1 /* 2 * Copyright (c) 2012-2017 Qualcomm Atheros, Inc. 3 * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 */ 17 18 #include <linux/etherdevice.h> 19 #include <net/ieee80211_radiotap.h> 20 #include <linux/if_arp.h> 21 #include <linux/moduleparam.h> 22 #include <linux/ip.h> 23 #include <linux/ipv6.h> 24 #include <net/ipv6.h> 25 #include <linux/prefetch.h> 26 27 #include "wil6210.h" 28 #include "wmi.h" 29 #include "txrx.h" 30 #include "trace.h" 31 #include "txrx_edma.h" 32 33 bool rx_align_2; 34 module_param(rx_align_2, bool, 0444); 35 MODULE_PARM_DESC(rx_align_2, " align Rx buffers on 4*n+2, default - no"); 36 37 bool rx_large_buf; 38 module_param(rx_large_buf, bool, 0444); 39 MODULE_PARM_DESC(rx_large_buf, " allocate 8KB RX buffers, default - no"); 40 41 /* Drop Tx packets in case Tx ring is full */ 42 bool drop_if_ring_full; 43 44 static inline uint wil_rx_snaplen(void) 45 { 46 return rx_align_2 ? 6 : 0; 47 } 48 49 /* wil_ring_wmark_low - low watermark for available descriptor space */ 50 static inline int wil_ring_wmark_low(struct wil_ring *ring) 51 { 52 return ring->size / 8; 53 } 54 55 /* wil_ring_wmark_high - high watermark for available descriptor space */ 56 static inline int wil_ring_wmark_high(struct wil_ring *ring) 57 { 58 return ring->size / 4; 59 } 60 61 /* returns true if num avail descriptors is lower than wmark_low */ 62 static inline int wil_ring_avail_low(struct wil_ring *ring) 63 { 64 return wil_ring_avail_tx(ring) < wil_ring_wmark_low(ring); 65 } 66 67 /* returns true if num avail descriptors is higher than wmark_high */ 68 static inline int wil_ring_avail_high(struct wil_ring *ring) 69 { 70 return wil_ring_avail_tx(ring) > wil_ring_wmark_high(ring); 71 } 72 73 /* returns true when all tx vrings are empty */ 74 bool wil_is_tx_idle(struct wil6210_priv *wil) 75 { 76 int i; 77 unsigned long data_comp_to; 78 int min_ring_id = wil_get_min_tx_ring_id(wil); 79 80 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) { 81 struct wil_ring *vring = &wil->ring_tx[i]; 82 int vring_index = vring - wil->ring_tx; 83 struct wil_ring_tx_data *txdata = 84 &wil->ring_tx_data[vring_index]; 85 86 spin_lock(&txdata->lock); 87 88 if (!vring->va || !txdata->enabled) { 89 spin_unlock(&txdata->lock); 90 continue; 91 } 92 93 data_comp_to = jiffies + msecs_to_jiffies( 94 WIL_DATA_COMPLETION_TO_MS); 95 if (test_bit(wil_status_napi_en, wil->status)) { 96 while (!wil_ring_is_empty(vring)) { 97 if (time_after(jiffies, data_comp_to)) { 98 wil_dbg_pm(wil, 99 "TO waiting for idle tx\n"); 100 spin_unlock(&txdata->lock); 101 return false; 102 } 103 wil_dbg_ratelimited(wil, 104 "tx vring is not empty -> NAPI\n"); 105 spin_unlock(&txdata->lock); 106 napi_synchronize(&wil->napi_tx); 107 msleep(20); 108 spin_lock(&txdata->lock); 109 if (!vring->va || !txdata->enabled) 110 break; 111 } 112 } 113 114 spin_unlock(&txdata->lock); 115 } 116 117 return true; 118 } 119 120 static int wil_vring_alloc(struct wil6210_priv *wil, struct wil_ring *vring) 121 { 122 struct device *dev = wil_to_dev(wil); 123 size_t sz = vring->size * sizeof(vring->va[0]); 124 uint i; 125 126 wil_dbg_misc(wil, "vring_alloc:\n"); 127 128 BUILD_BUG_ON(sizeof(vring->va[0]) != 32); 129 130 vring->swhead = 0; 131 vring->swtail = 0; 132 vring->ctx = kcalloc(vring->size, sizeof(vring->ctx[0]), GFP_KERNEL); 133 if (!vring->ctx) { 134 vring->va = NULL; 135 return -ENOMEM; 136 } 137 138 /* vring->va should be aligned on its size rounded up to power of 2 139 * This is granted by the dma_alloc_coherent. 140 * 141 * HW has limitation that all vrings addresses must share the same 142 * upper 16 msb bits part of 48 bits address. To workaround that, 143 * if we are using more than 32 bit addresses switch to 32 bit 144 * allocation before allocating vring memory. 145 * 146 * There's no check for the return value of dma_set_mask_and_coherent, 147 * since we assume if we were able to set the mask during 148 * initialization in this system it will not fail if we set it again 149 */ 150 if (wil->dma_addr_size > 32) 151 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 152 153 vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL); 154 if (!vring->va) { 155 kfree(vring->ctx); 156 vring->ctx = NULL; 157 return -ENOMEM; 158 } 159 160 if (wil->dma_addr_size > 32) 161 dma_set_mask_and_coherent(dev, 162 DMA_BIT_MASK(wil->dma_addr_size)); 163 164 /* initially, all descriptors are SW owned 165 * For Tx and Rx, ownership bit is at the same location, thus 166 * we can use any 167 */ 168 for (i = 0; i < vring->size; i++) { 169 volatile struct vring_tx_desc *_d = 170 &vring->va[i].tx.legacy; 171 172 _d->dma.status = TX_DMA_STATUS_DU; 173 } 174 175 wil_dbg_misc(wil, "vring[%d] 0x%p:%pad 0x%p\n", vring->size, 176 vring->va, &vring->pa, vring->ctx); 177 178 return 0; 179 } 180 181 static void wil_txdesc_unmap(struct device *dev, union wil_tx_desc *desc, 182 struct wil_ctx *ctx) 183 { 184 struct vring_tx_desc *d = &desc->legacy; 185 dma_addr_t pa = wil_desc_addr(&d->dma.addr); 186 u16 dmalen = le16_to_cpu(d->dma.length); 187 188 switch (ctx->mapped_as) { 189 case wil_mapped_as_single: 190 dma_unmap_single(dev, pa, dmalen, DMA_TO_DEVICE); 191 break; 192 case wil_mapped_as_page: 193 dma_unmap_page(dev, pa, dmalen, DMA_TO_DEVICE); 194 break; 195 default: 196 break; 197 } 198 } 199 200 static void wil_vring_free(struct wil6210_priv *wil, struct wil_ring *vring) 201 { 202 struct device *dev = wil_to_dev(wil); 203 size_t sz = vring->size * sizeof(vring->va[0]); 204 205 lockdep_assert_held(&wil->mutex); 206 if (!vring->is_rx) { 207 int vring_index = vring - wil->ring_tx; 208 209 wil_dbg_misc(wil, "free Tx vring %d [%d] 0x%p:%pad 0x%p\n", 210 vring_index, vring->size, vring->va, 211 &vring->pa, vring->ctx); 212 } else { 213 wil_dbg_misc(wil, "free Rx vring [%d] 0x%p:%pad 0x%p\n", 214 vring->size, vring->va, 215 &vring->pa, vring->ctx); 216 } 217 218 while (!wil_ring_is_empty(vring)) { 219 dma_addr_t pa; 220 u16 dmalen; 221 struct wil_ctx *ctx; 222 223 if (!vring->is_rx) { 224 struct vring_tx_desc dd, *d = ⅆ 225 volatile struct vring_tx_desc *_d = 226 &vring->va[vring->swtail].tx.legacy; 227 228 ctx = &vring->ctx[vring->swtail]; 229 if (!ctx) { 230 wil_dbg_txrx(wil, 231 "ctx(%d) was already completed\n", 232 vring->swtail); 233 vring->swtail = wil_ring_next_tail(vring); 234 continue; 235 } 236 *d = *_d; 237 wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx); 238 if (ctx->skb) 239 dev_kfree_skb_any(ctx->skb); 240 vring->swtail = wil_ring_next_tail(vring); 241 } else { /* rx */ 242 struct vring_rx_desc dd, *d = ⅆ 243 volatile struct vring_rx_desc *_d = 244 &vring->va[vring->swhead].rx.legacy; 245 246 ctx = &vring->ctx[vring->swhead]; 247 *d = *_d; 248 pa = wil_desc_addr(&d->dma.addr); 249 dmalen = le16_to_cpu(d->dma.length); 250 dma_unmap_single(dev, pa, dmalen, DMA_FROM_DEVICE); 251 kfree_skb(ctx->skb); 252 wil_ring_advance_head(vring, 1); 253 } 254 } 255 dma_free_coherent(dev, sz, (void *)vring->va, vring->pa); 256 kfree(vring->ctx); 257 vring->pa = 0; 258 vring->va = NULL; 259 vring->ctx = NULL; 260 } 261 262 /** 263 * Allocate one skb for Rx VRING 264 * 265 * Safe to call from IRQ 266 */ 267 static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct wil_ring *vring, 268 u32 i, int headroom) 269 { 270 struct device *dev = wil_to_dev(wil); 271 unsigned int sz = wil->rx_buf_len + ETH_HLEN + wil_rx_snaplen(); 272 struct vring_rx_desc dd, *d = ⅆ 273 volatile struct vring_rx_desc *_d = &vring->va[i].rx.legacy; 274 dma_addr_t pa; 275 struct sk_buff *skb = dev_alloc_skb(sz + headroom); 276 277 if (unlikely(!skb)) 278 return -ENOMEM; 279 280 skb_reserve(skb, headroom); 281 skb_put(skb, sz); 282 283 /** 284 * Make sure that the network stack calculates checksum for packets 285 * which failed the HW checksum calculation 286 */ 287 skb->ip_summed = CHECKSUM_NONE; 288 289 pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE); 290 if (unlikely(dma_mapping_error(dev, pa))) { 291 kfree_skb(skb); 292 return -ENOMEM; 293 } 294 295 d->dma.d0 = RX_DMA_D0_CMD_DMA_RT | RX_DMA_D0_CMD_DMA_IT; 296 wil_desc_addr_set(&d->dma.addr, pa); 297 /* ip_length don't care */ 298 /* b11 don't care */ 299 /* error don't care */ 300 d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */ 301 d->dma.length = cpu_to_le16(sz); 302 *_d = *d; 303 vring->ctx[i].skb = skb; 304 305 return 0; 306 } 307 308 /** 309 * Adds radiotap header 310 * 311 * Any error indicated as "Bad FCS" 312 * 313 * Vendor data for 04:ce:14-1 (Wilocity-1) consists of: 314 * - Rx descriptor: 32 bytes 315 * - Phy info 316 */ 317 static void wil_rx_add_radiotap_header(struct wil6210_priv *wil, 318 struct sk_buff *skb) 319 { 320 struct wil6210_rtap { 321 struct ieee80211_radiotap_header rthdr; 322 /* fields should be in the order of bits in rthdr.it_present */ 323 /* flags */ 324 u8 flags; 325 /* channel */ 326 __le16 chnl_freq __aligned(2); 327 __le16 chnl_flags; 328 /* MCS */ 329 u8 mcs_present; 330 u8 mcs_flags; 331 u8 mcs_index; 332 } __packed; 333 struct vring_rx_desc *d = wil_skb_rxdesc(skb); 334 struct wil6210_rtap *rtap; 335 int rtap_len = sizeof(struct wil6210_rtap); 336 struct ieee80211_channel *ch = wil->monitor_chandef.chan; 337 338 if (skb_headroom(skb) < rtap_len && 339 pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) { 340 wil_err(wil, "Unable to expand headroom to %d\n", rtap_len); 341 return; 342 } 343 344 rtap = skb_push(skb, rtap_len); 345 memset(rtap, 0, rtap_len); 346 347 rtap->rthdr.it_version = PKTHDR_RADIOTAP_VERSION; 348 rtap->rthdr.it_len = cpu_to_le16(rtap_len); 349 rtap->rthdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | 350 (1 << IEEE80211_RADIOTAP_CHANNEL) | 351 (1 << IEEE80211_RADIOTAP_MCS)); 352 if (d->dma.status & RX_DMA_STATUS_ERROR) 353 rtap->flags |= IEEE80211_RADIOTAP_F_BADFCS; 354 355 rtap->chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320); 356 rtap->chnl_flags = cpu_to_le16(0); 357 358 rtap->mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS; 359 rtap->mcs_flags = 0; 360 rtap->mcs_index = wil_rxdesc_mcs(d); 361 } 362 363 static bool wil_is_rx_idle(struct wil6210_priv *wil) 364 { 365 struct vring_rx_desc *_d; 366 struct wil_ring *ring = &wil->ring_rx; 367 368 _d = (struct vring_rx_desc *)&ring->va[ring->swhead].rx.legacy; 369 if (_d->dma.status & RX_DMA_STATUS_DU) 370 return false; 371 372 return true; 373 } 374 375 static int wil_rx_get_cid_by_skb(struct wil6210_priv *wil, struct sk_buff *skb) 376 { 377 struct vring_rx_desc *d = wil_skb_rxdesc(skb); 378 int mid = wil_rxdesc_mid(d); 379 struct wil6210_vif *vif = wil->vifs[mid]; 380 /* cid from DMA descriptor is limited to 3 bits. 381 * In case of cid>=8, the value would be cid modulo 8 and we need to 382 * find real cid by locating the transmitter (ta) inside sta array 383 */ 384 int cid = wil_rxdesc_cid(d); 385 unsigned int snaplen = wil_rx_snaplen(); 386 struct ieee80211_hdr_3addr *hdr; 387 int i; 388 unsigned char *ta; 389 u8 ftype; 390 391 /* in monitor mode there are no connections */ 392 if (vif->wdev.iftype == NL80211_IFTYPE_MONITOR) 393 return cid; 394 395 ftype = wil_rxdesc_ftype(d) << 2; 396 if (likely(ftype == IEEE80211_FTYPE_DATA)) { 397 if (unlikely(skb->len < ETH_HLEN + snaplen)) { 398 wil_err_ratelimited(wil, 399 "Short data frame, len = %d\n", 400 skb->len); 401 return -ENOENT; 402 } 403 ta = wil_skb_get_sa(skb); 404 } else { 405 if (unlikely(skb->len < sizeof(struct ieee80211_hdr_3addr))) { 406 wil_err_ratelimited(wil, "Short frame, len = %d\n", 407 skb->len); 408 return -ENOENT; 409 } 410 hdr = (void *)skb->data; 411 ta = hdr->addr2; 412 } 413 414 if (max_assoc_sta <= WIL6210_RX_DESC_MAX_CID) 415 return cid; 416 417 /* assuming no concurrency between AP interfaces and STA interfaces. 418 * multista is used only in P2P_GO or AP mode. In other modes return 419 * cid from the rx descriptor 420 */ 421 if (vif->wdev.iftype != NL80211_IFTYPE_P2P_GO && 422 vif->wdev.iftype != NL80211_IFTYPE_AP) 423 return cid; 424 425 /* For Rx packets cid from rx descriptor is limited to 3 bits (0..7), 426 * to find the real cid, compare transmitter address with the stored 427 * stations mac address in the driver sta array 428 */ 429 for (i = cid; i < max_assoc_sta; i += WIL6210_RX_DESC_MAX_CID) { 430 if (wil->sta[i].status != wil_sta_unused && 431 ether_addr_equal(wil->sta[i].addr, ta)) { 432 cid = i; 433 break; 434 } 435 } 436 if (i >= max_assoc_sta) { 437 wil_err_ratelimited(wil, "Could not find cid for frame with transmit addr = %pM, iftype = %d, frametype = %d, len = %d\n", 438 ta, vif->wdev.iftype, ftype, skb->len); 439 cid = -ENOENT; 440 } 441 442 return cid; 443 } 444 445 /** 446 * reap 1 frame from @swhead 447 * 448 * Rx descriptor copied to skb->cb 449 * 450 * Safe to call from IRQ 451 */ 452 static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil, 453 struct wil_ring *vring) 454 { 455 struct device *dev = wil_to_dev(wil); 456 struct wil6210_vif *vif; 457 struct net_device *ndev; 458 volatile struct vring_rx_desc *_d; 459 struct vring_rx_desc *d; 460 struct sk_buff *skb; 461 dma_addr_t pa; 462 unsigned int snaplen = wil_rx_snaplen(); 463 unsigned int sz = wil->rx_buf_len + ETH_HLEN + snaplen; 464 u16 dmalen; 465 u8 ftype; 466 int cid, mid; 467 int i; 468 struct wil_net_stats *stats; 469 470 BUILD_BUG_ON(sizeof(struct skb_rx_info) > sizeof(skb->cb)); 471 472 again: 473 if (unlikely(wil_ring_is_empty(vring))) 474 return NULL; 475 476 i = (int)vring->swhead; 477 _d = &vring->va[i].rx.legacy; 478 if (unlikely(!(_d->dma.status & RX_DMA_STATUS_DU))) { 479 /* it is not error, we just reached end of Rx done area */ 480 return NULL; 481 } 482 483 skb = vring->ctx[i].skb; 484 vring->ctx[i].skb = NULL; 485 wil_ring_advance_head(vring, 1); 486 if (!skb) { 487 wil_err(wil, "No Rx skb at [%d]\n", i); 488 goto again; 489 } 490 d = wil_skb_rxdesc(skb); 491 *d = *_d; 492 pa = wil_desc_addr(&d->dma.addr); 493 494 dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE); 495 dmalen = le16_to_cpu(d->dma.length); 496 497 trace_wil6210_rx(i, d); 498 wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", i, dmalen); 499 wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4, 500 (const void *)d, sizeof(*d), false); 501 502 mid = wil_rxdesc_mid(d); 503 vif = wil->vifs[mid]; 504 505 if (unlikely(!vif)) { 506 wil_dbg_txrx(wil, "skipped RX descriptor with invalid mid %d", 507 mid); 508 kfree_skb(skb); 509 goto again; 510 } 511 ndev = vif_to_ndev(vif); 512 if (unlikely(dmalen > sz)) { 513 wil_err_ratelimited(wil, "Rx size too large: %d bytes!\n", 514 dmalen); 515 kfree_skb(skb); 516 goto again; 517 } 518 skb_trim(skb, dmalen); 519 520 prefetch(skb->data); 521 522 wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1, 523 skb->data, skb_headlen(skb), false); 524 525 cid = wil_rx_get_cid_by_skb(wil, skb); 526 if (cid == -ENOENT) { 527 kfree_skb(skb); 528 goto again; 529 } 530 wil_skb_set_cid(skb, (u8)cid); 531 stats = &wil->sta[cid].stats; 532 533 stats->last_mcs_rx = wil_rxdesc_mcs(d); 534 if (stats->last_mcs_rx < ARRAY_SIZE(stats->rx_per_mcs)) 535 stats->rx_per_mcs[stats->last_mcs_rx]++; 536 537 /* use radiotap header only if required */ 538 if (ndev->type == ARPHRD_IEEE80211_RADIOTAP) 539 wil_rx_add_radiotap_header(wil, skb); 540 541 /* no extra checks if in sniffer mode */ 542 if (ndev->type != ARPHRD_ETHER) 543 return skb; 544 /* Non-data frames may be delivered through Rx DMA channel (ex: BAR) 545 * Driver should recognize it by frame type, that is found 546 * in Rx descriptor. If type is not data, it is 802.11 frame as is 547 */ 548 ftype = wil_rxdesc_ftype(d) << 2; 549 if (unlikely(ftype != IEEE80211_FTYPE_DATA)) { 550 u8 fc1 = wil_rxdesc_fc1(d); 551 int tid = wil_rxdesc_tid(d); 552 u16 seq = wil_rxdesc_seq(d); 553 554 wil_dbg_txrx(wil, 555 "Non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n", 556 fc1, mid, cid, tid, seq); 557 stats->rx_non_data_frame++; 558 if (wil_is_back_req(fc1)) { 559 wil_dbg_txrx(wil, 560 "BAR: MID %d CID %d TID %d Seq 0x%03x\n", 561 mid, cid, tid, seq); 562 wil_rx_bar(wil, vif, cid, tid, seq); 563 } else { 564 /* print again all info. One can enable only this 565 * without overhead for printing every Rx frame 566 */ 567 wil_dbg_txrx(wil, 568 "Unhandled non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n", 569 fc1, mid, cid, tid, seq); 570 wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4, 571 (const void *)d, sizeof(*d), false); 572 wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1, 573 skb->data, skb_headlen(skb), false); 574 } 575 kfree_skb(skb); 576 goto again; 577 } 578 579 /* L4 IDENT is on when HW calculated checksum, check status 580 * and in case of error drop the packet 581 * higher stack layers will handle retransmission (if required) 582 */ 583 if (likely(d->dma.status & RX_DMA_STATUS_L4I)) { 584 /* L4 protocol identified, csum calculated */ 585 if (likely((d->dma.error & RX_DMA_ERROR_L4_ERR) == 0)) 586 skb->ip_summed = CHECKSUM_UNNECESSARY; 587 /* If HW reports bad checksum, let IP stack re-check it 588 * For example, HW don't understand Microsoft IP stack that 589 * mis-calculates TCP checksum - if it should be 0x0, 590 * it writes 0xffff in violation of RFC 1624 591 */ 592 else 593 stats->rx_csum_err++; 594 } 595 596 if (snaplen) { 597 /* Packet layout 598 * +-------+-------+---------+------------+------+ 599 * | SA(6) | DA(6) | SNAP(6) | ETHTYPE(2) | DATA | 600 * +-------+-------+---------+------------+------+ 601 * Need to remove SNAP, shifting SA and DA forward 602 */ 603 memmove(skb->data + snaplen, skb->data, 2 * ETH_ALEN); 604 skb_pull(skb, snaplen); 605 } 606 607 return skb; 608 } 609 610 /** 611 * allocate and fill up to @count buffers in rx ring 612 * buffers posted at @swtail 613 * Note: we have a single RX queue for servicing all VIFs, but we 614 * allocate skbs with headroom according to main interface only. This 615 * means it will not work with monitor interface together with other VIFs. 616 * Currently we only support monitor interface on its own without other VIFs, 617 * and we will need to fix this code once we add support. 618 */ 619 static int wil_rx_refill(struct wil6210_priv *wil, int count) 620 { 621 struct net_device *ndev = wil->main_ndev; 622 struct wil_ring *v = &wil->ring_rx; 623 u32 next_tail; 624 int rc = 0; 625 int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ? 626 WIL6210_RTAP_SIZE : 0; 627 628 for (; next_tail = wil_ring_next_tail(v), 629 (next_tail != v->swhead) && (count-- > 0); 630 v->swtail = next_tail) { 631 rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom); 632 if (unlikely(rc)) { 633 wil_err_ratelimited(wil, "Error %d in rx refill[%d]\n", 634 rc, v->swtail); 635 break; 636 } 637 } 638 639 /* make sure all writes to descriptors (shared memory) are done before 640 * committing them to HW 641 */ 642 wmb(); 643 644 wil_w(wil, v->hwtail, v->swtail); 645 646 return rc; 647 } 648 649 /** 650 * reverse_memcmp - Compare two areas of memory, in reverse order 651 * @cs: One area of memory 652 * @ct: Another area of memory 653 * @count: The size of the area. 654 * 655 * Cut'n'paste from original memcmp (see lib/string.c) 656 * with minimal modifications 657 */ 658 int reverse_memcmp(const void *cs, const void *ct, size_t count) 659 { 660 const unsigned char *su1, *su2; 661 int res = 0; 662 663 for (su1 = cs + count - 1, su2 = ct + count - 1; count > 0; 664 --su1, --su2, count--) { 665 res = *su1 - *su2; 666 if (res) 667 break; 668 } 669 return res; 670 } 671 672 static int wil_rx_crypto_check(struct wil6210_priv *wil, struct sk_buff *skb) 673 { 674 struct vring_rx_desc *d = wil_skb_rxdesc(skb); 675 int cid = wil_skb_get_cid(skb); 676 int tid = wil_rxdesc_tid(d); 677 int key_id = wil_rxdesc_key_id(d); 678 int mc = wil_rxdesc_mcast(d); 679 struct wil_sta_info *s = &wil->sta[cid]; 680 struct wil_tid_crypto_rx *c = mc ? &s->group_crypto_rx : 681 &s->tid_crypto_rx[tid]; 682 struct wil_tid_crypto_rx_single *cc = &c->key_id[key_id]; 683 const u8 *pn = (u8 *)&d->mac.pn_15_0; 684 685 if (!cc->key_set) { 686 wil_err_ratelimited(wil, 687 "Key missing. CID %d TID %d MCast %d KEY_ID %d\n", 688 cid, tid, mc, key_id); 689 return -EINVAL; 690 } 691 692 if (reverse_memcmp(pn, cc->pn, IEEE80211_GCMP_PN_LEN) <= 0) { 693 wil_err_ratelimited(wil, 694 "Replay attack. CID %d TID %d MCast %d KEY_ID %d PN %6phN last %6phN\n", 695 cid, tid, mc, key_id, pn, cc->pn); 696 return -EINVAL; 697 } 698 memcpy(cc->pn, pn, IEEE80211_GCMP_PN_LEN); 699 700 return 0; 701 } 702 703 static int wil_rx_error_check(struct wil6210_priv *wil, struct sk_buff *skb, 704 struct wil_net_stats *stats) 705 { 706 struct vring_rx_desc *d = wil_skb_rxdesc(skb); 707 708 if ((d->dma.status & RX_DMA_STATUS_ERROR) && 709 (d->dma.error & RX_DMA_ERROR_MIC)) { 710 stats->rx_mic_error++; 711 wil_dbg_txrx(wil, "MIC error, dropping packet\n"); 712 return -EFAULT; 713 } 714 715 return 0; 716 } 717 718 static void wil_get_netif_rx_params(struct sk_buff *skb, int *cid, 719 int *security) 720 { 721 struct vring_rx_desc *d = wil_skb_rxdesc(skb); 722 723 *cid = wil_skb_get_cid(skb); 724 *security = wil_rxdesc_security(d); 725 } 726 727 /* 728 * Pass Rx packet to the netif. Update statistics. 729 * Called in softirq context (NAPI poll). 730 */ 731 void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev) 732 { 733 gro_result_t rc = GRO_NORMAL; 734 struct wil6210_vif *vif = ndev_to_vif(ndev); 735 struct wil6210_priv *wil = ndev_to_wil(ndev); 736 struct wireless_dev *wdev = vif_to_wdev(vif); 737 unsigned int len = skb->len; 738 int cid; 739 int security; 740 u8 *sa, *da = wil_skb_get_da(skb); 741 /* here looking for DA, not A1, thus Rxdesc's 'mcast' indication 742 * is not suitable, need to look at data 743 */ 744 int mcast = is_multicast_ether_addr(da); 745 struct wil_net_stats *stats; 746 struct sk_buff *xmit_skb = NULL; 747 static const char * const gro_res_str[] = { 748 [GRO_MERGED] = "GRO_MERGED", 749 [GRO_MERGED_FREE] = "GRO_MERGED_FREE", 750 [GRO_HELD] = "GRO_HELD", 751 [GRO_NORMAL] = "GRO_NORMAL", 752 [GRO_DROP] = "GRO_DROP", 753 }; 754 755 wil->txrx_ops.get_netif_rx_params(skb, &cid, &security); 756 757 stats = &wil->sta[cid].stats; 758 759 skb_orphan(skb); 760 761 if (security && (wil->txrx_ops.rx_crypto_check(wil, skb) != 0)) { 762 rc = GRO_DROP; 763 dev_kfree_skb(skb); 764 stats->rx_replay++; 765 goto stats; 766 } 767 768 /* check errors reported by HW and update statistics */ 769 if (unlikely(wil->txrx_ops.rx_error_check(wil, skb, stats))) { 770 dev_kfree_skb(skb); 771 return; 772 } 773 774 if (wdev->iftype == NL80211_IFTYPE_STATION) { 775 sa = wil_skb_get_sa(skb); 776 if (mcast && ether_addr_equal(sa, ndev->dev_addr)) { 777 /* mcast packet looped back to us */ 778 rc = GRO_DROP; 779 dev_kfree_skb(skb); 780 goto stats; 781 } 782 } else if (wdev->iftype == NL80211_IFTYPE_AP && !vif->ap_isolate) { 783 if (mcast) { 784 /* send multicast frames both to higher layers in 785 * local net stack and back to the wireless medium 786 */ 787 xmit_skb = skb_copy(skb, GFP_ATOMIC); 788 } else { 789 int xmit_cid = wil_find_cid(wil, vif->mid, da); 790 791 if (xmit_cid >= 0) { 792 /* The destination station is associated to 793 * this AP (in this VLAN), so send the frame 794 * directly to it and do not pass it to local 795 * net stack. 796 */ 797 xmit_skb = skb; 798 skb = NULL; 799 } 800 } 801 } 802 if (xmit_skb) { 803 /* Send to wireless media and increase priority by 256 to 804 * keep the received priority instead of reclassifying 805 * the frame (see cfg80211_classify8021d). 806 */ 807 xmit_skb->dev = ndev; 808 xmit_skb->priority += 256; 809 xmit_skb->protocol = htons(ETH_P_802_3); 810 skb_reset_network_header(xmit_skb); 811 skb_reset_mac_header(xmit_skb); 812 wil_dbg_txrx(wil, "Rx -> Tx %d bytes\n", len); 813 dev_queue_xmit(xmit_skb); 814 } 815 816 if (skb) { /* deliver to local stack */ 817 skb->protocol = eth_type_trans(skb, ndev); 818 skb->dev = ndev; 819 rc = napi_gro_receive(&wil->napi_rx, skb); 820 wil_dbg_txrx(wil, "Rx complete %d bytes => %s\n", 821 len, gro_res_str[rc]); 822 } 823 stats: 824 /* statistics. rc set to GRO_NORMAL for AP bridging */ 825 if (unlikely(rc == GRO_DROP)) { 826 ndev->stats.rx_dropped++; 827 stats->rx_dropped++; 828 wil_dbg_txrx(wil, "Rx drop %d bytes\n", len); 829 } else { 830 ndev->stats.rx_packets++; 831 stats->rx_packets++; 832 ndev->stats.rx_bytes += len; 833 stats->rx_bytes += len; 834 if (mcast) 835 ndev->stats.multicast++; 836 } 837 } 838 839 /** 840 * Proceed all completed skb's from Rx VRING 841 * 842 * Safe to call from NAPI poll, i.e. softirq with interrupts enabled 843 */ 844 void wil_rx_handle(struct wil6210_priv *wil, int *quota) 845 { 846 struct net_device *ndev = wil->main_ndev; 847 struct wireless_dev *wdev = ndev->ieee80211_ptr; 848 struct wil_ring *v = &wil->ring_rx; 849 struct sk_buff *skb; 850 851 if (unlikely(!v->va)) { 852 wil_err(wil, "Rx IRQ while Rx not yet initialized\n"); 853 return; 854 } 855 wil_dbg_txrx(wil, "rx_handle\n"); 856 while ((*quota > 0) && (NULL != (skb = wil_vring_reap_rx(wil, v)))) { 857 (*quota)--; 858 859 /* monitor is currently supported on main interface only */ 860 if (wdev->iftype == NL80211_IFTYPE_MONITOR) { 861 skb->dev = ndev; 862 skb_reset_mac_header(skb); 863 skb->ip_summed = CHECKSUM_UNNECESSARY; 864 skb->pkt_type = PACKET_OTHERHOST; 865 skb->protocol = htons(ETH_P_802_2); 866 wil_netif_rx_any(skb, ndev); 867 } else { 868 wil_rx_reorder(wil, skb); 869 } 870 } 871 wil_rx_refill(wil, v->size); 872 } 873 874 static void wil_rx_buf_len_init(struct wil6210_priv *wil) 875 { 876 wil->rx_buf_len = rx_large_buf ? 877 WIL_MAX_ETH_MTU : TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD; 878 if (mtu_max > wil->rx_buf_len) { 879 /* do not allow RX buffers to be smaller than mtu_max, for 880 * backward compatibility (mtu_max parameter was also used 881 * to support receiving large packets) 882 */ 883 wil_info(wil, "Override RX buffer to mtu_max(%d)\n", mtu_max); 884 wil->rx_buf_len = mtu_max; 885 } 886 } 887 888 static int wil_rx_init(struct wil6210_priv *wil, uint order) 889 { 890 struct wil_ring *vring = &wil->ring_rx; 891 int rc; 892 893 wil_dbg_misc(wil, "rx_init\n"); 894 895 if (vring->va) { 896 wil_err(wil, "Rx ring already allocated\n"); 897 return -EINVAL; 898 } 899 900 wil_rx_buf_len_init(wil); 901 902 vring->size = 1 << order; 903 vring->is_rx = true; 904 rc = wil_vring_alloc(wil, vring); 905 if (rc) 906 return rc; 907 908 rc = wmi_rx_chain_add(wil, vring); 909 if (rc) 910 goto err_free; 911 912 rc = wil_rx_refill(wil, vring->size); 913 if (rc) 914 goto err_free; 915 916 return 0; 917 err_free: 918 wil_vring_free(wil, vring); 919 920 return rc; 921 } 922 923 static void wil_rx_fini(struct wil6210_priv *wil) 924 { 925 struct wil_ring *vring = &wil->ring_rx; 926 927 wil_dbg_misc(wil, "rx_fini\n"); 928 929 if (vring->va) 930 wil_vring_free(wil, vring); 931 } 932 933 static int wil_tx_desc_map(union wil_tx_desc *desc, dma_addr_t pa, 934 u32 len, int vring_index) 935 { 936 struct vring_tx_desc *d = &desc->legacy; 937 938 wil_desc_addr_set(&d->dma.addr, pa); 939 d->dma.ip_length = 0; 940 /* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/ 941 d->dma.b11 = 0/*14 | BIT(7)*/; 942 d->dma.error = 0; 943 d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */ 944 d->dma.length = cpu_to_le16((u16)len); 945 d->dma.d0 = (vring_index << DMA_CFG_DESC_TX_0_QID_POS); 946 d->mac.d[0] = 0; 947 d->mac.d[1] = 0; 948 d->mac.d[2] = 0; 949 d->mac.ucode_cmd = 0; 950 /* translation type: 0 - bypass; 1 - 802.3; 2 - native wifi */ 951 d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) | 952 (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS); 953 954 return 0; 955 } 956 957 void wil_tx_data_init(struct wil_ring_tx_data *txdata) 958 { 959 spin_lock_bh(&txdata->lock); 960 txdata->dot1x_open = 0; 961 txdata->enabled = 0; 962 txdata->idle = 0; 963 txdata->last_idle = 0; 964 txdata->begin = 0; 965 txdata->agg_wsize = 0; 966 txdata->agg_timeout = 0; 967 txdata->agg_amsdu = 0; 968 txdata->addba_in_progress = false; 969 txdata->mid = U8_MAX; 970 spin_unlock_bh(&txdata->lock); 971 } 972 973 static int wil_vring_init_tx(struct wil6210_vif *vif, int id, int size, 974 int cid, int tid) 975 { 976 struct wil6210_priv *wil = vif_to_wil(vif); 977 int rc; 978 struct wmi_vring_cfg_cmd cmd = { 979 .action = cpu_to_le32(WMI_VRING_CMD_ADD), 980 .vring_cfg = { 981 .tx_sw_ring = { 982 .max_mpdu_size = 983 cpu_to_le16(wil_mtu2macbuf(mtu_max)), 984 .ring_size = cpu_to_le16(size), 985 }, 986 .ringid = id, 987 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3, 988 .mac_ctrl = 0, 989 .to_resolution = 0, 990 .agg_max_wsize = 0, 991 .schd_params = { 992 .priority = cpu_to_le16(0), 993 .timeslot_us = cpu_to_le16(0xfff), 994 }, 995 }, 996 }; 997 struct { 998 struct wmi_cmd_hdr wmi; 999 struct wmi_vring_cfg_done_event cmd; 1000 } __packed reply = { 1001 .cmd = {.status = WMI_FW_STATUS_FAILURE}, 1002 }; 1003 struct wil_ring *vring = &wil->ring_tx[id]; 1004 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id]; 1005 1006 if (cid >= WIL6210_RX_DESC_MAX_CID) { 1007 cmd.vring_cfg.cidxtid = CIDXTID_EXTENDED_CID_TID; 1008 cmd.vring_cfg.cid = cid; 1009 cmd.vring_cfg.tid = tid; 1010 } else { 1011 cmd.vring_cfg.cidxtid = mk_cidxtid(cid, tid); 1012 } 1013 1014 wil_dbg_misc(wil, "vring_init_tx: max_mpdu_size %d\n", 1015 cmd.vring_cfg.tx_sw_ring.max_mpdu_size); 1016 lockdep_assert_held(&wil->mutex); 1017 1018 if (vring->va) { 1019 wil_err(wil, "Tx ring [%d] already allocated\n", id); 1020 rc = -EINVAL; 1021 goto out; 1022 } 1023 1024 wil_tx_data_init(txdata); 1025 vring->is_rx = false; 1026 vring->size = size; 1027 rc = wil_vring_alloc(wil, vring); 1028 if (rc) 1029 goto out; 1030 1031 wil->ring2cid_tid[id][0] = cid; 1032 wil->ring2cid_tid[id][1] = tid; 1033 1034 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa); 1035 1036 if (!vif->privacy) 1037 txdata->dot1x_open = true; 1038 rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd), 1039 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100); 1040 if (rc) 1041 goto out_free; 1042 1043 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) { 1044 wil_err(wil, "Tx config failed, status 0x%02x\n", 1045 reply.cmd.status); 1046 rc = -EINVAL; 1047 goto out_free; 1048 } 1049 1050 spin_lock_bh(&txdata->lock); 1051 vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr); 1052 txdata->mid = vif->mid; 1053 txdata->enabled = 1; 1054 spin_unlock_bh(&txdata->lock); 1055 1056 if (txdata->dot1x_open && (agg_wsize >= 0)) 1057 wil_addba_tx_request(wil, id, agg_wsize); 1058 1059 return 0; 1060 out_free: 1061 spin_lock_bh(&txdata->lock); 1062 txdata->dot1x_open = false; 1063 txdata->enabled = 0; 1064 spin_unlock_bh(&txdata->lock); 1065 wil_vring_free(wil, vring); 1066 wil->ring2cid_tid[id][0] = max_assoc_sta; 1067 wil->ring2cid_tid[id][1] = 0; 1068 1069 out: 1070 1071 return rc; 1072 } 1073 1074 static int wil_tx_vring_modify(struct wil6210_vif *vif, int ring_id, int cid, 1075 int tid) 1076 { 1077 struct wil6210_priv *wil = vif_to_wil(vif); 1078 int rc; 1079 struct wmi_vring_cfg_cmd cmd = { 1080 .action = cpu_to_le32(WMI_VRING_CMD_MODIFY), 1081 .vring_cfg = { 1082 .tx_sw_ring = { 1083 .max_mpdu_size = 1084 cpu_to_le16(wil_mtu2macbuf(mtu_max)), 1085 .ring_size = 0, 1086 }, 1087 .ringid = ring_id, 1088 .cidxtid = mk_cidxtid(cid, tid), 1089 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3, 1090 .mac_ctrl = 0, 1091 .to_resolution = 0, 1092 .agg_max_wsize = 0, 1093 .schd_params = { 1094 .priority = cpu_to_le16(0), 1095 .timeslot_us = cpu_to_le16(0xfff), 1096 }, 1097 }, 1098 }; 1099 struct { 1100 struct wmi_cmd_hdr wmi; 1101 struct wmi_vring_cfg_done_event cmd; 1102 } __packed reply = { 1103 .cmd = {.status = WMI_FW_STATUS_FAILURE}, 1104 }; 1105 struct wil_ring *vring = &wil->ring_tx[ring_id]; 1106 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_id]; 1107 1108 wil_dbg_misc(wil, "vring_modify: ring %d cid %d tid %d\n", ring_id, 1109 cid, tid); 1110 lockdep_assert_held(&wil->mutex); 1111 1112 if (!vring->va) { 1113 wil_err(wil, "Tx ring [%d] not allocated\n", ring_id); 1114 return -EINVAL; 1115 } 1116 1117 if (wil->ring2cid_tid[ring_id][0] != cid || 1118 wil->ring2cid_tid[ring_id][1] != tid) { 1119 wil_err(wil, "ring info does not match cid=%u tid=%u\n", 1120 wil->ring2cid_tid[ring_id][0], 1121 wil->ring2cid_tid[ring_id][1]); 1122 } 1123 1124 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa); 1125 1126 rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd), 1127 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100); 1128 if (rc) 1129 goto fail; 1130 1131 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) { 1132 wil_err(wil, "Tx modify failed, status 0x%02x\n", 1133 reply.cmd.status); 1134 rc = -EINVAL; 1135 goto fail; 1136 } 1137 1138 /* set BA aggregation window size to 0 to force a new BA with the 1139 * new AP 1140 */ 1141 txdata->agg_wsize = 0; 1142 if (txdata->dot1x_open && agg_wsize >= 0) 1143 wil_addba_tx_request(wil, ring_id, agg_wsize); 1144 1145 return 0; 1146 fail: 1147 spin_lock_bh(&txdata->lock); 1148 txdata->dot1x_open = false; 1149 txdata->enabled = 0; 1150 spin_unlock_bh(&txdata->lock); 1151 wil->ring2cid_tid[ring_id][0] = max_assoc_sta; 1152 wil->ring2cid_tid[ring_id][1] = 0; 1153 return rc; 1154 } 1155 1156 int wil_vring_init_bcast(struct wil6210_vif *vif, int id, int size) 1157 { 1158 struct wil6210_priv *wil = vif_to_wil(vif); 1159 int rc; 1160 struct wmi_bcast_vring_cfg_cmd cmd = { 1161 .action = cpu_to_le32(WMI_VRING_CMD_ADD), 1162 .vring_cfg = { 1163 .tx_sw_ring = { 1164 .max_mpdu_size = 1165 cpu_to_le16(wil_mtu2macbuf(mtu_max)), 1166 .ring_size = cpu_to_le16(size), 1167 }, 1168 .ringid = id, 1169 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3, 1170 }, 1171 }; 1172 struct { 1173 struct wmi_cmd_hdr wmi; 1174 struct wmi_vring_cfg_done_event cmd; 1175 } __packed reply = { 1176 .cmd = {.status = WMI_FW_STATUS_FAILURE}, 1177 }; 1178 struct wil_ring *vring = &wil->ring_tx[id]; 1179 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id]; 1180 1181 wil_dbg_misc(wil, "vring_init_bcast: max_mpdu_size %d\n", 1182 cmd.vring_cfg.tx_sw_ring.max_mpdu_size); 1183 lockdep_assert_held(&wil->mutex); 1184 1185 if (vring->va) { 1186 wil_err(wil, "Tx ring [%d] already allocated\n", id); 1187 rc = -EINVAL; 1188 goto out; 1189 } 1190 1191 wil_tx_data_init(txdata); 1192 vring->is_rx = false; 1193 vring->size = size; 1194 rc = wil_vring_alloc(wil, vring); 1195 if (rc) 1196 goto out; 1197 1198 wil->ring2cid_tid[id][0] = max_assoc_sta; /* CID */ 1199 wil->ring2cid_tid[id][1] = 0; /* TID */ 1200 1201 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa); 1202 1203 if (!vif->privacy) 1204 txdata->dot1x_open = true; 1205 rc = wmi_call(wil, WMI_BCAST_VRING_CFG_CMDID, vif->mid, 1206 &cmd, sizeof(cmd), 1207 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100); 1208 if (rc) 1209 goto out_free; 1210 1211 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) { 1212 wil_err(wil, "Tx config failed, status 0x%02x\n", 1213 reply.cmd.status); 1214 rc = -EINVAL; 1215 goto out_free; 1216 } 1217 1218 spin_lock_bh(&txdata->lock); 1219 vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr); 1220 txdata->mid = vif->mid; 1221 txdata->enabled = 1; 1222 spin_unlock_bh(&txdata->lock); 1223 1224 return 0; 1225 out_free: 1226 spin_lock_bh(&txdata->lock); 1227 txdata->enabled = 0; 1228 txdata->dot1x_open = false; 1229 spin_unlock_bh(&txdata->lock); 1230 wil_vring_free(wil, vring); 1231 out: 1232 1233 return rc; 1234 } 1235 1236 static struct wil_ring *wil_find_tx_ucast(struct wil6210_priv *wil, 1237 struct wil6210_vif *vif, 1238 struct sk_buff *skb) 1239 { 1240 int i, cid; 1241 const u8 *da = wil_skb_get_da(skb); 1242 int min_ring_id = wil_get_min_tx_ring_id(wil); 1243 1244 cid = wil_find_cid(wil, vif->mid, da); 1245 1246 if (cid < 0 || cid >= max_assoc_sta) 1247 return NULL; 1248 1249 /* TODO: fix for multiple TID */ 1250 for (i = min_ring_id; i < ARRAY_SIZE(wil->ring2cid_tid); i++) { 1251 if (!wil->ring_tx_data[i].dot1x_open && 1252 skb->protocol != cpu_to_be16(ETH_P_PAE)) 1253 continue; 1254 if (wil->ring2cid_tid[i][0] == cid) { 1255 struct wil_ring *v = &wil->ring_tx[i]; 1256 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i]; 1257 1258 wil_dbg_txrx(wil, "find_tx_ucast: (%pM) -> [%d]\n", 1259 da, i); 1260 if (v->va && txdata->enabled) { 1261 return v; 1262 } else { 1263 wil_dbg_txrx(wil, 1264 "find_tx_ucast: vring[%d] not valid\n", 1265 i); 1266 return NULL; 1267 } 1268 } 1269 } 1270 1271 return NULL; 1272 } 1273 1274 static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif, 1275 struct wil_ring *ring, struct sk_buff *skb); 1276 1277 static struct wil_ring *wil_find_tx_ring_sta(struct wil6210_priv *wil, 1278 struct wil6210_vif *vif, 1279 struct sk_buff *skb) 1280 { 1281 struct wil_ring *ring; 1282 int i; 1283 u8 cid; 1284 struct wil_ring_tx_data *txdata; 1285 int min_ring_id = wil_get_min_tx_ring_id(wil); 1286 1287 /* In the STA mode, it is expected to have only 1 VRING 1288 * for the AP we connected to. 1289 * find 1-st vring eligible for this skb and use it. 1290 */ 1291 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) { 1292 ring = &wil->ring_tx[i]; 1293 txdata = &wil->ring_tx_data[i]; 1294 if (!ring->va || !txdata->enabled || txdata->mid != vif->mid) 1295 continue; 1296 1297 cid = wil->ring2cid_tid[i][0]; 1298 if (cid >= max_assoc_sta) /* skip BCAST */ 1299 continue; 1300 1301 if (!wil->ring_tx_data[i].dot1x_open && 1302 skb->protocol != cpu_to_be16(ETH_P_PAE)) 1303 continue; 1304 1305 wil_dbg_txrx(wil, "Tx -> ring %d\n", i); 1306 1307 return ring; 1308 } 1309 1310 wil_dbg_txrx(wil, "Tx while no rings active?\n"); 1311 1312 return NULL; 1313 } 1314 1315 /* Use one of 2 strategies: 1316 * 1317 * 1. New (real broadcast): 1318 * use dedicated broadcast vring 1319 * 2. Old (pseudo-DMS): 1320 * Find 1-st vring and return it; 1321 * duplicate skb and send it to other active vrings; 1322 * in all cases override dest address to unicast peer's address 1323 * Use old strategy when new is not supported yet: 1324 * - for PBSS 1325 */ 1326 static struct wil_ring *wil_find_tx_bcast_1(struct wil6210_priv *wil, 1327 struct wil6210_vif *vif, 1328 struct sk_buff *skb) 1329 { 1330 struct wil_ring *v; 1331 struct wil_ring_tx_data *txdata; 1332 int i = vif->bcast_ring; 1333 1334 if (i < 0) 1335 return NULL; 1336 v = &wil->ring_tx[i]; 1337 txdata = &wil->ring_tx_data[i]; 1338 if (!v->va || !txdata->enabled) 1339 return NULL; 1340 if (!wil->ring_tx_data[i].dot1x_open && 1341 skb->protocol != cpu_to_be16(ETH_P_PAE)) 1342 return NULL; 1343 1344 return v; 1345 } 1346 1347 static void wil_set_da_for_vring(struct wil6210_priv *wil, 1348 struct sk_buff *skb, int vring_index) 1349 { 1350 u8 *da = wil_skb_get_da(skb); 1351 int cid = wil->ring2cid_tid[vring_index][0]; 1352 1353 ether_addr_copy(da, wil->sta[cid].addr); 1354 } 1355 1356 static struct wil_ring *wil_find_tx_bcast_2(struct wil6210_priv *wil, 1357 struct wil6210_vif *vif, 1358 struct sk_buff *skb) 1359 { 1360 struct wil_ring *v, *v2; 1361 struct sk_buff *skb2; 1362 int i; 1363 u8 cid; 1364 const u8 *src = wil_skb_get_sa(skb); 1365 struct wil_ring_tx_data *txdata, *txdata2; 1366 int min_ring_id = wil_get_min_tx_ring_id(wil); 1367 1368 /* find 1-st vring eligible for data */ 1369 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) { 1370 v = &wil->ring_tx[i]; 1371 txdata = &wil->ring_tx_data[i]; 1372 if (!v->va || !txdata->enabled || txdata->mid != vif->mid) 1373 continue; 1374 1375 cid = wil->ring2cid_tid[i][0]; 1376 if (cid >= max_assoc_sta) /* skip BCAST */ 1377 continue; 1378 if (!wil->ring_tx_data[i].dot1x_open && 1379 skb->protocol != cpu_to_be16(ETH_P_PAE)) 1380 continue; 1381 1382 /* don't Tx back to source when re-routing Rx->Tx at the AP */ 1383 if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN)) 1384 continue; 1385 1386 goto found; 1387 } 1388 1389 wil_dbg_txrx(wil, "Tx while no vrings active?\n"); 1390 1391 return NULL; 1392 1393 found: 1394 wil_dbg_txrx(wil, "BCAST -> ring %d\n", i); 1395 wil_set_da_for_vring(wil, skb, i); 1396 1397 /* find other active vrings and duplicate skb for each */ 1398 for (i++; i < WIL6210_MAX_TX_RINGS; i++) { 1399 v2 = &wil->ring_tx[i]; 1400 txdata2 = &wil->ring_tx_data[i]; 1401 if (!v2->va || txdata2->mid != vif->mid) 1402 continue; 1403 cid = wil->ring2cid_tid[i][0]; 1404 if (cid >= max_assoc_sta) /* skip BCAST */ 1405 continue; 1406 if (!wil->ring_tx_data[i].dot1x_open && 1407 skb->protocol != cpu_to_be16(ETH_P_PAE)) 1408 continue; 1409 1410 if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN)) 1411 continue; 1412 1413 skb2 = skb_copy(skb, GFP_ATOMIC); 1414 if (skb2) { 1415 wil_dbg_txrx(wil, "BCAST DUP -> ring %d\n", i); 1416 wil_set_da_for_vring(wil, skb2, i); 1417 wil_tx_ring(wil, vif, v2, skb2); 1418 /* successful call to wil_tx_ring takes skb2 ref */ 1419 dev_kfree_skb_any(skb2); 1420 } else { 1421 wil_err(wil, "skb_copy failed\n"); 1422 } 1423 } 1424 1425 return v; 1426 } 1427 1428 static inline 1429 void wil_tx_desc_set_nr_frags(struct vring_tx_desc *d, int nr_frags) 1430 { 1431 d->mac.d[2] |= (nr_frags << MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS); 1432 } 1433 1434 /** 1435 * Sets the descriptor @d up for csum and/or TSO offloading. The corresponding 1436 * @skb is used to obtain the protocol and headers length. 1437 * @tso_desc_type is a descriptor type for TSO: 0 - a header, 1 - first data, 1438 * 2 - middle, 3 - last descriptor. 1439 */ 1440 1441 static void wil_tx_desc_offload_setup_tso(struct vring_tx_desc *d, 1442 struct sk_buff *skb, 1443 int tso_desc_type, bool is_ipv4, 1444 int tcp_hdr_len, int skb_net_hdr_len) 1445 { 1446 d->dma.b11 = ETH_HLEN; /* MAC header length */ 1447 d->dma.b11 |= is_ipv4 << DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS; 1448 1449 d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS); 1450 /* L4 header len: TCP header length */ 1451 d->dma.d0 |= (tcp_hdr_len & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK); 1452 1453 /* Setup TSO: bit and desc type */ 1454 d->dma.d0 |= (BIT(DMA_CFG_DESC_TX_0_TCP_SEG_EN_POS)) | 1455 (tso_desc_type << DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS); 1456 d->dma.d0 |= (is_ipv4 << DMA_CFG_DESC_TX_0_IPV4_CHECKSUM_EN_POS); 1457 1458 d->dma.ip_length = skb_net_hdr_len; 1459 /* Enable TCP/UDP checksum */ 1460 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS); 1461 /* Calculate pseudo-header */ 1462 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS); 1463 } 1464 1465 /** 1466 * Sets the descriptor @d up for csum. The corresponding 1467 * @skb is used to obtain the protocol and headers length. 1468 * Returns the protocol: 0 - not TCP, 1 - TCPv4, 2 - TCPv6. 1469 * Note, if d==NULL, the function only returns the protocol result. 1470 * 1471 * It is very similar to previous wil_tx_desc_offload_setup_tso. This 1472 * is "if unrolling" to optimize the critical path. 1473 */ 1474 1475 static int wil_tx_desc_offload_setup(struct vring_tx_desc *d, 1476 struct sk_buff *skb){ 1477 int protocol; 1478 1479 if (skb->ip_summed != CHECKSUM_PARTIAL) 1480 return 0; 1481 1482 d->dma.b11 = ETH_HLEN; /* MAC header length */ 1483 1484 switch (skb->protocol) { 1485 case cpu_to_be16(ETH_P_IP): 1486 protocol = ip_hdr(skb)->protocol; 1487 d->dma.b11 |= BIT(DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS); 1488 break; 1489 case cpu_to_be16(ETH_P_IPV6): 1490 protocol = ipv6_hdr(skb)->nexthdr; 1491 break; 1492 default: 1493 return -EINVAL; 1494 } 1495 1496 switch (protocol) { 1497 case IPPROTO_TCP: 1498 d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS); 1499 /* L4 header len: TCP header length */ 1500 d->dma.d0 |= 1501 (tcp_hdrlen(skb) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK); 1502 break; 1503 case IPPROTO_UDP: 1504 /* L4 header len: UDP header length */ 1505 d->dma.d0 |= 1506 (sizeof(struct udphdr) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK); 1507 break; 1508 default: 1509 return -EINVAL; 1510 } 1511 1512 d->dma.ip_length = skb_network_header_len(skb); 1513 /* Enable TCP/UDP checksum */ 1514 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS); 1515 /* Calculate pseudo-header */ 1516 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS); 1517 1518 return 0; 1519 } 1520 1521 static inline void wil_tx_last_desc(struct vring_tx_desc *d) 1522 { 1523 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS) | 1524 BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS) | 1525 BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS); 1526 } 1527 1528 static inline void wil_set_tx_desc_last_tso(volatile struct vring_tx_desc *d) 1529 { 1530 d->dma.d0 |= wil_tso_type_lst << 1531 DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS; 1532 } 1533 1534 static int __wil_tx_vring_tso(struct wil6210_priv *wil, struct wil6210_vif *vif, 1535 struct wil_ring *vring, struct sk_buff *skb) 1536 { 1537 struct device *dev = wil_to_dev(wil); 1538 1539 /* point to descriptors in shared memory */ 1540 volatile struct vring_tx_desc *_desc = NULL, *_hdr_desc, 1541 *_first_desc = NULL; 1542 1543 /* pointers to shadow descriptors */ 1544 struct vring_tx_desc desc_mem, hdr_desc_mem, first_desc_mem, 1545 *d = &hdr_desc_mem, *hdr_desc = &hdr_desc_mem, 1546 *first_desc = &first_desc_mem; 1547 1548 /* pointer to shadow descriptors' context */ 1549 struct wil_ctx *hdr_ctx, *first_ctx = NULL; 1550 1551 int descs_used = 0; /* total number of used descriptors */ 1552 int sg_desc_cnt = 0; /* number of descriptors for current mss*/ 1553 1554 u32 swhead = vring->swhead; 1555 int used, avail = wil_ring_avail_tx(vring); 1556 int nr_frags = skb_shinfo(skb)->nr_frags; 1557 int min_desc_required = nr_frags + 1; 1558 int mss = skb_shinfo(skb)->gso_size; /* payload size w/o headers */ 1559 int f, len, hdrlen, headlen; 1560 int vring_index = vring - wil->ring_tx; 1561 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[vring_index]; 1562 uint i = swhead; 1563 dma_addr_t pa; 1564 const skb_frag_t *frag = NULL; 1565 int rem_data = mss; 1566 int lenmss; 1567 int hdr_compensation_need = true; 1568 int desc_tso_type = wil_tso_type_first; 1569 bool is_ipv4; 1570 int tcp_hdr_len; 1571 int skb_net_hdr_len; 1572 int gso_type; 1573 int rc = -EINVAL; 1574 1575 wil_dbg_txrx(wil, "tx_vring_tso: %d bytes to vring %d\n", skb->len, 1576 vring_index); 1577 1578 if (unlikely(!txdata->enabled)) 1579 return -EINVAL; 1580 1581 /* A typical page 4K is 3-4 payloads, we assume each fragment 1582 * is a full payload, that's how min_desc_required has been 1583 * calculated. In real we might need more or less descriptors, 1584 * this is the initial check only. 1585 */ 1586 if (unlikely(avail < min_desc_required)) { 1587 wil_err_ratelimited(wil, 1588 "TSO: Tx ring[%2d] full. No space for %d fragments\n", 1589 vring_index, min_desc_required); 1590 return -ENOMEM; 1591 } 1592 1593 /* Header Length = MAC header len + IP header len + TCP header len*/ 1594 hdrlen = ETH_HLEN + 1595 (int)skb_network_header_len(skb) + 1596 tcp_hdrlen(skb); 1597 1598 gso_type = skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV6 | SKB_GSO_TCPV4); 1599 switch (gso_type) { 1600 case SKB_GSO_TCPV4: 1601 /* TCP v4, zero out the IP length and IPv4 checksum fields 1602 * as required by the offloading doc 1603 */ 1604 ip_hdr(skb)->tot_len = 0; 1605 ip_hdr(skb)->check = 0; 1606 is_ipv4 = true; 1607 break; 1608 case SKB_GSO_TCPV6: 1609 /* TCP v6, zero out the payload length */ 1610 ipv6_hdr(skb)->payload_len = 0; 1611 is_ipv4 = false; 1612 break; 1613 default: 1614 /* other than TCPv4 or TCPv6 types are not supported for TSO. 1615 * It is also illegal for both to be set simultaneously 1616 */ 1617 return -EINVAL; 1618 } 1619 1620 if (skb->ip_summed != CHECKSUM_PARTIAL) 1621 return -EINVAL; 1622 1623 /* tcp header length and skb network header length are fixed for all 1624 * packet's descriptors - read then once here 1625 */ 1626 tcp_hdr_len = tcp_hdrlen(skb); 1627 skb_net_hdr_len = skb_network_header_len(skb); 1628 1629 _hdr_desc = &vring->va[i].tx.legacy; 1630 1631 pa = dma_map_single(dev, skb->data, hdrlen, DMA_TO_DEVICE); 1632 if (unlikely(dma_mapping_error(dev, pa))) { 1633 wil_err(wil, "TSO: Skb head DMA map error\n"); 1634 goto err_exit; 1635 } 1636 1637 wil->txrx_ops.tx_desc_map((union wil_tx_desc *)hdr_desc, pa, 1638 hdrlen, vring_index); 1639 wil_tx_desc_offload_setup_tso(hdr_desc, skb, wil_tso_type_hdr, is_ipv4, 1640 tcp_hdr_len, skb_net_hdr_len); 1641 wil_tx_last_desc(hdr_desc); 1642 1643 vring->ctx[i].mapped_as = wil_mapped_as_single; 1644 hdr_ctx = &vring->ctx[i]; 1645 1646 descs_used++; 1647 headlen = skb_headlen(skb) - hdrlen; 1648 1649 for (f = headlen ? -1 : 0; f < nr_frags; f++) { 1650 if (headlen) { 1651 len = headlen; 1652 wil_dbg_txrx(wil, "TSO: process skb head, len %u\n", 1653 len); 1654 } else { 1655 frag = &skb_shinfo(skb)->frags[f]; 1656 len = frag->size; 1657 wil_dbg_txrx(wil, "TSO: frag[%d]: len %u\n", f, len); 1658 } 1659 1660 while (len) { 1661 wil_dbg_txrx(wil, 1662 "TSO: len %d, rem_data %d, descs_used %d\n", 1663 len, rem_data, descs_used); 1664 1665 if (descs_used == avail) { 1666 wil_err_ratelimited(wil, "TSO: ring overflow\n"); 1667 rc = -ENOMEM; 1668 goto mem_error; 1669 } 1670 1671 lenmss = min_t(int, rem_data, len); 1672 i = (swhead + descs_used) % vring->size; 1673 wil_dbg_txrx(wil, "TSO: lenmss %d, i %d\n", lenmss, i); 1674 1675 if (!headlen) { 1676 pa = skb_frag_dma_map(dev, frag, 1677 frag->size - len, lenmss, 1678 DMA_TO_DEVICE); 1679 vring->ctx[i].mapped_as = wil_mapped_as_page; 1680 } else { 1681 pa = dma_map_single(dev, 1682 skb->data + 1683 skb_headlen(skb) - headlen, 1684 lenmss, 1685 DMA_TO_DEVICE); 1686 vring->ctx[i].mapped_as = wil_mapped_as_single; 1687 headlen -= lenmss; 1688 } 1689 1690 if (unlikely(dma_mapping_error(dev, pa))) { 1691 wil_err(wil, "TSO: DMA map page error\n"); 1692 goto mem_error; 1693 } 1694 1695 _desc = &vring->va[i].tx.legacy; 1696 1697 if (!_first_desc) { 1698 _first_desc = _desc; 1699 first_ctx = &vring->ctx[i]; 1700 d = first_desc; 1701 } else { 1702 d = &desc_mem; 1703 } 1704 1705 wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, 1706 pa, lenmss, vring_index); 1707 wil_tx_desc_offload_setup_tso(d, skb, desc_tso_type, 1708 is_ipv4, tcp_hdr_len, 1709 skb_net_hdr_len); 1710 1711 /* use tso_type_first only once */ 1712 desc_tso_type = wil_tso_type_mid; 1713 1714 descs_used++; /* desc used so far */ 1715 sg_desc_cnt++; /* desc used for this segment */ 1716 len -= lenmss; 1717 rem_data -= lenmss; 1718 1719 wil_dbg_txrx(wil, 1720 "TSO: len %d, rem_data %d, descs_used %d, sg_desc_cnt %d,\n", 1721 len, rem_data, descs_used, sg_desc_cnt); 1722 1723 /* Close the segment if reached mss size or last frag*/ 1724 if (rem_data == 0 || (f == nr_frags - 1 && len == 0)) { 1725 if (hdr_compensation_need) { 1726 /* first segment include hdr desc for 1727 * release 1728 */ 1729 hdr_ctx->nr_frags = sg_desc_cnt; 1730 wil_tx_desc_set_nr_frags(first_desc, 1731 sg_desc_cnt + 1732 1); 1733 hdr_compensation_need = false; 1734 } else { 1735 wil_tx_desc_set_nr_frags(first_desc, 1736 sg_desc_cnt); 1737 } 1738 first_ctx->nr_frags = sg_desc_cnt - 1; 1739 1740 wil_tx_last_desc(d); 1741 1742 /* first descriptor may also be the last 1743 * for this mss - make sure not to copy 1744 * it twice 1745 */ 1746 if (first_desc != d) 1747 *_first_desc = *first_desc; 1748 1749 /*last descriptor will be copied at the end 1750 * of this TS processing 1751 */ 1752 if (f < nr_frags - 1 || len > 0) 1753 *_desc = *d; 1754 1755 rem_data = mss; 1756 _first_desc = NULL; 1757 sg_desc_cnt = 0; 1758 } else if (first_desc != d) /* update mid descriptor */ 1759 *_desc = *d; 1760 } 1761 } 1762 1763 /* first descriptor may also be the last. 1764 * in this case d pointer is invalid 1765 */ 1766 if (_first_desc == _desc) 1767 d = first_desc; 1768 1769 /* Last data descriptor */ 1770 wil_set_tx_desc_last_tso(d); 1771 *_desc = *d; 1772 1773 /* Fill the total number of descriptors in first desc (hdr)*/ 1774 wil_tx_desc_set_nr_frags(hdr_desc, descs_used); 1775 *_hdr_desc = *hdr_desc; 1776 1777 /* hold reference to skb 1778 * to prevent skb release before accounting 1779 * in case of immediate "tx done" 1780 */ 1781 vring->ctx[i].skb = skb_get(skb); 1782 1783 /* performance monitoring */ 1784 used = wil_ring_used_tx(vring); 1785 if (wil_val_in_range(wil->ring_idle_trsh, 1786 used, used + descs_used)) { 1787 txdata->idle += get_cycles() - txdata->last_idle; 1788 wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n", 1789 vring_index, used, used + descs_used); 1790 } 1791 1792 /* Make sure to advance the head only after descriptor update is done. 1793 * This will prevent a race condition where the completion thread 1794 * will see the DU bit set from previous run and will handle the 1795 * skb before it was completed. 1796 */ 1797 wmb(); 1798 1799 /* advance swhead */ 1800 wil_ring_advance_head(vring, descs_used); 1801 wil_dbg_txrx(wil, "TSO: Tx swhead %d -> %d\n", swhead, vring->swhead); 1802 1803 /* make sure all writes to descriptors (shared memory) are done before 1804 * committing them to HW 1805 */ 1806 wmb(); 1807 1808 if (wil->tx_latency) 1809 *(ktime_t *)&skb->cb = ktime_get(); 1810 else 1811 memset(skb->cb, 0, sizeof(ktime_t)); 1812 1813 wil_w(wil, vring->hwtail, vring->swhead); 1814 return 0; 1815 1816 mem_error: 1817 while (descs_used > 0) { 1818 struct wil_ctx *ctx; 1819 1820 i = (swhead + descs_used - 1) % vring->size; 1821 d = (struct vring_tx_desc *)&vring->va[i].tx.legacy; 1822 _desc = &vring->va[i].tx.legacy; 1823 *d = *_desc; 1824 _desc->dma.status = TX_DMA_STATUS_DU; 1825 ctx = &vring->ctx[i]; 1826 wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx); 1827 memset(ctx, 0, sizeof(*ctx)); 1828 descs_used--; 1829 } 1830 err_exit: 1831 return rc; 1832 } 1833 1834 static int __wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif, 1835 struct wil_ring *ring, struct sk_buff *skb) 1836 { 1837 struct device *dev = wil_to_dev(wil); 1838 struct vring_tx_desc dd, *d = ⅆ 1839 volatile struct vring_tx_desc *_d; 1840 u32 swhead = ring->swhead; 1841 int avail = wil_ring_avail_tx(ring); 1842 int nr_frags = skb_shinfo(skb)->nr_frags; 1843 uint f = 0; 1844 int ring_index = ring - wil->ring_tx; 1845 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_index]; 1846 uint i = swhead; 1847 dma_addr_t pa; 1848 int used; 1849 bool mcast = (ring_index == vif->bcast_ring); 1850 uint len = skb_headlen(skb); 1851 1852 wil_dbg_txrx(wil, "tx_ring: %d bytes to ring %d, nr_frags %d\n", 1853 skb->len, ring_index, nr_frags); 1854 1855 if (unlikely(!txdata->enabled)) 1856 return -EINVAL; 1857 1858 if (unlikely(avail < 1 + nr_frags)) { 1859 wil_err_ratelimited(wil, 1860 "Tx ring[%2d] full. No space for %d fragments\n", 1861 ring_index, 1 + nr_frags); 1862 return -ENOMEM; 1863 } 1864 _d = &ring->va[i].tx.legacy; 1865 1866 pa = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 1867 1868 wil_dbg_txrx(wil, "Tx[%2d] skb %d bytes 0x%p -> %pad\n", ring_index, 1869 skb_headlen(skb), skb->data, &pa); 1870 wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1, 1871 skb->data, skb_headlen(skb), false); 1872 1873 if (unlikely(dma_mapping_error(dev, pa))) 1874 return -EINVAL; 1875 ring->ctx[i].mapped_as = wil_mapped_as_single; 1876 /* 1-st segment */ 1877 wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, pa, len, 1878 ring_index); 1879 if (unlikely(mcast)) { 1880 d->mac.d[0] |= BIT(MAC_CFG_DESC_TX_0_MCS_EN_POS); /* MCS 0 */ 1881 if (unlikely(len > WIL_BCAST_MCS0_LIMIT)) /* set MCS 1 */ 1882 d->mac.d[0] |= (1 << MAC_CFG_DESC_TX_0_MCS_INDEX_POS); 1883 } 1884 /* Process TCP/UDP checksum offloading */ 1885 if (unlikely(wil_tx_desc_offload_setup(d, skb))) { 1886 wil_err(wil, "Tx[%2d] Failed to set cksum, drop packet\n", 1887 ring_index); 1888 goto dma_error; 1889 } 1890 1891 ring->ctx[i].nr_frags = nr_frags; 1892 wil_tx_desc_set_nr_frags(d, nr_frags + 1); 1893 1894 /* middle segments */ 1895 for (; f < nr_frags; f++) { 1896 const struct skb_frag_struct *frag = 1897 &skb_shinfo(skb)->frags[f]; 1898 int len = skb_frag_size(frag); 1899 1900 *_d = *d; 1901 wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i); 1902 wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4, 1903 (const void *)d, sizeof(*d), false); 1904 i = (swhead + f + 1) % ring->size; 1905 _d = &ring->va[i].tx.legacy; 1906 pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag), 1907 DMA_TO_DEVICE); 1908 if (unlikely(dma_mapping_error(dev, pa))) { 1909 wil_err(wil, "Tx[%2d] failed to map fragment\n", 1910 ring_index); 1911 goto dma_error; 1912 } 1913 ring->ctx[i].mapped_as = wil_mapped_as_page; 1914 wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, 1915 pa, len, ring_index); 1916 /* no need to check return code - 1917 * if it succeeded for 1-st descriptor, 1918 * it will succeed here too 1919 */ 1920 wil_tx_desc_offload_setup(d, skb); 1921 } 1922 /* for the last seg only */ 1923 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS); 1924 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS); 1925 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS); 1926 *_d = *d; 1927 wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i); 1928 wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4, 1929 (const void *)d, sizeof(*d), false); 1930 1931 /* hold reference to skb 1932 * to prevent skb release before accounting 1933 * in case of immediate "tx done" 1934 */ 1935 ring->ctx[i].skb = skb_get(skb); 1936 1937 /* performance monitoring */ 1938 used = wil_ring_used_tx(ring); 1939 if (wil_val_in_range(wil->ring_idle_trsh, 1940 used, used + nr_frags + 1)) { 1941 txdata->idle += get_cycles() - txdata->last_idle; 1942 wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n", 1943 ring_index, used, used + nr_frags + 1); 1944 } 1945 1946 /* Make sure to advance the head only after descriptor update is done. 1947 * This will prevent a race condition where the completion thread 1948 * will see the DU bit set from previous run and will handle the 1949 * skb before it was completed. 1950 */ 1951 wmb(); 1952 1953 /* advance swhead */ 1954 wil_ring_advance_head(ring, nr_frags + 1); 1955 wil_dbg_txrx(wil, "Tx[%2d] swhead %d -> %d\n", ring_index, swhead, 1956 ring->swhead); 1957 trace_wil6210_tx(ring_index, swhead, skb->len, nr_frags); 1958 1959 /* make sure all writes to descriptors (shared memory) are done before 1960 * committing them to HW 1961 */ 1962 wmb(); 1963 1964 if (wil->tx_latency) 1965 *(ktime_t *)&skb->cb = ktime_get(); 1966 else 1967 memset(skb->cb, 0, sizeof(ktime_t)); 1968 1969 wil_w(wil, ring->hwtail, ring->swhead); 1970 1971 return 0; 1972 dma_error: 1973 /* unmap what we have mapped */ 1974 nr_frags = f + 1; /* frags mapped + one for skb head */ 1975 for (f = 0; f < nr_frags; f++) { 1976 struct wil_ctx *ctx; 1977 1978 i = (swhead + f) % ring->size; 1979 ctx = &ring->ctx[i]; 1980 _d = &ring->va[i].tx.legacy; 1981 *d = *_d; 1982 _d->dma.status = TX_DMA_STATUS_DU; 1983 wil->txrx_ops.tx_desc_unmap(dev, 1984 (union wil_tx_desc *)d, 1985 ctx); 1986 1987 memset(ctx, 0, sizeof(*ctx)); 1988 } 1989 1990 return -EINVAL; 1991 } 1992 1993 static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif, 1994 struct wil_ring *ring, struct sk_buff *skb) 1995 { 1996 int ring_index = ring - wil->ring_tx; 1997 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_index]; 1998 int rc; 1999 2000 spin_lock(&txdata->lock); 2001 2002 if (test_bit(wil_status_suspending, wil->status) || 2003 test_bit(wil_status_suspended, wil->status) || 2004 test_bit(wil_status_resuming, wil->status)) { 2005 wil_dbg_txrx(wil, 2006 "suspend/resume in progress. drop packet\n"); 2007 spin_unlock(&txdata->lock); 2008 return -EINVAL; 2009 } 2010 2011 rc = (skb_is_gso(skb) ? wil->txrx_ops.tx_ring_tso : __wil_tx_ring) 2012 (wil, vif, ring, skb); 2013 2014 spin_unlock(&txdata->lock); 2015 2016 return rc; 2017 } 2018 2019 /** 2020 * Check status of tx vrings and stop/wake net queues if needed 2021 * It will start/stop net queues of a specific VIF net_device. 2022 * 2023 * This function does one of two checks: 2024 * In case check_stop is true, will check if net queues need to be stopped. If 2025 * the conditions for stopping are met, netif_tx_stop_all_queues() is called. 2026 * In case check_stop is false, will check if net queues need to be waked. If 2027 * the conditions for waking are met, netif_tx_wake_all_queues() is called. 2028 * vring is the vring which is currently being modified by either adding 2029 * descriptors (tx) into it or removing descriptors (tx complete) from it. Can 2030 * be null when irrelevant (e.g. connect/disconnect events). 2031 * 2032 * The implementation is to stop net queues if modified vring has low 2033 * descriptor availability. Wake if all vrings are not in low descriptor 2034 * availability and modified vring has high descriptor availability. 2035 */ 2036 static inline void __wil_update_net_queues(struct wil6210_priv *wil, 2037 struct wil6210_vif *vif, 2038 struct wil_ring *ring, 2039 bool check_stop) 2040 { 2041 int i; 2042 int min_ring_id = wil_get_min_tx_ring_id(wil); 2043 2044 if (unlikely(!vif)) 2045 return; 2046 2047 if (ring) 2048 wil_dbg_txrx(wil, "vring %d, mid %d, check_stop=%d, stopped=%d", 2049 (int)(ring - wil->ring_tx), vif->mid, check_stop, 2050 vif->net_queue_stopped); 2051 else 2052 wil_dbg_txrx(wil, "check_stop=%d, mid=%d, stopped=%d", 2053 check_stop, vif->mid, vif->net_queue_stopped); 2054 2055 if (ring && drop_if_ring_full) 2056 /* no need to stop/wake net queues */ 2057 return; 2058 2059 if (check_stop == vif->net_queue_stopped) 2060 /* net queues already in desired state */ 2061 return; 2062 2063 if (check_stop) { 2064 if (!ring || unlikely(wil_ring_avail_low(ring))) { 2065 /* not enough room in the vring */ 2066 netif_tx_stop_all_queues(vif_to_ndev(vif)); 2067 vif->net_queue_stopped = true; 2068 wil_dbg_txrx(wil, "netif_tx_stop called\n"); 2069 } 2070 return; 2071 } 2072 2073 /* Do not wake the queues in suspend flow */ 2074 if (test_bit(wil_status_suspending, wil->status) || 2075 test_bit(wil_status_suspended, wil->status)) 2076 return; 2077 2078 /* check wake */ 2079 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) { 2080 struct wil_ring *cur_ring = &wil->ring_tx[i]; 2081 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i]; 2082 2083 if (txdata->mid != vif->mid || !cur_ring->va || 2084 !txdata->enabled || cur_ring == ring) 2085 continue; 2086 2087 if (wil_ring_avail_low(cur_ring)) { 2088 wil_dbg_txrx(wil, "ring %d full, can't wake\n", 2089 (int)(cur_ring - wil->ring_tx)); 2090 return; 2091 } 2092 } 2093 2094 if (!ring || wil_ring_avail_high(ring)) { 2095 /* enough room in the ring */ 2096 wil_dbg_txrx(wil, "calling netif_tx_wake\n"); 2097 netif_tx_wake_all_queues(vif_to_ndev(vif)); 2098 vif->net_queue_stopped = false; 2099 } 2100 } 2101 2102 void wil_update_net_queues(struct wil6210_priv *wil, struct wil6210_vif *vif, 2103 struct wil_ring *ring, bool check_stop) 2104 { 2105 spin_lock(&wil->net_queue_lock); 2106 __wil_update_net_queues(wil, vif, ring, check_stop); 2107 spin_unlock(&wil->net_queue_lock); 2108 } 2109 2110 void wil_update_net_queues_bh(struct wil6210_priv *wil, struct wil6210_vif *vif, 2111 struct wil_ring *ring, bool check_stop) 2112 { 2113 spin_lock_bh(&wil->net_queue_lock); 2114 __wil_update_net_queues(wil, vif, ring, check_stop); 2115 spin_unlock_bh(&wil->net_queue_lock); 2116 } 2117 2118 netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev) 2119 { 2120 struct wil6210_vif *vif = ndev_to_vif(ndev); 2121 struct wil6210_priv *wil = vif_to_wil(vif); 2122 const u8 *da = wil_skb_get_da(skb); 2123 bool bcast = is_multicast_ether_addr(da); 2124 struct wil_ring *ring; 2125 static bool pr_once_fw; 2126 int rc; 2127 2128 wil_dbg_txrx(wil, "start_xmit\n"); 2129 if (unlikely(!test_bit(wil_status_fwready, wil->status))) { 2130 if (!pr_once_fw) { 2131 wil_err(wil, "FW not ready\n"); 2132 pr_once_fw = true; 2133 } 2134 goto drop; 2135 } 2136 if (unlikely(!test_bit(wil_vif_fwconnected, vif->status))) { 2137 wil_dbg_ratelimited(wil, 2138 "VIF not connected, packet dropped\n"); 2139 goto drop; 2140 } 2141 if (unlikely(vif->wdev.iftype == NL80211_IFTYPE_MONITOR)) { 2142 wil_err(wil, "Xmit in monitor mode not supported\n"); 2143 goto drop; 2144 } 2145 pr_once_fw = false; 2146 2147 /* find vring */ 2148 if (vif->wdev.iftype == NL80211_IFTYPE_STATION && !vif->pbss) { 2149 /* in STA mode (ESS), all to same VRING (to AP) */ 2150 ring = wil_find_tx_ring_sta(wil, vif, skb); 2151 } else if (bcast) { 2152 if (vif->pbss) 2153 /* in pbss, no bcast VRING - duplicate skb in 2154 * all stations VRINGs 2155 */ 2156 ring = wil_find_tx_bcast_2(wil, vif, skb); 2157 else if (vif->wdev.iftype == NL80211_IFTYPE_AP) 2158 /* AP has a dedicated bcast VRING */ 2159 ring = wil_find_tx_bcast_1(wil, vif, skb); 2160 else 2161 /* unexpected combination, fallback to duplicating 2162 * the skb in all stations VRINGs 2163 */ 2164 ring = wil_find_tx_bcast_2(wil, vif, skb); 2165 } else { 2166 /* unicast, find specific VRING by dest. address */ 2167 ring = wil_find_tx_ucast(wil, vif, skb); 2168 } 2169 if (unlikely(!ring)) { 2170 wil_dbg_txrx(wil, "No Tx RING found for %pM\n", da); 2171 goto drop; 2172 } 2173 /* set up vring entry */ 2174 rc = wil_tx_ring(wil, vif, ring, skb); 2175 2176 switch (rc) { 2177 case 0: 2178 /* shall we stop net queues? */ 2179 wil_update_net_queues_bh(wil, vif, ring, true); 2180 /* statistics will be updated on the tx_complete */ 2181 dev_kfree_skb_any(skb); 2182 return NETDEV_TX_OK; 2183 case -ENOMEM: 2184 if (drop_if_ring_full) 2185 goto drop; 2186 return NETDEV_TX_BUSY; 2187 default: 2188 break; /* goto drop; */ 2189 } 2190 drop: 2191 ndev->stats.tx_dropped++; 2192 dev_kfree_skb_any(skb); 2193 2194 return NET_XMIT_DROP; 2195 } 2196 2197 void wil_tx_latency_calc(struct wil6210_priv *wil, struct sk_buff *skb, 2198 struct wil_sta_info *sta) 2199 { 2200 int skb_time_us; 2201 int bin; 2202 2203 if (!wil->tx_latency) 2204 return; 2205 2206 if (ktime_to_ms(*(ktime_t *)&skb->cb) == 0) 2207 return; 2208 2209 skb_time_us = ktime_us_delta(ktime_get(), *(ktime_t *)&skb->cb); 2210 bin = skb_time_us / wil->tx_latency_res; 2211 bin = min_t(int, bin, WIL_NUM_LATENCY_BINS - 1); 2212 2213 wil_dbg_txrx(wil, "skb time %dus => bin %d\n", skb_time_us, bin); 2214 sta->tx_latency_bins[bin]++; 2215 sta->stats.tx_latency_total_us += skb_time_us; 2216 if (skb_time_us < sta->stats.tx_latency_min_us) 2217 sta->stats.tx_latency_min_us = skb_time_us; 2218 if (skb_time_us > sta->stats.tx_latency_max_us) 2219 sta->stats.tx_latency_max_us = skb_time_us; 2220 } 2221 2222 /** 2223 * Clean up transmitted skb's from the Tx VRING 2224 * 2225 * Return number of descriptors cleared 2226 * 2227 * Safe to call from IRQ 2228 */ 2229 int wil_tx_complete(struct wil6210_vif *vif, int ringid) 2230 { 2231 struct wil6210_priv *wil = vif_to_wil(vif); 2232 struct net_device *ndev = vif_to_ndev(vif); 2233 struct device *dev = wil_to_dev(wil); 2234 struct wil_ring *vring = &wil->ring_tx[ringid]; 2235 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ringid]; 2236 int done = 0; 2237 int cid = wil->ring2cid_tid[ringid][0]; 2238 struct wil_net_stats *stats = NULL; 2239 volatile struct vring_tx_desc *_d; 2240 int used_before_complete; 2241 int used_new; 2242 2243 if (unlikely(!vring->va)) { 2244 wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid); 2245 return 0; 2246 } 2247 2248 if (unlikely(!txdata->enabled)) { 2249 wil_info(wil, "Tx irq[%d]: vring disabled\n", ringid); 2250 return 0; 2251 } 2252 2253 wil_dbg_txrx(wil, "tx_complete: (%d)\n", ringid); 2254 2255 used_before_complete = wil_ring_used_tx(vring); 2256 2257 if (cid < max_assoc_sta) 2258 stats = &wil->sta[cid].stats; 2259 2260 while (!wil_ring_is_empty(vring)) { 2261 int new_swtail; 2262 struct wil_ctx *ctx = &vring->ctx[vring->swtail]; 2263 /** 2264 * For the fragmented skb, HW will set DU bit only for the 2265 * last fragment. look for it. 2266 * In TSO the first DU will include hdr desc 2267 */ 2268 int lf = (vring->swtail + ctx->nr_frags) % vring->size; 2269 /* TODO: check we are not past head */ 2270 2271 _d = &vring->va[lf].tx.legacy; 2272 if (unlikely(!(_d->dma.status & TX_DMA_STATUS_DU))) 2273 break; 2274 2275 new_swtail = (lf + 1) % vring->size; 2276 while (vring->swtail != new_swtail) { 2277 struct vring_tx_desc dd, *d = ⅆ 2278 u16 dmalen; 2279 struct sk_buff *skb; 2280 2281 ctx = &vring->ctx[vring->swtail]; 2282 skb = ctx->skb; 2283 _d = &vring->va[vring->swtail].tx.legacy; 2284 2285 *d = *_d; 2286 2287 dmalen = le16_to_cpu(d->dma.length); 2288 trace_wil6210_tx_done(ringid, vring->swtail, dmalen, 2289 d->dma.error); 2290 wil_dbg_txrx(wil, 2291 "TxC[%2d][%3d] : %d bytes, status 0x%02x err 0x%02x\n", 2292 ringid, vring->swtail, dmalen, 2293 d->dma.status, d->dma.error); 2294 wil_hex_dump_txrx("TxCD ", DUMP_PREFIX_NONE, 32, 4, 2295 (const void *)d, sizeof(*d), false); 2296 2297 wil->txrx_ops.tx_desc_unmap(dev, 2298 (union wil_tx_desc *)d, 2299 ctx); 2300 2301 if (skb) { 2302 if (likely(d->dma.error == 0)) { 2303 ndev->stats.tx_packets++; 2304 ndev->stats.tx_bytes += skb->len; 2305 if (stats) { 2306 stats->tx_packets++; 2307 stats->tx_bytes += skb->len; 2308 2309 wil_tx_latency_calc(wil, skb, 2310 &wil->sta[cid]); 2311 } 2312 } else { 2313 ndev->stats.tx_errors++; 2314 if (stats) 2315 stats->tx_errors++; 2316 } 2317 wil_consume_skb(skb, d->dma.error == 0); 2318 } 2319 memset(ctx, 0, sizeof(*ctx)); 2320 /* Make sure the ctx is zeroed before updating the tail 2321 * to prevent a case where wil_tx_ring will see 2322 * this descriptor as used and handle it before ctx zero 2323 * is completed. 2324 */ 2325 wmb(); 2326 /* There is no need to touch HW descriptor: 2327 * - ststus bit TX_DMA_STATUS_DU is set by design, 2328 * so hardware will not try to process this desc., 2329 * - rest of descriptor will be initialized on Tx. 2330 */ 2331 vring->swtail = wil_ring_next_tail(vring); 2332 done++; 2333 } 2334 } 2335 2336 /* performance monitoring */ 2337 used_new = wil_ring_used_tx(vring); 2338 if (wil_val_in_range(wil->ring_idle_trsh, 2339 used_new, used_before_complete)) { 2340 wil_dbg_txrx(wil, "Ring[%2d] idle %d -> %d\n", 2341 ringid, used_before_complete, used_new); 2342 txdata->last_idle = get_cycles(); 2343 } 2344 2345 /* shall we wake net queues? */ 2346 if (done) 2347 wil_update_net_queues(wil, vif, vring, false); 2348 2349 return done; 2350 } 2351 2352 static inline int wil_tx_init(struct wil6210_priv *wil) 2353 { 2354 return 0; 2355 } 2356 2357 static inline void wil_tx_fini(struct wil6210_priv *wil) {} 2358 2359 static void wil_get_reorder_params(struct wil6210_priv *wil, 2360 struct sk_buff *skb, int *tid, int *cid, 2361 int *mid, u16 *seq, int *mcast, int *retry) 2362 { 2363 struct vring_rx_desc *d = wil_skb_rxdesc(skb); 2364 2365 *tid = wil_rxdesc_tid(d); 2366 *cid = wil_skb_get_cid(skb); 2367 *mid = wil_rxdesc_mid(d); 2368 *seq = wil_rxdesc_seq(d); 2369 *mcast = wil_rxdesc_mcast(d); 2370 *retry = wil_rxdesc_retry(d); 2371 } 2372 2373 void wil_init_txrx_ops_legacy_dma(struct wil6210_priv *wil) 2374 { 2375 wil->txrx_ops.configure_interrupt_moderation = 2376 wil_configure_interrupt_moderation; 2377 /* TX ops */ 2378 wil->txrx_ops.tx_desc_map = wil_tx_desc_map; 2379 wil->txrx_ops.tx_desc_unmap = wil_txdesc_unmap; 2380 wil->txrx_ops.tx_ring_tso = __wil_tx_vring_tso; 2381 wil->txrx_ops.ring_init_tx = wil_vring_init_tx; 2382 wil->txrx_ops.ring_fini_tx = wil_vring_free; 2383 wil->txrx_ops.ring_init_bcast = wil_vring_init_bcast; 2384 wil->txrx_ops.tx_init = wil_tx_init; 2385 wil->txrx_ops.tx_fini = wil_tx_fini; 2386 wil->txrx_ops.tx_ring_modify = wil_tx_vring_modify; 2387 /* RX ops */ 2388 wil->txrx_ops.rx_init = wil_rx_init; 2389 wil->txrx_ops.wmi_addba_rx_resp = wmi_addba_rx_resp; 2390 wil->txrx_ops.get_reorder_params = wil_get_reorder_params; 2391 wil->txrx_ops.get_netif_rx_params = 2392 wil_get_netif_rx_params; 2393 wil->txrx_ops.rx_crypto_check = wil_rx_crypto_check; 2394 wil->txrx_ops.rx_error_check = wil_rx_error_check; 2395 wil->txrx_ops.is_rx_idle = wil_is_rx_idle; 2396 wil->txrx_ops.rx_fini = wil_rx_fini; 2397 } 2398