xref: /openbmc/linux/drivers/net/wireless/ath/wil6210/txrx.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 /*
2  * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
3  * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/etherdevice.h>
19 #include <net/ieee80211_radiotap.h>
20 #include <linux/if_arp.h>
21 #include <linux/moduleparam.h>
22 #include <linux/ip.h>
23 #include <linux/ipv6.h>
24 #include <net/ipv6.h>
25 #include <linux/prefetch.h>
26 
27 #include "wil6210.h"
28 #include "wmi.h"
29 #include "txrx.h"
30 #include "trace.h"
31 #include "txrx_edma.h"
32 
33 bool rx_align_2;
34 module_param(rx_align_2, bool, 0444);
35 MODULE_PARM_DESC(rx_align_2, " align Rx buffers on 4*n+2, default - no");
36 
37 bool rx_large_buf;
38 module_param(rx_large_buf, bool, 0444);
39 MODULE_PARM_DESC(rx_large_buf, " allocate 8KB RX buffers, default - no");
40 
41 /* Drop Tx packets in case Tx ring is full */
42 bool drop_if_ring_full;
43 
44 static inline uint wil_rx_snaplen(void)
45 {
46 	return rx_align_2 ? 6 : 0;
47 }
48 
49 /* wil_ring_wmark_low - low watermark for available descriptor space */
50 static inline int wil_ring_wmark_low(struct wil_ring *ring)
51 {
52 	return ring->size / 8;
53 }
54 
55 /* wil_ring_wmark_high - high watermark for available descriptor space */
56 static inline int wil_ring_wmark_high(struct wil_ring *ring)
57 {
58 	return ring->size / 4;
59 }
60 
61 /* returns true if num avail descriptors is lower than wmark_low */
62 static inline int wil_ring_avail_low(struct wil_ring *ring)
63 {
64 	return wil_ring_avail_tx(ring) < wil_ring_wmark_low(ring);
65 }
66 
67 /* returns true if num avail descriptors is higher than wmark_high */
68 static inline int wil_ring_avail_high(struct wil_ring *ring)
69 {
70 	return wil_ring_avail_tx(ring) > wil_ring_wmark_high(ring);
71 }
72 
73 /* returns true when all tx vrings are empty */
74 bool wil_is_tx_idle(struct wil6210_priv *wil)
75 {
76 	int i;
77 	unsigned long data_comp_to;
78 	int min_ring_id = wil_get_min_tx_ring_id(wil);
79 
80 	for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
81 		struct wil_ring *vring = &wil->ring_tx[i];
82 		int vring_index = vring - wil->ring_tx;
83 		struct wil_ring_tx_data *txdata =
84 			&wil->ring_tx_data[vring_index];
85 
86 		spin_lock(&txdata->lock);
87 
88 		if (!vring->va || !txdata->enabled) {
89 			spin_unlock(&txdata->lock);
90 			continue;
91 		}
92 
93 		data_comp_to = jiffies + msecs_to_jiffies(
94 					WIL_DATA_COMPLETION_TO_MS);
95 		if (test_bit(wil_status_napi_en, wil->status)) {
96 			while (!wil_ring_is_empty(vring)) {
97 				if (time_after(jiffies, data_comp_to)) {
98 					wil_dbg_pm(wil,
99 						   "TO waiting for idle tx\n");
100 					spin_unlock(&txdata->lock);
101 					return false;
102 				}
103 				wil_dbg_ratelimited(wil,
104 						    "tx vring is not empty -> NAPI\n");
105 				spin_unlock(&txdata->lock);
106 				napi_synchronize(&wil->napi_tx);
107 				msleep(20);
108 				spin_lock(&txdata->lock);
109 				if (!vring->va || !txdata->enabled)
110 					break;
111 			}
112 		}
113 
114 		spin_unlock(&txdata->lock);
115 	}
116 
117 	return true;
118 }
119 
120 static int wil_vring_alloc(struct wil6210_priv *wil, struct wil_ring *vring)
121 {
122 	struct device *dev = wil_to_dev(wil);
123 	size_t sz = vring->size * sizeof(vring->va[0]);
124 	uint i;
125 
126 	wil_dbg_misc(wil, "vring_alloc:\n");
127 
128 	BUILD_BUG_ON(sizeof(vring->va[0]) != 32);
129 
130 	vring->swhead = 0;
131 	vring->swtail = 0;
132 	vring->ctx = kcalloc(vring->size, sizeof(vring->ctx[0]), GFP_KERNEL);
133 	if (!vring->ctx) {
134 		vring->va = NULL;
135 		return -ENOMEM;
136 	}
137 
138 	/* vring->va should be aligned on its size rounded up to power of 2
139 	 * This is granted by the dma_alloc_coherent.
140 	 *
141 	 * HW has limitation that all vrings addresses must share the same
142 	 * upper 16 msb bits part of 48 bits address. To workaround that,
143 	 * if we are using more than 32 bit addresses switch to 32 bit
144 	 * allocation before allocating vring memory.
145 	 *
146 	 * There's no check for the return value of dma_set_mask_and_coherent,
147 	 * since we assume if we were able to set the mask during
148 	 * initialization in this system it will not fail if we set it again
149 	 */
150 	if (wil->dma_addr_size > 32)
151 		dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
152 
153 	vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL);
154 	if (!vring->va) {
155 		kfree(vring->ctx);
156 		vring->ctx = NULL;
157 		return -ENOMEM;
158 	}
159 
160 	if (wil->dma_addr_size > 32)
161 		dma_set_mask_and_coherent(dev,
162 					  DMA_BIT_MASK(wil->dma_addr_size));
163 
164 	/* initially, all descriptors are SW owned
165 	 * For Tx and Rx, ownership bit is at the same location, thus
166 	 * we can use any
167 	 */
168 	for (i = 0; i < vring->size; i++) {
169 		volatile struct vring_tx_desc *_d =
170 			&vring->va[i].tx.legacy;
171 
172 		_d->dma.status = TX_DMA_STATUS_DU;
173 	}
174 
175 	wil_dbg_misc(wil, "vring[%d] 0x%p:%pad 0x%p\n", vring->size,
176 		     vring->va, &vring->pa, vring->ctx);
177 
178 	return 0;
179 }
180 
181 static void wil_txdesc_unmap(struct device *dev, union wil_tx_desc *desc,
182 			     struct wil_ctx *ctx)
183 {
184 	struct vring_tx_desc *d = &desc->legacy;
185 	dma_addr_t pa = wil_desc_addr(&d->dma.addr);
186 	u16 dmalen = le16_to_cpu(d->dma.length);
187 
188 	switch (ctx->mapped_as) {
189 	case wil_mapped_as_single:
190 		dma_unmap_single(dev, pa, dmalen, DMA_TO_DEVICE);
191 		break;
192 	case wil_mapped_as_page:
193 		dma_unmap_page(dev, pa, dmalen, DMA_TO_DEVICE);
194 		break;
195 	default:
196 		break;
197 	}
198 }
199 
200 static void wil_vring_free(struct wil6210_priv *wil, struct wil_ring *vring)
201 {
202 	struct device *dev = wil_to_dev(wil);
203 	size_t sz = vring->size * sizeof(vring->va[0]);
204 
205 	lockdep_assert_held(&wil->mutex);
206 	if (!vring->is_rx) {
207 		int vring_index = vring - wil->ring_tx;
208 
209 		wil_dbg_misc(wil, "free Tx vring %d [%d] 0x%p:%pad 0x%p\n",
210 			     vring_index, vring->size, vring->va,
211 			     &vring->pa, vring->ctx);
212 	} else {
213 		wil_dbg_misc(wil, "free Rx vring [%d] 0x%p:%pad 0x%p\n",
214 			     vring->size, vring->va,
215 			     &vring->pa, vring->ctx);
216 	}
217 
218 	while (!wil_ring_is_empty(vring)) {
219 		dma_addr_t pa;
220 		u16 dmalen;
221 		struct wil_ctx *ctx;
222 
223 		if (!vring->is_rx) {
224 			struct vring_tx_desc dd, *d = &dd;
225 			volatile struct vring_tx_desc *_d =
226 					&vring->va[vring->swtail].tx.legacy;
227 
228 			ctx = &vring->ctx[vring->swtail];
229 			if (!ctx) {
230 				wil_dbg_txrx(wil,
231 					     "ctx(%d) was already completed\n",
232 					     vring->swtail);
233 				vring->swtail = wil_ring_next_tail(vring);
234 				continue;
235 			}
236 			*d = *_d;
237 			wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx);
238 			if (ctx->skb)
239 				dev_kfree_skb_any(ctx->skb);
240 			vring->swtail = wil_ring_next_tail(vring);
241 		} else { /* rx */
242 			struct vring_rx_desc dd, *d = &dd;
243 			volatile struct vring_rx_desc *_d =
244 				&vring->va[vring->swhead].rx.legacy;
245 
246 			ctx = &vring->ctx[vring->swhead];
247 			*d = *_d;
248 			pa = wil_desc_addr(&d->dma.addr);
249 			dmalen = le16_to_cpu(d->dma.length);
250 			dma_unmap_single(dev, pa, dmalen, DMA_FROM_DEVICE);
251 			kfree_skb(ctx->skb);
252 			wil_ring_advance_head(vring, 1);
253 		}
254 	}
255 	dma_free_coherent(dev, sz, (void *)vring->va, vring->pa);
256 	kfree(vring->ctx);
257 	vring->pa = 0;
258 	vring->va = NULL;
259 	vring->ctx = NULL;
260 }
261 
262 /**
263  * Allocate one skb for Rx VRING
264  *
265  * Safe to call from IRQ
266  */
267 static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct wil_ring *vring,
268 			       u32 i, int headroom)
269 {
270 	struct device *dev = wil_to_dev(wil);
271 	unsigned int sz = wil->rx_buf_len + ETH_HLEN + wil_rx_snaplen();
272 	struct vring_rx_desc dd, *d = &dd;
273 	volatile struct vring_rx_desc *_d = &vring->va[i].rx.legacy;
274 	dma_addr_t pa;
275 	struct sk_buff *skb = dev_alloc_skb(sz + headroom);
276 
277 	if (unlikely(!skb))
278 		return -ENOMEM;
279 
280 	skb_reserve(skb, headroom);
281 	skb_put(skb, sz);
282 
283 	/**
284 	 * Make sure that the network stack calculates checksum for packets
285 	 * which failed the HW checksum calculation
286 	 */
287 	skb->ip_summed = CHECKSUM_NONE;
288 
289 	pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE);
290 	if (unlikely(dma_mapping_error(dev, pa))) {
291 		kfree_skb(skb);
292 		return -ENOMEM;
293 	}
294 
295 	d->dma.d0 = RX_DMA_D0_CMD_DMA_RT | RX_DMA_D0_CMD_DMA_IT;
296 	wil_desc_addr_set(&d->dma.addr, pa);
297 	/* ip_length don't care */
298 	/* b11 don't care */
299 	/* error don't care */
300 	d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
301 	d->dma.length = cpu_to_le16(sz);
302 	*_d = *d;
303 	vring->ctx[i].skb = skb;
304 
305 	return 0;
306 }
307 
308 /**
309  * Adds radiotap header
310  *
311  * Any error indicated as "Bad FCS"
312  *
313  * Vendor data for 04:ce:14-1 (Wilocity-1) consists of:
314  *  - Rx descriptor: 32 bytes
315  *  - Phy info
316  */
317 static void wil_rx_add_radiotap_header(struct wil6210_priv *wil,
318 				       struct sk_buff *skb)
319 {
320 	struct wil6210_rtap {
321 		struct ieee80211_radiotap_header rthdr;
322 		/* fields should be in the order of bits in rthdr.it_present */
323 		/* flags */
324 		u8 flags;
325 		/* channel */
326 		__le16 chnl_freq __aligned(2);
327 		__le16 chnl_flags;
328 		/* MCS */
329 		u8 mcs_present;
330 		u8 mcs_flags;
331 		u8 mcs_index;
332 	} __packed;
333 	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
334 	struct wil6210_rtap *rtap;
335 	int rtap_len = sizeof(struct wil6210_rtap);
336 	struct ieee80211_channel *ch = wil->monitor_chandef.chan;
337 
338 	if (skb_headroom(skb) < rtap_len &&
339 	    pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) {
340 		wil_err(wil, "Unable to expand headroom to %d\n", rtap_len);
341 		return;
342 	}
343 
344 	rtap = skb_push(skb, rtap_len);
345 	memset(rtap, 0, rtap_len);
346 
347 	rtap->rthdr.it_version = PKTHDR_RADIOTAP_VERSION;
348 	rtap->rthdr.it_len = cpu_to_le16(rtap_len);
349 	rtap->rthdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
350 			(1 << IEEE80211_RADIOTAP_CHANNEL) |
351 			(1 << IEEE80211_RADIOTAP_MCS));
352 	if (d->dma.status & RX_DMA_STATUS_ERROR)
353 		rtap->flags |= IEEE80211_RADIOTAP_F_BADFCS;
354 
355 	rtap->chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320);
356 	rtap->chnl_flags = cpu_to_le16(0);
357 
358 	rtap->mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS;
359 	rtap->mcs_flags = 0;
360 	rtap->mcs_index = wil_rxdesc_mcs(d);
361 }
362 
363 static bool wil_is_rx_idle(struct wil6210_priv *wil)
364 {
365 	struct vring_rx_desc *_d;
366 	struct wil_ring *ring = &wil->ring_rx;
367 
368 	_d = (struct vring_rx_desc *)&ring->va[ring->swhead].rx.legacy;
369 	if (_d->dma.status & RX_DMA_STATUS_DU)
370 		return false;
371 
372 	return true;
373 }
374 
375 static int wil_rx_get_cid_by_skb(struct wil6210_priv *wil, struct sk_buff *skb)
376 {
377 	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
378 	int mid = wil_rxdesc_mid(d);
379 	struct wil6210_vif *vif = wil->vifs[mid];
380 	/* cid from DMA descriptor is limited to 3 bits.
381 	 * In case of cid>=8, the value would be cid modulo 8 and we need to
382 	 * find real cid by locating the transmitter (ta) inside sta array
383 	 */
384 	int cid = wil_rxdesc_cid(d);
385 	unsigned int snaplen = wil_rx_snaplen();
386 	struct ieee80211_hdr_3addr *hdr;
387 	int i;
388 	unsigned char *ta;
389 	u8 ftype;
390 
391 	/* in monitor mode there are no connections */
392 	if (vif->wdev.iftype == NL80211_IFTYPE_MONITOR)
393 		return cid;
394 
395 	ftype = wil_rxdesc_ftype(d) << 2;
396 	if (likely(ftype == IEEE80211_FTYPE_DATA)) {
397 		if (unlikely(skb->len < ETH_HLEN + snaplen)) {
398 			wil_err_ratelimited(wil,
399 					    "Short data frame, len = %d\n",
400 					    skb->len);
401 			return -ENOENT;
402 		}
403 		ta = wil_skb_get_sa(skb);
404 	} else {
405 		if (unlikely(skb->len < sizeof(struct ieee80211_hdr_3addr))) {
406 			wil_err_ratelimited(wil, "Short frame, len = %d\n",
407 					    skb->len);
408 			return -ENOENT;
409 		}
410 		hdr = (void *)skb->data;
411 		ta = hdr->addr2;
412 	}
413 
414 	if (max_assoc_sta <= WIL6210_RX_DESC_MAX_CID)
415 		return cid;
416 
417 	/* assuming no concurrency between AP interfaces and STA interfaces.
418 	 * multista is used only in P2P_GO or AP mode. In other modes return
419 	 * cid from the rx descriptor
420 	 */
421 	if (vif->wdev.iftype != NL80211_IFTYPE_P2P_GO &&
422 	    vif->wdev.iftype != NL80211_IFTYPE_AP)
423 		return cid;
424 
425 	/* For Rx packets cid from rx descriptor is limited to 3 bits (0..7),
426 	 * to find the real cid, compare transmitter address with the stored
427 	 * stations mac address in the driver sta array
428 	 */
429 	for (i = cid; i < max_assoc_sta; i += WIL6210_RX_DESC_MAX_CID) {
430 		if (wil->sta[i].status != wil_sta_unused &&
431 		    ether_addr_equal(wil->sta[i].addr, ta)) {
432 			cid = i;
433 			break;
434 		}
435 	}
436 	if (i >= max_assoc_sta) {
437 		wil_err_ratelimited(wil, "Could not find cid for frame with transmit addr = %pM, iftype = %d, frametype = %d, len = %d\n",
438 				    ta, vif->wdev.iftype, ftype, skb->len);
439 		cid = -ENOENT;
440 	}
441 
442 	return cid;
443 }
444 
445 /**
446  * reap 1 frame from @swhead
447  *
448  * Rx descriptor copied to skb->cb
449  *
450  * Safe to call from IRQ
451  */
452 static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil,
453 					 struct wil_ring *vring)
454 {
455 	struct device *dev = wil_to_dev(wil);
456 	struct wil6210_vif *vif;
457 	struct net_device *ndev;
458 	volatile struct vring_rx_desc *_d;
459 	struct vring_rx_desc *d;
460 	struct sk_buff *skb;
461 	dma_addr_t pa;
462 	unsigned int snaplen = wil_rx_snaplen();
463 	unsigned int sz = wil->rx_buf_len + ETH_HLEN + snaplen;
464 	u16 dmalen;
465 	u8 ftype;
466 	int cid, mid;
467 	int i;
468 	struct wil_net_stats *stats;
469 
470 	BUILD_BUG_ON(sizeof(struct skb_rx_info) > sizeof(skb->cb));
471 
472 again:
473 	if (unlikely(wil_ring_is_empty(vring)))
474 		return NULL;
475 
476 	i = (int)vring->swhead;
477 	_d = &vring->va[i].rx.legacy;
478 	if (unlikely(!(_d->dma.status & RX_DMA_STATUS_DU))) {
479 		/* it is not error, we just reached end of Rx done area */
480 		return NULL;
481 	}
482 
483 	skb = vring->ctx[i].skb;
484 	vring->ctx[i].skb = NULL;
485 	wil_ring_advance_head(vring, 1);
486 	if (!skb) {
487 		wil_err(wil, "No Rx skb at [%d]\n", i);
488 		goto again;
489 	}
490 	d = wil_skb_rxdesc(skb);
491 	*d = *_d;
492 	pa = wil_desc_addr(&d->dma.addr);
493 
494 	dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE);
495 	dmalen = le16_to_cpu(d->dma.length);
496 
497 	trace_wil6210_rx(i, d);
498 	wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", i, dmalen);
499 	wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
500 			  (const void *)d, sizeof(*d), false);
501 
502 	mid = wil_rxdesc_mid(d);
503 	vif = wil->vifs[mid];
504 
505 	if (unlikely(!vif)) {
506 		wil_dbg_txrx(wil, "skipped RX descriptor with invalid mid %d",
507 			     mid);
508 		kfree_skb(skb);
509 		goto again;
510 	}
511 	ndev = vif_to_ndev(vif);
512 	if (unlikely(dmalen > sz)) {
513 		wil_err_ratelimited(wil, "Rx size too large: %d bytes!\n",
514 				    dmalen);
515 		kfree_skb(skb);
516 		goto again;
517 	}
518 	skb_trim(skb, dmalen);
519 
520 	prefetch(skb->data);
521 
522 	wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
523 			  skb->data, skb_headlen(skb), false);
524 
525 	cid = wil_rx_get_cid_by_skb(wil, skb);
526 	if (cid == -ENOENT) {
527 		kfree_skb(skb);
528 		goto again;
529 	}
530 	wil_skb_set_cid(skb, (u8)cid);
531 	stats = &wil->sta[cid].stats;
532 
533 	stats->last_mcs_rx = wil_rxdesc_mcs(d);
534 	if (stats->last_mcs_rx < ARRAY_SIZE(stats->rx_per_mcs))
535 		stats->rx_per_mcs[stats->last_mcs_rx]++;
536 
537 	/* use radiotap header only if required */
538 	if (ndev->type == ARPHRD_IEEE80211_RADIOTAP)
539 		wil_rx_add_radiotap_header(wil, skb);
540 
541 	/* no extra checks if in sniffer mode */
542 	if (ndev->type != ARPHRD_ETHER)
543 		return skb;
544 	/* Non-data frames may be delivered through Rx DMA channel (ex: BAR)
545 	 * Driver should recognize it by frame type, that is found
546 	 * in Rx descriptor. If type is not data, it is 802.11 frame as is
547 	 */
548 	ftype = wil_rxdesc_ftype(d) << 2;
549 	if (unlikely(ftype != IEEE80211_FTYPE_DATA)) {
550 		u8 fc1 = wil_rxdesc_fc1(d);
551 		int tid = wil_rxdesc_tid(d);
552 		u16 seq = wil_rxdesc_seq(d);
553 
554 		wil_dbg_txrx(wil,
555 			     "Non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
556 			     fc1, mid, cid, tid, seq);
557 		stats->rx_non_data_frame++;
558 		if (wil_is_back_req(fc1)) {
559 			wil_dbg_txrx(wil,
560 				     "BAR: MID %d CID %d TID %d Seq 0x%03x\n",
561 				     mid, cid, tid, seq);
562 			wil_rx_bar(wil, vif, cid, tid, seq);
563 		} else {
564 			/* print again all info. One can enable only this
565 			 * without overhead for printing every Rx frame
566 			 */
567 			wil_dbg_txrx(wil,
568 				     "Unhandled non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
569 				     fc1, mid, cid, tid, seq);
570 			wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
571 					  (const void *)d, sizeof(*d), false);
572 			wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
573 					  skb->data, skb_headlen(skb), false);
574 		}
575 		kfree_skb(skb);
576 		goto again;
577 	}
578 
579 	/* L4 IDENT is on when HW calculated checksum, check status
580 	 * and in case of error drop the packet
581 	 * higher stack layers will handle retransmission (if required)
582 	 */
583 	if (likely(d->dma.status & RX_DMA_STATUS_L4I)) {
584 		/* L4 protocol identified, csum calculated */
585 		if (likely((d->dma.error & RX_DMA_ERROR_L4_ERR) == 0))
586 			skb->ip_summed = CHECKSUM_UNNECESSARY;
587 		/* If HW reports bad checksum, let IP stack re-check it
588 		 * For example, HW don't understand Microsoft IP stack that
589 		 * mis-calculates TCP checksum - if it should be 0x0,
590 		 * it writes 0xffff in violation of RFC 1624
591 		 */
592 		else
593 			stats->rx_csum_err++;
594 	}
595 
596 	if (snaplen) {
597 		/* Packet layout
598 		 * +-------+-------+---------+------------+------+
599 		 * | SA(6) | DA(6) | SNAP(6) | ETHTYPE(2) | DATA |
600 		 * +-------+-------+---------+------------+------+
601 		 * Need to remove SNAP, shifting SA and DA forward
602 		 */
603 		memmove(skb->data + snaplen, skb->data, 2 * ETH_ALEN);
604 		skb_pull(skb, snaplen);
605 	}
606 
607 	return skb;
608 }
609 
610 /**
611  * allocate and fill up to @count buffers in rx ring
612  * buffers posted at @swtail
613  * Note: we have a single RX queue for servicing all VIFs, but we
614  * allocate skbs with headroom according to main interface only. This
615  * means it will not work with monitor interface together with other VIFs.
616  * Currently we only support monitor interface on its own without other VIFs,
617  * and we will need to fix this code once we add support.
618  */
619 static int wil_rx_refill(struct wil6210_priv *wil, int count)
620 {
621 	struct net_device *ndev = wil->main_ndev;
622 	struct wil_ring *v = &wil->ring_rx;
623 	u32 next_tail;
624 	int rc = 0;
625 	int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ?
626 			WIL6210_RTAP_SIZE : 0;
627 
628 	for (; next_tail = wil_ring_next_tail(v),
629 	     (next_tail != v->swhead) && (count-- > 0);
630 	     v->swtail = next_tail) {
631 		rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom);
632 		if (unlikely(rc)) {
633 			wil_err_ratelimited(wil, "Error %d in rx refill[%d]\n",
634 					    rc, v->swtail);
635 			break;
636 		}
637 	}
638 
639 	/* make sure all writes to descriptors (shared memory) are done before
640 	 * committing them to HW
641 	 */
642 	wmb();
643 
644 	wil_w(wil, v->hwtail, v->swtail);
645 
646 	return rc;
647 }
648 
649 /**
650  * reverse_memcmp - Compare two areas of memory, in reverse order
651  * @cs: One area of memory
652  * @ct: Another area of memory
653  * @count: The size of the area.
654  *
655  * Cut'n'paste from original memcmp (see lib/string.c)
656  * with minimal modifications
657  */
658 int reverse_memcmp(const void *cs, const void *ct, size_t count)
659 {
660 	const unsigned char *su1, *su2;
661 	int res = 0;
662 
663 	for (su1 = cs + count - 1, su2 = ct + count - 1; count > 0;
664 	     --su1, --su2, count--) {
665 		res = *su1 - *su2;
666 		if (res)
667 			break;
668 	}
669 	return res;
670 }
671 
672 static int wil_rx_crypto_check(struct wil6210_priv *wil, struct sk_buff *skb)
673 {
674 	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
675 	int cid = wil_skb_get_cid(skb);
676 	int tid = wil_rxdesc_tid(d);
677 	int key_id = wil_rxdesc_key_id(d);
678 	int mc = wil_rxdesc_mcast(d);
679 	struct wil_sta_info *s = &wil->sta[cid];
680 	struct wil_tid_crypto_rx *c = mc ? &s->group_crypto_rx :
681 				      &s->tid_crypto_rx[tid];
682 	struct wil_tid_crypto_rx_single *cc = &c->key_id[key_id];
683 	const u8 *pn = (u8 *)&d->mac.pn_15_0;
684 
685 	if (!cc->key_set) {
686 		wil_err_ratelimited(wil,
687 				    "Key missing. CID %d TID %d MCast %d KEY_ID %d\n",
688 				    cid, tid, mc, key_id);
689 		return -EINVAL;
690 	}
691 
692 	if (reverse_memcmp(pn, cc->pn, IEEE80211_GCMP_PN_LEN) <= 0) {
693 		wil_err_ratelimited(wil,
694 				    "Replay attack. CID %d TID %d MCast %d KEY_ID %d PN %6phN last %6phN\n",
695 				    cid, tid, mc, key_id, pn, cc->pn);
696 		return -EINVAL;
697 	}
698 	memcpy(cc->pn, pn, IEEE80211_GCMP_PN_LEN);
699 
700 	return 0;
701 }
702 
703 static int wil_rx_error_check(struct wil6210_priv *wil, struct sk_buff *skb,
704 			      struct wil_net_stats *stats)
705 {
706 	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
707 
708 	if ((d->dma.status & RX_DMA_STATUS_ERROR) &&
709 	    (d->dma.error & RX_DMA_ERROR_MIC)) {
710 		stats->rx_mic_error++;
711 		wil_dbg_txrx(wil, "MIC error, dropping packet\n");
712 		return -EFAULT;
713 	}
714 
715 	return 0;
716 }
717 
718 static void wil_get_netif_rx_params(struct sk_buff *skb, int *cid,
719 				    int *security)
720 {
721 	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
722 
723 	*cid = wil_skb_get_cid(skb);
724 	*security = wil_rxdesc_security(d);
725 }
726 
727 /*
728  * Pass Rx packet to the netif. Update statistics.
729  * Called in softirq context (NAPI poll).
730  */
731 void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev)
732 {
733 	gro_result_t rc = GRO_NORMAL;
734 	struct wil6210_vif *vif = ndev_to_vif(ndev);
735 	struct wil6210_priv *wil = ndev_to_wil(ndev);
736 	struct wireless_dev *wdev = vif_to_wdev(vif);
737 	unsigned int len = skb->len;
738 	int cid;
739 	int security;
740 	u8 *sa, *da = wil_skb_get_da(skb);
741 	/* here looking for DA, not A1, thus Rxdesc's 'mcast' indication
742 	 * is not suitable, need to look at data
743 	 */
744 	int mcast = is_multicast_ether_addr(da);
745 	struct wil_net_stats *stats;
746 	struct sk_buff *xmit_skb = NULL;
747 	static const char * const gro_res_str[] = {
748 		[GRO_MERGED]		= "GRO_MERGED",
749 		[GRO_MERGED_FREE]	= "GRO_MERGED_FREE",
750 		[GRO_HELD]		= "GRO_HELD",
751 		[GRO_NORMAL]		= "GRO_NORMAL",
752 		[GRO_DROP]		= "GRO_DROP",
753 	};
754 
755 	wil->txrx_ops.get_netif_rx_params(skb, &cid, &security);
756 
757 	stats = &wil->sta[cid].stats;
758 
759 	skb_orphan(skb);
760 
761 	if (security && (wil->txrx_ops.rx_crypto_check(wil, skb) != 0)) {
762 		rc = GRO_DROP;
763 		dev_kfree_skb(skb);
764 		stats->rx_replay++;
765 		goto stats;
766 	}
767 
768 	/* check errors reported by HW and update statistics */
769 	if (unlikely(wil->txrx_ops.rx_error_check(wil, skb, stats))) {
770 		dev_kfree_skb(skb);
771 		return;
772 	}
773 
774 	if (wdev->iftype == NL80211_IFTYPE_STATION) {
775 		sa = wil_skb_get_sa(skb);
776 		if (mcast && ether_addr_equal(sa, ndev->dev_addr)) {
777 			/* mcast packet looped back to us */
778 			rc = GRO_DROP;
779 			dev_kfree_skb(skb);
780 			goto stats;
781 		}
782 	} else if (wdev->iftype == NL80211_IFTYPE_AP && !vif->ap_isolate) {
783 		if (mcast) {
784 			/* send multicast frames both to higher layers in
785 			 * local net stack and back to the wireless medium
786 			 */
787 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
788 		} else {
789 			int xmit_cid = wil_find_cid(wil, vif->mid, da);
790 
791 			if (xmit_cid >= 0) {
792 				/* The destination station is associated to
793 				 * this AP (in this VLAN), so send the frame
794 				 * directly to it and do not pass it to local
795 				 * net stack.
796 				 */
797 				xmit_skb = skb;
798 				skb = NULL;
799 			}
800 		}
801 	}
802 	if (xmit_skb) {
803 		/* Send to wireless media and increase priority by 256 to
804 		 * keep the received priority instead of reclassifying
805 		 * the frame (see cfg80211_classify8021d).
806 		 */
807 		xmit_skb->dev = ndev;
808 		xmit_skb->priority += 256;
809 		xmit_skb->protocol = htons(ETH_P_802_3);
810 		skb_reset_network_header(xmit_skb);
811 		skb_reset_mac_header(xmit_skb);
812 		wil_dbg_txrx(wil, "Rx -> Tx %d bytes\n", len);
813 		dev_queue_xmit(xmit_skb);
814 	}
815 
816 	if (skb) { /* deliver to local stack */
817 		skb->protocol = eth_type_trans(skb, ndev);
818 		skb->dev = ndev;
819 		rc = napi_gro_receive(&wil->napi_rx, skb);
820 		wil_dbg_txrx(wil, "Rx complete %d bytes => %s\n",
821 			     len, gro_res_str[rc]);
822 	}
823 stats:
824 	/* statistics. rc set to GRO_NORMAL for AP bridging */
825 	if (unlikely(rc == GRO_DROP)) {
826 		ndev->stats.rx_dropped++;
827 		stats->rx_dropped++;
828 		wil_dbg_txrx(wil, "Rx drop %d bytes\n", len);
829 	} else {
830 		ndev->stats.rx_packets++;
831 		stats->rx_packets++;
832 		ndev->stats.rx_bytes += len;
833 		stats->rx_bytes += len;
834 		if (mcast)
835 			ndev->stats.multicast++;
836 	}
837 }
838 
839 /**
840  * Proceed all completed skb's from Rx VRING
841  *
842  * Safe to call from NAPI poll, i.e. softirq with interrupts enabled
843  */
844 void wil_rx_handle(struct wil6210_priv *wil, int *quota)
845 {
846 	struct net_device *ndev = wil->main_ndev;
847 	struct wireless_dev *wdev = ndev->ieee80211_ptr;
848 	struct wil_ring *v = &wil->ring_rx;
849 	struct sk_buff *skb;
850 
851 	if (unlikely(!v->va)) {
852 		wil_err(wil, "Rx IRQ while Rx not yet initialized\n");
853 		return;
854 	}
855 	wil_dbg_txrx(wil, "rx_handle\n");
856 	while ((*quota > 0) && (NULL != (skb = wil_vring_reap_rx(wil, v)))) {
857 		(*quota)--;
858 
859 		/* monitor is currently supported on main interface only */
860 		if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
861 			skb->dev = ndev;
862 			skb_reset_mac_header(skb);
863 			skb->ip_summed = CHECKSUM_UNNECESSARY;
864 			skb->pkt_type = PACKET_OTHERHOST;
865 			skb->protocol = htons(ETH_P_802_2);
866 			wil_netif_rx_any(skb, ndev);
867 		} else {
868 			wil_rx_reorder(wil, skb);
869 		}
870 	}
871 	wil_rx_refill(wil, v->size);
872 }
873 
874 static void wil_rx_buf_len_init(struct wil6210_priv *wil)
875 {
876 	wil->rx_buf_len = rx_large_buf ?
877 		WIL_MAX_ETH_MTU : TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
878 	if (mtu_max > wil->rx_buf_len) {
879 		/* do not allow RX buffers to be smaller than mtu_max, for
880 		 * backward compatibility (mtu_max parameter was also used
881 		 * to support receiving large packets)
882 		 */
883 		wil_info(wil, "Override RX buffer to mtu_max(%d)\n", mtu_max);
884 		wil->rx_buf_len = mtu_max;
885 	}
886 }
887 
888 static int wil_rx_init(struct wil6210_priv *wil, uint order)
889 {
890 	struct wil_ring *vring = &wil->ring_rx;
891 	int rc;
892 
893 	wil_dbg_misc(wil, "rx_init\n");
894 
895 	if (vring->va) {
896 		wil_err(wil, "Rx ring already allocated\n");
897 		return -EINVAL;
898 	}
899 
900 	wil_rx_buf_len_init(wil);
901 
902 	vring->size = 1 << order;
903 	vring->is_rx = true;
904 	rc = wil_vring_alloc(wil, vring);
905 	if (rc)
906 		return rc;
907 
908 	rc = wmi_rx_chain_add(wil, vring);
909 	if (rc)
910 		goto err_free;
911 
912 	rc = wil_rx_refill(wil, vring->size);
913 	if (rc)
914 		goto err_free;
915 
916 	return 0;
917  err_free:
918 	wil_vring_free(wil, vring);
919 
920 	return rc;
921 }
922 
923 static void wil_rx_fini(struct wil6210_priv *wil)
924 {
925 	struct wil_ring *vring = &wil->ring_rx;
926 
927 	wil_dbg_misc(wil, "rx_fini\n");
928 
929 	if (vring->va)
930 		wil_vring_free(wil, vring);
931 }
932 
933 static int wil_tx_desc_map(union wil_tx_desc *desc, dma_addr_t pa,
934 			   u32 len, int vring_index)
935 {
936 	struct vring_tx_desc *d = &desc->legacy;
937 
938 	wil_desc_addr_set(&d->dma.addr, pa);
939 	d->dma.ip_length = 0;
940 	/* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/
941 	d->dma.b11 = 0/*14 | BIT(7)*/;
942 	d->dma.error = 0;
943 	d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
944 	d->dma.length = cpu_to_le16((u16)len);
945 	d->dma.d0 = (vring_index << DMA_CFG_DESC_TX_0_QID_POS);
946 	d->mac.d[0] = 0;
947 	d->mac.d[1] = 0;
948 	d->mac.d[2] = 0;
949 	d->mac.ucode_cmd = 0;
950 	/* translation type:  0 - bypass; 1 - 802.3; 2 - native wifi */
951 	d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) |
952 		      (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS);
953 
954 	return 0;
955 }
956 
957 void wil_tx_data_init(struct wil_ring_tx_data *txdata)
958 {
959 	spin_lock_bh(&txdata->lock);
960 	txdata->dot1x_open = 0;
961 	txdata->enabled = 0;
962 	txdata->idle = 0;
963 	txdata->last_idle = 0;
964 	txdata->begin = 0;
965 	txdata->agg_wsize = 0;
966 	txdata->agg_timeout = 0;
967 	txdata->agg_amsdu = 0;
968 	txdata->addba_in_progress = false;
969 	txdata->mid = U8_MAX;
970 	spin_unlock_bh(&txdata->lock);
971 }
972 
973 static int wil_vring_init_tx(struct wil6210_vif *vif, int id, int size,
974 			     int cid, int tid)
975 {
976 	struct wil6210_priv *wil = vif_to_wil(vif);
977 	int rc;
978 	struct wmi_vring_cfg_cmd cmd = {
979 		.action = cpu_to_le32(WMI_VRING_CMD_ADD),
980 		.vring_cfg = {
981 			.tx_sw_ring = {
982 				.max_mpdu_size =
983 					cpu_to_le16(wil_mtu2macbuf(mtu_max)),
984 				.ring_size = cpu_to_le16(size),
985 			},
986 			.ringid = id,
987 			.encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
988 			.mac_ctrl = 0,
989 			.to_resolution = 0,
990 			.agg_max_wsize = 0,
991 			.schd_params = {
992 				.priority = cpu_to_le16(0),
993 				.timeslot_us = cpu_to_le16(0xfff),
994 			},
995 		},
996 	};
997 	struct {
998 		struct wmi_cmd_hdr wmi;
999 		struct wmi_vring_cfg_done_event cmd;
1000 	} __packed reply = {
1001 		.cmd = {.status = WMI_FW_STATUS_FAILURE},
1002 	};
1003 	struct wil_ring *vring = &wil->ring_tx[id];
1004 	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
1005 
1006 	if (cid >= WIL6210_RX_DESC_MAX_CID) {
1007 		cmd.vring_cfg.cidxtid = CIDXTID_EXTENDED_CID_TID;
1008 		cmd.vring_cfg.cid = cid;
1009 		cmd.vring_cfg.tid = tid;
1010 	} else {
1011 		cmd.vring_cfg.cidxtid = mk_cidxtid(cid, tid);
1012 	}
1013 
1014 	wil_dbg_misc(wil, "vring_init_tx: max_mpdu_size %d\n",
1015 		     cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
1016 	lockdep_assert_held(&wil->mutex);
1017 
1018 	if (vring->va) {
1019 		wil_err(wil, "Tx ring [%d] already allocated\n", id);
1020 		rc = -EINVAL;
1021 		goto out;
1022 	}
1023 
1024 	wil_tx_data_init(txdata);
1025 	vring->is_rx = false;
1026 	vring->size = size;
1027 	rc = wil_vring_alloc(wil, vring);
1028 	if (rc)
1029 		goto out;
1030 
1031 	wil->ring2cid_tid[id][0] = cid;
1032 	wil->ring2cid_tid[id][1] = tid;
1033 
1034 	cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1035 
1036 	if (!vif->privacy)
1037 		txdata->dot1x_open = true;
1038 	rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
1039 		      WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
1040 	if (rc)
1041 		goto out_free;
1042 
1043 	if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1044 		wil_err(wil, "Tx config failed, status 0x%02x\n",
1045 			reply.cmd.status);
1046 		rc = -EINVAL;
1047 		goto out_free;
1048 	}
1049 
1050 	spin_lock_bh(&txdata->lock);
1051 	vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
1052 	txdata->mid = vif->mid;
1053 	txdata->enabled = 1;
1054 	spin_unlock_bh(&txdata->lock);
1055 
1056 	if (txdata->dot1x_open && (agg_wsize >= 0))
1057 		wil_addba_tx_request(wil, id, agg_wsize);
1058 
1059 	return 0;
1060  out_free:
1061 	spin_lock_bh(&txdata->lock);
1062 	txdata->dot1x_open = false;
1063 	txdata->enabled = 0;
1064 	spin_unlock_bh(&txdata->lock);
1065 	wil_vring_free(wil, vring);
1066 	wil->ring2cid_tid[id][0] = max_assoc_sta;
1067 	wil->ring2cid_tid[id][1] = 0;
1068 
1069  out:
1070 
1071 	return rc;
1072 }
1073 
1074 static int wil_tx_vring_modify(struct wil6210_vif *vif, int ring_id, int cid,
1075 			       int tid)
1076 {
1077 	struct wil6210_priv *wil = vif_to_wil(vif);
1078 	int rc;
1079 	struct wmi_vring_cfg_cmd cmd = {
1080 		.action = cpu_to_le32(WMI_VRING_CMD_MODIFY),
1081 		.vring_cfg = {
1082 			.tx_sw_ring = {
1083 				.max_mpdu_size =
1084 					cpu_to_le16(wil_mtu2macbuf(mtu_max)),
1085 				.ring_size = 0,
1086 			},
1087 			.ringid = ring_id,
1088 			.cidxtid = mk_cidxtid(cid, tid),
1089 			.encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
1090 			.mac_ctrl = 0,
1091 			.to_resolution = 0,
1092 			.agg_max_wsize = 0,
1093 			.schd_params = {
1094 				.priority = cpu_to_le16(0),
1095 				.timeslot_us = cpu_to_le16(0xfff),
1096 			},
1097 		},
1098 	};
1099 	struct {
1100 		struct wmi_cmd_hdr wmi;
1101 		struct wmi_vring_cfg_done_event cmd;
1102 	} __packed reply = {
1103 		.cmd = {.status = WMI_FW_STATUS_FAILURE},
1104 	};
1105 	struct wil_ring *vring = &wil->ring_tx[ring_id];
1106 	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_id];
1107 
1108 	wil_dbg_misc(wil, "vring_modify: ring %d cid %d tid %d\n", ring_id,
1109 		     cid, tid);
1110 	lockdep_assert_held(&wil->mutex);
1111 
1112 	if (!vring->va) {
1113 		wil_err(wil, "Tx ring [%d] not allocated\n", ring_id);
1114 		return -EINVAL;
1115 	}
1116 
1117 	if (wil->ring2cid_tid[ring_id][0] != cid ||
1118 	    wil->ring2cid_tid[ring_id][1] != tid) {
1119 		wil_err(wil, "ring info does not match cid=%u tid=%u\n",
1120 			wil->ring2cid_tid[ring_id][0],
1121 			wil->ring2cid_tid[ring_id][1]);
1122 	}
1123 
1124 	cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1125 
1126 	rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
1127 		      WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
1128 	if (rc)
1129 		goto fail;
1130 
1131 	if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1132 		wil_err(wil, "Tx modify failed, status 0x%02x\n",
1133 			reply.cmd.status);
1134 		rc = -EINVAL;
1135 		goto fail;
1136 	}
1137 
1138 	/* set BA aggregation window size to 0 to force a new BA with the
1139 	 * new AP
1140 	 */
1141 	txdata->agg_wsize = 0;
1142 	if (txdata->dot1x_open && agg_wsize >= 0)
1143 		wil_addba_tx_request(wil, ring_id, agg_wsize);
1144 
1145 	return 0;
1146 fail:
1147 	spin_lock_bh(&txdata->lock);
1148 	txdata->dot1x_open = false;
1149 	txdata->enabled = 0;
1150 	spin_unlock_bh(&txdata->lock);
1151 	wil->ring2cid_tid[ring_id][0] = max_assoc_sta;
1152 	wil->ring2cid_tid[ring_id][1] = 0;
1153 	return rc;
1154 }
1155 
1156 int wil_vring_init_bcast(struct wil6210_vif *vif, int id, int size)
1157 {
1158 	struct wil6210_priv *wil = vif_to_wil(vif);
1159 	int rc;
1160 	struct wmi_bcast_vring_cfg_cmd cmd = {
1161 		.action = cpu_to_le32(WMI_VRING_CMD_ADD),
1162 		.vring_cfg = {
1163 			.tx_sw_ring = {
1164 				.max_mpdu_size =
1165 					cpu_to_le16(wil_mtu2macbuf(mtu_max)),
1166 				.ring_size = cpu_to_le16(size),
1167 			},
1168 			.ringid = id,
1169 			.encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
1170 		},
1171 	};
1172 	struct {
1173 		struct wmi_cmd_hdr wmi;
1174 		struct wmi_vring_cfg_done_event cmd;
1175 	} __packed reply = {
1176 		.cmd = {.status = WMI_FW_STATUS_FAILURE},
1177 	};
1178 	struct wil_ring *vring = &wil->ring_tx[id];
1179 	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
1180 
1181 	wil_dbg_misc(wil, "vring_init_bcast: max_mpdu_size %d\n",
1182 		     cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
1183 	lockdep_assert_held(&wil->mutex);
1184 
1185 	if (vring->va) {
1186 		wil_err(wil, "Tx ring [%d] already allocated\n", id);
1187 		rc = -EINVAL;
1188 		goto out;
1189 	}
1190 
1191 	wil_tx_data_init(txdata);
1192 	vring->is_rx = false;
1193 	vring->size = size;
1194 	rc = wil_vring_alloc(wil, vring);
1195 	if (rc)
1196 		goto out;
1197 
1198 	wil->ring2cid_tid[id][0] = max_assoc_sta; /* CID */
1199 	wil->ring2cid_tid[id][1] = 0; /* TID */
1200 
1201 	cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1202 
1203 	if (!vif->privacy)
1204 		txdata->dot1x_open = true;
1205 	rc = wmi_call(wil, WMI_BCAST_VRING_CFG_CMDID, vif->mid,
1206 		      &cmd, sizeof(cmd),
1207 		      WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
1208 	if (rc)
1209 		goto out_free;
1210 
1211 	if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1212 		wil_err(wil, "Tx config failed, status 0x%02x\n",
1213 			reply.cmd.status);
1214 		rc = -EINVAL;
1215 		goto out_free;
1216 	}
1217 
1218 	spin_lock_bh(&txdata->lock);
1219 	vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
1220 	txdata->mid = vif->mid;
1221 	txdata->enabled = 1;
1222 	spin_unlock_bh(&txdata->lock);
1223 
1224 	return 0;
1225  out_free:
1226 	spin_lock_bh(&txdata->lock);
1227 	txdata->enabled = 0;
1228 	txdata->dot1x_open = false;
1229 	spin_unlock_bh(&txdata->lock);
1230 	wil_vring_free(wil, vring);
1231  out:
1232 
1233 	return rc;
1234 }
1235 
1236 static struct wil_ring *wil_find_tx_ucast(struct wil6210_priv *wil,
1237 					  struct wil6210_vif *vif,
1238 					  struct sk_buff *skb)
1239 {
1240 	int i, cid;
1241 	const u8 *da = wil_skb_get_da(skb);
1242 	int min_ring_id = wil_get_min_tx_ring_id(wil);
1243 
1244 	cid = wil_find_cid(wil, vif->mid, da);
1245 
1246 	if (cid < 0 || cid >= max_assoc_sta)
1247 		return NULL;
1248 
1249 	/* TODO: fix for multiple TID */
1250 	for (i = min_ring_id; i < ARRAY_SIZE(wil->ring2cid_tid); i++) {
1251 		if (!wil->ring_tx_data[i].dot1x_open &&
1252 		    skb->protocol != cpu_to_be16(ETH_P_PAE))
1253 			continue;
1254 		if (wil->ring2cid_tid[i][0] == cid) {
1255 			struct wil_ring *v = &wil->ring_tx[i];
1256 			struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i];
1257 
1258 			wil_dbg_txrx(wil, "find_tx_ucast: (%pM) -> [%d]\n",
1259 				     da, i);
1260 			if (v->va && txdata->enabled) {
1261 				return v;
1262 			} else {
1263 				wil_dbg_txrx(wil,
1264 					     "find_tx_ucast: vring[%d] not valid\n",
1265 					     i);
1266 				return NULL;
1267 			}
1268 		}
1269 	}
1270 
1271 	return NULL;
1272 }
1273 
1274 static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
1275 		       struct wil_ring *ring, struct sk_buff *skb);
1276 
1277 static struct wil_ring *wil_find_tx_ring_sta(struct wil6210_priv *wil,
1278 					     struct wil6210_vif *vif,
1279 					     struct sk_buff *skb)
1280 {
1281 	struct wil_ring *ring;
1282 	int i;
1283 	u8 cid;
1284 	struct wil_ring_tx_data  *txdata;
1285 	int min_ring_id = wil_get_min_tx_ring_id(wil);
1286 
1287 	/* In the STA mode, it is expected to have only 1 VRING
1288 	 * for the AP we connected to.
1289 	 * find 1-st vring eligible for this skb and use it.
1290 	 */
1291 	for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
1292 		ring = &wil->ring_tx[i];
1293 		txdata = &wil->ring_tx_data[i];
1294 		if (!ring->va || !txdata->enabled || txdata->mid != vif->mid)
1295 			continue;
1296 
1297 		cid = wil->ring2cid_tid[i][0];
1298 		if (cid >= max_assoc_sta) /* skip BCAST */
1299 			continue;
1300 
1301 		if (!wil->ring_tx_data[i].dot1x_open &&
1302 		    skb->protocol != cpu_to_be16(ETH_P_PAE))
1303 			continue;
1304 
1305 		wil_dbg_txrx(wil, "Tx -> ring %d\n", i);
1306 
1307 		return ring;
1308 	}
1309 
1310 	wil_dbg_txrx(wil, "Tx while no rings active?\n");
1311 
1312 	return NULL;
1313 }
1314 
1315 /* Use one of 2 strategies:
1316  *
1317  * 1. New (real broadcast):
1318  *    use dedicated broadcast vring
1319  * 2. Old (pseudo-DMS):
1320  *    Find 1-st vring and return it;
1321  *    duplicate skb and send it to other active vrings;
1322  *    in all cases override dest address to unicast peer's address
1323  * Use old strategy when new is not supported yet:
1324  *  - for PBSS
1325  */
1326 static struct wil_ring *wil_find_tx_bcast_1(struct wil6210_priv *wil,
1327 					    struct wil6210_vif *vif,
1328 					    struct sk_buff *skb)
1329 {
1330 	struct wil_ring *v;
1331 	struct wil_ring_tx_data *txdata;
1332 	int i = vif->bcast_ring;
1333 
1334 	if (i < 0)
1335 		return NULL;
1336 	v = &wil->ring_tx[i];
1337 	txdata = &wil->ring_tx_data[i];
1338 	if (!v->va || !txdata->enabled)
1339 		return NULL;
1340 	if (!wil->ring_tx_data[i].dot1x_open &&
1341 	    skb->protocol != cpu_to_be16(ETH_P_PAE))
1342 		return NULL;
1343 
1344 	return v;
1345 }
1346 
1347 static void wil_set_da_for_vring(struct wil6210_priv *wil,
1348 				 struct sk_buff *skb, int vring_index)
1349 {
1350 	u8 *da = wil_skb_get_da(skb);
1351 	int cid = wil->ring2cid_tid[vring_index][0];
1352 
1353 	ether_addr_copy(da, wil->sta[cid].addr);
1354 }
1355 
1356 static struct wil_ring *wil_find_tx_bcast_2(struct wil6210_priv *wil,
1357 					    struct wil6210_vif *vif,
1358 					    struct sk_buff *skb)
1359 {
1360 	struct wil_ring *v, *v2;
1361 	struct sk_buff *skb2;
1362 	int i;
1363 	u8 cid;
1364 	const u8 *src = wil_skb_get_sa(skb);
1365 	struct wil_ring_tx_data *txdata, *txdata2;
1366 	int min_ring_id = wil_get_min_tx_ring_id(wil);
1367 
1368 	/* find 1-st vring eligible for data */
1369 	for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
1370 		v = &wil->ring_tx[i];
1371 		txdata = &wil->ring_tx_data[i];
1372 		if (!v->va || !txdata->enabled || txdata->mid != vif->mid)
1373 			continue;
1374 
1375 		cid = wil->ring2cid_tid[i][0];
1376 		if (cid >= max_assoc_sta) /* skip BCAST */
1377 			continue;
1378 		if (!wil->ring_tx_data[i].dot1x_open &&
1379 		    skb->protocol != cpu_to_be16(ETH_P_PAE))
1380 			continue;
1381 
1382 		/* don't Tx back to source when re-routing Rx->Tx at the AP */
1383 		if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1384 			continue;
1385 
1386 		goto found;
1387 	}
1388 
1389 	wil_dbg_txrx(wil, "Tx while no vrings active?\n");
1390 
1391 	return NULL;
1392 
1393 found:
1394 	wil_dbg_txrx(wil, "BCAST -> ring %d\n", i);
1395 	wil_set_da_for_vring(wil, skb, i);
1396 
1397 	/* find other active vrings and duplicate skb for each */
1398 	for (i++; i < WIL6210_MAX_TX_RINGS; i++) {
1399 		v2 = &wil->ring_tx[i];
1400 		txdata2 = &wil->ring_tx_data[i];
1401 		if (!v2->va || txdata2->mid != vif->mid)
1402 			continue;
1403 		cid = wil->ring2cid_tid[i][0];
1404 		if (cid >= max_assoc_sta) /* skip BCAST */
1405 			continue;
1406 		if (!wil->ring_tx_data[i].dot1x_open &&
1407 		    skb->protocol != cpu_to_be16(ETH_P_PAE))
1408 			continue;
1409 
1410 		if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1411 			continue;
1412 
1413 		skb2 = skb_copy(skb, GFP_ATOMIC);
1414 		if (skb2) {
1415 			wil_dbg_txrx(wil, "BCAST DUP -> ring %d\n", i);
1416 			wil_set_da_for_vring(wil, skb2, i);
1417 			wil_tx_ring(wil, vif, v2, skb2);
1418 			/* successful call to wil_tx_ring takes skb2 ref */
1419 			dev_kfree_skb_any(skb2);
1420 		} else {
1421 			wil_err(wil, "skb_copy failed\n");
1422 		}
1423 	}
1424 
1425 	return v;
1426 }
1427 
1428 static inline
1429 void wil_tx_desc_set_nr_frags(struct vring_tx_desc *d, int nr_frags)
1430 {
1431 	d->mac.d[2] |= (nr_frags << MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS);
1432 }
1433 
1434 /**
1435  * Sets the descriptor @d up for csum and/or TSO offloading. The corresponding
1436  * @skb is used to obtain the protocol and headers length.
1437  * @tso_desc_type is a descriptor type for TSO: 0 - a header, 1 - first data,
1438  * 2 - middle, 3 - last descriptor.
1439  */
1440 
1441 static void wil_tx_desc_offload_setup_tso(struct vring_tx_desc *d,
1442 					  struct sk_buff *skb,
1443 					  int tso_desc_type, bool is_ipv4,
1444 					  int tcp_hdr_len, int skb_net_hdr_len)
1445 {
1446 	d->dma.b11 = ETH_HLEN; /* MAC header length */
1447 	d->dma.b11 |= is_ipv4 << DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS;
1448 
1449 	d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1450 	/* L4 header len: TCP header length */
1451 	d->dma.d0 |= (tcp_hdr_len & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1452 
1453 	/* Setup TSO: bit and desc type */
1454 	d->dma.d0 |= (BIT(DMA_CFG_DESC_TX_0_TCP_SEG_EN_POS)) |
1455 		(tso_desc_type << DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS);
1456 	d->dma.d0 |= (is_ipv4 << DMA_CFG_DESC_TX_0_IPV4_CHECKSUM_EN_POS);
1457 
1458 	d->dma.ip_length = skb_net_hdr_len;
1459 	/* Enable TCP/UDP checksum */
1460 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1461 	/* Calculate pseudo-header */
1462 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1463 }
1464 
1465 /**
1466  * Sets the descriptor @d up for csum. The corresponding
1467  * @skb is used to obtain the protocol and headers length.
1468  * Returns the protocol: 0 - not TCP, 1 - TCPv4, 2 - TCPv6.
1469  * Note, if d==NULL, the function only returns the protocol result.
1470  *
1471  * It is very similar to previous wil_tx_desc_offload_setup_tso. This
1472  * is "if unrolling" to optimize the critical path.
1473  */
1474 
1475 static int wil_tx_desc_offload_setup(struct vring_tx_desc *d,
1476 				     struct sk_buff *skb){
1477 	int protocol;
1478 
1479 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1480 		return 0;
1481 
1482 	d->dma.b11 = ETH_HLEN; /* MAC header length */
1483 
1484 	switch (skb->protocol) {
1485 	case cpu_to_be16(ETH_P_IP):
1486 		protocol = ip_hdr(skb)->protocol;
1487 		d->dma.b11 |= BIT(DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS);
1488 		break;
1489 	case cpu_to_be16(ETH_P_IPV6):
1490 		protocol = ipv6_hdr(skb)->nexthdr;
1491 		break;
1492 	default:
1493 		return -EINVAL;
1494 	}
1495 
1496 	switch (protocol) {
1497 	case IPPROTO_TCP:
1498 		d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1499 		/* L4 header len: TCP header length */
1500 		d->dma.d0 |=
1501 		(tcp_hdrlen(skb) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1502 		break;
1503 	case IPPROTO_UDP:
1504 		/* L4 header len: UDP header length */
1505 		d->dma.d0 |=
1506 		(sizeof(struct udphdr) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1507 		break;
1508 	default:
1509 		return -EINVAL;
1510 	}
1511 
1512 	d->dma.ip_length = skb_network_header_len(skb);
1513 	/* Enable TCP/UDP checksum */
1514 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1515 	/* Calculate pseudo-header */
1516 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1517 
1518 	return 0;
1519 }
1520 
1521 static inline void wil_tx_last_desc(struct vring_tx_desc *d)
1522 {
1523 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS) |
1524 	      BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS) |
1525 	      BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
1526 }
1527 
1528 static inline void wil_set_tx_desc_last_tso(volatile struct vring_tx_desc *d)
1529 {
1530 	d->dma.d0 |= wil_tso_type_lst <<
1531 		  DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS;
1532 }
1533 
1534 static int __wil_tx_vring_tso(struct wil6210_priv *wil, struct wil6210_vif *vif,
1535 			      struct wil_ring *vring, struct sk_buff *skb)
1536 {
1537 	struct device *dev = wil_to_dev(wil);
1538 
1539 	/* point to descriptors in shared memory */
1540 	volatile struct vring_tx_desc *_desc = NULL, *_hdr_desc,
1541 				      *_first_desc = NULL;
1542 
1543 	/* pointers to shadow descriptors */
1544 	struct vring_tx_desc desc_mem, hdr_desc_mem, first_desc_mem,
1545 			     *d = &hdr_desc_mem, *hdr_desc = &hdr_desc_mem,
1546 			     *first_desc = &first_desc_mem;
1547 
1548 	/* pointer to shadow descriptors' context */
1549 	struct wil_ctx *hdr_ctx, *first_ctx = NULL;
1550 
1551 	int descs_used = 0; /* total number of used descriptors */
1552 	int sg_desc_cnt = 0; /* number of descriptors for current mss*/
1553 
1554 	u32 swhead = vring->swhead;
1555 	int used, avail = wil_ring_avail_tx(vring);
1556 	int nr_frags = skb_shinfo(skb)->nr_frags;
1557 	int min_desc_required = nr_frags + 1;
1558 	int mss = skb_shinfo(skb)->gso_size;	/* payload size w/o headers */
1559 	int f, len, hdrlen, headlen;
1560 	int vring_index = vring - wil->ring_tx;
1561 	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[vring_index];
1562 	uint i = swhead;
1563 	dma_addr_t pa;
1564 	const skb_frag_t *frag = NULL;
1565 	int rem_data = mss;
1566 	int lenmss;
1567 	int hdr_compensation_need = true;
1568 	int desc_tso_type = wil_tso_type_first;
1569 	bool is_ipv4;
1570 	int tcp_hdr_len;
1571 	int skb_net_hdr_len;
1572 	int gso_type;
1573 	int rc = -EINVAL;
1574 
1575 	wil_dbg_txrx(wil, "tx_vring_tso: %d bytes to vring %d\n", skb->len,
1576 		     vring_index);
1577 
1578 	if (unlikely(!txdata->enabled))
1579 		return -EINVAL;
1580 
1581 	/* A typical page 4K is 3-4 payloads, we assume each fragment
1582 	 * is a full payload, that's how min_desc_required has been
1583 	 * calculated. In real we might need more or less descriptors,
1584 	 * this is the initial check only.
1585 	 */
1586 	if (unlikely(avail < min_desc_required)) {
1587 		wil_err_ratelimited(wil,
1588 				    "TSO: Tx ring[%2d] full. No space for %d fragments\n",
1589 				    vring_index, min_desc_required);
1590 		return -ENOMEM;
1591 	}
1592 
1593 	/* Header Length = MAC header len + IP header len + TCP header len*/
1594 	hdrlen = ETH_HLEN +
1595 		(int)skb_network_header_len(skb) +
1596 		tcp_hdrlen(skb);
1597 
1598 	gso_type = skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV6 | SKB_GSO_TCPV4);
1599 	switch (gso_type) {
1600 	case SKB_GSO_TCPV4:
1601 		/* TCP v4, zero out the IP length and IPv4 checksum fields
1602 		 * as required by the offloading doc
1603 		 */
1604 		ip_hdr(skb)->tot_len = 0;
1605 		ip_hdr(skb)->check = 0;
1606 		is_ipv4 = true;
1607 		break;
1608 	case SKB_GSO_TCPV6:
1609 		/* TCP v6, zero out the payload length */
1610 		ipv6_hdr(skb)->payload_len = 0;
1611 		is_ipv4 = false;
1612 		break;
1613 	default:
1614 		/* other than TCPv4 or TCPv6 types are not supported for TSO.
1615 		 * It is also illegal for both to be set simultaneously
1616 		 */
1617 		return -EINVAL;
1618 	}
1619 
1620 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1621 		return -EINVAL;
1622 
1623 	/* tcp header length and skb network header length are fixed for all
1624 	 * packet's descriptors - read then once here
1625 	 */
1626 	tcp_hdr_len = tcp_hdrlen(skb);
1627 	skb_net_hdr_len = skb_network_header_len(skb);
1628 
1629 	_hdr_desc = &vring->va[i].tx.legacy;
1630 
1631 	pa = dma_map_single(dev, skb->data, hdrlen, DMA_TO_DEVICE);
1632 	if (unlikely(dma_mapping_error(dev, pa))) {
1633 		wil_err(wil, "TSO: Skb head DMA map error\n");
1634 		goto err_exit;
1635 	}
1636 
1637 	wil->txrx_ops.tx_desc_map((union wil_tx_desc *)hdr_desc, pa,
1638 				  hdrlen, vring_index);
1639 	wil_tx_desc_offload_setup_tso(hdr_desc, skb, wil_tso_type_hdr, is_ipv4,
1640 				      tcp_hdr_len, skb_net_hdr_len);
1641 	wil_tx_last_desc(hdr_desc);
1642 
1643 	vring->ctx[i].mapped_as = wil_mapped_as_single;
1644 	hdr_ctx = &vring->ctx[i];
1645 
1646 	descs_used++;
1647 	headlen = skb_headlen(skb) - hdrlen;
1648 
1649 	for (f = headlen ? -1 : 0; f < nr_frags; f++)  {
1650 		if (headlen) {
1651 			len = headlen;
1652 			wil_dbg_txrx(wil, "TSO: process skb head, len %u\n",
1653 				     len);
1654 		} else {
1655 			frag = &skb_shinfo(skb)->frags[f];
1656 			len = frag->size;
1657 			wil_dbg_txrx(wil, "TSO: frag[%d]: len %u\n", f, len);
1658 		}
1659 
1660 		while (len) {
1661 			wil_dbg_txrx(wil,
1662 				     "TSO: len %d, rem_data %d, descs_used %d\n",
1663 				     len, rem_data, descs_used);
1664 
1665 			if (descs_used == avail)  {
1666 				wil_err_ratelimited(wil, "TSO: ring overflow\n");
1667 				rc = -ENOMEM;
1668 				goto mem_error;
1669 			}
1670 
1671 			lenmss = min_t(int, rem_data, len);
1672 			i = (swhead + descs_used) % vring->size;
1673 			wil_dbg_txrx(wil, "TSO: lenmss %d, i %d\n", lenmss, i);
1674 
1675 			if (!headlen) {
1676 				pa = skb_frag_dma_map(dev, frag,
1677 						      frag->size - len, lenmss,
1678 						      DMA_TO_DEVICE);
1679 				vring->ctx[i].mapped_as = wil_mapped_as_page;
1680 			} else {
1681 				pa = dma_map_single(dev,
1682 						    skb->data +
1683 						    skb_headlen(skb) - headlen,
1684 						    lenmss,
1685 						    DMA_TO_DEVICE);
1686 				vring->ctx[i].mapped_as = wil_mapped_as_single;
1687 				headlen -= lenmss;
1688 			}
1689 
1690 			if (unlikely(dma_mapping_error(dev, pa))) {
1691 				wil_err(wil, "TSO: DMA map page error\n");
1692 				goto mem_error;
1693 			}
1694 
1695 			_desc = &vring->va[i].tx.legacy;
1696 
1697 			if (!_first_desc) {
1698 				_first_desc = _desc;
1699 				first_ctx = &vring->ctx[i];
1700 				d = first_desc;
1701 			} else {
1702 				d = &desc_mem;
1703 			}
1704 
1705 			wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d,
1706 						  pa, lenmss, vring_index);
1707 			wil_tx_desc_offload_setup_tso(d, skb, desc_tso_type,
1708 						      is_ipv4, tcp_hdr_len,
1709 						      skb_net_hdr_len);
1710 
1711 			/* use tso_type_first only once */
1712 			desc_tso_type = wil_tso_type_mid;
1713 
1714 			descs_used++;  /* desc used so far */
1715 			sg_desc_cnt++; /* desc used for this segment */
1716 			len -= lenmss;
1717 			rem_data -= lenmss;
1718 
1719 			wil_dbg_txrx(wil,
1720 				     "TSO: len %d, rem_data %d, descs_used %d, sg_desc_cnt %d,\n",
1721 				     len, rem_data, descs_used, sg_desc_cnt);
1722 
1723 			/* Close the segment if reached mss size or last frag*/
1724 			if (rem_data == 0 || (f == nr_frags - 1 && len == 0)) {
1725 				if (hdr_compensation_need) {
1726 					/* first segment include hdr desc for
1727 					 * release
1728 					 */
1729 					hdr_ctx->nr_frags = sg_desc_cnt;
1730 					wil_tx_desc_set_nr_frags(first_desc,
1731 								 sg_desc_cnt +
1732 								 1);
1733 					hdr_compensation_need = false;
1734 				} else {
1735 					wil_tx_desc_set_nr_frags(first_desc,
1736 								 sg_desc_cnt);
1737 				}
1738 				first_ctx->nr_frags = sg_desc_cnt - 1;
1739 
1740 				wil_tx_last_desc(d);
1741 
1742 				/* first descriptor may also be the last
1743 				 * for this mss - make sure not to copy
1744 				 * it twice
1745 				 */
1746 				if (first_desc != d)
1747 					*_first_desc = *first_desc;
1748 
1749 				/*last descriptor will be copied at the end
1750 				 * of this TS processing
1751 				 */
1752 				if (f < nr_frags - 1 || len > 0)
1753 					*_desc = *d;
1754 
1755 				rem_data = mss;
1756 				_first_desc = NULL;
1757 				sg_desc_cnt = 0;
1758 			} else if (first_desc != d) /* update mid descriptor */
1759 					*_desc = *d;
1760 		}
1761 	}
1762 
1763 	/* first descriptor may also be the last.
1764 	 * in this case d pointer is invalid
1765 	 */
1766 	if (_first_desc == _desc)
1767 		d = first_desc;
1768 
1769 	/* Last data descriptor */
1770 	wil_set_tx_desc_last_tso(d);
1771 	*_desc = *d;
1772 
1773 	/* Fill the total number of descriptors in first desc (hdr)*/
1774 	wil_tx_desc_set_nr_frags(hdr_desc, descs_used);
1775 	*_hdr_desc = *hdr_desc;
1776 
1777 	/* hold reference to skb
1778 	 * to prevent skb release before accounting
1779 	 * in case of immediate "tx done"
1780 	 */
1781 	vring->ctx[i].skb = skb_get(skb);
1782 
1783 	/* performance monitoring */
1784 	used = wil_ring_used_tx(vring);
1785 	if (wil_val_in_range(wil->ring_idle_trsh,
1786 			     used, used + descs_used)) {
1787 		txdata->idle += get_cycles() - txdata->last_idle;
1788 		wil_dbg_txrx(wil,  "Ring[%2d] not idle %d -> %d\n",
1789 			     vring_index, used, used + descs_used);
1790 	}
1791 
1792 	/* Make sure to advance the head only after descriptor update is done.
1793 	 * This will prevent a race condition where the completion thread
1794 	 * will see the DU bit set from previous run and will handle the
1795 	 * skb before it was completed.
1796 	 */
1797 	wmb();
1798 
1799 	/* advance swhead */
1800 	wil_ring_advance_head(vring, descs_used);
1801 	wil_dbg_txrx(wil, "TSO: Tx swhead %d -> %d\n", swhead, vring->swhead);
1802 
1803 	/* make sure all writes to descriptors (shared memory) are done before
1804 	 * committing them to HW
1805 	 */
1806 	wmb();
1807 
1808 	if (wil->tx_latency)
1809 		*(ktime_t *)&skb->cb = ktime_get();
1810 	else
1811 		memset(skb->cb, 0, sizeof(ktime_t));
1812 
1813 	wil_w(wil, vring->hwtail, vring->swhead);
1814 	return 0;
1815 
1816 mem_error:
1817 	while (descs_used > 0) {
1818 		struct wil_ctx *ctx;
1819 
1820 		i = (swhead + descs_used - 1) % vring->size;
1821 		d = (struct vring_tx_desc *)&vring->va[i].tx.legacy;
1822 		_desc = &vring->va[i].tx.legacy;
1823 		*d = *_desc;
1824 		_desc->dma.status = TX_DMA_STATUS_DU;
1825 		ctx = &vring->ctx[i];
1826 		wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx);
1827 		memset(ctx, 0, sizeof(*ctx));
1828 		descs_used--;
1829 	}
1830 err_exit:
1831 	return rc;
1832 }
1833 
1834 static int __wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
1835 			 struct wil_ring *ring, struct sk_buff *skb)
1836 {
1837 	struct device *dev = wil_to_dev(wil);
1838 	struct vring_tx_desc dd, *d = &dd;
1839 	volatile struct vring_tx_desc *_d;
1840 	u32 swhead = ring->swhead;
1841 	int avail = wil_ring_avail_tx(ring);
1842 	int nr_frags = skb_shinfo(skb)->nr_frags;
1843 	uint f = 0;
1844 	int ring_index = ring - wil->ring_tx;
1845 	struct wil_ring_tx_data  *txdata = &wil->ring_tx_data[ring_index];
1846 	uint i = swhead;
1847 	dma_addr_t pa;
1848 	int used;
1849 	bool mcast = (ring_index == vif->bcast_ring);
1850 	uint len = skb_headlen(skb);
1851 
1852 	wil_dbg_txrx(wil, "tx_ring: %d bytes to ring %d, nr_frags %d\n",
1853 		     skb->len, ring_index, nr_frags);
1854 
1855 	if (unlikely(!txdata->enabled))
1856 		return -EINVAL;
1857 
1858 	if (unlikely(avail < 1 + nr_frags)) {
1859 		wil_err_ratelimited(wil,
1860 				    "Tx ring[%2d] full. No space for %d fragments\n",
1861 				    ring_index, 1 + nr_frags);
1862 		return -ENOMEM;
1863 	}
1864 	_d = &ring->va[i].tx.legacy;
1865 
1866 	pa = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
1867 
1868 	wil_dbg_txrx(wil, "Tx[%2d] skb %d bytes 0x%p -> %pad\n", ring_index,
1869 		     skb_headlen(skb), skb->data, &pa);
1870 	wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1,
1871 			  skb->data, skb_headlen(skb), false);
1872 
1873 	if (unlikely(dma_mapping_error(dev, pa)))
1874 		return -EINVAL;
1875 	ring->ctx[i].mapped_as = wil_mapped_as_single;
1876 	/* 1-st segment */
1877 	wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, pa, len,
1878 				   ring_index);
1879 	if (unlikely(mcast)) {
1880 		d->mac.d[0] |= BIT(MAC_CFG_DESC_TX_0_MCS_EN_POS); /* MCS 0 */
1881 		if (unlikely(len > WIL_BCAST_MCS0_LIMIT)) /* set MCS 1 */
1882 			d->mac.d[0] |= (1 << MAC_CFG_DESC_TX_0_MCS_INDEX_POS);
1883 	}
1884 	/* Process TCP/UDP checksum offloading */
1885 	if (unlikely(wil_tx_desc_offload_setup(d, skb))) {
1886 		wil_err(wil, "Tx[%2d] Failed to set cksum, drop packet\n",
1887 			ring_index);
1888 		goto dma_error;
1889 	}
1890 
1891 	ring->ctx[i].nr_frags = nr_frags;
1892 	wil_tx_desc_set_nr_frags(d, nr_frags + 1);
1893 
1894 	/* middle segments */
1895 	for (; f < nr_frags; f++) {
1896 		const struct skb_frag_struct *frag =
1897 				&skb_shinfo(skb)->frags[f];
1898 		int len = skb_frag_size(frag);
1899 
1900 		*_d = *d;
1901 		wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i);
1902 		wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
1903 				  (const void *)d, sizeof(*d), false);
1904 		i = (swhead + f + 1) % ring->size;
1905 		_d = &ring->va[i].tx.legacy;
1906 		pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag),
1907 				      DMA_TO_DEVICE);
1908 		if (unlikely(dma_mapping_error(dev, pa))) {
1909 			wil_err(wil, "Tx[%2d] failed to map fragment\n",
1910 				ring_index);
1911 			goto dma_error;
1912 		}
1913 		ring->ctx[i].mapped_as = wil_mapped_as_page;
1914 		wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d,
1915 					   pa, len, ring_index);
1916 		/* no need to check return code -
1917 		 * if it succeeded for 1-st descriptor,
1918 		 * it will succeed here too
1919 		 */
1920 		wil_tx_desc_offload_setup(d, skb);
1921 	}
1922 	/* for the last seg only */
1923 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS);
1924 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS);
1925 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
1926 	*_d = *d;
1927 	wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i);
1928 	wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
1929 			  (const void *)d, sizeof(*d), false);
1930 
1931 	/* hold reference to skb
1932 	 * to prevent skb release before accounting
1933 	 * in case of immediate "tx done"
1934 	 */
1935 	ring->ctx[i].skb = skb_get(skb);
1936 
1937 	/* performance monitoring */
1938 	used = wil_ring_used_tx(ring);
1939 	if (wil_val_in_range(wil->ring_idle_trsh,
1940 			     used, used + nr_frags + 1)) {
1941 		txdata->idle += get_cycles() - txdata->last_idle;
1942 		wil_dbg_txrx(wil,  "Ring[%2d] not idle %d -> %d\n",
1943 			     ring_index, used, used + nr_frags + 1);
1944 	}
1945 
1946 	/* Make sure to advance the head only after descriptor update is done.
1947 	 * This will prevent a race condition where the completion thread
1948 	 * will see the DU bit set from previous run and will handle the
1949 	 * skb before it was completed.
1950 	 */
1951 	wmb();
1952 
1953 	/* advance swhead */
1954 	wil_ring_advance_head(ring, nr_frags + 1);
1955 	wil_dbg_txrx(wil, "Tx[%2d] swhead %d -> %d\n", ring_index, swhead,
1956 		     ring->swhead);
1957 	trace_wil6210_tx(ring_index, swhead, skb->len, nr_frags);
1958 
1959 	/* make sure all writes to descriptors (shared memory) are done before
1960 	 * committing them to HW
1961 	 */
1962 	wmb();
1963 
1964 	if (wil->tx_latency)
1965 		*(ktime_t *)&skb->cb = ktime_get();
1966 	else
1967 		memset(skb->cb, 0, sizeof(ktime_t));
1968 
1969 	wil_w(wil, ring->hwtail, ring->swhead);
1970 
1971 	return 0;
1972  dma_error:
1973 	/* unmap what we have mapped */
1974 	nr_frags = f + 1; /* frags mapped + one for skb head */
1975 	for (f = 0; f < nr_frags; f++) {
1976 		struct wil_ctx *ctx;
1977 
1978 		i = (swhead + f) % ring->size;
1979 		ctx = &ring->ctx[i];
1980 		_d = &ring->va[i].tx.legacy;
1981 		*d = *_d;
1982 		_d->dma.status = TX_DMA_STATUS_DU;
1983 		wil->txrx_ops.tx_desc_unmap(dev,
1984 					    (union wil_tx_desc *)d,
1985 					    ctx);
1986 
1987 		memset(ctx, 0, sizeof(*ctx));
1988 	}
1989 
1990 	return -EINVAL;
1991 }
1992 
1993 static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
1994 		       struct wil_ring *ring, struct sk_buff *skb)
1995 {
1996 	int ring_index = ring - wil->ring_tx;
1997 	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_index];
1998 	int rc;
1999 
2000 	spin_lock(&txdata->lock);
2001 
2002 	if (test_bit(wil_status_suspending, wil->status) ||
2003 	    test_bit(wil_status_suspended, wil->status) ||
2004 	    test_bit(wil_status_resuming, wil->status)) {
2005 		wil_dbg_txrx(wil,
2006 			     "suspend/resume in progress. drop packet\n");
2007 		spin_unlock(&txdata->lock);
2008 		return -EINVAL;
2009 	}
2010 
2011 	rc = (skb_is_gso(skb) ? wil->txrx_ops.tx_ring_tso : __wil_tx_ring)
2012 	     (wil, vif, ring, skb);
2013 
2014 	spin_unlock(&txdata->lock);
2015 
2016 	return rc;
2017 }
2018 
2019 /**
2020  * Check status of tx vrings and stop/wake net queues if needed
2021  * It will start/stop net queues of a specific VIF net_device.
2022  *
2023  * This function does one of two checks:
2024  * In case check_stop is true, will check if net queues need to be stopped. If
2025  * the conditions for stopping are met, netif_tx_stop_all_queues() is called.
2026  * In case check_stop is false, will check if net queues need to be waked. If
2027  * the conditions for waking are met, netif_tx_wake_all_queues() is called.
2028  * vring is the vring which is currently being modified by either adding
2029  * descriptors (tx) into it or removing descriptors (tx complete) from it. Can
2030  * be null when irrelevant (e.g. connect/disconnect events).
2031  *
2032  * The implementation is to stop net queues if modified vring has low
2033  * descriptor availability. Wake if all vrings are not in low descriptor
2034  * availability and modified vring has high descriptor availability.
2035  */
2036 static inline void __wil_update_net_queues(struct wil6210_priv *wil,
2037 					   struct wil6210_vif *vif,
2038 					   struct wil_ring *ring,
2039 					   bool check_stop)
2040 {
2041 	int i;
2042 	int min_ring_id = wil_get_min_tx_ring_id(wil);
2043 
2044 	if (unlikely(!vif))
2045 		return;
2046 
2047 	if (ring)
2048 		wil_dbg_txrx(wil, "vring %d, mid %d, check_stop=%d, stopped=%d",
2049 			     (int)(ring - wil->ring_tx), vif->mid, check_stop,
2050 			     vif->net_queue_stopped);
2051 	else
2052 		wil_dbg_txrx(wil, "check_stop=%d, mid=%d, stopped=%d",
2053 			     check_stop, vif->mid, vif->net_queue_stopped);
2054 
2055 	if (ring && drop_if_ring_full)
2056 		/* no need to stop/wake net queues */
2057 		return;
2058 
2059 	if (check_stop == vif->net_queue_stopped)
2060 		/* net queues already in desired state */
2061 		return;
2062 
2063 	if (check_stop) {
2064 		if (!ring || unlikely(wil_ring_avail_low(ring))) {
2065 			/* not enough room in the vring */
2066 			netif_tx_stop_all_queues(vif_to_ndev(vif));
2067 			vif->net_queue_stopped = true;
2068 			wil_dbg_txrx(wil, "netif_tx_stop called\n");
2069 		}
2070 		return;
2071 	}
2072 
2073 	/* Do not wake the queues in suspend flow */
2074 	if (test_bit(wil_status_suspending, wil->status) ||
2075 	    test_bit(wil_status_suspended, wil->status))
2076 		return;
2077 
2078 	/* check wake */
2079 	for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
2080 		struct wil_ring *cur_ring = &wil->ring_tx[i];
2081 		struct wil_ring_tx_data  *txdata = &wil->ring_tx_data[i];
2082 
2083 		if (txdata->mid != vif->mid || !cur_ring->va ||
2084 		    !txdata->enabled || cur_ring == ring)
2085 			continue;
2086 
2087 		if (wil_ring_avail_low(cur_ring)) {
2088 			wil_dbg_txrx(wil, "ring %d full, can't wake\n",
2089 				     (int)(cur_ring - wil->ring_tx));
2090 			return;
2091 		}
2092 	}
2093 
2094 	if (!ring || wil_ring_avail_high(ring)) {
2095 		/* enough room in the ring */
2096 		wil_dbg_txrx(wil, "calling netif_tx_wake\n");
2097 		netif_tx_wake_all_queues(vif_to_ndev(vif));
2098 		vif->net_queue_stopped = false;
2099 	}
2100 }
2101 
2102 void wil_update_net_queues(struct wil6210_priv *wil, struct wil6210_vif *vif,
2103 			   struct wil_ring *ring, bool check_stop)
2104 {
2105 	spin_lock(&wil->net_queue_lock);
2106 	__wil_update_net_queues(wil, vif, ring, check_stop);
2107 	spin_unlock(&wil->net_queue_lock);
2108 }
2109 
2110 void wil_update_net_queues_bh(struct wil6210_priv *wil, struct wil6210_vif *vif,
2111 			      struct wil_ring *ring, bool check_stop)
2112 {
2113 	spin_lock_bh(&wil->net_queue_lock);
2114 	__wil_update_net_queues(wil, vif, ring, check_stop);
2115 	spin_unlock_bh(&wil->net_queue_lock);
2116 }
2117 
2118 netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2119 {
2120 	struct wil6210_vif *vif = ndev_to_vif(ndev);
2121 	struct wil6210_priv *wil = vif_to_wil(vif);
2122 	const u8 *da = wil_skb_get_da(skb);
2123 	bool bcast = is_multicast_ether_addr(da);
2124 	struct wil_ring *ring;
2125 	static bool pr_once_fw;
2126 	int rc;
2127 
2128 	wil_dbg_txrx(wil, "start_xmit\n");
2129 	if (unlikely(!test_bit(wil_status_fwready, wil->status))) {
2130 		if (!pr_once_fw) {
2131 			wil_err(wil, "FW not ready\n");
2132 			pr_once_fw = true;
2133 		}
2134 		goto drop;
2135 	}
2136 	if (unlikely(!test_bit(wil_vif_fwconnected, vif->status))) {
2137 		wil_dbg_ratelimited(wil,
2138 				    "VIF not connected, packet dropped\n");
2139 		goto drop;
2140 	}
2141 	if (unlikely(vif->wdev.iftype == NL80211_IFTYPE_MONITOR)) {
2142 		wil_err(wil, "Xmit in monitor mode not supported\n");
2143 		goto drop;
2144 	}
2145 	pr_once_fw = false;
2146 
2147 	/* find vring */
2148 	if (vif->wdev.iftype == NL80211_IFTYPE_STATION && !vif->pbss) {
2149 		/* in STA mode (ESS), all to same VRING (to AP) */
2150 		ring = wil_find_tx_ring_sta(wil, vif, skb);
2151 	} else if (bcast) {
2152 		if (vif->pbss)
2153 			/* in pbss, no bcast VRING - duplicate skb in
2154 			 * all stations VRINGs
2155 			 */
2156 			ring = wil_find_tx_bcast_2(wil, vif, skb);
2157 		else if (vif->wdev.iftype == NL80211_IFTYPE_AP)
2158 			/* AP has a dedicated bcast VRING */
2159 			ring = wil_find_tx_bcast_1(wil, vif, skb);
2160 		else
2161 			/* unexpected combination, fallback to duplicating
2162 			 * the skb in all stations VRINGs
2163 			 */
2164 			ring = wil_find_tx_bcast_2(wil, vif, skb);
2165 	} else {
2166 		/* unicast, find specific VRING by dest. address */
2167 		ring = wil_find_tx_ucast(wil, vif, skb);
2168 	}
2169 	if (unlikely(!ring)) {
2170 		wil_dbg_txrx(wil, "No Tx RING found for %pM\n", da);
2171 		goto drop;
2172 	}
2173 	/* set up vring entry */
2174 	rc = wil_tx_ring(wil, vif, ring, skb);
2175 
2176 	switch (rc) {
2177 	case 0:
2178 		/* shall we stop net queues? */
2179 		wil_update_net_queues_bh(wil, vif, ring, true);
2180 		/* statistics will be updated on the tx_complete */
2181 		dev_kfree_skb_any(skb);
2182 		return NETDEV_TX_OK;
2183 	case -ENOMEM:
2184 		if (drop_if_ring_full)
2185 			goto drop;
2186 		return NETDEV_TX_BUSY;
2187 	default:
2188 		break; /* goto drop; */
2189 	}
2190  drop:
2191 	ndev->stats.tx_dropped++;
2192 	dev_kfree_skb_any(skb);
2193 
2194 	return NET_XMIT_DROP;
2195 }
2196 
2197 void wil_tx_latency_calc(struct wil6210_priv *wil, struct sk_buff *skb,
2198 			 struct wil_sta_info *sta)
2199 {
2200 	int skb_time_us;
2201 	int bin;
2202 
2203 	if (!wil->tx_latency)
2204 		return;
2205 
2206 	if (ktime_to_ms(*(ktime_t *)&skb->cb) == 0)
2207 		return;
2208 
2209 	skb_time_us = ktime_us_delta(ktime_get(), *(ktime_t *)&skb->cb);
2210 	bin = skb_time_us / wil->tx_latency_res;
2211 	bin = min_t(int, bin, WIL_NUM_LATENCY_BINS - 1);
2212 
2213 	wil_dbg_txrx(wil, "skb time %dus => bin %d\n", skb_time_us, bin);
2214 	sta->tx_latency_bins[bin]++;
2215 	sta->stats.tx_latency_total_us += skb_time_us;
2216 	if (skb_time_us < sta->stats.tx_latency_min_us)
2217 		sta->stats.tx_latency_min_us = skb_time_us;
2218 	if (skb_time_us > sta->stats.tx_latency_max_us)
2219 		sta->stats.tx_latency_max_us = skb_time_us;
2220 }
2221 
2222 /**
2223  * Clean up transmitted skb's from the Tx VRING
2224  *
2225  * Return number of descriptors cleared
2226  *
2227  * Safe to call from IRQ
2228  */
2229 int wil_tx_complete(struct wil6210_vif *vif, int ringid)
2230 {
2231 	struct wil6210_priv *wil = vif_to_wil(vif);
2232 	struct net_device *ndev = vif_to_ndev(vif);
2233 	struct device *dev = wil_to_dev(wil);
2234 	struct wil_ring *vring = &wil->ring_tx[ringid];
2235 	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ringid];
2236 	int done = 0;
2237 	int cid = wil->ring2cid_tid[ringid][0];
2238 	struct wil_net_stats *stats = NULL;
2239 	volatile struct vring_tx_desc *_d;
2240 	int used_before_complete;
2241 	int used_new;
2242 
2243 	if (unlikely(!vring->va)) {
2244 		wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid);
2245 		return 0;
2246 	}
2247 
2248 	if (unlikely(!txdata->enabled)) {
2249 		wil_info(wil, "Tx irq[%d]: vring disabled\n", ringid);
2250 		return 0;
2251 	}
2252 
2253 	wil_dbg_txrx(wil, "tx_complete: (%d)\n", ringid);
2254 
2255 	used_before_complete = wil_ring_used_tx(vring);
2256 
2257 	if (cid < max_assoc_sta)
2258 		stats = &wil->sta[cid].stats;
2259 
2260 	while (!wil_ring_is_empty(vring)) {
2261 		int new_swtail;
2262 		struct wil_ctx *ctx = &vring->ctx[vring->swtail];
2263 		/**
2264 		 * For the fragmented skb, HW will set DU bit only for the
2265 		 * last fragment. look for it.
2266 		 * In TSO the first DU will include hdr desc
2267 		 */
2268 		int lf = (vring->swtail + ctx->nr_frags) % vring->size;
2269 		/* TODO: check we are not past head */
2270 
2271 		_d = &vring->va[lf].tx.legacy;
2272 		if (unlikely(!(_d->dma.status & TX_DMA_STATUS_DU)))
2273 			break;
2274 
2275 		new_swtail = (lf + 1) % vring->size;
2276 		while (vring->swtail != new_swtail) {
2277 			struct vring_tx_desc dd, *d = &dd;
2278 			u16 dmalen;
2279 			struct sk_buff *skb;
2280 
2281 			ctx = &vring->ctx[vring->swtail];
2282 			skb = ctx->skb;
2283 			_d = &vring->va[vring->swtail].tx.legacy;
2284 
2285 			*d = *_d;
2286 
2287 			dmalen = le16_to_cpu(d->dma.length);
2288 			trace_wil6210_tx_done(ringid, vring->swtail, dmalen,
2289 					      d->dma.error);
2290 			wil_dbg_txrx(wil,
2291 				     "TxC[%2d][%3d] : %d bytes, status 0x%02x err 0x%02x\n",
2292 				     ringid, vring->swtail, dmalen,
2293 				     d->dma.status, d->dma.error);
2294 			wil_hex_dump_txrx("TxCD ", DUMP_PREFIX_NONE, 32, 4,
2295 					  (const void *)d, sizeof(*d), false);
2296 
2297 			wil->txrx_ops.tx_desc_unmap(dev,
2298 						    (union wil_tx_desc *)d,
2299 						    ctx);
2300 
2301 			if (skb) {
2302 				if (likely(d->dma.error == 0)) {
2303 					ndev->stats.tx_packets++;
2304 					ndev->stats.tx_bytes += skb->len;
2305 					if (stats) {
2306 						stats->tx_packets++;
2307 						stats->tx_bytes += skb->len;
2308 
2309 						wil_tx_latency_calc(wil, skb,
2310 							&wil->sta[cid]);
2311 					}
2312 				} else {
2313 					ndev->stats.tx_errors++;
2314 					if (stats)
2315 						stats->tx_errors++;
2316 				}
2317 				wil_consume_skb(skb, d->dma.error == 0);
2318 			}
2319 			memset(ctx, 0, sizeof(*ctx));
2320 			/* Make sure the ctx is zeroed before updating the tail
2321 			 * to prevent a case where wil_tx_ring will see
2322 			 * this descriptor as used and handle it before ctx zero
2323 			 * is completed.
2324 			 */
2325 			wmb();
2326 			/* There is no need to touch HW descriptor:
2327 			 * - ststus bit TX_DMA_STATUS_DU is set by design,
2328 			 *   so hardware will not try to process this desc.,
2329 			 * - rest of descriptor will be initialized on Tx.
2330 			 */
2331 			vring->swtail = wil_ring_next_tail(vring);
2332 			done++;
2333 		}
2334 	}
2335 
2336 	/* performance monitoring */
2337 	used_new = wil_ring_used_tx(vring);
2338 	if (wil_val_in_range(wil->ring_idle_trsh,
2339 			     used_new, used_before_complete)) {
2340 		wil_dbg_txrx(wil, "Ring[%2d] idle %d -> %d\n",
2341 			     ringid, used_before_complete, used_new);
2342 		txdata->last_idle = get_cycles();
2343 	}
2344 
2345 	/* shall we wake net queues? */
2346 	if (done)
2347 		wil_update_net_queues(wil, vif, vring, false);
2348 
2349 	return done;
2350 }
2351 
2352 static inline int wil_tx_init(struct wil6210_priv *wil)
2353 {
2354 	return 0;
2355 }
2356 
2357 static inline void wil_tx_fini(struct wil6210_priv *wil) {}
2358 
2359 static void wil_get_reorder_params(struct wil6210_priv *wil,
2360 				   struct sk_buff *skb, int *tid, int *cid,
2361 				   int *mid, u16 *seq, int *mcast, int *retry)
2362 {
2363 	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
2364 
2365 	*tid = wil_rxdesc_tid(d);
2366 	*cid = wil_skb_get_cid(skb);
2367 	*mid = wil_rxdesc_mid(d);
2368 	*seq = wil_rxdesc_seq(d);
2369 	*mcast = wil_rxdesc_mcast(d);
2370 	*retry = wil_rxdesc_retry(d);
2371 }
2372 
2373 void wil_init_txrx_ops_legacy_dma(struct wil6210_priv *wil)
2374 {
2375 	wil->txrx_ops.configure_interrupt_moderation =
2376 		wil_configure_interrupt_moderation;
2377 	/* TX ops */
2378 	wil->txrx_ops.tx_desc_map = wil_tx_desc_map;
2379 	wil->txrx_ops.tx_desc_unmap = wil_txdesc_unmap;
2380 	wil->txrx_ops.tx_ring_tso =  __wil_tx_vring_tso;
2381 	wil->txrx_ops.ring_init_tx = wil_vring_init_tx;
2382 	wil->txrx_ops.ring_fini_tx = wil_vring_free;
2383 	wil->txrx_ops.ring_init_bcast = wil_vring_init_bcast;
2384 	wil->txrx_ops.tx_init = wil_tx_init;
2385 	wil->txrx_ops.tx_fini = wil_tx_fini;
2386 	wil->txrx_ops.tx_ring_modify = wil_tx_vring_modify;
2387 	/* RX ops */
2388 	wil->txrx_ops.rx_init = wil_rx_init;
2389 	wil->txrx_ops.wmi_addba_rx_resp = wmi_addba_rx_resp;
2390 	wil->txrx_ops.get_reorder_params = wil_get_reorder_params;
2391 	wil->txrx_ops.get_netif_rx_params =
2392 		wil_get_netif_rx_params;
2393 	wil->txrx_ops.rx_crypto_check = wil_rx_crypto_check;
2394 	wil->txrx_ops.rx_error_check = wil_rx_error_check;
2395 	wil->txrx_ops.is_rx_idle = wil_is_rx_idle;
2396 	wil->txrx_ops.rx_fini = wil_rx_fini;
2397 }
2398