1 // SPDX-License-Identifier: ISC 2 /* 3 * Copyright (c) 2012-2017 Qualcomm Atheros, Inc. 4 * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved. 5 */ 6 7 #include <linux/etherdevice.h> 8 #include <net/ieee80211_radiotap.h> 9 #include <linux/if_arp.h> 10 #include <linux/moduleparam.h> 11 #include <linux/ip.h> 12 #include <linux/ipv6.h> 13 #include <net/ipv6.h> 14 #include <linux/prefetch.h> 15 16 #include "wil6210.h" 17 #include "wmi.h" 18 #include "txrx.h" 19 #include "trace.h" 20 #include "txrx_edma.h" 21 22 bool rx_align_2; 23 module_param(rx_align_2, bool, 0444); 24 MODULE_PARM_DESC(rx_align_2, " align Rx buffers on 4*n+2, default - no"); 25 26 bool rx_large_buf; 27 module_param(rx_large_buf, bool, 0444); 28 MODULE_PARM_DESC(rx_large_buf, " allocate 8KB RX buffers, default - no"); 29 30 /* Drop Tx packets in case Tx ring is full */ 31 bool drop_if_ring_full; 32 33 static inline uint wil_rx_snaplen(void) 34 { 35 return rx_align_2 ? 6 : 0; 36 } 37 38 /* wil_ring_wmark_low - low watermark for available descriptor space */ 39 static inline int wil_ring_wmark_low(struct wil_ring *ring) 40 { 41 return ring->size / 8; 42 } 43 44 /* wil_ring_wmark_high - high watermark for available descriptor space */ 45 static inline int wil_ring_wmark_high(struct wil_ring *ring) 46 { 47 return ring->size / 4; 48 } 49 50 /* returns true if num avail descriptors is lower than wmark_low */ 51 static inline int wil_ring_avail_low(struct wil_ring *ring) 52 { 53 return wil_ring_avail_tx(ring) < wil_ring_wmark_low(ring); 54 } 55 56 /* returns true if num avail descriptors is higher than wmark_high */ 57 static inline int wil_ring_avail_high(struct wil_ring *ring) 58 { 59 return wil_ring_avail_tx(ring) > wil_ring_wmark_high(ring); 60 } 61 62 /* returns true when all tx vrings are empty */ 63 bool wil_is_tx_idle(struct wil6210_priv *wil) 64 { 65 int i; 66 unsigned long data_comp_to; 67 int min_ring_id = wil_get_min_tx_ring_id(wil); 68 69 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) { 70 struct wil_ring *vring = &wil->ring_tx[i]; 71 int vring_index = vring - wil->ring_tx; 72 struct wil_ring_tx_data *txdata = 73 &wil->ring_tx_data[vring_index]; 74 75 spin_lock(&txdata->lock); 76 77 if (!vring->va || !txdata->enabled) { 78 spin_unlock(&txdata->lock); 79 continue; 80 } 81 82 data_comp_to = jiffies + msecs_to_jiffies( 83 WIL_DATA_COMPLETION_TO_MS); 84 if (test_bit(wil_status_napi_en, wil->status)) { 85 while (!wil_ring_is_empty(vring)) { 86 if (time_after(jiffies, data_comp_to)) { 87 wil_dbg_pm(wil, 88 "TO waiting for idle tx\n"); 89 spin_unlock(&txdata->lock); 90 return false; 91 } 92 wil_dbg_ratelimited(wil, 93 "tx vring is not empty -> NAPI\n"); 94 spin_unlock(&txdata->lock); 95 napi_synchronize(&wil->napi_tx); 96 msleep(20); 97 spin_lock(&txdata->lock); 98 if (!vring->va || !txdata->enabled) 99 break; 100 } 101 } 102 103 spin_unlock(&txdata->lock); 104 } 105 106 return true; 107 } 108 109 static int wil_vring_alloc(struct wil6210_priv *wil, struct wil_ring *vring) 110 { 111 struct device *dev = wil_to_dev(wil); 112 size_t sz = vring->size * sizeof(vring->va[0]); 113 uint i; 114 115 wil_dbg_misc(wil, "vring_alloc:\n"); 116 117 BUILD_BUG_ON(sizeof(vring->va[0]) != 32); 118 119 vring->swhead = 0; 120 vring->swtail = 0; 121 vring->ctx = kcalloc(vring->size, sizeof(vring->ctx[0]), GFP_KERNEL); 122 if (!vring->ctx) { 123 vring->va = NULL; 124 return -ENOMEM; 125 } 126 127 /* vring->va should be aligned on its size rounded up to power of 2 128 * This is granted by the dma_alloc_coherent. 129 * 130 * HW has limitation that all vrings addresses must share the same 131 * upper 16 msb bits part of 48 bits address. To workaround that, 132 * if we are using more than 32 bit addresses switch to 32 bit 133 * allocation before allocating vring memory. 134 * 135 * There's no check for the return value of dma_set_mask_and_coherent, 136 * since we assume if we were able to set the mask during 137 * initialization in this system it will not fail if we set it again 138 */ 139 if (wil->dma_addr_size > 32) 140 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 141 142 vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL); 143 if (!vring->va) { 144 kfree(vring->ctx); 145 vring->ctx = NULL; 146 return -ENOMEM; 147 } 148 149 if (wil->dma_addr_size > 32) 150 dma_set_mask_and_coherent(dev, 151 DMA_BIT_MASK(wil->dma_addr_size)); 152 153 /* initially, all descriptors are SW owned 154 * For Tx and Rx, ownership bit is at the same location, thus 155 * we can use any 156 */ 157 for (i = 0; i < vring->size; i++) { 158 volatile struct vring_tx_desc *_d = 159 &vring->va[i].tx.legacy; 160 161 _d->dma.status = TX_DMA_STATUS_DU; 162 } 163 164 wil_dbg_misc(wil, "vring[%d] 0x%p:%pad 0x%p\n", vring->size, 165 vring->va, &vring->pa, vring->ctx); 166 167 return 0; 168 } 169 170 static void wil_txdesc_unmap(struct device *dev, union wil_tx_desc *desc, 171 struct wil_ctx *ctx) 172 { 173 struct vring_tx_desc *d = &desc->legacy; 174 dma_addr_t pa = wil_desc_addr(&d->dma.addr); 175 u16 dmalen = le16_to_cpu(d->dma.length); 176 177 switch (ctx->mapped_as) { 178 case wil_mapped_as_single: 179 dma_unmap_single(dev, pa, dmalen, DMA_TO_DEVICE); 180 break; 181 case wil_mapped_as_page: 182 dma_unmap_page(dev, pa, dmalen, DMA_TO_DEVICE); 183 break; 184 default: 185 break; 186 } 187 } 188 189 static void wil_vring_free(struct wil6210_priv *wil, struct wil_ring *vring) 190 { 191 struct device *dev = wil_to_dev(wil); 192 size_t sz = vring->size * sizeof(vring->va[0]); 193 194 lockdep_assert_held(&wil->mutex); 195 if (!vring->is_rx) { 196 int vring_index = vring - wil->ring_tx; 197 198 wil_dbg_misc(wil, "free Tx vring %d [%d] 0x%p:%pad 0x%p\n", 199 vring_index, vring->size, vring->va, 200 &vring->pa, vring->ctx); 201 } else { 202 wil_dbg_misc(wil, "free Rx vring [%d] 0x%p:%pad 0x%p\n", 203 vring->size, vring->va, 204 &vring->pa, vring->ctx); 205 } 206 207 while (!wil_ring_is_empty(vring)) { 208 dma_addr_t pa; 209 u16 dmalen; 210 struct wil_ctx *ctx; 211 212 if (!vring->is_rx) { 213 struct vring_tx_desc dd, *d = ⅆ 214 volatile struct vring_tx_desc *_d = 215 &vring->va[vring->swtail].tx.legacy; 216 217 ctx = &vring->ctx[vring->swtail]; 218 if (!ctx) { 219 wil_dbg_txrx(wil, 220 "ctx(%d) was already completed\n", 221 vring->swtail); 222 vring->swtail = wil_ring_next_tail(vring); 223 continue; 224 } 225 *d = *_d; 226 wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx); 227 if (ctx->skb) 228 dev_kfree_skb_any(ctx->skb); 229 vring->swtail = wil_ring_next_tail(vring); 230 } else { /* rx */ 231 struct vring_rx_desc dd, *d = ⅆ 232 volatile struct vring_rx_desc *_d = 233 &vring->va[vring->swhead].rx.legacy; 234 235 ctx = &vring->ctx[vring->swhead]; 236 *d = *_d; 237 pa = wil_desc_addr(&d->dma.addr); 238 dmalen = le16_to_cpu(d->dma.length); 239 dma_unmap_single(dev, pa, dmalen, DMA_FROM_DEVICE); 240 kfree_skb(ctx->skb); 241 wil_ring_advance_head(vring, 1); 242 } 243 } 244 dma_free_coherent(dev, sz, (void *)vring->va, vring->pa); 245 kfree(vring->ctx); 246 vring->pa = 0; 247 vring->va = NULL; 248 vring->ctx = NULL; 249 } 250 251 /** 252 * Allocate one skb for Rx VRING 253 * 254 * Safe to call from IRQ 255 */ 256 static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct wil_ring *vring, 257 u32 i, int headroom) 258 { 259 struct device *dev = wil_to_dev(wil); 260 unsigned int sz = wil->rx_buf_len + ETH_HLEN + wil_rx_snaplen(); 261 struct vring_rx_desc dd, *d = ⅆ 262 volatile struct vring_rx_desc *_d = &vring->va[i].rx.legacy; 263 dma_addr_t pa; 264 struct sk_buff *skb = dev_alloc_skb(sz + headroom); 265 266 if (unlikely(!skb)) 267 return -ENOMEM; 268 269 skb_reserve(skb, headroom); 270 skb_put(skb, sz); 271 272 /** 273 * Make sure that the network stack calculates checksum for packets 274 * which failed the HW checksum calculation 275 */ 276 skb->ip_summed = CHECKSUM_NONE; 277 278 pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE); 279 if (unlikely(dma_mapping_error(dev, pa))) { 280 kfree_skb(skb); 281 return -ENOMEM; 282 } 283 284 d->dma.d0 = RX_DMA_D0_CMD_DMA_RT | RX_DMA_D0_CMD_DMA_IT; 285 wil_desc_addr_set(&d->dma.addr, pa); 286 /* ip_length don't care */ 287 /* b11 don't care */ 288 /* error don't care */ 289 d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */ 290 d->dma.length = cpu_to_le16(sz); 291 *_d = *d; 292 vring->ctx[i].skb = skb; 293 294 return 0; 295 } 296 297 /** 298 * Adds radiotap header 299 * 300 * Any error indicated as "Bad FCS" 301 * 302 * Vendor data for 04:ce:14-1 (Wilocity-1) consists of: 303 * - Rx descriptor: 32 bytes 304 * - Phy info 305 */ 306 static void wil_rx_add_radiotap_header(struct wil6210_priv *wil, 307 struct sk_buff *skb) 308 { 309 struct wil6210_rtap { 310 struct ieee80211_radiotap_header rthdr; 311 /* fields should be in the order of bits in rthdr.it_present */ 312 /* flags */ 313 u8 flags; 314 /* channel */ 315 __le16 chnl_freq __aligned(2); 316 __le16 chnl_flags; 317 /* MCS */ 318 u8 mcs_present; 319 u8 mcs_flags; 320 u8 mcs_index; 321 } __packed; 322 struct vring_rx_desc *d = wil_skb_rxdesc(skb); 323 struct wil6210_rtap *rtap; 324 int rtap_len = sizeof(struct wil6210_rtap); 325 struct ieee80211_channel *ch = wil->monitor_chandef.chan; 326 327 if (skb_headroom(skb) < rtap_len && 328 pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) { 329 wil_err(wil, "Unable to expand headroom to %d\n", rtap_len); 330 return; 331 } 332 333 rtap = skb_push(skb, rtap_len); 334 memset(rtap, 0, rtap_len); 335 336 rtap->rthdr.it_version = PKTHDR_RADIOTAP_VERSION; 337 rtap->rthdr.it_len = cpu_to_le16(rtap_len); 338 rtap->rthdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | 339 (1 << IEEE80211_RADIOTAP_CHANNEL) | 340 (1 << IEEE80211_RADIOTAP_MCS)); 341 if (d->dma.status & RX_DMA_STATUS_ERROR) 342 rtap->flags |= IEEE80211_RADIOTAP_F_BADFCS; 343 344 rtap->chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320); 345 rtap->chnl_flags = cpu_to_le16(0); 346 347 rtap->mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS; 348 rtap->mcs_flags = 0; 349 rtap->mcs_index = wil_rxdesc_mcs(d); 350 } 351 352 static bool wil_is_rx_idle(struct wil6210_priv *wil) 353 { 354 struct vring_rx_desc *_d; 355 struct wil_ring *ring = &wil->ring_rx; 356 357 _d = (struct vring_rx_desc *)&ring->va[ring->swhead].rx.legacy; 358 if (_d->dma.status & RX_DMA_STATUS_DU) 359 return false; 360 361 return true; 362 } 363 364 static int wil_rx_get_cid_by_skb(struct wil6210_priv *wil, struct sk_buff *skb) 365 { 366 struct vring_rx_desc *d = wil_skb_rxdesc(skb); 367 int mid = wil_rxdesc_mid(d); 368 struct wil6210_vif *vif = wil->vifs[mid]; 369 /* cid from DMA descriptor is limited to 3 bits. 370 * In case of cid>=8, the value would be cid modulo 8 and we need to 371 * find real cid by locating the transmitter (ta) inside sta array 372 */ 373 int cid = wil_rxdesc_cid(d); 374 unsigned int snaplen = wil_rx_snaplen(); 375 struct ieee80211_hdr_3addr *hdr; 376 int i; 377 unsigned char *ta; 378 u8 ftype; 379 380 /* in monitor mode there are no connections */ 381 if (vif->wdev.iftype == NL80211_IFTYPE_MONITOR) 382 return cid; 383 384 ftype = wil_rxdesc_ftype(d) << 2; 385 if (likely(ftype == IEEE80211_FTYPE_DATA)) { 386 if (unlikely(skb->len < ETH_HLEN + snaplen)) { 387 wil_err_ratelimited(wil, 388 "Short data frame, len = %d\n", 389 skb->len); 390 return -ENOENT; 391 } 392 ta = wil_skb_get_sa(skb); 393 } else { 394 if (unlikely(skb->len < sizeof(struct ieee80211_hdr_3addr))) { 395 wil_err_ratelimited(wil, "Short frame, len = %d\n", 396 skb->len); 397 return -ENOENT; 398 } 399 hdr = (void *)skb->data; 400 ta = hdr->addr2; 401 } 402 403 if (wil->max_assoc_sta <= WIL6210_RX_DESC_MAX_CID) 404 return cid; 405 406 /* assuming no concurrency between AP interfaces and STA interfaces. 407 * multista is used only in P2P_GO or AP mode. In other modes return 408 * cid from the rx descriptor 409 */ 410 if (vif->wdev.iftype != NL80211_IFTYPE_P2P_GO && 411 vif->wdev.iftype != NL80211_IFTYPE_AP) 412 return cid; 413 414 /* For Rx packets cid from rx descriptor is limited to 3 bits (0..7), 415 * to find the real cid, compare transmitter address with the stored 416 * stations mac address in the driver sta array 417 */ 418 for (i = cid; i < wil->max_assoc_sta; i += WIL6210_RX_DESC_MAX_CID) { 419 if (wil->sta[i].status != wil_sta_unused && 420 ether_addr_equal(wil->sta[i].addr, ta)) { 421 cid = i; 422 break; 423 } 424 } 425 if (i >= wil->max_assoc_sta) { 426 wil_err_ratelimited(wil, "Could not find cid for frame with transmit addr = %pM, iftype = %d, frametype = %d, len = %d\n", 427 ta, vif->wdev.iftype, ftype, skb->len); 428 cid = -ENOENT; 429 } 430 431 return cid; 432 } 433 434 /** 435 * reap 1 frame from @swhead 436 * 437 * Rx descriptor copied to skb->cb 438 * 439 * Safe to call from IRQ 440 */ 441 static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil, 442 struct wil_ring *vring) 443 { 444 struct device *dev = wil_to_dev(wil); 445 struct wil6210_vif *vif; 446 struct net_device *ndev; 447 volatile struct vring_rx_desc *_d; 448 struct vring_rx_desc *d; 449 struct sk_buff *skb; 450 dma_addr_t pa; 451 unsigned int snaplen = wil_rx_snaplen(); 452 unsigned int sz = wil->rx_buf_len + ETH_HLEN + snaplen; 453 u16 dmalen; 454 u8 ftype; 455 int cid, mid; 456 int i; 457 struct wil_net_stats *stats; 458 459 BUILD_BUG_ON(sizeof(struct skb_rx_info) > sizeof(skb->cb)); 460 461 again: 462 if (unlikely(wil_ring_is_empty(vring))) 463 return NULL; 464 465 i = (int)vring->swhead; 466 _d = &vring->va[i].rx.legacy; 467 if (unlikely(!(_d->dma.status & RX_DMA_STATUS_DU))) { 468 /* it is not error, we just reached end of Rx done area */ 469 return NULL; 470 } 471 472 skb = vring->ctx[i].skb; 473 vring->ctx[i].skb = NULL; 474 wil_ring_advance_head(vring, 1); 475 if (!skb) { 476 wil_err(wil, "No Rx skb at [%d]\n", i); 477 goto again; 478 } 479 d = wil_skb_rxdesc(skb); 480 *d = *_d; 481 pa = wil_desc_addr(&d->dma.addr); 482 483 dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE); 484 dmalen = le16_to_cpu(d->dma.length); 485 486 trace_wil6210_rx(i, d); 487 wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", i, dmalen); 488 wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4, 489 (const void *)d, sizeof(*d), false); 490 491 mid = wil_rxdesc_mid(d); 492 vif = wil->vifs[mid]; 493 494 if (unlikely(!vif)) { 495 wil_dbg_txrx(wil, "skipped RX descriptor with invalid mid %d", 496 mid); 497 kfree_skb(skb); 498 goto again; 499 } 500 ndev = vif_to_ndev(vif); 501 if (unlikely(dmalen > sz)) { 502 wil_err_ratelimited(wil, "Rx size too large: %d bytes!\n", 503 dmalen); 504 kfree_skb(skb); 505 goto again; 506 } 507 skb_trim(skb, dmalen); 508 509 prefetch(skb->data); 510 511 wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1, 512 skb->data, skb_headlen(skb), false); 513 514 cid = wil_rx_get_cid_by_skb(wil, skb); 515 if (cid == -ENOENT) { 516 kfree_skb(skb); 517 goto again; 518 } 519 wil_skb_set_cid(skb, (u8)cid); 520 stats = &wil->sta[cid].stats; 521 522 stats->last_mcs_rx = wil_rxdesc_mcs(d); 523 if (stats->last_mcs_rx < ARRAY_SIZE(stats->rx_per_mcs)) 524 stats->rx_per_mcs[stats->last_mcs_rx]++; 525 526 /* use radiotap header only if required */ 527 if (ndev->type == ARPHRD_IEEE80211_RADIOTAP) 528 wil_rx_add_radiotap_header(wil, skb); 529 530 /* no extra checks if in sniffer mode */ 531 if (ndev->type != ARPHRD_ETHER) 532 return skb; 533 /* Non-data frames may be delivered through Rx DMA channel (ex: BAR) 534 * Driver should recognize it by frame type, that is found 535 * in Rx descriptor. If type is not data, it is 802.11 frame as is 536 */ 537 ftype = wil_rxdesc_ftype(d) << 2; 538 if (unlikely(ftype != IEEE80211_FTYPE_DATA)) { 539 u8 fc1 = wil_rxdesc_fc1(d); 540 int tid = wil_rxdesc_tid(d); 541 u16 seq = wil_rxdesc_seq(d); 542 543 wil_dbg_txrx(wil, 544 "Non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n", 545 fc1, mid, cid, tid, seq); 546 stats->rx_non_data_frame++; 547 if (wil_is_back_req(fc1)) { 548 wil_dbg_txrx(wil, 549 "BAR: MID %d CID %d TID %d Seq 0x%03x\n", 550 mid, cid, tid, seq); 551 wil_rx_bar(wil, vif, cid, tid, seq); 552 } else { 553 /* print again all info. One can enable only this 554 * without overhead for printing every Rx frame 555 */ 556 wil_dbg_txrx(wil, 557 "Unhandled non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n", 558 fc1, mid, cid, tid, seq); 559 wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4, 560 (const void *)d, sizeof(*d), false); 561 wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1, 562 skb->data, skb_headlen(skb), false); 563 } 564 kfree_skb(skb); 565 goto again; 566 } 567 568 /* L4 IDENT is on when HW calculated checksum, check status 569 * and in case of error drop the packet 570 * higher stack layers will handle retransmission (if required) 571 */ 572 if (likely(d->dma.status & RX_DMA_STATUS_L4I)) { 573 /* L4 protocol identified, csum calculated */ 574 if (likely((d->dma.error & RX_DMA_ERROR_L4_ERR) == 0)) 575 skb->ip_summed = CHECKSUM_UNNECESSARY; 576 /* If HW reports bad checksum, let IP stack re-check it 577 * For example, HW don't understand Microsoft IP stack that 578 * mis-calculates TCP checksum - if it should be 0x0, 579 * it writes 0xffff in violation of RFC 1624 580 */ 581 else 582 stats->rx_csum_err++; 583 } 584 585 if (snaplen) { 586 /* Packet layout 587 * +-------+-------+---------+------------+------+ 588 * | SA(6) | DA(6) | SNAP(6) | ETHTYPE(2) | DATA | 589 * +-------+-------+---------+------------+------+ 590 * Need to remove SNAP, shifting SA and DA forward 591 */ 592 memmove(skb->data + snaplen, skb->data, 2 * ETH_ALEN); 593 skb_pull(skb, snaplen); 594 } 595 596 return skb; 597 } 598 599 /** 600 * allocate and fill up to @count buffers in rx ring 601 * buffers posted at @swtail 602 * Note: we have a single RX queue for servicing all VIFs, but we 603 * allocate skbs with headroom according to main interface only. This 604 * means it will not work with monitor interface together with other VIFs. 605 * Currently we only support monitor interface on its own without other VIFs, 606 * and we will need to fix this code once we add support. 607 */ 608 static int wil_rx_refill(struct wil6210_priv *wil, int count) 609 { 610 struct net_device *ndev = wil->main_ndev; 611 struct wil_ring *v = &wil->ring_rx; 612 u32 next_tail; 613 int rc = 0; 614 int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ? 615 WIL6210_RTAP_SIZE : 0; 616 617 for (; next_tail = wil_ring_next_tail(v), 618 (next_tail != v->swhead) && (count-- > 0); 619 v->swtail = next_tail) { 620 rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom); 621 if (unlikely(rc)) { 622 wil_err_ratelimited(wil, "Error %d in rx refill[%d]\n", 623 rc, v->swtail); 624 break; 625 } 626 } 627 628 /* make sure all writes to descriptors (shared memory) are done before 629 * committing them to HW 630 */ 631 wmb(); 632 633 wil_w(wil, v->hwtail, v->swtail); 634 635 return rc; 636 } 637 638 /** 639 * reverse_memcmp - Compare two areas of memory, in reverse order 640 * @cs: One area of memory 641 * @ct: Another area of memory 642 * @count: The size of the area. 643 * 644 * Cut'n'paste from original memcmp (see lib/string.c) 645 * with minimal modifications 646 */ 647 int reverse_memcmp(const void *cs, const void *ct, size_t count) 648 { 649 const unsigned char *su1, *su2; 650 int res = 0; 651 652 for (su1 = cs + count - 1, su2 = ct + count - 1; count > 0; 653 --su1, --su2, count--) { 654 res = *su1 - *su2; 655 if (res) 656 break; 657 } 658 return res; 659 } 660 661 static int wil_rx_crypto_check(struct wil6210_priv *wil, struct sk_buff *skb) 662 { 663 struct vring_rx_desc *d = wil_skb_rxdesc(skb); 664 int cid = wil_skb_get_cid(skb); 665 int tid = wil_rxdesc_tid(d); 666 int key_id = wil_rxdesc_key_id(d); 667 int mc = wil_rxdesc_mcast(d); 668 struct wil_sta_info *s = &wil->sta[cid]; 669 struct wil_tid_crypto_rx *c = mc ? &s->group_crypto_rx : 670 &s->tid_crypto_rx[tid]; 671 struct wil_tid_crypto_rx_single *cc = &c->key_id[key_id]; 672 const u8 *pn = (u8 *)&d->mac.pn_15_0; 673 674 if (!cc->key_set) { 675 wil_err_ratelimited(wil, 676 "Key missing. CID %d TID %d MCast %d KEY_ID %d\n", 677 cid, tid, mc, key_id); 678 return -EINVAL; 679 } 680 681 if (reverse_memcmp(pn, cc->pn, IEEE80211_GCMP_PN_LEN) <= 0) { 682 wil_err_ratelimited(wil, 683 "Replay attack. CID %d TID %d MCast %d KEY_ID %d PN %6phN last %6phN\n", 684 cid, tid, mc, key_id, pn, cc->pn); 685 return -EINVAL; 686 } 687 memcpy(cc->pn, pn, IEEE80211_GCMP_PN_LEN); 688 689 return 0; 690 } 691 692 static int wil_rx_error_check(struct wil6210_priv *wil, struct sk_buff *skb, 693 struct wil_net_stats *stats) 694 { 695 struct vring_rx_desc *d = wil_skb_rxdesc(skb); 696 697 if ((d->dma.status & RX_DMA_STATUS_ERROR) && 698 (d->dma.error & RX_DMA_ERROR_MIC)) { 699 stats->rx_mic_error++; 700 wil_dbg_txrx(wil, "MIC error, dropping packet\n"); 701 return -EFAULT; 702 } 703 704 return 0; 705 } 706 707 static void wil_get_netif_rx_params(struct sk_buff *skb, int *cid, 708 int *security) 709 { 710 struct vring_rx_desc *d = wil_skb_rxdesc(skb); 711 712 *cid = wil_skb_get_cid(skb); 713 *security = wil_rxdesc_security(d); 714 } 715 716 /* 717 * Check if skb is ptk eapol key message 718 * 719 * returns a pointer to the start of the eapol key structure, NULL 720 * if frame is not PTK eapol key 721 */ 722 static struct wil_eapol_key *wil_is_ptk_eapol_key(struct wil6210_priv *wil, 723 struct sk_buff *skb) 724 { 725 u8 *buf; 726 const struct wil_1x_hdr *hdr; 727 struct wil_eapol_key *key; 728 u16 key_info; 729 int len = skb->len; 730 731 if (!skb_mac_header_was_set(skb)) { 732 wil_err(wil, "mac header was not set\n"); 733 return NULL; 734 } 735 736 len -= skb_mac_offset(skb); 737 738 if (len < sizeof(struct ethhdr) + sizeof(struct wil_1x_hdr) + 739 sizeof(struct wil_eapol_key)) 740 return NULL; 741 742 buf = skb_mac_header(skb) + sizeof(struct ethhdr); 743 744 hdr = (const struct wil_1x_hdr *)buf; 745 if (hdr->type != WIL_1X_TYPE_EAPOL_KEY) 746 return NULL; 747 748 key = (struct wil_eapol_key *)(buf + sizeof(struct wil_1x_hdr)); 749 if (key->type != WIL_EAPOL_KEY_TYPE_WPA && 750 key->type != WIL_EAPOL_KEY_TYPE_RSN) 751 return NULL; 752 753 key_info = be16_to_cpu(key->key_info); 754 if (!(key_info & WIL_KEY_INFO_KEY_TYPE)) /* check if pairwise */ 755 return NULL; 756 757 return key; 758 } 759 760 static bool wil_skb_is_eap_3(struct wil6210_priv *wil, struct sk_buff *skb) 761 { 762 struct wil_eapol_key *key; 763 u16 key_info; 764 765 key = wil_is_ptk_eapol_key(wil, skb); 766 if (!key) 767 return false; 768 769 key_info = be16_to_cpu(key->key_info); 770 if (key_info & (WIL_KEY_INFO_MIC | 771 WIL_KEY_INFO_ENCR_KEY_DATA)) { 772 /* 3/4 of 4-Way Handshake */ 773 wil_dbg_misc(wil, "EAPOL key message 3\n"); 774 return true; 775 } 776 /* 1/4 of 4-Way Handshake */ 777 wil_dbg_misc(wil, "EAPOL key message 1\n"); 778 779 return false; 780 } 781 782 static bool wil_skb_is_eap_4(struct wil6210_priv *wil, struct sk_buff *skb) 783 { 784 struct wil_eapol_key *key; 785 u32 *nonce, i; 786 787 key = wil_is_ptk_eapol_key(wil, skb); 788 if (!key) 789 return false; 790 791 nonce = (u32 *)key->key_nonce; 792 for (i = 0; i < WIL_EAP_NONCE_LEN / sizeof(u32); i++, nonce++) { 793 if (*nonce != 0) { 794 /* message 2/4 */ 795 wil_dbg_misc(wil, "EAPOL key message 2\n"); 796 return false; 797 } 798 } 799 wil_dbg_misc(wil, "EAPOL key message 4\n"); 800 801 return true; 802 } 803 804 void wil_enable_tx_key_worker(struct work_struct *work) 805 { 806 struct wil6210_vif *vif = container_of(work, 807 struct wil6210_vif, enable_tx_key_worker); 808 struct wil6210_priv *wil = vif_to_wil(vif); 809 int rc, cid; 810 811 rtnl_lock(); 812 if (vif->ptk_rekey_state != WIL_REKEY_WAIT_M4_SENT) { 813 wil_dbg_misc(wil, "Invalid rekey state = %d\n", 814 vif->ptk_rekey_state); 815 rtnl_unlock(); 816 return; 817 } 818 819 cid = wil_find_cid_by_idx(wil, vif->mid, 0); 820 if (!wil_cid_valid(wil, cid)) { 821 wil_err(wil, "Invalid cid = %d\n", cid); 822 rtnl_unlock(); 823 return; 824 } 825 826 wil_dbg_misc(wil, "Apply PTK key after eapol was sent out\n"); 827 rc = wmi_add_cipher_key(vif, 0, wil->sta[cid].addr, 0, NULL, 828 WMI_KEY_USE_APPLY_PTK); 829 830 vif->ptk_rekey_state = WIL_REKEY_IDLE; 831 rtnl_unlock(); 832 833 if (rc) 834 wil_err(wil, "Apply PTK key failed %d\n", rc); 835 } 836 837 void wil_tx_complete_handle_eapol(struct wil6210_vif *vif, struct sk_buff *skb) 838 { 839 struct wil6210_priv *wil = vif_to_wil(vif); 840 struct wireless_dev *wdev = vif_to_wdev(vif); 841 bool q = false; 842 843 if (wdev->iftype != NL80211_IFTYPE_STATION || 844 !test_bit(WMI_FW_CAPABILITY_SPLIT_REKEY, wil->fw_capabilities)) 845 return; 846 847 /* check if skb is an EAP message 4/4 */ 848 if (!wil_skb_is_eap_4(wil, skb)) 849 return; 850 851 spin_lock_bh(&wil->eap_lock); 852 switch (vif->ptk_rekey_state) { 853 case WIL_REKEY_IDLE: 854 /* ignore idle state, can happen due to M4 retransmission */ 855 break; 856 case WIL_REKEY_M3_RECEIVED: 857 vif->ptk_rekey_state = WIL_REKEY_IDLE; 858 break; 859 case WIL_REKEY_WAIT_M4_SENT: 860 q = true; 861 break; 862 default: 863 wil_err(wil, "Unknown rekey state = %d", 864 vif->ptk_rekey_state); 865 } 866 spin_unlock_bh(&wil->eap_lock); 867 868 if (q) { 869 q = queue_work(wil->wmi_wq, &vif->enable_tx_key_worker); 870 wil_dbg_misc(wil, "queue_work of enable_tx_key_worker -> %d\n", 871 q); 872 } 873 } 874 875 static void wil_rx_handle_eapol(struct wil6210_vif *vif, struct sk_buff *skb) 876 { 877 struct wil6210_priv *wil = vif_to_wil(vif); 878 struct wireless_dev *wdev = vif_to_wdev(vif); 879 880 if (wdev->iftype != NL80211_IFTYPE_STATION || 881 !test_bit(WMI_FW_CAPABILITY_SPLIT_REKEY, wil->fw_capabilities)) 882 return; 883 884 /* check if skb is a EAP message 3/4 */ 885 if (!wil_skb_is_eap_3(wil, skb)) 886 return; 887 888 if (vif->ptk_rekey_state == WIL_REKEY_IDLE) 889 vif->ptk_rekey_state = WIL_REKEY_M3_RECEIVED; 890 } 891 892 /* 893 * Pass Rx packet to the netif. Update statistics. 894 * Called in softirq context (NAPI poll). 895 */ 896 void wil_netif_rx(struct sk_buff *skb, struct net_device *ndev, int cid, 897 struct wil_net_stats *stats, bool gro) 898 { 899 gro_result_t rc = GRO_NORMAL; 900 struct wil6210_vif *vif = ndev_to_vif(ndev); 901 struct wil6210_priv *wil = ndev_to_wil(ndev); 902 struct wireless_dev *wdev = vif_to_wdev(vif); 903 unsigned int len = skb->len; 904 u8 *sa, *da = wil_skb_get_da(skb); 905 /* here looking for DA, not A1, thus Rxdesc's 'mcast' indication 906 * is not suitable, need to look at data 907 */ 908 int mcast = is_multicast_ether_addr(da); 909 struct sk_buff *xmit_skb = NULL; 910 static const char * const gro_res_str[] = { 911 [GRO_MERGED] = "GRO_MERGED", 912 [GRO_MERGED_FREE] = "GRO_MERGED_FREE", 913 [GRO_HELD] = "GRO_HELD", 914 [GRO_NORMAL] = "GRO_NORMAL", 915 [GRO_DROP] = "GRO_DROP", 916 [GRO_CONSUMED] = "GRO_CONSUMED", 917 }; 918 919 if (wdev->iftype == NL80211_IFTYPE_STATION) { 920 sa = wil_skb_get_sa(skb); 921 if (mcast && ether_addr_equal(sa, ndev->dev_addr)) { 922 /* mcast packet looped back to us */ 923 rc = GRO_DROP; 924 dev_kfree_skb(skb); 925 goto stats; 926 } 927 } else if (wdev->iftype == NL80211_IFTYPE_AP && !vif->ap_isolate) { 928 if (mcast) { 929 /* send multicast frames both to higher layers in 930 * local net stack and back to the wireless medium 931 */ 932 xmit_skb = skb_copy(skb, GFP_ATOMIC); 933 } else { 934 int xmit_cid = wil_find_cid(wil, vif->mid, da); 935 936 if (xmit_cid >= 0) { 937 /* The destination station is associated to 938 * this AP (in this VLAN), so send the frame 939 * directly to it and do not pass it to local 940 * net stack. 941 */ 942 xmit_skb = skb; 943 skb = NULL; 944 } 945 } 946 } 947 if (xmit_skb) { 948 /* Send to wireless media and increase priority by 256 to 949 * keep the received priority instead of reclassifying 950 * the frame (see cfg80211_classify8021d). 951 */ 952 xmit_skb->dev = ndev; 953 xmit_skb->priority += 256; 954 xmit_skb->protocol = htons(ETH_P_802_3); 955 skb_reset_network_header(xmit_skb); 956 skb_reset_mac_header(xmit_skb); 957 wil_dbg_txrx(wil, "Rx -> Tx %d bytes\n", len); 958 dev_queue_xmit(xmit_skb); 959 } 960 961 if (skb) { /* deliver to local stack */ 962 skb->protocol = eth_type_trans(skb, ndev); 963 skb->dev = ndev; 964 965 if (skb->protocol == cpu_to_be16(ETH_P_PAE)) 966 wil_rx_handle_eapol(vif, skb); 967 968 if (gro) 969 rc = napi_gro_receive(&wil->napi_rx, skb); 970 else 971 netif_rx_ni(skb); 972 wil_dbg_txrx(wil, "Rx complete %d bytes => %s\n", 973 len, gro_res_str[rc]); 974 } 975 stats: 976 /* statistics. rc set to GRO_NORMAL for AP bridging */ 977 if (unlikely(rc == GRO_DROP)) { 978 ndev->stats.rx_dropped++; 979 stats->rx_dropped++; 980 wil_dbg_txrx(wil, "Rx drop %d bytes\n", len); 981 } else { 982 ndev->stats.rx_packets++; 983 stats->rx_packets++; 984 ndev->stats.rx_bytes += len; 985 stats->rx_bytes += len; 986 if (mcast) 987 ndev->stats.multicast++; 988 } 989 } 990 991 void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev) 992 { 993 int cid, security; 994 struct wil6210_priv *wil = ndev_to_wil(ndev); 995 struct wil_net_stats *stats; 996 997 wil->txrx_ops.get_netif_rx_params(skb, &cid, &security); 998 999 stats = &wil->sta[cid].stats; 1000 1001 skb_orphan(skb); 1002 1003 if (security && (wil->txrx_ops.rx_crypto_check(wil, skb) != 0)) { 1004 wil_dbg_txrx(wil, "Rx drop %d bytes\n", skb->len); 1005 dev_kfree_skb(skb); 1006 ndev->stats.rx_dropped++; 1007 stats->rx_replay++; 1008 stats->rx_dropped++; 1009 return; 1010 } 1011 1012 /* check errors reported by HW and update statistics */ 1013 if (unlikely(wil->txrx_ops.rx_error_check(wil, skb, stats))) { 1014 dev_kfree_skb(skb); 1015 return; 1016 } 1017 1018 wil_netif_rx(skb, ndev, cid, stats, true); 1019 } 1020 1021 /** 1022 * Proceed all completed skb's from Rx VRING 1023 * 1024 * Safe to call from NAPI poll, i.e. softirq with interrupts enabled 1025 */ 1026 void wil_rx_handle(struct wil6210_priv *wil, int *quota) 1027 { 1028 struct net_device *ndev = wil->main_ndev; 1029 struct wireless_dev *wdev = ndev->ieee80211_ptr; 1030 struct wil_ring *v = &wil->ring_rx; 1031 struct sk_buff *skb; 1032 1033 if (unlikely(!v->va)) { 1034 wil_err(wil, "Rx IRQ while Rx not yet initialized\n"); 1035 return; 1036 } 1037 wil_dbg_txrx(wil, "rx_handle\n"); 1038 while ((*quota > 0) && (NULL != (skb = wil_vring_reap_rx(wil, v)))) { 1039 (*quota)--; 1040 1041 /* monitor is currently supported on main interface only */ 1042 if (wdev->iftype == NL80211_IFTYPE_MONITOR) { 1043 skb->dev = ndev; 1044 skb_reset_mac_header(skb); 1045 skb->ip_summed = CHECKSUM_UNNECESSARY; 1046 skb->pkt_type = PACKET_OTHERHOST; 1047 skb->protocol = htons(ETH_P_802_2); 1048 wil_netif_rx_any(skb, ndev); 1049 } else { 1050 wil_rx_reorder(wil, skb); 1051 } 1052 } 1053 wil_rx_refill(wil, v->size); 1054 } 1055 1056 static void wil_rx_buf_len_init(struct wil6210_priv *wil) 1057 { 1058 wil->rx_buf_len = rx_large_buf ? 1059 WIL_MAX_ETH_MTU : TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD; 1060 if (mtu_max > wil->rx_buf_len) { 1061 /* do not allow RX buffers to be smaller than mtu_max, for 1062 * backward compatibility (mtu_max parameter was also used 1063 * to support receiving large packets) 1064 */ 1065 wil_info(wil, "Override RX buffer to mtu_max(%d)\n", mtu_max); 1066 wil->rx_buf_len = mtu_max; 1067 } 1068 } 1069 1070 static int wil_rx_init(struct wil6210_priv *wil, uint order) 1071 { 1072 struct wil_ring *vring = &wil->ring_rx; 1073 int rc; 1074 1075 wil_dbg_misc(wil, "rx_init\n"); 1076 1077 if (vring->va) { 1078 wil_err(wil, "Rx ring already allocated\n"); 1079 return -EINVAL; 1080 } 1081 1082 wil_rx_buf_len_init(wil); 1083 1084 vring->size = 1 << order; 1085 vring->is_rx = true; 1086 rc = wil_vring_alloc(wil, vring); 1087 if (rc) 1088 return rc; 1089 1090 rc = wmi_rx_chain_add(wil, vring); 1091 if (rc) 1092 goto err_free; 1093 1094 rc = wil_rx_refill(wil, vring->size); 1095 if (rc) 1096 goto err_free; 1097 1098 return 0; 1099 err_free: 1100 wil_vring_free(wil, vring); 1101 1102 return rc; 1103 } 1104 1105 static void wil_rx_fini(struct wil6210_priv *wil) 1106 { 1107 struct wil_ring *vring = &wil->ring_rx; 1108 1109 wil_dbg_misc(wil, "rx_fini\n"); 1110 1111 if (vring->va) 1112 wil_vring_free(wil, vring); 1113 } 1114 1115 static int wil_tx_desc_map(union wil_tx_desc *desc, dma_addr_t pa, 1116 u32 len, int vring_index) 1117 { 1118 struct vring_tx_desc *d = &desc->legacy; 1119 1120 wil_desc_addr_set(&d->dma.addr, pa); 1121 d->dma.ip_length = 0; 1122 /* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/ 1123 d->dma.b11 = 0/*14 | BIT(7)*/; 1124 d->dma.error = 0; 1125 d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */ 1126 d->dma.length = cpu_to_le16((u16)len); 1127 d->dma.d0 = (vring_index << DMA_CFG_DESC_TX_0_QID_POS); 1128 d->mac.d[0] = 0; 1129 d->mac.d[1] = 0; 1130 d->mac.d[2] = 0; 1131 d->mac.ucode_cmd = 0; 1132 /* translation type: 0 - bypass; 1 - 802.3; 2 - native wifi */ 1133 d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) | 1134 (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS); 1135 1136 return 0; 1137 } 1138 1139 void wil_tx_data_init(struct wil_ring_tx_data *txdata) 1140 { 1141 spin_lock_bh(&txdata->lock); 1142 txdata->dot1x_open = 0; 1143 txdata->enabled = 0; 1144 txdata->idle = 0; 1145 txdata->last_idle = 0; 1146 txdata->begin = 0; 1147 txdata->agg_wsize = 0; 1148 txdata->agg_timeout = 0; 1149 txdata->agg_amsdu = 0; 1150 txdata->addba_in_progress = false; 1151 txdata->mid = U8_MAX; 1152 spin_unlock_bh(&txdata->lock); 1153 } 1154 1155 static int wil_vring_init_tx(struct wil6210_vif *vif, int id, int size, 1156 int cid, int tid) 1157 { 1158 struct wil6210_priv *wil = vif_to_wil(vif); 1159 int rc; 1160 struct wmi_vring_cfg_cmd cmd = { 1161 .action = cpu_to_le32(WMI_VRING_CMD_ADD), 1162 .vring_cfg = { 1163 .tx_sw_ring = { 1164 .max_mpdu_size = 1165 cpu_to_le16(wil_mtu2macbuf(mtu_max)), 1166 .ring_size = cpu_to_le16(size), 1167 }, 1168 .ringid = id, 1169 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3, 1170 .mac_ctrl = 0, 1171 .to_resolution = 0, 1172 .agg_max_wsize = 0, 1173 .schd_params = { 1174 .priority = cpu_to_le16(0), 1175 .timeslot_us = cpu_to_le16(0xfff), 1176 }, 1177 }, 1178 }; 1179 struct { 1180 struct wmi_cmd_hdr wmi; 1181 struct wmi_vring_cfg_done_event cmd; 1182 } __packed reply = { 1183 .cmd = {.status = WMI_FW_STATUS_FAILURE}, 1184 }; 1185 struct wil_ring *vring = &wil->ring_tx[id]; 1186 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id]; 1187 1188 if (cid >= WIL6210_RX_DESC_MAX_CID) { 1189 cmd.vring_cfg.cidxtid = CIDXTID_EXTENDED_CID_TID; 1190 cmd.vring_cfg.cid = cid; 1191 cmd.vring_cfg.tid = tid; 1192 } else { 1193 cmd.vring_cfg.cidxtid = mk_cidxtid(cid, tid); 1194 } 1195 1196 wil_dbg_misc(wil, "vring_init_tx: max_mpdu_size %d\n", 1197 cmd.vring_cfg.tx_sw_ring.max_mpdu_size); 1198 lockdep_assert_held(&wil->mutex); 1199 1200 if (vring->va) { 1201 wil_err(wil, "Tx ring [%d] already allocated\n", id); 1202 rc = -EINVAL; 1203 goto out; 1204 } 1205 1206 wil_tx_data_init(txdata); 1207 vring->is_rx = false; 1208 vring->size = size; 1209 rc = wil_vring_alloc(wil, vring); 1210 if (rc) 1211 goto out; 1212 1213 wil->ring2cid_tid[id][0] = cid; 1214 wil->ring2cid_tid[id][1] = tid; 1215 1216 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa); 1217 1218 if (!vif->privacy) 1219 txdata->dot1x_open = true; 1220 rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd), 1221 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 1222 WIL_WMI_CALL_GENERAL_TO_MS); 1223 if (rc) 1224 goto out_free; 1225 1226 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) { 1227 wil_err(wil, "Tx config failed, status 0x%02x\n", 1228 reply.cmd.status); 1229 rc = -EINVAL; 1230 goto out_free; 1231 } 1232 1233 spin_lock_bh(&txdata->lock); 1234 vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr); 1235 txdata->mid = vif->mid; 1236 txdata->enabled = 1; 1237 spin_unlock_bh(&txdata->lock); 1238 1239 if (txdata->dot1x_open && (agg_wsize >= 0)) 1240 wil_addba_tx_request(wil, id, agg_wsize); 1241 1242 return 0; 1243 out_free: 1244 spin_lock_bh(&txdata->lock); 1245 txdata->dot1x_open = false; 1246 txdata->enabled = 0; 1247 spin_unlock_bh(&txdata->lock); 1248 wil_vring_free(wil, vring); 1249 wil->ring2cid_tid[id][0] = wil->max_assoc_sta; 1250 wil->ring2cid_tid[id][1] = 0; 1251 1252 out: 1253 1254 return rc; 1255 } 1256 1257 static int wil_tx_vring_modify(struct wil6210_vif *vif, int ring_id, int cid, 1258 int tid) 1259 { 1260 struct wil6210_priv *wil = vif_to_wil(vif); 1261 int rc; 1262 struct wmi_vring_cfg_cmd cmd = { 1263 .action = cpu_to_le32(WMI_VRING_CMD_MODIFY), 1264 .vring_cfg = { 1265 .tx_sw_ring = { 1266 .max_mpdu_size = 1267 cpu_to_le16(wil_mtu2macbuf(mtu_max)), 1268 .ring_size = 0, 1269 }, 1270 .ringid = ring_id, 1271 .cidxtid = mk_cidxtid(cid, tid), 1272 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3, 1273 .mac_ctrl = 0, 1274 .to_resolution = 0, 1275 .agg_max_wsize = 0, 1276 .schd_params = { 1277 .priority = cpu_to_le16(0), 1278 .timeslot_us = cpu_to_le16(0xfff), 1279 }, 1280 }, 1281 }; 1282 struct { 1283 struct wmi_cmd_hdr wmi; 1284 struct wmi_vring_cfg_done_event cmd; 1285 } __packed reply = { 1286 .cmd = {.status = WMI_FW_STATUS_FAILURE}, 1287 }; 1288 struct wil_ring *vring = &wil->ring_tx[ring_id]; 1289 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_id]; 1290 1291 wil_dbg_misc(wil, "vring_modify: ring %d cid %d tid %d\n", ring_id, 1292 cid, tid); 1293 lockdep_assert_held(&wil->mutex); 1294 1295 if (!vring->va) { 1296 wil_err(wil, "Tx ring [%d] not allocated\n", ring_id); 1297 return -EINVAL; 1298 } 1299 1300 if (wil->ring2cid_tid[ring_id][0] != cid || 1301 wil->ring2cid_tid[ring_id][1] != tid) { 1302 wil_err(wil, "ring info does not match cid=%u tid=%u\n", 1303 wil->ring2cid_tid[ring_id][0], 1304 wil->ring2cid_tid[ring_id][1]); 1305 } 1306 1307 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa); 1308 1309 rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd), 1310 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 1311 WIL_WMI_CALL_GENERAL_TO_MS); 1312 if (rc) 1313 goto fail; 1314 1315 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) { 1316 wil_err(wil, "Tx modify failed, status 0x%02x\n", 1317 reply.cmd.status); 1318 rc = -EINVAL; 1319 goto fail; 1320 } 1321 1322 /* set BA aggregation window size to 0 to force a new BA with the 1323 * new AP 1324 */ 1325 txdata->agg_wsize = 0; 1326 if (txdata->dot1x_open && agg_wsize >= 0) 1327 wil_addba_tx_request(wil, ring_id, agg_wsize); 1328 1329 return 0; 1330 fail: 1331 spin_lock_bh(&txdata->lock); 1332 txdata->dot1x_open = false; 1333 txdata->enabled = 0; 1334 spin_unlock_bh(&txdata->lock); 1335 wil->ring2cid_tid[ring_id][0] = wil->max_assoc_sta; 1336 wil->ring2cid_tid[ring_id][1] = 0; 1337 return rc; 1338 } 1339 1340 int wil_vring_init_bcast(struct wil6210_vif *vif, int id, int size) 1341 { 1342 struct wil6210_priv *wil = vif_to_wil(vif); 1343 int rc; 1344 struct wmi_bcast_vring_cfg_cmd cmd = { 1345 .action = cpu_to_le32(WMI_VRING_CMD_ADD), 1346 .vring_cfg = { 1347 .tx_sw_ring = { 1348 .max_mpdu_size = 1349 cpu_to_le16(wil_mtu2macbuf(mtu_max)), 1350 .ring_size = cpu_to_le16(size), 1351 }, 1352 .ringid = id, 1353 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3, 1354 }, 1355 }; 1356 struct { 1357 struct wmi_cmd_hdr wmi; 1358 struct wmi_vring_cfg_done_event cmd; 1359 } __packed reply = { 1360 .cmd = {.status = WMI_FW_STATUS_FAILURE}, 1361 }; 1362 struct wil_ring *vring = &wil->ring_tx[id]; 1363 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id]; 1364 1365 wil_dbg_misc(wil, "vring_init_bcast: max_mpdu_size %d\n", 1366 cmd.vring_cfg.tx_sw_ring.max_mpdu_size); 1367 lockdep_assert_held(&wil->mutex); 1368 1369 if (vring->va) { 1370 wil_err(wil, "Tx ring [%d] already allocated\n", id); 1371 rc = -EINVAL; 1372 goto out; 1373 } 1374 1375 wil_tx_data_init(txdata); 1376 vring->is_rx = false; 1377 vring->size = size; 1378 rc = wil_vring_alloc(wil, vring); 1379 if (rc) 1380 goto out; 1381 1382 wil->ring2cid_tid[id][0] = wil->max_assoc_sta; /* CID */ 1383 wil->ring2cid_tid[id][1] = 0; /* TID */ 1384 1385 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa); 1386 1387 if (!vif->privacy) 1388 txdata->dot1x_open = true; 1389 rc = wmi_call(wil, WMI_BCAST_VRING_CFG_CMDID, vif->mid, 1390 &cmd, sizeof(cmd), 1391 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 1392 WIL_WMI_CALL_GENERAL_TO_MS); 1393 if (rc) 1394 goto out_free; 1395 1396 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) { 1397 wil_err(wil, "Tx config failed, status 0x%02x\n", 1398 reply.cmd.status); 1399 rc = -EINVAL; 1400 goto out_free; 1401 } 1402 1403 spin_lock_bh(&txdata->lock); 1404 vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr); 1405 txdata->mid = vif->mid; 1406 txdata->enabled = 1; 1407 spin_unlock_bh(&txdata->lock); 1408 1409 return 0; 1410 out_free: 1411 spin_lock_bh(&txdata->lock); 1412 txdata->enabled = 0; 1413 txdata->dot1x_open = false; 1414 spin_unlock_bh(&txdata->lock); 1415 wil_vring_free(wil, vring); 1416 out: 1417 1418 return rc; 1419 } 1420 1421 static struct wil_ring *wil_find_tx_ucast(struct wil6210_priv *wil, 1422 struct wil6210_vif *vif, 1423 struct sk_buff *skb) 1424 { 1425 int i, cid; 1426 const u8 *da = wil_skb_get_da(skb); 1427 int min_ring_id = wil_get_min_tx_ring_id(wil); 1428 1429 cid = wil_find_cid(wil, vif->mid, da); 1430 1431 if (cid < 0 || cid >= wil->max_assoc_sta) 1432 return NULL; 1433 1434 /* TODO: fix for multiple TID */ 1435 for (i = min_ring_id; i < ARRAY_SIZE(wil->ring2cid_tid); i++) { 1436 if (!wil->ring_tx_data[i].dot1x_open && 1437 skb->protocol != cpu_to_be16(ETH_P_PAE)) 1438 continue; 1439 if (wil->ring2cid_tid[i][0] == cid) { 1440 struct wil_ring *v = &wil->ring_tx[i]; 1441 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i]; 1442 1443 wil_dbg_txrx(wil, "find_tx_ucast: (%pM) -> [%d]\n", 1444 da, i); 1445 if (v->va && txdata->enabled) { 1446 return v; 1447 } else { 1448 wil_dbg_txrx(wil, 1449 "find_tx_ucast: vring[%d] not valid\n", 1450 i); 1451 return NULL; 1452 } 1453 } 1454 } 1455 1456 return NULL; 1457 } 1458 1459 static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif, 1460 struct wil_ring *ring, struct sk_buff *skb); 1461 1462 static struct wil_ring *wil_find_tx_ring_sta(struct wil6210_priv *wil, 1463 struct wil6210_vif *vif, 1464 struct sk_buff *skb) 1465 { 1466 struct wil_ring *ring; 1467 int i; 1468 u8 cid; 1469 struct wil_ring_tx_data *txdata; 1470 int min_ring_id = wil_get_min_tx_ring_id(wil); 1471 1472 /* In the STA mode, it is expected to have only 1 VRING 1473 * for the AP we connected to. 1474 * find 1-st vring eligible for this skb and use it. 1475 */ 1476 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) { 1477 ring = &wil->ring_tx[i]; 1478 txdata = &wil->ring_tx_data[i]; 1479 if (!ring->va || !txdata->enabled || txdata->mid != vif->mid) 1480 continue; 1481 1482 cid = wil->ring2cid_tid[i][0]; 1483 if (cid >= wil->max_assoc_sta) /* skip BCAST */ 1484 continue; 1485 1486 if (!wil->ring_tx_data[i].dot1x_open && 1487 skb->protocol != cpu_to_be16(ETH_P_PAE)) 1488 continue; 1489 1490 wil_dbg_txrx(wil, "Tx -> ring %d\n", i); 1491 1492 return ring; 1493 } 1494 1495 wil_dbg_txrx(wil, "Tx while no rings active?\n"); 1496 1497 return NULL; 1498 } 1499 1500 /* Use one of 2 strategies: 1501 * 1502 * 1. New (real broadcast): 1503 * use dedicated broadcast vring 1504 * 2. Old (pseudo-DMS): 1505 * Find 1-st vring and return it; 1506 * duplicate skb and send it to other active vrings; 1507 * in all cases override dest address to unicast peer's address 1508 * Use old strategy when new is not supported yet: 1509 * - for PBSS 1510 */ 1511 static struct wil_ring *wil_find_tx_bcast_1(struct wil6210_priv *wil, 1512 struct wil6210_vif *vif, 1513 struct sk_buff *skb) 1514 { 1515 struct wil_ring *v; 1516 struct wil_ring_tx_data *txdata; 1517 int i = vif->bcast_ring; 1518 1519 if (i < 0) 1520 return NULL; 1521 v = &wil->ring_tx[i]; 1522 txdata = &wil->ring_tx_data[i]; 1523 if (!v->va || !txdata->enabled) 1524 return NULL; 1525 if (!wil->ring_tx_data[i].dot1x_open && 1526 skb->protocol != cpu_to_be16(ETH_P_PAE)) 1527 return NULL; 1528 1529 return v; 1530 } 1531 1532 static void wil_set_da_for_vring(struct wil6210_priv *wil, 1533 struct sk_buff *skb, int vring_index) 1534 { 1535 u8 *da = wil_skb_get_da(skb); 1536 int cid = wil->ring2cid_tid[vring_index][0]; 1537 1538 ether_addr_copy(da, wil->sta[cid].addr); 1539 } 1540 1541 static struct wil_ring *wil_find_tx_bcast_2(struct wil6210_priv *wil, 1542 struct wil6210_vif *vif, 1543 struct sk_buff *skb) 1544 { 1545 struct wil_ring *v, *v2; 1546 struct sk_buff *skb2; 1547 int i; 1548 u8 cid; 1549 const u8 *src = wil_skb_get_sa(skb); 1550 struct wil_ring_tx_data *txdata, *txdata2; 1551 int min_ring_id = wil_get_min_tx_ring_id(wil); 1552 1553 /* find 1-st vring eligible for data */ 1554 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) { 1555 v = &wil->ring_tx[i]; 1556 txdata = &wil->ring_tx_data[i]; 1557 if (!v->va || !txdata->enabled || txdata->mid != vif->mid) 1558 continue; 1559 1560 cid = wil->ring2cid_tid[i][0]; 1561 if (cid >= wil->max_assoc_sta) /* skip BCAST */ 1562 continue; 1563 if (!wil->ring_tx_data[i].dot1x_open && 1564 skb->protocol != cpu_to_be16(ETH_P_PAE)) 1565 continue; 1566 1567 /* don't Tx back to source when re-routing Rx->Tx at the AP */ 1568 if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN)) 1569 continue; 1570 1571 goto found; 1572 } 1573 1574 wil_dbg_txrx(wil, "Tx while no vrings active?\n"); 1575 1576 return NULL; 1577 1578 found: 1579 wil_dbg_txrx(wil, "BCAST -> ring %d\n", i); 1580 wil_set_da_for_vring(wil, skb, i); 1581 1582 /* find other active vrings and duplicate skb for each */ 1583 for (i++; i < WIL6210_MAX_TX_RINGS; i++) { 1584 v2 = &wil->ring_tx[i]; 1585 txdata2 = &wil->ring_tx_data[i]; 1586 if (!v2->va || txdata2->mid != vif->mid) 1587 continue; 1588 cid = wil->ring2cid_tid[i][0]; 1589 if (cid >= wil->max_assoc_sta) /* skip BCAST */ 1590 continue; 1591 if (!wil->ring_tx_data[i].dot1x_open && 1592 skb->protocol != cpu_to_be16(ETH_P_PAE)) 1593 continue; 1594 1595 if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN)) 1596 continue; 1597 1598 skb2 = skb_copy(skb, GFP_ATOMIC); 1599 if (skb2) { 1600 wil_dbg_txrx(wil, "BCAST DUP -> ring %d\n", i); 1601 wil_set_da_for_vring(wil, skb2, i); 1602 wil_tx_ring(wil, vif, v2, skb2); 1603 /* successful call to wil_tx_ring takes skb2 ref */ 1604 dev_kfree_skb_any(skb2); 1605 } else { 1606 wil_err(wil, "skb_copy failed\n"); 1607 } 1608 } 1609 1610 return v; 1611 } 1612 1613 static inline 1614 void wil_tx_desc_set_nr_frags(struct vring_tx_desc *d, int nr_frags) 1615 { 1616 d->mac.d[2] |= (nr_frags << MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS); 1617 } 1618 1619 /** 1620 * Sets the descriptor @d up for csum and/or TSO offloading. The corresponding 1621 * @skb is used to obtain the protocol and headers length. 1622 * @tso_desc_type is a descriptor type for TSO: 0 - a header, 1 - first data, 1623 * 2 - middle, 3 - last descriptor. 1624 */ 1625 1626 static void wil_tx_desc_offload_setup_tso(struct vring_tx_desc *d, 1627 struct sk_buff *skb, 1628 int tso_desc_type, bool is_ipv4, 1629 int tcp_hdr_len, int skb_net_hdr_len) 1630 { 1631 d->dma.b11 = ETH_HLEN; /* MAC header length */ 1632 d->dma.b11 |= is_ipv4 << DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS; 1633 1634 d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS); 1635 /* L4 header len: TCP header length */ 1636 d->dma.d0 |= (tcp_hdr_len & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK); 1637 1638 /* Setup TSO: bit and desc type */ 1639 d->dma.d0 |= (BIT(DMA_CFG_DESC_TX_0_TCP_SEG_EN_POS)) | 1640 (tso_desc_type << DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS); 1641 d->dma.d0 |= (is_ipv4 << DMA_CFG_DESC_TX_0_IPV4_CHECKSUM_EN_POS); 1642 1643 d->dma.ip_length = skb_net_hdr_len; 1644 /* Enable TCP/UDP checksum */ 1645 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS); 1646 /* Calculate pseudo-header */ 1647 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS); 1648 } 1649 1650 /** 1651 * Sets the descriptor @d up for csum. The corresponding 1652 * @skb is used to obtain the protocol and headers length. 1653 * Returns the protocol: 0 - not TCP, 1 - TCPv4, 2 - TCPv6. 1654 * Note, if d==NULL, the function only returns the protocol result. 1655 * 1656 * It is very similar to previous wil_tx_desc_offload_setup_tso. This 1657 * is "if unrolling" to optimize the critical path. 1658 */ 1659 1660 static int wil_tx_desc_offload_setup(struct vring_tx_desc *d, 1661 struct sk_buff *skb){ 1662 int protocol; 1663 1664 if (skb->ip_summed != CHECKSUM_PARTIAL) 1665 return 0; 1666 1667 d->dma.b11 = ETH_HLEN; /* MAC header length */ 1668 1669 switch (skb->protocol) { 1670 case cpu_to_be16(ETH_P_IP): 1671 protocol = ip_hdr(skb)->protocol; 1672 d->dma.b11 |= BIT(DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS); 1673 break; 1674 case cpu_to_be16(ETH_P_IPV6): 1675 protocol = ipv6_hdr(skb)->nexthdr; 1676 break; 1677 default: 1678 return -EINVAL; 1679 } 1680 1681 switch (protocol) { 1682 case IPPROTO_TCP: 1683 d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS); 1684 /* L4 header len: TCP header length */ 1685 d->dma.d0 |= 1686 (tcp_hdrlen(skb) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK); 1687 break; 1688 case IPPROTO_UDP: 1689 /* L4 header len: UDP header length */ 1690 d->dma.d0 |= 1691 (sizeof(struct udphdr) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK); 1692 break; 1693 default: 1694 return -EINVAL; 1695 } 1696 1697 d->dma.ip_length = skb_network_header_len(skb); 1698 /* Enable TCP/UDP checksum */ 1699 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS); 1700 /* Calculate pseudo-header */ 1701 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS); 1702 1703 return 0; 1704 } 1705 1706 static inline void wil_tx_last_desc(struct vring_tx_desc *d) 1707 { 1708 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS) | 1709 BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS) | 1710 BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS); 1711 } 1712 1713 static inline void wil_set_tx_desc_last_tso(volatile struct vring_tx_desc *d) 1714 { 1715 d->dma.d0 |= wil_tso_type_lst << 1716 DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS; 1717 } 1718 1719 static int __wil_tx_vring_tso(struct wil6210_priv *wil, struct wil6210_vif *vif, 1720 struct wil_ring *vring, struct sk_buff *skb) 1721 { 1722 struct device *dev = wil_to_dev(wil); 1723 1724 /* point to descriptors in shared memory */ 1725 volatile struct vring_tx_desc *_desc = NULL, *_hdr_desc, 1726 *_first_desc = NULL; 1727 1728 /* pointers to shadow descriptors */ 1729 struct vring_tx_desc desc_mem, hdr_desc_mem, first_desc_mem, 1730 *d = &hdr_desc_mem, *hdr_desc = &hdr_desc_mem, 1731 *first_desc = &first_desc_mem; 1732 1733 /* pointer to shadow descriptors' context */ 1734 struct wil_ctx *hdr_ctx, *first_ctx = NULL; 1735 1736 int descs_used = 0; /* total number of used descriptors */ 1737 int sg_desc_cnt = 0; /* number of descriptors for current mss*/ 1738 1739 u32 swhead = vring->swhead; 1740 int used, avail = wil_ring_avail_tx(vring); 1741 int nr_frags = skb_shinfo(skb)->nr_frags; 1742 int min_desc_required = nr_frags + 1; 1743 int mss = skb_shinfo(skb)->gso_size; /* payload size w/o headers */ 1744 int f, len, hdrlen, headlen; 1745 int vring_index = vring - wil->ring_tx; 1746 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[vring_index]; 1747 uint i = swhead; 1748 dma_addr_t pa; 1749 const skb_frag_t *frag = NULL; 1750 int rem_data = mss; 1751 int lenmss; 1752 int hdr_compensation_need = true; 1753 int desc_tso_type = wil_tso_type_first; 1754 bool is_ipv4; 1755 int tcp_hdr_len; 1756 int skb_net_hdr_len; 1757 int gso_type; 1758 int rc = -EINVAL; 1759 1760 wil_dbg_txrx(wil, "tx_vring_tso: %d bytes to vring %d\n", skb->len, 1761 vring_index); 1762 1763 if (unlikely(!txdata->enabled)) 1764 return -EINVAL; 1765 1766 /* A typical page 4K is 3-4 payloads, we assume each fragment 1767 * is a full payload, that's how min_desc_required has been 1768 * calculated. In real we might need more or less descriptors, 1769 * this is the initial check only. 1770 */ 1771 if (unlikely(avail < min_desc_required)) { 1772 wil_err_ratelimited(wil, 1773 "TSO: Tx ring[%2d] full. No space for %d fragments\n", 1774 vring_index, min_desc_required); 1775 return -ENOMEM; 1776 } 1777 1778 /* Header Length = MAC header len + IP header len + TCP header len*/ 1779 hdrlen = ETH_HLEN + 1780 (int)skb_network_header_len(skb) + 1781 tcp_hdrlen(skb); 1782 1783 gso_type = skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV6 | SKB_GSO_TCPV4); 1784 switch (gso_type) { 1785 case SKB_GSO_TCPV4: 1786 /* TCP v4, zero out the IP length and IPv4 checksum fields 1787 * as required by the offloading doc 1788 */ 1789 ip_hdr(skb)->tot_len = 0; 1790 ip_hdr(skb)->check = 0; 1791 is_ipv4 = true; 1792 break; 1793 case SKB_GSO_TCPV6: 1794 /* TCP v6, zero out the payload length */ 1795 ipv6_hdr(skb)->payload_len = 0; 1796 is_ipv4 = false; 1797 break; 1798 default: 1799 /* other than TCPv4 or TCPv6 types are not supported for TSO. 1800 * It is also illegal for both to be set simultaneously 1801 */ 1802 return -EINVAL; 1803 } 1804 1805 if (skb->ip_summed != CHECKSUM_PARTIAL) 1806 return -EINVAL; 1807 1808 /* tcp header length and skb network header length are fixed for all 1809 * packet's descriptors - read then once here 1810 */ 1811 tcp_hdr_len = tcp_hdrlen(skb); 1812 skb_net_hdr_len = skb_network_header_len(skb); 1813 1814 _hdr_desc = &vring->va[i].tx.legacy; 1815 1816 pa = dma_map_single(dev, skb->data, hdrlen, DMA_TO_DEVICE); 1817 if (unlikely(dma_mapping_error(dev, pa))) { 1818 wil_err(wil, "TSO: Skb head DMA map error\n"); 1819 goto err_exit; 1820 } 1821 1822 wil->txrx_ops.tx_desc_map((union wil_tx_desc *)hdr_desc, pa, 1823 hdrlen, vring_index); 1824 wil_tx_desc_offload_setup_tso(hdr_desc, skb, wil_tso_type_hdr, is_ipv4, 1825 tcp_hdr_len, skb_net_hdr_len); 1826 wil_tx_last_desc(hdr_desc); 1827 1828 vring->ctx[i].mapped_as = wil_mapped_as_single; 1829 hdr_ctx = &vring->ctx[i]; 1830 1831 descs_used++; 1832 headlen = skb_headlen(skb) - hdrlen; 1833 1834 for (f = headlen ? -1 : 0; f < nr_frags; f++) { 1835 if (headlen) { 1836 len = headlen; 1837 wil_dbg_txrx(wil, "TSO: process skb head, len %u\n", 1838 len); 1839 } else { 1840 frag = &skb_shinfo(skb)->frags[f]; 1841 len = skb_frag_size(frag); 1842 wil_dbg_txrx(wil, "TSO: frag[%d]: len %u\n", f, len); 1843 } 1844 1845 while (len) { 1846 wil_dbg_txrx(wil, 1847 "TSO: len %d, rem_data %d, descs_used %d\n", 1848 len, rem_data, descs_used); 1849 1850 if (descs_used == avail) { 1851 wil_err_ratelimited(wil, "TSO: ring overflow\n"); 1852 rc = -ENOMEM; 1853 goto mem_error; 1854 } 1855 1856 lenmss = min_t(int, rem_data, len); 1857 i = (swhead + descs_used) % vring->size; 1858 wil_dbg_txrx(wil, "TSO: lenmss %d, i %d\n", lenmss, i); 1859 1860 if (!headlen) { 1861 pa = skb_frag_dma_map(dev, frag, 1862 skb_frag_size(frag) - len, 1863 lenmss, DMA_TO_DEVICE); 1864 vring->ctx[i].mapped_as = wil_mapped_as_page; 1865 } else { 1866 pa = dma_map_single(dev, 1867 skb->data + 1868 skb_headlen(skb) - headlen, 1869 lenmss, 1870 DMA_TO_DEVICE); 1871 vring->ctx[i].mapped_as = wil_mapped_as_single; 1872 headlen -= lenmss; 1873 } 1874 1875 if (unlikely(dma_mapping_error(dev, pa))) { 1876 wil_err(wil, "TSO: DMA map page error\n"); 1877 goto mem_error; 1878 } 1879 1880 _desc = &vring->va[i].tx.legacy; 1881 1882 if (!_first_desc) { 1883 _first_desc = _desc; 1884 first_ctx = &vring->ctx[i]; 1885 d = first_desc; 1886 } else { 1887 d = &desc_mem; 1888 } 1889 1890 wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, 1891 pa, lenmss, vring_index); 1892 wil_tx_desc_offload_setup_tso(d, skb, desc_tso_type, 1893 is_ipv4, tcp_hdr_len, 1894 skb_net_hdr_len); 1895 1896 /* use tso_type_first only once */ 1897 desc_tso_type = wil_tso_type_mid; 1898 1899 descs_used++; /* desc used so far */ 1900 sg_desc_cnt++; /* desc used for this segment */ 1901 len -= lenmss; 1902 rem_data -= lenmss; 1903 1904 wil_dbg_txrx(wil, 1905 "TSO: len %d, rem_data %d, descs_used %d, sg_desc_cnt %d,\n", 1906 len, rem_data, descs_used, sg_desc_cnt); 1907 1908 /* Close the segment if reached mss size or last frag*/ 1909 if (rem_data == 0 || (f == nr_frags - 1 && len == 0)) { 1910 if (hdr_compensation_need) { 1911 /* first segment include hdr desc for 1912 * release 1913 */ 1914 hdr_ctx->nr_frags = sg_desc_cnt; 1915 wil_tx_desc_set_nr_frags(first_desc, 1916 sg_desc_cnt + 1917 1); 1918 hdr_compensation_need = false; 1919 } else { 1920 wil_tx_desc_set_nr_frags(first_desc, 1921 sg_desc_cnt); 1922 } 1923 first_ctx->nr_frags = sg_desc_cnt - 1; 1924 1925 wil_tx_last_desc(d); 1926 1927 /* first descriptor may also be the last 1928 * for this mss - make sure not to copy 1929 * it twice 1930 */ 1931 if (first_desc != d) 1932 *_first_desc = *first_desc; 1933 1934 /*last descriptor will be copied at the end 1935 * of this TS processing 1936 */ 1937 if (f < nr_frags - 1 || len > 0) 1938 *_desc = *d; 1939 1940 rem_data = mss; 1941 _first_desc = NULL; 1942 sg_desc_cnt = 0; 1943 } else if (first_desc != d) /* update mid descriptor */ 1944 *_desc = *d; 1945 } 1946 } 1947 1948 if (!_desc) 1949 goto mem_error; 1950 1951 /* first descriptor may also be the last. 1952 * in this case d pointer is invalid 1953 */ 1954 if (_first_desc == _desc) 1955 d = first_desc; 1956 1957 /* Last data descriptor */ 1958 wil_set_tx_desc_last_tso(d); 1959 *_desc = *d; 1960 1961 /* Fill the total number of descriptors in first desc (hdr)*/ 1962 wil_tx_desc_set_nr_frags(hdr_desc, descs_used); 1963 *_hdr_desc = *hdr_desc; 1964 1965 /* hold reference to skb 1966 * to prevent skb release before accounting 1967 * in case of immediate "tx done" 1968 */ 1969 vring->ctx[i].skb = skb_get(skb); 1970 1971 /* performance monitoring */ 1972 used = wil_ring_used_tx(vring); 1973 if (wil_val_in_range(wil->ring_idle_trsh, 1974 used, used + descs_used)) { 1975 txdata->idle += get_cycles() - txdata->last_idle; 1976 wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n", 1977 vring_index, used, used + descs_used); 1978 } 1979 1980 /* Make sure to advance the head only after descriptor update is done. 1981 * This will prevent a race condition where the completion thread 1982 * will see the DU bit set from previous run and will handle the 1983 * skb before it was completed. 1984 */ 1985 wmb(); 1986 1987 /* advance swhead */ 1988 wil_ring_advance_head(vring, descs_used); 1989 wil_dbg_txrx(wil, "TSO: Tx swhead %d -> %d\n", swhead, vring->swhead); 1990 1991 /* make sure all writes to descriptors (shared memory) are done before 1992 * committing them to HW 1993 */ 1994 wmb(); 1995 1996 if (wil->tx_latency) 1997 *(ktime_t *)&skb->cb = ktime_get(); 1998 else 1999 memset(skb->cb, 0, sizeof(ktime_t)); 2000 2001 wil_w(wil, vring->hwtail, vring->swhead); 2002 return 0; 2003 2004 mem_error: 2005 while (descs_used > 0) { 2006 struct wil_ctx *ctx; 2007 2008 i = (swhead + descs_used - 1) % vring->size; 2009 d = (struct vring_tx_desc *)&vring->va[i].tx.legacy; 2010 _desc = &vring->va[i].tx.legacy; 2011 *d = *_desc; 2012 _desc->dma.status = TX_DMA_STATUS_DU; 2013 ctx = &vring->ctx[i]; 2014 wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx); 2015 memset(ctx, 0, sizeof(*ctx)); 2016 descs_used--; 2017 } 2018 err_exit: 2019 return rc; 2020 } 2021 2022 static int __wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif, 2023 struct wil_ring *ring, struct sk_buff *skb) 2024 { 2025 struct device *dev = wil_to_dev(wil); 2026 struct vring_tx_desc dd, *d = ⅆ 2027 volatile struct vring_tx_desc *_d; 2028 u32 swhead = ring->swhead; 2029 int avail = wil_ring_avail_tx(ring); 2030 int nr_frags = skb_shinfo(skb)->nr_frags; 2031 uint f = 0; 2032 int ring_index = ring - wil->ring_tx; 2033 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_index]; 2034 uint i = swhead; 2035 dma_addr_t pa; 2036 int used; 2037 bool mcast = (ring_index == vif->bcast_ring); 2038 uint len = skb_headlen(skb); 2039 2040 wil_dbg_txrx(wil, "tx_ring: %d bytes to ring %d, nr_frags %d\n", 2041 skb->len, ring_index, nr_frags); 2042 2043 if (unlikely(!txdata->enabled)) 2044 return -EINVAL; 2045 2046 if (unlikely(avail < 1 + nr_frags)) { 2047 wil_err_ratelimited(wil, 2048 "Tx ring[%2d] full. No space for %d fragments\n", 2049 ring_index, 1 + nr_frags); 2050 return -ENOMEM; 2051 } 2052 _d = &ring->va[i].tx.legacy; 2053 2054 pa = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 2055 2056 wil_dbg_txrx(wil, "Tx[%2d] skb %d bytes 0x%p -> %pad\n", ring_index, 2057 skb_headlen(skb), skb->data, &pa); 2058 wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1, 2059 skb->data, skb_headlen(skb), false); 2060 2061 if (unlikely(dma_mapping_error(dev, pa))) 2062 return -EINVAL; 2063 ring->ctx[i].mapped_as = wil_mapped_as_single; 2064 /* 1-st segment */ 2065 wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, pa, len, 2066 ring_index); 2067 if (unlikely(mcast)) { 2068 d->mac.d[0] |= BIT(MAC_CFG_DESC_TX_0_MCS_EN_POS); /* MCS 0 */ 2069 if (unlikely(len > WIL_BCAST_MCS0_LIMIT)) /* set MCS 1 */ 2070 d->mac.d[0] |= (1 << MAC_CFG_DESC_TX_0_MCS_INDEX_POS); 2071 } 2072 /* Process TCP/UDP checksum offloading */ 2073 if (unlikely(wil_tx_desc_offload_setup(d, skb))) { 2074 wil_err(wil, "Tx[%2d] Failed to set cksum, drop packet\n", 2075 ring_index); 2076 goto dma_error; 2077 } 2078 2079 ring->ctx[i].nr_frags = nr_frags; 2080 wil_tx_desc_set_nr_frags(d, nr_frags + 1); 2081 2082 /* middle segments */ 2083 for (; f < nr_frags; f++) { 2084 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 2085 int len = skb_frag_size(frag); 2086 2087 *_d = *d; 2088 wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i); 2089 wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4, 2090 (const void *)d, sizeof(*d), false); 2091 i = (swhead + f + 1) % ring->size; 2092 _d = &ring->va[i].tx.legacy; 2093 pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag), 2094 DMA_TO_DEVICE); 2095 if (unlikely(dma_mapping_error(dev, pa))) { 2096 wil_err(wil, "Tx[%2d] failed to map fragment\n", 2097 ring_index); 2098 goto dma_error; 2099 } 2100 ring->ctx[i].mapped_as = wil_mapped_as_page; 2101 wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, 2102 pa, len, ring_index); 2103 /* no need to check return code - 2104 * if it succeeded for 1-st descriptor, 2105 * it will succeed here too 2106 */ 2107 wil_tx_desc_offload_setup(d, skb); 2108 } 2109 /* for the last seg only */ 2110 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS); 2111 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS); 2112 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS); 2113 *_d = *d; 2114 wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i); 2115 wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4, 2116 (const void *)d, sizeof(*d), false); 2117 2118 /* hold reference to skb 2119 * to prevent skb release before accounting 2120 * in case of immediate "tx done" 2121 */ 2122 ring->ctx[i].skb = skb_get(skb); 2123 2124 /* performance monitoring */ 2125 used = wil_ring_used_tx(ring); 2126 if (wil_val_in_range(wil->ring_idle_trsh, 2127 used, used + nr_frags + 1)) { 2128 txdata->idle += get_cycles() - txdata->last_idle; 2129 wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n", 2130 ring_index, used, used + nr_frags + 1); 2131 } 2132 2133 /* Make sure to advance the head only after descriptor update is done. 2134 * This will prevent a race condition where the completion thread 2135 * will see the DU bit set from previous run and will handle the 2136 * skb before it was completed. 2137 */ 2138 wmb(); 2139 2140 /* advance swhead */ 2141 wil_ring_advance_head(ring, nr_frags + 1); 2142 wil_dbg_txrx(wil, "Tx[%2d] swhead %d -> %d\n", ring_index, swhead, 2143 ring->swhead); 2144 trace_wil6210_tx(ring_index, swhead, skb->len, nr_frags); 2145 2146 /* make sure all writes to descriptors (shared memory) are done before 2147 * committing them to HW 2148 */ 2149 wmb(); 2150 2151 if (wil->tx_latency) 2152 *(ktime_t *)&skb->cb = ktime_get(); 2153 else 2154 memset(skb->cb, 0, sizeof(ktime_t)); 2155 2156 wil_w(wil, ring->hwtail, ring->swhead); 2157 2158 return 0; 2159 dma_error: 2160 /* unmap what we have mapped */ 2161 nr_frags = f + 1; /* frags mapped + one for skb head */ 2162 for (f = 0; f < nr_frags; f++) { 2163 struct wil_ctx *ctx; 2164 2165 i = (swhead + f) % ring->size; 2166 ctx = &ring->ctx[i]; 2167 _d = &ring->va[i].tx.legacy; 2168 *d = *_d; 2169 _d->dma.status = TX_DMA_STATUS_DU; 2170 wil->txrx_ops.tx_desc_unmap(dev, 2171 (union wil_tx_desc *)d, 2172 ctx); 2173 2174 memset(ctx, 0, sizeof(*ctx)); 2175 } 2176 2177 return -EINVAL; 2178 } 2179 2180 static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif, 2181 struct wil_ring *ring, struct sk_buff *skb) 2182 { 2183 int ring_index = ring - wil->ring_tx; 2184 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_index]; 2185 int rc; 2186 2187 spin_lock(&txdata->lock); 2188 2189 if (test_bit(wil_status_suspending, wil->status) || 2190 test_bit(wil_status_suspended, wil->status) || 2191 test_bit(wil_status_resuming, wil->status)) { 2192 wil_dbg_txrx(wil, 2193 "suspend/resume in progress. drop packet\n"); 2194 spin_unlock(&txdata->lock); 2195 return -EINVAL; 2196 } 2197 2198 rc = (skb_is_gso(skb) ? wil->txrx_ops.tx_ring_tso : __wil_tx_ring) 2199 (wil, vif, ring, skb); 2200 2201 spin_unlock(&txdata->lock); 2202 2203 return rc; 2204 } 2205 2206 /** 2207 * Check status of tx vrings and stop/wake net queues if needed 2208 * It will start/stop net queues of a specific VIF net_device. 2209 * 2210 * This function does one of two checks: 2211 * In case check_stop is true, will check if net queues need to be stopped. If 2212 * the conditions for stopping are met, netif_tx_stop_all_queues() is called. 2213 * In case check_stop is false, will check if net queues need to be waked. If 2214 * the conditions for waking are met, netif_tx_wake_all_queues() is called. 2215 * vring is the vring which is currently being modified by either adding 2216 * descriptors (tx) into it or removing descriptors (tx complete) from it. Can 2217 * be null when irrelevant (e.g. connect/disconnect events). 2218 * 2219 * The implementation is to stop net queues if modified vring has low 2220 * descriptor availability. Wake if all vrings are not in low descriptor 2221 * availability and modified vring has high descriptor availability. 2222 */ 2223 static inline void __wil_update_net_queues(struct wil6210_priv *wil, 2224 struct wil6210_vif *vif, 2225 struct wil_ring *ring, 2226 bool check_stop) 2227 { 2228 int i; 2229 int min_ring_id = wil_get_min_tx_ring_id(wil); 2230 2231 if (unlikely(!vif)) 2232 return; 2233 2234 if (ring) 2235 wil_dbg_txrx(wil, "vring %d, mid %d, check_stop=%d, stopped=%d", 2236 (int)(ring - wil->ring_tx), vif->mid, check_stop, 2237 vif->net_queue_stopped); 2238 else 2239 wil_dbg_txrx(wil, "check_stop=%d, mid=%d, stopped=%d", 2240 check_stop, vif->mid, vif->net_queue_stopped); 2241 2242 if (ring && drop_if_ring_full) 2243 /* no need to stop/wake net queues */ 2244 return; 2245 2246 if (check_stop == vif->net_queue_stopped) 2247 /* net queues already in desired state */ 2248 return; 2249 2250 if (check_stop) { 2251 if (!ring || unlikely(wil_ring_avail_low(ring))) { 2252 /* not enough room in the vring */ 2253 netif_tx_stop_all_queues(vif_to_ndev(vif)); 2254 vif->net_queue_stopped = true; 2255 wil_dbg_txrx(wil, "netif_tx_stop called\n"); 2256 } 2257 return; 2258 } 2259 2260 /* Do not wake the queues in suspend flow */ 2261 if (test_bit(wil_status_suspending, wil->status) || 2262 test_bit(wil_status_suspended, wil->status)) 2263 return; 2264 2265 /* check wake */ 2266 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) { 2267 struct wil_ring *cur_ring = &wil->ring_tx[i]; 2268 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i]; 2269 2270 if (txdata->mid != vif->mid || !cur_ring->va || 2271 !txdata->enabled || cur_ring == ring) 2272 continue; 2273 2274 if (wil_ring_avail_low(cur_ring)) { 2275 wil_dbg_txrx(wil, "ring %d full, can't wake\n", 2276 (int)(cur_ring - wil->ring_tx)); 2277 return; 2278 } 2279 } 2280 2281 if (!ring || wil_ring_avail_high(ring)) { 2282 /* enough room in the ring */ 2283 wil_dbg_txrx(wil, "calling netif_tx_wake\n"); 2284 netif_tx_wake_all_queues(vif_to_ndev(vif)); 2285 vif->net_queue_stopped = false; 2286 } 2287 } 2288 2289 void wil_update_net_queues(struct wil6210_priv *wil, struct wil6210_vif *vif, 2290 struct wil_ring *ring, bool check_stop) 2291 { 2292 spin_lock(&wil->net_queue_lock); 2293 __wil_update_net_queues(wil, vif, ring, check_stop); 2294 spin_unlock(&wil->net_queue_lock); 2295 } 2296 2297 void wil_update_net_queues_bh(struct wil6210_priv *wil, struct wil6210_vif *vif, 2298 struct wil_ring *ring, bool check_stop) 2299 { 2300 spin_lock_bh(&wil->net_queue_lock); 2301 __wil_update_net_queues(wil, vif, ring, check_stop); 2302 spin_unlock_bh(&wil->net_queue_lock); 2303 } 2304 2305 netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev) 2306 { 2307 struct wil6210_vif *vif = ndev_to_vif(ndev); 2308 struct wil6210_priv *wil = vif_to_wil(vif); 2309 const u8 *da = wil_skb_get_da(skb); 2310 bool bcast = is_multicast_ether_addr(da); 2311 struct wil_ring *ring; 2312 static bool pr_once_fw; 2313 int rc; 2314 2315 wil_dbg_txrx(wil, "start_xmit\n"); 2316 if (unlikely(!test_bit(wil_status_fwready, wil->status))) { 2317 if (!pr_once_fw) { 2318 wil_err(wil, "FW not ready\n"); 2319 pr_once_fw = true; 2320 } 2321 goto drop; 2322 } 2323 if (unlikely(!test_bit(wil_vif_fwconnected, vif->status))) { 2324 wil_dbg_ratelimited(wil, 2325 "VIF not connected, packet dropped\n"); 2326 goto drop; 2327 } 2328 if (unlikely(vif->wdev.iftype == NL80211_IFTYPE_MONITOR)) { 2329 wil_err(wil, "Xmit in monitor mode not supported\n"); 2330 goto drop; 2331 } 2332 pr_once_fw = false; 2333 2334 /* find vring */ 2335 if (vif->wdev.iftype == NL80211_IFTYPE_STATION && !vif->pbss) { 2336 /* in STA mode (ESS), all to same VRING (to AP) */ 2337 ring = wil_find_tx_ring_sta(wil, vif, skb); 2338 } else if (bcast) { 2339 if (vif->pbss) 2340 /* in pbss, no bcast VRING - duplicate skb in 2341 * all stations VRINGs 2342 */ 2343 ring = wil_find_tx_bcast_2(wil, vif, skb); 2344 else if (vif->wdev.iftype == NL80211_IFTYPE_AP) 2345 /* AP has a dedicated bcast VRING */ 2346 ring = wil_find_tx_bcast_1(wil, vif, skb); 2347 else 2348 /* unexpected combination, fallback to duplicating 2349 * the skb in all stations VRINGs 2350 */ 2351 ring = wil_find_tx_bcast_2(wil, vif, skb); 2352 } else { 2353 /* unicast, find specific VRING by dest. address */ 2354 ring = wil_find_tx_ucast(wil, vif, skb); 2355 } 2356 if (unlikely(!ring)) { 2357 wil_dbg_txrx(wil, "No Tx RING found for %pM\n", da); 2358 goto drop; 2359 } 2360 /* set up vring entry */ 2361 rc = wil_tx_ring(wil, vif, ring, skb); 2362 2363 switch (rc) { 2364 case 0: 2365 /* shall we stop net queues? */ 2366 wil_update_net_queues_bh(wil, vif, ring, true); 2367 /* statistics will be updated on the tx_complete */ 2368 dev_kfree_skb_any(skb); 2369 return NETDEV_TX_OK; 2370 case -ENOMEM: 2371 if (drop_if_ring_full) 2372 goto drop; 2373 return NETDEV_TX_BUSY; 2374 default: 2375 break; /* goto drop; */ 2376 } 2377 drop: 2378 ndev->stats.tx_dropped++; 2379 dev_kfree_skb_any(skb); 2380 2381 return NET_XMIT_DROP; 2382 } 2383 2384 void wil_tx_latency_calc(struct wil6210_priv *wil, struct sk_buff *skb, 2385 struct wil_sta_info *sta) 2386 { 2387 int skb_time_us; 2388 int bin; 2389 2390 if (!wil->tx_latency) 2391 return; 2392 2393 if (ktime_to_ms(*(ktime_t *)&skb->cb) == 0) 2394 return; 2395 2396 skb_time_us = ktime_us_delta(ktime_get(), *(ktime_t *)&skb->cb); 2397 bin = skb_time_us / wil->tx_latency_res; 2398 bin = min_t(int, bin, WIL_NUM_LATENCY_BINS - 1); 2399 2400 wil_dbg_txrx(wil, "skb time %dus => bin %d\n", skb_time_us, bin); 2401 sta->tx_latency_bins[bin]++; 2402 sta->stats.tx_latency_total_us += skb_time_us; 2403 if (skb_time_us < sta->stats.tx_latency_min_us) 2404 sta->stats.tx_latency_min_us = skb_time_us; 2405 if (skb_time_us > sta->stats.tx_latency_max_us) 2406 sta->stats.tx_latency_max_us = skb_time_us; 2407 } 2408 2409 /** 2410 * Clean up transmitted skb's from the Tx VRING 2411 * 2412 * Return number of descriptors cleared 2413 * 2414 * Safe to call from IRQ 2415 */ 2416 int wil_tx_complete(struct wil6210_vif *vif, int ringid) 2417 { 2418 struct wil6210_priv *wil = vif_to_wil(vif); 2419 struct net_device *ndev = vif_to_ndev(vif); 2420 struct device *dev = wil_to_dev(wil); 2421 struct wil_ring *vring = &wil->ring_tx[ringid]; 2422 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ringid]; 2423 int done = 0; 2424 int cid = wil->ring2cid_tid[ringid][0]; 2425 struct wil_net_stats *stats = NULL; 2426 volatile struct vring_tx_desc *_d; 2427 int used_before_complete; 2428 int used_new; 2429 2430 if (unlikely(!vring->va)) { 2431 wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid); 2432 return 0; 2433 } 2434 2435 if (unlikely(!txdata->enabled)) { 2436 wil_info(wil, "Tx irq[%d]: vring disabled\n", ringid); 2437 return 0; 2438 } 2439 2440 wil_dbg_txrx(wil, "tx_complete: (%d)\n", ringid); 2441 2442 used_before_complete = wil_ring_used_tx(vring); 2443 2444 if (cid < wil->max_assoc_sta) 2445 stats = &wil->sta[cid].stats; 2446 2447 while (!wil_ring_is_empty(vring)) { 2448 int new_swtail; 2449 struct wil_ctx *ctx = &vring->ctx[vring->swtail]; 2450 /** 2451 * For the fragmented skb, HW will set DU bit only for the 2452 * last fragment. look for it. 2453 * In TSO the first DU will include hdr desc 2454 */ 2455 int lf = (vring->swtail + ctx->nr_frags) % vring->size; 2456 /* TODO: check we are not past head */ 2457 2458 _d = &vring->va[lf].tx.legacy; 2459 if (unlikely(!(_d->dma.status & TX_DMA_STATUS_DU))) 2460 break; 2461 2462 new_swtail = (lf + 1) % vring->size; 2463 while (vring->swtail != new_swtail) { 2464 struct vring_tx_desc dd, *d = ⅆ 2465 u16 dmalen; 2466 struct sk_buff *skb; 2467 2468 ctx = &vring->ctx[vring->swtail]; 2469 skb = ctx->skb; 2470 _d = &vring->va[vring->swtail].tx.legacy; 2471 2472 *d = *_d; 2473 2474 dmalen = le16_to_cpu(d->dma.length); 2475 trace_wil6210_tx_done(ringid, vring->swtail, dmalen, 2476 d->dma.error); 2477 wil_dbg_txrx(wil, 2478 "TxC[%2d][%3d] : %d bytes, status 0x%02x err 0x%02x\n", 2479 ringid, vring->swtail, dmalen, 2480 d->dma.status, d->dma.error); 2481 wil_hex_dump_txrx("TxCD ", DUMP_PREFIX_NONE, 32, 4, 2482 (const void *)d, sizeof(*d), false); 2483 2484 wil->txrx_ops.tx_desc_unmap(dev, 2485 (union wil_tx_desc *)d, 2486 ctx); 2487 2488 if (skb) { 2489 if (likely(d->dma.error == 0)) { 2490 ndev->stats.tx_packets++; 2491 ndev->stats.tx_bytes += skb->len; 2492 if (stats) { 2493 stats->tx_packets++; 2494 stats->tx_bytes += skb->len; 2495 2496 wil_tx_latency_calc(wil, skb, 2497 &wil->sta[cid]); 2498 } 2499 } else { 2500 ndev->stats.tx_errors++; 2501 if (stats) 2502 stats->tx_errors++; 2503 } 2504 2505 if (skb->protocol == cpu_to_be16(ETH_P_PAE)) 2506 wil_tx_complete_handle_eapol(vif, skb); 2507 2508 wil_consume_skb(skb, d->dma.error == 0); 2509 } 2510 memset(ctx, 0, sizeof(*ctx)); 2511 /* Make sure the ctx is zeroed before updating the tail 2512 * to prevent a case where wil_tx_ring will see 2513 * this descriptor as used and handle it before ctx zero 2514 * is completed. 2515 */ 2516 wmb(); 2517 /* There is no need to touch HW descriptor: 2518 * - ststus bit TX_DMA_STATUS_DU is set by design, 2519 * so hardware will not try to process this desc., 2520 * - rest of descriptor will be initialized on Tx. 2521 */ 2522 vring->swtail = wil_ring_next_tail(vring); 2523 done++; 2524 } 2525 } 2526 2527 /* performance monitoring */ 2528 used_new = wil_ring_used_tx(vring); 2529 if (wil_val_in_range(wil->ring_idle_trsh, 2530 used_new, used_before_complete)) { 2531 wil_dbg_txrx(wil, "Ring[%2d] idle %d -> %d\n", 2532 ringid, used_before_complete, used_new); 2533 txdata->last_idle = get_cycles(); 2534 } 2535 2536 /* shall we wake net queues? */ 2537 if (done) 2538 wil_update_net_queues(wil, vif, vring, false); 2539 2540 return done; 2541 } 2542 2543 static inline int wil_tx_init(struct wil6210_priv *wil) 2544 { 2545 return 0; 2546 } 2547 2548 static inline void wil_tx_fini(struct wil6210_priv *wil) {} 2549 2550 static void wil_get_reorder_params(struct wil6210_priv *wil, 2551 struct sk_buff *skb, int *tid, int *cid, 2552 int *mid, u16 *seq, int *mcast, int *retry) 2553 { 2554 struct vring_rx_desc *d = wil_skb_rxdesc(skb); 2555 2556 *tid = wil_rxdesc_tid(d); 2557 *cid = wil_skb_get_cid(skb); 2558 *mid = wil_rxdesc_mid(d); 2559 *seq = wil_rxdesc_seq(d); 2560 *mcast = wil_rxdesc_mcast(d); 2561 *retry = wil_rxdesc_retry(d); 2562 } 2563 2564 void wil_init_txrx_ops_legacy_dma(struct wil6210_priv *wil) 2565 { 2566 wil->txrx_ops.configure_interrupt_moderation = 2567 wil_configure_interrupt_moderation; 2568 /* TX ops */ 2569 wil->txrx_ops.tx_desc_map = wil_tx_desc_map; 2570 wil->txrx_ops.tx_desc_unmap = wil_txdesc_unmap; 2571 wil->txrx_ops.tx_ring_tso = __wil_tx_vring_tso; 2572 wil->txrx_ops.ring_init_tx = wil_vring_init_tx; 2573 wil->txrx_ops.ring_fini_tx = wil_vring_free; 2574 wil->txrx_ops.ring_init_bcast = wil_vring_init_bcast; 2575 wil->txrx_ops.tx_init = wil_tx_init; 2576 wil->txrx_ops.tx_fini = wil_tx_fini; 2577 wil->txrx_ops.tx_ring_modify = wil_tx_vring_modify; 2578 /* RX ops */ 2579 wil->txrx_ops.rx_init = wil_rx_init; 2580 wil->txrx_ops.wmi_addba_rx_resp = wmi_addba_rx_resp; 2581 wil->txrx_ops.get_reorder_params = wil_get_reorder_params; 2582 wil->txrx_ops.get_netif_rx_params = 2583 wil_get_netif_rx_params; 2584 wil->txrx_ops.rx_crypto_check = wil_rx_crypto_check; 2585 wil->txrx_ops.rx_error_check = wil_rx_error_check; 2586 wil->txrx_ops.is_rx_idle = wil_is_rx_idle; 2587 wil->txrx_ops.rx_fini = wil_rx_fini; 2588 } 2589