1 // SPDX-License-Identifier: ISC 2 /* 3 * Copyright (c) 2012-2017 Qualcomm Atheros, Inc. 4 * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved. 5 */ 6 7 #include <linux/etherdevice.h> 8 #include <net/ieee80211_radiotap.h> 9 #include <linux/if_arp.h> 10 #include <linux/moduleparam.h> 11 #include <linux/ip.h> 12 #include <linux/ipv6.h> 13 #include <linux/if_vlan.h> 14 #include <net/ipv6.h> 15 #include <linux/prefetch.h> 16 17 #include "wil6210.h" 18 #include "wmi.h" 19 #include "txrx.h" 20 #include "trace.h" 21 #include "txrx_edma.h" 22 23 bool rx_align_2; 24 module_param(rx_align_2, bool, 0444); 25 MODULE_PARM_DESC(rx_align_2, " align Rx buffers on 4*n+2, default - no"); 26 27 bool rx_large_buf; 28 module_param(rx_large_buf, bool, 0444); 29 MODULE_PARM_DESC(rx_large_buf, " allocate 8KB RX buffers, default - no"); 30 31 /* Drop Tx packets in case Tx ring is full */ 32 bool drop_if_ring_full; 33 34 static inline uint wil_rx_snaplen(void) 35 { 36 return rx_align_2 ? 6 : 0; 37 } 38 39 /* wil_ring_wmark_low - low watermark for available descriptor space */ 40 static inline int wil_ring_wmark_low(struct wil_ring *ring) 41 { 42 return ring->size / 8; 43 } 44 45 /* wil_ring_wmark_high - high watermark for available descriptor space */ 46 static inline int wil_ring_wmark_high(struct wil_ring *ring) 47 { 48 return ring->size / 4; 49 } 50 51 /* returns true if num avail descriptors is lower than wmark_low */ 52 static inline int wil_ring_avail_low(struct wil_ring *ring) 53 { 54 return wil_ring_avail_tx(ring) < wil_ring_wmark_low(ring); 55 } 56 57 /* returns true if num avail descriptors is higher than wmark_high */ 58 static inline int wil_ring_avail_high(struct wil_ring *ring) 59 { 60 return wil_ring_avail_tx(ring) > wil_ring_wmark_high(ring); 61 } 62 63 /* returns true when all tx vrings are empty */ 64 bool wil_is_tx_idle(struct wil6210_priv *wil) 65 { 66 int i; 67 unsigned long data_comp_to; 68 int min_ring_id = wil_get_min_tx_ring_id(wil); 69 70 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) { 71 struct wil_ring *vring = &wil->ring_tx[i]; 72 int vring_index = vring - wil->ring_tx; 73 struct wil_ring_tx_data *txdata = 74 &wil->ring_tx_data[vring_index]; 75 76 spin_lock(&txdata->lock); 77 78 if (!vring->va || !txdata->enabled) { 79 spin_unlock(&txdata->lock); 80 continue; 81 } 82 83 data_comp_to = jiffies + msecs_to_jiffies( 84 WIL_DATA_COMPLETION_TO_MS); 85 if (test_bit(wil_status_napi_en, wil->status)) { 86 while (!wil_ring_is_empty(vring)) { 87 if (time_after(jiffies, data_comp_to)) { 88 wil_dbg_pm(wil, 89 "TO waiting for idle tx\n"); 90 spin_unlock(&txdata->lock); 91 return false; 92 } 93 wil_dbg_ratelimited(wil, 94 "tx vring is not empty -> NAPI\n"); 95 spin_unlock(&txdata->lock); 96 napi_synchronize(&wil->napi_tx); 97 msleep(20); 98 spin_lock(&txdata->lock); 99 if (!vring->va || !txdata->enabled) 100 break; 101 } 102 } 103 104 spin_unlock(&txdata->lock); 105 } 106 107 return true; 108 } 109 110 static int wil_vring_alloc(struct wil6210_priv *wil, struct wil_ring *vring) 111 { 112 struct device *dev = wil_to_dev(wil); 113 size_t sz = vring->size * sizeof(vring->va[0]); 114 uint i; 115 116 wil_dbg_misc(wil, "vring_alloc:\n"); 117 118 BUILD_BUG_ON(sizeof(vring->va[0]) != 32); 119 120 vring->swhead = 0; 121 vring->swtail = 0; 122 vring->ctx = kcalloc(vring->size, sizeof(vring->ctx[0]), GFP_KERNEL); 123 if (!vring->ctx) { 124 vring->va = NULL; 125 return -ENOMEM; 126 } 127 128 /* vring->va should be aligned on its size rounded up to power of 2 129 * This is granted by the dma_alloc_coherent. 130 * 131 * HW has limitation that all vrings addresses must share the same 132 * upper 16 msb bits part of 48 bits address. To workaround that, 133 * if we are using more than 32 bit addresses switch to 32 bit 134 * allocation before allocating vring memory. 135 * 136 * There's no check for the return value of dma_set_mask_and_coherent, 137 * since we assume if we were able to set the mask during 138 * initialization in this system it will not fail if we set it again 139 */ 140 if (wil->dma_addr_size > 32) 141 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 142 143 vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL); 144 if (!vring->va) { 145 kfree(vring->ctx); 146 vring->ctx = NULL; 147 return -ENOMEM; 148 } 149 150 if (wil->dma_addr_size > 32) 151 dma_set_mask_and_coherent(dev, 152 DMA_BIT_MASK(wil->dma_addr_size)); 153 154 /* initially, all descriptors are SW owned 155 * For Tx and Rx, ownership bit is at the same location, thus 156 * we can use any 157 */ 158 for (i = 0; i < vring->size; i++) { 159 volatile struct vring_tx_desc *_d = 160 &vring->va[i].tx.legacy; 161 162 _d->dma.status = TX_DMA_STATUS_DU; 163 } 164 165 wil_dbg_misc(wil, "vring[%d] 0x%p:%pad 0x%p\n", vring->size, 166 vring->va, &vring->pa, vring->ctx); 167 168 return 0; 169 } 170 171 static void wil_txdesc_unmap(struct device *dev, union wil_tx_desc *desc, 172 struct wil_ctx *ctx) 173 { 174 struct vring_tx_desc *d = &desc->legacy; 175 dma_addr_t pa = wil_desc_addr(&d->dma.addr); 176 u16 dmalen = le16_to_cpu(d->dma.length); 177 178 switch (ctx->mapped_as) { 179 case wil_mapped_as_single: 180 dma_unmap_single(dev, pa, dmalen, DMA_TO_DEVICE); 181 break; 182 case wil_mapped_as_page: 183 dma_unmap_page(dev, pa, dmalen, DMA_TO_DEVICE); 184 break; 185 default: 186 break; 187 } 188 } 189 190 static void wil_vring_free(struct wil6210_priv *wil, struct wil_ring *vring) 191 { 192 struct device *dev = wil_to_dev(wil); 193 size_t sz = vring->size * sizeof(vring->va[0]); 194 195 lockdep_assert_held(&wil->mutex); 196 if (!vring->is_rx) { 197 int vring_index = vring - wil->ring_tx; 198 199 wil_dbg_misc(wil, "free Tx vring %d [%d] 0x%p:%pad 0x%p\n", 200 vring_index, vring->size, vring->va, 201 &vring->pa, vring->ctx); 202 } else { 203 wil_dbg_misc(wil, "free Rx vring [%d] 0x%p:%pad 0x%p\n", 204 vring->size, vring->va, 205 &vring->pa, vring->ctx); 206 } 207 208 while (!wil_ring_is_empty(vring)) { 209 dma_addr_t pa; 210 u16 dmalen; 211 struct wil_ctx *ctx; 212 213 if (!vring->is_rx) { 214 struct vring_tx_desc dd, *d = ⅆ 215 volatile struct vring_tx_desc *_d = 216 &vring->va[vring->swtail].tx.legacy; 217 218 ctx = &vring->ctx[vring->swtail]; 219 if (!ctx) { 220 wil_dbg_txrx(wil, 221 "ctx(%d) was already completed\n", 222 vring->swtail); 223 vring->swtail = wil_ring_next_tail(vring); 224 continue; 225 } 226 *d = *_d; 227 wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx); 228 if (ctx->skb) 229 dev_kfree_skb_any(ctx->skb); 230 vring->swtail = wil_ring_next_tail(vring); 231 } else { /* rx */ 232 struct vring_rx_desc dd, *d = ⅆ 233 volatile struct vring_rx_desc *_d = 234 &vring->va[vring->swhead].rx.legacy; 235 236 ctx = &vring->ctx[vring->swhead]; 237 *d = *_d; 238 pa = wil_desc_addr(&d->dma.addr); 239 dmalen = le16_to_cpu(d->dma.length); 240 dma_unmap_single(dev, pa, dmalen, DMA_FROM_DEVICE); 241 kfree_skb(ctx->skb); 242 wil_ring_advance_head(vring, 1); 243 } 244 } 245 dma_free_coherent(dev, sz, (void *)vring->va, vring->pa); 246 kfree(vring->ctx); 247 vring->pa = 0; 248 vring->va = NULL; 249 vring->ctx = NULL; 250 } 251 252 /** 253 * Allocate one skb for Rx VRING 254 * 255 * Safe to call from IRQ 256 */ 257 static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct wil_ring *vring, 258 u32 i, int headroom) 259 { 260 struct device *dev = wil_to_dev(wil); 261 unsigned int sz = wil->rx_buf_len + ETH_HLEN + wil_rx_snaplen(); 262 struct vring_rx_desc dd, *d = ⅆ 263 volatile struct vring_rx_desc *_d = &vring->va[i].rx.legacy; 264 dma_addr_t pa; 265 struct sk_buff *skb = dev_alloc_skb(sz + headroom); 266 267 if (unlikely(!skb)) 268 return -ENOMEM; 269 270 skb_reserve(skb, headroom); 271 skb_put(skb, sz); 272 273 /** 274 * Make sure that the network stack calculates checksum for packets 275 * which failed the HW checksum calculation 276 */ 277 skb->ip_summed = CHECKSUM_NONE; 278 279 pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE); 280 if (unlikely(dma_mapping_error(dev, pa))) { 281 kfree_skb(skb); 282 return -ENOMEM; 283 } 284 285 d->dma.d0 = RX_DMA_D0_CMD_DMA_RT | RX_DMA_D0_CMD_DMA_IT; 286 wil_desc_addr_set(&d->dma.addr, pa); 287 /* ip_length don't care */ 288 /* b11 don't care */ 289 /* error don't care */ 290 d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */ 291 d->dma.length = cpu_to_le16(sz); 292 *_d = *d; 293 vring->ctx[i].skb = skb; 294 295 return 0; 296 } 297 298 /** 299 * Adds radiotap header 300 * 301 * Any error indicated as "Bad FCS" 302 * 303 * Vendor data for 04:ce:14-1 (Wilocity-1) consists of: 304 * - Rx descriptor: 32 bytes 305 * - Phy info 306 */ 307 static void wil_rx_add_radiotap_header(struct wil6210_priv *wil, 308 struct sk_buff *skb) 309 { 310 struct wil6210_rtap { 311 struct ieee80211_radiotap_header rthdr; 312 /* fields should be in the order of bits in rthdr.it_present */ 313 /* flags */ 314 u8 flags; 315 /* channel */ 316 __le16 chnl_freq __aligned(2); 317 __le16 chnl_flags; 318 /* MCS */ 319 u8 mcs_present; 320 u8 mcs_flags; 321 u8 mcs_index; 322 } __packed; 323 struct vring_rx_desc *d = wil_skb_rxdesc(skb); 324 struct wil6210_rtap *rtap; 325 int rtap_len = sizeof(struct wil6210_rtap); 326 struct ieee80211_channel *ch = wil->monitor_chandef.chan; 327 328 if (skb_headroom(skb) < rtap_len && 329 pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) { 330 wil_err(wil, "Unable to expand headroom to %d\n", rtap_len); 331 return; 332 } 333 334 rtap = skb_push(skb, rtap_len); 335 memset(rtap, 0, rtap_len); 336 337 rtap->rthdr.it_version = PKTHDR_RADIOTAP_VERSION; 338 rtap->rthdr.it_len = cpu_to_le16(rtap_len); 339 rtap->rthdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | 340 (1 << IEEE80211_RADIOTAP_CHANNEL) | 341 (1 << IEEE80211_RADIOTAP_MCS)); 342 if (d->dma.status & RX_DMA_STATUS_ERROR) 343 rtap->flags |= IEEE80211_RADIOTAP_F_BADFCS; 344 345 rtap->chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320); 346 rtap->chnl_flags = cpu_to_le16(0); 347 348 rtap->mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS; 349 rtap->mcs_flags = 0; 350 rtap->mcs_index = wil_rxdesc_mcs(d); 351 } 352 353 static bool wil_is_rx_idle(struct wil6210_priv *wil) 354 { 355 struct vring_rx_desc *_d; 356 struct wil_ring *ring = &wil->ring_rx; 357 358 _d = (struct vring_rx_desc *)&ring->va[ring->swhead].rx.legacy; 359 if (_d->dma.status & RX_DMA_STATUS_DU) 360 return false; 361 362 return true; 363 } 364 365 static int wil_rx_get_cid_by_skb(struct wil6210_priv *wil, struct sk_buff *skb) 366 { 367 struct vring_rx_desc *d = wil_skb_rxdesc(skb); 368 int mid = wil_rxdesc_mid(d); 369 struct wil6210_vif *vif = wil->vifs[mid]; 370 /* cid from DMA descriptor is limited to 3 bits. 371 * In case of cid>=8, the value would be cid modulo 8 and we need to 372 * find real cid by locating the transmitter (ta) inside sta array 373 */ 374 int cid = wil_rxdesc_cid(d); 375 unsigned int snaplen = wil_rx_snaplen(); 376 struct ieee80211_hdr_3addr *hdr; 377 int i; 378 unsigned char *ta; 379 u8 ftype; 380 381 /* in monitor mode there are no connections */ 382 if (vif->wdev.iftype == NL80211_IFTYPE_MONITOR) 383 return cid; 384 385 ftype = wil_rxdesc_ftype(d) << 2; 386 if (likely(ftype == IEEE80211_FTYPE_DATA)) { 387 if (unlikely(skb->len < ETH_HLEN + snaplen)) { 388 wil_err_ratelimited(wil, 389 "Short data frame, len = %d\n", 390 skb->len); 391 return -ENOENT; 392 } 393 ta = wil_skb_get_sa(skb); 394 } else { 395 if (unlikely(skb->len < sizeof(struct ieee80211_hdr_3addr))) { 396 wil_err_ratelimited(wil, "Short frame, len = %d\n", 397 skb->len); 398 return -ENOENT; 399 } 400 hdr = (void *)skb->data; 401 ta = hdr->addr2; 402 } 403 404 if (wil->max_assoc_sta <= WIL6210_RX_DESC_MAX_CID) 405 return cid; 406 407 /* assuming no concurrency between AP interfaces and STA interfaces. 408 * multista is used only in P2P_GO or AP mode. In other modes return 409 * cid from the rx descriptor 410 */ 411 if (vif->wdev.iftype != NL80211_IFTYPE_P2P_GO && 412 vif->wdev.iftype != NL80211_IFTYPE_AP) 413 return cid; 414 415 /* For Rx packets cid from rx descriptor is limited to 3 bits (0..7), 416 * to find the real cid, compare transmitter address with the stored 417 * stations mac address in the driver sta array 418 */ 419 for (i = cid; i < wil->max_assoc_sta; i += WIL6210_RX_DESC_MAX_CID) { 420 if (wil->sta[i].status != wil_sta_unused && 421 ether_addr_equal(wil->sta[i].addr, ta)) { 422 cid = i; 423 break; 424 } 425 } 426 if (i >= wil->max_assoc_sta) { 427 wil_err_ratelimited(wil, "Could not find cid for frame with transmit addr = %pM, iftype = %d, frametype = %d, len = %d\n", 428 ta, vif->wdev.iftype, ftype, skb->len); 429 cid = -ENOENT; 430 } 431 432 return cid; 433 } 434 435 /** 436 * reap 1 frame from @swhead 437 * 438 * Rx descriptor copied to skb->cb 439 * 440 * Safe to call from IRQ 441 */ 442 static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil, 443 struct wil_ring *vring) 444 { 445 struct device *dev = wil_to_dev(wil); 446 struct wil6210_vif *vif; 447 struct net_device *ndev; 448 volatile struct vring_rx_desc *_d; 449 struct vring_rx_desc *d; 450 struct sk_buff *skb; 451 dma_addr_t pa; 452 unsigned int snaplen = wil_rx_snaplen(); 453 unsigned int sz = wil->rx_buf_len + ETH_HLEN + snaplen; 454 u16 dmalen; 455 u8 ftype; 456 int cid, mid; 457 int i; 458 struct wil_net_stats *stats; 459 460 BUILD_BUG_ON(sizeof(struct skb_rx_info) > sizeof(skb->cb)); 461 462 again: 463 if (unlikely(wil_ring_is_empty(vring))) 464 return NULL; 465 466 i = (int)vring->swhead; 467 _d = &vring->va[i].rx.legacy; 468 if (unlikely(!(_d->dma.status & RX_DMA_STATUS_DU))) { 469 /* it is not error, we just reached end of Rx done area */ 470 return NULL; 471 } 472 473 skb = vring->ctx[i].skb; 474 vring->ctx[i].skb = NULL; 475 wil_ring_advance_head(vring, 1); 476 if (!skb) { 477 wil_err(wil, "No Rx skb at [%d]\n", i); 478 goto again; 479 } 480 d = wil_skb_rxdesc(skb); 481 *d = *_d; 482 pa = wil_desc_addr(&d->dma.addr); 483 484 dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE); 485 dmalen = le16_to_cpu(d->dma.length); 486 487 trace_wil6210_rx(i, d); 488 wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", i, dmalen); 489 wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4, 490 (const void *)d, sizeof(*d), false); 491 492 mid = wil_rxdesc_mid(d); 493 vif = wil->vifs[mid]; 494 495 if (unlikely(!vif)) { 496 wil_dbg_txrx(wil, "skipped RX descriptor with invalid mid %d", 497 mid); 498 kfree_skb(skb); 499 goto again; 500 } 501 ndev = vif_to_ndev(vif); 502 if (unlikely(dmalen > sz)) { 503 wil_err_ratelimited(wil, "Rx size too large: %d bytes!\n", 504 dmalen); 505 kfree_skb(skb); 506 goto again; 507 } 508 skb_trim(skb, dmalen); 509 510 prefetch(skb->data); 511 512 wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1, 513 skb->data, skb_headlen(skb), false); 514 515 cid = wil_rx_get_cid_by_skb(wil, skb); 516 if (cid == -ENOENT) { 517 kfree_skb(skb); 518 goto again; 519 } 520 wil_skb_set_cid(skb, (u8)cid); 521 stats = &wil->sta[cid].stats; 522 523 stats->last_mcs_rx = wil_rxdesc_mcs(d); 524 if (stats->last_mcs_rx < ARRAY_SIZE(stats->rx_per_mcs)) 525 stats->rx_per_mcs[stats->last_mcs_rx]++; 526 527 /* use radiotap header only if required */ 528 if (ndev->type == ARPHRD_IEEE80211_RADIOTAP) 529 wil_rx_add_radiotap_header(wil, skb); 530 531 /* no extra checks if in sniffer mode */ 532 if (ndev->type != ARPHRD_ETHER) 533 return skb; 534 /* Non-data frames may be delivered through Rx DMA channel (ex: BAR) 535 * Driver should recognize it by frame type, that is found 536 * in Rx descriptor. If type is not data, it is 802.11 frame as is 537 */ 538 ftype = wil_rxdesc_ftype(d) << 2; 539 if (unlikely(ftype != IEEE80211_FTYPE_DATA)) { 540 u8 fc1 = wil_rxdesc_fc1(d); 541 int tid = wil_rxdesc_tid(d); 542 u16 seq = wil_rxdesc_seq(d); 543 544 wil_dbg_txrx(wil, 545 "Non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n", 546 fc1, mid, cid, tid, seq); 547 stats->rx_non_data_frame++; 548 if (wil_is_back_req(fc1)) { 549 wil_dbg_txrx(wil, 550 "BAR: MID %d CID %d TID %d Seq 0x%03x\n", 551 mid, cid, tid, seq); 552 wil_rx_bar(wil, vif, cid, tid, seq); 553 } else { 554 /* print again all info. One can enable only this 555 * without overhead for printing every Rx frame 556 */ 557 wil_dbg_txrx(wil, 558 "Unhandled non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n", 559 fc1, mid, cid, tid, seq); 560 wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4, 561 (const void *)d, sizeof(*d), false); 562 wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1, 563 skb->data, skb_headlen(skb), false); 564 } 565 kfree_skb(skb); 566 goto again; 567 } 568 569 /* L4 IDENT is on when HW calculated checksum, check status 570 * and in case of error drop the packet 571 * higher stack layers will handle retransmission (if required) 572 */ 573 if (likely(d->dma.status & RX_DMA_STATUS_L4I)) { 574 /* L4 protocol identified, csum calculated */ 575 if (likely((d->dma.error & RX_DMA_ERROR_L4_ERR) == 0)) 576 skb->ip_summed = CHECKSUM_UNNECESSARY; 577 /* If HW reports bad checksum, let IP stack re-check it 578 * For example, HW don't understand Microsoft IP stack that 579 * mis-calculates TCP checksum - if it should be 0x0, 580 * it writes 0xffff in violation of RFC 1624 581 */ 582 else 583 stats->rx_csum_err++; 584 } 585 586 if (snaplen) { 587 /* Packet layout 588 * +-------+-------+---------+------------+------+ 589 * | SA(6) | DA(6) | SNAP(6) | ETHTYPE(2) | DATA | 590 * +-------+-------+---------+------------+------+ 591 * Need to remove SNAP, shifting SA and DA forward 592 */ 593 memmove(skb->data + snaplen, skb->data, 2 * ETH_ALEN); 594 skb_pull(skb, snaplen); 595 } 596 597 return skb; 598 } 599 600 /** 601 * allocate and fill up to @count buffers in rx ring 602 * buffers posted at @swtail 603 * Note: we have a single RX queue for servicing all VIFs, but we 604 * allocate skbs with headroom according to main interface only. This 605 * means it will not work with monitor interface together with other VIFs. 606 * Currently we only support monitor interface on its own without other VIFs, 607 * and we will need to fix this code once we add support. 608 */ 609 static int wil_rx_refill(struct wil6210_priv *wil, int count) 610 { 611 struct net_device *ndev = wil->main_ndev; 612 struct wil_ring *v = &wil->ring_rx; 613 u32 next_tail; 614 int rc = 0; 615 int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ? 616 WIL6210_RTAP_SIZE : 0; 617 618 for (; next_tail = wil_ring_next_tail(v), 619 (next_tail != v->swhead) && (count-- > 0); 620 v->swtail = next_tail) { 621 rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom); 622 if (unlikely(rc)) { 623 wil_err_ratelimited(wil, "Error %d in rx refill[%d]\n", 624 rc, v->swtail); 625 break; 626 } 627 } 628 629 /* make sure all writes to descriptors (shared memory) are done before 630 * committing them to HW 631 */ 632 wmb(); 633 634 wil_w(wil, v->hwtail, v->swtail); 635 636 return rc; 637 } 638 639 /** 640 * reverse_memcmp - Compare two areas of memory, in reverse order 641 * @cs: One area of memory 642 * @ct: Another area of memory 643 * @count: The size of the area. 644 * 645 * Cut'n'paste from original memcmp (see lib/string.c) 646 * with minimal modifications 647 */ 648 int reverse_memcmp(const void *cs, const void *ct, size_t count) 649 { 650 const unsigned char *su1, *su2; 651 int res = 0; 652 653 for (su1 = cs + count - 1, su2 = ct + count - 1; count > 0; 654 --su1, --su2, count--) { 655 res = *su1 - *su2; 656 if (res) 657 break; 658 } 659 return res; 660 } 661 662 static int wil_rx_crypto_check(struct wil6210_priv *wil, struct sk_buff *skb) 663 { 664 struct vring_rx_desc *d = wil_skb_rxdesc(skb); 665 int cid = wil_skb_get_cid(skb); 666 int tid = wil_rxdesc_tid(d); 667 int key_id = wil_rxdesc_key_id(d); 668 int mc = wil_rxdesc_mcast(d); 669 struct wil_sta_info *s = &wil->sta[cid]; 670 struct wil_tid_crypto_rx *c = mc ? &s->group_crypto_rx : 671 &s->tid_crypto_rx[tid]; 672 struct wil_tid_crypto_rx_single *cc = &c->key_id[key_id]; 673 const u8 *pn = (u8 *)&d->mac.pn_15_0; 674 675 if (!cc->key_set) { 676 wil_err_ratelimited(wil, 677 "Key missing. CID %d TID %d MCast %d KEY_ID %d\n", 678 cid, tid, mc, key_id); 679 return -EINVAL; 680 } 681 682 if (reverse_memcmp(pn, cc->pn, IEEE80211_GCMP_PN_LEN) <= 0) { 683 wil_err_ratelimited(wil, 684 "Replay attack. CID %d TID %d MCast %d KEY_ID %d PN %6phN last %6phN\n", 685 cid, tid, mc, key_id, pn, cc->pn); 686 return -EINVAL; 687 } 688 memcpy(cc->pn, pn, IEEE80211_GCMP_PN_LEN); 689 690 return 0; 691 } 692 693 static int wil_rx_error_check(struct wil6210_priv *wil, struct sk_buff *skb, 694 struct wil_net_stats *stats) 695 { 696 struct vring_rx_desc *d = wil_skb_rxdesc(skb); 697 698 if ((d->dma.status & RX_DMA_STATUS_ERROR) && 699 (d->dma.error & RX_DMA_ERROR_MIC)) { 700 stats->rx_mic_error++; 701 wil_dbg_txrx(wil, "MIC error, dropping packet\n"); 702 return -EFAULT; 703 } 704 705 return 0; 706 } 707 708 static void wil_get_netif_rx_params(struct sk_buff *skb, int *cid, 709 int *security) 710 { 711 struct vring_rx_desc *d = wil_skb_rxdesc(skb); 712 713 *cid = wil_skb_get_cid(skb); 714 *security = wil_rxdesc_security(d); 715 } 716 717 /* 718 * Check if skb is ptk eapol key message 719 * 720 * returns a pointer to the start of the eapol key structure, NULL 721 * if frame is not PTK eapol key 722 */ 723 static struct wil_eapol_key *wil_is_ptk_eapol_key(struct wil6210_priv *wil, 724 struct sk_buff *skb) 725 { 726 u8 *buf; 727 const struct wil_1x_hdr *hdr; 728 struct wil_eapol_key *key; 729 u16 key_info; 730 int len = skb->len; 731 732 if (!skb_mac_header_was_set(skb)) { 733 wil_err(wil, "mac header was not set\n"); 734 return NULL; 735 } 736 737 len -= skb_mac_offset(skb); 738 739 if (len < sizeof(struct ethhdr) + sizeof(struct wil_1x_hdr) + 740 sizeof(struct wil_eapol_key)) 741 return NULL; 742 743 buf = skb_mac_header(skb) + sizeof(struct ethhdr); 744 745 hdr = (const struct wil_1x_hdr *)buf; 746 if (hdr->type != WIL_1X_TYPE_EAPOL_KEY) 747 return NULL; 748 749 key = (struct wil_eapol_key *)(buf + sizeof(struct wil_1x_hdr)); 750 if (key->type != WIL_EAPOL_KEY_TYPE_WPA && 751 key->type != WIL_EAPOL_KEY_TYPE_RSN) 752 return NULL; 753 754 key_info = be16_to_cpu(key->key_info); 755 if (!(key_info & WIL_KEY_INFO_KEY_TYPE)) /* check if pairwise */ 756 return NULL; 757 758 return key; 759 } 760 761 static bool wil_skb_is_eap_3(struct wil6210_priv *wil, struct sk_buff *skb) 762 { 763 struct wil_eapol_key *key; 764 u16 key_info; 765 766 key = wil_is_ptk_eapol_key(wil, skb); 767 if (!key) 768 return false; 769 770 key_info = be16_to_cpu(key->key_info); 771 if (key_info & (WIL_KEY_INFO_MIC | 772 WIL_KEY_INFO_ENCR_KEY_DATA)) { 773 /* 3/4 of 4-Way Handshake */ 774 wil_dbg_misc(wil, "EAPOL key message 3\n"); 775 return true; 776 } 777 /* 1/4 of 4-Way Handshake */ 778 wil_dbg_misc(wil, "EAPOL key message 1\n"); 779 780 return false; 781 } 782 783 static bool wil_skb_is_eap_4(struct wil6210_priv *wil, struct sk_buff *skb) 784 { 785 struct wil_eapol_key *key; 786 u32 *nonce, i; 787 788 key = wil_is_ptk_eapol_key(wil, skb); 789 if (!key) 790 return false; 791 792 nonce = (u32 *)key->key_nonce; 793 for (i = 0; i < WIL_EAP_NONCE_LEN / sizeof(u32); i++, nonce++) { 794 if (*nonce != 0) { 795 /* message 2/4 */ 796 wil_dbg_misc(wil, "EAPOL key message 2\n"); 797 return false; 798 } 799 } 800 wil_dbg_misc(wil, "EAPOL key message 4\n"); 801 802 return true; 803 } 804 805 void wil_enable_tx_key_worker(struct work_struct *work) 806 { 807 struct wil6210_vif *vif = container_of(work, 808 struct wil6210_vif, enable_tx_key_worker); 809 struct wil6210_priv *wil = vif_to_wil(vif); 810 int rc, cid; 811 812 rtnl_lock(); 813 if (vif->ptk_rekey_state != WIL_REKEY_WAIT_M4_SENT) { 814 wil_dbg_misc(wil, "Invalid rekey state = %d\n", 815 vif->ptk_rekey_state); 816 rtnl_unlock(); 817 return; 818 } 819 820 cid = wil_find_cid_by_idx(wil, vif->mid, 0); 821 if (!wil_cid_valid(wil, cid)) { 822 wil_err(wil, "Invalid cid = %d\n", cid); 823 rtnl_unlock(); 824 return; 825 } 826 827 wil_dbg_misc(wil, "Apply PTK key after eapol was sent out\n"); 828 rc = wmi_add_cipher_key(vif, 0, wil->sta[cid].addr, 0, NULL, 829 WMI_KEY_USE_APPLY_PTK); 830 831 vif->ptk_rekey_state = WIL_REKEY_IDLE; 832 rtnl_unlock(); 833 834 if (rc) 835 wil_err(wil, "Apply PTK key failed %d\n", rc); 836 } 837 838 void wil_tx_complete_handle_eapol(struct wil6210_vif *vif, struct sk_buff *skb) 839 { 840 struct wil6210_priv *wil = vif_to_wil(vif); 841 struct wireless_dev *wdev = vif_to_wdev(vif); 842 bool q = false; 843 844 if (wdev->iftype != NL80211_IFTYPE_STATION || 845 !test_bit(WMI_FW_CAPABILITY_SPLIT_REKEY, wil->fw_capabilities)) 846 return; 847 848 /* check if skb is an EAP message 4/4 */ 849 if (!wil_skb_is_eap_4(wil, skb)) 850 return; 851 852 spin_lock_bh(&wil->eap_lock); 853 switch (vif->ptk_rekey_state) { 854 case WIL_REKEY_IDLE: 855 /* ignore idle state, can happen due to M4 retransmission */ 856 break; 857 case WIL_REKEY_M3_RECEIVED: 858 vif->ptk_rekey_state = WIL_REKEY_IDLE; 859 break; 860 case WIL_REKEY_WAIT_M4_SENT: 861 q = true; 862 break; 863 default: 864 wil_err(wil, "Unknown rekey state = %d", 865 vif->ptk_rekey_state); 866 } 867 spin_unlock_bh(&wil->eap_lock); 868 869 if (q) { 870 q = queue_work(wil->wmi_wq, &vif->enable_tx_key_worker); 871 wil_dbg_misc(wil, "queue_work of enable_tx_key_worker -> %d\n", 872 q); 873 } 874 } 875 876 static void wil_rx_handle_eapol(struct wil6210_vif *vif, struct sk_buff *skb) 877 { 878 struct wil6210_priv *wil = vif_to_wil(vif); 879 struct wireless_dev *wdev = vif_to_wdev(vif); 880 881 if (wdev->iftype != NL80211_IFTYPE_STATION || 882 !test_bit(WMI_FW_CAPABILITY_SPLIT_REKEY, wil->fw_capabilities)) 883 return; 884 885 /* check if skb is a EAP message 3/4 */ 886 if (!wil_skb_is_eap_3(wil, skb)) 887 return; 888 889 if (vif->ptk_rekey_state == WIL_REKEY_IDLE) 890 vif->ptk_rekey_state = WIL_REKEY_M3_RECEIVED; 891 } 892 893 /* 894 * Pass Rx packet to the netif. Update statistics. 895 * Called in softirq context (NAPI poll). 896 */ 897 void wil_netif_rx(struct sk_buff *skb, struct net_device *ndev, int cid, 898 struct wil_net_stats *stats, bool gro) 899 { 900 gro_result_t rc = GRO_NORMAL; 901 struct wil6210_vif *vif = ndev_to_vif(ndev); 902 struct wil6210_priv *wil = ndev_to_wil(ndev); 903 struct wireless_dev *wdev = vif_to_wdev(vif); 904 unsigned int len = skb->len; 905 u8 *sa, *da = wil_skb_get_da(skb); 906 /* here looking for DA, not A1, thus Rxdesc's 'mcast' indication 907 * is not suitable, need to look at data 908 */ 909 int mcast = is_multicast_ether_addr(da); 910 struct sk_buff *xmit_skb = NULL; 911 static const char * const gro_res_str[] = { 912 [GRO_MERGED] = "GRO_MERGED", 913 [GRO_MERGED_FREE] = "GRO_MERGED_FREE", 914 [GRO_HELD] = "GRO_HELD", 915 [GRO_NORMAL] = "GRO_NORMAL", 916 [GRO_DROP] = "GRO_DROP", 917 [GRO_CONSUMED] = "GRO_CONSUMED", 918 }; 919 920 if (wdev->iftype == NL80211_IFTYPE_STATION) { 921 sa = wil_skb_get_sa(skb); 922 if (mcast && ether_addr_equal(sa, ndev->dev_addr)) { 923 /* mcast packet looped back to us */ 924 rc = GRO_DROP; 925 dev_kfree_skb(skb); 926 goto stats; 927 } 928 } else if (wdev->iftype == NL80211_IFTYPE_AP && !vif->ap_isolate) { 929 if (mcast) { 930 /* send multicast frames both to higher layers in 931 * local net stack and back to the wireless medium 932 */ 933 xmit_skb = skb_copy(skb, GFP_ATOMIC); 934 } else { 935 int xmit_cid = wil_find_cid(wil, vif->mid, da); 936 937 if (xmit_cid >= 0) { 938 /* The destination station is associated to 939 * this AP (in this VLAN), so send the frame 940 * directly to it and do not pass it to local 941 * net stack. 942 */ 943 xmit_skb = skb; 944 skb = NULL; 945 } 946 } 947 } 948 if (xmit_skb) { 949 /* Send to wireless media and increase priority by 256 to 950 * keep the received priority instead of reclassifying 951 * the frame (see cfg80211_classify8021d). 952 */ 953 xmit_skb->dev = ndev; 954 xmit_skb->priority += 256; 955 xmit_skb->protocol = htons(ETH_P_802_3); 956 skb_reset_network_header(xmit_skb); 957 skb_reset_mac_header(xmit_skb); 958 wil_dbg_txrx(wil, "Rx -> Tx %d bytes\n", len); 959 dev_queue_xmit(xmit_skb); 960 } 961 962 if (skb) { /* deliver to local stack */ 963 skb->protocol = eth_type_trans(skb, ndev); 964 skb->dev = ndev; 965 966 if (skb->protocol == cpu_to_be16(ETH_P_PAE)) 967 wil_rx_handle_eapol(vif, skb); 968 969 if (gro) 970 rc = napi_gro_receive(&wil->napi_rx, skb); 971 else 972 netif_rx_ni(skb); 973 wil_dbg_txrx(wil, "Rx complete %d bytes => %s\n", 974 len, gro_res_str[rc]); 975 } 976 stats: 977 /* statistics. rc set to GRO_NORMAL for AP bridging */ 978 if (unlikely(rc == GRO_DROP)) { 979 ndev->stats.rx_dropped++; 980 stats->rx_dropped++; 981 wil_dbg_txrx(wil, "Rx drop %d bytes\n", len); 982 } else { 983 ndev->stats.rx_packets++; 984 stats->rx_packets++; 985 ndev->stats.rx_bytes += len; 986 stats->rx_bytes += len; 987 if (mcast) 988 ndev->stats.multicast++; 989 } 990 } 991 992 void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev) 993 { 994 int cid, security; 995 struct wil6210_priv *wil = ndev_to_wil(ndev); 996 struct wil_net_stats *stats; 997 998 wil->txrx_ops.get_netif_rx_params(skb, &cid, &security); 999 1000 stats = &wil->sta[cid].stats; 1001 1002 skb_orphan(skb); 1003 1004 if (security && (wil->txrx_ops.rx_crypto_check(wil, skb) != 0)) { 1005 wil_dbg_txrx(wil, "Rx drop %d bytes\n", skb->len); 1006 dev_kfree_skb(skb); 1007 ndev->stats.rx_dropped++; 1008 stats->rx_replay++; 1009 stats->rx_dropped++; 1010 return; 1011 } 1012 1013 /* check errors reported by HW and update statistics */ 1014 if (unlikely(wil->txrx_ops.rx_error_check(wil, skb, stats))) { 1015 dev_kfree_skb(skb); 1016 return; 1017 } 1018 1019 wil_netif_rx(skb, ndev, cid, stats, true); 1020 } 1021 1022 /** 1023 * Proceed all completed skb's from Rx VRING 1024 * 1025 * Safe to call from NAPI poll, i.e. softirq with interrupts enabled 1026 */ 1027 void wil_rx_handle(struct wil6210_priv *wil, int *quota) 1028 { 1029 struct net_device *ndev = wil->main_ndev; 1030 struct wireless_dev *wdev = ndev->ieee80211_ptr; 1031 struct wil_ring *v = &wil->ring_rx; 1032 struct sk_buff *skb; 1033 1034 if (unlikely(!v->va)) { 1035 wil_err(wil, "Rx IRQ while Rx not yet initialized\n"); 1036 return; 1037 } 1038 wil_dbg_txrx(wil, "rx_handle\n"); 1039 while ((*quota > 0) && (NULL != (skb = wil_vring_reap_rx(wil, v)))) { 1040 (*quota)--; 1041 1042 /* monitor is currently supported on main interface only */ 1043 if (wdev->iftype == NL80211_IFTYPE_MONITOR) { 1044 skb->dev = ndev; 1045 skb_reset_mac_header(skb); 1046 skb->ip_summed = CHECKSUM_UNNECESSARY; 1047 skb->pkt_type = PACKET_OTHERHOST; 1048 skb->protocol = htons(ETH_P_802_2); 1049 wil_netif_rx_any(skb, ndev); 1050 } else { 1051 wil_rx_reorder(wil, skb); 1052 } 1053 } 1054 wil_rx_refill(wil, v->size); 1055 } 1056 1057 static void wil_rx_buf_len_init(struct wil6210_priv *wil) 1058 { 1059 wil->rx_buf_len = rx_large_buf ? 1060 WIL_MAX_ETH_MTU : TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD; 1061 if (mtu_max > wil->rx_buf_len) { 1062 /* do not allow RX buffers to be smaller than mtu_max, for 1063 * backward compatibility (mtu_max parameter was also used 1064 * to support receiving large packets) 1065 */ 1066 wil_info(wil, "Override RX buffer to mtu_max(%d)\n", mtu_max); 1067 wil->rx_buf_len = mtu_max; 1068 } 1069 } 1070 1071 static int wil_rx_init(struct wil6210_priv *wil, uint order) 1072 { 1073 struct wil_ring *vring = &wil->ring_rx; 1074 int rc; 1075 1076 wil_dbg_misc(wil, "rx_init\n"); 1077 1078 if (vring->va) { 1079 wil_err(wil, "Rx ring already allocated\n"); 1080 return -EINVAL; 1081 } 1082 1083 wil_rx_buf_len_init(wil); 1084 1085 vring->size = 1 << order; 1086 vring->is_rx = true; 1087 rc = wil_vring_alloc(wil, vring); 1088 if (rc) 1089 return rc; 1090 1091 rc = wmi_rx_chain_add(wil, vring); 1092 if (rc) 1093 goto err_free; 1094 1095 rc = wil_rx_refill(wil, vring->size); 1096 if (rc) 1097 goto err_free; 1098 1099 return 0; 1100 err_free: 1101 wil_vring_free(wil, vring); 1102 1103 return rc; 1104 } 1105 1106 static void wil_rx_fini(struct wil6210_priv *wil) 1107 { 1108 struct wil_ring *vring = &wil->ring_rx; 1109 1110 wil_dbg_misc(wil, "rx_fini\n"); 1111 1112 if (vring->va) 1113 wil_vring_free(wil, vring); 1114 } 1115 1116 static int wil_tx_desc_map(union wil_tx_desc *desc, dma_addr_t pa, 1117 u32 len, int vring_index) 1118 { 1119 struct vring_tx_desc *d = &desc->legacy; 1120 1121 wil_desc_addr_set(&d->dma.addr, pa); 1122 d->dma.ip_length = 0; 1123 /* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/ 1124 d->dma.b11 = 0/*14 | BIT(7)*/; 1125 d->dma.error = 0; 1126 d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */ 1127 d->dma.length = cpu_to_le16((u16)len); 1128 d->dma.d0 = (vring_index << DMA_CFG_DESC_TX_0_QID_POS); 1129 d->mac.d[0] = 0; 1130 d->mac.d[1] = 0; 1131 d->mac.d[2] = 0; 1132 d->mac.ucode_cmd = 0; 1133 /* translation type: 0 - bypass; 1 - 802.3; 2 - native wifi */ 1134 d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) | 1135 (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS); 1136 1137 return 0; 1138 } 1139 1140 void wil_tx_data_init(struct wil_ring_tx_data *txdata) 1141 { 1142 spin_lock_bh(&txdata->lock); 1143 txdata->dot1x_open = false; 1144 txdata->enabled = 0; 1145 txdata->idle = 0; 1146 txdata->last_idle = 0; 1147 txdata->begin = 0; 1148 txdata->agg_wsize = 0; 1149 txdata->agg_timeout = 0; 1150 txdata->agg_amsdu = 0; 1151 txdata->addba_in_progress = false; 1152 txdata->mid = U8_MAX; 1153 spin_unlock_bh(&txdata->lock); 1154 } 1155 1156 static int wil_vring_init_tx(struct wil6210_vif *vif, int id, int size, 1157 int cid, int tid) 1158 { 1159 struct wil6210_priv *wil = vif_to_wil(vif); 1160 int rc; 1161 struct wmi_vring_cfg_cmd cmd = { 1162 .action = cpu_to_le32(WMI_VRING_CMD_ADD), 1163 .vring_cfg = { 1164 .tx_sw_ring = { 1165 .max_mpdu_size = 1166 cpu_to_le16(wil_mtu2macbuf(mtu_max)), 1167 .ring_size = cpu_to_le16(size), 1168 }, 1169 .ringid = id, 1170 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3, 1171 .mac_ctrl = 0, 1172 .to_resolution = 0, 1173 .agg_max_wsize = 0, 1174 .schd_params = { 1175 .priority = cpu_to_le16(0), 1176 .timeslot_us = cpu_to_le16(0xfff), 1177 }, 1178 }, 1179 }; 1180 struct { 1181 struct wmi_cmd_hdr wmi; 1182 struct wmi_vring_cfg_done_event cmd; 1183 } __packed reply = { 1184 .cmd = {.status = WMI_FW_STATUS_FAILURE}, 1185 }; 1186 struct wil_ring *vring = &wil->ring_tx[id]; 1187 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id]; 1188 1189 if (cid >= WIL6210_RX_DESC_MAX_CID) { 1190 cmd.vring_cfg.cidxtid = CIDXTID_EXTENDED_CID_TID; 1191 cmd.vring_cfg.cid = cid; 1192 cmd.vring_cfg.tid = tid; 1193 } else { 1194 cmd.vring_cfg.cidxtid = mk_cidxtid(cid, tid); 1195 } 1196 1197 wil_dbg_misc(wil, "vring_init_tx: max_mpdu_size %d\n", 1198 cmd.vring_cfg.tx_sw_ring.max_mpdu_size); 1199 lockdep_assert_held(&wil->mutex); 1200 1201 if (vring->va) { 1202 wil_err(wil, "Tx ring [%d] already allocated\n", id); 1203 rc = -EINVAL; 1204 goto out; 1205 } 1206 1207 wil_tx_data_init(txdata); 1208 vring->is_rx = false; 1209 vring->size = size; 1210 rc = wil_vring_alloc(wil, vring); 1211 if (rc) 1212 goto out; 1213 1214 wil->ring2cid_tid[id][0] = cid; 1215 wil->ring2cid_tid[id][1] = tid; 1216 1217 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa); 1218 1219 if (!vif->privacy) 1220 txdata->dot1x_open = true; 1221 rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd), 1222 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 1223 WIL_WMI_CALL_GENERAL_TO_MS); 1224 if (rc) 1225 goto out_free; 1226 1227 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) { 1228 wil_err(wil, "Tx config failed, status 0x%02x\n", 1229 reply.cmd.status); 1230 rc = -EINVAL; 1231 goto out_free; 1232 } 1233 1234 spin_lock_bh(&txdata->lock); 1235 vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr); 1236 txdata->mid = vif->mid; 1237 txdata->enabled = 1; 1238 spin_unlock_bh(&txdata->lock); 1239 1240 if (txdata->dot1x_open && (agg_wsize >= 0)) 1241 wil_addba_tx_request(wil, id, agg_wsize); 1242 1243 return 0; 1244 out_free: 1245 spin_lock_bh(&txdata->lock); 1246 txdata->dot1x_open = false; 1247 txdata->enabled = 0; 1248 spin_unlock_bh(&txdata->lock); 1249 wil_vring_free(wil, vring); 1250 wil->ring2cid_tid[id][0] = wil->max_assoc_sta; 1251 wil->ring2cid_tid[id][1] = 0; 1252 1253 out: 1254 1255 return rc; 1256 } 1257 1258 static int wil_tx_vring_modify(struct wil6210_vif *vif, int ring_id, int cid, 1259 int tid) 1260 { 1261 struct wil6210_priv *wil = vif_to_wil(vif); 1262 int rc; 1263 struct wmi_vring_cfg_cmd cmd = { 1264 .action = cpu_to_le32(WMI_VRING_CMD_MODIFY), 1265 .vring_cfg = { 1266 .tx_sw_ring = { 1267 .max_mpdu_size = 1268 cpu_to_le16(wil_mtu2macbuf(mtu_max)), 1269 .ring_size = 0, 1270 }, 1271 .ringid = ring_id, 1272 .cidxtid = mk_cidxtid(cid, tid), 1273 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3, 1274 .mac_ctrl = 0, 1275 .to_resolution = 0, 1276 .agg_max_wsize = 0, 1277 .schd_params = { 1278 .priority = cpu_to_le16(0), 1279 .timeslot_us = cpu_to_le16(0xfff), 1280 }, 1281 }, 1282 }; 1283 struct { 1284 struct wmi_cmd_hdr wmi; 1285 struct wmi_vring_cfg_done_event cmd; 1286 } __packed reply = { 1287 .cmd = {.status = WMI_FW_STATUS_FAILURE}, 1288 }; 1289 struct wil_ring *vring = &wil->ring_tx[ring_id]; 1290 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_id]; 1291 1292 wil_dbg_misc(wil, "vring_modify: ring %d cid %d tid %d\n", ring_id, 1293 cid, tid); 1294 lockdep_assert_held(&wil->mutex); 1295 1296 if (!vring->va) { 1297 wil_err(wil, "Tx ring [%d] not allocated\n", ring_id); 1298 return -EINVAL; 1299 } 1300 1301 if (wil->ring2cid_tid[ring_id][0] != cid || 1302 wil->ring2cid_tid[ring_id][1] != tid) { 1303 wil_err(wil, "ring info does not match cid=%u tid=%u\n", 1304 wil->ring2cid_tid[ring_id][0], 1305 wil->ring2cid_tid[ring_id][1]); 1306 } 1307 1308 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa); 1309 1310 rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd), 1311 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 1312 WIL_WMI_CALL_GENERAL_TO_MS); 1313 if (rc) 1314 goto fail; 1315 1316 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) { 1317 wil_err(wil, "Tx modify failed, status 0x%02x\n", 1318 reply.cmd.status); 1319 rc = -EINVAL; 1320 goto fail; 1321 } 1322 1323 /* set BA aggregation window size to 0 to force a new BA with the 1324 * new AP 1325 */ 1326 txdata->agg_wsize = 0; 1327 if (txdata->dot1x_open && agg_wsize >= 0) 1328 wil_addba_tx_request(wil, ring_id, agg_wsize); 1329 1330 return 0; 1331 fail: 1332 spin_lock_bh(&txdata->lock); 1333 txdata->dot1x_open = false; 1334 txdata->enabled = 0; 1335 spin_unlock_bh(&txdata->lock); 1336 wil->ring2cid_tid[ring_id][0] = wil->max_assoc_sta; 1337 wil->ring2cid_tid[ring_id][1] = 0; 1338 return rc; 1339 } 1340 1341 int wil_vring_init_bcast(struct wil6210_vif *vif, int id, int size) 1342 { 1343 struct wil6210_priv *wil = vif_to_wil(vif); 1344 int rc; 1345 struct wmi_bcast_vring_cfg_cmd cmd = { 1346 .action = cpu_to_le32(WMI_VRING_CMD_ADD), 1347 .vring_cfg = { 1348 .tx_sw_ring = { 1349 .max_mpdu_size = 1350 cpu_to_le16(wil_mtu2macbuf(mtu_max)), 1351 .ring_size = cpu_to_le16(size), 1352 }, 1353 .ringid = id, 1354 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3, 1355 }, 1356 }; 1357 struct { 1358 struct wmi_cmd_hdr wmi; 1359 struct wmi_vring_cfg_done_event cmd; 1360 } __packed reply = { 1361 .cmd = {.status = WMI_FW_STATUS_FAILURE}, 1362 }; 1363 struct wil_ring *vring = &wil->ring_tx[id]; 1364 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id]; 1365 1366 wil_dbg_misc(wil, "vring_init_bcast: max_mpdu_size %d\n", 1367 cmd.vring_cfg.tx_sw_ring.max_mpdu_size); 1368 lockdep_assert_held(&wil->mutex); 1369 1370 if (vring->va) { 1371 wil_err(wil, "Tx ring [%d] already allocated\n", id); 1372 rc = -EINVAL; 1373 goto out; 1374 } 1375 1376 wil_tx_data_init(txdata); 1377 vring->is_rx = false; 1378 vring->size = size; 1379 rc = wil_vring_alloc(wil, vring); 1380 if (rc) 1381 goto out; 1382 1383 wil->ring2cid_tid[id][0] = wil->max_assoc_sta; /* CID */ 1384 wil->ring2cid_tid[id][1] = 0; /* TID */ 1385 1386 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa); 1387 1388 if (!vif->privacy) 1389 txdata->dot1x_open = true; 1390 rc = wmi_call(wil, WMI_BCAST_VRING_CFG_CMDID, vif->mid, 1391 &cmd, sizeof(cmd), 1392 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 1393 WIL_WMI_CALL_GENERAL_TO_MS); 1394 if (rc) 1395 goto out_free; 1396 1397 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) { 1398 wil_err(wil, "Tx config failed, status 0x%02x\n", 1399 reply.cmd.status); 1400 rc = -EINVAL; 1401 goto out_free; 1402 } 1403 1404 spin_lock_bh(&txdata->lock); 1405 vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr); 1406 txdata->mid = vif->mid; 1407 txdata->enabled = 1; 1408 spin_unlock_bh(&txdata->lock); 1409 1410 return 0; 1411 out_free: 1412 spin_lock_bh(&txdata->lock); 1413 txdata->enabled = 0; 1414 txdata->dot1x_open = false; 1415 spin_unlock_bh(&txdata->lock); 1416 wil_vring_free(wil, vring); 1417 out: 1418 1419 return rc; 1420 } 1421 1422 static struct wil_ring *wil_find_tx_ucast(struct wil6210_priv *wil, 1423 struct wil6210_vif *vif, 1424 struct sk_buff *skb) 1425 { 1426 int i, cid; 1427 const u8 *da = wil_skb_get_da(skb); 1428 int min_ring_id = wil_get_min_tx_ring_id(wil); 1429 1430 cid = wil_find_cid(wil, vif->mid, da); 1431 1432 if (cid < 0 || cid >= wil->max_assoc_sta) 1433 return NULL; 1434 1435 /* TODO: fix for multiple TID */ 1436 for (i = min_ring_id; i < ARRAY_SIZE(wil->ring2cid_tid); i++) { 1437 if (!wil->ring_tx_data[i].dot1x_open && 1438 skb->protocol != cpu_to_be16(ETH_P_PAE)) 1439 continue; 1440 if (wil->ring2cid_tid[i][0] == cid) { 1441 struct wil_ring *v = &wil->ring_tx[i]; 1442 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i]; 1443 1444 wil_dbg_txrx(wil, "find_tx_ucast: (%pM) -> [%d]\n", 1445 da, i); 1446 if (v->va && txdata->enabled) { 1447 return v; 1448 } else { 1449 wil_dbg_txrx(wil, 1450 "find_tx_ucast: vring[%d] not valid\n", 1451 i); 1452 return NULL; 1453 } 1454 } 1455 } 1456 1457 return NULL; 1458 } 1459 1460 static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif, 1461 struct wil_ring *ring, struct sk_buff *skb); 1462 1463 static struct wil_ring *wil_find_tx_ring_sta(struct wil6210_priv *wil, 1464 struct wil6210_vif *vif, 1465 struct sk_buff *skb) 1466 { 1467 struct wil_ring *ring; 1468 int i; 1469 u8 cid; 1470 struct wil_ring_tx_data *txdata; 1471 int min_ring_id = wil_get_min_tx_ring_id(wil); 1472 1473 /* In the STA mode, it is expected to have only 1 VRING 1474 * for the AP we connected to. 1475 * find 1-st vring eligible for this skb and use it. 1476 */ 1477 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) { 1478 ring = &wil->ring_tx[i]; 1479 txdata = &wil->ring_tx_data[i]; 1480 if (!ring->va || !txdata->enabled || txdata->mid != vif->mid) 1481 continue; 1482 1483 cid = wil->ring2cid_tid[i][0]; 1484 if (cid >= wil->max_assoc_sta) /* skip BCAST */ 1485 continue; 1486 1487 if (!wil->ring_tx_data[i].dot1x_open && 1488 skb->protocol != cpu_to_be16(ETH_P_PAE)) 1489 continue; 1490 1491 wil_dbg_txrx(wil, "Tx -> ring %d\n", i); 1492 1493 return ring; 1494 } 1495 1496 wil_dbg_txrx(wil, "Tx while no rings active?\n"); 1497 1498 return NULL; 1499 } 1500 1501 /* Use one of 2 strategies: 1502 * 1503 * 1. New (real broadcast): 1504 * use dedicated broadcast vring 1505 * 2. Old (pseudo-DMS): 1506 * Find 1-st vring and return it; 1507 * duplicate skb and send it to other active vrings; 1508 * in all cases override dest address to unicast peer's address 1509 * Use old strategy when new is not supported yet: 1510 * - for PBSS 1511 */ 1512 static struct wil_ring *wil_find_tx_bcast_1(struct wil6210_priv *wil, 1513 struct wil6210_vif *vif, 1514 struct sk_buff *skb) 1515 { 1516 struct wil_ring *v; 1517 struct wil_ring_tx_data *txdata; 1518 int i = vif->bcast_ring; 1519 1520 if (i < 0) 1521 return NULL; 1522 v = &wil->ring_tx[i]; 1523 txdata = &wil->ring_tx_data[i]; 1524 if (!v->va || !txdata->enabled) 1525 return NULL; 1526 if (!wil->ring_tx_data[i].dot1x_open && 1527 skb->protocol != cpu_to_be16(ETH_P_PAE)) 1528 return NULL; 1529 1530 return v; 1531 } 1532 1533 /* apply multicast to unicast only for ARP and IP packets 1534 * (see NL80211_CMD_SET_MULTICAST_TO_UNICAST for more info) 1535 */ 1536 static bool wil_check_multicast_to_unicast(struct wil6210_priv *wil, 1537 struct sk_buff *skb) 1538 { 1539 const struct ethhdr *eth = (void *)skb->data; 1540 const struct vlan_ethhdr *ethvlan = (void *)skb->data; 1541 __be16 ethertype; 1542 1543 if (!wil->multicast_to_unicast) 1544 return false; 1545 1546 /* multicast to unicast conversion only for some payload */ 1547 ethertype = eth->h_proto; 1548 if (ethertype == htons(ETH_P_8021Q) && skb->len >= VLAN_ETH_HLEN) 1549 ethertype = ethvlan->h_vlan_encapsulated_proto; 1550 switch (ethertype) { 1551 case htons(ETH_P_ARP): 1552 case htons(ETH_P_IP): 1553 case htons(ETH_P_IPV6): 1554 break; 1555 default: 1556 return false; 1557 } 1558 1559 return true; 1560 } 1561 1562 static void wil_set_da_for_vring(struct wil6210_priv *wil, 1563 struct sk_buff *skb, int vring_index) 1564 { 1565 u8 *da = wil_skb_get_da(skb); 1566 int cid = wil->ring2cid_tid[vring_index][0]; 1567 1568 ether_addr_copy(da, wil->sta[cid].addr); 1569 } 1570 1571 static struct wil_ring *wil_find_tx_bcast_2(struct wil6210_priv *wil, 1572 struct wil6210_vif *vif, 1573 struct sk_buff *skb) 1574 { 1575 struct wil_ring *v, *v2; 1576 struct sk_buff *skb2; 1577 int i; 1578 u8 cid; 1579 const u8 *src = wil_skb_get_sa(skb); 1580 struct wil_ring_tx_data *txdata, *txdata2; 1581 int min_ring_id = wil_get_min_tx_ring_id(wil); 1582 1583 /* find 1-st vring eligible for data */ 1584 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) { 1585 v = &wil->ring_tx[i]; 1586 txdata = &wil->ring_tx_data[i]; 1587 if (!v->va || !txdata->enabled || txdata->mid != vif->mid) 1588 continue; 1589 1590 cid = wil->ring2cid_tid[i][0]; 1591 if (cid >= wil->max_assoc_sta) /* skip BCAST */ 1592 continue; 1593 if (!wil->ring_tx_data[i].dot1x_open && 1594 skb->protocol != cpu_to_be16(ETH_P_PAE)) 1595 continue; 1596 1597 /* don't Tx back to source when re-routing Rx->Tx at the AP */ 1598 if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN)) 1599 continue; 1600 1601 goto found; 1602 } 1603 1604 wil_dbg_txrx(wil, "Tx while no vrings active?\n"); 1605 1606 return NULL; 1607 1608 found: 1609 wil_dbg_txrx(wil, "BCAST -> ring %d\n", i); 1610 wil_set_da_for_vring(wil, skb, i); 1611 1612 /* find other active vrings and duplicate skb for each */ 1613 for (i++; i < WIL6210_MAX_TX_RINGS; i++) { 1614 v2 = &wil->ring_tx[i]; 1615 txdata2 = &wil->ring_tx_data[i]; 1616 if (!v2->va || txdata2->mid != vif->mid) 1617 continue; 1618 cid = wil->ring2cid_tid[i][0]; 1619 if (cid >= wil->max_assoc_sta) /* skip BCAST */ 1620 continue; 1621 if (!wil->ring_tx_data[i].dot1x_open && 1622 skb->protocol != cpu_to_be16(ETH_P_PAE)) 1623 continue; 1624 1625 if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN)) 1626 continue; 1627 1628 skb2 = skb_copy(skb, GFP_ATOMIC); 1629 if (skb2) { 1630 wil_dbg_txrx(wil, "BCAST DUP -> ring %d\n", i); 1631 wil_set_da_for_vring(wil, skb2, i); 1632 wil_tx_ring(wil, vif, v2, skb2); 1633 /* successful call to wil_tx_ring takes skb2 ref */ 1634 dev_kfree_skb_any(skb2); 1635 } else { 1636 wil_err(wil, "skb_copy failed\n"); 1637 } 1638 } 1639 1640 return v; 1641 } 1642 1643 static inline 1644 void wil_tx_desc_set_nr_frags(struct vring_tx_desc *d, int nr_frags) 1645 { 1646 d->mac.d[2] |= (nr_frags << MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS); 1647 } 1648 1649 /** 1650 * Sets the descriptor @d up for csum and/or TSO offloading. The corresponding 1651 * @skb is used to obtain the protocol and headers length. 1652 * @tso_desc_type is a descriptor type for TSO: 0 - a header, 1 - first data, 1653 * 2 - middle, 3 - last descriptor. 1654 */ 1655 1656 static void wil_tx_desc_offload_setup_tso(struct vring_tx_desc *d, 1657 struct sk_buff *skb, 1658 int tso_desc_type, bool is_ipv4, 1659 int tcp_hdr_len, int skb_net_hdr_len) 1660 { 1661 d->dma.b11 = ETH_HLEN; /* MAC header length */ 1662 d->dma.b11 |= is_ipv4 << DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS; 1663 1664 d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS); 1665 /* L4 header len: TCP header length */ 1666 d->dma.d0 |= (tcp_hdr_len & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK); 1667 1668 /* Setup TSO: bit and desc type */ 1669 d->dma.d0 |= (BIT(DMA_CFG_DESC_TX_0_TCP_SEG_EN_POS)) | 1670 (tso_desc_type << DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS); 1671 d->dma.d0 |= (is_ipv4 << DMA_CFG_DESC_TX_0_IPV4_CHECKSUM_EN_POS); 1672 1673 d->dma.ip_length = skb_net_hdr_len; 1674 /* Enable TCP/UDP checksum */ 1675 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS); 1676 /* Calculate pseudo-header */ 1677 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS); 1678 } 1679 1680 /** 1681 * Sets the descriptor @d up for csum. The corresponding 1682 * @skb is used to obtain the protocol and headers length. 1683 * Returns the protocol: 0 - not TCP, 1 - TCPv4, 2 - TCPv6. 1684 * Note, if d==NULL, the function only returns the protocol result. 1685 * 1686 * It is very similar to previous wil_tx_desc_offload_setup_tso. This 1687 * is "if unrolling" to optimize the critical path. 1688 */ 1689 1690 static int wil_tx_desc_offload_setup(struct vring_tx_desc *d, 1691 struct sk_buff *skb){ 1692 int protocol; 1693 1694 if (skb->ip_summed != CHECKSUM_PARTIAL) 1695 return 0; 1696 1697 d->dma.b11 = ETH_HLEN; /* MAC header length */ 1698 1699 switch (skb->protocol) { 1700 case cpu_to_be16(ETH_P_IP): 1701 protocol = ip_hdr(skb)->protocol; 1702 d->dma.b11 |= BIT(DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS); 1703 break; 1704 case cpu_to_be16(ETH_P_IPV6): 1705 protocol = ipv6_hdr(skb)->nexthdr; 1706 break; 1707 default: 1708 return -EINVAL; 1709 } 1710 1711 switch (protocol) { 1712 case IPPROTO_TCP: 1713 d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS); 1714 /* L4 header len: TCP header length */ 1715 d->dma.d0 |= 1716 (tcp_hdrlen(skb) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK); 1717 break; 1718 case IPPROTO_UDP: 1719 /* L4 header len: UDP header length */ 1720 d->dma.d0 |= 1721 (sizeof(struct udphdr) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK); 1722 break; 1723 default: 1724 return -EINVAL; 1725 } 1726 1727 d->dma.ip_length = skb_network_header_len(skb); 1728 /* Enable TCP/UDP checksum */ 1729 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS); 1730 /* Calculate pseudo-header */ 1731 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS); 1732 1733 return 0; 1734 } 1735 1736 static inline void wil_tx_last_desc(struct vring_tx_desc *d) 1737 { 1738 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS) | 1739 BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS) | 1740 BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS); 1741 } 1742 1743 static inline void wil_set_tx_desc_last_tso(volatile struct vring_tx_desc *d) 1744 { 1745 d->dma.d0 |= wil_tso_type_lst << 1746 DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS; 1747 } 1748 1749 static int __wil_tx_vring_tso(struct wil6210_priv *wil, struct wil6210_vif *vif, 1750 struct wil_ring *vring, struct sk_buff *skb) 1751 { 1752 struct device *dev = wil_to_dev(wil); 1753 1754 /* point to descriptors in shared memory */ 1755 volatile struct vring_tx_desc *_desc = NULL, *_hdr_desc, 1756 *_first_desc = NULL; 1757 1758 /* pointers to shadow descriptors */ 1759 struct vring_tx_desc desc_mem, hdr_desc_mem, first_desc_mem, 1760 *d = &hdr_desc_mem, *hdr_desc = &hdr_desc_mem, 1761 *first_desc = &first_desc_mem; 1762 1763 /* pointer to shadow descriptors' context */ 1764 struct wil_ctx *hdr_ctx, *first_ctx = NULL; 1765 1766 int descs_used = 0; /* total number of used descriptors */ 1767 int sg_desc_cnt = 0; /* number of descriptors for current mss*/ 1768 1769 u32 swhead = vring->swhead; 1770 int used, avail = wil_ring_avail_tx(vring); 1771 int nr_frags = skb_shinfo(skb)->nr_frags; 1772 int min_desc_required = nr_frags + 1; 1773 int mss = skb_shinfo(skb)->gso_size; /* payload size w/o headers */ 1774 int f, len, hdrlen, headlen; 1775 int vring_index = vring - wil->ring_tx; 1776 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[vring_index]; 1777 uint i = swhead; 1778 dma_addr_t pa; 1779 const skb_frag_t *frag = NULL; 1780 int rem_data = mss; 1781 int lenmss; 1782 int hdr_compensation_need = true; 1783 int desc_tso_type = wil_tso_type_first; 1784 bool is_ipv4; 1785 int tcp_hdr_len; 1786 int skb_net_hdr_len; 1787 int gso_type; 1788 int rc = -EINVAL; 1789 1790 wil_dbg_txrx(wil, "tx_vring_tso: %d bytes to vring %d\n", skb->len, 1791 vring_index); 1792 1793 if (unlikely(!txdata->enabled)) 1794 return -EINVAL; 1795 1796 /* A typical page 4K is 3-4 payloads, we assume each fragment 1797 * is a full payload, that's how min_desc_required has been 1798 * calculated. In real we might need more or less descriptors, 1799 * this is the initial check only. 1800 */ 1801 if (unlikely(avail < min_desc_required)) { 1802 wil_err_ratelimited(wil, 1803 "TSO: Tx ring[%2d] full. No space for %d fragments\n", 1804 vring_index, min_desc_required); 1805 return -ENOMEM; 1806 } 1807 1808 /* Header Length = MAC header len + IP header len + TCP header len*/ 1809 hdrlen = ETH_HLEN + 1810 (int)skb_network_header_len(skb) + 1811 tcp_hdrlen(skb); 1812 1813 gso_type = skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV6 | SKB_GSO_TCPV4); 1814 switch (gso_type) { 1815 case SKB_GSO_TCPV4: 1816 /* TCP v4, zero out the IP length and IPv4 checksum fields 1817 * as required by the offloading doc 1818 */ 1819 ip_hdr(skb)->tot_len = 0; 1820 ip_hdr(skb)->check = 0; 1821 is_ipv4 = true; 1822 break; 1823 case SKB_GSO_TCPV6: 1824 /* TCP v6, zero out the payload length */ 1825 ipv6_hdr(skb)->payload_len = 0; 1826 is_ipv4 = false; 1827 break; 1828 default: 1829 /* other than TCPv4 or TCPv6 types are not supported for TSO. 1830 * It is also illegal for both to be set simultaneously 1831 */ 1832 return -EINVAL; 1833 } 1834 1835 if (skb->ip_summed != CHECKSUM_PARTIAL) 1836 return -EINVAL; 1837 1838 /* tcp header length and skb network header length are fixed for all 1839 * packet's descriptors - read then once here 1840 */ 1841 tcp_hdr_len = tcp_hdrlen(skb); 1842 skb_net_hdr_len = skb_network_header_len(skb); 1843 1844 _hdr_desc = &vring->va[i].tx.legacy; 1845 1846 pa = dma_map_single(dev, skb->data, hdrlen, DMA_TO_DEVICE); 1847 if (unlikely(dma_mapping_error(dev, pa))) { 1848 wil_err(wil, "TSO: Skb head DMA map error\n"); 1849 goto err_exit; 1850 } 1851 1852 wil->txrx_ops.tx_desc_map((union wil_tx_desc *)hdr_desc, pa, 1853 hdrlen, vring_index); 1854 wil_tx_desc_offload_setup_tso(hdr_desc, skb, wil_tso_type_hdr, is_ipv4, 1855 tcp_hdr_len, skb_net_hdr_len); 1856 wil_tx_last_desc(hdr_desc); 1857 1858 vring->ctx[i].mapped_as = wil_mapped_as_single; 1859 hdr_ctx = &vring->ctx[i]; 1860 1861 descs_used++; 1862 headlen = skb_headlen(skb) - hdrlen; 1863 1864 for (f = headlen ? -1 : 0; f < nr_frags; f++) { 1865 if (headlen) { 1866 len = headlen; 1867 wil_dbg_txrx(wil, "TSO: process skb head, len %u\n", 1868 len); 1869 } else { 1870 frag = &skb_shinfo(skb)->frags[f]; 1871 len = skb_frag_size(frag); 1872 wil_dbg_txrx(wil, "TSO: frag[%d]: len %u\n", f, len); 1873 } 1874 1875 while (len) { 1876 wil_dbg_txrx(wil, 1877 "TSO: len %d, rem_data %d, descs_used %d\n", 1878 len, rem_data, descs_used); 1879 1880 if (descs_used == avail) { 1881 wil_err_ratelimited(wil, "TSO: ring overflow\n"); 1882 rc = -ENOMEM; 1883 goto mem_error; 1884 } 1885 1886 lenmss = min_t(int, rem_data, len); 1887 i = (swhead + descs_used) % vring->size; 1888 wil_dbg_txrx(wil, "TSO: lenmss %d, i %d\n", lenmss, i); 1889 1890 if (!headlen) { 1891 pa = skb_frag_dma_map(dev, frag, 1892 skb_frag_size(frag) - len, 1893 lenmss, DMA_TO_DEVICE); 1894 vring->ctx[i].mapped_as = wil_mapped_as_page; 1895 } else { 1896 pa = dma_map_single(dev, 1897 skb->data + 1898 skb_headlen(skb) - headlen, 1899 lenmss, 1900 DMA_TO_DEVICE); 1901 vring->ctx[i].mapped_as = wil_mapped_as_single; 1902 headlen -= lenmss; 1903 } 1904 1905 if (unlikely(dma_mapping_error(dev, pa))) { 1906 wil_err(wil, "TSO: DMA map page error\n"); 1907 goto mem_error; 1908 } 1909 1910 _desc = &vring->va[i].tx.legacy; 1911 1912 if (!_first_desc) { 1913 _first_desc = _desc; 1914 first_ctx = &vring->ctx[i]; 1915 d = first_desc; 1916 } else { 1917 d = &desc_mem; 1918 } 1919 1920 wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, 1921 pa, lenmss, vring_index); 1922 wil_tx_desc_offload_setup_tso(d, skb, desc_tso_type, 1923 is_ipv4, tcp_hdr_len, 1924 skb_net_hdr_len); 1925 1926 /* use tso_type_first only once */ 1927 desc_tso_type = wil_tso_type_mid; 1928 1929 descs_used++; /* desc used so far */ 1930 sg_desc_cnt++; /* desc used for this segment */ 1931 len -= lenmss; 1932 rem_data -= lenmss; 1933 1934 wil_dbg_txrx(wil, 1935 "TSO: len %d, rem_data %d, descs_used %d, sg_desc_cnt %d,\n", 1936 len, rem_data, descs_used, sg_desc_cnt); 1937 1938 /* Close the segment if reached mss size or last frag*/ 1939 if (rem_data == 0 || (f == nr_frags - 1 && len == 0)) { 1940 if (hdr_compensation_need) { 1941 /* first segment include hdr desc for 1942 * release 1943 */ 1944 hdr_ctx->nr_frags = sg_desc_cnt; 1945 wil_tx_desc_set_nr_frags(first_desc, 1946 sg_desc_cnt + 1947 1); 1948 hdr_compensation_need = false; 1949 } else { 1950 wil_tx_desc_set_nr_frags(first_desc, 1951 sg_desc_cnt); 1952 } 1953 first_ctx->nr_frags = sg_desc_cnt - 1; 1954 1955 wil_tx_last_desc(d); 1956 1957 /* first descriptor may also be the last 1958 * for this mss - make sure not to copy 1959 * it twice 1960 */ 1961 if (first_desc != d) 1962 *_first_desc = *first_desc; 1963 1964 /*last descriptor will be copied at the end 1965 * of this TS processing 1966 */ 1967 if (f < nr_frags - 1 || len > 0) 1968 *_desc = *d; 1969 1970 rem_data = mss; 1971 _first_desc = NULL; 1972 sg_desc_cnt = 0; 1973 } else if (first_desc != d) /* update mid descriptor */ 1974 *_desc = *d; 1975 } 1976 } 1977 1978 if (!_desc) 1979 goto mem_error; 1980 1981 /* first descriptor may also be the last. 1982 * in this case d pointer is invalid 1983 */ 1984 if (_first_desc == _desc) 1985 d = first_desc; 1986 1987 /* Last data descriptor */ 1988 wil_set_tx_desc_last_tso(d); 1989 *_desc = *d; 1990 1991 /* Fill the total number of descriptors in first desc (hdr)*/ 1992 wil_tx_desc_set_nr_frags(hdr_desc, descs_used); 1993 *_hdr_desc = *hdr_desc; 1994 1995 /* hold reference to skb 1996 * to prevent skb release before accounting 1997 * in case of immediate "tx done" 1998 */ 1999 vring->ctx[i].skb = skb_get(skb); 2000 2001 /* performance monitoring */ 2002 used = wil_ring_used_tx(vring); 2003 if (wil_val_in_range(wil->ring_idle_trsh, 2004 used, used + descs_used)) { 2005 txdata->idle += get_cycles() - txdata->last_idle; 2006 wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n", 2007 vring_index, used, used + descs_used); 2008 } 2009 2010 /* Make sure to advance the head only after descriptor update is done. 2011 * This will prevent a race condition where the completion thread 2012 * will see the DU bit set from previous run and will handle the 2013 * skb before it was completed. 2014 */ 2015 wmb(); 2016 2017 /* advance swhead */ 2018 wil_ring_advance_head(vring, descs_used); 2019 wil_dbg_txrx(wil, "TSO: Tx swhead %d -> %d\n", swhead, vring->swhead); 2020 2021 /* make sure all writes to descriptors (shared memory) are done before 2022 * committing them to HW 2023 */ 2024 wmb(); 2025 2026 if (wil->tx_latency) 2027 *(ktime_t *)&skb->cb = ktime_get(); 2028 else 2029 memset(skb->cb, 0, sizeof(ktime_t)); 2030 2031 wil_w(wil, vring->hwtail, vring->swhead); 2032 return 0; 2033 2034 mem_error: 2035 while (descs_used > 0) { 2036 struct wil_ctx *ctx; 2037 2038 i = (swhead + descs_used - 1) % vring->size; 2039 d = (struct vring_tx_desc *)&vring->va[i].tx.legacy; 2040 _desc = &vring->va[i].tx.legacy; 2041 *d = *_desc; 2042 _desc->dma.status = TX_DMA_STATUS_DU; 2043 ctx = &vring->ctx[i]; 2044 wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx); 2045 memset(ctx, 0, sizeof(*ctx)); 2046 descs_used--; 2047 } 2048 err_exit: 2049 return rc; 2050 } 2051 2052 static int __wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif, 2053 struct wil_ring *ring, struct sk_buff *skb) 2054 { 2055 struct device *dev = wil_to_dev(wil); 2056 struct vring_tx_desc dd, *d = ⅆ 2057 volatile struct vring_tx_desc *_d; 2058 u32 swhead = ring->swhead; 2059 int avail = wil_ring_avail_tx(ring); 2060 int nr_frags = skb_shinfo(skb)->nr_frags; 2061 uint f = 0; 2062 int ring_index = ring - wil->ring_tx; 2063 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_index]; 2064 uint i = swhead; 2065 dma_addr_t pa; 2066 int used; 2067 bool mcast = (ring_index == vif->bcast_ring); 2068 uint len = skb_headlen(skb); 2069 2070 wil_dbg_txrx(wil, "tx_ring: %d bytes to ring %d, nr_frags %d\n", 2071 skb->len, ring_index, nr_frags); 2072 2073 if (unlikely(!txdata->enabled)) 2074 return -EINVAL; 2075 2076 if (unlikely(avail < 1 + nr_frags)) { 2077 wil_err_ratelimited(wil, 2078 "Tx ring[%2d] full. No space for %d fragments\n", 2079 ring_index, 1 + nr_frags); 2080 return -ENOMEM; 2081 } 2082 _d = &ring->va[i].tx.legacy; 2083 2084 pa = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 2085 2086 wil_dbg_txrx(wil, "Tx[%2d] skb %d bytes 0x%p -> %pad\n", ring_index, 2087 skb_headlen(skb), skb->data, &pa); 2088 wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1, 2089 skb->data, skb_headlen(skb), false); 2090 2091 if (unlikely(dma_mapping_error(dev, pa))) 2092 return -EINVAL; 2093 ring->ctx[i].mapped_as = wil_mapped_as_single; 2094 /* 1-st segment */ 2095 wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, pa, len, 2096 ring_index); 2097 if (unlikely(mcast)) { 2098 d->mac.d[0] |= BIT(MAC_CFG_DESC_TX_0_MCS_EN_POS); /* MCS 0 */ 2099 if (unlikely(len > WIL_BCAST_MCS0_LIMIT)) /* set MCS 1 */ 2100 d->mac.d[0] |= (1 << MAC_CFG_DESC_TX_0_MCS_INDEX_POS); 2101 } 2102 /* Process TCP/UDP checksum offloading */ 2103 if (unlikely(wil_tx_desc_offload_setup(d, skb))) { 2104 wil_err(wil, "Tx[%2d] Failed to set cksum, drop packet\n", 2105 ring_index); 2106 goto dma_error; 2107 } 2108 2109 ring->ctx[i].nr_frags = nr_frags; 2110 wil_tx_desc_set_nr_frags(d, nr_frags + 1); 2111 2112 /* middle segments */ 2113 for (; f < nr_frags; f++) { 2114 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 2115 int len = skb_frag_size(frag); 2116 2117 *_d = *d; 2118 wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i); 2119 wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4, 2120 (const void *)d, sizeof(*d), false); 2121 i = (swhead + f + 1) % ring->size; 2122 _d = &ring->va[i].tx.legacy; 2123 pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag), 2124 DMA_TO_DEVICE); 2125 if (unlikely(dma_mapping_error(dev, pa))) { 2126 wil_err(wil, "Tx[%2d] failed to map fragment\n", 2127 ring_index); 2128 goto dma_error; 2129 } 2130 ring->ctx[i].mapped_as = wil_mapped_as_page; 2131 wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, 2132 pa, len, ring_index); 2133 /* no need to check return code - 2134 * if it succeeded for 1-st descriptor, 2135 * it will succeed here too 2136 */ 2137 wil_tx_desc_offload_setup(d, skb); 2138 } 2139 /* for the last seg only */ 2140 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS); 2141 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS); 2142 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS); 2143 *_d = *d; 2144 wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i); 2145 wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4, 2146 (const void *)d, sizeof(*d), false); 2147 2148 /* hold reference to skb 2149 * to prevent skb release before accounting 2150 * in case of immediate "tx done" 2151 */ 2152 ring->ctx[i].skb = skb_get(skb); 2153 2154 /* performance monitoring */ 2155 used = wil_ring_used_tx(ring); 2156 if (wil_val_in_range(wil->ring_idle_trsh, 2157 used, used + nr_frags + 1)) { 2158 txdata->idle += get_cycles() - txdata->last_idle; 2159 wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n", 2160 ring_index, used, used + nr_frags + 1); 2161 } 2162 2163 /* Make sure to advance the head only after descriptor update is done. 2164 * This will prevent a race condition where the completion thread 2165 * will see the DU bit set from previous run and will handle the 2166 * skb before it was completed. 2167 */ 2168 wmb(); 2169 2170 /* advance swhead */ 2171 wil_ring_advance_head(ring, nr_frags + 1); 2172 wil_dbg_txrx(wil, "Tx[%2d] swhead %d -> %d\n", ring_index, swhead, 2173 ring->swhead); 2174 trace_wil6210_tx(ring_index, swhead, skb->len, nr_frags); 2175 2176 /* make sure all writes to descriptors (shared memory) are done before 2177 * committing them to HW 2178 */ 2179 wmb(); 2180 2181 if (wil->tx_latency) 2182 *(ktime_t *)&skb->cb = ktime_get(); 2183 else 2184 memset(skb->cb, 0, sizeof(ktime_t)); 2185 2186 wil_w(wil, ring->hwtail, ring->swhead); 2187 2188 return 0; 2189 dma_error: 2190 /* unmap what we have mapped */ 2191 nr_frags = f + 1; /* frags mapped + one for skb head */ 2192 for (f = 0; f < nr_frags; f++) { 2193 struct wil_ctx *ctx; 2194 2195 i = (swhead + f) % ring->size; 2196 ctx = &ring->ctx[i]; 2197 _d = &ring->va[i].tx.legacy; 2198 *d = *_d; 2199 _d->dma.status = TX_DMA_STATUS_DU; 2200 wil->txrx_ops.tx_desc_unmap(dev, 2201 (union wil_tx_desc *)d, 2202 ctx); 2203 2204 memset(ctx, 0, sizeof(*ctx)); 2205 } 2206 2207 return -EINVAL; 2208 } 2209 2210 static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif, 2211 struct wil_ring *ring, struct sk_buff *skb) 2212 { 2213 int ring_index = ring - wil->ring_tx; 2214 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_index]; 2215 int rc; 2216 2217 spin_lock(&txdata->lock); 2218 2219 if (test_bit(wil_status_suspending, wil->status) || 2220 test_bit(wil_status_suspended, wil->status) || 2221 test_bit(wil_status_resuming, wil->status)) { 2222 wil_dbg_txrx(wil, 2223 "suspend/resume in progress. drop packet\n"); 2224 spin_unlock(&txdata->lock); 2225 return -EINVAL; 2226 } 2227 2228 rc = (skb_is_gso(skb) ? wil->txrx_ops.tx_ring_tso : __wil_tx_ring) 2229 (wil, vif, ring, skb); 2230 2231 spin_unlock(&txdata->lock); 2232 2233 return rc; 2234 } 2235 2236 /** 2237 * Check status of tx vrings and stop/wake net queues if needed 2238 * It will start/stop net queues of a specific VIF net_device. 2239 * 2240 * This function does one of two checks: 2241 * In case check_stop is true, will check if net queues need to be stopped. If 2242 * the conditions for stopping are met, netif_tx_stop_all_queues() is called. 2243 * In case check_stop is false, will check if net queues need to be waked. If 2244 * the conditions for waking are met, netif_tx_wake_all_queues() is called. 2245 * vring is the vring which is currently being modified by either adding 2246 * descriptors (tx) into it or removing descriptors (tx complete) from it. Can 2247 * be null when irrelevant (e.g. connect/disconnect events). 2248 * 2249 * The implementation is to stop net queues if modified vring has low 2250 * descriptor availability. Wake if all vrings are not in low descriptor 2251 * availability and modified vring has high descriptor availability. 2252 */ 2253 static inline void __wil_update_net_queues(struct wil6210_priv *wil, 2254 struct wil6210_vif *vif, 2255 struct wil_ring *ring, 2256 bool check_stop) 2257 { 2258 int i; 2259 int min_ring_id = wil_get_min_tx_ring_id(wil); 2260 2261 if (unlikely(!vif)) 2262 return; 2263 2264 if (ring) 2265 wil_dbg_txrx(wil, "vring %d, mid %d, check_stop=%d, stopped=%d", 2266 (int)(ring - wil->ring_tx), vif->mid, check_stop, 2267 vif->net_queue_stopped); 2268 else 2269 wil_dbg_txrx(wil, "check_stop=%d, mid=%d, stopped=%d", 2270 check_stop, vif->mid, vif->net_queue_stopped); 2271 2272 if (ring && drop_if_ring_full) 2273 /* no need to stop/wake net queues */ 2274 return; 2275 2276 if (check_stop == vif->net_queue_stopped) 2277 /* net queues already in desired state */ 2278 return; 2279 2280 if (check_stop) { 2281 if (!ring || unlikely(wil_ring_avail_low(ring))) { 2282 /* not enough room in the vring */ 2283 netif_tx_stop_all_queues(vif_to_ndev(vif)); 2284 vif->net_queue_stopped = true; 2285 wil_dbg_txrx(wil, "netif_tx_stop called\n"); 2286 } 2287 return; 2288 } 2289 2290 /* Do not wake the queues in suspend flow */ 2291 if (test_bit(wil_status_suspending, wil->status) || 2292 test_bit(wil_status_suspended, wil->status)) 2293 return; 2294 2295 /* check wake */ 2296 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) { 2297 struct wil_ring *cur_ring = &wil->ring_tx[i]; 2298 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i]; 2299 2300 if (txdata->mid != vif->mid || !cur_ring->va || 2301 !txdata->enabled || cur_ring == ring) 2302 continue; 2303 2304 if (wil_ring_avail_low(cur_ring)) { 2305 wil_dbg_txrx(wil, "ring %d full, can't wake\n", 2306 (int)(cur_ring - wil->ring_tx)); 2307 return; 2308 } 2309 } 2310 2311 if (!ring || wil_ring_avail_high(ring)) { 2312 /* enough room in the ring */ 2313 wil_dbg_txrx(wil, "calling netif_tx_wake\n"); 2314 netif_tx_wake_all_queues(vif_to_ndev(vif)); 2315 vif->net_queue_stopped = false; 2316 } 2317 } 2318 2319 void wil_update_net_queues(struct wil6210_priv *wil, struct wil6210_vif *vif, 2320 struct wil_ring *ring, bool check_stop) 2321 { 2322 spin_lock(&wil->net_queue_lock); 2323 __wil_update_net_queues(wil, vif, ring, check_stop); 2324 spin_unlock(&wil->net_queue_lock); 2325 } 2326 2327 void wil_update_net_queues_bh(struct wil6210_priv *wil, struct wil6210_vif *vif, 2328 struct wil_ring *ring, bool check_stop) 2329 { 2330 spin_lock_bh(&wil->net_queue_lock); 2331 __wil_update_net_queues(wil, vif, ring, check_stop); 2332 spin_unlock_bh(&wil->net_queue_lock); 2333 } 2334 2335 netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev) 2336 { 2337 struct wil6210_vif *vif = ndev_to_vif(ndev); 2338 struct wil6210_priv *wil = vif_to_wil(vif); 2339 const u8 *da = wil_skb_get_da(skb); 2340 bool bcast = is_multicast_ether_addr(da); 2341 struct wil_ring *ring; 2342 static bool pr_once_fw; 2343 int rc; 2344 2345 wil_dbg_txrx(wil, "start_xmit\n"); 2346 if (unlikely(!test_bit(wil_status_fwready, wil->status))) { 2347 if (!pr_once_fw) { 2348 wil_err(wil, "FW not ready\n"); 2349 pr_once_fw = true; 2350 } 2351 goto drop; 2352 } 2353 if (unlikely(!test_bit(wil_vif_fwconnected, vif->status))) { 2354 wil_dbg_ratelimited(wil, 2355 "VIF not connected, packet dropped\n"); 2356 goto drop; 2357 } 2358 if (unlikely(vif->wdev.iftype == NL80211_IFTYPE_MONITOR)) { 2359 wil_err(wil, "Xmit in monitor mode not supported\n"); 2360 goto drop; 2361 } 2362 pr_once_fw = false; 2363 2364 /* find vring */ 2365 if (vif->wdev.iftype == NL80211_IFTYPE_STATION && !vif->pbss) { 2366 /* in STA mode (ESS), all to same VRING (to AP) */ 2367 ring = wil_find_tx_ring_sta(wil, vif, skb); 2368 } else if (bcast) { 2369 if (vif->pbss || wil_check_multicast_to_unicast(wil, skb)) 2370 /* in pbss, no bcast VRING - duplicate skb in 2371 * all stations VRINGs 2372 */ 2373 ring = wil_find_tx_bcast_2(wil, vif, skb); 2374 else if (vif->wdev.iftype == NL80211_IFTYPE_AP) 2375 /* AP has a dedicated bcast VRING */ 2376 ring = wil_find_tx_bcast_1(wil, vif, skb); 2377 else 2378 /* unexpected combination, fallback to duplicating 2379 * the skb in all stations VRINGs 2380 */ 2381 ring = wil_find_tx_bcast_2(wil, vif, skb); 2382 } else { 2383 /* unicast, find specific VRING by dest. address */ 2384 ring = wil_find_tx_ucast(wil, vif, skb); 2385 } 2386 if (unlikely(!ring)) { 2387 wil_dbg_txrx(wil, "No Tx RING found for %pM\n", da); 2388 goto drop; 2389 } 2390 /* set up vring entry */ 2391 rc = wil_tx_ring(wil, vif, ring, skb); 2392 2393 switch (rc) { 2394 case 0: 2395 /* shall we stop net queues? */ 2396 wil_update_net_queues_bh(wil, vif, ring, true); 2397 /* statistics will be updated on the tx_complete */ 2398 dev_kfree_skb_any(skb); 2399 return NETDEV_TX_OK; 2400 case -ENOMEM: 2401 if (drop_if_ring_full) 2402 goto drop; 2403 return NETDEV_TX_BUSY; 2404 default: 2405 break; /* goto drop; */ 2406 } 2407 drop: 2408 ndev->stats.tx_dropped++; 2409 dev_kfree_skb_any(skb); 2410 2411 return NET_XMIT_DROP; 2412 } 2413 2414 void wil_tx_latency_calc(struct wil6210_priv *wil, struct sk_buff *skb, 2415 struct wil_sta_info *sta) 2416 { 2417 int skb_time_us; 2418 int bin; 2419 2420 if (!wil->tx_latency) 2421 return; 2422 2423 if (ktime_to_ms(*(ktime_t *)&skb->cb) == 0) 2424 return; 2425 2426 skb_time_us = ktime_us_delta(ktime_get(), *(ktime_t *)&skb->cb); 2427 bin = skb_time_us / wil->tx_latency_res; 2428 bin = min_t(int, bin, WIL_NUM_LATENCY_BINS - 1); 2429 2430 wil_dbg_txrx(wil, "skb time %dus => bin %d\n", skb_time_us, bin); 2431 sta->tx_latency_bins[bin]++; 2432 sta->stats.tx_latency_total_us += skb_time_us; 2433 if (skb_time_us < sta->stats.tx_latency_min_us) 2434 sta->stats.tx_latency_min_us = skb_time_us; 2435 if (skb_time_us > sta->stats.tx_latency_max_us) 2436 sta->stats.tx_latency_max_us = skb_time_us; 2437 } 2438 2439 /** 2440 * Clean up transmitted skb's from the Tx VRING 2441 * 2442 * Return number of descriptors cleared 2443 * 2444 * Safe to call from IRQ 2445 */ 2446 int wil_tx_complete(struct wil6210_vif *vif, int ringid) 2447 { 2448 struct wil6210_priv *wil = vif_to_wil(vif); 2449 struct net_device *ndev = vif_to_ndev(vif); 2450 struct device *dev = wil_to_dev(wil); 2451 struct wil_ring *vring = &wil->ring_tx[ringid]; 2452 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ringid]; 2453 int done = 0; 2454 int cid = wil->ring2cid_tid[ringid][0]; 2455 struct wil_net_stats *stats = NULL; 2456 volatile struct vring_tx_desc *_d; 2457 int used_before_complete; 2458 int used_new; 2459 2460 if (unlikely(!vring->va)) { 2461 wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid); 2462 return 0; 2463 } 2464 2465 if (unlikely(!txdata->enabled)) { 2466 wil_info(wil, "Tx irq[%d]: vring disabled\n", ringid); 2467 return 0; 2468 } 2469 2470 wil_dbg_txrx(wil, "tx_complete: (%d)\n", ringid); 2471 2472 used_before_complete = wil_ring_used_tx(vring); 2473 2474 if (cid < wil->max_assoc_sta) 2475 stats = &wil->sta[cid].stats; 2476 2477 while (!wil_ring_is_empty(vring)) { 2478 int new_swtail; 2479 struct wil_ctx *ctx = &vring->ctx[vring->swtail]; 2480 /** 2481 * For the fragmented skb, HW will set DU bit only for the 2482 * last fragment. look for it. 2483 * In TSO the first DU will include hdr desc 2484 */ 2485 int lf = (vring->swtail + ctx->nr_frags) % vring->size; 2486 /* TODO: check we are not past head */ 2487 2488 _d = &vring->va[lf].tx.legacy; 2489 if (unlikely(!(_d->dma.status & TX_DMA_STATUS_DU))) 2490 break; 2491 2492 new_swtail = (lf + 1) % vring->size; 2493 while (vring->swtail != new_swtail) { 2494 struct vring_tx_desc dd, *d = ⅆ 2495 u16 dmalen; 2496 struct sk_buff *skb; 2497 2498 ctx = &vring->ctx[vring->swtail]; 2499 skb = ctx->skb; 2500 _d = &vring->va[vring->swtail].tx.legacy; 2501 2502 *d = *_d; 2503 2504 dmalen = le16_to_cpu(d->dma.length); 2505 trace_wil6210_tx_done(ringid, vring->swtail, dmalen, 2506 d->dma.error); 2507 wil_dbg_txrx(wil, 2508 "TxC[%2d][%3d] : %d bytes, status 0x%02x err 0x%02x\n", 2509 ringid, vring->swtail, dmalen, 2510 d->dma.status, d->dma.error); 2511 wil_hex_dump_txrx("TxCD ", DUMP_PREFIX_NONE, 32, 4, 2512 (const void *)d, sizeof(*d), false); 2513 2514 wil->txrx_ops.tx_desc_unmap(dev, 2515 (union wil_tx_desc *)d, 2516 ctx); 2517 2518 if (skb) { 2519 if (likely(d->dma.error == 0)) { 2520 ndev->stats.tx_packets++; 2521 ndev->stats.tx_bytes += skb->len; 2522 if (stats) { 2523 stats->tx_packets++; 2524 stats->tx_bytes += skb->len; 2525 2526 wil_tx_latency_calc(wil, skb, 2527 &wil->sta[cid]); 2528 } 2529 } else { 2530 ndev->stats.tx_errors++; 2531 if (stats) 2532 stats->tx_errors++; 2533 } 2534 2535 if (skb->protocol == cpu_to_be16(ETH_P_PAE)) 2536 wil_tx_complete_handle_eapol(vif, skb); 2537 2538 wil_consume_skb(skb, d->dma.error == 0); 2539 } 2540 memset(ctx, 0, sizeof(*ctx)); 2541 /* Make sure the ctx is zeroed before updating the tail 2542 * to prevent a case where wil_tx_ring will see 2543 * this descriptor as used and handle it before ctx zero 2544 * is completed. 2545 */ 2546 wmb(); 2547 /* There is no need to touch HW descriptor: 2548 * - ststus bit TX_DMA_STATUS_DU is set by design, 2549 * so hardware will not try to process this desc., 2550 * - rest of descriptor will be initialized on Tx. 2551 */ 2552 vring->swtail = wil_ring_next_tail(vring); 2553 done++; 2554 } 2555 } 2556 2557 /* performance monitoring */ 2558 used_new = wil_ring_used_tx(vring); 2559 if (wil_val_in_range(wil->ring_idle_trsh, 2560 used_new, used_before_complete)) { 2561 wil_dbg_txrx(wil, "Ring[%2d] idle %d -> %d\n", 2562 ringid, used_before_complete, used_new); 2563 txdata->last_idle = get_cycles(); 2564 } 2565 2566 /* shall we wake net queues? */ 2567 if (done) 2568 wil_update_net_queues(wil, vif, vring, false); 2569 2570 return done; 2571 } 2572 2573 static inline int wil_tx_init(struct wil6210_priv *wil) 2574 { 2575 return 0; 2576 } 2577 2578 static inline void wil_tx_fini(struct wil6210_priv *wil) {} 2579 2580 static void wil_get_reorder_params(struct wil6210_priv *wil, 2581 struct sk_buff *skb, int *tid, int *cid, 2582 int *mid, u16 *seq, int *mcast, int *retry) 2583 { 2584 struct vring_rx_desc *d = wil_skb_rxdesc(skb); 2585 2586 *tid = wil_rxdesc_tid(d); 2587 *cid = wil_skb_get_cid(skb); 2588 *mid = wil_rxdesc_mid(d); 2589 *seq = wil_rxdesc_seq(d); 2590 *mcast = wil_rxdesc_mcast(d); 2591 *retry = wil_rxdesc_retry(d); 2592 } 2593 2594 void wil_init_txrx_ops_legacy_dma(struct wil6210_priv *wil) 2595 { 2596 wil->txrx_ops.configure_interrupt_moderation = 2597 wil_configure_interrupt_moderation; 2598 /* TX ops */ 2599 wil->txrx_ops.tx_desc_map = wil_tx_desc_map; 2600 wil->txrx_ops.tx_desc_unmap = wil_txdesc_unmap; 2601 wil->txrx_ops.tx_ring_tso = __wil_tx_vring_tso; 2602 wil->txrx_ops.ring_init_tx = wil_vring_init_tx; 2603 wil->txrx_ops.ring_fini_tx = wil_vring_free; 2604 wil->txrx_ops.ring_init_bcast = wil_vring_init_bcast; 2605 wil->txrx_ops.tx_init = wil_tx_init; 2606 wil->txrx_ops.tx_fini = wil_tx_fini; 2607 wil->txrx_ops.tx_ring_modify = wil_tx_vring_modify; 2608 /* RX ops */ 2609 wil->txrx_ops.rx_init = wil_rx_init; 2610 wil->txrx_ops.wmi_addba_rx_resp = wmi_addba_rx_resp; 2611 wil->txrx_ops.get_reorder_params = wil_get_reorder_params; 2612 wil->txrx_ops.get_netif_rx_params = 2613 wil_get_netif_rx_params; 2614 wil->txrx_ops.rx_crypto_check = wil_rx_crypto_check; 2615 wil->txrx_ops.rx_error_check = wil_rx_error_check; 2616 wil->txrx_ops.is_rx_idle = wil_is_rx_idle; 2617 wil->txrx_ops.rx_fini = wil_rx_fini; 2618 } 2619