(vring->va[0]) != 32); 129 130 vring->swhead = 0; 131 vring->swtail = 0; 132 vring->ctx = kcalloc(vring->size, sizeof(vring->ctx[0]), GFP_KERNEL); 133 if (!vring->ctx) { 134 vring->va = NULL; 135 return -ENOMEM; 136 } 137 138 /* vring->va should be aligned on its size rounded up to power of 2 139 * This is granted by the dma_alloc_coherent. 140 * 141 * HW has limitation that all vrings addresses must share the same 142 * upper 16 msb bits part of 48 bits address. To workaround that, 143 * if we are using more than 32 bit addresses switch to 32 bit 144 * allocation before allocating vring memory. 145 * 146 * There's no check for the return value of dma_set_mask_and_coherent, 147 * since we assume if we were able to set the mask during 148 * initialization in this system it will not fail if we set it again 149 */ 150 if (wil->dma_addr_size > 32) 151 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 152 153 vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL); 154 if (!vring->va) { 155 kfree(vring->ctx); 156 vring->ctx = NULL; 157 return -ENOMEM; 158 } 159 160 if (wil->dma_addr_size > 32) 161 dma_set_mask_and_coherent(dev, 162 DMA_BIT_MASK(wil->dma_addr_size)); 163 164 /* initially, all descriptors are SW owned 165 * For Tx and Rx, ownership bit is at the same location, thus 166 * we can use any 167 */ 168 for (i = 0; i < vring->size; i++) { 169 volatile struct vring_tx_desc *_d = 170 &vring->va[i].tx.legacy; 171 172 _d->dma.status = TX_DMA_STATUS_DU; 173 } 174 175 wil_dbg_misc(wil, "vring[%d] 0x%p:%pad 0x%p\n", vring->size, 176 vring->va, &vring->pa, vring->ctx); 177 178 return 0; 179 } 180 181 static void wil_txdesc_unmap(struct device *dev, union wil_tx_desc *desc, 182 struct wil_ctx *ctx) 183 { 184 struct vring_tx_desc *d = &desc->legacy; 185 dma_addr_t pa = wil_desc_addr(&d->dma.addr); 186 u16 dmalen = le16_to_cpu(d->dma.length); 187 188 switch (ctx->mapped_as) { 189 case wil_mapped_as_single: 190 dma_unmap_single(dev, pa, dmalen, DMA_TO_DEVICE); 191 break; 192 case wil_mapped_as_page: 193 dma_unmap_page(dev, pa, dmalen, DMA_TO_DEVICE); 194 break; 195 default: 196 break; 197 } 198 } 199 200 static void wil_vring_free(struct wil6210_priv *wil, struct wil_ring *vring) 201 { 202 struct device *dev = wil_to_dev(wil); 203 size_t sz = vring->size * sizeof(vring->va[0]); 204 205 lockdep_assert_held(&wil->mutex); 206 if (!vring->is_rx) { 207 int vring_index = vring - wil->ring_tx; 208 209 wil_dbg_misc(wil, "free Tx vring %d [%d] 0x%p:%pad 0x%p\n", 210 vring_index, vring->size, vring->va, 211 &vring->pa, vring->ctx); 212 } else { 213 wil_dbg_misc(wil, "free Rx vring [%d] 0x%p:%pad 0x%p\n", 214 vring->size, vring->va, 215 &vring->pa, vring->ctx); 216 } 217 218 while (!wil_ring_is_empty(vring)) { 219 dma_addr_t pa; 220 u16 dmalen; 221 struct wil_ctx *ctx; 222 223 if (!vring->is_rx) { 224 struct vring_tx_desc dd, *d = ⅆ 225 volatile struct vring_tx_desc *_d = 226 &vring->va[vring->swtail].tx.legacy; 227 228 ctx = &vring->ctx[vring->swtail]; 229 if (!ctx) { 230 wil_dbg_txrx(wil, 231 "ctx(%d) was already completed\n", 232 vring->swtail); 233 vring->swtail = wil_ring_next_tail(vring); 234 continue; 235 } 236 *d = *_d; 237 wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx); 238 if (ctx->skb) 239 dev_kfree_skb_any(ctx->skb); 240 vring->swtail = wil_ring_next_tail(vring); 241 } else { /* rx */ 242 struct vring_rx_desc dd, *d = ⅆ 243 volatile struct vring_rx_desc *_d = 244 &vring->va[vring->swhead].rx.legacy; 245 246 ctx = &vring->ctx[vring->swhead]; 247 *d = *_d; 248 pa = wil_desc_addr(&d->dma.addr); 249 dmalen = le16_to_cpu(d->dma.length); 250 dma_unmap_single(dev, pa, dmalen, DMA_FROM_DEVICE); 251 kfree_skb(ctx->skb); 252 wil_ring_advance_head(vring, 1); 253 } 254 } 255 dma_free_coherent(dev, sz, (void *)vring->va, vring->pa); 256 kfree(vring->ctx); 257 vring->pa = 0; 258 vring->va = NULL; 259 vring->ctx = NULL; 260 } 261 262 /** 263 * Allocate one skb for Rx VRING 264 * 265 * Safe to call from IRQ 266 */ 267 static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct wil_ring *vring, 268 u32 i, int headroom) 269 { 270 struct device *dev = wil_to_dev(wil); 271 unsigned int sz = wil->rx_buf_len + ETH_HLEN + wil_rx_snaplen(); 272 struct vring_rx_desc dd, *d = ⅆ 273 volatile struct vring_rx_desc *_d = &vring->va[i].rx.legacy; 274 dma_addr_t pa; 275 struct sk_buff *skb = dev_alloc_skb(sz + headroom); 276 277 if (unlikely(!skb)) 278 return -ENOMEM; 279 280 skb_reserve(skb, headroom); 281 skb_put(skb, sz); 282 283 /** 284 * Make sure that the network stack calculates checksum for packets 285 * which failed the HW checksum calculation 286 */ 287 skb->ip_summed = CHECKSUM_NONE; 288 289 pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE); 290 if (unlikely(dma_mapping_error(dev, pa))) { 291 kfree_skb(skb); 292 return -ENOMEM; 293 } 294 295 d->dma.d0 = RX_DMA_D0_CMD_DMA_RT | RX_DMA_D0_CMD_DMA_IT; 296 wil_desc_addr_set(&d->dma.addr, pa); 297 /* ip_length don't care */ 298 /* b11 don't care */ 299 /* error don't care */ 300 d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */ 301 d->dma.length = cpu_to_le16(sz); 302 *_d = *d; 303 vring->ctx[i].skb = skb; 304 305 return 0; 306 } 307 308 /** 309 * Adds radiotap header 310 * 311 * Any error indicated as "Bad FCS" 312 * 313 * Vendor data for 04:ce:14-1 (Wilocity-1) consists of: 314 * - Rx descriptor: 32 bytes 315 * - Phy info 316 */ 317 static void wil_rx_add_radiotap_header(struct wil6210_priv *wil, 318 struct sk_buff *skb) 319 { 320 struct wil6210_rtap { 321 struct ieee80211_radiotap_header rthdr; 322 /* fields should be in the order of bits in rthdr.it_present */ 323 /* flags */ 324 u8 flags; 325 /* channel */ 326 __le16 chnl_freq __aligned(2); 327 __le16 chnl_flags; 328 /* MCS */ 329 u8 mcs_present; 330 u8 mcs_flags; 331 u8 mcs_index; 332 } __packed; 333 struct vring_rx_desc *d = wil_skb_rxdesc(skb); 334 struct wil6210_rtap *rtap; 335 int rtap_len = sizeof(struct wil6210_rtap); 336 struct ieee80211_channel *ch = wil->monitor_chandef.chan; 337 338 if (skb_headroom(skb) < rtap_len && 339 pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) { 340 wil_err(wil, "Unable to expand headroom to %d\n", rtap_len); 341 return; 342 } 343 344 rtap = skb_push(skb, rtap_len); 345 memset(rtap, 0, rtap_len); 346 347 rtap->rthdr.it_version = PKTHDR_RADIOTAP_VERSION; 348 rtap->rthdr.it_len = cpu_to_le16(rtap_len); 349 rtap->rthdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | 350 (1 << IEEE80211_RADIOTAP_CHANNEL) | 351 (1 << IEEE80211_RADIOTAP_MCS)); 352 if (d->dma.status & RX_DMA_STATUS_ERROR) 353 rtap->flags |= IEEE80211_RADIOTAP_F_BADFCS; 354 355 rtap->chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320); 356 rtap->chnl_flags = cpu_to_le16(0); 357 358 rtap->mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS; 359 rtap->mcs_flags = 0; 360 rtap->mcs_index = wil_rxdesc_mcs(d); 361 } 362 363 static bool wil_is_rx_idle(struct wil6210_priv *wil) 364 { 365 struct vring_rx_desc *_d; 366 struct wil_ring *ring = &wil->ring_rx; 367 368 _d = (struct vring_rx_desc *)&ring->va[ring->swhead].rx.legacy; 369 if (_d->dma.status & RX_DMA_STATUS_DU) 370 return false; 371 372 return true; 373 } 374 375 static int wil_rx_get_cid_by_skb(struct wil6210_priv *wil, struct sk_buff *skb) 376 { 377 struct vring_rx_desc *d = wil_skb_rxdesc(skb); 378 int mid = wil_rxdesc_mid(d); 379 struct wil6210_vif *vif = wil->vifs[mid]; 380 /* cid from DMA descriptor is limited to 3 bits. 381 * In case of cid>=8, the value would be cid modulo 8 and we need to 382 * find real cid by locating the transmitter (ta) inside sta array 383 */ 384 int cid = wil_rxdesc_cid(d); 385 unsigned int snaplen = wil_rx_snaplen(); 386 struct ieee80211_hdr_3addr *hdr; 387 int i; 388 unsigned char *ta; 389 u8 ftype; 390 391 /* in monitor mode there are no connections */ 392 if (vif->wdev.iftype == NL80211_IFTYPE_MONITOR) 393 return cid; 394 395 ftype = wil_rxdesc_ftype(d) << 2; 396 if (likely(ftype == IEEE80211_FTYPE_DATA)) { 397 if (unlikely(skb->len < ETH_HLEN + snaplen)) { 398 wil_err_ratelimited(wil, 399 "Short data frame, len = %d\n", 400 skb->len); 401 return -ENOENT; 402 } 403 ta = wil_skb_get_sa(skb); 404 } else { 405 if (unlikely(skb->len < sizeof(struct ieee80211_hdr_3addr))) { 406 wil_err_ratelimited(wil, "Short frame, len = %d\n", 407 skb->len); 408 return -ENOENT; 409 } 410 hdr = (void *)skb->data; 411 ta = hdr->addr2; 412 } 413 414 if (wil->max_assoc_sta <= WIL6210_RX_DESC_MAX_CID) 415 return cid; 416 417 /* assuming no concurrency between AP interfaces and STA interfaces. 418 * multista is used only in P2P_GO or AP mode. In other modes return 419 * cid from the rx descriptor 420 */ 421 if (vif->wdev.iftype != NL80211_IFTYPE_P2P_GO && 422 vif->wdev.iftype != NL80211_IFTYPE_AP) 423 return cid; 424 425 /* For Rx packets cid from rx descriptor is limited to 3 bits (0..7), 426 * to find the real cid, compare transmitter address with the stored 427 * stations mac address in the driver sta array 428 */ 429 for (i = cid; i < wil->max_assoc_sta; i += WIL6210_RX_DESC_MAX_CID) { 430 if (wil->sta[i].status != wil_sta_unused && 431 ether_addr_equal(wil->sta[i].addr, ta)) { 432 cid = i; 433 break; 434 } 435 } 436 if (i >= wil->max_assoc_sta) { 437 wil_err_ratelimited(wil, "Could not find cid for frame with transmit addr = %pM, iftype = %d, frametype = %d, len = %d\n", 438 ta, vif->wdev.iftype, ftype, skb->len); 439 cid = -ENOENT; 440 } 441 442 return cid; 443 } 444 445 /** 446 * reap 1 frame from @swhead 447 * 448 * Rx descriptor copied to skb->cb 449 * 450 * Safe to call from IRQ 451 */ 452 static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil, 453 struct wil_ring *vring) 454 { 455 struct device *dev = wil_to_dev(wil); 456 struct wil6210_vif *vif; 457 struct net_device *ndev; 458 volatile struct vring_rx_desc *_d; 459 struct vring_rx_desc *d; 460 struct sk_buff *skb; 461 dma_addr_t pa; 462 unsigned int snaplen = wil_rx_snaplen(); 463 unsigned int sz = wil->rx_buf_len + ETH_HLEN + snaplen; 464 u16 dmalen; 465 u8 ftype; 466 int cid, mid; 467 int i; 468 struct wil_net_stats *stats; 469 470 BUILD_BUG_ON(sizeof(struct skb_rx_info) > sizeof(skb->cb)); 471 472 again: 473 if (unlikely(wil_ring_is_empty(vring))) 474 return NULL; 475 476 i = (int)vring->swhead; 477 _d = &vring->va[i].rx.legacy; 478 if (unlikely(!(_d->dma.status & RX_DMA_STATUS_DU))) { 479 /* it is not error, we just reached end of Rx done area */ 480 return NULL; 481 } 482 483 skb = vring->ctx[i].skb; 484 vring->ctx[i].skb = NULL; 485 wil_ring_advance_head(vring, 1); 486 if (!skb) { 487 wil_err(wil, "No Rx skb at [%d]\n", i); 488 goto again; 489 } 490 d = wil_skb_rxdesc(skb); 491 *d = *_d; 492 pa = wil_desc_addr(&d->dma.addr); 493 494 dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE); 495 dmalen = le16_to_cpu(d->dma.length); 496 497 trace_wil6210_rx(i, d); 498 wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", i, dmalen); 499 wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4, 500 (const void *)d, sizeof(*d), false); 501 502 mid = wil_rxdesc_mid(d); 503 vif = wil->vifs[mid]; 504 505 if (unlikely(!vif)) { 506 wil_dbg_txrx(wil, "skipped RX descriptor with invalid mid %d", 507 mid); 508 kfree_skb(skb); 509 goto again; 510 } 511 ndev = vif_to_ndev(vif); 512 if (unlikely(dmalen > sz)) { 513 wil_err_ratelimited(wil, "Rx size too large: %d bytes!\n", 514 dmalen); 515 kfree_skb(skb); 516 goto again; 517 } 518 skb_trim(skb, dmalen); 519 520 prefetch(skb->data); 521 522 wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1, 523 skb->data, skb_headlen(skb), false); 524 525 cid = wil_rx_get_cid_by_skb(wil, skb); 526 if (cid == -ENOENT) { 527 kfree_skb(skb); 528 goto again; 529 } 530 wil_skb_set_cid(skb, (u8)cid); 531 stats = &wil->sta[cid].stats; 532 533 stats->last_mcs_rx = wil_rxdesc_mcs(d); 534 if (stats->last_mcs_rx < ARRAY_SIZE(stats->rx_per_mcs)) 535 stats->rx_per_mcs[stats->last_mcs_rx]++; 536 537 /* use radiotap header only if required */ 538 if (ndev->type == ARPHRD_IEEE80211_RADIOTAP) 539 wil_rx_add_radiotap_header(wil, skb); 540 541 /* no extra checks if in sniffer mode */ 542 if (ndev->type != ARPHRD_ETHER) 543 return skb; 544 /* Non-data frames may be delivered through Rx DMA channel (ex: BAR) 545 * Driver should recognize it by frame type, that is found 546 * in Rx descriptor. If type is not data, it is 802.11 frame as is 547 */ 548 ftype = wil_rxdesc_ftype(d) << 2; 549 if (unlikely(ftype != IEEE80211_FTYPE_DATA)) { 550 u8 fc1 = wil_rxdesc_fc1(d); 551 int tid = wil_rxdesc_tid(d); 552 u16 seq = wil_rxdesc_seq(d); 553 554 wil_dbg_txrx(wil, 555 "Non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n", 556 fc1, mid, cid, tid, seq); 557 stats->rx_non_data_frame++; 558 if (wil_is_back_req(fc1)) { 559 wil_dbg_txrx(wil, 560 "BAR: MID %d CID %d TID %d Seq 0x%03x\n", 561 mid, cid, tid, seq); 562 wil_rx_bar(wil, vif, cid, tid, seq); 563 } else { 564 /* print again all info. One can enable only this 565 * without overhead for printing every Rx frame 566 */ 567 wil_dbg_txrx(wil, 568 "Unhandled non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n", 569 fc1, mid, cid, tid, seq); 570 wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4, 571 (const void *)d, sizeof(*d), false); 572 wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1, 573 skb->data, skb_headlen(skb), false); 574 } 575 kfree_skb(skb); 576 goto again; 577 } 578 579 /* L4 IDENT is on when HW calculated checksum, check status 580 * and in case of error drop the packet 581 * higher stack layers will handle retransmission (if required) 582 */ 583 if (likely(d->dma.status & RX_DMA_STATUS_L4I)) { 584 /* L4 protocol identified, csum calculated */ 585 if (likely((d->dma.error & RX_DMA_ERROR_L4_ERR) == 0)) 586 skb->ip_summed = CHECKSUM_UNNECESSARY; 587 /* If HW reports bad checksum, let IP stack re-check it 588 * For example, HW don't understand Microsoft IP stack that 589 * mis-calculates TCP checksum - if it should be 0x0, 590 * it writes 0xffff in violation of RFC 1624 591 */ 592 else 593 stats->rx_csum_err++; 594 } 595 596 if (snaplen) { 597 /* Packet layout 598 * +-------+-------+---------+------------+------+ 599 * | SA(6) | DA(6) | SNAP(6) | ETHTYPE(2) | DATA | 600 * +-------+-------+---------+------------+------+ 601 * Need to remove SNAP, shifting SA and DA forward 602 */ 603 memmove(skb->data + snaplen, skb->data, 2 * ETH_ALEN); 604 skb_pull(skb, snaplen); 605 } 606 607 return skb; 608 } 609 610 /** 611 * allocate and fill up to @count buffers in rx ring 612 * buffers posted at @swtail 613 * Note: we have a single RX queue for servicing all VIFs, but we 614 * allocate skbs with headroom according to main interface only. This 615 * means it will not work with monitor interface together with other VIFs. 616 * Currently we only support monitor interface on its own without other VIFs, 617 * and we will need to fix this code once we add support. 618 */ 619 static int wil_rx_refill(struct wil6210_priv *wil, int count) 620 { 621 struct net_device *ndev = wil->main_ndev; 622 struct wil_ring *v = &wil->ring_rx; 623 u32 next_tail; 624 int rc = 0; 625 int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ? 626 WIL6210_RTAP_SIZE : 0; 627 628 for (; next_tail = wil_ring_next_tail(v), 629 (next_tail != v->swhead) && (count-- > 0); 630 v->swtail = next_tail) { 631 rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom); 632 if (unlikely(rc)) { 633 wil_err_ratelimited(wil, "Error %d in rx refill[%d]\n", 634 rc, v->swtail); 635 break; 636 } 637 } 638 639 /* make sure all writes to descriptors (shared memory) are done before 640 * committing them to HW 641 */ 642 wmb(); 643 644 wil_w(wil, v->hwtail, v->swtail); 645 646 return rc; 647 } 648 649 /** 650 * reverse_memcmp - Compare two areas of memory, in reverse order 651 * @cs: One area of memory 652 * @ct: Another area of memory 653 * @count: The size of the area. 654 * 655 * Cut'n'paste from original memcmp (see lib/string.c) 656 * with minimal modifications 657 */ 658 int reverse_memcmp(const void *cs, const void *ct, size_t count) 659 { 660 const unsigned char *su1, *su2; 661 int res = 0; 662 663 for (su1 = cs + count - 1, su2 = ct + count - 1; count > 0; 664 --su1, --su2, count--) { 665 res = *su1 - *su2; 666 if (res) 667 break; 668 } 669 return res; 670 } 671 672 static int wil_rx_crypto_check(struct wil6210_priv *wil, struct sk_buff *skb) 673 { 674 struct vring_rx_desc *d = wil_skb_rxdesc(skb); 675 int cid = wil_skb_get_cid(skb); 676 int tid = wil_rxdesc_tid(d); 677 int key_id = wil_rxdesc_key_id(d); 678 int mc = wil_rxdesc_mcast(d); 679 struct wil_sta_info *s = &wil->sta[cid]; 680 struct wil_tid_crypto_rx *c = mc ? &s->group_crypto_rx : 681 &s->tid_crypto_rx[tid]; 682 struct wil_tid_crypto_rx_single *cc = &c->key_id[key_id]; 683 const u8 *pn = (u8 *)&d->mac.pn_15_0; 684 685 if (!cc->key_set) { 686 wil_err_ratelimited(wil, 687 "Key missing. CID %d TID %d MCast %d KEY_ID %d\n", 688 cid, tid, mc, key_id); 689 return -EINVAL; 690 } 691 692 if (reverse_memcmp(pn, cc->pn, IEEE80211_GCMP_PN_LEN) <= 0) { 693 wil_err_ratelimited(wil, 694 "Replay attack. CID %d TID %d MCast %d KEY_ID %d PN %6phN last %6phN\n", 695 cid, tid, mc, key_id, pn, cc->pn); 696 return -EINVAL; 697 } 698 memcpy(cc->pn, pn, IEEE80211_GCMP_PN_LEN); 699 700 return 0; 701 } 702 703 static int wil_rx_error_check(struct wil6210_priv *wil, struct sk_buff *skb, 704 struct wil_net_stats *stats) 705 { 706 struct vring_rx_desc *d = wil_skb_rxdesc(skb); 707 708 if ((d->dma.status & RX_DMA_STATUS_ERROR) && 709 (d->dma.error & RX_DMA_ERROR_MIC)) { 710 stats->rx_mic_error++; 711 wil_dbg_txrx(wil, "MIC error, dropping packet\n"); 712 return -EFAULT; 713 } 714 715 return 0; 716 } 717 718 static void wil_get_netif_rx_params(struct sk_buff *skb, int *cid, 719 int *security) 720 { 721 struct vring_rx_desc *d = wil_skb_rxdesc(skb); 722 723 *cid = wil_skb_get_cid(skb); 724 *security = wil_rxdesc_security(d); 725 } 726 727 /* 728 * Pass Rx packet to the netif. Update statistics. 729 * Called in softirq context (NAPI poll). 730 */ 731 void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev) 732 { 733 gro_result_t rc = GRO_NORMAL; 734 struct wil6210_vif *vif = ndev_to_vif(ndev); 735 struct wil6210_priv *wil = ndev_to_wil(ndev); 736 struct wireless_dev *wdev = vif_to_wdev(vif); 737 unsigned int len = skb->len; 738 int cid; 739 int security; 740 u8 *sa, *da = wil_skb_get_da(skb); 741 /* here looking for DA, not A1, thus Rxdesc's 'mcast' indication 742 * is not suitable, need to look at data 743 */ 744 int mcast = is_multicast_ether_addr(da); 745 struct wil_net_stats *stats; 746 struct sk_buff *xmit_skb = NULL; 747 static const char * const gro_res_str[] = { 748 [GRO_MERGED] = "GRO_MERGED", 749 [GRO_MERGED_FREE] = "GRO_MERGED_FREE", 750 [GRO_HELD] = "GRO_HELD", 751 [GRO_NORMAL] = "GRO_NORMAL", 752 [GRO_DROP] = "GRO_DROP", 753 [GRO_CONSUMED] = "GRO_CONSUMED", 754 }; 755 756 wil->txrx_ops.get_netif_rx_params(skb, &cid, &security); 757 758 stats = &wil->sta[cid].stats; 759 760 skb_orphan(skb); 761 762 if (security && (wil->txrx_ops.rx_crypto_check(wil, skb) != 0)) { 763 rc = GRO_DROP; 764 dev_kfree_skb(skb); 765 stats->rx_replay++; 766 goto stats; 767 } 768 769 /* check errors reported by HW and update statistics */ 770 if (unlikely(wil->txrx_ops.rx_error_check(wil, skb, stats))) { 771 dev_kfree_skb(skb); 772 return; 773 } 774 775 if (wdev->iftype == NL80211_IFTYPE_STATION) { 776 sa = wil_skb_get_sa(skb); 777 if (mcast && ether_addr_equal(sa, ndev->dev_addr)) { 778 /* mcast packet looped back to us */ 779 rc = GRO_DROP; 780 dev_kfree_skb(skb); 781 goto stats; 782 } 783 } else if (wdev->iftype == NL80211_IFTYPE_AP && !vif->ap_isolate) { 784 if (mcast) { 785 /* send multicast frames both to higher layers in 786 * local net stack and back to the wireless medium 787 */ 788 xmit_skb = skb_copy(skb, GFP_ATOMIC); 789 } else { 790 int xmit_cid = wil_find_cid(wil, vif->mid, da); 791 792 if (xmit_cid >= 0) { 793 /* The destination station is associated to 794 * this AP (in this VLAN), so send the frame 795 * directly to it and do not pass it to local 796 * net stack. 797 */ 798 xmit_skb = skb; 799 skb = NULL; 800 } 801 } 802 } 803 if (xmit_skb) { 804 /* Send to wireless media and increase priority by 256 to 805 * keep the received priority instead of reclassifying 806 * the frame (see cfg80211_classify8021d). 807 */ 808 xmit_skb->dev = ndev; 809 xmit_skb->priority += 256; 810 xmit_skb->protocol = htons(ETH_P_802_3); 811 skb_reset_network_header(xmit_skb); 812 skb_reset_mac_header(xmit_skb); 813 wil_dbg_txrx(wil, "Rx -> Tx %d bytes\n", len); 814 dev_queue_xmit(xmit_skb); 815 } 816 817 if (skb) { /* deliver to local stack */ 818 skb->protocol = eth_type_trans(skb, ndev); 819 skb->dev = ndev; 820 rc = napi_gro_receive(&wil->napi_rx, skb); 821 wil_dbg_txrx(wil, "Rx complete %d bytes => %s\n", 822 len, gro_res_str[rc]); 823 } 824 stats: 825 /* statistics. rc set to GRO_NORMAL for AP bridging */ 826 if (unlikely(rc == GRO_DROP)) { 827 ndev->stats.rx_dropped++; 828 stats->rx_dropped++; 829 wil_dbg_txrx(wil, "Rx drop %d bytes\n", len); 830 } else { 831 ndev->stats.rx_packets++; 832 stats->rx_packets++; 833 ndev->stats.rx_bytes += len; 834 stats->rx_bytes += len; 835 if (mcast) 836 ndev->stats.multicast++; 837 } 838 } 839 840 /** 841 * Proceed all completed skb's from Rx VRING 842 * 843 * Safe to call from NAPI poll, i.e. softirq with interrupts enabled 844 */ 845 void wil_rx_handle(struct wil6210_priv *wil, int *quota) 846 { 847 struct net_device *ndev = wil->main_ndev; 848 struct wireless_dev *wdev = ndev->ieee80211_ptr; 849 struct wil_ring *v = &wil->ring_rx; 850 struct sk_buff *skb; 851 852 if (unlikely(!v->va)) { 853 wil_err(wil, "Rx IRQ while Rx not yet initialized\n"); 854 return; 855 } 856 wil_dbg_txrx(wil, "rx_handle\n"); 857 while ((*quota > 0) && (NULL != (skb = wil_vring_reap_rx(wil, v)))) { 858 (*quota)--; 859 860 /* monitor is currently supported on main interface only */ 861 if (wdev->iftype == NL80211_IFTYPE_MONITOR) { 862 skb->dev = ndev; 863 skb_reset_mac_header(skb); 864 skb->ip_summed = CHECKSUM_UNNECESSARY; 865 skb->pkt_type = PACKET_OTHERHOST; 866 skb->protocol = htons(ETH_P_802_2); 867 wil_netif_rx_any(skb, ndev); 868 } else { 869 wil_rx_reorder(wil, skb); 870 } 871 } 872 wil_rx_refill(wil, v->size); 873 } 874 875 static void wil_rx_buf_len_init(struct wil6210_priv *wil) 876 { 877 wil->rx_buf_len = rx_large_buf ? 878 WIL_MAX_ETH_MTU : TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD; 879 if (mtu_max > wil->rx_buf_len) { 880 /* do not allow RX buffers to be smaller than mtu_max, for 881 * backward compatibility (mtu_max parameter was also used 882 * to support receiving large packets) 883 */ 884 wil_info(wil, "Override RX buffer to mtu_max(%d)\n", mtu_max); 885 wil->rx_buf_len = mtu_max; 886 } 887 } 888 889 static int wil_rx_init(struct wil6210_priv *wil, uint order) 890 { 891 struct wil_ring *vring = &wil->ring_rx; 892 int rc; 893 894 wil_dbg_misc(wil, "rx_init\n"); 895 896 if (vring->va) { 897 wil_err(wil, "Rx ring already allocated\n"); 898 return -EINVAL; 899 } 900 901 wil_rx_buf_len_init(wil); 902 903 vring->size = 1 << order; 904 vring->is_rx = true; 905 rc = wil_vring_alloc(wil, vring); 906 if (rc) 907 return rc; 908 909 rc = wmi_rx_chain_add(wil, vring); 910 if (rc) 911 goto err_free; 912 913 rc = wil_rx_refill(wil, vring->size); 914 if (rc) 915 goto err_free; 916 917 return 0; 918 err_free: 919 wil_vring_free(wil, vring); 920 921 return rc; 922 } 923 924 static void wil_rx_fini(struct wil6210_priv *wil) 925 { 926 struct wil_ring *vring = &wil->ring_rx; 927 928 wil_dbg_misc(wil, "rx_fini\n"); 929 930 if (vring->va) 931 wil_vring_free(wil, vring); 932 } 933 934 static int wil_tx_desc_map(union wil_tx_desc *desc, dma_addr_t pa, 935 u32 len, int vring_index) 936 { 937 struct vring_tx_desc *d = &desc->legacy; 938 939 wil_desc_addr_set(&d->dma.addr, pa); 940 d->dma.ip_length = 0; 941 /* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/ 942 d->dma.b11 = 0/*14 | BIT(7)*/; 943 d->dma.error = 0; 944 d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */ 945 d->dma.length = cpu_to_le16((u16)len); 946 d->dma.d0 = (vring_index << DMA_CFG_DESC_TX_0_QID_POS); 947 d->mac.d[0] = 0; 948 d->mac.d[1] = 0; 949 d->mac.d[2] = 0; 950 d->mac.ucode_cmd = 0; 951 /* translation type: 0 - bypass; 1 - 802.3; 2 - native wifi */ 952 d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) | 953 (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS); 954 955 return 0; 956 } 957 958 void wil_tx_data_init(struct wil_ring_tx_data *txdata) 959 { 960 spin_lock_bh(&txdata->lock); 961 txdata->dot1x_open = 0; 962 txdata->enabled = 0; 963 txdata->idle = 0; 964 txdata->last_idle = 0; 965 txdata->begin = 0; 966 txdata->agg_wsize = 0; 967 txdata->agg_timeout = 0; 968 txdata->agg_amsdu = 0; 969 txdata->addba_in_progress = false; 970 txdata->mid = U8_MAX; 971 spin_unlock_bh(&txdata->lock); 972 } 973 974 static int wil_vring_init_tx(struct wil6210_vif *vif, int id, int size, 975 int cid, int tid) 976 { 977 struct wil6210_priv *wil = vif_to_wil(vif); 978 int rc; 979 struct wmi_vring_cfg_cmd cmd = { 980 .action = cpu_to_le32(WMI_VRING_CMD_ADD), 981 .vring_cfg = { 982 .tx_sw_ring = { 983 .max_mpdu_size = 984 cpu_to_le16(wil_mtu2macbuf(mtu_max)), 985 .ring_size = cpu_to_le16(size), 986 }, 987 .ringid = id, 988 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3, 989 .mac_ctrl = 0, 990 .to_resolution = 0, 991 .agg_max_wsize = 0, 992 .schd_params = { 993 .priority = cpu_to_le16(0), 994 .timeslot_us = cpu_to_le16(0xfff), 995 }, 996 }, 997 }; 998 struct { 999 struct wmi_cmd_hdr wmi; 1000 struct wmi_vring_cfg_done_event cmd; 1001 } __packed reply = { 1002 .cmd = {.status = WMI_FW_STATUS_FAILURE}, 1003 }; 1004 struct wil_ring *vring = &wil->ring_tx[id]; 1005 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id]; 1006 1007 if (cid >= WIL6210_RX_DESC_MAX_CID) { 1008 cmd.vring_cfg.cidxtid = CIDXTID_EXTENDED_CID_TID; 1009 cmd.vring_cfg.cid = cid; 1010 cmd.vring_cfg.tid = tid; 1011 } else { 1012 cmd.vring_cfg.cidxtid = mk_cidxtid(cid, tid); 1013 } 1014 1015 wil_dbg_misc(wil, "vring_init_tx: max_mpdu_size %d\n", 1016 cmd.vring_cfg.tx_sw_ring.max_mpdu_size); 1017 lockdep_assert_held(&wil->mutex); 1018 1019 if (vring->va) { 1020 wil_err(wil, "Tx ring [%d] already allocated\n", id); 1021 rc = -EINVAL; 1022 goto out; 1023 } 1024 1025 wil_tx_data_init(txdata); 1026 vring->is_rx = false; 1027 vring->size = size; 1028 rc = wil_vring_alloc(wil, vring); 1029 if (rc) 1030 goto out; 1031 1032 wil->ring2cid_tid[id][0] = cid; 1033 wil->ring2cid_tid[id][1] = tid; 1034 1035 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa); 1036 1037 if (!vif->privacy) 1038 txdata->dot1x_open = true; 1039 rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd), 1040 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 1041 WIL_WMI_CALL_GENERAL_TO_MS); 1042 if (rc) 1043 goto out_free; 1044 1045 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) { 1046 wil_err(wil, "Tx config failed, status 0x%02x\n", 1047 reply.cmd.status); 1048 rc = -EINVAL; 1049 goto out_free; 1050 } 1051 1052 spin_lock_bh(&txdata->lock); 1053 vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr); 1054 txdata->mid = vif->mid; 1055 txdata->enabled = 1; 1056 spin_unlock_bh(&txdata->lock); 1057 1058 if (txdata->dot1x_open && (agg_wsize >= 0)) 1059 wil_addba_tx_request(wil, id, agg_wsize); 1060 1061 return 0; 1062 out_free: 1063 spin_lock_bh(&txdata->lock); 1064 txdata->dot1x_open = false; 1065 txdata->enabled = 0; 1066 spin_unlock_bh(&txdata->lock); 1067 wil_vring_free(wil, vring); 1068 wil->ring2cid_tid[id][0] = wil->max_assoc_sta; 1069 wil->ring2cid_tid[id][1] = 0; 1070 1071 out: 1072 1073 return rc; 1074 } 1075 1076 static int wil_tx_vring_modify(struct wil6210_vif *vif, int ring_id, int cid, 1077 int tid) 1078 { 1079 struct wil6210_priv *wil = vif_to_wil(vif); 1080 int rc; 1081 struct wmi_vring_cfg_cmd cmd = { 1082 .action = cpu_to_le32(WMI_VRING_CMD_MODIFY), 1083 .vring_cfg = { 1084 .tx_sw_ring = { 1085 .max_mpdu_size = 1086 cpu_to_le16(wil_mtu2macbuf(mtu_max)), 1087 .ring_size = 0, 1088 }, 1089 .ringid = ring_id, 1090 .cidxtid = mk_cidxtid(cid, tid), 1091 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3, 1092 .mac_ctrl = 0, 1093 .to_resolution = 0, 1094 .agg_max_wsize = 0, 1095 .schd_params = { 1096 .priority = cpu_to_le16(0), 1097 .timeslot_us = cpu_to_le16(0xfff), 1098 }, 1099 }, 1100 }; 1101 struct { 1102 struct wmi_cmd_hdr wmi; 1103 struct wmi_vring_cfg_done_event cmd; 1104 } __packed reply = { 1105 .cmd = {.status = WMI_FW_STATUS_FAILURE}, 1106 }; 1107 struct wil_ring *vring = &wil->ring_tx[ring_id]; 1108 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_id]; 1109 1110 wil_dbg_misc(wil, "vring_modify: ring %d cid %d tid %d\n", ring_id, 1111 cid, tid); 1112 lockdep_assert_held(&wil->mutex); 1113 1114 if (!vring->va) { 1115 wil_err(wil, "Tx ring [%d] not allocated\n", ring_id); 1116 return -EINVAL; 1117 } 1118 1119 if (wil->ring2cid_tid[ring_id][0] != cid || 1120 wil->ring2cid_tid[ring_id][1] != tid) { 1121 wil_err(wil, "ring info does not match cid=%u tid=%u\n", 1122 wil->ring2cid_tid[ring_id][0], 1123 wil->ring2cid_tid[ring_id][1]); 1124 } 1125 1126 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa); 1127 1128 rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd), 1129 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 1130 WIL_WMI_CALL_GENERAL_TO_MS); 1131 if (rc) 1132 goto fail; 1133 1134 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) { 1135 wil_err(wil, "Tx modify failed, status 0x%02x\n", 1136 reply.cmd.status); 1137 rc = -EINVAL; 1138 goto fail; 1139 } 1140 1141 /* set BA aggregation window size to 0 to force a new BA with the 1142 * new AP 1143 */ 1144 txdata->agg_wsize = 0; 1145 if (txdata->dot1x_open && agg_wsize >= 0) 1146 wil_addba_tx_request(wil, ring_id, agg_wsize); 1147 1148 return 0; 1149 fail: 1150 spin_lock_bh(&txdata->lock); 1151 txdata->dot1x_open = false; 1152 txdata->enabled = 0; 1153 spin_unlock_bh(&txdata->lock); 1154 wil->ring2cid_tid[ring_id][0] = wil->max_assoc_sta; 1155 wil->ring2cid_tid[ring_id][1] = 0; 1156 return rc; 1157 } 1158 1159 int wil_vring_init_bcast(struct wil6210_vif *vif, int id, int size) 1160 { 1161 struct wil6210_priv *wil = vif_to_wil(vif); 1162 int rc; 1163 struct wmi_bcast_vring_cfg_cmd cmd = { 1164 .action = cpu_to_le32(WMI_VRING_CMD_ADD), 1165 .vring_cfg = { 1166 .tx_sw_ring = { 1167 .max_mpdu_size = 1168 cpu_to_le16(wil_mtu2macbuf(mtu_max)), 1169 .ring_size = cpu_to_le16(size), 1170 }, 1171 .ringid = id, 1172 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3, 1173 }, 1174 }; 1175 struct { 1176 struct wmi_cmd_hdr wmi; 1177 struct wmi_vring_cfg_done_event cmd; 1178 } __packed reply = { 1179 .cmd = {.status = WMI_FW_STATUS_FAILURE}, 1180 }; 1181 struct wil_ring *vring = &wil->ring_tx[id]; 1182 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id]; 1183 1184 wil_dbg_misc(wil, "vring_init_bcast: max_mpdu_size %d\n", 1185 cmd.vring_cfg.tx_sw_ring.max_mpdu_size); 1186 lockdep_assert_held(&wil->mutex); 1187 1188 if (vring->va) { 1189 wil_err(wil, "Tx ring [%d] already allocated\n", id); 1190 rc = -EINVAL; 1191 goto out; 1192 } 1193 1194 wil_tx_data_init(txdata); 1195 vring->is_rx = false; 1196 vring->size = size; 1197 rc = wil_vring_alloc(wil, vring); 1198 if (rc) 1199 goto out; 1200 1201 wil->ring2cid_tid[id][0] = wil->max_assoc_sta; /* CID */ 1202 wil->ring2cid_tid[id][1] = 0; /* TID */ 1203 1204 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa); 1205 1206 if (!vif->privacy) 1207 txdata->dot1x_open = true; 1208 rc = wmi_call(wil, WMI_BCAST_VRING_CFG_CMDID, vif->mid, 1209 &cmd, sizeof(cmd), 1210 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 1211 WIL_WMI_CALL_GENERAL_TO_MS); 1212 if (rc) 1213 goto out_free; 1214 1215 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) { 1216 wil_err(wil, "Tx config failed, status 0x%02x\n", 1217 reply.cmd.status); 1218 rc = -EINVAL; 1219 goto out_free; 1220 } 1221 1222 spin_lock_bh(&txdata->lock); 1223 vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr); 1224 txdata->mid = vif->mid; 1225 txdata->enabled = 1; 1226 spin_unlock_bh(&txdata->lock); 1227 1228 return 0; 1229 out_free: 1230 spin_lock_bh(&txdata->lock); 1231 txdata->enabled = 0; 1232 txdata->dot1x_open = false; 1233 spin_unlock_bh(&txdata->lock); 1234 wil_vring_free(wil, vring); 1235 out: 1236 1237 return rc; 1238 } 1239 1240 static struct wil_ring *wil_find_tx_ucast(struct wil6210_priv *wil, 1241 struct wil6210_vif *vif, 1242 struct sk_buff *skb) 1243 { 1244 int i, cid; 1245 const u8 *da = wil_skb_get_da(skb); 1246 int min_ring_id = wil_get_min_tx_ring_id(wil); 1247 1248 cid = wil_find_cid(wil, vif->mid, da); 1249 1250 if (cid < 0 || cid >= wil->max_assoc_sta) 1251 return NULL; 1252 1253 /* TODO: fix for multiple TID */ 1254 for (i = min_ring_id; i < ARRAY_SIZE(wil->ring2cid_tid); i++) { 1255 if (!wil->ring_tx_data[i].dot1x_open && 1256 skb->protocol != cpu_to_be16(ETH_P_PAE)) 1257 continue; 1258 if (wil->ring2cid_tid[i][0] == cid) { 1259 struct wil_ring *v = &wil->ring_tx[i]; 1260 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i]; 1261 1262 wil_dbg_txrx(wil, "find_tx_ucast: (%pM) -> [%d]\n", 1263 da, i); 1264 if (v->va && txdata->enabled) { 1265 return v; 1266 } else { 1267 wil_dbg_txrx(wil, 1268 "find_tx_ucast: vring[%d] not valid\n", 1269 i); 1270 return NULL; 1271 } 1272 } 1273 } 1274 1275 return NULL; 1276 } 1277 1278 static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif, 1279 struct wil_ring *ring, struct sk_buff *skb); 1280 1281 static struct wil_ring *wil_find_tx_ring_sta(struct wil6210_priv *wil, 1282 struct wil6210_vif *vif, 1283 struct sk_buff *skb) 1284 { 1285 struct wil_ring *ring; 1286 int i; 1287 u8 cid; 1288 struct wil_ring_tx_data *txdata; 1289 int min_ring_id = wil_get_min_tx_ring_id(wil); 1290 1291 /* In the STA mode, it is expected to have only 1 VRING 1292 * for the AP we connected to. 1293 * find 1-st vring eligible for this skb and use it. 1294 */ 1295 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) { 1296 ring = &wil->ring_tx[i]; 1297 txdata = &wil->ring_tx_data[i]; 1298 if (!ring->va || !txdata->enabled || txdata->mid != vif->mid) 1299 continue; 1300 1301 cid = wil->ring2cid_tid[i][0]; 1302 if (cid >= wil->max_assoc_sta) /* skip BCAST */ 1303 continue; 1304 1305 if (!wil->ring_tx_data[i].dot1x_open && 1306 skb->protocol != cpu_to_be16(ETH_P_PAE)) 1307 continue; 1308 1309 wil_dbg_txrx(wil, "Tx -> ring %d\n", i); 1310 1311 return ring; 1312 } 1313 1314 wil_dbg_txrx(wil, "Tx while no rings active?\n"); 1315 1316 return NULL; 1317 } 1318 1319 /* Use one of 2 strategies: 1320 * 1321 * 1. New (real broadcast): 1322 * use dedicated broadcast vring 1323 * 2. Old (pseudo-DMS): 1324 * Find 1-st vring and return it; 1325 * duplicate skb and send it to other active vrings; 1326 * in all cases override dest address to unicast peer's address 1327 * Use old strategy when new is not supported yet: 1328 * - for PBSS 1329 */ 1330 static struct wil_ring *wil_find_tx_bcast_1(struct wil6210_priv *wil, 1331 struct wil6210_vif *vif, 1332 struct sk_buff *skb) 1333 { 1334 struct wil_ring *v; 1335 struct wil_ring_tx_data *txdata; 1336 int i = vif->bcast_ring; 1337 1338 if (i < 0) 1339 return NULL; 1340 v = &wil->ring_tx[i]; 1341 txdata = &wil->ring_tx_data[i]; 1342 if (!v->va || !txdata->enabled) 1343 return NULL; 1344 if (!wil->ring_tx_data[i].dot1x_open && 1345 skb->protocol != cpu_to_be16(ETH_P_PAE)) 1346 return NULL; 1347 1348 return v; 1349 } 1350 1351 static void wil_set_da_for_vring(struct wil6210_priv *wil, 1352 struct sk_buff *skb, int vring_index) 1353 { 1354 u8 *da = wil_skb_get_da(skb); 1355 int cid = wil->ring2cid_tid[vring_index][0]; 1356 1357 ether_addr_copy(da, wil->sta[cid].addr); 1358 } 1359 1360 static struct wil_ring *wil_find_tx_bcast_2(struct wil6210_priv *wil, 1361 struct wil6210_vif *vif, 1362 struct sk_buff *skb) 1363 { 1364 struct wil_ring *v, *v2; 1365 struct sk_buff *skb2; 1366 int i; 1367 u8 cid; 1368 const u8 *src = wil_skb_get_sa(skb); 1369 struct wil_ring_tx_data *txdata, *txdata2; 1370 int min_ring_id = wil_get_min_tx_ring_id(wil); 1371 1372 /* find 1-st vring eligible for data */ 1373 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) { 1374 v = &wil->ring_tx[i]; 1375 txdata = &wil->ring_tx_data[i]; 1376 if (!v->va || !txdata->enabled || txdata->mid != vif->mid) 1377 continue; 1378 1379 cid = wil->ring2cid_tid[i][0]; 1380 if (cid >= wil->max_assoc_sta) /* skip BCAST */ 1381 continue; 1382 if (!wil->ring_tx_data[i].dot1x_open && 1383 skb->protocol != cpu_to_be16(ETH_P_PAE)) 1384 continue; 1385 1386 /* don't Tx back to source when re-routing Rx->Tx at the AP */ 1387 if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN)) 1388 continue; 1389 1390 goto found; 1391 } 1392 1393 wil_dbg_txrx(wil, "Tx while no vrings active?\n"); 1394 1395 return NULL; 1396 1397 found: 1398 wil_dbg_txrx(wil, "BCAST -> ring %d\n", i); 1399 wil_set_da_for_vring(wil, skb, i); 1400 1401 /* find other active vrings and duplicate skb for each */ 1402 for (i++; i < WIL6210_MAX_TX_RINGS; i++) { 1403 v2 = &wil->ring_tx[i]; 1404 txdata2 = &wil->ring_tx_data[i]; 1405 if (!v2->va || txdata2->mid != vif->mid) 1406 continue; 1407 cid = wil->ring2cid_tid[i][0]; 1408 if (cid >= wil->max_assoc_sta) /* skip BCAST */ 1409 continue; 1410 if (!wil->ring_tx_data[i].dot1x_open && 1411 skb->protocol != cpu_to_be16(ETH_P_PAE)) 1412 continue; 1413 1414 if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN)) 1415 continue; 1416 1417 skb2 = skb_copy(skb, GFP_ATOMIC); 1418 if (skb2) { 1419 wil_dbg_txrx(wil, "BCAST DUP -> ring %d\n", i); 1420 wil_set_da_for_vring(wil, skb2, i); 1421 wil_tx_ring(wil, vif, v2, skb2); 1422 /* successful call to wil_tx_ring takes skb2 ref */ 1423 dev_kfree_skb_any(skb2); 1424 } else { 1425 wil_err(wil, "skb_copy failed\n"); 1426 } 1427 } 1428 1429 return v; 1430 } 1431 1432 static inline 1433 void wil_tx_desc_set_nr_frags(struct vring_tx_desc *d, int nr_frags) 1434 { 1435 d->mac.d[2] |= (nr_frags << MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS); 1436 } 1437 1438 /** 1439 * Sets the descriptor @d up for csum and/or TSO offloading. The corresponding 1440 * @skb is used to obtain the protocol and headers length. 1441 * @tso_desc_type is a descriptor type for TSO: 0 - a header, 1 - first data, 1442 * 2 - middle, 3 - last descriptor. 1443 */ 1444 1445 static void wil_tx_desc_offload_setup_tso(struct vring_tx_desc *d, 1446 struct sk_buff *skb, 1447 int tso_desc_type, bool is_ipv4, 1448 int tcp_hdr_len, int skb_net_hdr_len) 1449 { 1450 d->dma.b11 = ETH_HLEN; /* MAC header length */ 1451 d->dma.b11 |= is_ipv4 << DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS; 1452 1453 d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS); 1454 /* L4 header len: TCP header length */ 1455 d->dma.d0 |= (tcp_hdr_len & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK); 1456 1457 /* Setup TSO: bit and desc type */ 1458 d->dma.d0 |= (BIT(DMA_CFG_DESC_TX_0_TCP_SEG_EN_POS)) | 1459 (tso_desc_type << DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS); 1460 d->dma.d0 |= (is_ipv4 << DMA_CFG_DESC_TX_0_IPV4_CHECKSUM_EN_POS); 1461 1462 d->dma.ip_length = skb_net_hdr_len; 1463 /* Enable TCP/UDP checksum */ 1464 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS); 1465 /* Calculate pseudo-header */ 1466 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS); 1467 } 1468 1469 /** 1470 * Sets the descriptor @d up for csum. The corresponding 1471 * @skb is used to obtain the protocol and headers length. 1472 * Returns the protocol: 0 - not TCP, 1 - TCPv4, 2 - TCPv6. 1473 * Note, if d==NULL, the function only returns the protocol result. 1474 * 1475 * It is very similar to previous wil_tx_desc_offload_setup_tso. This 1476 * is "if unrolling" to optimize the critical path. 1477 */ 1478 1479 static int wil_tx_desc_offload_setup(struct vring_tx_desc *d, 1480 struct sk_buff *skb){ 1481 int protocol; 1482 1483 if (skb->ip_summed != CHECKSUM_PARTIAL) 1484 return 0; 1485 1486 d->dma.b11 = ETH_HLEN; /* MAC header length */ 1487 1488 switch (skb->protocol) { 1489 case cpu_to_be16(ETH_P_IP): 1490 protocol = ip_hdr(skb)->protocol; 1491 d->dma.b11 |= BIT(DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS); 1492 break; 1493 case cpu_to_be16(ETH_P_IPV6): 1494 protocol = ipv6_hdr(skb)->nexthdr; 1495 break; 1496 default: 1497 return -EINVAL; 1498 } 1499 1500 switch (protocol) { 1501 case IPPROTO_TCP: 1502 d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS); 1503 /* L4 header len: TCP header length */ 1504 d->dma.d0 |= 1505 (tcp_hdrlen(skb) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK); 1506 break; 1507 case IPPROTO_UDP: 1508 /* L4 header len: UDP header length */ 1509 d->dma.d0 |= 1510 (sizeof(struct udphdr) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK); 1511 break; 1512 default: 1513 return -EINVAL; 1514 } 1515 1516 d->dma.ip_length = skb_network_header_len(skb); 1517 /* Enable TCP/UDP checksum */ 1518 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS); 1519 /* Calculate pseudo-header */ 1520 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS); 1521 1522 return 0; 1523 } 1524 1525 static inline void wil_tx_last_desc(struct vring_tx_desc *d) 1526 { 1527 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS) | 1528 BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS) | 1529 BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS); 1530 } 1531 1532 static inline void wil_set_tx_desc_last_tso(volatile struct vring_tx_desc *d) 1533 { 1534 d->dma.d0 |= wil_tso_type_lst << 1535 DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS; 1536 } 1537 1538 static int __wil_tx_vring_tso(struct wil6210_priv *wil, struct wil6210_vif *vif, 1539 struct wil_ring *vring, struct sk_buff *skb) 1540 { 1541 struct device *dev = wil_to_dev(wil); 1542 1543 /* point to descriptors in shared memory */ 1544 volatile struct vring_tx_desc *_desc = NULL, *_hdr_desc, 1545 *_first_desc = NULL; 1546 1547 /* pointers to shadow descriptors */ 1548 struct vring_tx_desc desc_mem, hdr_desc_mem, first_desc_mem, 1549 *d = &hdr_desc_mem, *hdr_desc = &hdr_desc_mem, 1550 *first_desc = &first_desc_mem; 1551 1552 /* pointer to shadow descriptors' context */ 1553 struct wil_ctx *hdr_ctx, *first_ctx = NULL; 1554 1555 int descs_used = 0; /* total number of used descriptors */ 1556 int sg_desc_cnt = 0; /* number of descriptors for current mss*/ 1557 1558 u32 swhead = vring->swhead; 1559 int used, avail = wil_ring_avail_tx(vring); 1560 int nr_frags = skb_shinfo(skb)->nr_frags; 1561 int min_desc_required = nr_frags + 1; 1562 int mss = skb_shinfo(skb)->gso_size; /* payload size w/o headers */ 1563 int f, len, hdrlen, headlen; 1564 int vring_index = vring - wil->ring_tx; 1565 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[vring_index]; 1566 uint i = swhead; 1567 dma_addr_t pa; 1568 const skb_frag_t *frag = NULL; 1569 int rem_data = mss; 1570 int lenmss; 1571 int hdr_compensation_need = true; 1572 int desc_tso_type = wil_tso_type_first; 1573 bool is_ipv4; 1574 int tcp_hdr_len; 1575 int skb_net_hdr_len; 1576 int gso_type; 1577 int rc = -EINVAL; 1578 1579 wil_dbg_txrx(wil, "tx_vring_tso: %d bytes to vring %d\n", skb->len, 1580 vring_index); 1581 1582 if (unlikely(!txdata->enabled)) 1583 return -EINVAL; 1584 1585 /* A typical page 4K is 3-4 payloads, we assume each fragment 1586 * is a full payload, that's how min_desc_required has been 1587 * calculated. In real we might need more or less descriptors, 1588 * this is the initial check only. 1589 */ 1590 if (unlikely(avail < min_desc_required)) { 1591 wil_err_ratelimited(wil, 1592 "TSO: Tx ring[%2d] full. No space for %d fragments\n", 1593 vring_index, min_desc_required); 1594 return -ENOMEM; 1595 } 1596 1597 /* Header Length = MAC header len + IP header len + TCP header len*/ 1598 hdrlen = ETH_HLEN + 1599 (int)skb_network_header_len(skb) + 1600 tcp_hdrlen(skb); 1601 1602 gso_type = skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV6 | SKB_GSO_TCPV4); 1603 switch (gso_type) { 1604 case SKB_GSO_TCPV4: 1605 /* TCP v4, zero out the IP length and IPv4 checksum fields 1606 * as required by the offloading doc 1607 */ 1608 ip_hdr(skb)->tot_len = 0; 1609 ip_hdr(skb)->check = 0; 1610 is_ipv4 = true; 1611 break; 1612 case SKB_GSO_TCPV6: 1613 /* TCP v6, zero out the payload length */ 1614 ipv6_hdr(skb)->payload_len = 0; 1615 is_ipv4 = false; 1616 break; 1617 default: 1618 /* other than TCPv4 or TCPv6 types are not supported for TSO. 1619 * It is also illegal for both to be set simultaneously 1620 */ 1621 return -EINVAL; 1622 } 1623 1624 if (skb->ip_summed != CHECKSUM_PARTIAL) 1625 return -EINVAL; 1626 1627 /* tcp header length and skb network header length are fixed for all 1628 * packet's descriptors - read then once here 1629 */ 1630 tcp_hdr_len = tcp_hdrlen(skb); 1631 skb_net_hdr_len = skb_network_header_len(skb); 1632 1633 _hdr_desc = &vring->va[i].tx.legacy; 1634 1635 pa = dma_map_single(dev, skb->data, hdrlen, DMA_TO_DEVICE); 1636 if (unlikely(dma_mapping_error(dev, pa))) { 1637 wil_err(wil, "TSO: Skb head DMA map error\n"); 1638 goto err_exit; 1639 } 1640 1641 wil->txrx_ops.tx_desc_map((union wil_tx_desc *)hdr_desc, pa, 1642 hdrlen, vring_index); 1643 wil_tx_desc_offload_setup_tso(hdr_desc, skb, wil_tso_type_hdr, is_ipv4, 1644 tcp_hdr_len, skb_net_hdr_len); 1645 wil_tx_last_desc(hdr_desc); 1646 1647 vring->ctx[i].mapped_as = wil_mapped_as_single; 1648 hdr_ctx = &vring->ctx[i]; 1649 1650 descs_used++; 1651 headlen = skb_headlen(skb) - hdrlen; 1652 1653 for (f = headlen ? -1 : 0; f < nr_frags; f++) { 1654 if (headlen) { 1655 len = headlen; 1656 wil_dbg_txrx(wil, "TSO: process skb head, len %u\n", 1657 len); 1658 } else { 1659 frag = &skb_shinfo(skb)->frags[f]; 1660 len = frag->size; 1661 wil_dbg_txrx(wil, "TSO: frag[%d]: len %u\n", f, len); 1662 } 1663 1664 while (len) { 1665 wil_dbg_txrx(wil, 1666 "TSO: len %d, rem_data %d, descs_used %d\n", 1667 len, rem_data, descs_used); 1668 1669 if (descs_used == avail) { 1670 wil_err_ratelimited(wil, "TSO: ring overflow\n"); 1671 rc = -ENOMEM; 1672 goto mem_error; 1673 } 1674 1675 lenmss = min_t(int, rem_data, len); 1676 i = (swhead + descs_used) % vring->size; 1677 wil_dbg_txrx(wil, "TSO: lenmss %d, i %d\n", lenmss, i); 1678 1679 if (!headlen) { 1680 pa = skb_frag_dma_map(dev, frag, 1681 frag->size - len, lenmss, 1682 DMA_TO_DEVICE); 1683 vring->ctx[i].mapped_as = wil_mapped_as_page; 1684 } else { 1685 pa = dma_map_single(dev, 1686 skb->data + 1687 skb_headlen(skb) - headlen, 1688 lenmss, 1689 DMA_TO_DEVICE); 1690 vring->ctx[i].mapped_as = wil_mapped_as_single; 1691 headlen -= lenmss; 1692 } 1693 1694 if (unlikely(dma_mapping_error(dev, pa))) { 1695 wil_err(wil, "TSO: DMA map page error\n"); 1696 goto mem_error; 1697 } 1698 1699 _desc = &vring->va[i].tx.legacy; 1700 1701 if (!_first_desc) { 1702 _first_desc = _desc; 1703 first_ctx = &vring->ctx[i]; 1704 d = first_desc; 1705 } else { 1706 d = &desc_mem; 1707 } 1708 1709 wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, 1710 pa, lenmss, vring_index); 1711 wil_tx_desc_offload_setup_tso(d, skb, desc_tso_type, 1712 is_ipv4, tcp_hdr_len, 1713 skb_net_hdr_len); 1714 1715 /* use tso_type_first only once */ 1716 desc_tso_type = wil_tso_type_mid; 1717 1718 descs_used++; /* desc used so far */ 1719 sg_desc_cnt++; /* desc used for this segment */ 1720 len -= lenmss; 1721 rem_data -= lenmss; 1722 1723 wil_dbg_txrx(wil, 1724 "TSO: len %d, rem_data %d, descs_used %d, sg_desc_cnt %d,\n", 1725 len, rem_data, descs_used, sg_desc_cnt); 1726 1727 /* Close the segment if reached mss size or last frag*/ 1728 if (rem_data == 0 || (f == nr_frags - 1 && len == 0)) { 1729 if (hdr_compensation_need) { 1730 /* first segment include hdr desc for 1731 * release 1732 */ 1733 hdr_ctx->nr_frags = sg_desc_cnt; 1734 wil_tx_desc_set_nr_frags(first_desc, 1735 sg_desc_cnt + 1736 1); 1737 hdr_compensation_need = false; 1738 } else { 1739 wil_tx_desc_set_nr_frags(first_desc, 1740 sg_desc_cnt); 1741 } 1742 first_ctx->nr_frags = sg_desc_cnt - 1; 1743 1744 wil_tx_last_desc(d); 1745 1746 /* first descriptor may also be the last 1747 * for this mss - make sure not to copy 1748 * it twice 1749 */ 1750 if (first_desc != d) 1751 *_first_desc = *first_desc; 1752 1753 /*last descriptor will be copied at the end 1754 * of this TS processing 1755 */ 1756 if (f < nr_frags - 1 || len > 0) 1757 *_desc = *d; 1758 1759 rem_data = mss; 1760 _first_desc = NULL; 1761 sg_desc_cnt = 0; 1762 } else if (first_desc != d) /* update mid descriptor */ 1763 *_desc = *d; 1764 } 1765 } 1766 1767 if (!_desc) 1768 goto mem_error; 1769 1770 /* first descriptor may also be the last. 1771 * in this case d pointer is invalid 1772 */ 1773 if (_first_desc == _desc) 1774 d = first_desc; 1775 1776 /* Last data descriptor */ 1777 wil_set_tx_desc_last_tso(d); 1778 *_desc = *d; 1779 1780 /* Fill the total number of descriptors in first desc (hdr)*/ 1781 wil_tx_desc_set_nr_frags(hdr_desc, descs_used); 1782 *_hdr_desc = *hdr_desc; 1783 1784 /* hold reference to skb 1785 * to prevent skb release before accounting 1786 * in case of immediate "tx done" 1787 */ 1788 vring->ctx[i].skb = skb_get(skb); 1789 1790 /* performance monitoring */ 1791 used = wil_ring_used_tx(vring); 1792 if (wil_val_in_range(wil->ring_idle_trsh, 1793 used, used + descs_used)) { 1794 txdata->idle += get_cycles() - txdata->last_idle; 1795 wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n", 1796 vring_index, used, used + descs_used); 1797 } 1798 1799 /* Make sure to advance the head only after descriptor update is done. 1800 * This will prevent a race condition where the completion thread 1801 * will see the DU bit set from previous run and will handle the 1802 * skb before it was completed. 1803 */ 1804 wmb(); 1805 1806 /* advance swhead */ 1807 wil_ring_advance_head(vring, descs_used); 1808 wil_dbg_txrx(wil, "TSO: Tx swhead %d -> %d\n", swhead, vring->swhead); 1809 1810 /* make sure all writes to descriptors (shared memory) are done before 1811 * committing them to HW 1812 */ 1813 wmb(); 1814 1815 if (wil->tx_latency) 1816 *(ktime_t *)&skb->cb = ktime_get(); 1817 else 1818 memset(skb->cb, 0, sizeof(ktime_t)); 1819 1820 wil_w(wil, vring->hwtail, vring->swhead); 1821 return 0; 1822 1823 mem_error: 1824 while (descs_used > 0) { 1825 struct wil_ctx *ctx; 1826 1827 i = (swhead + descs_used - 1) % vring->size; 1828 d = (struct vring_tx_desc *)&vring->va[i].tx.legacy; 1829 _desc = &vring->va[i].tx.legacy; 1830 *d = *_desc; 1831 _desc->dma.status = TX_DMA_STATUS_DU; 1832 ctx = &vring->ctx[i]; 1833 wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx); 1834 memset(ctx, 0, sizeof(*ctx)); 1835 descs_used--; 1836 } 1837 err_exit: 1838 return rc; 1839 } 1840 1841 static int __wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif, 1842 struct wil_ring *ring, struct sk_buff *skb) 1843 { 1844 struct device *dev = wil_to_dev(wil); 1845 struct vring_tx_desc dd, *d = ⅆ 1846 volatile struct vring_tx_desc *_d; 1847 u32 swhead = ring->swhead; 1848 int avail = wil_ring_avail_tx(ring); 1849 int nr_frags = skb_shinfo(skb)->nr_frags; 1850 uint f = 0; 1851 int ring_index = ring - wil->ring_tx; 1852 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_index]; 1853 uint i = swhead; 1854 dma_addr_t pa; 1855 int used; 1856 bool mcast = (ring_index == vif->bcast_ring); 1857 uint len = skb_headlen(skb); 1858 1859 wil_dbg_txrx(wil, "tx_ring: %d bytes to ring %d, nr_frags %d\n", 1860 skb->len, ring_index, nr_frags); 1861 1862 if (unlikely(!txdata->enabled)) 1863 return -EINVAL; 1864 1865 if (unlikely(avail < 1 + nr_frags)) { 1866 wil_err_ratelimited(wil, 1867 "Tx ring[%2d] full. No space for %d fragments\n", 1868 ring_index, 1 + nr_frags); 1869 return -ENOMEM; 1870 } 1871 _d = &ring->va[i].tx.legacy; 1872 1873 pa = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 1874 1875 wil_dbg_txrx(wil, "Tx[%2d] skb %d bytes 0x%p -> %pad\n", ring_index, 1876 skb_headlen(skb), skb->data, &pa); 1877 wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1, 1878 skb->data, skb_headlen(skb), false); 1879 1880 if (unlikely(dma_mapping_error(dev, pa))) 1881 return -EINVAL; 1882 ring->ctx[i].mapped_as = wil_mapped_as_single; 1883 /* 1-st segment */ 1884 wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, pa, len, 1885 ring_index); 1886 if (unlikely(mcast)) { 1887 d->mac.d[0] |= BIT(MAC_CFG_DESC_TX_0_MCS_EN_POS); /* MCS 0 */ 1888 if (unlikely(len > WIL_BCAST_MCS0_LIMIT)) /* set MCS 1 */ 1889 d->mac.d[0] |= (1 << MAC_CFG_DESC_TX_0_MCS_INDEX_POS); 1890 } 1891 /* Process TCP/UDP checksum offloading */ 1892 if (unlikely(wil_tx_desc_offload_setup(d, skb))) { 1893 wil_err(wil, "Tx[%2d] Failed to set cksum, drop packet\n", 1894 ring_index); 1895 goto dma_error; 1896 } 1897 1898 ring->ctx[i].nr_frags = nr_frags; 1899 wil_tx_desc_set_nr_frags(d, nr_frags + 1); 1900 1901 /* middle segments */ 1902 for (; f < nr_frags; f++) { 1903 const struct skb_frag_struct *frag = 1904 &skb_shinfo(skb)->frags[f]; 1905 int len = skb_frag_size(frag); 1906 1907 *_d = *d; 1908 wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i); 1909 wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4, 1910 (const void *)d, sizeof(*d), false); 1911 i = (swhead + f + 1) % ring->size; 1912 _d = &ring->va[i].tx.legacy; 1913 pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag), 1914 DMA_TO_DEVICE); 1915 if (unlikely(dma_mapping_error(dev, pa))) { 1916 wil_err(wil, "Tx[%2d] failed to map fragment\n", 1917 ring_index); 1918 goto dma_error; 1919 } 1920 ring->ctx[i].mapped_as = wil_mapped_as_page; 1921 wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, 1922 pa, len, ring_index); 1923 /* no need to check return code - 1924 * if it succeeded for 1-st descriptor, 1925 * it will succeed here too 1926 */ 1927 wil_tx_desc_offload_setup(d, skb); 1928 } 1929 /* for the last seg only */ 1930 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS); 1931 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS); 1932 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS); 1933 *_d = *d; 1934 wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i); 1935 wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4, 1936 (const void *)d, sizeof(*d), false); 1937 1938 /* hold reference to skb 1939 * to prevent skb release before accounting 1940 * in case of immediate "tx done" 1941 */ 1942 ring->ctx[i].skb = skb_get(skb); 1943 1944 /* performance monitoring */ 1945 used = wil_ring_used_tx(ring); 1946 if (wil_val_in_range(wil->ring_idle_trsh, 1947 used, used + nr_frags + 1)) { 1948 txdata->idle += get_cycles() - txdata->last_idle; 1949 wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n", 1950 ring_index, used, used + nr_frags + 1); 1951 } 1952 1953 /* Make sure to advance the head only after descriptor update is done. 1954 * This will prevent a race condition where the completion thread 1955 * will see the DU bit set from previous run and will handle the 1956 * skb before it was completed. 1957 */ 1958 wmb(); 1959 1960 /* advance swhead */ 1961 wil_ring_advance_head(ring, nr_frags + 1); 1962 wil_dbg_txrx(wil, "Tx[%2d] swhead %d -> %d\n", ring_index, swhead, 1963 ring->swhead); 1964 trace_wil6210_tx(ring_index, swhead, skb->len, nr_frags); 1965 1966 /* make sure all writes to descriptors (shared memory) are done before 1967 * committing them to HW 1968 */ 1969 wmb(); 1970 1971 if (wil->tx_latency) 1972 *(ktime_t *)&skb->cb = ktime_get(); 1973 else 1974 memset(skb->cb, 0, sizeof(ktime_t)); 1975 1976 wil_w(wil, ring->hwtail, ring->swhead); 1977 1978 return 0; 1979 dma_error: 1980 /* unmap what we have mapped */ 1981 nr_frags = f + 1; /* frags mapped + one for skb head */ 1982 for (f = 0; f < nr_frags; f++) { 1983 struct wil_ctx *ctx; 1984 1985 i = (swhead + f) % ring->size; 1986 ctx = &ring->ctx[i]; 1987 _d = &ring->va[i].tx.legacy; 1988 *d = *_d; 1989 _d->dma.status = TX_DMA_STATUS_DU; 1990 wil->txrx_ops.tx_desc_unmap(dev, 1991 (union wil_tx_desc *)d, 1992 ctx); 1993 1994 memset(ctx, 0, sizeof(*ctx)); 1995 } 1996 1997 return -EINVAL; 1998 } 1999 2000 static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif, 2001 struct wil_ring *ring, struct sk_buff *skb) 2002 { 2003 int ring_index = ring - wil->ring_tx; 2004 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_index]; 2005 int rc; 2006 2007 spin_lock(&txdata->lock); 2008 2009 if (test_bit(wil_status_suspending, wil->status) || 2010 test_bit(wil_status_suspended, wil->status) || 2011 test_bit(wil_status_resuming, wil->status)) { 2012 wil_dbg_txrx(wil, 2013 "suspend/resume in progress. drop packet\n"); 2014 spin_unlock(&txdata->lock); 2015 return -EINVAL; 2016 } 2017 2018 rc = (skb_is_gso(skb) ? wil->txrx_ops.tx_ring_tso : __wil_tx_ring) 2019 (wil, vif, ring, skb); 2020 2021 spin_unlock(&txdata->lock); 2022 2023 return rc; 2024 } 2025 2026 /** 2027 * Check status of tx vrings and stop/wake net queues if needed 2028 * It will start/stop net queues of a specific VIF net_device. 2029 * 2030 * This function does one of two checks: 2031 * In case check_stop is true, will check if net queues need to be stopped. If 2032 * the conditions for stopping are met, netif_tx_stop_all_queues() is called. 2033 * In case check_stop is false, will check if net queues need to be waked. If 2034 * the conditions for waking are met, netif_tx_wake_all_queues() is called. 2035 * vring is the vring which is currently being modified by either adding 2036 * descriptors (tx) into it or removing descriptors (tx complete) from it. Can 2037 * be null when irrelevant (e.g. connect/disconnect events). 2038 * 2039 * The implementation is to stop net queues if modified vring has low 2040 * descriptor availability. Wake if all vrings are not in low descriptor 2041 * availability and modified vring has high descriptor availability. 2042 */ 2043 static inline void __wil_update_net_queues(struct wil6210_priv *wil, 2044 struct wil6210_vif *vif, 2045 struct wil_ring *ring, 2046 bool check_stop) 2047 { 2048 int i; 2049 int min_ring_id = wil_get_min_tx_ring_id(wil); 2050 2051 if (unlikely(!vif)) 2052 return; 2053 2054 if (ring) 2055 wil_dbg_txrx(wil, "vring %d, mid %d, check_stop=%d, stopped=%d", 2056 (int)(ring - wil->ring_tx), vif->mid, check_stop, 2057 vif->net_queue_stopped); 2058 else 2059 wil_dbg_txrx(wil, "check_stop=%d, mid=%d, stopped=%d", 2060 check_stop, vif->mid, vif->net_queue_stopped); 2061 2062 if (ring && drop_if_ring_full) 2063 /* no need to stop/wake net queues */ 2064 return; 2065 2066 if (check_stop == vif->net_queue_stopped) 2067 /* net queues already in desired state */ 2068 return; 2069 2070 if (check_stop) { 2071 if (!ring || unlikely(wil_ring_avail_low(ring))) { 2072 /* not enough room in the vring */ 2073 netif_tx_stop_all_queues(vif_to_ndev(vif)); 2074 vif->net_queue_stopped = true; 2075 wil_dbg_txrx(wil, "netif_tx_stop called\n"); 2076 } 2077 return; 2078 } 2079 2080 /* Do not wake the queues in suspend flow */ 2081 if (test_bit(wil_status_suspending, wil->status) || 2082 test_bit(wil_status_suspended, wil->status)) 2083 return; 2084 2085 /* check wake */ 2086 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) { 2087 struct wil_ring *cur_ring = &wil->ring_tx[i]; 2088 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i]; 2089 2090 if (txdata->mid != vif->mid || !cur_ring->va || 2091 !txdata->enabled || cur_ring == ring) 2092 continue; 2093 2094 if (wil_ring_avail_low(cur_ring)) { 2095 wil_dbg_txrx(wil, "ring %d full, can't wake\n", 2096 (int)(cur_ring - wil->ring_tx)); 2097 return; 2098 } 2099 } 2100 2101 if (!ring || wil_ring_avail_high(ring)) { 2102 /* enough room in the ring */ 2103 wil_dbg_txrx(wil, "calling netif_tx_wake\n"); 2104 netif_tx_wake_all_queues(vif_to_ndev(vif)); 2105 vif->net_queue_stopped = false; 2106 } 2107 } 2108 2109 void wil_update_net_queues(struct wil6210_priv *wil, struct wil6210_vif *vif, 2110 struct wil_ring *ring, bool check_stop) 2111 { 2112 spin_lock(&wil->net_queue_lock); 2113 __wil_update_net_queues(wil, vif, ring, check_stop); 2114 spin_unlock(&wil->net_queue_lock); 2115 } 2116 2117 void wil_update_net_queues_bh(struct wil6210_priv *wil, struct wil6210_vif *vif, 2118 struct wil_ring *ring, bool check_stop) 2119 { 2120 spin_lock_bh(&wil->net_queue_lock); 2121 __wil_update_net_queues(wil, vif, ring, check_stop); 2122 spin_unlock_bh(&wil->net_queue_lock); 2123 } 2124 2125 netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev) 2126 { 2127 struct wil6210_vif *vif = ndev_to_vif(ndev); 2128 struct wil6210_priv *wil = vif_to_wil(vif); 2129 const u8 *da = wil_skb_get_da(skb); 2130 bool bcast = is_multicast_ether_addr(da); 2131 struct wil_ring *ring; 2132 static bool pr_once_fw; 2133 int rc; 2134 2135 wil_dbg_txrx(wil, "start_xmit\n"); 2136 if (unlikely(!test_bit(wil_status_fwready, wil->status))) { 2137 if (!pr_once_fw) { 2138 wil_err(wil, "FW not ready\n"); 2139 pr_once_fw = true; 2140 } 2141 goto drop; 2142 } 2143 if (unlikely(!test_bit(wil_vif_fwconnected, vif->status))) { 2144 wil_dbg_ratelimited(wil, 2145 "VIF not connected, packet dropped\n"); 2146 goto drop; 2147 } 2148 if (unlikely(vif->wdev.iftype == NL80211_IFTYPE_MONITOR)) { 2149 wil_err(wil, "Xmit in monitor mode not supported\n"); 2150 goto drop; 2151 } 2152 pr_once_fw = false; 2153 2154 /* find vring */ 2155 if (vif->wdev.iftype == NL80211_IFTYPE_STATION && !vif->pbss) { 2156 /* in STA mode (ESS), all to same VRING (to AP) */ 2157 ring = wil_find_tx_ring_sta(wil, vif, skb); 2158 } else if (bcast) { 2159 if (vif->pbss) 2160 /* in pbss, no bcast VRING - duplicate skb in 2161 * all stations VRINGs 2162 */ 2163 ring = wil_find_tx_bcast_2(wil, vif, skb); 2164 else if (vif->wdev.iftype == NL80211_IFTYPE_AP) 2165 /* AP has a dedicated bcast VRING */ 2166 ring = wil_find_tx_bcast_1(wil, vif, skb); 2167 else 2168 /* unexpected combination, fallback to duplicating 2169 * the skb in all stations VRINGs 2170 */ 2171 ring = wil_find_tx_bcast_2(wil, vif, skb); 2172 } else { 2173 /* unicast, find specific VRING by dest. address */ 2174 ring = wil_find_tx_ucast(wil, vif, skb); 2175 } 2176 if (unlikely(!ring)) { 2177 wil_dbg_txrx(wil, "No Tx RING found for %pM\n", da); 2178 goto drop; 2179 } 2180 /* set up vring entry */ 2181 rc = wil_tx_ring(wil, vif, ring, skb); 2182 2183 switch (rc) { 2184 case 0: 2185 /* shall we stop net queues? */ 2186 wil_update_net_queues_bh(wil, vif, ring, true); 2187 /* statistics will be updated on the tx_complete */ 2188 dev_kfree_skb_any(skb); 2189 return NETDEV_TX_OK; 2190 case -ENOMEM: 2191 if (drop_if_ring_full) 2192 goto drop; 2193 return NETDEV_TX_BUSY; 2194 default: 2195 break; /* goto drop; */ 2196 } 2197 drop: 2198 ndev->stats.tx_dropped++; 2199 dev_kfree_skb_any(skb); 2200 2201 return NET_XMIT_DROP; 2202 } 2203 2204 void wil_tx_latency_calc(struct wil6210_priv *wil, struct sk_buff *skb, 2205 struct wil_sta_info *sta) 2206 { 2207 int skb_time_us; 2208 int bin; 2209 2210 if (!wil->tx_latency) 2211 return; 2212 2213 if (ktime_to_ms(*(ktime_t *)&skb->cb) == 0) 2214 return; 2215 2216 skb_time_us = ktime_us_delta(ktime_get(), *(ktime_t *)&skb->cb); 2217 bin = skb_time_us / wil->tx_latency_res; 2218 bin = min_t(int, bin, WIL_NUM_LATENCY_BINS - 1); 2219 2220 wil_dbg_txrx(wil, "skb time %dus => bin %d\n", skb_time_us, bin); 2221 sta->tx_latency_bins[bin]++; 2222 sta->stats.tx_latency_total_us += skb_time_us; 2223 if (skb_time_us < sta->stats.tx_latency_min_us) 2224 sta->stats.tx_latency_min_us = skb_time_us; 2225 if (skb_time_us > sta->stats.tx_latency_max_us) 2226 sta->stats.tx_latency_max_us = skb_time_us; 2227 } 2228 2229 /** 2230 * Clean up transmitted skb's from the Tx VRING 2231 * 2232 * Return number of descriptors cleared 2233 * 2234 * Safe to call from IRQ 2235 */ 2236 int wil_tx_complete(struct wil6210_vif *vif, int ringid) 2237 { 2238 struct wil6210_priv *wil = vif_to_wil(vif); 2239 struct net_device *ndev = vif_to_ndev(vif); 2240 struct device *dev = wil_to_dev(wil); 2241 struct wil_ring *vring = &wil->ring_tx[ringid]; 2242 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ringid]; 2243 int done = 0; 2244 int cid = wil->ring2cid_tid[ringid][0]; 2245 struct wil_net_stats *stats = NULL; 2246 volatile struct vring_tx_desc *_d; 2247 int used_before_complete; 2248 int used_new; 2249 2250 if (unlikely(!vring->va)) { 2251 wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid); 2252 return 0; 2253 } 2254 2255 if (unlikely(!txdata->enabled)) { 2256 wil_info(wil, "Tx irq[%d]: vring disabled\n", ringid); 2257 return 0; 2258 } 2259 2260 wil_dbg_txrx(wil, "tx_complete: (%d)\n", ringid); 2261 2262 used_before_complete = wil_ring_used_tx(vring); 2263 2264 if (cid < wil->max_assoc_sta) 2265 stats = &wil->sta[cid].stats; 2266 2267 while (!wil_ring_is_empty(vring)) { 2268 int new_swtail; 2269 struct wil_ctx *ctx = &vring->ctx[vring->swtail]; 2270 /** 2271 * For the fragmented skb, HW will set DU bit only for the 2272 * last fragment. look for it. 2273 * In TSO the first DU will include hdr desc 2274 */ 2275 int lf = (vring->swtail + ctx->nr_frags) % vring->size; 2276 /* TODO: check we are not past head */ 2277 2278 _d = &vring->va[lf].tx.legacy; 2279 if (unlikely(!(_d->dma.status & TX_DMA_STATUS_DU))) 2280 break; 2281 2282 new_swtail = (lf + 1) % vring->size; 2283 while (vring->swtail != new_swtail) { 2284 struct vring_tx_desc dd, *d = ⅆ 2285 u16 dmalen; 2286 struct sk_buff *skb; 2287 2288 ctx = &vring->ctx[vring->swtail]; 2289 skb = ctx->skb; 2290 _d = &vring->va[vring->swtail].tx.legacy; 2291 2292 *d = *_d; 2293 2294 dmalen = le16_to_cpu(d->dma.length); 2295 trace_wil6210_tx_done(ringid, vring->swtail, dmalen, 2296 d->dma.error); 2297 wil_dbg_txrx(wil, 2298 "TxC[%2d][%3d] : %d bytes, status 0x%02x err 0x%02x\n", 2299 ringid, vring->swtail, dmalen, 2300 d->dma.status, d->dma.error); 2301 wil_hex_dump_txrx("TxCD ", DUMP_PREFIX_NONE, 32, 4, 2302 (const void *)d, sizeof(*d), false); 2303 2304 wil->txrx_ops.tx_desc_unmap(dev, 2305 (union wil_tx_desc *)d, 2306 ctx); 2307 2308 if (skb) { 2309 if (likely(d->dma.error == 0)) { 2310 ndev->stats.tx_packets++; 2311 ndev->stats.tx_bytes += skb->len; 2312 if (stats) { 2313 stats->tx_packets++; 2314 stats->tx_bytes += skb->len; 2315 2316 wil_tx_latency_calc(wil, skb, 2317 &wil->sta[cid]); 2318 } 2319 } else { 2320 ndev->stats.tx_errors++; 2321 if (stats) 2322 stats->tx_errors++; 2323 } 2324 wil_consume_skb(skb, d->dma.error == 0); 2325 } 2326 memset(ctx, 0, sizeof(*ctx)); 2327 /* Make sure the ctx is zeroed before updating the tail 2328 * to prevent a case where wil_tx_ring will see 2329 * this descriptor as used and handle it before ctx zero 2330 * is completed. 2331 */ 2332 wmb(); 2333 /* There is no need to touch HW descriptor: 2334 * - ststus bit TX_DMA_STATUS_DU is set by design, 2335 * so hardware will not try to process this desc., 2336 * - rest of descriptor will be initialized on Tx. 2337 */ 2338 vring->swtail = wil_ring_next_tail(vring); 2339 done++; 2340 } 2341 } 2342 2343 /* performance monitoring */ 2344 used_new = wil_ring_used_tx(vring); 2345 if (wil_val_in_range(wil->ring_idle_trsh, 2346 used_new, used_before_complete)) { 2347 wil_dbg_txrx(wil, "Ring[%2d] idle %d -> %d\n", 2348 ringid, used_before_complete, used_new); 2349 txdata->last_idle = get_cycles(); 2350 } 2351 2352 /* shall we wake net queues? */ 2353 if (done) 2354 wil_update_net_queues(wil, vif, vring, false); 2355 2356 return done; 2357 } 2358 2359 static inline int wil_tx_init(struct wil6210_priv *wil) 2360 { 2361 return 0; 2362 } 2363 2364 static inline void wil_tx_fini(struct wil6210_priv *wil) {} 2365 2366 static void wil_get_reorder_params(struct wil6210_priv *wil, 2367 struct sk_buff *skb, int *tid, int *cid, 2368 int *mid, u16 *seq, int *mcast, int *retry) 2369 { 2370 struct vring_rx_desc *d = wil_skb_rxdesc(skb); 2371 2372 *tid = wil_rxdesc_tid(d); 2373 *cid = wil_skb_get_cid(skb); 2374 *mid = wil_rxdesc_mid(d); 2375 *seq = wil_rxdesc_seq(d); 2376 *mcast = wil_rxdesc_mcast(d); 2377 *retry = wil_rxdesc_retry(d); 2378 } 2379 2380 void wil_init_txrx_ops_legacy_dma(struct wil6210_priv *wil) 2381 { 2382 wil->txrx_ops.configure_interrupt_moderation = 2383 wil_configure_interrupt_moderation; 2384 /* TX ops */ 2385 wil->txrx_ops.tx_desc_map = wil_tx_desc_map; 2386 wil->txrx_ops.tx_desc_unmap = wil_txdesc_unmap; 2387 wil->txrx_ops.tx_ring_tso = __wil_tx_vring_tso; 2388 wil->txrx_ops.ring_init_tx = wil_vring_init_tx; 2389 wil->txrx_ops.ring_fini_tx = wil_vring_free; 2390 wil->txrx_ops.ring_init_bcast = wil_vring_init_bcast; 2391 wil->txrx_ops.tx_init = wil_tx_init; 2392 wil->txrx_ops.tx_fini = wil_tx_fini; 2393 wil->txrx_ops.tx_ring_modify = wil_tx_vring_modify; 2394 /* RX ops */ 2395 wil->txrx_ops.rx_init = wil_rx_init; 2396 wil->txrx_ops.wmi_addba_rx_resp = wmi_addba_rx_resp; 2397 wil->txrx_ops.get_reorder_params = wil_get_reorder_params; 2398 wil->txrx_ops.get_netif_rx_params = 2399 wil_get_netif_rx_params; 2400 wil->txrx_ops.rx_crypto_check = wil_rx_crypto_check; 2401 wil->txrx_ops.rx_error_check = wil_rx_error_check; 2402 wil->txrx_ops.is_rx_idle = wil_is_rx_idle; 2403 wil->txrx_ops.rx_fini = wil_rx_fini; 2404 } 2405