xref: /openbmc/linux/drivers/net/wireless/ath/wil6210/txrx.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
3  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/etherdevice.h>
19 #include <net/ieee80211_radiotap.h>
20 #include <linux/if_arp.h>
21 #include <linux/moduleparam.h>
22 #include <linux/ip.h>
23 #include <linux/ipv6.h>
24 #include <net/ipv6.h>
25 #include <linux/prefetch.h>
26 
27 #include "wil6210.h"
28 #include "wmi.h"
29 #include "txrx.h"
30 #include "trace.h"
31 #include "txrx_edma.h"
32 
33 static bool rtap_include_phy_info;
34 module_param(rtap_include_phy_info, bool, 0444);
35 MODULE_PARM_DESC(rtap_include_phy_info,
36 		 " Include PHY info in the radiotap header, default - no");
37 
38 bool rx_align_2;
39 module_param(rx_align_2, bool, 0444);
40 MODULE_PARM_DESC(rx_align_2, " align Rx buffers on 4*n+2, default - no");
41 
42 bool rx_large_buf;
43 module_param(rx_large_buf, bool, 0444);
44 MODULE_PARM_DESC(rx_large_buf, " allocate 8KB RX buffers, default - no");
45 
46 static inline uint wil_rx_snaplen(void)
47 {
48 	return rx_align_2 ? 6 : 0;
49 }
50 
51 /* wil_ring_wmark_low - low watermark for available descriptor space */
52 static inline int wil_ring_wmark_low(struct wil_ring *ring)
53 {
54 	return ring->size / 8;
55 }
56 
57 /* wil_ring_wmark_high - high watermark for available descriptor space */
58 static inline int wil_ring_wmark_high(struct wil_ring *ring)
59 {
60 	return ring->size / 4;
61 }
62 
63 /* returns true if num avail descriptors is lower than wmark_low */
64 static inline int wil_ring_avail_low(struct wil_ring *ring)
65 {
66 	return wil_ring_avail_tx(ring) < wil_ring_wmark_low(ring);
67 }
68 
69 /* returns true if num avail descriptors is higher than wmark_high */
70 static inline int wil_ring_avail_high(struct wil_ring *ring)
71 {
72 	return wil_ring_avail_tx(ring) > wil_ring_wmark_high(ring);
73 }
74 
75 /* returns true when all tx vrings are empty */
76 bool wil_is_tx_idle(struct wil6210_priv *wil)
77 {
78 	int i;
79 	unsigned long data_comp_to;
80 	int min_ring_id = wil_get_min_tx_ring_id(wil);
81 
82 	for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
83 		struct wil_ring *vring = &wil->ring_tx[i];
84 		int vring_index = vring - wil->ring_tx;
85 		struct wil_ring_tx_data *txdata =
86 			&wil->ring_tx_data[vring_index];
87 
88 		spin_lock(&txdata->lock);
89 
90 		if (!vring->va || !txdata->enabled) {
91 			spin_unlock(&txdata->lock);
92 			continue;
93 		}
94 
95 		data_comp_to = jiffies + msecs_to_jiffies(
96 					WIL_DATA_COMPLETION_TO_MS);
97 		if (test_bit(wil_status_napi_en, wil->status)) {
98 			while (!wil_ring_is_empty(vring)) {
99 				if (time_after(jiffies, data_comp_to)) {
100 					wil_dbg_pm(wil,
101 						   "TO waiting for idle tx\n");
102 					spin_unlock(&txdata->lock);
103 					return false;
104 				}
105 				wil_dbg_ratelimited(wil,
106 						    "tx vring is not empty -> NAPI\n");
107 				spin_unlock(&txdata->lock);
108 				napi_synchronize(&wil->napi_tx);
109 				msleep(20);
110 				spin_lock(&txdata->lock);
111 				if (!vring->va || !txdata->enabled)
112 					break;
113 			}
114 		}
115 
116 		spin_unlock(&txdata->lock);
117 	}
118 
119 	return true;
120 }
121 
122 static int wil_vring_alloc(struct wil6210_priv *wil, struct wil_ring *vring)
123 {
124 	struct device *dev = wil_to_dev(wil);
125 	size_t sz = vring->size * sizeof(vring->va[0]);
126 	uint i;
127 
128 	wil_dbg_misc(wil, "vring_alloc:\n");
129 
130 	BUILD_BUG_ON(sizeof(vring->va[0]) != 32);
131 
132 	vring->swhead = 0;
133 	vring->swtail = 0;
134 	vring->ctx = kcalloc(vring->size, sizeof(vring->ctx[0]), GFP_KERNEL);
135 	if (!vring->ctx) {
136 		vring->va = NULL;
137 		return -ENOMEM;
138 	}
139 
140 	/* vring->va should be aligned on its size rounded up to power of 2
141 	 * This is granted by the dma_alloc_coherent.
142 	 *
143 	 * HW has limitation that all vrings addresses must share the same
144 	 * upper 16 msb bits part of 48 bits address. To workaround that,
145 	 * if we are using more than 32 bit addresses switch to 32 bit
146 	 * allocation before allocating vring memory.
147 	 *
148 	 * There's no check for the return value of dma_set_mask_and_coherent,
149 	 * since we assume if we were able to set the mask during
150 	 * initialization in this system it will not fail if we set it again
151 	 */
152 	if (wil->dma_addr_size > 32)
153 		dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
154 
155 	vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL);
156 	if (!vring->va) {
157 		kfree(vring->ctx);
158 		vring->ctx = NULL;
159 		return -ENOMEM;
160 	}
161 
162 	if (wil->dma_addr_size > 32)
163 		dma_set_mask_and_coherent(dev,
164 					  DMA_BIT_MASK(wil->dma_addr_size));
165 
166 	/* initially, all descriptors are SW owned
167 	 * For Tx and Rx, ownership bit is at the same location, thus
168 	 * we can use any
169 	 */
170 	for (i = 0; i < vring->size; i++) {
171 		volatile struct vring_tx_desc *_d =
172 			&vring->va[i].tx.legacy;
173 
174 		_d->dma.status = TX_DMA_STATUS_DU;
175 	}
176 
177 	wil_dbg_misc(wil, "vring[%d] 0x%p:%pad 0x%p\n", vring->size,
178 		     vring->va, &vring->pa, vring->ctx);
179 
180 	return 0;
181 }
182 
183 static void wil_txdesc_unmap(struct device *dev, union wil_tx_desc *desc,
184 			     struct wil_ctx *ctx)
185 {
186 	struct vring_tx_desc *d = &desc->legacy;
187 	dma_addr_t pa = wil_desc_addr(&d->dma.addr);
188 	u16 dmalen = le16_to_cpu(d->dma.length);
189 
190 	switch (ctx->mapped_as) {
191 	case wil_mapped_as_single:
192 		dma_unmap_single(dev, pa, dmalen, DMA_TO_DEVICE);
193 		break;
194 	case wil_mapped_as_page:
195 		dma_unmap_page(dev, pa, dmalen, DMA_TO_DEVICE);
196 		break;
197 	default:
198 		break;
199 	}
200 }
201 
202 static void wil_vring_free(struct wil6210_priv *wil, struct wil_ring *vring)
203 {
204 	struct device *dev = wil_to_dev(wil);
205 	size_t sz = vring->size * sizeof(vring->va[0]);
206 
207 	lockdep_assert_held(&wil->mutex);
208 	if (!vring->is_rx) {
209 		int vring_index = vring - wil->ring_tx;
210 
211 		wil_dbg_misc(wil, "free Tx vring %d [%d] 0x%p:%pad 0x%p\n",
212 			     vring_index, vring->size, vring->va,
213 			     &vring->pa, vring->ctx);
214 	} else {
215 		wil_dbg_misc(wil, "free Rx vring [%d] 0x%p:%pad 0x%p\n",
216 			     vring->size, vring->va,
217 			     &vring->pa, vring->ctx);
218 	}
219 
220 	while (!wil_ring_is_empty(vring)) {
221 		dma_addr_t pa;
222 		u16 dmalen;
223 		struct wil_ctx *ctx;
224 
225 		if (!vring->is_rx) {
226 			struct vring_tx_desc dd, *d = &dd;
227 			volatile struct vring_tx_desc *_d =
228 					&vring->va[vring->swtail].tx.legacy;
229 
230 			ctx = &vring->ctx[vring->swtail];
231 			if (!ctx) {
232 				wil_dbg_txrx(wil,
233 					     "ctx(%d) was already completed\n",
234 					     vring->swtail);
235 				vring->swtail = wil_ring_next_tail(vring);
236 				continue;
237 			}
238 			*d = *_d;
239 			wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx);
240 			if (ctx->skb)
241 				dev_kfree_skb_any(ctx->skb);
242 			vring->swtail = wil_ring_next_tail(vring);
243 		} else { /* rx */
244 			struct vring_rx_desc dd, *d = &dd;
245 			volatile struct vring_rx_desc *_d =
246 				&vring->va[vring->swhead].rx.legacy;
247 
248 			ctx = &vring->ctx[vring->swhead];
249 			*d = *_d;
250 			pa = wil_desc_addr(&d->dma.addr);
251 			dmalen = le16_to_cpu(d->dma.length);
252 			dma_unmap_single(dev, pa, dmalen, DMA_FROM_DEVICE);
253 			kfree_skb(ctx->skb);
254 			wil_ring_advance_head(vring, 1);
255 		}
256 	}
257 	dma_free_coherent(dev, sz, (void *)vring->va, vring->pa);
258 	kfree(vring->ctx);
259 	vring->pa = 0;
260 	vring->va = NULL;
261 	vring->ctx = NULL;
262 }
263 
264 /**
265  * Allocate one skb for Rx VRING
266  *
267  * Safe to call from IRQ
268  */
269 static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct wil_ring *vring,
270 			       u32 i, int headroom)
271 {
272 	struct device *dev = wil_to_dev(wil);
273 	unsigned int sz = wil->rx_buf_len + ETH_HLEN + wil_rx_snaplen();
274 	struct vring_rx_desc dd, *d = &dd;
275 	volatile struct vring_rx_desc *_d = &vring->va[i].rx.legacy;
276 	dma_addr_t pa;
277 	struct sk_buff *skb = dev_alloc_skb(sz + headroom);
278 
279 	if (unlikely(!skb))
280 		return -ENOMEM;
281 
282 	skb_reserve(skb, headroom);
283 	skb_put(skb, sz);
284 
285 	/**
286 	 * Make sure that the network stack calculates checksum for packets
287 	 * which failed the HW checksum calculation
288 	 */
289 	skb->ip_summed = CHECKSUM_NONE;
290 
291 	pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE);
292 	if (unlikely(dma_mapping_error(dev, pa))) {
293 		kfree_skb(skb);
294 		return -ENOMEM;
295 	}
296 
297 	d->dma.d0 = RX_DMA_D0_CMD_DMA_RT | RX_DMA_D0_CMD_DMA_IT;
298 	wil_desc_addr_set(&d->dma.addr, pa);
299 	/* ip_length don't care */
300 	/* b11 don't care */
301 	/* error don't care */
302 	d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
303 	d->dma.length = cpu_to_le16(sz);
304 	*_d = *d;
305 	vring->ctx[i].skb = skb;
306 
307 	return 0;
308 }
309 
310 /**
311  * Adds radiotap header
312  *
313  * Any error indicated as "Bad FCS"
314  *
315  * Vendor data for 04:ce:14-1 (Wilocity-1) consists of:
316  *  - Rx descriptor: 32 bytes
317  *  - Phy info
318  */
319 static void wil_rx_add_radiotap_header(struct wil6210_priv *wil,
320 				       struct sk_buff *skb)
321 {
322 	struct wil6210_rtap {
323 		struct ieee80211_radiotap_header rthdr;
324 		/* fields should be in the order of bits in rthdr.it_present */
325 		/* flags */
326 		u8 flags;
327 		/* channel */
328 		__le16 chnl_freq __aligned(2);
329 		__le16 chnl_flags;
330 		/* MCS */
331 		u8 mcs_present;
332 		u8 mcs_flags;
333 		u8 mcs_index;
334 	} __packed;
335 	struct wil6210_rtap_vendor {
336 		struct wil6210_rtap rtap;
337 		/* vendor */
338 		u8 vendor_oui[3] __aligned(2);
339 		u8 vendor_ns;
340 		__le16 vendor_skip;
341 		u8 vendor_data[0];
342 	} __packed;
343 	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
344 	struct wil6210_rtap_vendor *rtap_vendor;
345 	int rtap_len = sizeof(struct wil6210_rtap);
346 	int phy_length = 0; /* phy info header size, bytes */
347 	static char phy_data[128];
348 	struct ieee80211_channel *ch = wil->monitor_chandef.chan;
349 
350 	if (rtap_include_phy_info) {
351 		rtap_len = sizeof(*rtap_vendor) + sizeof(*d);
352 		/* calculate additional length */
353 		if (d->dma.status & RX_DMA_STATUS_PHY_INFO) {
354 			/**
355 			 * PHY info starts from 8-byte boundary
356 			 * there are 8-byte lines, last line may be partially
357 			 * written (HW bug), thus FW configures for last line
358 			 * to be excessive. Driver skips this last line.
359 			 */
360 			int len = min_t(int, 8 + sizeof(phy_data),
361 					wil_rxdesc_phy_length(d));
362 
363 			if (len > 8) {
364 				void *p = skb_tail_pointer(skb);
365 				void *pa = PTR_ALIGN(p, 8);
366 
367 				if (skb_tailroom(skb) >= len + (pa - p)) {
368 					phy_length = len - 8;
369 					memcpy(phy_data, pa, phy_length);
370 				}
371 			}
372 		}
373 		rtap_len += phy_length;
374 	}
375 
376 	if (skb_headroom(skb) < rtap_len &&
377 	    pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) {
378 		wil_err(wil, "Unable to expand headroom to %d\n", rtap_len);
379 		return;
380 	}
381 
382 	rtap_vendor = skb_push(skb, rtap_len);
383 	memset(rtap_vendor, 0, rtap_len);
384 
385 	rtap_vendor->rtap.rthdr.it_version = PKTHDR_RADIOTAP_VERSION;
386 	rtap_vendor->rtap.rthdr.it_len = cpu_to_le16(rtap_len);
387 	rtap_vendor->rtap.rthdr.it_present = cpu_to_le32(
388 			(1 << IEEE80211_RADIOTAP_FLAGS) |
389 			(1 << IEEE80211_RADIOTAP_CHANNEL) |
390 			(1 << IEEE80211_RADIOTAP_MCS));
391 	if (d->dma.status & RX_DMA_STATUS_ERROR)
392 		rtap_vendor->rtap.flags |= IEEE80211_RADIOTAP_F_BADFCS;
393 
394 	rtap_vendor->rtap.chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320);
395 	rtap_vendor->rtap.chnl_flags = cpu_to_le16(0);
396 
397 	rtap_vendor->rtap.mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS;
398 	rtap_vendor->rtap.mcs_flags = 0;
399 	rtap_vendor->rtap.mcs_index = wil_rxdesc_mcs(d);
400 
401 	if (rtap_include_phy_info) {
402 		rtap_vendor->rtap.rthdr.it_present |= cpu_to_le32(1 <<
403 				IEEE80211_RADIOTAP_VENDOR_NAMESPACE);
404 		/* OUI for Wilocity 04:ce:14 */
405 		rtap_vendor->vendor_oui[0] = 0x04;
406 		rtap_vendor->vendor_oui[1] = 0xce;
407 		rtap_vendor->vendor_oui[2] = 0x14;
408 		rtap_vendor->vendor_ns = 1;
409 		/* Rx descriptor + PHY data  */
410 		rtap_vendor->vendor_skip = cpu_to_le16(sizeof(*d) +
411 						       phy_length);
412 		memcpy(rtap_vendor->vendor_data, (void *)d, sizeof(*d));
413 		memcpy(rtap_vendor->vendor_data + sizeof(*d), phy_data,
414 		       phy_length);
415 	}
416 }
417 
418 static bool wil_is_rx_idle(struct wil6210_priv *wil)
419 {
420 	struct vring_rx_desc *_d;
421 	struct wil_ring *ring = &wil->ring_rx;
422 
423 	_d = (struct vring_rx_desc *)&ring->va[ring->swhead].rx.legacy;
424 	if (_d->dma.status & RX_DMA_STATUS_DU)
425 		return false;
426 
427 	return true;
428 }
429 
430 /**
431  * reap 1 frame from @swhead
432  *
433  * Rx descriptor copied to skb->cb
434  *
435  * Safe to call from IRQ
436  */
437 static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil,
438 					 struct wil_ring *vring)
439 {
440 	struct device *dev = wil_to_dev(wil);
441 	struct wil6210_vif *vif;
442 	struct net_device *ndev;
443 	volatile struct vring_rx_desc *_d;
444 	struct vring_rx_desc *d;
445 	struct sk_buff *skb;
446 	dma_addr_t pa;
447 	unsigned int snaplen = wil_rx_snaplen();
448 	unsigned int sz = wil->rx_buf_len + ETH_HLEN + snaplen;
449 	u16 dmalen;
450 	u8 ftype;
451 	int cid, mid;
452 	int i;
453 	struct wil_net_stats *stats;
454 
455 	BUILD_BUG_ON(sizeof(struct vring_rx_desc) > sizeof(skb->cb));
456 
457 again:
458 	if (unlikely(wil_ring_is_empty(vring)))
459 		return NULL;
460 
461 	i = (int)vring->swhead;
462 	_d = &vring->va[i].rx.legacy;
463 	if (unlikely(!(_d->dma.status & RX_DMA_STATUS_DU))) {
464 		/* it is not error, we just reached end of Rx done area */
465 		return NULL;
466 	}
467 
468 	skb = vring->ctx[i].skb;
469 	vring->ctx[i].skb = NULL;
470 	wil_ring_advance_head(vring, 1);
471 	if (!skb) {
472 		wil_err(wil, "No Rx skb at [%d]\n", i);
473 		goto again;
474 	}
475 	d = wil_skb_rxdesc(skb);
476 	*d = *_d;
477 	pa = wil_desc_addr(&d->dma.addr);
478 
479 	dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE);
480 	dmalen = le16_to_cpu(d->dma.length);
481 
482 	trace_wil6210_rx(i, d);
483 	wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", i, dmalen);
484 	wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
485 			  (const void *)d, sizeof(*d), false);
486 
487 	cid = wil_rxdesc_cid(d);
488 	mid = wil_rxdesc_mid(d);
489 	vif = wil->vifs[mid];
490 
491 	if (unlikely(!vif)) {
492 		wil_dbg_txrx(wil, "skipped RX descriptor with invalid mid %d",
493 			     mid);
494 		kfree_skb(skb);
495 		goto again;
496 	}
497 	ndev = vif_to_ndev(vif);
498 	stats = &wil->sta[cid].stats;
499 
500 	if (unlikely(dmalen > sz)) {
501 		wil_err(wil, "Rx size too large: %d bytes!\n", dmalen);
502 		stats->rx_large_frame++;
503 		kfree_skb(skb);
504 		goto again;
505 	}
506 	skb_trim(skb, dmalen);
507 
508 	prefetch(skb->data);
509 
510 	wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
511 			  skb->data, skb_headlen(skb), false);
512 
513 	stats->last_mcs_rx = wil_rxdesc_mcs(d);
514 	if (stats->last_mcs_rx < ARRAY_SIZE(stats->rx_per_mcs))
515 		stats->rx_per_mcs[stats->last_mcs_rx]++;
516 
517 	/* use radiotap header only if required */
518 	if (ndev->type == ARPHRD_IEEE80211_RADIOTAP)
519 		wil_rx_add_radiotap_header(wil, skb);
520 
521 	/* no extra checks if in sniffer mode */
522 	if (ndev->type != ARPHRD_ETHER)
523 		return skb;
524 	/* Non-data frames may be delivered through Rx DMA channel (ex: BAR)
525 	 * Driver should recognize it by frame type, that is found
526 	 * in Rx descriptor. If type is not data, it is 802.11 frame as is
527 	 */
528 	ftype = wil_rxdesc_ftype(d) << 2;
529 	if (unlikely(ftype != IEEE80211_FTYPE_DATA)) {
530 		u8 fc1 = wil_rxdesc_fc1(d);
531 		int tid = wil_rxdesc_tid(d);
532 		u16 seq = wil_rxdesc_seq(d);
533 
534 		wil_dbg_txrx(wil,
535 			     "Non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
536 			     fc1, mid, cid, tid, seq);
537 		stats->rx_non_data_frame++;
538 		if (wil_is_back_req(fc1)) {
539 			wil_dbg_txrx(wil,
540 				     "BAR: MID %d CID %d TID %d Seq 0x%03x\n",
541 				     mid, cid, tid, seq);
542 			wil_rx_bar(wil, vif, cid, tid, seq);
543 		} else {
544 			/* print again all info. One can enable only this
545 			 * without overhead for printing every Rx frame
546 			 */
547 			wil_dbg_txrx(wil,
548 				     "Unhandled non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
549 				     fc1, mid, cid, tid, seq);
550 			wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
551 					  (const void *)d, sizeof(*d), false);
552 			wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
553 					  skb->data, skb_headlen(skb), false);
554 		}
555 		kfree_skb(skb);
556 		goto again;
557 	}
558 
559 	if (unlikely(skb->len < ETH_HLEN + snaplen)) {
560 		wil_err(wil, "Short frame, len = %d\n", skb->len);
561 		stats->rx_short_frame++;
562 		kfree_skb(skb);
563 		goto again;
564 	}
565 
566 	/* L4 IDENT is on when HW calculated checksum, check status
567 	 * and in case of error drop the packet
568 	 * higher stack layers will handle retransmission (if required)
569 	 */
570 	if (likely(d->dma.status & RX_DMA_STATUS_L4I)) {
571 		/* L4 protocol identified, csum calculated */
572 		if (likely((d->dma.error & RX_DMA_ERROR_L4_ERR) == 0))
573 			skb->ip_summed = CHECKSUM_UNNECESSARY;
574 		/* If HW reports bad checksum, let IP stack re-check it
575 		 * For example, HW don't understand Microsoft IP stack that
576 		 * mis-calculates TCP checksum - if it should be 0x0,
577 		 * it writes 0xffff in violation of RFC 1624
578 		 */
579 		else
580 			stats->rx_csum_err++;
581 	}
582 
583 	if (snaplen) {
584 		/* Packet layout
585 		 * +-------+-------+---------+------------+------+
586 		 * | SA(6) | DA(6) | SNAP(6) | ETHTYPE(2) | DATA |
587 		 * +-------+-------+---------+------------+------+
588 		 * Need to remove SNAP, shifting SA and DA forward
589 		 */
590 		memmove(skb->data + snaplen, skb->data, 2 * ETH_ALEN);
591 		skb_pull(skb, snaplen);
592 	}
593 
594 	return skb;
595 }
596 
597 /**
598  * allocate and fill up to @count buffers in rx ring
599  * buffers posted at @swtail
600  * Note: we have a single RX queue for servicing all VIFs, but we
601  * allocate skbs with headroom according to main interface only. This
602  * means it will not work with monitor interface together with other VIFs.
603  * Currently we only support monitor interface on its own without other VIFs,
604  * and we will need to fix this code once we add support.
605  */
606 static int wil_rx_refill(struct wil6210_priv *wil, int count)
607 {
608 	struct net_device *ndev = wil->main_ndev;
609 	struct wil_ring *v = &wil->ring_rx;
610 	u32 next_tail;
611 	int rc = 0;
612 	int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ?
613 			WIL6210_RTAP_SIZE : 0;
614 
615 	for (; next_tail = wil_ring_next_tail(v),
616 	     (next_tail != v->swhead) && (count-- > 0);
617 	     v->swtail = next_tail) {
618 		rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom);
619 		if (unlikely(rc)) {
620 			wil_err_ratelimited(wil, "Error %d in rx refill[%d]\n",
621 					    rc, v->swtail);
622 			break;
623 		}
624 	}
625 
626 	/* make sure all writes to descriptors (shared memory) are done before
627 	 * committing them to HW
628 	 */
629 	wmb();
630 
631 	wil_w(wil, v->hwtail, v->swtail);
632 
633 	return rc;
634 }
635 
636 /**
637  * reverse_memcmp - Compare two areas of memory, in reverse order
638  * @cs: One area of memory
639  * @ct: Another area of memory
640  * @count: The size of the area.
641  *
642  * Cut'n'paste from original memcmp (see lib/string.c)
643  * with minimal modifications
644  */
645 int reverse_memcmp(const void *cs, const void *ct, size_t count)
646 {
647 	const unsigned char *su1, *su2;
648 	int res = 0;
649 
650 	for (su1 = cs + count - 1, su2 = ct + count - 1; count > 0;
651 	     --su1, --su2, count--) {
652 		res = *su1 - *su2;
653 		if (res)
654 			break;
655 	}
656 	return res;
657 }
658 
659 static int wil_rx_crypto_check(struct wil6210_priv *wil, struct sk_buff *skb)
660 {
661 	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
662 	int cid = wil_rxdesc_cid(d);
663 	int tid = wil_rxdesc_tid(d);
664 	int key_id = wil_rxdesc_key_id(d);
665 	int mc = wil_rxdesc_mcast(d);
666 	struct wil_sta_info *s = &wil->sta[cid];
667 	struct wil_tid_crypto_rx *c = mc ? &s->group_crypto_rx :
668 				      &s->tid_crypto_rx[tid];
669 	struct wil_tid_crypto_rx_single *cc = &c->key_id[key_id];
670 	const u8 *pn = (u8 *)&d->mac.pn_15_0;
671 
672 	if (!cc->key_set) {
673 		wil_err_ratelimited(wil,
674 				    "Key missing. CID %d TID %d MCast %d KEY_ID %d\n",
675 				    cid, tid, mc, key_id);
676 		return -EINVAL;
677 	}
678 
679 	if (reverse_memcmp(pn, cc->pn, IEEE80211_GCMP_PN_LEN) <= 0) {
680 		wil_err_ratelimited(wil,
681 				    "Replay attack. CID %d TID %d MCast %d KEY_ID %d PN %6phN last %6phN\n",
682 				    cid, tid, mc, key_id, pn, cc->pn);
683 		return -EINVAL;
684 	}
685 	memcpy(cc->pn, pn, IEEE80211_GCMP_PN_LEN);
686 
687 	return 0;
688 }
689 
690 static int wil_rx_error_check(struct wil6210_priv *wil, struct sk_buff *skb,
691 			      struct wil_net_stats *stats)
692 {
693 	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
694 
695 	if ((d->dma.status & RX_DMA_STATUS_ERROR) &&
696 	    (d->dma.error & RX_DMA_ERROR_MIC)) {
697 		stats->rx_mic_error++;
698 		wil_dbg_txrx(wil, "MIC error, dropping packet\n");
699 		return -EFAULT;
700 	}
701 
702 	return 0;
703 }
704 
705 static void wil_get_netif_rx_params(struct sk_buff *skb, int *cid,
706 				    int *security)
707 {
708 	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
709 
710 	*cid = wil_rxdesc_cid(d); /* always 0..7, no need to check */
711 	*security = wil_rxdesc_security(d);
712 }
713 
714 /*
715  * Pass Rx packet to the netif. Update statistics.
716  * Called in softirq context (NAPI poll).
717  */
718 void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev)
719 {
720 	gro_result_t rc = GRO_NORMAL;
721 	struct wil6210_vif *vif = ndev_to_vif(ndev);
722 	struct wil6210_priv *wil = ndev_to_wil(ndev);
723 	struct wireless_dev *wdev = vif_to_wdev(vif);
724 	unsigned int len = skb->len;
725 	int cid;
726 	int security;
727 	struct ethhdr *eth = (void *)skb->data;
728 	/* here looking for DA, not A1, thus Rxdesc's 'mcast' indication
729 	 * is not suitable, need to look at data
730 	 */
731 	int mcast = is_multicast_ether_addr(eth->h_dest);
732 	struct wil_net_stats *stats;
733 	struct sk_buff *xmit_skb = NULL;
734 	static const char * const gro_res_str[] = {
735 		[GRO_MERGED]		= "GRO_MERGED",
736 		[GRO_MERGED_FREE]	= "GRO_MERGED_FREE",
737 		[GRO_HELD]		= "GRO_HELD",
738 		[GRO_NORMAL]		= "GRO_NORMAL",
739 		[GRO_DROP]		= "GRO_DROP",
740 	};
741 
742 	wil->txrx_ops.get_netif_rx_params(skb, &cid, &security);
743 
744 	stats = &wil->sta[cid].stats;
745 
746 	if (ndev->features & NETIF_F_RXHASH)
747 		/* fake L4 to ensure it won't be re-calculated later
748 		 * set hash to any non-zero value to activate rps
749 		 * mechanism, core will be chosen according
750 		 * to user-level rps configuration.
751 		 */
752 		skb_set_hash(skb, 1, PKT_HASH_TYPE_L4);
753 
754 	skb_orphan(skb);
755 
756 	if (security && (wil->txrx_ops.rx_crypto_check(wil, skb) != 0)) {
757 		rc = GRO_DROP;
758 		dev_kfree_skb(skb);
759 		stats->rx_replay++;
760 		goto stats;
761 	}
762 
763 	/* check errors reported by HW and update statistics */
764 	if (unlikely(wil->txrx_ops.rx_error_check(wil, skb, stats))) {
765 		dev_kfree_skb(skb);
766 		return;
767 	}
768 
769 	if (wdev->iftype == NL80211_IFTYPE_STATION) {
770 		if (mcast && ether_addr_equal(eth->h_source, ndev->dev_addr)) {
771 			/* mcast packet looped back to us */
772 			rc = GRO_DROP;
773 			dev_kfree_skb(skb);
774 			goto stats;
775 		}
776 	} else if (wdev->iftype == NL80211_IFTYPE_AP && !vif->ap_isolate) {
777 		if (mcast) {
778 			/* send multicast frames both to higher layers in
779 			 * local net stack and back to the wireless medium
780 			 */
781 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
782 		} else {
783 			int xmit_cid = wil_find_cid(wil, vif->mid,
784 						    eth->h_dest);
785 
786 			if (xmit_cid >= 0) {
787 				/* The destination station is associated to
788 				 * this AP (in this VLAN), so send the frame
789 				 * directly to it and do not pass it to local
790 				 * net stack.
791 				 */
792 				xmit_skb = skb;
793 				skb = NULL;
794 			}
795 		}
796 	}
797 	if (xmit_skb) {
798 		/* Send to wireless media and increase priority by 256 to
799 		 * keep the received priority instead of reclassifying
800 		 * the frame (see cfg80211_classify8021d).
801 		 */
802 		xmit_skb->dev = ndev;
803 		xmit_skb->priority += 256;
804 		xmit_skb->protocol = htons(ETH_P_802_3);
805 		skb_reset_network_header(xmit_skb);
806 		skb_reset_mac_header(xmit_skb);
807 		wil_dbg_txrx(wil, "Rx -> Tx %d bytes\n", len);
808 		dev_queue_xmit(xmit_skb);
809 	}
810 
811 	if (skb) { /* deliver to local stack */
812 		skb->protocol = eth_type_trans(skb, ndev);
813 		skb->dev = ndev;
814 		rc = napi_gro_receive(&wil->napi_rx, skb);
815 		wil_dbg_txrx(wil, "Rx complete %d bytes => %s\n",
816 			     len, gro_res_str[rc]);
817 	}
818 stats:
819 	/* statistics. rc set to GRO_NORMAL for AP bridging */
820 	if (unlikely(rc == GRO_DROP)) {
821 		ndev->stats.rx_dropped++;
822 		stats->rx_dropped++;
823 		wil_dbg_txrx(wil, "Rx drop %d bytes\n", len);
824 	} else {
825 		ndev->stats.rx_packets++;
826 		stats->rx_packets++;
827 		ndev->stats.rx_bytes += len;
828 		stats->rx_bytes += len;
829 		if (mcast)
830 			ndev->stats.multicast++;
831 	}
832 }
833 
834 /**
835  * Proceed all completed skb's from Rx VRING
836  *
837  * Safe to call from NAPI poll, i.e. softirq with interrupts enabled
838  */
839 void wil_rx_handle(struct wil6210_priv *wil, int *quota)
840 {
841 	struct net_device *ndev = wil->main_ndev;
842 	struct wireless_dev *wdev = ndev->ieee80211_ptr;
843 	struct wil_ring *v = &wil->ring_rx;
844 	struct sk_buff *skb;
845 
846 	if (unlikely(!v->va)) {
847 		wil_err(wil, "Rx IRQ while Rx not yet initialized\n");
848 		return;
849 	}
850 	wil_dbg_txrx(wil, "rx_handle\n");
851 	while ((*quota > 0) && (NULL != (skb = wil_vring_reap_rx(wil, v)))) {
852 		(*quota)--;
853 
854 		/* monitor is currently supported on main interface only */
855 		if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
856 			skb->dev = ndev;
857 			skb_reset_mac_header(skb);
858 			skb->ip_summed = CHECKSUM_UNNECESSARY;
859 			skb->pkt_type = PACKET_OTHERHOST;
860 			skb->protocol = htons(ETH_P_802_2);
861 			wil_netif_rx_any(skb, ndev);
862 		} else {
863 			wil_rx_reorder(wil, skb);
864 		}
865 	}
866 	wil_rx_refill(wil, v->size);
867 }
868 
869 static void wil_rx_buf_len_init(struct wil6210_priv *wil)
870 {
871 	wil->rx_buf_len = rx_large_buf ?
872 		WIL_MAX_ETH_MTU : TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
873 	if (mtu_max > wil->rx_buf_len) {
874 		/* do not allow RX buffers to be smaller than mtu_max, for
875 		 * backward compatibility (mtu_max parameter was also used
876 		 * to support receiving large packets)
877 		 */
878 		wil_info(wil, "Override RX buffer to mtu_max(%d)\n", mtu_max);
879 		wil->rx_buf_len = mtu_max;
880 	}
881 }
882 
883 static int wil_rx_init(struct wil6210_priv *wil, u16 size)
884 {
885 	struct wil_ring *vring = &wil->ring_rx;
886 	int rc;
887 
888 	wil_dbg_misc(wil, "rx_init\n");
889 
890 	if (vring->va) {
891 		wil_err(wil, "Rx ring already allocated\n");
892 		return -EINVAL;
893 	}
894 
895 	wil_rx_buf_len_init(wil);
896 
897 	vring->size = size;
898 	vring->is_rx = true;
899 	rc = wil_vring_alloc(wil, vring);
900 	if (rc)
901 		return rc;
902 
903 	rc = wmi_rx_chain_add(wil, vring);
904 	if (rc)
905 		goto err_free;
906 
907 	rc = wil_rx_refill(wil, vring->size);
908 	if (rc)
909 		goto err_free;
910 
911 	return 0;
912  err_free:
913 	wil_vring_free(wil, vring);
914 
915 	return rc;
916 }
917 
918 static void wil_rx_fini(struct wil6210_priv *wil)
919 {
920 	struct wil_ring *vring = &wil->ring_rx;
921 
922 	wil_dbg_misc(wil, "rx_fini\n");
923 
924 	if (vring->va)
925 		wil_vring_free(wil, vring);
926 }
927 
928 static int wil_tx_desc_map(union wil_tx_desc *desc, dma_addr_t pa,
929 			   u32 len, int vring_index)
930 {
931 	struct vring_tx_desc *d = &desc->legacy;
932 
933 	wil_desc_addr_set(&d->dma.addr, pa);
934 	d->dma.ip_length = 0;
935 	/* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/
936 	d->dma.b11 = 0/*14 | BIT(7)*/;
937 	d->dma.error = 0;
938 	d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
939 	d->dma.length = cpu_to_le16((u16)len);
940 	d->dma.d0 = (vring_index << DMA_CFG_DESC_TX_0_QID_POS);
941 	d->mac.d[0] = 0;
942 	d->mac.d[1] = 0;
943 	d->mac.d[2] = 0;
944 	d->mac.ucode_cmd = 0;
945 	/* translation type:  0 - bypass; 1 - 802.3; 2 - native wifi */
946 	d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) |
947 		      (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS);
948 
949 	return 0;
950 }
951 
952 void wil_tx_data_init(struct wil_ring_tx_data *txdata)
953 {
954 	spin_lock_bh(&txdata->lock);
955 	txdata->dot1x_open = 0;
956 	txdata->enabled = 0;
957 	txdata->idle = 0;
958 	txdata->last_idle = 0;
959 	txdata->begin = 0;
960 	txdata->agg_wsize = 0;
961 	txdata->agg_timeout = 0;
962 	txdata->agg_amsdu = 0;
963 	txdata->addba_in_progress = false;
964 	txdata->mid = U8_MAX;
965 	spin_unlock_bh(&txdata->lock);
966 }
967 
968 static int wil_vring_init_tx(struct wil6210_vif *vif, int id, int size,
969 			     int cid, int tid)
970 {
971 	struct wil6210_priv *wil = vif_to_wil(vif);
972 	int rc;
973 	struct wmi_vring_cfg_cmd cmd = {
974 		.action = cpu_to_le32(WMI_VRING_CMD_ADD),
975 		.vring_cfg = {
976 			.tx_sw_ring = {
977 				.max_mpdu_size =
978 					cpu_to_le16(wil_mtu2macbuf(mtu_max)),
979 				.ring_size = cpu_to_le16(size),
980 			},
981 			.ringid = id,
982 			.cidxtid = mk_cidxtid(cid, tid),
983 			.encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
984 			.mac_ctrl = 0,
985 			.to_resolution = 0,
986 			.agg_max_wsize = 0,
987 			.schd_params = {
988 				.priority = cpu_to_le16(0),
989 				.timeslot_us = cpu_to_le16(0xfff),
990 			},
991 		},
992 	};
993 	struct {
994 		struct wmi_cmd_hdr wmi;
995 		struct wmi_vring_cfg_done_event cmd;
996 	} __packed reply = {
997 		.cmd = {.status = WMI_FW_STATUS_FAILURE},
998 	};
999 	struct wil_ring *vring = &wil->ring_tx[id];
1000 	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
1001 
1002 	wil_dbg_misc(wil, "vring_init_tx: max_mpdu_size %d\n",
1003 		     cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
1004 	lockdep_assert_held(&wil->mutex);
1005 
1006 	if (vring->va) {
1007 		wil_err(wil, "Tx ring [%d] already allocated\n", id);
1008 		rc = -EINVAL;
1009 		goto out;
1010 	}
1011 
1012 	wil_tx_data_init(txdata);
1013 	vring->is_rx = false;
1014 	vring->size = size;
1015 	rc = wil_vring_alloc(wil, vring);
1016 	if (rc)
1017 		goto out;
1018 
1019 	wil->ring2cid_tid[id][0] = cid;
1020 	wil->ring2cid_tid[id][1] = tid;
1021 
1022 	cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1023 
1024 	if (!vif->privacy)
1025 		txdata->dot1x_open = true;
1026 	rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
1027 		      WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
1028 	if (rc)
1029 		goto out_free;
1030 
1031 	if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1032 		wil_err(wil, "Tx config failed, status 0x%02x\n",
1033 			reply.cmd.status);
1034 		rc = -EINVAL;
1035 		goto out_free;
1036 	}
1037 
1038 	spin_lock_bh(&txdata->lock);
1039 	vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
1040 	txdata->mid = vif->mid;
1041 	txdata->enabled = 1;
1042 	spin_unlock_bh(&txdata->lock);
1043 
1044 	if (txdata->dot1x_open && (agg_wsize >= 0))
1045 		wil_addba_tx_request(wil, id, agg_wsize);
1046 
1047 	return 0;
1048  out_free:
1049 	spin_lock_bh(&txdata->lock);
1050 	txdata->dot1x_open = false;
1051 	txdata->enabled = 0;
1052 	spin_unlock_bh(&txdata->lock);
1053 	wil_vring_free(wil, vring);
1054 	wil->ring2cid_tid[id][0] = WIL6210_MAX_CID;
1055 	wil->ring2cid_tid[id][1] = 0;
1056 
1057  out:
1058 
1059 	return rc;
1060 }
1061 
1062 static int wil_tx_vring_modify(struct wil6210_vif *vif, int ring_id, int cid,
1063 			       int tid)
1064 {
1065 	struct wil6210_priv *wil = vif_to_wil(vif);
1066 	int rc;
1067 	struct wmi_vring_cfg_cmd cmd = {
1068 		.action = cpu_to_le32(WMI_VRING_CMD_MODIFY),
1069 		.vring_cfg = {
1070 			.tx_sw_ring = {
1071 				.max_mpdu_size =
1072 					cpu_to_le16(wil_mtu2macbuf(mtu_max)),
1073 				.ring_size = 0,
1074 			},
1075 			.ringid = ring_id,
1076 			.cidxtid = mk_cidxtid(cid, tid),
1077 			.encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
1078 			.mac_ctrl = 0,
1079 			.to_resolution = 0,
1080 			.agg_max_wsize = 0,
1081 			.schd_params = {
1082 				.priority = cpu_to_le16(0),
1083 				.timeslot_us = cpu_to_le16(0xfff),
1084 			},
1085 		},
1086 	};
1087 	struct {
1088 		struct wmi_cmd_hdr wmi;
1089 		struct wmi_vring_cfg_done_event cmd;
1090 	} __packed reply = {
1091 		.cmd = {.status = WMI_FW_STATUS_FAILURE},
1092 	};
1093 	struct wil_ring *vring = &wil->ring_tx[ring_id];
1094 	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_id];
1095 
1096 	wil_dbg_misc(wil, "vring_modify: ring %d cid %d tid %d\n", ring_id,
1097 		     cid, tid);
1098 	lockdep_assert_held(&wil->mutex);
1099 
1100 	if (!vring->va) {
1101 		wil_err(wil, "Tx ring [%d] not allocated\n", ring_id);
1102 		return -EINVAL;
1103 	}
1104 
1105 	if (wil->ring2cid_tid[ring_id][0] != cid ||
1106 	    wil->ring2cid_tid[ring_id][1] != tid) {
1107 		wil_err(wil, "ring info does not match cid=%u tid=%u\n",
1108 			wil->ring2cid_tid[ring_id][0],
1109 			wil->ring2cid_tid[ring_id][1]);
1110 	}
1111 
1112 	cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1113 
1114 	rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
1115 		      WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
1116 	if (rc)
1117 		goto fail;
1118 
1119 	if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1120 		wil_err(wil, "Tx modify failed, status 0x%02x\n",
1121 			reply.cmd.status);
1122 		rc = -EINVAL;
1123 		goto fail;
1124 	}
1125 
1126 	/* set BA aggregation window size to 0 to force a new BA with the
1127 	 * new AP
1128 	 */
1129 	txdata->agg_wsize = 0;
1130 	if (txdata->dot1x_open && agg_wsize >= 0)
1131 		wil_addba_tx_request(wil, ring_id, agg_wsize);
1132 
1133 	return 0;
1134 fail:
1135 	spin_lock_bh(&txdata->lock);
1136 	txdata->dot1x_open = false;
1137 	txdata->enabled = 0;
1138 	spin_unlock_bh(&txdata->lock);
1139 	wil->ring2cid_tid[ring_id][0] = WIL6210_MAX_CID;
1140 	wil->ring2cid_tid[ring_id][1] = 0;
1141 	return rc;
1142 }
1143 
1144 int wil_vring_init_bcast(struct wil6210_vif *vif, int id, int size)
1145 {
1146 	struct wil6210_priv *wil = vif_to_wil(vif);
1147 	int rc;
1148 	struct wmi_bcast_vring_cfg_cmd cmd = {
1149 		.action = cpu_to_le32(WMI_VRING_CMD_ADD),
1150 		.vring_cfg = {
1151 			.tx_sw_ring = {
1152 				.max_mpdu_size =
1153 					cpu_to_le16(wil_mtu2macbuf(mtu_max)),
1154 				.ring_size = cpu_to_le16(size),
1155 			},
1156 			.ringid = id,
1157 			.encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
1158 		},
1159 	};
1160 	struct {
1161 		struct wmi_cmd_hdr wmi;
1162 		struct wmi_vring_cfg_done_event cmd;
1163 	} __packed reply = {
1164 		.cmd = {.status = WMI_FW_STATUS_FAILURE},
1165 	};
1166 	struct wil_ring *vring = &wil->ring_tx[id];
1167 	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
1168 
1169 	wil_dbg_misc(wil, "vring_init_bcast: max_mpdu_size %d\n",
1170 		     cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
1171 	lockdep_assert_held(&wil->mutex);
1172 
1173 	if (vring->va) {
1174 		wil_err(wil, "Tx ring [%d] already allocated\n", id);
1175 		rc = -EINVAL;
1176 		goto out;
1177 	}
1178 
1179 	wil_tx_data_init(txdata);
1180 	vring->is_rx = false;
1181 	vring->size = size;
1182 	rc = wil_vring_alloc(wil, vring);
1183 	if (rc)
1184 		goto out;
1185 
1186 	wil->ring2cid_tid[id][0] = WIL6210_MAX_CID; /* CID */
1187 	wil->ring2cid_tid[id][1] = 0; /* TID */
1188 
1189 	cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1190 
1191 	if (!vif->privacy)
1192 		txdata->dot1x_open = true;
1193 	rc = wmi_call(wil, WMI_BCAST_VRING_CFG_CMDID, vif->mid,
1194 		      &cmd, sizeof(cmd),
1195 		      WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
1196 	if (rc)
1197 		goto out_free;
1198 
1199 	if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1200 		wil_err(wil, "Tx config failed, status 0x%02x\n",
1201 			reply.cmd.status);
1202 		rc = -EINVAL;
1203 		goto out_free;
1204 	}
1205 
1206 	spin_lock_bh(&txdata->lock);
1207 	vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
1208 	txdata->mid = vif->mid;
1209 	txdata->enabled = 1;
1210 	spin_unlock_bh(&txdata->lock);
1211 
1212 	return 0;
1213  out_free:
1214 	spin_lock_bh(&txdata->lock);
1215 	txdata->enabled = 0;
1216 	txdata->dot1x_open = false;
1217 	spin_unlock_bh(&txdata->lock);
1218 	wil_vring_free(wil, vring);
1219  out:
1220 
1221 	return rc;
1222 }
1223 
1224 static struct wil_ring *wil_find_tx_ucast(struct wil6210_priv *wil,
1225 					  struct wil6210_vif *vif,
1226 					  struct sk_buff *skb)
1227 {
1228 	int i;
1229 	struct ethhdr *eth = (void *)skb->data;
1230 	int cid = wil_find_cid(wil, vif->mid, eth->h_dest);
1231 	int min_ring_id = wil_get_min_tx_ring_id(wil);
1232 
1233 	if (cid < 0)
1234 		return NULL;
1235 
1236 	/* TODO: fix for multiple TID */
1237 	for (i = min_ring_id; i < ARRAY_SIZE(wil->ring2cid_tid); i++) {
1238 		if (!wil->ring_tx_data[i].dot1x_open &&
1239 		    skb->protocol != cpu_to_be16(ETH_P_PAE))
1240 			continue;
1241 		if (wil->ring2cid_tid[i][0] == cid) {
1242 			struct wil_ring *v = &wil->ring_tx[i];
1243 			struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i];
1244 
1245 			wil_dbg_txrx(wil, "find_tx_ucast: (%pM) -> [%d]\n",
1246 				     eth->h_dest, i);
1247 			if (v->va && txdata->enabled) {
1248 				return v;
1249 			} else {
1250 				wil_dbg_txrx(wil,
1251 					     "find_tx_ucast: vring[%d] not valid\n",
1252 					     i);
1253 				return NULL;
1254 			}
1255 		}
1256 	}
1257 
1258 	return NULL;
1259 }
1260 
1261 static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
1262 		       struct wil_ring *ring, struct sk_buff *skb);
1263 
1264 static struct wil_ring *wil_find_tx_ring_sta(struct wil6210_priv *wil,
1265 					     struct wil6210_vif *vif,
1266 					     struct sk_buff *skb)
1267 {
1268 	struct wil_ring *ring;
1269 	int i;
1270 	u8 cid;
1271 	struct wil_ring_tx_data  *txdata;
1272 	int min_ring_id = wil_get_min_tx_ring_id(wil);
1273 
1274 	/* In the STA mode, it is expected to have only 1 VRING
1275 	 * for the AP we connected to.
1276 	 * find 1-st vring eligible for this skb and use it.
1277 	 */
1278 	for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
1279 		ring = &wil->ring_tx[i];
1280 		txdata = &wil->ring_tx_data[i];
1281 		if (!ring->va || !txdata->enabled || txdata->mid != vif->mid)
1282 			continue;
1283 
1284 		cid = wil->ring2cid_tid[i][0];
1285 		if (cid >= WIL6210_MAX_CID) /* skip BCAST */
1286 			continue;
1287 
1288 		if (!wil->ring_tx_data[i].dot1x_open &&
1289 		    skb->protocol != cpu_to_be16(ETH_P_PAE))
1290 			continue;
1291 
1292 		wil_dbg_txrx(wil, "Tx -> ring %d\n", i);
1293 
1294 		return ring;
1295 	}
1296 
1297 	wil_dbg_txrx(wil, "Tx while no rings active?\n");
1298 
1299 	return NULL;
1300 }
1301 
1302 /* Use one of 2 strategies:
1303  *
1304  * 1. New (real broadcast):
1305  *    use dedicated broadcast vring
1306  * 2. Old (pseudo-DMS):
1307  *    Find 1-st vring and return it;
1308  *    duplicate skb and send it to other active vrings;
1309  *    in all cases override dest address to unicast peer's address
1310  * Use old strategy when new is not supported yet:
1311  *  - for PBSS
1312  */
1313 static struct wil_ring *wil_find_tx_bcast_1(struct wil6210_priv *wil,
1314 					    struct wil6210_vif *vif,
1315 					    struct sk_buff *skb)
1316 {
1317 	struct wil_ring *v;
1318 	struct wil_ring_tx_data *txdata;
1319 	int i = vif->bcast_ring;
1320 
1321 	if (i < 0)
1322 		return NULL;
1323 	v = &wil->ring_tx[i];
1324 	txdata = &wil->ring_tx_data[i];
1325 	if (!v->va || !txdata->enabled)
1326 		return NULL;
1327 	if (!wil->ring_tx_data[i].dot1x_open &&
1328 	    skb->protocol != cpu_to_be16(ETH_P_PAE))
1329 		return NULL;
1330 
1331 	return v;
1332 }
1333 
1334 static void wil_set_da_for_vring(struct wil6210_priv *wil,
1335 				 struct sk_buff *skb, int vring_index)
1336 {
1337 	struct ethhdr *eth = (void *)skb->data;
1338 	int cid = wil->ring2cid_tid[vring_index][0];
1339 
1340 	ether_addr_copy(eth->h_dest, wil->sta[cid].addr);
1341 }
1342 
1343 static struct wil_ring *wil_find_tx_bcast_2(struct wil6210_priv *wil,
1344 					    struct wil6210_vif *vif,
1345 					    struct sk_buff *skb)
1346 {
1347 	struct wil_ring *v, *v2;
1348 	struct sk_buff *skb2;
1349 	int i;
1350 	u8 cid;
1351 	struct ethhdr *eth = (void *)skb->data;
1352 	char *src = eth->h_source;
1353 	struct wil_ring_tx_data *txdata, *txdata2;
1354 	int min_ring_id = wil_get_min_tx_ring_id(wil);
1355 
1356 	/* find 1-st vring eligible for data */
1357 	for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
1358 		v = &wil->ring_tx[i];
1359 		txdata = &wil->ring_tx_data[i];
1360 		if (!v->va || !txdata->enabled || txdata->mid != vif->mid)
1361 			continue;
1362 
1363 		cid = wil->ring2cid_tid[i][0];
1364 		if (cid >= WIL6210_MAX_CID) /* skip BCAST */
1365 			continue;
1366 		if (!wil->ring_tx_data[i].dot1x_open &&
1367 		    skb->protocol != cpu_to_be16(ETH_P_PAE))
1368 			continue;
1369 
1370 		/* don't Tx back to source when re-routing Rx->Tx at the AP */
1371 		if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1372 			continue;
1373 
1374 		goto found;
1375 	}
1376 
1377 	wil_dbg_txrx(wil, "Tx while no vrings active?\n");
1378 
1379 	return NULL;
1380 
1381 found:
1382 	wil_dbg_txrx(wil, "BCAST -> ring %d\n", i);
1383 	wil_set_da_for_vring(wil, skb, i);
1384 
1385 	/* find other active vrings and duplicate skb for each */
1386 	for (i++; i < WIL6210_MAX_TX_RINGS; i++) {
1387 		v2 = &wil->ring_tx[i];
1388 		txdata2 = &wil->ring_tx_data[i];
1389 		if (!v2->va || txdata2->mid != vif->mid)
1390 			continue;
1391 		cid = wil->ring2cid_tid[i][0];
1392 		if (cid >= WIL6210_MAX_CID) /* skip BCAST */
1393 			continue;
1394 		if (!wil->ring_tx_data[i].dot1x_open &&
1395 		    skb->protocol != cpu_to_be16(ETH_P_PAE))
1396 			continue;
1397 
1398 		if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1399 			continue;
1400 
1401 		skb2 = skb_copy(skb, GFP_ATOMIC);
1402 		if (skb2) {
1403 			wil_dbg_txrx(wil, "BCAST DUP -> ring %d\n", i);
1404 			wil_set_da_for_vring(wil, skb2, i);
1405 			wil_tx_ring(wil, vif, v2, skb2);
1406 		} else {
1407 			wil_err(wil, "skb_copy failed\n");
1408 		}
1409 	}
1410 
1411 	return v;
1412 }
1413 
1414 static inline
1415 void wil_tx_desc_set_nr_frags(struct vring_tx_desc *d, int nr_frags)
1416 {
1417 	d->mac.d[2] |= (nr_frags << MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS);
1418 }
1419 
1420 /**
1421  * Sets the descriptor @d up for csum and/or TSO offloading. The corresponding
1422  * @skb is used to obtain the protocol and headers length.
1423  * @tso_desc_type is a descriptor type for TSO: 0 - a header, 1 - first data,
1424  * 2 - middle, 3 - last descriptor.
1425  */
1426 
1427 static void wil_tx_desc_offload_setup_tso(struct vring_tx_desc *d,
1428 					  struct sk_buff *skb,
1429 					  int tso_desc_type, bool is_ipv4,
1430 					  int tcp_hdr_len, int skb_net_hdr_len)
1431 {
1432 	d->dma.b11 = ETH_HLEN; /* MAC header length */
1433 	d->dma.b11 |= is_ipv4 << DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS;
1434 
1435 	d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1436 	/* L4 header len: TCP header length */
1437 	d->dma.d0 |= (tcp_hdr_len & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1438 
1439 	/* Setup TSO: bit and desc type */
1440 	d->dma.d0 |= (BIT(DMA_CFG_DESC_TX_0_TCP_SEG_EN_POS)) |
1441 		(tso_desc_type << DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS);
1442 	d->dma.d0 |= (is_ipv4 << DMA_CFG_DESC_TX_0_IPV4_CHECKSUM_EN_POS);
1443 
1444 	d->dma.ip_length = skb_net_hdr_len;
1445 	/* Enable TCP/UDP checksum */
1446 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1447 	/* Calculate pseudo-header */
1448 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1449 }
1450 
1451 /**
1452  * Sets the descriptor @d up for csum. The corresponding
1453  * @skb is used to obtain the protocol and headers length.
1454  * Returns the protocol: 0 - not TCP, 1 - TCPv4, 2 - TCPv6.
1455  * Note, if d==NULL, the function only returns the protocol result.
1456  *
1457  * It is very similar to previous wil_tx_desc_offload_setup_tso. This
1458  * is "if unrolling" to optimize the critical path.
1459  */
1460 
1461 static int wil_tx_desc_offload_setup(struct vring_tx_desc *d,
1462 				     struct sk_buff *skb){
1463 	int protocol;
1464 
1465 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1466 		return 0;
1467 
1468 	d->dma.b11 = ETH_HLEN; /* MAC header length */
1469 
1470 	switch (skb->protocol) {
1471 	case cpu_to_be16(ETH_P_IP):
1472 		protocol = ip_hdr(skb)->protocol;
1473 		d->dma.b11 |= BIT(DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS);
1474 		break;
1475 	case cpu_to_be16(ETH_P_IPV6):
1476 		protocol = ipv6_hdr(skb)->nexthdr;
1477 		break;
1478 	default:
1479 		return -EINVAL;
1480 	}
1481 
1482 	switch (protocol) {
1483 	case IPPROTO_TCP:
1484 		d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1485 		/* L4 header len: TCP header length */
1486 		d->dma.d0 |=
1487 		(tcp_hdrlen(skb) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1488 		break;
1489 	case IPPROTO_UDP:
1490 		/* L4 header len: UDP header length */
1491 		d->dma.d0 |=
1492 		(sizeof(struct udphdr) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1493 		break;
1494 	default:
1495 		return -EINVAL;
1496 	}
1497 
1498 	d->dma.ip_length = skb_network_header_len(skb);
1499 	/* Enable TCP/UDP checksum */
1500 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1501 	/* Calculate pseudo-header */
1502 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1503 
1504 	return 0;
1505 }
1506 
1507 static inline void wil_tx_last_desc(struct vring_tx_desc *d)
1508 {
1509 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS) |
1510 	      BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS) |
1511 	      BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
1512 }
1513 
1514 static inline void wil_set_tx_desc_last_tso(volatile struct vring_tx_desc *d)
1515 {
1516 	d->dma.d0 |= wil_tso_type_lst <<
1517 		  DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS;
1518 }
1519 
1520 static int __wil_tx_vring_tso(struct wil6210_priv *wil, struct wil6210_vif *vif,
1521 			      struct wil_ring *vring, struct sk_buff *skb)
1522 {
1523 	struct device *dev = wil_to_dev(wil);
1524 
1525 	/* point to descriptors in shared memory */
1526 	volatile struct vring_tx_desc *_desc = NULL, *_hdr_desc,
1527 				      *_first_desc = NULL;
1528 
1529 	/* pointers to shadow descriptors */
1530 	struct vring_tx_desc desc_mem, hdr_desc_mem, first_desc_mem,
1531 			     *d = &hdr_desc_mem, *hdr_desc = &hdr_desc_mem,
1532 			     *first_desc = &first_desc_mem;
1533 
1534 	/* pointer to shadow descriptors' context */
1535 	struct wil_ctx *hdr_ctx, *first_ctx = NULL;
1536 
1537 	int descs_used = 0; /* total number of used descriptors */
1538 	int sg_desc_cnt = 0; /* number of descriptors for current mss*/
1539 
1540 	u32 swhead = vring->swhead;
1541 	int used, avail = wil_ring_avail_tx(vring);
1542 	int nr_frags = skb_shinfo(skb)->nr_frags;
1543 	int min_desc_required = nr_frags + 1;
1544 	int mss = skb_shinfo(skb)->gso_size;	/* payload size w/o headers */
1545 	int f, len, hdrlen, headlen;
1546 	int vring_index = vring - wil->ring_tx;
1547 	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[vring_index];
1548 	uint i = swhead;
1549 	dma_addr_t pa;
1550 	const skb_frag_t *frag = NULL;
1551 	int rem_data = mss;
1552 	int lenmss;
1553 	int hdr_compensation_need = true;
1554 	int desc_tso_type = wil_tso_type_first;
1555 	bool is_ipv4;
1556 	int tcp_hdr_len;
1557 	int skb_net_hdr_len;
1558 	int gso_type;
1559 	int rc = -EINVAL;
1560 
1561 	wil_dbg_txrx(wil, "tx_vring_tso: %d bytes to vring %d\n", skb->len,
1562 		     vring_index);
1563 
1564 	if (unlikely(!txdata->enabled))
1565 		return -EINVAL;
1566 
1567 	/* A typical page 4K is 3-4 payloads, we assume each fragment
1568 	 * is a full payload, that's how min_desc_required has been
1569 	 * calculated. In real we might need more or less descriptors,
1570 	 * this is the initial check only.
1571 	 */
1572 	if (unlikely(avail < min_desc_required)) {
1573 		wil_err_ratelimited(wil,
1574 				    "TSO: Tx ring[%2d] full. No space for %d fragments\n",
1575 				    vring_index, min_desc_required);
1576 		return -ENOMEM;
1577 	}
1578 
1579 	/* Header Length = MAC header len + IP header len + TCP header len*/
1580 	hdrlen = ETH_HLEN +
1581 		(int)skb_network_header_len(skb) +
1582 		tcp_hdrlen(skb);
1583 
1584 	gso_type = skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV6 | SKB_GSO_TCPV4);
1585 	switch (gso_type) {
1586 	case SKB_GSO_TCPV4:
1587 		/* TCP v4, zero out the IP length and IPv4 checksum fields
1588 		 * as required by the offloading doc
1589 		 */
1590 		ip_hdr(skb)->tot_len = 0;
1591 		ip_hdr(skb)->check = 0;
1592 		is_ipv4 = true;
1593 		break;
1594 	case SKB_GSO_TCPV6:
1595 		/* TCP v6, zero out the payload length */
1596 		ipv6_hdr(skb)->payload_len = 0;
1597 		is_ipv4 = false;
1598 		break;
1599 	default:
1600 		/* other than TCPv4 or TCPv6 types are not supported for TSO.
1601 		 * It is also illegal for both to be set simultaneously
1602 		 */
1603 		return -EINVAL;
1604 	}
1605 
1606 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1607 		return -EINVAL;
1608 
1609 	/* tcp header length and skb network header length are fixed for all
1610 	 * packet's descriptors - read then once here
1611 	 */
1612 	tcp_hdr_len = tcp_hdrlen(skb);
1613 	skb_net_hdr_len = skb_network_header_len(skb);
1614 
1615 	_hdr_desc = &vring->va[i].tx.legacy;
1616 
1617 	pa = dma_map_single(dev, skb->data, hdrlen, DMA_TO_DEVICE);
1618 	if (unlikely(dma_mapping_error(dev, pa))) {
1619 		wil_err(wil, "TSO: Skb head DMA map error\n");
1620 		goto err_exit;
1621 	}
1622 
1623 	wil->txrx_ops.tx_desc_map((union wil_tx_desc *)hdr_desc, pa,
1624 				  hdrlen, vring_index);
1625 	wil_tx_desc_offload_setup_tso(hdr_desc, skb, wil_tso_type_hdr, is_ipv4,
1626 				      tcp_hdr_len, skb_net_hdr_len);
1627 	wil_tx_last_desc(hdr_desc);
1628 
1629 	vring->ctx[i].mapped_as = wil_mapped_as_single;
1630 	hdr_ctx = &vring->ctx[i];
1631 
1632 	descs_used++;
1633 	headlen = skb_headlen(skb) - hdrlen;
1634 
1635 	for (f = headlen ? -1 : 0; f < nr_frags; f++)  {
1636 		if (headlen) {
1637 			len = headlen;
1638 			wil_dbg_txrx(wil, "TSO: process skb head, len %u\n",
1639 				     len);
1640 		} else {
1641 			frag = &skb_shinfo(skb)->frags[f];
1642 			len = frag->size;
1643 			wil_dbg_txrx(wil, "TSO: frag[%d]: len %u\n", f, len);
1644 		}
1645 
1646 		while (len) {
1647 			wil_dbg_txrx(wil,
1648 				     "TSO: len %d, rem_data %d, descs_used %d\n",
1649 				     len, rem_data, descs_used);
1650 
1651 			if (descs_used == avail)  {
1652 				wil_err_ratelimited(wil, "TSO: ring overflow\n");
1653 				rc = -ENOMEM;
1654 				goto mem_error;
1655 			}
1656 
1657 			lenmss = min_t(int, rem_data, len);
1658 			i = (swhead + descs_used) % vring->size;
1659 			wil_dbg_txrx(wil, "TSO: lenmss %d, i %d\n", lenmss, i);
1660 
1661 			if (!headlen) {
1662 				pa = skb_frag_dma_map(dev, frag,
1663 						      frag->size - len, lenmss,
1664 						      DMA_TO_DEVICE);
1665 				vring->ctx[i].mapped_as = wil_mapped_as_page;
1666 			} else {
1667 				pa = dma_map_single(dev,
1668 						    skb->data +
1669 						    skb_headlen(skb) - headlen,
1670 						    lenmss,
1671 						    DMA_TO_DEVICE);
1672 				vring->ctx[i].mapped_as = wil_mapped_as_single;
1673 				headlen -= lenmss;
1674 			}
1675 
1676 			if (unlikely(dma_mapping_error(dev, pa))) {
1677 				wil_err(wil, "TSO: DMA map page error\n");
1678 				goto mem_error;
1679 			}
1680 
1681 			_desc = &vring->va[i].tx.legacy;
1682 
1683 			if (!_first_desc) {
1684 				_first_desc = _desc;
1685 				first_ctx = &vring->ctx[i];
1686 				d = first_desc;
1687 			} else {
1688 				d = &desc_mem;
1689 			}
1690 
1691 			wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d,
1692 						  pa, lenmss, vring_index);
1693 			wil_tx_desc_offload_setup_tso(d, skb, desc_tso_type,
1694 						      is_ipv4, tcp_hdr_len,
1695 						      skb_net_hdr_len);
1696 
1697 			/* use tso_type_first only once */
1698 			desc_tso_type = wil_tso_type_mid;
1699 
1700 			descs_used++;  /* desc used so far */
1701 			sg_desc_cnt++; /* desc used for this segment */
1702 			len -= lenmss;
1703 			rem_data -= lenmss;
1704 
1705 			wil_dbg_txrx(wil,
1706 				     "TSO: len %d, rem_data %d, descs_used %d, sg_desc_cnt %d,\n",
1707 				     len, rem_data, descs_used, sg_desc_cnt);
1708 
1709 			/* Close the segment if reached mss size or last frag*/
1710 			if (rem_data == 0 || (f == nr_frags - 1 && len == 0)) {
1711 				if (hdr_compensation_need) {
1712 					/* first segment include hdr desc for
1713 					 * release
1714 					 */
1715 					hdr_ctx->nr_frags = sg_desc_cnt;
1716 					wil_tx_desc_set_nr_frags(first_desc,
1717 								 sg_desc_cnt +
1718 								 1);
1719 					hdr_compensation_need = false;
1720 				} else {
1721 					wil_tx_desc_set_nr_frags(first_desc,
1722 								 sg_desc_cnt);
1723 				}
1724 				first_ctx->nr_frags = sg_desc_cnt - 1;
1725 
1726 				wil_tx_last_desc(d);
1727 
1728 				/* first descriptor may also be the last
1729 				 * for this mss - make sure not to copy
1730 				 * it twice
1731 				 */
1732 				if (first_desc != d)
1733 					*_first_desc = *first_desc;
1734 
1735 				/*last descriptor will be copied at the end
1736 				 * of this TS processing
1737 				 */
1738 				if (f < nr_frags - 1 || len > 0)
1739 					*_desc = *d;
1740 
1741 				rem_data = mss;
1742 				_first_desc = NULL;
1743 				sg_desc_cnt = 0;
1744 			} else if (first_desc != d) /* update mid descriptor */
1745 					*_desc = *d;
1746 		}
1747 	}
1748 
1749 	/* first descriptor may also be the last.
1750 	 * in this case d pointer is invalid
1751 	 */
1752 	if (_first_desc == _desc)
1753 		d = first_desc;
1754 
1755 	/* Last data descriptor */
1756 	wil_set_tx_desc_last_tso(d);
1757 	*_desc = *d;
1758 
1759 	/* Fill the total number of descriptors in first desc (hdr)*/
1760 	wil_tx_desc_set_nr_frags(hdr_desc, descs_used);
1761 	*_hdr_desc = *hdr_desc;
1762 
1763 	/* hold reference to skb
1764 	 * to prevent skb release before accounting
1765 	 * in case of immediate "tx done"
1766 	 */
1767 	vring->ctx[i].skb = skb_get(skb);
1768 
1769 	/* performance monitoring */
1770 	used = wil_ring_used_tx(vring);
1771 	if (wil_val_in_range(wil->ring_idle_trsh,
1772 			     used, used + descs_used)) {
1773 		txdata->idle += get_cycles() - txdata->last_idle;
1774 		wil_dbg_txrx(wil,  "Ring[%2d] not idle %d -> %d\n",
1775 			     vring_index, used, used + descs_used);
1776 	}
1777 
1778 	/* Make sure to advance the head only after descriptor update is done.
1779 	 * This will prevent a race condition where the completion thread
1780 	 * will see the DU bit set from previous run and will handle the
1781 	 * skb before it was completed.
1782 	 */
1783 	wmb();
1784 
1785 	/* advance swhead */
1786 	wil_ring_advance_head(vring, descs_used);
1787 	wil_dbg_txrx(wil, "TSO: Tx swhead %d -> %d\n", swhead, vring->swhead);
1788 
1789 	/* make sure all writes to descriptors (shared memory) are done before
1790 	 * committing them to HW
1791 	 */
1792 	wmb();
1793 
1794 	if (wil->tx_latency)
1795 		*(ktime_t *)&skb->cb = ktime_get();
1796 	else
1797 		memset(skb->cb, 0, sizeof(ktime_t));
1798 
1799 	wil_w(wil, vring->hwtail, vring->swhead);
1800 	return 0;
1801 
1802 mem_error:
1803 	while (descs_used > 0) {
1804 		struct wil_ctx *ctx;
1805 
1806 		i = (swhead + descs_used - 1) % vring->size;
1807 		d = (struct vring_tx_desc *)&vring->va[i].tx.legacy;
1808 		_desc = &vring->va[i].tx.legacy;
1809 		*d = *_desc;
1810 		_desc->dma.status = TX_DMA_STATUS_DU;
1811 		ctx = &vring->ctx[i];
1812 		wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx);
1813 		memset(ctx, 0, sizeof(*ctx));
1814 		descs_used--;
1815 	}
1816 err_exit:
1817 	return rc;
1818 }
1819 
1820 static int __wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
1821 			 struct wil_ring *ring, struct sk_buff *skb)
1822 {
1823 	struct device *dev = wil_to_dev(wil);
1824 	struct vring_tx_desc dd, *d = &dd;
1825 	volatile struct vring_tx_desc *_d;
1826 	u32 swhead = ring->swhead;
1827 	int avail = wil_ring_avail_tx(ring);
1828 	int nr_frags = skb_shinfo(skb)->nr_frags;
1829 	uint f = 0;
1830 	int ring_index = ring - wil->ring_tx;
1831 	struct wil_ring_tx_data  *txdata = &wil->ring_tx_data[ring_index];
1832 	uint i = swhead;
1833 	dma_addr_t pa;
1834 	int used;
1835 	bool mcast = (ring_index == vif->bcast_ring);
1836 	uint len = skb_headlen(skb);
1837 
1838 	wil_dbg_txrx(wil, "tx_ring: %d bytes to ring %d, nr_frags %d\n",
1839 		     skb->len, ring_index, nr_frags);
1840 
1841 	if (unlikely(!txdata->enabled))
1842 		return -EINVAL;
1843 
1844 	if (unlikely(avail < 1 + nr_frags)) {
1845 		wil_err_ratelimited(wil,
1846 				    "Tx ring[%2d] full. No space for %d fragments\n",
1847 				    ring_index, 1 + nr_frags);
1848 		return -ENOMEM;
1849 	}
1850 	_d = &ring->va[i].tx.legacy;
1851 
1852 	pa = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
1853 
1854 	wil_dbg_txrx(wil, "Tx[%2d] skb %d bytes 0x%p -> %pad\n", ring_index,
1855 		     skb_headlen(skb), skb->data, &pa);
1856 	wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1,
1857 			  skb->data, skb_headlen(skb), false);
1858 
1859 	if (unlikely(dma_mapping_error(dev, pa)))
1860 		return -EINVAL;
1861 	ring->ctx[i].mapped_as = wil_mapped_as_single;
1862 	/* 1-st segment */
1863 	wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, pa, len,
1864 				   ring_index);
1865 	if (unlikely(mcast)) {
1866 		d->mac.d[0] |= BIT(MAC_CFG_DESC_TX_0_MCS_EN_POS); /* MCS 0 */
1867 		if (unlikely(len > WIL_BCAST_MCS0_LIMIT)) /* set MCS 1 */
1868 			d->mac.d[0] |= (1 << MAC_CFG_DESC_TX_0_MCS_INDEX_POS);
1869 	}
1870 	/* Process TCP/UDP checksum offloading */
1871 	if (unlikely(wil_tx_desc_offload_setup(d, skb))) {
1872 		wil_err(wil, "Tx[%2d] Failed to set cksum, drop packet\n",
1873 			ring_index);
1874 		goto dma_error;
1875 	}
1876 
1877 	ring->ctx[i].nr_frags = nr_frags;
1878 	wil_tx_desc_set_nr_frags(d, nr_frags + 1);
1879 
1880 	/* middle segments */
1881 	for (; f < nr_frags; f++) {
1882 		const struct skb_frag_struct *frag =
1883 				&skb_shinfo(skb)->frags[f];
1884 		int len = skb_frag_size(frag);
1885 
1886 		*_d = *d;
1887 		wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i);
1888 		wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
1889 				  (const void *)d, sizeof(*d), false);
1890 		i = (swhead + f + 1) % ring->size;
1891 		_d = &ring->va[i].tx.legacy;
1892 		pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag),
1893 				      DMA_TO_DEVICE);
1894 		if (unlikely(dma_mapping_error(dev, pa))) {
1895 			wil_err(wil, "Tx[%2d] failed to map fragment\n",
1896 				ring_index);
1897 			goto dma_error;
1898 		}
1899 		ring->ctx[i].mapped_as = wil_mapped_as_page;
1900 		wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d,
1901 					   pa, len, ring_index);
1902 		/* no need to check return code -
1903 		 * if it succeeded for 1-st descriptor,
1904 		 * it will succeed here too
1905 		 */
1906 		wil_tx_desc_offload_setup(d, skb);
1907 	}
1908 	/* for the last seg only */
1909 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS);
1910 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS);
1911 	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
1912 	*_d = *d;
1913 	wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i);
1914 	wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
1915 			  (const void *)d, sizeof(*d), false);
1916 
1917 	/* hold reference to skb
1918 	 * to prevent skb release before accounting
1919 	 * in case of immediate "tx done"
1920 	 */
1921 	ring->ctx[i].skb = skb_get(skb);
1922 
1923 	/* performance monitoring */
1924 	used = wil_ring_used_tx(ring);
1925 	if (wil_val_in_range(wil->ring_idle_trsh,
1926 			     used, used + nr_frags + 1)) {
1927 		txdata->idle += get_cycles() - txdata->last_idle;
1928 		wil_dbg_txrx(wil,  "Ring[%2d] not idle %d -> %d\n",
1929 			     ring_index, used, used + nr_frags + 1);
1930 	}
1931 
1932 	/* Make sure to advance the head only after descriptor update is done.
1933 	 * This will prevent a race condition where the completion thread
1934 	 * will see the DU bit set from previous run and will handle the
1935 	 * skb before it was completed.
1936 	 */
1937 	wmb();
1938 
1939 	/* advance swhead */
1940 	wil_ring_advance_head(ring, nr_frags + 1);
1941 	wil_dbg_txrx(wil, "Tx[%2d] swhead %d -> %d\n", ring_index, swhead,
1942 		     ring->swhead);
1943 	trace_wil6210_tx(ring_index, swhead, skb->len, nr_frags);
1944 
1945 	/* make sure all writes to descriptors (shared memory) are done before
1946 	 * committing them to HW
1947 	 */
1948 	wmb();
1949 
1950 	if (wil->tx_latency)
1951 		*(ktime_t *)&skb->cb = ktime_get();
1952 	else
1953 		memset(skb->cb, 0, sizeof(ktime_t));
1954 
1955 	wil_w(wil, ring->hwtail, ring->swhead);
1956 
1957 	return 0;
1958  dma_error:
1959 	/* unmap what we have mapped */
1960 	nr_frags = f + 1; /* frags mapped + one for skb head */
1961 	for (f = 0; f < nr_frags; f++) {
1962 		struct wil_ctx *ctx;
1963 
1964 		i = (swhead + f) % ring->size;
1965 		ctx = &ring->ctx[i];
1966 		_d = &ring->va[i].tx.legacy;
1967 		*d = *_d;
1968 		_d->dma.status = TX_DMA_STATUS_DU;
1969 		wil->txrx_ops.tx_desc_unmap(dev,
1970 					    (union wil_tx_desc *)d,
1971 					    ctx);
1972 
1973 		memset(ctx, 0, sizeof(*ctx));
1974 	}
1975 
1976 	return -EINVAL;
1977 }
1978 
1979 static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
1980 		       struct wil_ring *ring, struct sk_buff *skb)
1981 {
1982 	int ring_index = ring - wil->ring_tx;
1983 	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_index];
1984 	int rc;
1985 
1986 	spin_lock(&txdata->lock);
1987 
1988 	if (test_bit(wil_status_suspending, wil->status) ||
1989 	    test_bit(wil_status_suspended, wil->status) ||
1990 	    test_bit(wil_status_resuming, wil->status)) {
1991 		wil_dbg_txrx(wil,
1992 			     "suspend/resume in progress. drop packet\n");
1993 		spin_unlock(&txdata->lock);
1994 		return -EINVAL;
1995 	}
1996 
1997 	rc = (skb_is_gso(skb) ? wil->txrx_ops.tx_ring_tso : __wil_tx_ring)
1998 	     (wil, vif, ring, skb);
1999 
2000 	spin_unlock(&txdata->lock);
2001 
2002 	return rc;
2003 }
2004 
2005 /**
2006  * Check status of tx vrings and stop/wake net queues if needed
2007  * It will start/stop net queues of a specific VIF net_device.
2008  *
2009  * This function does one of two checks:
2010  * In case check_stop is true, will check if net queues need to be stopped. If
2011  * the conditions for stopping are met, netif_tx_stop_all_queues() is called.
2012  * In case check_stop is false, will check if net queues need to be waked. If
2013  * the conditions for waking are met, netif_tx_wake_all_queues() is called.
2014  * vring is the vring which is currently being modified by either adding
2015  * descriptors (tx) into it or removing descriptors (tx complete) from it. Can
2016  * be null when irrelevant (e.g. connect/disconnect events).
2017  *
2018  * The implementation is to stop net queues if modified vring has low
2019  * descriptor availability. Wake if all vrings are not in low descriptor
2020  * availability and modified vring has high descriptor availability.
2021  */
2022 static inline void __wil_update_net_queues(struct wil6210_priv *wil,
2023 					   struct wil6210_vif *vif,
2024 					   struct wil_ring *ring,
2025 					   bool check_stop)
2026 {
2027 	int i;
2028 	int min_ring_id = wil_get_min_tx_ring_id(wil);
2029 
2030 	if (unlikely(!vif))
2031 		return;
2032 
2033 	if (ring)
2034 		wil_dbg_txrx(wil, "vring %d, mid %d, check_stop=%d, stopped=%d",
2035 			     (int)(ring - wil->ring_tx), vif->mid, check_stop,
2036 			     vif->net_queue_stopped);
2037 	else
2038 		wil_dbg_txrx(wil, "check_stop=%d, mid=%d, stopped=%d",
2039 			     check_stop, vif->mid, vif->net_queue_stopped);
2040 
2041 	if (check_stop == vif->net_queue_stopped)
2042 		/* net queues already in desired state */
2043 		return;
2044 
2045 	if (check_stop) {
2046 		if (!ring || unlikely(wil_ring_avail_low(ring))) {
2047 			/* not enough room in the vring */
2048 			netif_tx_stop_all_queues(vif_to_ndev(vif));
2049 			vif->net_queue_stopped = true;
2050 			wil_dbg_txrx(wil, "netif_tx_stop called\n");
2051 		}
2052 		return;
2053 	}
2054 
2055 	/* Do not wake the queues in suspend flow */
2056 	if (test_bit(wil_status_suspending, wil->status) ||
2057 	    test_bit(wil_status_suspended, wil->status))
2058 		return;
2059 
2060 	/* check wake */
2061 	for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
2062 		struct wil_ring *cur_ring = &wil->ring_tx[i];
2063 		struct wil_ring_tx_data  *txdata = &wil->ring_tx_data[i];
2064 
2065 		if (txdata->mid != vif->mid || !cur_ring->va ||
2066 		    !txdata->enabled || cur_ring == ring)
2067 			continue;
2068 
2069 		if (wil_ring_avail_low(cur_ring)) {
2070 			wil_dbg_txrx(wil, "ring %d full, can't wake\n",
2071 				     (int)(cur_ring - wil->ring_tx));
2072 			return;
2073 		}
2074 	}
2075 
2076 	if (!ring || wil_ring_avail_high(ring)) {
2077 		/* enough room in the ring */
2078 		wil_dbg_txrx(wil, "calling netif_tx_wake\n");
2079 		netif_tx_wake_all_queues(vif_to_ndev(vif));
2080 		vif->net_queue_stopped = false;
2081 	}
2082 }
2083 
2084 void wil_update_net_queues(struct wil6210_priv *wil, struct wil6210_vif *vif,
2085 			   struct wil_ring *ring, bool check_stop)
2086 {
2087 	spin_lock(&wil->net_queue_lock);
2088 	__wil_update_net_queues(wil, vif, ring, check_stop);
2089 	spin_unlock(&wil->net_queue_lock);
2090 }
2091 
2092 void wil_update_net_queues_bh(struct wil6210_priv *wil, struct wil6210_vif *vif,
2093 			      struct wil_ring *ring, bool check_stop)
2094 {
2095 	spin_lock_bh(&wil->net_queue_lock);
2096 	__wil_update_net_queues(wil, vif, ring, check_stop);
2097 	spin_unlock_bh(&wil->net_queue_lock);
2098 }
2099 
2100 netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2101 {
2102 	struct wil6210_vif *vif = ndev_to_vif(ndev);
2103 	struct wil6210_priv *wil = vif_to_wil(vif);
2104 	struct ethhdr *eth = (void *)skb->data;
2105 	bool bcast = is_multicast_ether_addr(eth->h_dest);
2106 	struct wil_ring *ring;
2107 	static bool pr_once_fw;
2108 	int rc;
2109 
2110 	wil_dbg_txrx(wil, "start_xmit\n");
2111 	if (unlikely(!test_bit(wil_status_fwready, wil->status))) {
2112 		if (!pr_once_fw) {
2113 			wil_err(wil, "FW not ready\n");
2114 			pr_once_fw = true;
2115 		}
2116 		goto drop;
2117 	}
2118 	if (unlikely(!test_bit(wil_vif_fwconnected, vif->status))) {
2119 		wil_dbg_ratelimited(wil,
2120 				    "VIF not connected, packet dropped\n");
2121 		goto drop;
2122 	}
2123 	if (unlikely(vif->wdev.iftype == NL80211_IFTYPE_MONITOR)) {
2124 		wil_err(wil, "Xmit in monitor mode not supported\n");
2125 		goto drop;
2126 	}
2127 	pr_once_fw = false;
2128 
2129 	/* find vring */
2130 	if (vif->wdev.iftype == NL80211_IFTYPE_STATION && !vif->pbss) {
2131 		/* in STA mode (ESS), all to same VRING (to AP) */
2132 		ring = wil_find_tx_ring_sta(wil, vif, skb);
2133 	} else if (bcast) {
2134 		if (vif->pbss)
2135 			/* in pbss, no bcast VRING - duplicate skb in
2136 			 * all stations VRINGs
2137 			 */
2138 			ring = wil_find_tx_bcast_2(wil, vif, skb);
2139 		else if (vif->wdev.iftype == NL80211_IFTYPE_AP)
2140 			/* AP has a dedicated bcast VRING */
2141 			ring = wil_find_tx_bcast_1(wil, vif, skb);
2142 		else
2143 			/* unexpected combination, fallback to duplicating
2144 			 * the skb in all stations VRINGs
2145 			 */
2146 			ring = wil_find_tx_bcast_2(wil, vif, skb);
2147 	} else {
2148 		/* unicast, find specific VRING by dest. address */
2149 		ring = wil_find_tx_ucast(wil, vif, skb);
2150 	}
2151 	if (unlikely(!ring)) {
2152 		wil_dbg_txrx(wil, "No Tx RING found for %pM\n", eth->h_dest);
2153 		goto drop;
2154 	}
2155 	/* set up vring entry */
2156 	rc = wil_tx_ring(wil, vif, ring, skb);
2157 
2158 	switch (rc) {
2159 	case 0:
2160 		/* shall we stop net queues? */
2161 		wil_update_net_queues_bh(wil, vif, ring, true);
2162 		/* statistics will be updated on the tx_complete */
2163 		dev_kfree_skb_any(skb);
2164 		return NETDEV_TX_OK;
2165 	case -ENOMEM:
2166 		return NETDEV_TX_BUSY;
2167 	default:
2168 		break; /* goto drop; */
2169 	}
2170  drop:
2171 	ndev->stats.tx_dropped++;
2172 	dev_kfree_skb_any(skb);
2173 
2174 	return NET_XMIT_DROP;
2175 }
2176 
2177 void wil_tx_latency_calc(struct wil6210_priv *wil, struct sk_buff *skb,
2178 			 struct wil_sta_info *sta)
2179 {
2180 	int skb_time_us;
2181 	int bin;
2182 
2183 	if (!wil->tx_latency)
2184 		return;
2185 
2186 	if (ktime_to_ms(*(ktime_t *)&skb->cb) == 0)
2187 		return;
2188 
2189 	skb_time_us = ktime_us_delta(ktime_get(), *(ktime_t *)&skb->cb);
2190 	bin = skb_time_us / wil->tx_latency_res;
2191 	bin = min_t(int, bin, WIL_NUM_LATENCY_BINS - 1);
2192 
2193 	wil_dbg_txrx(wil, "skb time %dus => bin %d\n", skb_time_us, bin);
2194 	sta->tx_latency_bins[bin]++;
2195 	sta->stats.tx_latency_total_us += skb_time_us;
2196 	if (skb_time_us < sta->stats.tx_latency_min_us)
2197 		sta->stats.tx_latency_min_us = skb_time_us;
2198 	if (skb_time_us > sta->stats.tx_latency_max_us)
2199 		sta->stats.tx_latency_max_us = skb_time_us;
2200 }
2201 
2202 /**
2203  * Clean up transmitted skb's from the Tx VRING
2204  *
2205  * Return number of descriptors cleared
2206  *
2207  * Safe to call from IRQ
2208  */
2209 int wil_tx_complete(struct wil6210_vif *vif, int ringid)
2210 {
2211 	struct wil6210_priv *wil = vif_to_wil(vif);
2212 	struct net_device *ndev = vif_to_ndev(vif);
2213 	struct device *dev = wil_to_dev(wil);
2214 	struct wil_ring *vring = &wil->ring_tx[ringid];
2215 	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ringid];
2216 	int done = 0;
2217 	int cid = wil->ring2cid_tid[ringid][0];
2218 	struct wil_net_stats *stats = NULL;
2219 	volatile struct vring_tx_desc *_d;
2220 	int used_before_complete;
2221 	int used_new;
2222 
2223 	if (unlikely(!vring->va)) {
2224 		wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid);
2225 		return 0;
2226 	}
2227 
2228 	if (unlikely(!txdata->enabled)) {
2229 		wil_info(wil, "Tx irq[%d]: vring disabled\n", ringid);
2230 		return 0;
2231 	}
2232 
2233 	wil_dbg_txrx(wil, "tx_complete: (%d)\n", ringid);
2234 
2235 	used_before_complete = wil_ring_used_tx(vring);
2236 
2237 	if (cid < WIL6210_MAX_CID)
2238 		stats = &wil->sta[cid].stats;
2239 
2240 	while (!wil_ring_is_empty(vring)) {
2241 		int new_swtail;
2242 		struct wil_ctx *ctx = &vring->ctx[vring->swtail];
2243 		/**
2244 		 * For the fragmented skb, HW will set DU bit only for the
2245 		 * last fragment. look for it.
2246 		 * In TSO the first DU will include hdr desc
2247 		 */
2248 		int lf = (vring->swtail + ctx->nr_frags) % vring->size;
2249 		/* TODO: check we are not past head */
2250 
2251 		_d = &vring->va[lf].tx.legacy;
2252 		if (unlikely(!(_d->dma.status & TX_DMA_STATUS_DU)))
2253 			break;
2254 
2255 		new_swtail = (lf + 1) % vring->size;
2256 		while (vring->swtail != new_swtail) {
2257 			struct vring_tx_desc dd, *d = &dd;
2258 			u16 dmalen;
2259 			struct sk_buff *skb;
2260 
2261 			ctx = &vring->ctx[vring->swtail];
2262 			skb = ctx->skb;
2263 			_d = &vring->va[vring->swtail].tx.legacy;
2264 
2265 			*d = *_d;
2266 
2267 			dmalen = le16_to_cpu(d->dma.length);
2268 			trace_wil6210_tx_done(ringid, vring->swtail, dmalen,
2269 					      d->dma.error);
2270 			wil_dbg_txrx(wil,
2271 				     "TxC[%2d][%3d] : %d bytes, status 0x%02x err 0x%02x\n",
2272 				     ringid, vring->swtail, dmalen,
2273 				     d->dma.status, d->dma.error);
2274 			wil_hex_dump_txrx("TxCD ", DUMP_PREFIX_NONE, 32, 4,
2275 					  (const void *)d, sizeof(*d), false);
2276 
2277 			wil->txrx_ops.tx_desc_unmap(dev,
2278 						    (union wil_tx_desc *)d,
2279 						    ctx);
2280 
2281 			if (skb) {
2282 				if (likely(d->dma.error == 0)) {
2283 					ndev->stats.tx_packets++;
2284 					ndev->stats.tx_bytes += skb->len;
2285 					if (stats) {
2286 						stats->tx_packets++;
2287 						stats->tx_bytes += skb->len;
2288 
2289 						wil_tx_latency_calc(wil, skb,
2290 							&wil->sta[cid]);
2291 					}
2292 				} else {
2293 					ndev->stats.tx_errors++;
2294 					if (stats)
2295 						stats->tx_errors++;
2296 				}
2297 				wil_consume_skb(skb, d->dma.error == 0);
2298 			}
2299 			memset(ctx, 0, sizeof(*ctx));
2300 			/* Make sure the ctx is zeroed before updating the tail
2301 			 * to prevent a case where wil_tx_ring will see
2302 			 * this descriptor as used and handle it before ctx zero
2303 			 * is completed.
2304 			 */
2305 			wmb();
2306 			/* There is no need to touch HW descriptor:
2307 			 * - ststus bit TX_DMA_STATUS_DU is set by design,
2308 			 *   so hardware will not try to process this desc.,
2309 			 * - rest of descriptor will be initialized on Tx.
2310 			 */
2311 			vring->swtail = wil_ring_next_tail(vring);
2312 			done++;
2313 		}
2314 	}
2315 
2316 	/* performance monitoring */
2317 	used_new = wil_ring_used_tx(vring);
2318 	if (wil_val_in_range(wil->ring_idle_trsh,
2319 			     used_new, used_before_complete)) {
2320 		wil_dbg_txrx(wil, "Ring[%2d] idle %d -> %d\n",
2321 			     ringid, used_before_complete, used_new);
2322 		txdata->last_idle = get_cycles();
2323 	}
2324 
2325 	/* shall we wake net queues? */
2326 	if (done)
2327 		wil_update_net_queues(wil, vif, vring, false);
2328 
2329 	return done;
2330 }
2331 
2332 static inline int wil_tx_init(struct wil6210_priv *wil)
2333 {
2334 	return 0;
2335 }
2336 
2337 static inline void wil_tx_fini(struct wil6210_priv *wil) {}
2338 
2339 static void wil_get_reorder_params(struct wil6210_priv *wil,
2340 				   struct sk_buff *skb, int *tid, int *cid,
2341 				   int *mid, u16 *seq, int *mcast, int *retry)
2342 {
2343 	struct vring_rx_desc *d = wil_skb_rxdesc(skb);
2344 
2345 	*tid = wil_rxdesc_tid(d);
2346 	*cid = wil_rxdesc_cid(d);
2347 	*mid = wil_rxdesc_mid(d);
2348 	*seq = wil_rxdesc_seq(d);
2349 	*mcast = wil_rxdesc_mcast(d);
2350 	*retry = wil_rxdesc_retry(d);
2351 }
2352 
2353 void wil_init_txrx_ops_legacy_dma(struct wil6210_priv *wil)
2354 {
2355 	wil->txrx_ops.configure_interrupt_moderation =
2356 		wil_configure_interrupt_moderation;
2357 	/* TX ops */
2358 	wil->txrx_ops.tx_desc_map = wil_tx_desc_map;
2359 	wil->txrx_ops.tx_desc_unmap = wil_txdesc_unmap;
2360 	wil->txrx_ops.tx_ring_tso =  __wil_tx_vring_tso;
2361 	wil->txrx_ops.ring_init_tx = wil_vring_init_tx;
2362 	wil->txrx_ops.ring_fini_tx = wil_vring_free;
2363 	wil->txrx_ops.ring_init_bcast = wil_vring_init_bcast;
2364 	wil->txrx_ops.tx_init = wil_tx_init;
2365 	wil->txrx_ops.tx_fini = wil_tx_fini;
2366 	wil->txrx_ops.tx_ring_modify = wil_tx_vring_modify;
2367 	/* RX ops */
2368 	wil->txrx_ops.rx_init = wil_rx_init;
2369 	wil->txrx_ops.wmi_addba_rx_resp = wmi_addba_rx_resp;
2370 	wil->txrx_ops.get_reorder_params = wil_get_reorder_params;
2371 	wil->txrx_ops.get_netif_rx_params =
2372 		wil_get_netif_rx_params;
2373 	wil->txrx_ops.rx_crypto_check = wil_rx_crypto_check;
2374 	wil->txrx_ops.rx_error_check = wil_rx_error_check;
2375 	wil->txrx_ops.is_rx_idle = wil_is_rx_idle;
2376 	wil->txrx_ops.rx_fini = wil_rx_fini;
2377 }
2378