xref: /openbmc/linux/drivers/net/wireless/ath/wil6210/txrx.c (revision 2e6ae11dd0d1c37f44cec51a58fb2092e55ed0f5)
1 /*
2  * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
3  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/etherdevice.h>
19 #include <net/ieee80211_radiotap.h>
20 #include <linux/if_arp.h>
21 #include <linux/moduleparam.h>
22 #include <linux/ip.h>
23 #include <linux/ipv6.h>
24 #include <net/ipv6.h>
25 #include <linux/prefetch.h>
26 
27 #include "wil6210.h"
28 #include "wmi.h"
29 #include "txrx.h"
30 #include "trace.h"
31 #include "txrx_edma.h"
32 
33 static bool rtap_include_phy_info;
34 module_param(rtap_include_phy_info, bool, 0444);
35 MODULE_PARM_DESC(rtap_include_phy_info,
36 		 " Include PHY info in the radiotap header, default - no");
37 
38 bool rx_align_2;
39 module_param(rx_align_2, bool, 0444);
40 MODULE_PARM_DESC(rx_align_2, " align Rx buffers on 4*n+2, default - no");
41 
42 bool rx_large_buf;
43 module_param(rx_large_buf, bool, 0444);
44 MODULE_PARM_DESC(rx_large_buf, " allocate 8KB RX buffers, default - no");
45 
46 static inline uint wil_rx_snaplen(void)
47 {
48 	return rx_align_2 ? 6 : 0;
49 }
50 
51 /* wil_ring_wmark_low - low watermark for available descriptor space */
52 static inline int wil_ring_wmark_low(struct wil_ring *ring)
53 {
54 	return ring->size / 8;
55 }
56 
57 /* wil_ring_wmark_high - high watermark for available descriptor space */
58 static inline int wil_ring_wmark_high(struct wil_ring *ring)
59 {
60 	return ring->size / 4;
61 }
62 
63 /* returns true if num avail descriptors is lower than wmark_low */
64 static inline int wil_ring_avail_low(struct wil_ring *ring)
65 {
66 	return wil_ring_avail_tx(ring) < wil_ring_wmark_low(ring);
67 }
68 
69 /* returns true if num avail descriptors is higher than wmark_high */
70 static inline int wil_ring_avail_high(struct wil_ring *ring)
71 {
72 	return wil_ring_avail_tx(ring) > wil_ring_wmark_high(ring);
73 }
74 
75 /* returns true when all tx vrings are empty */
76 bool wil_is_tx_idle(struct wil6210_priv *wil)
77 {
78 	int i;
79 	unsigned long data_comp_to;
80 
81 	for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
82 		struct wil_ring *vring = &wil->ring_tx[i];
83 		int vring_index = vring - wil->ring_tx;
84 		struct wil_ring_tx_data *txdata =
85 			&wil->ring_tx_data[vring_index];
86 
87 		spin_lock(&txdata->lock);
88 
89 		if (!vring->va || !txdata->enabled) {
90 			spin_unlock(&txdata->lock);
91 			continue;
92 		}
93 
94 		data_comp_to = jiffies + msecs_to_jiffies(
95 					WIL_DATA_COMPLETION_TO_MS);
96 		if (test_bit(wil_status_napi_en, wil->status)) {
97 			while (!wil_ring_is_empty(vring)) {
98 				if (time_after(jiffies, data_comp_to)) {
99 					wil_dbg_pm(wil,
100 						   "TO waiting for idle tx\n");
101 					spin_unlock(&txdata->lock);
102 					return false;
103 				}
104 				wil_dbg_ratelimited(wil,
105 						    "tx vring is not empty -> NAPI\n");
106 				spin_unlock(&txdata->lock);
107 				napi_synchronize(&wil->napi_tx);
108 				msleep(20);
109 				spin_lock(&txdata->lock);
110 				if (!vring->va || !txdata->enabled)
111 					break;
112 			}
113 		}
114 
115 		spin_unlock(&txdata->lock);
116 	}
117 
118 	return true;
119 }
120 
121 static int wil_vring_alloc(struct wil6210_priv *wil, struct wil_ring *vring)
122 {
123 	struct device *dev = wil_to_dev(wil);
124 	size_t sz = vring->size * sizeof(vring->va[0]);
125 	uint i;
126 
127 	wil_dbg_misc(wil, "vring_alloc:\n");
128 
129 	BUILD_BUG_ON(sizeof(vring->va[0]) != 32);
130 
131 	vring->swhead = 0;
132 	vring->swtail = 0;
133 	vring->ctx = kcalloc(vring->size, sizeof(vring->ctx[0]), GFP_KERNEL);
134 	if (!vring->ctx) {
135 		vring->va = NULL;
136 		return -ENOMEM;
137 	}
138 
139 	/* vring->va should be aligned on its size rounded up to power of 2
140 	 * This is granted by the dma_alloc_coherent.
141 	 *
142 	 * HW has limitation that all vrings addresses must share the same
143 	 * upper 16 msb bits part of 48 bits address. To workaround that,
144 	 * if we are using more than 32 bit addresses switch to 32 bit
145 	 * allocation before allocating vring memory.
146 	 *
147 	 * There's no check for the return value of dma_set_mask_and_coherent,
148 	 * since we assume if we were able to set the mask during
149 	 * initialization in this system it will not fail if we set it again
150 	 */
151 	if (wil->dma_addr_size > 32)
152 		dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
153 
154 	vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL);
155 	if (!vring->va) {
156 		kfree(vring->ctx);
157 		vring->ctx = NULL;
158 		return -ENOMEM;
159 	}
160 
161 	if (wil->dma_addr_size > 32)
162 		dma_set_mask_and_coherent(dev,
163 					  DMA_BIT_MASK(wil->dma_addr_size));
164 
165 	/* initially, all descriptors are SW owned
166 	 * For Tx and Rx, ownership bit is at the same location, thus
167 	 * we can use any
168 	 */
169 	for (i = 0; i < vring->size; i++) {
170 		volatile struct vring_tx_desc *_d =
171 			&vring->va[i].tx.legacy;
172 
173 		_d->dma.status = TX_DMA_STATUS_DU;
174 	}
175 
176 	wil_dbg_misc(wil, "vring[%d] 0x%p:%pad 0x%p\n", vring->size,
177 		     vring->va, &vring->pa, vring->ctx);
178 
179 	return 0;
180 }
181 
182 static void wil_txdesc_unmap(struct device *dev, union wil_tx_desc *desc,
183 			     struct wil_ctx *ctx)
184 {
185 	struct vring_tx_desc *d = &desc->legacy;
186 	dma_addr_t pa = wil_desc_addr(&d->dma.addr);
187 	u16 dmalen = le16_to_cpu(d->dma.length);
188 
189 	switch (ctx->mapped_as) {
190 	case wil_mapped_as_single:
191 		dma_unmap_single(dev, pa, dmalen, DMA_TO_DEVICE);
192 		break;
193 	case wil_mapped_as_page:
194 		dma_unmap_page(dev, pa, dmalen, DMA_TO_DEVICE);
195 		break;
196 	default:
197 		break;
198 	}
199 }
200 
201 static void wil_vring_free(struct wil6210_priv *wil, struct wil_ring *vring)
202 {
203 	struct device *dev = wil_to_dev(wil);
204 	size_t sz = vring->size * sizeof(vring->va[0]);
205 
206 	lockdep_assert_held(&wil->mutex);
207 	if (!vring->is_rx) {
208 		int vring_index = vring - wil->ring_tx;
209 
210 		wil_dbg_misc(wil, "free Tx vring %d [%d] 0x%p:%pad 0x%p\n",
211 			     vring_index, vring->size, vring->va,
212 			     &vring->pa, vring->ctx);
213 	} else {
214 		wil_dbg_misc(wil, "free Rx vring [%d] 0x%p:%pad 0x%p\n",
215 			     vring->size, vring->va,
216 			     &vring->pa, vring->ctx);
217 	}
218 
219 	while (!wil_ring_is_empty(vring)) {
220 		dma_addr_t pa;
221 		u16 dmalen;
222 		struct wil_ctx *ctx;
223 
224 		if (!vring->is_rx) {
225 			struct vring_tx_desc dd, *d = &dd;
226 			volatile struct vring_tx_desc *_d =
227 					&vring->va[vring->swtail].tx.legacy;
228 
229 			ctx = &vring->ctx[vring->swtail];
230 			if (!ctx) {
231 				wil_dbg_txrx(wil,
232 					     "ctx(%d) was already completed\n",
233 					     vring->swtail);
234 				vring->swtail = wil_ring_next_tail(vring);
235 				continue;
236 			}
237 			*d = *_d;
238 			wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx);
239 			if (ctx->skb)
240 				dev_kfree_skb_any(ctx->skb);
241 			vring->swtail = wil_ring_next_tail(vring);
242 		} else { /* rx */
243 			struct vring_rx_desc dd, *d = &dd;
244 			volatile struct vring_rx_desc *_d =
245 				&vring->va[vring->swhead].rx.legacy;
246 
247 			ctx = &vring->ctx[vring->swhead];
248 			*d = *_d;
249 			pa = wil_desc_addr(&d->dma.addr);
250 			dmalen = le16_to_cpu(d->dma.length);
251 			dma_unmap_single(dev, pa, dmalen, DMA_FROM_DEVICE);
252 			kfree_skb(ctx->skb);
253 			wil_ring_advance_head(vring, 1);
254 		}
255 	}
256 	dma_free_coherent(dev, sz, (void *)vring->va, vring->pa);
257 	kfree(vring->ctx);
258 	vring->pa = 0;
259 	vring->va = NULL;
260 	vring->ctx = NULL;
261 }
262 
263 /**
264  * Allocate one skb for Rx VRING
265  *
266  * Safe to call from IRQ
267  */
268 static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct wil_ring *vring,
269 			       u32 i, int headroom)
270 {
271 	struct device *dev = wil_to_dev(wil);
272 	unsigned int sz = wil->rx_buf_len + ETH_HLEN + wil_rx_snaplen();
273 	struct vring_rx_desc dd, *d = &dd;
274 	volatile struct vring_rx_desc *_d = &vring->va[i].rx.legacy;
275 	dma_addr_t pa;
276 	struct sk_buff *skb = dev_alloc_skb(sz + headroom);
277 
278 	if (unlikely(!skb))
279 		return -ENOMEM;
280 
281 	skb_reserve(skb, headroom);
282 	skb_put(skb, sz);
283 
284 	/**
285 	 * Make sure that the network stack calculates checksum for packets
286 	 * which failed the HW checksum calculation
287 	 */
288 	skb->ip_summed = CHECKSUM_NONE;
289 
290 	pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE);
291 	if (unlikely(dma_mapping_error(dev, pa))) {
292 		kfree_skb(skb);
293 		return -ENOMEM;
294 	}
295 
296 	d->dma.d0 = RX_DMA_D0_CMD_DMA_RT | RX_DMA_D0_CMD_DMA_IT;
297 	wil_desc_addr_set(&d->dma.addr, pa);
298 	/* ip_length don't care */
299 	/* b11 don't care */
300 	/* error don't care */
301 	d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
302 	d->dma.length = cpu_to_le16(sz);
303 	*_d = *d;
304 	vring->ctx[i].skb = skb;
305 
306 	return 0;
307 }
308 
309 /**
310  * Adds radiotap header
311  *
312  * Any error indicated as "Bad FCS"
313  *
314  * Vendor data for 04:ce:14-1 (Wilocity-1) consists of:
315  *  - Rx descriptor: 32 bytes
316  *  - Phy info
317  */
318 static void wil_rx_add_radiotap_header(struct wil6210_priv *wil,
319 				       struct sk_buff *skb)
320 {
321 	struct wil6210_rtap {
322 		struct ieee80211_radiotap_header rthdr;
323 		/* fields should be in the order of bits in rthdr.it_present */
324 		/* flags */
325 		u8 flags;
326 		/* channel */
327 		__le16 chnl_freq __aligned(2);
328 		__le16 chnl_flags;
329 		/* MCS */
330 		u8 mcs_present;
331 		u8 mcs_flags;
332 		u8 mcs_index;
333 	} __packed;
334 	struct wil6210_rtap_vendor {
335 		struct wil6210_rtap rtap;
336 		/* vendor */
337 		u8 vendor_oui[3] __aligned(2);
338 		u8 vendor_ns;
339 		__le16 vendor_skip;
340 		u8 vendor_data[0];
341 	} __packed;
342 	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
343 	struct wil6210_rtap_vendor *rtap_vendor;
344 	int rtap_len = sizeof(struct wil6210_rtap);
345 	int phy_length = 0; /* phy info header size, bytes */
346 	static char phy_data[128];
347 	struct ieee80211_channel *ch = wil->monitor_chandef.chan;
348 
349 	if (rtap_include_phy_info) {
350 		rtap_len = sizeof(*rtap_vendor) + sizeof(*d);
351 		/* calculate additional length */
352 		if (d->dma.status & RX_DMA_STATUS_PHY_INFO) {
353 			/**
354 			 * PHY info starts from 8-byte boundary
355 			 * there are 8-byte lines, last line may be partially
356 			 * written (HW bug), thus FW configures for last line
357 			 * to be excessive. Driver skips this last line.
358 			 */
359 			int len = min_t(int, 8 + sizeof(phy_data),
360 					wil_rxdesc_phy_length(d));
361 
362 			if (len > 8) {
363 				void *p = skb_tail_pointer(skb);
364 				void *pa = PTR_ALIGN(p, 8);
365 
366 				if (skb_tailroom(skb) >= len + (pa - p)) {
367 					phy_length = len - 8;
368 					memcpy(phy_data, pa, phy_length);
369 				}
370 			}
371 		}
372 		rtap_len += phy_length;
373 	}
374 
375 	if (skb_headroom(skb) < rtap_len &&
376 	    pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) {
377 		wil_err(wil, "Unable to expand headroom to %d\n", rtap_len);
378 		return;
379 	}
380 
381 	rtap_vendor = skb_push(skb, rtap_len);
382 	memset(rtap_vendor, 0, rtap_len);
383 
384 	rtap_vendor->rtap.rthdr.it_version = PKTHDR_RADIOTAP_VERSION;
385 	rtap_vendor->rtap.rthdr.it_len = cpu_to_le16(rtap_len);
386 	rtap_vendor->rtap.rthdr.it_present = cpu_to_le32(
387 			(1 << IEEE80211_RADIOTAP_FLAGS) |
388 			(1 << IEEE80211_RADIOTAP_CHANNEL) |
389 			(1 << IEEE80211_RADIOTAP_MCS));
390 	if (d->dma.status & RX_DMA_STATUS_ERROR)
391 		rtap_vendor->rtap.flags |= IEEE80211_RADIOTAP_F_BADFCS;
392 
393 	rtap_vendor->rtap.chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320);
394 	rtap_vendor->rtap.chnl_flags = cpu_to_le16(0);
395 
396 	rtap_vendor->rtap.mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS;
397 	rtap_vendor->rtap.mcs_flags = 0;
398 	rtap_vendor->rtap.mcs_index = wil_rxdesc_mcs(d);
399 
400 	if (rtap_include_phy_info) {
401 		rtap_vendor->rtap.rthdr.it_present |= cpu_to_le32(1 <<
402 				IEEE80211_RADIOTAP_VENDOR_NAMESPACE);
403 		/* OUI for Wilocity 04:ce:14 */
404 		rtap_vendor->vendor_oui[0] = 0x04;
405 		rtap_vendor->vendor_oui[1] = 0xce;
406 		rtap_vendor->vendor_oui[2] = 0x14;
407 		rtap_vendor->vendor_ns = 1;
408 		/* Rx descriptor + PHY data  */
409 		rtap_vendor->vendor_skip = cpu_to_le16(sizeof(*d) +
410 						       phy_length);
411 		memcpy(rtap_vendor->vendor_data, (void *)d, sizeof(*d));
412 		memcpy(rtap_vendor->vendor_data + sizeof(*d), phy_data,
413 		       phy_length);
414 	}
415 }
416 
417 static bool wil_is_rx_idle(struct wil6210_priv *wil)
418 {
419 	struct vring_rx_desc *_d;
420 	struct wil_ring *ring = &wil->ring_rx;
421 
422 	_d = (struct vring_rx_desc *)&ring->va[ring->swhead].rx.legacy;
423 	if (_d->dma.status & RX_DMA_STATUS_DU)
424 		return false;
425 
426 	return true;
427 }
428 
429 /**
430  * reap 1 frame from @swhead
431  *
432  * Rx descriptor copied to skb->cb
433  *
434  * Safe to call from IRQ
435  */
436 static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil,
437 					 struct wil_ring *vring)
438 {
439 	struct device *dev = wil_to_dev(wil);
440 	struct wil6210_vif *vif;
441 	struct net_device *ndev;
442 	volatile struct vring_rx_desc *_d;
443 	struct vring_rx_desc *d;
444 	struct sk_buff *skb;
445 	dma_addr_t pa;
446 	unsigned int snaplen = wil_rx_snaplen();
447 	unsigned int sz = wil->rx_buf_len + ETH_HLEN + snaplen;
448 	u16 dmalen;
449 	u8 ftype;
450 	int cid, mid;
451 	int i;
452 	struct wil_net_stats *stats;
453 
454 	BUILD_BUG_ON(sizeof(struct vring_rx_desc) > sizeof(skb->cb));
455 
456 again:
457 	if (unlikely(wil_ring_is_empty(vring)))
458 		return NULL;
459 
460 	i = (int)vring->swhead;
461 	_d = &vring->va[i].rx.legacy;
462 	if (unlikely(!(_d->dma.status & RX_DMA_STATUS_DU))) {
463 		/* it is not error, we just reached end of Rx done area */
464 		return NULL;
465 	}
466 
467 	skb = vring->ctx[i].skb;
468 	vring->ctx[i].skb = NULL;
469 	wil_ring_advance_head(vring, 1);
470 	if (!skb) {
471 		wil_err(wil, "No Rx skb at [%d]\n", i);
472 		goto again;
473 	}
474 	d = wil_skb_rxdesc(skb);
475 	*d = *_d;
476 	pa = wil_desc_addr(&d->dma.addr);
477 
478 	dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE);
479 	dmalen = le16_to_cpu(d->dma.length);
480 
481 	trace_wil6210_rx(i, d);
482 	wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", i, dmalen);
483 	wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
484 			  (const void *)d, sizeof(*d), false);
485 
486 	cid = wil_rxdesc_cid(d);
487 	mid = wil_rxdesc_mid(d);
488 	vif = wil->vifs[mid];
489 
490 	if (unlikely(!vif)) {
491 		wil_dbg_txrx(wil, "skipped RX descriptor with invalid mid %d",
492 			     mid);
493 		kfree_skb(skb);
494 		goto again;
495 	}
496 	ndev = vif_to_ndev(vif);
497 	stats = &wil->sta[cid].stats;
498 
499 	if (unlikely(dmalen > sz)) {
500 		wil_err(wil, "Rx size too large: %d bytes!\n", dmalen);
501 		stats->rx_large_frame++;
502 		kfree_skb(skb);
503 		goto again;
504 	}
505 	skb_trim(skb, dmalen);
506 
507 	prefetch(skb->data);
508 
509 	wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
510 			  skb->data, skb_headlen(skb), false);
511 
512 	stats->last_mcs_rx = wil_rxdesc_mcs(d);
513 	if (stats->last_mcs_rx < ARRAY_SIZE(stats->rx_per_mcs))
514 		stats->rx_per_mcs[stats->last_mcs_rx]++;
515 
516 	/* use radiotap header only if required */
517 	if (ndev->type == ARPHRD_IEEE80211_RADIOTAP)
518 		wil_rx_add_radiotap_header(wil, skb);
519 
520 	/* no extra checks if in sniffer mode */
521 	if (ndev->type != ARPHRD_ETHER)
522 		return skb;
523 	/* Non-data frames may be delivered through Rx DMA channel (ex: BAR)
524 	 * Driver should recognize it by frame type, that is found
525 	 * in Rx descriptor. If type is not data, it is 802.11 frame as is
526 	 */
527 	ftype = wil_rxdesc_ftype(d) << 2;
528 	if (unlikely(ftype != IEEE80211_FTYPE_DATA)) {
529 		u8 fc1 = wil_rxdesc_fc1(d);
530 		int tid = wil_rxdesc_tid(d);
531 		u16 seq = wil_rxdesc_seq(d);
532 
533 		wil_dbg_txrx(wil,
534 			     "Non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
535 			     fc1, mid, cid, tid, seq);
536 		stats->rx_non_data_frame++;
537 		if (wil_is_back_req(fc1)) {
538 			wil_dbg_txrx(wil,
539 				     "BAR: MID %d CID %d TID %d Seq 0x%03x\n",
540 				     mid, cid, tid, seq);
541 			wil_rx_bar(wil, vif, cid, tid, seq);
542 		} else {
543 			/* print again all info. One can enable only this
544 			 * without overhead for printing every Rx frame
545 			 */
546 			wil_dbg_txrx(wil,
547 				     "Unhandled non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
548 				     fc1, mid, cid, tid, seq);
549 			wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
550 					  (const void *)d, sizeof(*d), false);
551 			wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
552 					  skb->data, skb_headlen(skb), false);
553 		}
554 		kfree_skb(skb);
555 		goto again;
556 	}
557 
558 	if (unlikely(skb->len < ETH_HLEN + snaplen)) {
559 		wil_err(wil, "Short frame, len = %d\n", skb->len);
560 		stats->rx_short_frame++;
561 		kfree_skb(skb);
562 		goto again;
563 	}
564 
565 	/* L4 IDENT is on when HW calculated checksum, check status
566 	 * and in case of error drop the packet
567 	 * higher stack layers will handle retransmission (if required)
568 	 */
569 	if (likely(d->dma.status & RX_DMA_STATUS_L4I)) {
570 		/* L4 protocol identified, csum calculated */
571 		if (likely((d->dma.error & RX_DMA_ERROR_L4_ERR) == 0))
572 			skb->ip_summed = CHECKSUM_UNNECESSARY;
573 		/* If HW reports bad checksum, let IP stack re-check it
574 		 * For example, HW don't understand Microsoft IP stack that
575 		 * mis-calculates TCP checksum - if it should be 0x0,
576 		 * it writes 0xffff in violation of RFC 1624
577 		 */
578 		else
579 			stats->rx_csum_err++;
580 	}
581 
582 	if (snaplen) {
583 		/* Packet layout
584 		 * +-------+-------+---------+------------+------+
585 		 * | SA(6) | DA(6) | SNAP(6) | ETHTYPE(2) | DATA |
586 		 * +-------+-------+---------+------------+------+
587 		 * Need to remove SNAP, shifting SA and DA forward
588 		 */
589 		memmove(skb->data + snaplen, skb->data, 2 * ETH_ALEN);
590 		skb_pull(skb, snaplen);
591 	}
592 
593 	return skb;
594 }
595 
596 /**
597  * allocate and fill up to @count buffers in rx ring
598  * buffers posted at @swtail
599  * Note: we have a single RX queue for servicing all VIFs, but we
600  * allocate skbs with headroom according to main interface only. This
601  * means it will not work with monitor interface together with other VIFs.
602  * Currently we only support monitor interface on its own without other VIFs,
603  * and we will need to fix this code once we add support.
604  */
605 static int wil_rx_refill(struct wil6210_priv *wil, int count)
606 {
607 	struct net_device *ndev = wil->main_ndev;
608 	struct wil_ring *v = &wil->ring_rx;
609 	u32 next_tail;
610 	int rc = 0;
611 	int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ?
612 			WIL6210_RTAP_SIZE : 0;
613 
614 	for (; next_tail = wil_ring_next_tail(v),
615 	     (next_tail != v->swhead) && (count-- > 0);
616 	     v->swtail = next_tail) {
617 		rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom);
618 		if (unlikely(rc)) {
619 			wil_err_ratelimited(wil, "Error %d in rx refill[%d]\n",
620 					    rc, v->swtail);
621 			break;
622 		}
623 	}
624 
625 	/* make sure all writes to descriptors (shared memory) are done before
626 	 * committing them to HW
627 	 */
628 	wmb();
629 
630 	wil_w(wil, v->hwtail, v->swtail);
631 
632 	return rc;
633 }
634 
635 /**
636  * reverse_memcmp - Compare two areas of memory, in reverse order
637  * @cs: One area of memory
638  * @ct: Another area of memory
639  * @count: The size of the area.
640  *
641  * Cut'n'paste from original memcmp (see lib/string.c)
642  * with minimal modifications
643  */
644 int reverse_memcmp(const void *cs, const void *ct, size_t count)
645 {
646 	const unsigned char *su1, *su2;
647 	int res = 0;
648 
649 	for (su1 = cs + count - 1, su2 = ct + count - 1; count > 0;
650 	     --su1, --su2, count--) {
651 		res = *su1 - *su2;
652 		if (res)
653 			break;
654 	}
655 	return res;
656 }
657 
658 static int wil_rx_crypto_check(struct wil6210_priv *wil, struct sk_buff *skb)
659 {
660 	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
661 	int cid = wil_rxdesc_cid(d);
662 	int tid = wil_rxdesc_tid(d);
663 	int key_id = wil_rxdesc_key_id(d);
664 	int mc = wil_rxdesc_mcast(d);
665 	struct wil_sta_info *s = &wil->sta[cid];
666 	struct wil_tid_crypto_rx *c = mc ? &s->group_crypto_rx :
667 				      &s->tid_crypto_rx[tid];
668 	struct wil_tid_crypto_rx_single *cc = &c->key_id[key_id];
669 	const u8 *pn = (u8 *)&d->mac.pn_15_0;
670 
671 	if (!cc->key_set) {
672 		wil_err_ratelimited(wil,
673 				    "Key missing. CID %d TID %d MCast %d KEY_ID %d\n",
674 				    cid, tid, mc, key_id);
675 		return -EINVAL;
676 	}
677 
678 	if (reverse_memcmp(pn, cc->pn, IEEE80211_GCMP_PN_LEN) <= 0) {
679 		wil_err_ratelimited(wil,
680 				    "Replay attack. CID %d TID %d MCast %d KEY_ID %d PN %6phN last %6phN\n",
681 				    cid, tid, mc, key_id, pn, cc->pn);
682 		return -EINVAL;
683 	}
684 	memcpy(cc->pn, pn, IEEE80211_GCMP_PN_LEN);
685 
686 	return 0;
687 }
688 
689 static int wil_rx_error_check(struct wil6210_priv *wil, struct sk_buff *skb,
690 			      struct wil_net_stats *stats)
691 {
692 	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
693 
694 	if ((d->dma.status & RX_DMA_STATUS_ERROR) &&
695 	    (d->dma.error & RX_DMA_ERROR_MIC)) {
696 		stats->rx_mic_error++;
697 		wil_dbg_txrx(wil, "MIC error, dropping packet\n");
698 		return -EFAULT;
699 	}
700 
701 	return 0;
702 }
703 
704 static void wil_get_netif_rx_params(struct sk_buff *skb, int *cid,
705 				    int *security)
706 {
707 	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
708 
709 	*cid = wil_rxdesc_cid(d); /* always 0..7, no need to check */
710 	*security = wil_rxdesc_security(d);
711 }
712 
713 /*
714  * Pass Rx packet to the netif. Update statistics.
715  * Called in softirq context (NAPI poll).
716  */
717 void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev)
718 {
719 	gro_result_t rc = GRO_NORMAL;
720 	struct wil6210_vif *vif = ndev_to_vif(ndev);
721 	struct wil6210_priv *wil = ndev_to_wil(ndev);
722 	struct wireless_dev *wdev = vif_to_wdev(vif);
723 	unsigned int len = skb->len;
724 	int cid;
725 	int security;
726 	struct ethhdr *eth = (void *)skb->data;
727 	/* here looking for DA, not A1, thus Rxdesc's 'mcast' indication
728 	 * is not suitable, need to look at data
729 	 */
730 	int mcast = is_multicast_ether_addr(eth->h_dest);
731 	struct wil_net_stats *stats;
732 	struct sk_buff *xmit_skb = NULL;
733 	static const char * const gro_res_str[] = {
734 		[GRO_MERGED]		= "GRO_MERGED",
735 		[GRO_MERGED_FREE]	= "GRO_MERGED_FREE",
736 		[GRO_HELD]		= "GRO_HELD",
737 		[GRO_NORMAL]		= "GRO_NORMAL",
738 		[GRO_DROP]		= "GRO_DROP",
739 	};
740 
741 	wil->txrx_ops.get_netif_rx_params(skb, &cid, &security);
742 
743 	stats = &wil->sta[cid].stats;
744 
745 	if (ndev->features & NETIF_F_RXHASH)
746 		/* fake L4 to ensure it won't be re-calculated later
747 		 * set hash to any non-zero value to activate rps
748 		 * mechanism, core will be chosen according
749 		 * to user-level rps configuration.
750 		 */
751 		skb_set_hash(skb, 1, PKT_HASH_TYPE_L4);
752 
753 	skb_orphan(skb);
754 
755 	if (security && (wil->txrx_ops.rx_crypto_check(wil, skb) != 0)) {
756 		rc = GRO_DROP;
757 		dev_kfree_skb(skb);
758 		stats->rx_replay++;
759 		goto stats;
760 	}
761 
762 	/* check errors reported by HW and update statistics */
763 	if (unlikely(wil->txrx_ops.rx_error_check(wil, skb, stats))) {
764 		dev_kfree_skb(skb);
765 		return;
766 	}
767 
768 	if (wdev->iftype == NL80211_IFTYPE_AP && !vif->ap_isolate) {
769 		if (mcast) {
770 			/* send multicast frames both to higher layers in
771 			 * local net stack and back to the wireless medium
772 			 */
773 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
774 		} else {
775 			int xmit_cid = wil_find_cid(wil, vif->mid,
776 						    eth->h_dest);
777 
778 			if (xmit_cid >= 0) {
779 				/* The destination station is associated to
780 				 * this AP (in this VLAN), so send the frame
781 				 * directly to it and do not pass it to local
782 				 * net stack.
783 				 */
784 				xmit_skb = skb;
785 				skb = NULL;
786 			}
787 		}
788 	}
789 	if (xmit_skb) {
790 		/* Send to wireless media and increase priority by 256 to
791 		 * keep the received priority instead of reclassifying
792 		 * the frame (see cfg80211_classify8021d).
793 		 */
794 		xmit_skb->dev = ndev;
795 		xmit_skb->priority += 256;
796 		xmit_skb->protocol = htons(ETH_P_802_3);
797 		skb_reset_network_header(xmit_skb);
798 		skb_reset_mac_header(xmit_skb);
799 		wil_dbg_txrx(wil, "Rx -> Tx %d bytes\n", len);
800 		dev_queue_xmit(xmit_skb);
801 	}
802 
803 	if (skb) { /* deliver to local stack */
804 		skb->protocol = eth_type_trans(skb, ndev);
805 		skb->dev = ndev;
806 		rc = napi_gro_receive(&wil->napi_rx, skb);
807 		wil_dbg_txrx(wil, "Rx complete %d bytes => %s\n",
808 			     len, gro_res_str[rc]);
809 	}
810 stats:
811 	/* statistics. rc set to GRO_NORMAL for AP bridging */
812 	if (unlikely(rc == GRO_DROP)) {
813 		ndev->stats.rx_dropped++;
814 		stats->rx_dropped++;
815 		wil_dbg_txrx(wil, "Rx drop %d bytes\n", len);
816 	} else {
817 		ndev->stats.rx_packets++;
818 		stats->rx_packets++;
819 		ndev->stats.rx_bytes += len;
820 		stats->rx_bytes += len;
821 		if (mcast)
822 			ndev->stats.multicast++;
823 	}
824 }
825 
826 /**
827  * Proceed all completed skb's from Rx VRING
828  *
829  * Safe to call from NAPI poll, i.e. softirq with interrupts enabled
830  */
831 void wil_rx_handle(struct wil6210_priv *wil, int *quota)
832 {
833 	struct net_device *ndev = wil->main_ndev;
834 	struct wireless_dev *wdev = ndev->ieee80211_ptr;
835 	struct wil_ring *v = &wil->ring_rx;
836 	struct sk_buff *skb;
837 
838 	if (unlikely(!v->va)) {
839 		wil_err(wil, "Rx IRQ while Rx not yet initialized\n");
840 		return;
841 	}
842 	wil_dbg_txrx(wil, "rx_handle\n");
843 	while ((*quota > 0) && (NULL != (skb = wil_vring_reap_rx(wil, v)))) {
844 		(*quota)--;
845 
846 		/* monitor is currently supported on main interface only */
847 		if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
848 			skb->dev = ndev;
849 			skb_reset_mac_header(skb);
850 			skb->ip_summed = CHECKSUM_UNNECESSARY;
851 			skb->pkt_type = PACKET_OTHERHOST;
852 			skb->protocol = htons(ETH_P_802_2);
853 			wil_netif_rx_any(skb, ndev);
854 		} else {
855 			wil_rx_reorder(wil, skb);
856 		}
857 	}
858 	wil_rx_refill(wil, v->size);
859 }
860 
861 static void wil_rx_buf_len_init(struct wil6210_priv *wil)
862 {
863 	wil->rx_buf_len = rx_large_buf ?
864 		WIL_MAX_ETH_MTU : TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
865 	if (mtu_max > wil->rx_buf_len) {
866 		/* do not allow RX buffers to be smaller than mtu_max, for
867 		 * backward compatibility (mtu_max parameter was also used
868 		 * to support receiving large packets)
869 		 */
870 		wil_info(wil, "Override RX buffer to mtu_max(%d)\n", mtu_max);
871 		wil->rx_buf_len = mtu_max;
872 	}
873 }
874 
875 static int wil_rx_init(struct wil6210_priv *wil, u16 size)
876 {
877 	struct wil_ring *vring = &wil->ring_rx;
878 	int rc;
879 
880 	wil_dbg_misc(wil, "rx_init\n");
881 
882 	if (vring->va) {
883 		wil_err(wil, "Rx ring already allocated\n");
884 		return -EINVAL;
885 	}
886 
887 	wil_rx_buf_len_init(wil);
888 
889 	vring->size = size;
890 	vring->is_rx = true;
891 	rc = wil_vring_alloc(wil, vring);
892 	if (rc)
893 		return rc;
894 
895 	rc = wmi_rx_chain_add(wil, vring);
896 	if (rc)
897 		goto err_free;
898 
899 	rc = wil_rx_refill(wil, vring->size);
900 	if (rc)
901 		goto err_free;
902 
903 	return 0;
904  err_free:
905 	wil_vring_free(wil, vring);
906 
907 	return rc;
908 }
909 
910 static void wil_rx_fini(struct wil6210_priv *wil)
911 {
912 	struct wil_ring *vring = &wil->ring_rx;
913 
914 	wil_dbg_misc(wil, "rx_fini\n");
915 
916 	if (vring->va)
917 		wil_vring_free(wil, vring);
918 }
919 
920 static int wil_tx_desc_map(union wil_tx_desc *desc, dma_addr_t pa,
921 			   u32 len, int vring_index)
922 {
923 	struct vring_tx_desc *d = &desc->legacy;
924 
925 	wil_desc_addr_set(&d->dma.addr, pa);
926 	d->dma.ip_length = 0;
927 	/* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/
928 	d->dma.b11 = 0/*14 | BIT(7)*/;
929 	d->dma.error = 0;
930 	d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
931 	d->dma.length = cpu_to_le16((u16)len);
932 	d->dma.d0 = (vring_index << DMA_CFG_DESC_TX_0_QID_POS);
933 	d->mac.d[0] = 0;
934 	d->mac.d[1] = 0;
935 	d->mac.d[2] = 0;
936 	d->mac.ucode_cmd = 0;
937 	/* translation type:  0 - bypass; 1 - 802.3; 2 - native wifi */
938 	d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) |
939 		      (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS);
940 
941 	return 0;
942 }
943 
944 void wil_tx_data_init(struct wil_ring_tx_data *txdata)
945 {
946 	spin_lock_bh(&txdata->lock);
947 	txdata->dot1x_open = 0;
948 	txdata->enabled = 0;
949 	txdata->idle = 0;
950 	txdata->last_idle = 0;
951 	txdata->begin = 0;
952 	txdata->agg_wsize = 0;
953 	txdata->agg_timeout = 0;
954 	txdata->agg_amsdu = 0;
955 	txdata->addba_in_progress = false;
956 	txdata->mid = U8_MAX;
957 	spin_unlock_bh(&txdata->lock);
958 }
959 
960 static int wil_vring_init_tx(struct wil6210_vif *vif, int id, int size,
961 			     int cid, int tid)
962 {
963 	struct wil6210_priv *wil = vif_to_wil(vif);
964 	int rc;
965 	struct wmi_vring_cfg_cmd cmd = {
966 		.action = cpu_to_le32(WMI_VRING_CMD_ADD),
967 		.vring_cfg = {
968 			.tx_sw_ring = {
969 				.max_mpdu_size =
970 					cpu_to_le16(wil_mtu2macbuf(mtu_max)),
971 				.ring_size = cpu_to_le16(size),
972 			},
973 			.ringid = id,
974 			.cidxtid = mk_cidxtid(cid, tid),
975 			.encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
976 			.mac_ctrl = 0,
977 			.to_resolution = 0,
978 			.agg_max_wsize = 0,
979 			.schd_params = {
980 				.priority = cpu_to_le16(0),
981 				.timeslot_us = cpu_to_le16(0xfff),
982 			},
983 		},
984 	};
985 	struct {
986 		struct wmi_cmd_hdr wmi;
987 		struct wmi_vring_cfg_done_event cmd;
988 	} __packed reply = {
989 		.cmd = {.status = WMI_FW_STATUS_FAILURE},
990 	};
991 	struct wil_ring *vring = &wil->ring_tx[id];
992 	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
993 
994 	wil_dbg_misc(wil, "vring_init_tx: max_mpdu_size %d\n",
995 		     cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
996 	lockdep_assert_held(&wil->mutex);
997 
998 	if (vring->va) {
999 		wil_err(wil, "Tx ring [%d] already allocated\n", id);
1000 		rc = -EINVAL;
1001 		goto out;
1002 	}
1003 
1004 	wil_tx_data_init(txdata);
1005 	vring->is_rx = false;
1006 	vring->size = size;
1007 	rc = wil_vring_alloc(wil, vring);
1008 	if (rc)
1009 		goto out;
1010 
1011 	wil->ring2cid_tid[id][0] = cid;
1012 	wil->ring2cid_tid[id][1] = tid;
1013 
1014 	cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1015 
1016 	if (!vif->privacy)
1017 		txdata->dot1x_open = true;
1018 	rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
1019 		      WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
1020 	if (rc)
1021 		goto out_free;
1022 
1023 	if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1024 		wil_err(wil, "Tx config failed, status 0x%02x\n",
1025 			reply.cmd.status);
1026 		rc = -EINVAL;
1027 		goto out_free;
1028 	}
1029 
1030 	spin_lock_bh(&txdata->lock);
1031 	vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
1032 	txdata->mid = vif->mid;
1033 	txdata->enabled = 1;
1034 	spin_unlock_bh(&txdata->lock);
1035 
1036 	if (txdata->dot1x_open && (agg_wsize >= 0))
1037 		wil_addba_tx_request(wil, id, agg_wsize);
1038 
1039 	return 0;
1040  out_free:
1041 	spin_lock_bh(&txdata->lock);
1042 	txdata->dot1x_open = false;
1043 	txdata->enabled = 0;
1044 	spin_unlock_bh(&txdata->lock);
1045 	wil_vring_free(wil, vring);
1046 	wil->ring2cid_tid[id][0] = WIL6210_MAX_CID;
1047 	wil->ring2cid_tid[id][1] = 0;
1048 
1049  out:
1050 
1051 	return rc;
1052 }
1053 
1054 int wil_vring_init_bcast(struct wil6210_vif *vif, int id, int size)
1055 {
1056 	struct wil6210_priv *wil = vif_to_wil(vif);
1057 	int rc;
1058 	struct wmi_bcast_vring_cfg_cmd cmd = {
1059 		.action = cpu_to_le32(WMI_VRING_CMD_ADD),
1060 		.vring_cfg = {
1061 			.tx_sw_ring = {
1062 				.max_mpdu_size =
1063 					cpu_to_le16(wil_mtu2macbuf(mtu_max)),
1064 				.ring_size = cpu_to_le16(size),
1065 			},
1066 			.ringid = id,
1067 			.encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
1068 		},
1069 	};
1070 	struct {
1071 		struct wmi_cmd_hdr wmi;
1072 		struct wmi_vring_cfg_done_event cmd;
1073 	} __packed reply = {
1074 		.cmd = {.status = WMI_FW_STATUS_FAILURE},
1075 	};
1076 	struct wil_ring *vring = &wil->ring_tx[id];
1077 	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
1078 
1079 	wil_dbg_misc(wil, "vring_init_bcast: max_mpdu_size %d\n",
1080 		     cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
1081 	lockdep_assert_held(&wil->mutex);
1082 
1083 	if (vring->va) {
1084 		wil_err(wil, "Tx ring [%d] already allocated\n", id);
1085 		rc = -EINVAL;
1086 		goto out;
1087 	}
1088 
1089 	wil_tx_data_init(txdata);
1090 	vring->is_rx = false;
1091 	vring->size = size;
1092 	rc = wil_vring_alloc(wil, vring);
1093 	if (rc)
1094 		goto out;
1095 
1096 	wil->ring2cid_tid[id][0] = WIL6210_MAX_CID; /* CID */
1097 	wil->ring2cid_tid[id][1] = 0; /* TID */
1098 
1099 	cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1100 
1101 	if (!vif->privacy)
1102 		txdata->dot1x_open = true;
1103 	rc = wmi_call(wil, WMI_BCAST_VRING_CFG_CMDID, vif->mid,
1104 		      &cmd, sizeof(cmd),
1105 		      WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
1106 	if (rc)
1107 		goto out_free;
1108 
1109 	if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1110 		wil_err(wil, "Tx config failed, status 0x%02x\n",
1111 			reply.cmd.status);
1112 		rc = -EINVAL;
1113 		goto out_free;
1114 	}
1115 
1116 	spin_lock_bh(&txdata->lock);
1117 	vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
1118 	txdata->mid = vif->mid;
1119 	txdata->enabled = 1;
1120 	spin_unlock_bh(&txdata->lock);
1121 
1122 	return 0;
1123  out_free:
1124 	spin_lock_bh(&txdata->lock);
1125 	txdata->enabled = 0;
1126 	txdata->dot1x_open = false;
1127 	spin_unlock_bh(&txdata->lock);
1128 	wil_vring_free(wil, vring);
1129  out:
1130 
1131 	return rc;
1132 }
1133 
1134 static struct wil_ring *wil_find_tx_ucast(struct wil6210_priv *wil,
1135 					  struct wil6210_vif *vif,
1136 					  struct sk_buff *skb)
1137 {
1138 	int i;
1139 	struct ethhdr *eth = (void *)skb->data;
1140 	int cid = wil_find_cid(wil, vif->mid, eth->h_dest);
1141 	int min_ring_id = wil_get_min_tx_ring_id(wil);
1142 
1143 	if (cid < 0)
1144 		return NULL;
1145 
1146 	/* TODO: fix for multiple TID */
1147 	for (i = min_ring_id; i < ARRAY_SIZE(wil->ring2cid_tid); i++) {
1148 		if (!wil->ring_tx_data[i].dot1x_open &&
1149 		    skb->protocol != cpu_to_be16(ETH_P_PAE))
1150 			continue;
1151 		if (wil->ring2cid_tid[i][0] == cid) {
1152 			struct wil_ring *v = &wil->ring_tx[i];
1153 			struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i];
1154 
1155 			wil_dbg_txrx(wil, "find_tx_ucast: (%pM) -> [%d]\n",
1156 				     eth->h_dest, i);
1157 			if (v->va && txdata->enabled) {
1158 				return v;
1159 			} else {
1160 				wil_dbg_txrx(wil,
1161 					     "find_tx_ucast: vring[%d] not valid\n",
1162 					     i);
1163 				return NULL;
1164 			}
1165 		}
1166 	}
1167 
1168 	return NULL;
1169 }
1170 
1171 static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
1172 		       struct wil_ring *ring, struct sk_buff *skb);
1173 
1174 static struct wil_ring *wil_find_tx_ring_sta(struct wil6210_priv *wil,
1175 					     struct wil6210_vif *vif,
1176 					     struct sk_buff *skb)
1177 {
1178 	struct wil_ring *ring;
1179 	int i;
1180 	u8 cid;
1181 	struct wil_ring_tx_data  *txdata;
1182 	int min_ring_id = wil_get_min_tx_ring_id(wil);
1183 
1184 	/* In the STA mode, it is expected to have only 1 VRING
1185 	 * for the AP we connected to.
1186 	 * find 1-st vring eligible for this skb and use it.
1187 	 */
1188 	for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
1189 		ring = &wil->ring_tx[i];
1190 		txdata = &wil->ring_tx_data[i];
1191 		if (!ring->va || !txdata->enabled || txdata->mid != vif->mid)
1192 			continue;
1193 
1194 		cid = wil->ring2cid_tid[i][0];
1195 		if (cid >= WIL6210_MAX_CID) /* skip BCAST */
1196 			continue;
1197 
1198 		if (!wil->ring_tx_data[i].dot1x_open &&
1199 		    skb->protocol != cpu_to_be16(ETH_P_PAE))
1200 			continue;
1201 
1202 		wil_dbg_txrx(wil, "Tx -> ring %d\n", i);
1203 
1204 		return ring;
1205 	}
1206 
1207 	wil_dbg_txrx(wil, "Tx while no rings active?\n");
1208 
1209 	return NULL;
1210 }
1211 
1212 /* Use one of 2 strategies:
1213  *
1214  * 1. New (real broadcast):
1215  *    use dedicated broadcast vring
1216  * 2. Old (pseudo-DMS):
1217  *    Find 1-st vring and return it;
1218  *    duplicate skb and send it to other active vrings;
1219  *    in all cases override dest address to unicast peer's address
1220  * Use old strategy when new is not supported yet:
1221  *  - for PBSS
1222  */
1223 static struct wil_ring *wil_find_tx_bcast_1(struct wil6210_priv *wil,
1224 					    struct wil6210_vif *vif,
1225 					    struct sk_buff *skb)
1226 {
1227 	struct wil_ring *v;
1228 	struct wil_ring_tx_data *txdata;
1229 	int i = vif->bcast_ring;
1230 
1231 	if (i < 0)
1232 		return NULL;
1233 	v = &wil->ring_tx[i];
1234 	txdata = &wil->ring_tx_data[i];
1235 	if (!v->va || !txdata->enabled)
1236 		return NULL;
1237 	if (!wil->ring_tx_data[i].dot1x_open &&
1238 	    skb->protocol != cpu_to_be16(ETH_P_PAE))
1239 		return NULL;
1240 
1241 	return v;
1242 }
1243 
1244 static void wil_set_da_for_vring(struct wil6210_priv *wil,
1245 				 struct sk_buff *skb, int vring_index)
1246 {
1247 	struct ethhdr *eth = (void *)skb->data;
1248 	int cid = wil->ring2cid_tid[vring_index][0];
1249 
1250 	ether_addr_copy(eth->h_dest, wil->sta[cid].addr);
1251 }
1252 
1253 static struct wil_ring *wil_find_tx_bcast_2(struct wil6210_priv *wil,
1254 					    struct wil6210_vif *vif,
1255 					    struct sk_buff *skb)
1256 {
1257 	struct wil_ring *v, *v2;
1258 	struct sk_buff *skb2;
1259 	int i;
1260 	u8 cid;
1261 	struct ethhdr *eth = (void *)skb->data;
1262 	char *src = eth->h_source;
1263 	struct wil_ring_tx_data *txdata, *txdata2;
1264 	int min_ring_id = wil_get_min_tx_ring_id(wil);
1265 
1266 	/* find 1-st vring eligible for data */
1267 	for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
1268 		v = &wil->ring_tx[i];
1269 		txdata = &wil->ring_tx_data[i];
1270 		if (!v->va || !txdata->enabled || txdata->mid != vif->mid)
1271 			continue;
1272 
1273 		cid = wil->ring2cid_tid[i][0];
1274 		if (cid >= WIL6210_MAX_CID) /* skip BCAST */
1275 			continue;
1276 		if (!wil->ring_tx_data[i].dot1x_open &&
1277 		    skb->protocol != cpu_to_be16(ETH_P_PAE))
1278 			continue;
1279 
1280 		/* don't Tx back to source when re-routing Rx->Tx at the AP */
1281 		if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1282 			continue;
1283 
1284 		goto found;
1285 	}
1286 
1287 	wil_dbg_txrx(wil, "Tx while no vrings active?\n");
1288 
1289 	return NULL;
1290 
1291 found:
1292 	wil_dbg_txrx(wil, "BCAST -> ring %d\n", i);
1293 	wil_set_da_for_vring(wil, skb, i);
1294 
1295 	/* find other active vrings and duplicate skb for each */
1296 	for (i++; i < WIL6210_MAX_TX_RINGS; i++) {
1297 		v2 = &wil->ring_tx[i];
1298 		txdata2 = &wil->ring_tx_data[i];
1299 		if (!v2->va || txdata2->mid != vif->mid)
1300 			continue;
1301 		cid = wil->ring2cid_tid[i][0];
1302 		if (cid >= WIL6210_MAX_CID) /* skip BCAST */
1303 			continue;
1304 		if (!wil->ring_tx_data[i].dot1x_open &&
1305 		    skb->protocol != cpu_to_be16(ETH_P_PAE))
1306 			continue;
1307 
1308 		if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1309 			continue;
1310 
1311 		skb2 = skb_copy(skb, GFP_ATOMIC);
1312 		if (skb2) {
1313 			wil_dbg_txrx(wil, "BCAST DUP -> ring %d\n", i);
1314 			wil_set_da_for_vring(wil, skb2, i);
1315 			wil_tx_ring(wil, vif, v2, skb2);
1316 		} else {
1317 			wil_err(wil, "skb_copy failed\n");
1318 		}
1319 	}
1320 
1321 	return v;
1322 }
1323 
1324 static inline
1325 void wil_tx_desc_set_nr_frags(struct vring_tx_desc *d, int nr_frags)
1326 {
1327 	d->mac.d[2] |= (nr_frags << MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS);
1328 }
1329 
1330 /**
1331  * Sets the descriptor @d up for csum and/or TSO offloading. The corresponding
1332  * @skb is used to obtain the protocol and headers length.
1333  * @tso_desc_type is a descriptor type for TSO: 0 - a header, 1 - first data,
1334  * 2 - middle, 3 - last descriptor.
1335  */
1336 
1337 static void wil_tx_desc_offload_setup_tso(struct vring_tx_desc *d,
1338 					  struct sk_buff *skb,
1339 					  int tso_desc_type, bool is_ipv4,
1340 					  int tcp_hdr_len, int skb_net_hdr_len)
1341 {
1342 	d->dma.b11 = ETH_HLEN; /* MAC header length */
1343 	d->dma.b11 |= is_ipv4 << DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS;
1344 
1345 	d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1346 	/* L4 header len: TCP header length */
1347 	d->dma.d0 |= (tcp_hdr_len & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1348 
1349 	/* Setup TSO: bit and desc type */
1350 	d->dma.d0 |= (BIT(DMA_CFG_DESC_TX_0_TCP_SEG_EN_POS)) |
1351 		(tso_desc_type << DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS);
1352 	d->dma.d0 |= (is_ipv4 << DMA_CFG_DESC_TX_0_IPV4_CHECKSUM_EN_POS);
1353 
1354 	d->dma.ip_length = skb_net_hdr_len;
1355 	/* Enable TCP/UDP checksum */
1356 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1357 	/* Calculate pseudo-header */
1358 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1359 }
1360 
1361 /**
1362  * Sets the descriptor @d up for csum. The corresponding
1363  * @skb is used to obtain the protocol and headers length.
1364  * Returns the protocol: 0 - not TCP, 1 - TCPv4, 2 - TCPv6.
1365  * Note, if d==NULL, the function only returns the protocol result.
1366  *
1367  * It is very similar to previous wil_tx_desc_offload_setup_tso. This
1368  * is "if unrolling" to optimize the critical path.
1369  */
1370 
1371 static int wil_tx_desc_offload_setup(struct vring_tx_desc *d,
1372 				     struct sk_buff *skb){
1373 	int protocol;
1374 
1375 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1376 		return 0;
1377 
1378 	d->dma.b11 = ETH_HLEN; /* MAC header length */
1379 
1380 	switch (skb->protocol) {
1381 	case cpu_to_be16(ETH_P_IP):
1382 		protocol = ip_hdr(skb)->protocol;
1383 		d->dma.b11 |= BIT(DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS);
1384 		break;
1385 	case cpu_to_be16(ETH_P_IPV6):
1386 		protocol = ipv6_hdr(skb)->nexthdr;
1387 		break;
1388 	default:
1389 		return -EINVAL;
1390 	}
1391 
1392 	switch (protocol) {
1393 	case IPPROTO_TCP:
1394 		d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1395 		/* L4 header len: TCP header length */
1396 		d->dma.d0 |=
1397 		(tcp_hdrlen(skb) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1398 		break;
1399 	case IPPROTO_UDP:
1400 		/* L4 header len: UDP header length */
1401 		d->dma.d0 |=
1402 		(sizeof(struct udphdr) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1403 		break;
1404 	default:
1405 		return -EINVAL;
1406 	}
1407 
1408 	d->dma.ip_length = skb_network_header_len(skb);
1409 	/* Enable TCP/UDP checksum */
1410 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1411 	/* Calculate pseudo-header */
1412 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1413 
1414 	return 0;
1415 }
1416 
1417 static inline void wil_tx_last_desc(struct vring_tx_desc *d)
1418 {
1419 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS) |
1420 	      BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS) |
1421 	      BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
1422 }
1423 
1424 static inline void wil_set_tx_desc_last_tso(volatile struct vring_tx_desc *d)
1425 {
1426 	d->dma.d0 |= wil_tso_type_lst <<
1427 		  DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS;
1428 }
1429 
1430 static int __wil_tx_vring_tso(struct wil6210_priv *wil, struct wil6210_vif *vif,
1431 			      struct wil_ring *vring, struct sk_buff *skb)
1432 {
1433 	struct device *dev = wil_to_dev(wil);
1434 
1435 	/* point to descriptors in shared memory */
1436 	volatile struct vring_tx_desc *_desc = NULL, *_hdr_desc,
1437 				      *_first_desc = NULL;
1438 
1439 	/* pointers to shadow descriptors */
1440 	struct vring_tx_desc desc_mem, hdr_desc_mem, first_desc_mem,
1441 			     *d = &hdr_desc_mem, *hdr_desc = &hdr_desc_mem,
1442 			     *first_desc = &first_desc_mem;
1443 
1444 	/* pointer to shadow descriptors' context */
1445 	struct wil_ctx *hdr_ctx, *first_ctx = NULL;
1446 
1447 	int descs_used = 0; /* total number of used descriptors */
1448 	int sg_desc_cnt = 0; /* number of descriptors for current mss*/
1449 
1450 	u32 swhead = vring->swhead;
1451 	int used, avail = wil_ring_avail_tx(vring);
1452 	int nr_frags = skb_shinfo(skb)->nr_frags;
1453 	int min_desc_required = nr_frags + 1;
1454 	int mss = skb_shinfo(skb)->gso_size;	/* payload size w/o headers */
1455 	int f, len, hdrlen, headlen;
1456 	int vring_index = vring - wil->ring_tx;
1457 	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[vring_index];
1458 	uint i = swhead;
1459 	dma_addr_t pa;
1460 	const skb_frag_t *frag = NULL;
1461 	int rem_data = mss;
1462 	int lenmss;
1463 	int hdr_compensation_need = true;
1464 	int desc_tso_type = wil_tso_type_first;
1465 	bool is_ipv4;
1466 	int tcp_hdr_len;
1467 	int skb_net_hdr_len;
1468 	int gso_type;
1469 	int rc = -EINVAL;
1470 
1471 	wil_dbg_txrx(wil, "tx_vring_tso: %d bytes to vring %d\n", skb->len,
1472 		     vring_index);
1473 
1474 	if (unlikely(!txdata->enabled))
1475 		return -EINVAL;
1476 
1477 	/* A typical page 4K is 3-4 payloads, we assume each fragment
1478 	 * is a full payload, that's how min_desc_required has been
1479 	 * calculated. In real we might need more or less descriptors,
1480 	 * this is the initial check only.
1481 	 */
1482 	if (unlikely(avail < min_desc_required)) {
1483 		wil_err_ratelimited(wil,
1484 				    "TSO: Tx ring[%2d] full. No space for %d fragments\n",
1485 				    vring_index, min_desc_required);
1486 		return -ENOMEM;
1487 	}
1488 
1489 	/* Header Length = MAC header len + IP header len + TCP header len*/
1490 	hdrlen = ETH_HLEN +
1491 		(int)skb_network_header_len(skb) +
1492 		tcp_hdrlen(skb);
1493 
1494 	gso_type = skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV6 | SKB_GSO_TCPV4);
1495 	switch (gso_type) {
1496 	case SKB_GSO_TCPV4:
1497 		/* TCP v4, zero out the IP length and IPv4 checksum fields
1498 		 * as required by the offloading doc
1499 		 */
1500 		ip_hdr(skb)->tot_len = 0;
1501 		ip_hdr(skb)->check = 0;
1502 		is_ipv4 = true;
1503 		break;
1504 	case SKB_GSO_TCPV6:
1505 		/* TCP v6, zero out the payload length */
1506 		ipv6_hdr(skb)->payload_len = 0;
1507 		is_ipv4 = false;
1508 		break;
1509 	default:
1510 		/* other than TCPv4 or TCPv6 types are not supported for TSO.
1511 		 * It is also illegal for both to be set simultaneously
1512 		 */
1513 		return -EINVAL;
1514 	}
1515 
1516 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1517 		return -EINVAL;
1518 
1519 	/* tcp header length and skb network header length are fixed for all
1520 	 * packet's descriptors - read then once here
1521 	 */
1522 	tcp_hdr_len = tcp_hdrlen(skb);
1523 	skb_net_hdr_len = skb_network_header_len(skb);
1524 
1525 	_hdr_desc = &vring->va[i].tx.legacy;
1526 
1527 	pa = dma_map_single(dev, skb->data, hdrlen, DMA_TO_DEVICE);
1528 	if (unlikely(dma_mapping_error(dev, pa))) {
1529 		wil_err(wil, "TSO: Skb head DMA map error\n");
1530 		goto err_exit;
1531 	}
1532 
1533 	wil->txrx_ops.tx_desc_map((union wil_tx_desc *)hdr_desc, pa,
1534 				  hdrlen, vring_index);
1535 	wil_tx_desc_offload_setup_tso(hdr_desc, skb, wil_tso_type_hdr, is_ipv4,
1536 				      tcp_hdr_len, skb_net_hdr_len);
1537 	wil_tx_last_desc(hdr_desc);
1538 
1539 	vring->ctx[i].mapped_as = wil_mapped_as_single;
1540 	hdr_ctx = &vring->ctx[i];
1541 
1542 	descs_used++;
1543 	headlen = skb_headlen(skb) - hdrlen;
1544 
1545 	for (f = headlen ? -1 : 0; f < nr_frags; f++)  {
1546 		if (headlen) {
1547 			len = headlen;
1548 			wil_dbg_txrx(wil, "TSO: process skb head, len %u\n",
1549 				     len);
1550 		} else {
1551 			frag = &skb_shinfo(skb)->frags[f];
1552 			len = frag->size;
1553 			wil_dbg_txrx(wil, "TSO: frag[%d]: len %u\n", f, len);
1554 		}
1555 
1556 		while (len) {
1557 			wil_dbg_txrx(wil,
1558 				     "TSO: len %d, rem_data %d, descs_used %d\n",
1559 				     len, rem_data, descs_used);
1560 
1561 			if (descs_used == avail)  {
1562 				wil_err_ratelimited(wil, "TSO: ring overflow\n");
1563 				rc = -ENOMEM;
1564 				goto mem_error;
1565 			}
1566 
1567 			lenmss = min_t(int, rem_data, len);
1568 			i = (swhead + descs_used) % vring->size;
1569 			wil_dbg_txrx(wil, "TSO: lenmss %d, i %d\n", lenmss, i);
1570 
1571 			if (!headlen) {
1572 				pa = skb_frag_dma_map(dev, frag,
1573 						      frag->size - len, lenmss,
1574 						      DMA_TO_DEVICE);
1575 				vring->ctx[i].mapped_as = wil_mapped_as_page;
1576 			} else {
1577 				pa = dma_map_single(dev,
1578 						    skb->data +
1579 						    skb_headlen(skb) - headlen,
1580 						    lenmss,
1581 						    DMA_TO_DEVICE);
1582 				vring->ctx[i].mapped_as = wil_mapped_as_single;
1583 				headlen -= lenmss;
1584 			}
1585 
1586 			if (unlikely(dma_mapping_error(dev, pa))) {
1587 				wil_err(wil, "TSO: DMA map page error\n");
1588 				goto mem_error;
1589 			}
1590 
1591 			_desc = &vring->va[i].tx.legacy;
1592 
1593 			if (!_first_desc) {
1594 				_first_desc = _desc;
1595 				first_ctx = &vring->ctx[i];
1596 				d = first_desc;
1597 			} else {
1598 				d = &desc_mem;
1599 			}
1600 
1601 			wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d,
1602 						  pa, lenmss, vring_index);
1603 			wil_tx_desc_offload_setup_tso(d, skb, desc_tso_type,
1604 						      is_ipv4, tcp_hdr_len,
1605 						      skb_net_hdr_len);
1606 
1607 			/* use tso_type_first only once */
1608 			desc_tso_type = wil_tso_type_mid;
1609 
1610 			descs_used++;  /* desc used so far */
1611 			sg_desc_cnt++; /* desc used for this segment */
1612 			len -= lenmss;
1613 			rem_data -= lenmss;
1614 
1615 			wil_dbg_txrx(wil,
1616 				     "TSO: len %d, rem_data %d, descs_used %d, sg_desc_cnt %d,\n",
1617 				     len, rem_data, descs_used, sg_desc_cnt);
1618 
1619 			/* Close the segment if reached mss size or last frag*/
1620 			if (rem_data == 0 || (f == nr_frags - 1 && len == 0)) {
1621 				if (hdr_compensation_need) {
1622 					/* first segment include hdr desc for
1623 					 * release
1624 					 */
1625 					hdr_ctx->nr_frags = sg_desc_cnt;
1626 					wil_tx_desc_set_nr_frags(first_desc,
1627 								 sg_desc_cnt +
1628 								 1);
1629 					hdr_compensation_need = false;
1630 				} else {
1631 					wil_tx_desc_set_nr_frags(first_desc,
1632 								 sg_desc_cnt);
1633 				}
1634 				first_ctx->nr_frags = sg_desc_cnt - 1;
1635 
1636 				wil_tx_last_desc(d);
1637 
1638 				/* first descriptor may also be the last
1639 				 * for this mss - make sure not to copy
1640 				 * it twice
1641 				 */
1642 				if (first_desc != d)
1643 					*_first_desc = *first_desc;
1644 
1645 				/*last descriptor will be copied at the end
1646 				 * of this TS processing
1647 				 */
1648 				if (f < nr_frags - 1 || len > 0)
1649 					*_desc = *d;
1650 
1651 				rem_data = mss;
1652 				_first_desc = NULL;
1653 				sg_desc_cnt = 0;
1654 			} else if (first_desc != d) /* update mid descriptor */
1655 					*_desc = *d;
1656 		}
1657 	}
1658 
1659 	/* first descriptor may also be the last.
1660 	 * in this case d pointer is invalid
1661 	 */
1662 	if (_first_desc == _desc)
1663 		d = first_desc;
1664 
1665 	/* Last data descriptor */
1666 	wil_set_tx_desc_last_tso(d);
1667 	*_desc = *d;
1668 
1669 	/* Fill the total number of descriptors in first desc (hdr)*/
1670 	wil_tx_desc_set_nr_frags(hdr_desc, descs_used);
1671 	*_hdr_desc = *hdr_desc;
1672 
1673 	/* hold reference to skb
1674 	 * to prevent skb release before accounting
1675 	 * in case of immediate "tx done"
1676 	 */
1677 	vring->ctx[i].skb = skb_get(skb);
1678 
1679 	/* performance monitoring */
1680 	used = wil_ring_used_tx(vring);
1681 	if (wil_val_in_range(wil->ring_idle_trsh,
1682 			     used, used + descs_used)) {
1683 		txdata->idle += get_cycles() - txdata->last_idle;
1684 		wil_dbg_txrx(wil,  "Ring[%2d] not idle %d -> %d\n",
1685 			     vring_index, used, used + descs_used);
1686 	}
1687 
1688 	/* Make sure to advance the head only after descriptor update is done.
1689 	 * This will prevent a race condition where the completion thread
1690 	 * will see the DU bit set from previous run and will handle the
1691 	 * skb before it was completed.
1692 	 */
1693 	wmb();
1694 
1695 	/* advance swhead */
1696 	wil_ring_advance_head(vring, descs_used);
1697 	wil_dbg_txrx(wil, "TSO: Tx swhead %d -> %d\n", swhead, vring->swhead);
1698 
1699 	/* make sure all writes to descriptors (shared memory) are done before
1700 	 * committing them to HW
1701 	 */
1702 	wmb();
1703 
1704 	if (wil->tx_latency)
1705 		*(ktime_t *)&skb->cb = ktime_get();
1706 	else
1707 		memset(skb->cb, 0, sizeof(ktime_t));
1708 
1709 	wil_w(wil, vring->hwtail, vring->swhead);
1710 	return 0;
1711 
1712 mem_error:
1713 	while (descs_used > 0) {
1714 		struct wil_ctx *ctx;
1715 
1716 		i = (swhead + descs_used - 1) % vring->size;
1717 		d = (struct vring_tx_desc *)&vring->va[i].tx.legacy;
1718 		_desc = &vring->va[i].tx.legacy;
1719 		*d = *_desc;
1720 		_desc->dma.status = TX_DMA_STATUS_DU;
1721 		ctx = &vring->ctx[i];
1722 		wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx);
1723 		memset(ctx, 0, sizeof(*ctx));
1724 		descs_used--;
1725 	}
1726 err_exit:
1727 	return rc;
1728 }
1729 
1730 static int __wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
1731 			 struct wil_ring *ring, struct sk_buff *skb)
1732 {
1733 	struct device *dev = wil_to_dev(wil);
1734 	struct vring_tx_desc dd, *d = &dd;
1735 	volatile struct vring_tx_desc *_d;
1736 	u32 swhead = ring->swhead;
1737 	int avail = wil_ring_avail_tx(ring);
1738 	int nr_frags = skb_shinfo(skb)->nr_frags;
1739 	uint f = 0;
1740 	int ring_index = ring - wil->ring_tx;
1741 	struct wil_ring_tx_data  *txdata = &wil->ring_tx_data[ring_index];
1742 	uint i = swhead;
1743 	dma_addr_t pa;
1744 	int used;
1745 	bool mcast = (ring_index == vif->bcast_ring);
1746 	uint len = skb_headlen(skb);
1747 
1748 	wil_dbg_txrx(wil, "tx_ring: %d bytes to ring %d, nr_frags %d\n",
1749 		     skb->len, ring_index, nr_frags);
1750 
1751 	if (unlikely(!txdata->enabled))
1752 		return -EINVAL;
1753 
1754 	if (unlikely(avail < 1 + nr_frags)) {
1755 		wil_err_ratelimited(wil,
1756 				    "Tx ring[%2d] full. No space for %d fragments\n",
1757 				    ring_index, 1 + nr_frags);
1758 		return -ENOMEM;
1759 	}
1760 	_d = &ring->va[i].tx.legacy;
1761 
1762 	pa = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
1763 
1764 	wil_dbg_txrx(wil, "Tx[%2d] skb %d bytes 0x%p -> %pad\n", ring_index,
1765 		     skb_headlen(skb), skb->data, &pa);
1766 	wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1,
1767 			  skb->data, skb_headlen(skb), false);
1768 
1769 	if (unlikely(dma_mapping_error(dev, pa)))
1770 		return -EINVAL;
1771 	ring->ctx[i].mapped_as = wil_mapped_as_single;
1772 	/* 1-st segment */
1773 	wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, pa, len,
1774 				   ring_index);
1775 	if (unlikely(mcast)) {
1776 		d->mac.d[0] |= BIT(MAC_CFG_DESC_TX_0_MCS_EN_POS); /* MCS 0 */
1777 		if (unlikely(len > WIL_BCAST_MCS0_LIMIT)) /* set MCS 1 */
1778 			d->mac.d[0] |= (1 << MAC_CFG_DESC_TX_0_MCS_INDEX_POS);
1779 	}
1780 	/* Process TCP/UDP checksum offloading */
1781 	if (unlikely(wil_tx_desc_offload_setup(d, skb))) {
1782 		wil_err(wil, "Tx[%2d] Failed to set cksum, drop packet\n",
1783 			ring_index);
1784 		goto dma_error;
1785 	}
1786 
1787 	ring->ctx[i].nr_frags = nr_frags;
1788 	wil_tx_desc_set_nr_frags(d, nr_frags + 1);
1789 
1790 	/* middle segments */
1791 	for (; f < nr_frags; f++) {
1792 		const struct skb_frag_struct *frag =
1793 				&skb_shinfo(skb)->frags[f];
1794 		int len = skb_frag_size(frag);
1795 
1796 		*_d = *d;
1797 		wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i);
1798 		wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
1799 				  (const void *)d, sizeof(*d), false);
1800 		i = (swhead + f + 1) % ring->size;
1801 		_d = &ring->va[i].tx.legacy;
1802 		pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag),
1803 				      DMA_TO_DEVICE);
1804 		if (unlikely(dma_mapping_error(dev, pa))) {
1805 			wil_err(wil, "Tx[%2d] failed to map fragment\n",
1806 				ring_index);
1807 			goto dma_error;
1808 		}
1809 		ring->ctx[i].mapped_as = wil_mapped_as_page;
1810 		wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d,
1811 					   pa, len, ring_index);
1812 		/* no need to check return code -
1813 		 * if it succeeded for 1-st descriptor,
1814 		 * it will succeed here too
1815 		 */
1816 		wil_tx_desc_offload_setup(d, skb);
1817 	}
1818 	/* for the last seg only */
1819 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS);
1820 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS);
1821 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
1822 	*_d = *d;
1823 	wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i);
1824 	wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
1825 			  (const void *)d, sizeof(*d), false);
1826 
1827 	/* hold reference to skb
1828 	 * to prevent skb release before accounting
1829 	 * in case of immediate "tx done"
1830 	 */
1831 	ring->ctx[i].skb = skb_get(skb);
1832 
1833 	/* performance monitoring */
1834 	used = wil_ring_used_tx(ring);
1835 	if (wil_val_in_range(wil->ring_idle_trsh,
1836 			     used, used + nr_frags + 1)) {
1837 		txdata->idle += get_cycles() - txdata->last_idle;
1838 		wil_dbg_txrx(wil,  "Ring[%2d] not idle %d -> %d\n",
1839 			     ring_index, used, used + nr_frags + 1);
1840 	}
1841 
1842 	/* Make sure to advance the head only after descriptor update is done.
1843 	 * This will prevent a race condition where the completion thread
1844 	 * will see the DU bit set from previous run and will handle the
1845 	 * skb before it was completed.
1846 	 */
1847 	wmb();
1848 
1849 	/* advance swhead */
1850 	wil_ring_advance_head(ring, nr_frags + 1);
1851 	wil_dbg_txrx(wil, "Tx[%2d] swhead %d -> %d\n", ring_index, swhead,
1852 		     ring->swhead);
1853 	trace_wil6210_tx(ring_index, swhead, skb->len, nr_frags);
1854 
1855 	/* make sure all writes to descriptors (shared memory) are done before
1856 	 * committing them to HW
1857 	 */
1858 	wmb();
1859 
1860 	if (wil->tx_latency)
1861 		*(ktime_t *)&skb->cb = ktime_get();
1862 	else
1863 		memset(skb->cb, 0, sizeof(ktime_t));
1864 
1865 	wil_w(wil, ring->hwtail, ring->swhead);
1866 
1867 	return 0;
1868  dma_error:
1869 	/* unmap what we have mapped */
1870 	nr_frags = f + 1; /* frags mapped + one for skb head */
1871 	for (f = 0; f < nr_frags; f++) {
1872 		struct wil_ctx *ctx;
1873 
1874 		i = (swhead + f) % ring->size;
1875 		ctx = &ring->ctx[i];
1876 		_d = &ring->va[i].tx.legacy;
1877 		*d = *_d;
1878 		_d->dma.status = TX_DMA_STATUS_DU;
1879 		wil->txrx_ops.tx_desc_unmap(dev,
1880 					    (union wil_tx_desc *)d,
1881 					    ctx);
1882 
1883 		memset(ctx, 0, sizeof(*ctx));
1884 	}
1885 
1886 	return -EINVAL;
1887 }
1888 
1889 static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
1890 		       struct wil_ring *ring, struct sk_buff *skb)
1891 {
1892 	int ring_index = ring - wil->ring_tx;
1893 	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_index];
1894 	int rc;
1895 
1896 	spin_lock(&txdata->lock);
1897 
1898 	if (test_bit(wil_status_suspending, wil->status) ||
1899 	    test_bit(wil_status_suspended, wil->status) ||
1900 	    test_bit(wil_status_resuming, wil->status)) {
1901 		wil_dbg_txrx(wil,
1902 			     "suspend/resume in progress. drop packet\n");
1903 		spin_unlock(&txdata->lock);
1904 		return -EINVAL;
1905 	}
1906 
1907 	rc = (skb_is_gso(skb) ? wil->txrx_ops.tx_ring_tso : __wil_tx_ring)
1908 	     (wil, vif, ring, skb);
1909 
1910 	spin_unlock(&txdata->lock);
1911 
1912 	return rc;
1913 }
1914 
1915 /**
1916  * Check status of tx vrings and stop/wake net queues if needed
1917  * It will start/stop net queues of a specific VIF net_device.
1918  *
1919  * This function does one of two checks:
1920  * In case check_stop is true, will check if net queues need to be stopped. If
1921  * the conditions for stopping are met, netif_tx_stop_all_queues() is called.
1922  * In case check_stop is false, will check if net queues need to be waked. If
1923  * the conditions for waking are met, netif_tx_wake_all_queues() is called.
1924  * vring is the vring which is currently being modified by either adding
1925  * descriptors (tx) into it or removing descriptors (tx complete) from it. Can
1926  * be null when irrelevant (e.g. connect/disconnect events).
1927  *
1928  * The implementation is to stop net queues if modified vring has low
1929  * descriptor availability. Wake if all vrings are not in low descriptor
1930  * availability and modified vring has high descriptor availability.
1931  */
1932 static inline void __wil_update_net_queues(struct wil6210_priv *wil,
1933 					   struct wil6210_vif *vif,
1934 					   struct wil_ring *ring,
1935 					   bool check_stop)
1936 {
1937 	int i;
1938 
1939 	if (unlikely(!vif))
1940 		return;
1941 
1942 	if (ring)
1943 		wil_dbg_txrx(wil, "vring %d, mid %d, check_stop=%d, stopped=%d",
1944 			     (int)(ring - wil->ring_tx), vif->mid, check_stop,
1945 			     vif->net_queue_stopped);
1946 	else
1947 		wil_dbg_txrx(wil, "check_stop=%d, mid=%d, stopped=%d",
1948 			     check_stop, vif->mid, vif->net_queue_stopped);
1949 
1950 	if (check_stop == vif->net_queue_stopped)
1951 		/* net queues already in desired state */
1952 		return;
1953 
1954 	if (check_stop) {
1955 		if (!ring || unlikely(wil_ring_avail_low(ring))) {
1956 			/* not enough room in the vring */
1957 			netif_tx_stop_all_queues(vif_to_ndev(vif));
1958 			vif->net_queue_stopped = true;
1959 			wil_dbg_txrx(wil, "netif_tx_stop called\n");
1960 		}
1961 		return;
1962 	}
1963 
1964 	/* Do not wake the queues in suspend flow */
1965 	if (test_bit(wil_status_suspending, wil->status) ||
1966 	    test_bit(wil_status_suspended, wil->status))
1967 		return;
1968 
1969 	/* check wake */
1970 	for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
1971 		struct wil_ring *cur_ring = &wil->ring_tx[i];
1972 		struct wil_ring_tx_data  *txdata = &wil->ring_tx_data[i];
1973 
1974 		if (txdata->mid != vif->mid || !cur_ring->va ||
1975 		    !txdata->enabled || cur_ring == ring)
1976 			continue;
1977 
1978 		if (wil_ring_avail_low(cur_ring)) {
1979 			wil_dbg_txrx(wil, "ring %d full, can't wake\n",
1980 				     (int)(cur_ring - wil->ring_tx));
1981 			return;
1982 		}
1983 	}
1984 
1985 	if (!ring || wil_ring_avail_high(ring)) {
1986 		/* enough room in the ring */
1987 		wil_dbg_txrx(wil, "calling netif_tx_wake\n");
1988 		netif_tx_wake_all_queues(vif_to_ndev(vif));
1989 		vif->net_queue_stopped = false;
1990 	}
1991 }
1992 
1993 void wil_update_net_queues(struct wil6210_priv *wil, struct wil6210_vif *vif,
1994 			   struct wil_ring *ring, bool check_stop)
1995 {
1996 	spin_lock(&wil->net_queue_lock);
1997 	__wil_update_net_queues(wil, vif, ring, check_stop);
1998 	spin_unlock(&wil->net_queue_lock);
1999 }
2000 
2001 void wil_update_net_queues_bh(struct wil6210_priv *wil, struct wil6210_vif *vif,
2002 			      struct wil_ring *ring, bool check_stop)
2003 {
2004 	spin_lock_bh(&wil->net_queue_lock);
2005 	__wil_update_net_queues(wil, vif, ring, check_stop);
2006 	spin_unlock_bh(&wil->net_queue_lock);
2007 }
2008 
2009 netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2010 {
2011 	struct wil6210_vif *vif = ndev_to_vif(ndev);
2012 	struct wil6210_priv *wil = vif_to_wil(vif);
2013 	struct ethhdr *eth = (void *)skb->data;
2014 	bool bcast = is_multicast_ether_addr(eth->h_dest);
2015 	struct wil_ring *ring;
2016 	static bool pr_once_fw;
2017 	int rc;
2018 
2019 	wil_dbg_txrx(wil, "start_xmit\n");
2020 	if (unlikely(!test_bit(wil_status_fwready, wil->status))) {
2021 		if (!pr_once_fw) {
2022 			wil_err(wil, "FW not ready\n");
2023 			pr_once_fw = true;
2024 		}
2025 		goto drop;
2026 	}
2027 	if (unlikely(!test_bit(wil_vif_fwconnected, vif->status))) {
2028 		wil_dbg_ratelimited(wil,
2029 				    "VIF not connected, packet dropped\n");
2030 		goto drop;
2031 	}
2032 	if (unlikely(vif->wdev.iftype == NL80211_IFTYPE_MONITOR)) {
2033 		wil_err(wil, "Xmit in monitor mode not supported\n");
2034 		goto drop;
2035 	}
2036 	pr_once_fw = false;
2037 
2038 	/* find vring */
2039 	if (vif->wdev.iftype == NL80211_IFTYPE_STATION && !vif->pbss) {
2040 		/* in STA mode (ESS), all to same VRING (to AP) */
2041 		ring = wil_find_tx_ring_sta(wil, vif, skb);
2042 	} else if (bcast) {
2043 		if (vif->pbss)
2044 			/* in pbss, no bcast VRING - duplicate skb in
2045 			 * all stations VRINGs
2046 			 */
2047 			ring = wil_find_tx_bcast_2(wil, vif, skb);
2048 		else if (vif->wdev.iftype == NL80211_IFTYPE_AP)
2049 			/* AP has a dedicated bcast VRING */
2050 			ring = wil_find_tx_bcast_1(wil, vif, skb);
2051 		else
2052 			/* unexpected combination, fallback to duplicating
2053 			 * the skb in all stations VRINGs
2054 			 */
2055 			ring = wil_find_tx_bcast_2(wil, vif, skb);
2056 	} else {
2057 		/* unicast, find specific VRING by dest. address */
2058 		ring = wil_find_tx_ucast(wil, vif, skb);
2059 	}
2060 	if (unlikely(!ring)) {
2061 		wil_dbg_txrx(wil, "No Tx RING found for %pM\n", eth->h_dest);
2062 		goto drop;
2063 	}
2064 	/* set up vring entry */
2065 	rc = wil_tx_ring(wil, vif, ring, skb);
2066 
2067 	switch (rc) {
2068 	case 0:
2069 		/* shall we stop net queues? */
2070 		wil_update_net_queues_bh(wil, vif, ring, true);
2071 		/* statistics will be updated on the tx_complete */
2072 		dev_kfree_skb_any(skb);
2073 		return NETDEV_TX_OK;
2074 	case -ENOMEM:
2075 		return NETDEV_TX_BUSY;
2076 	default:
2077 		break; /* goto drop; */
2078 	}
2079  drop:
2080 	ndev->stats.tx_dropped++;
2081 	dev_kfree_skb_any(skb);
2082 
2083 	return NET_XMIT_DROP;
2084 }
2085 
2086 void wil_tx_latency_calc(struct wil6210_priv *wil, struct sk_buff *skb,
2087 			 struct wil_sta_info *sta)
2088 {
2089 	int skb_time_us;
2090 	int bin;
2091 
2092 	if (!wil->tx_latency)
2093 		return;
2094 
2095 	if (ktime_to_ms(*(ktime_t *)&skb->cb) == 0)
2096 		return;
2097 
2098 	skb_time_us = ktime_us_delta(ktime_get(), *(ktime_t *)&skb->cb);
2099 	bin = skb_time_us / wil->tx_latency_res;
2100 	bin = min_t(int, bin, WIL_NUM_LATENCY_BINS - 1);
2101 
2102 	wil_dbg_txrx(wil, "skb time %dus => bin %d\n", skb_time_us, bin);
2103 	sta->tx_latency_bins[bin]++;
2104 	sta->stats.tx_latency_total_us += skb_time_us;
2105 	if (skb_time_us < sta->stats.tx_latency_min_us)
2106 		sta->stats.tx_latency_min_us = skb_time_us;
2107 	if (skb_time_us > sta->stats.tx_latency_max_us)
2108 		sta->stats.tx_latency_max_us = skb_time_us;
2109 }
2110 
2111 /**
2112  * Clean up transmitted skb's from the Tx VRING
2113  *
2114  * Return number of descriptors cleared
2115  *
2116  * Safe to call from IRQ
2117  */
2118 int wil_tx_complete(struct wil6210_vif *vif, int ringid)
2119 {
2120 	struct wil6210_priv *wil = vif_to_wil(vif);
2121 	struct net_device *ndev = vif_to_ndev(vif);
2122 	struct device *dev = wil_to_dev(wil);
2123 	struct wil_ring *vring = &wil->ring_tx[ringid];
2124 	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ringid];
2125 	int done = 0;
2126 	int cid = wil->ring2cid_tid[ringid][0];
2127 	struct wil_net_stats *stats = NULL;
2128 	volatile struct vring_tx_desc *_d;
2129 	int used_before_complete;
2130 	int used_new;
2131 
2132 	if (unlikely(!vring->va)) {
2133 		wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid);
2134 		return 0;
2135 	}
2136 
2137 	if (unlikely(!txdata->enabled)) {
2138 		wil_info(wil, "Tx irq[%d]: vring disabled\n", ringid);
2139 		return 0;
2140 	}
2141 
2142 	wil_dbg_txrx(wil, "tx_complete: (%d)\n", ringid);
2143 
2144 	used_before_complete = wil_ring_used_tx(vring);
2145 
2146 	if (cid < WIL6210_MAX_CID)
2147 		stats = &wil->sta[cid].stats;
2148 
2149 	while (!wil_ring_is_empty(vring)) {
2150 		int new_swtail;
2151 		struct wil_ctx *ctx = &vring->ctx[vring->swtail];
2152 		/**
2153 		 * For the fragmented skb, HW will set DU bit only for the
2154 		 * last fragment. look for it.
2155 		 * In TSO the first DU will include hdr desc
2156 		 */
2157 		int lf = (vring->swtail + ctx->nr_frags) % vring->size;
2158 		/* TODO: check we are not past head */
2159 
2160 		_d = &vring->va[lf].tx.legacy;
2161 		if (unlikely(!(_d->dma.status & TX_DMA_STATUS_DU)))
2162 			break;
2163 
2164 		new_swtail = (lf + 1) % vring->size;
2165 		while (vring->swtail != new_swtail) {
2166 			struct vring_tx_desc dd, *d = &dd;
2167 			u16 dmalen;
2168 			struct sk_buff *skb;
2169 
2170 			ctx = &vring->ctx[vring->swtail];
2171 			skb = ctx->skb;
2172 			_d = &vring->va[vring->swtail].tx.legacy;
2173 
2174 			*d = *_d;
2175 
2176 			dmalen = le16_to_cpu(d->dma.length);
2177 			trace_wil6210_tx_done(ringid, vring->swtail, dmalen,
2178 					      d->dma.error);
2179 			wil_dbg_txrx(wil,
2180 				     "TxC[%2d][%3d] : %d bytes, status 0x%02x err 0x%02x\n",
2181 				     ringid, vring->swtail, dmalen,
2182 				     d->dma.status, d->dma.error);
2183 			wil_hex_dump_txrx("TxCD ", DUMP_PREFIX_NONE, 32, 4,
2184 					  (const void *)d, sizeof(*d), false);
2185 
2186 			wil->txrx_ops.tx_desc_unmap(dev,
2187 						    (union wil_tx_desc *)d,
2188 						    ctx);
2189 
2190 			if (skb) {
2191 				if (likely(d->dma.error == 0)) {
2192 					ndev->stats.tx_packets++;
2193 					ndev->stats.tx_bytes += skb->len;
2194 					if (stats) {
2195 						stats->tx_packets++;
2196 						stats->tx_bytes += skb->len;
2197 
2198 						wil_tx_latency_calc(wil, skb,
2199 							&wil->sta[cid]);
2200 					}
2201 				} else {
2202 					ndev->stats.tx_errors++;
2203 					if (stats)
2204 						stats->tx_errors++;
2205 				}
2206 				wil_consume_skb(skb, d->dma.error == 0);
2207 			}
2208 			memset(ctx, 0, sizeof(*ctx));
2209 			/* Make sure the ctx is zeroed before updating the tail
2210 			 * to prevent a case where wil_tx_ring will see
2211 			 * this descriptor as used and handle it before ctx zero
2212 			 * is completed.
2213 			 */
2214 			wmb();
2215 			/* There is no need to touch HW descriptor:
2216 			 * - ststus bit TX_DMA_STATUS_DU is set by design,
2217 			 *   so hardware will not try to process this desc.,
2218 			 * - rest of descriptor will be initialized on Tx.
2219 			 */
2220 			vring->swtail = wil_ring_next_tail(vring);
2221 			done++;
2222 		}
2223 	}
2224 
2225 	/* performance monitoring */
2226 	used_new = wil_ring_used_tx(vring);
2227 	if (wil_val_in_range(wil->ring_idle_trsh,
2228 			     used_new, used_before_complete)) {
2229 		wil_dbg_txrx(wil, "Ring[%2d] idle %d -> %d\n",
2230 			     ringid, used_before_complete, used_new);
2231 		txdata->last_idle = get_cycles();
2232 	}
2233 
2234 	/* shall we wake net queues? */
2235 	if (done)
2236 		wil_update_net_queues(wil, vif, vring, false);
2237 
2238 	return done;
2239 }
2240 
2241 static inline int wil_tx_init(struct wil6210_priv *wil)
2242 {
2243 	return 0;
2244 }
2245 
2246 static inline void wil_tx_fini(struct wil6210_priv *wil) {}
2247 
2248 static void wil_get_reorder_params(struct wil6210_priv *wil,
2249 				   struct sk_buff *skb, int *tid, int *cid,
2250 				   int *mid, u16 *seq, int *mcast, int *retry)
2251 {
2252 	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
2253 
2254 	*tid = wil_rxdesc_tid(d);
2255 	*cid = wil_rxdesc_cid(d);
2256 	*mid = wil_rxdesc_mid(d);
2257 	*seq = wil_rxdesc_seq(d);
2258 	*mcast = wil_rxdesc_mcast(d);
2259 	*retry = wil_rxdesc_retry(d);
2260 }
2261 
2262 void wil_init_txrx_ops_legacy_dma(struct wil6210_priv *wil)
2263 {
2264 	wil->txrx_ops.configure_interrupt_moderation =
2265 		wil_configure_interrupt_moderation;
2266 	/* TX ops */
2267 	wil->txrx_ops.tx_desc_map = wil_tx_desc_map;
2268 	wil->txrx_ops.tx_desc_unmap = wil_txdesc_unmap;
2269 	wil->txrx_ops.tx_ring_tso =  __wil_tx_vring_tso;
2270 	wil->txrx_ops.ring_init_tx = wil_vring_init_tx;
2271 	wil->txrx_ops.ring_fini_tx = wil_vring_free;
2272 	wil->txrx_ops.ring_init_bcast = wil_vring_init_bcast;
2273 	wil->txrx_ops.tx_init = wil_tx_init;
2274 	wil->txrx_ops.tx_fini = wil_tx_fini;
2275 	/* RX ops */
2276 	wil->txrx_ops.rx_init = wil_rx_init;
2277 	wil->txrx_ops.wmi_addba_rx_resp = wmi_addba_rx_resp;
2278 	wil->txrx_ops.get_reorder_params = wil_get_reorder_params;
2279 	wil->txrx_ops.get_netif_rx_params =
2280 		wil_get_netif_rx_params;
2281 	wil->txrx_ops.rx_crypto_check = wil_rx_crypto_check;
2282 	wil->txrx_ops.rx_error_check = wil_rx_error_check;
2283 	wil->txrx_ops.is_rx_idle = wil_is_rx_idle;
2284 	wil->txrx_ops.rx_fini = wil_rx_fini;
2285 }
2286