1 /* 2 * Copyright (c) 2012-2017 Qualcomm Atheros, Inc. 3 * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 */ 17 18 #include <linux/moduleparam.h> 19 #include <linux/if_arp.h> 20 #include <linux/etherdevice.h> 21 #include <linux/rtnetlink.h> 22 23 #include "wil6210.h" 24 #include "txrx.h" 25 #include "txrx_edma.h" 26 #include "wmi.h" 27 #include "boot_loader.h" 28 29 #define WAIT_FOR_HALP_VOTE_MS 100 30 #define WAIT_FOR_SCAN_ABORT_MS 1000 31 #define WIL_DEFAULT_NUM_RX_STATUS_RINGS 1 32 #define WIL_BOARD_FILE_MAX_NAMELEN 128 33 34 bool debug_fw; /* = false; */ 35 module_param(debug_fw, bool, 0444); 36 MODULE_PARM_DESC(debug_fw, " do not perform card reset. For FW debug"); 37 38 static u8 oob_mode; 39 module_param(oob_mode, byte, 0444); 40 MODULE_PARM_DESC(oob_mode, 41 " enable out of the box (OOB) mode in FW, for diagnostics and certification"); 42 43 bool no_fw_recovery; 44 module_param(no_fw_recovery, bool, 0644); 45 MODULE_PARM_DESC(no_fw_recovery, " disable automatic FW error recovery"); 46 47 /* if not set via modparam, will be set to default value of 1/8 of 48 * rx ring size during init flow 49 */ 50 unsigned short rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_INIT; 51 module_param(rx_ring_overflow_thrsh, ushort, 0444); 52 MODULE_PARM_DESC(rx_ring_overflow_thrsh, 53 " RX ring overflow threshold in descriptors."); 54 55 /* We allow allocation of more than 1 page buffers to support large packets. 56 * It is suboptimal behavior performance wise in case MTU above page size. 57 */ 58 unsigned int mtu_max = TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD; 59 static int mtu_max_set(const char *val, const struct kernel_param *kp) 60 { 61 int ret; 62 63 /* sets mtu_max directly. no need to restore it in case of 64 * illegal value since we assume this will fail insmod 65 */ 66 ret = param_set_uint(val, kp); 67 if (ret) 68 return ret; 69 70 if (mtu_max < 68 || mtu_max > WIL_MAX_ETH_MTU) 71 ret = -EINVAL; 72 73 return ret; 74 } 75 76 static const struct kernel_param_ops mtu_max_ops = { 77 .set = mtu_max_set, 78 .get = param_get_uint, 79 }; 80 81 module_param_cb(mtu_max, &mtu_max_ops, &mtu_max, 0444); 82 MODULE_PARM_DESC(mtu_max, " Max MTU value."); 83 84 static uint rx_ring_order; 85 static uint tx_ring_order = WIL_TX_RING_SIZE_ORDER_DEFAULT; 86 static uint bcast_ring_order = WIL_BCAST_RING_SIZE_ORDER_DEFAULT; 87 88 static int ring_order_set(const char *val, const struct kernel_param *kp) 89 { 90 int ret; 91 uint x; 92 93 ret = kstrtouint(val, 0, &x); 94 if (ret) 95 return ret; 96 97 if ((x < WIL_RING_SIZE_ORDER_MIN) || (x > WIL_RING_SIZE_ORDER_MAX)) 98 return -EINVAL; 99 100 *((uint *)kp->arg) = x; 101 102 return 0; 103 } 104 105 static const struct kernel_param_ops ring_order_ops = { 106 .set = ring_order_set, 107 .get = param_get_uint, 108 }; 109 110 module_param_cb(rx_ring_order, &ring_order_ops, &rx_ring_order, 0444); 111 MODULE_PARM_DESC(rx_ring_order, " Rx ring order; size = 1 << order"); 112 module_param_cb(tx_ring_order, &ring_order_ops, &tx_ring_order, 0444); 113 MODULE_PARM_DESC(tx_ring_order, " Tx ring order; size = 1 << order"); 114 module_param_cb(bcast_ring_order, &ring_order_ops, &bcast_ring_order, 0444); 115 MODULE_PARM_DESC(bcast_ring_order, " Bcast ring order; size = 1 << order"); 116 117 enum { 118 WIL_BOOT_ERR, 119 WIL_BOOT_VANILLA, 120 WIL_BOOT_PRODUCTION, 121 WIL_BOOT_DEVELOPMENT, 122 }; 123 124 enum { 125 WIL_SIG_STATUS_VANILLA = 0x0, 126 WIL_SIG_STATUS_DEVELOPMENT = 0x1, 127 WIL_SIG_STATUS_PRODUCTION = 0x2, 128 WIL_SIG_STATUS_CORRUPTED_PRODUCTION = 0x3, 129 }; 130 131 #define RST_DELAY (20) /* msec, for loop in @wil_wait_device_ready */ 132 #define RST_COUNT (1 + 1000/RST_DELAY) /* round up to be above 1 sec total */ 133 134 #define PMU_READY_DELAY_MS (4) /* ms, for sleep in @wil_wait_device_ready */ 135 136 #define OTP_HW_DELAY (200) /* usec, loop in @wil_wait_device_ready_talyn_mb */ 137 /* round up to be above 2 ms total */ 138 #define OTP_HW_COUNT (1 + 2000 / OTP_HW_DELAY) 139 140 /* 141 * Due to a hardware issue, 142 * one has to read/write to/from NIC in 32-bit chunks; 143 * regular memcpy_fromio and siblings will 144 * not work on 64-bit platform - it uses 64-bit transactions 145 * 146 * Force 32-bit transactions to enable NIC on 64-bit platforms 147 * 148 * To avoid byte swap on big endian host, __raw_{read|write}l 149 * should be used - {read|write}l would swap bytes to provide 150 * little endian on PCI value in host endianness. 151 */ 152 void wil_memcpy_fromio_32(void *dst, const volatile void __iomem *src, 153 size_t count) 154 { 155 u32 *d = dst; 156 const volatile u32 __iomem *s = src; 157 158 for (; count >= 4; count -= 4) 159 *d++ = __raw_readl(s++); 160 161 if (unlikely(count)) { 162 /* count can be 1..3 */ 163 u32 tmp = __raw_readl(s); 164 165 memcpy(d, &tmp, count); 166 } 167 } 168 169 void wil_memcpy_toio_32(volatile void __iomem *dst, const void *src, 170 size_t count) 171 { 172 volatile u32 __iomem *d = dst; 173 const u32 *s = src; 174 175 for (; count >= 4; count -= 4) 176 __raw_writel(*s++, d++); 177 178 if (unlikely(count)) { 179 /* count can be 1..3 */ 180 u32 tmp = 0; 181 182 memcpy(&tmp, s, count); 183 __raw_writel(tmp, d); 184 } 185 } 186 187 /* Device memory access is prohibited while reset or suspend. 188 * wil_mem_access_lock protects accessing device memory in these cases 189 */ 190 int wil_mem_access_lock(struct wil6210_priv *wil) 191 { 192 if (!down_read_trylock(&wil->mem_lock)) 193 return -EBUSY; 194 195 if (test_bit(wil_status_suspending, wil->status) || 196 test_bit(wil_status_suspended, wil->status)) { 197 up_read(&wil->mem_lock); 198 return -EBUSY; 199 } 200 201 return 0; 202 } 203 204 void wil_mem_access_unlock(struct wil6210_priv *wil) 205 { 206 up_read(&wil->mem_lock); 207 } 208 209 static void wil_ring_fini_tx(struct wil6210_priv *wil, int id) 210 { 211 struct wil_ring *ring = &wil->ring_tx[id]; 212 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id]; 213 214 lockdep_assert_held(&wil->mutex); 215 216 if (!ring->va) 217 return; 218 219 wil_dbg_misc(wil, "vring_fini_tx: id=%d\n", id); 220 221 spin_lock_bh(&txdata->lock); 222 txdata->dot1x_open = false; 223 txdata->mid = U8_MAX; 224 txdata->enabled = 0; /* no Tx can be in progress or start anew */ 225 spin_unlock_bh(&txdata->lock); 226 /* napi_synchronize waits for completion of the current NAPI but will 227 * not prevent the next NAPI run. 228 * Add a memory barrier to guarantee that txdata->enabled is zeroed 229 * before napi_synchronize so that the next scheduled NAPI will not 230 * handle this vring 231 */ 232 wmb(); 233 /* make sure NAPI won't touch this vring */ 234 if (test_bit(wil_status_napi_en, wil->status)) 235 napi_synchronize(&wil->napi_tx); 236 237 wil->txrx_ops.ring_fini_tx(wil, ring); 238 } 239 240 static bool wil_vif_is_connected(struct wil6210_priv *wil, u8 mid) 241 { 242 int i; 243 244 for (i = 0; i < wil->max_assoc_sta; i++) { 245 if (wil->sta[i].mid == mid && 246 wil->sta[i].status == wil_sta_connected) 247 return true; 248 } 249 250 return false; 251 } 252 253 static void wil_disconnect_cid_complete(struct wil6210_vif *vif, int cid, 254 u16 reason_code) 255 __acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock) 256 { 257 uint i; 258 struct wil6210_priv *wil = vif_to_wil(vif); 259 struct net_device *ndev = vif_to_ndev(vif); 260 struct wireless_dev *wdev = vif_to_wdev(vif); 261 struct wil_sta_info *sta = &wil->sta[cid]; 262 int min_ring_id = wil_get_min_tx_ring_id(wil); 263 264 might_sleep(); 265 wil_dbg_misc(wil, 266 "disconnect_cid_complete: CID %d, MID %d, status %d\n", 267 cid, sta->mid, sta->status); 268 /* inform upper layers */ 269 if (sta->status != wil_sta_unused) { 270 if (vif->mid != sta->mid) { 271 wil_err(wil, "STA MID mismatch with VIF MID(%d)\n", 272 vif->mid); 273 } 274 275 switch (wdev->iftype) { 276 case NL80211_IFTYPE_AP: 277 case NL80211_IFTYPE_P2P_GO: 278 /* AP-like interface */ 279 cfg80211_del_sta(ndev, sta->addr, GFP_KERNEL); 280 break; 281 default: 282 break; 283 } 284 sta->status = wil_sta_unused; 285 sta->mid = U8_MAX; 286 } 287 /* reorder buffers */ 288 for (i = 0; i < WIL_STA_TID_NUM; i++) { 289 struct wil_tid_ampdu_rx *r; 290 291 spin_lock_bh(&sta->tid_rx_lock); 292 293 r = sta->tid_rx[i]; 294 sta->tid_rx[i] = NULL; 295 wil_tid_ampdu_rx_free(wil, r); 296 297 spin_unlock_bh(&sta->tid_rx_lock); 298 } 299 /* crypto context */ 300 memset(sta->tid_crypto_rx, 0, sizeof(sta->tid_crypto_rx)); 301 memset(&sta->group_crypto_rx, 0, sizeof(sta->group_crypto_rx)); 302 /* release vrings */ 303 for (i = min_ring_id; i < ARRAY_SIZE(wil->ring_tx); i++) { 304 if (wil->ring2cid_tid[i][0] == cid) 305 wil_ring_fini_tx(wil, i); 306 } 307 /* statistics */ 308 memset(&sta->stats, 0, sizeof(sta->stats)); 309 sta->stats.tx_latency_min_us = U32_MAX; 310 } 311 312 static void _wil6210_disconnect_complete(struct wil6210_vif *vif, 313 const u8 *bssid, u16 reason_code) 314 { 315 struct wil6210_priv *wil = vif_to_wil(vif); 316 int cid = -ENOENT; 317 struct net_device *ndev; 318 struct wireless_dev *wdev; 319 320 ndev = vif_to_ndev(vif); 321 wdev = vif_to_wdev(vif); 322 323 might_sleep(); 324 wil_info(wil, "disconnect_complete: bssid=%pM, reason=%d\n", 325 bssid, reason_code); 326 327 /* Cases are: 328 * - disconnect single STA, still connected 329 * - disconnect single STA, already disconnected 330 * - disconnect all 331 * 332 * For "disconnect all", there are 3 options: 333 * - bssid == NULL 334 * - bssid is broadcast address (ff:ff:ff:ff:ff:ff) 335 * - bssid is our MAC address 336 */ 337 if (bssid && !is_broadcast_ether_addr(bssid) && 338 !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) { 339 cid = wil_find_cid(wil, vif->mid, bssid); 340 wil_dbg_misc(wil, 341 "Disconnect complete %pM, CID=%d, reason=%d\n", 342 bssid, cid, reason_code); 343 if (wil_cid_valid(wil, cid)) /* disconnect 1 peer */ 344 wil_disconnect_cid_complete(vif, cid, reason_code); 345 } else { /* all */ 346 wil_dbg_misc(wil, "Disconnect complete all\n"); 347 for (cid = 0; cid < wil->max_assoc_sta; cid++) 348 wil_disconnect_cid_complete(vif, cid, reason_code); 349 } 350 351 /* link state */ 352 switch (wdev->iftype) { 353 case NL80211_IFTYPE_STATION: 354 case NL80211_IFTYPE_P2P_CLIENT: 355 wil_bcast_fini(vif); 356 wil_update_net_queues_bh(wil, vif, NULL, true); 357 netif_carrier_off(ndev); 358 if (!wil_has_other_active_ifaces(wil, ndev, false, true)) 359 wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS); 360 361 if (test_and_clear_bit(wil_vif_fwconnected, vif->status)) { 362 atomic_dec(&wil->connected_vifs); 363 cfg80211_disconnected(ndev, reason_code, 364 NULL, 0, 365 vif->locally_generated_disc, 366 GFP_KERNEL); 367 vif->locally_generated_disc = false; 368 } else if (test_bit(wil_vif_fwconnecting, vif->status)) { 369 cfg80211_connect_result(ndev, bssid, NULL, 0, NULL, 0, 370 WLAN_STATUS_UNSPECIFIED_FAILURE, 371 GFP_KERNEL); 372 vif->bss = NULL; 373 } 374 clear_bit(wil_vif_fwconnecting, vif->status); 375 clear_bit(wil_vif_ft_roam, vif->status); 376 vif->ptk_rekey_state = WIL_REKEY_IDLE; 377 378 break; 379 case NL80211_IFTYPE_AP: 380 case NL80211_IFTYPE_P2P_GO: 381 if (!wil_vif_is_connected(wil, vif->mid)) { 382 wil_update_net_queues_bh(wil, vif, NULL, true); 383 if (test_and_clear_bit(wil_vif_fwconnected, 384 vif->status)) 385 atomic_dec(&wil->connected_vifs); 386 } else { 387 wil_update_net_queues_bh(wil, vif, NULL, false); 388 } 389 break; 390 default: 391 break; 392 } 393 } 394 395 static int wil_disconnect_cid(struct wil6210_vif *vif, int cid, 396 u16 reason_code) 397 { 398 struct wil6210_priv *wil = vif_to_wil(vif); 399 struct wireless_dev *wdev = vif_to_wdev(vif); 400 struct wil_sta_info *sta = &wil->sta[cid]; 401 bool del_sta = false; 402 403 might_sleep(); 404 wil_dbg_misc(wil, "disconnect_cid: CID %d, MID %d, status %d\n", 405 cid, sta->mid, sta->status); 406 407 if (sta->status == wil_sta_unused) 408 return 0; 409 410 if (vif->mid != sta->mid) { 411 wil_err(wil, "STA MID mismatch with VIF MID(%d)\n", vif->mid); 412 return -EINVAL; 413 } 414 415 /* inform lower layers */ 416 if (wdev->iftype == NL80211_IFTYPE_AP && disable_ap_sme) 417 del_sta = true; 418 419 /* disconnect by sending command disconnect/del_sta and wait 420 * synchronously for WMI_DISCONNECT_EVENTID event. 421 */ 422 return wmi_disconnect_sta(vif, sta->addr, reason_code, del_sta); 423 } 424 425 static void _wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid, 426 u16 reason_code) 427 { 428 struct wil6210_priv *wil; 429 struct net_device *ndev; 430 int cid = -ENOENT; 431 432 if (unlikely(!vif)) 433 return; 434 435 wil = vif_to_wil(vif); 436 ndev = vif_to_ndev(vif); 437 438 might_sleep(); 439 wil_info(wil, "disconnect bssid=%pM, reason=%d\n", bssid, reason_code); 440 441 /* Cases are: 442 * - disconnect single STA, still connected 443 * - disconnect single STA, already disconnected 444 * - disconnect all 445 * 446 * For "disconnect all", there are 3 options: 447 * - bssid == NULL 448 * - bssid is broadcast address (ff:ff:ff:ff:ff:ff) 449 * - bssid is our MAC address 450 */ 451 if (bssid && !is_broadcast_ether_addr(bssid) && 452 !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) { 453 cid = wil_find_cid(wil, vif->mid, bssid); 454 wil_dbg_misc(wil, "Disconnect %pM, CID=%d, reason=%d\n", 455 bssid, cid, reason_code); 456 if (wil_cid_valid(wil, cid)) /* disconnect 1 peer */ 457 wil_disconnect_cid(vif, cid, reason_code); 458 } else { /* all */ 459 wil_dbg_misc(wil, "Disconnect all\n"); 460 for (cid = 0; cid < wil->max_assoc_sta; cid++) 461 wil_disconnect_cid(vif, cid, reason_code); 462 } 463 464 /* call event handler manually after processing wmi_call, 465 * to avoid deadlock - disconnect event handler acquires 466 * wil->mutex while it is already held here 467 */ 468 _wil6210_disconnect_complete(vif, bssid, reason_code); 469 } 470 471 void wil_disconnect_worker(struct work_struct *work) 472 { 473 struct wil6210_vif *vif = container_of(work, 474 struct wil6210_vif, disconnect_worker); 475 struct wil6210_priv *wil = vif_to_wil(vif); 476 struct net_device *ndev = vif_to_ndev(vif); 477 int rc; 478 struct { 479 struct wmi_cmd_hdr wmi; 480 struct wmi_disconnect_event evt; 481 } __packed reply; 482 483 if (test_bit(wil_vif_fwconnected, vif->status)) 484 /* connect succeeded after all */ 485 return; 486 487 if (!test_bit(wil_vif_fwconnecting, vif->status)) 488 /* already disconnected */ 489 return; 490 491 memset(&reply, 0, sizeof(reply)); 492 493 rc = wmi_call(wil, WMI_DISCONNECT_CMDID, vif->mid, NULL, 0, 494 WMI_DISCONNECT_EVENTID, &reply, sizeof(reply), 495 WIL6210_DISCONNECT_TO_MS); 496 if (rc) { 497 wil_err(wil, "disconnect error %d\n", rc); 498 return; 499 } 500 501 wil_update_net_queues_bh(wil, vif, NULL, true); 502 netif_carrier_off(ndev); 503 cfg80211_connect_result(ndev, NULL, NULL, 0, NULL, 0, 504 WLAN_STATUS_UNSPECIFIED_FAILURE, GFP_KERNEL); 505 clear_bit(wil_vif_fwconnecting, vif->status); 506 } 507 508 static int wil_wait_for_recovery(struct wil6210_priv *wil) 509 { 510 if (wait_event_interruptible(wil->wq, wil->recovery_state != 511 fw_recovery_pending)) { 512 wil_err(wil, "Interrupt, canceling recovery\n"); 513 return -ERESTARTSYS; 514 } 515 if (wil->recovery_state != fw_recovery_running) { 516 wil_info(wil, "Recovery cancelled\n"); 517 return -EINTR; 518 } 519 wil_info(wil, "Proceed with recovery\n"); 520 return 0; 521 } 522 523 void wil_set_recovery_state(struct wil6210_priv *wil, int state) 524 { 525 wil_dbg_misc(wil, "set_recovery_state: %d -> %d\n", 526 wil->recovery_state, state); 527 528 wil->recovery_state = state; 529 wake_up_interruptible(&wil->wq); 530 } 531 532 bool wil_is_recovery_blocked(struct wil6210_priv *wil) 533 { 534 return no_fw_recovery && (wil->recovery_state == fw_recovery_pending); 535 } 536 537 static void wil_fw_error_worker(struct work_struct *work) 538 { 539 struct wil6210_priv *wil = container_of(work, struct wil6210_priv, 540 fw_error_worker); 541 struct net_device *ndev = wil->main_ndev; 542 struct wireless_dev *wdev; 543 544 wil_dbg_misc(wil, "fw error worker\n"); 545 546 if (!ndev || !(ndev->flags & IFF_UP)) { 547 wil_info(wil, "No recovery - interface is down\n"); 548 return; 549 } 550 wdev = ndev->ieee80211_ptr; 551 552 /* increment @recovery_count if less then WIL6210_FW_RECOVERY_TO 553 * passed since last recovery attempt 554 */ 555 if (time_is_after_jiffies(wil->last_fw_recovery + 556 WIL6210_FW_RECOVERY_TO)) 557 wil->recovery_count++; 558 else 559 wil->recovery_count = 1; /* fw was alive for a long time */ 560 561 if (wil->recovery_count > WIL6210_FW_RECOVERY_RETRIES) { 562 wil_err(wil, "too many recovery attempts (%d), giving up\n", 563 wil->recovery_count); 564 return; 565 } 566 567 wil->last_fw_recovery = jiffies; 568 569 wil_info(wil, "fw error recovery requested (try %d)...\n", 570 wil->recovery_count); 571 if (!no_fw_recovery) 572 wil->recovery_state = fw_recovery_running; 573 if (wil_wait_for_recovery(wil) != 0) 574 return; 575 576 rtnl_lock(); 577 mutex_lock(&wil->mutex); 578 /* Needs adaptation for multiple VIFs 579 * need to go over all VIFs and consider the appropriate 580 * recovery because each one can have different iftype. 581 */ 582 switch (wdev->iftype) { 583 case NL80211_IFTYPE_STATION: 584 case NL80211_IFTYPE_P2P_CLIENT: 585 case NL80211_IFTYPE_MONITOR: 586 /* silent recovery, upper layers will see disconnect */ 587 __wil_down(wil); 588 __wil_up(wil); 589 break; 590 case NL80211_IFTYPE_AP: 591 case NL80211_IFTYPE_P2P_GO: 592 if (no_fw_recovery) /* upper layers do recovery */ 593 break; 594 /* silent recovery, upper layers will see disconnect */ 595 __wil_down(wil); 596 __wil_up(wil); 597 mutex_unlock(&wil->mutex); 598 wil_cfg80211_ap_recovery(wil); 599 mutex_lock(&wil->mutex); 600 wil_info(wil, "... completed\n"); 601 break; 602 default: 603 wil_err(wil, "No recovery - unknown interface type %d\n", 604 wdev->iftype); 605 break; 606 } 607 608 mutex_unlock(&wil->mutex); 609 rtnl_unlock(); 610 } 611 612 static int wil_find_free_ring(struct wil6210_priv *wil) 613 { 614 int i; 615 int min_ring_id = wil_get_min_tx_ring_id(wil); 616 617 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) { 618 if (!wil->ring_tx[i].va) 619 return i; 620 } 621 return -EINVAL; 622 } 623 624 int wil_ring_init_tx(struct wil6210_vif *vif, int cid) 625 { 626 struct wil6210_priv *wil = vif_to_wil(vif); 627 int rc = -EINVAL, ringid; 628 629 if (cid < 0) { 630 wil_err(wil, "No connection pending\n"); 631 goto out; 632 } 633 ringid = wil_find_free_ring(wil); 634 if (ringid < 0) { 635 wil_err(wil, "No free vring found\n"); 636 goto out; 637 } 638 639 wil_dbg_wmi(wil, "Configure for connection CID %d MID %d ring %d\n", 640 cid, vif->mid, ringid); 641 642 rc = wil->txrx_ops.ring_init_tx(vif, ringid, 1 << tx_ring_order, 643 cid, 0); 644 if (rc) 645 wil_err(wil, "init TX for CID %d MID %d vring %d failed\n", 646 cid, vif->mid, ringid); 647 648 out: 649 return rc; 650 } 651 652 int wil_bcast_init(struct wil6210_vif *vif) 653 { 654 struct wil6210_priv *wil = vif_to_wil(vif); 655 int ri = vif->bcast_ring, rc; 656 657 if (ri >= 0 && wil->ring_tx[ri].va) 658 return 0; 659 660 ri = wil_find_free_ring(wil); 661 if (ri < 0) 662 return ri; 663 664 vif->bcast_ring = ri; 665 rc = wil->txrx_ops.ring_init_bcast(vif, ri, 1 << bcast_ring_order); 666 if (rc) 667 vif->bcast_ring = -1; 668 669 return rc; 670 } 671 672 void wil_bcast_fini(struct wil6210_vif *vif) 673 { 674 struct wil6210_priv *wil = vif_to_wil(vif); 675 int ri = vif->bcast_ring; 676 677 if (ri < 0) 678 return; 679 680 vif->bcast_ring = -1; 681 wil_ring_fini_tx(wil, ri); 682 } 683 684 void wil_bcast_fini_all(struct wil6210_priv *wil) 685 { 686 int i; 687 struct wil6210_vif *vif; 688 689 for (i = 0; i < GET_MAX_VIFS(wil); i++) { 690 vif = wil->vifs[i]; 691 if (vif) 692 wil_bcast_fini(vif); 693 } 694 } 695 696 int wil_priv_init(struct wil6210_priv *wil) 697 { 698 uint i; 699 700 wil_dbg_misc(wil, "priv_init\n"); 701 702 memset(wil->sta, 0, sizeof(wil->sta)); 703 for (i = 0; i < WIL6210_MAX_CID; i++) { 704 spin_lock_init(&wil->sta[i].tid_rx_lock); 705 wil->sta[i].mid = U8_MAX; 706 } 707 708 for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) { 709 spin_lock_init(&wil->ring_tx_data[i].lock); 710 wil->ring2cid_tid[i][0] = WIL6210_MAX_CID; 711 } 712 713 mutex_init(&wil->mutex); 714 mutex_init(&wil->vif_mutex); 715 mutex_init(&wil->wmi_mutex); 716 mutex_init(&wil->halp.lock); 717 718 init_completion(&wil->wmi_ready); 719 init_completion(&wil->wmi_call); 720 init_completion(&wil->halp.comp); 721 722 INIT_WORK(&wil->wmi_event_worker, wmi_event_worker); 723 INIT_WORK(&wil->fw_error_worker, wil_fw_error_worker); 724 725 INIT_LIST_HEAD(&wil->pending_wmi_ev); 726 spin_lock_init(&wil->wmi_ev_lock); 727 spin_lock_init(&wil->net_queue_lock); 728 spin_lock_init(&wil->eap_lock); 729 730 init_waitqueue_head(&wil->wq); 731 init_rwsem(&wil->mem_lock); 732 733 wil->wmi_wq = create_singlethread_workqueue(WIL_NAME "_wmi"); 734 if (!wil->wmi_wq) 735 return -EAGAIN; 736 737 wil->wq_service = create_singlethread_workqueue(WIL_NAME "_service"); 738 if (!wil->wq_service) 739 goto out_wmi_wq; 740 741 wil->last_fw_recovery = jiffies; 742 wil->tx_interframe_timeout = WIL6210_ITR_TX_INTERFRAME_TIMEOUT_DEFAULT; 743 wil->rx_interframe_timeout = WIL6210_ITR_RX_INTERFRAME_TIMEOUT_DEFAULT; 744 wil->tx_max_burst_duration = WIL6210_ITR_TX_MAX_BURST_DURATION_DEFAULT; 745 wil->rx_max_burst_duration = WIL6210_ITR_RX_MAX_BURST_DURATION_DEFAULT; 746 747 if (rx_ring_overflow_thrsh == WIL6210_RX_HIGH_TRSH_INIT) 748 rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_DEFAULT; 749 750 wil->ps_profile = WMI_PS_PROFILE_TYPE_DEFAULT; 751 752 wil->wakeup_trigger = WMI_WAKEUP_TRIGGER_UCAST | 753 WMI_WAKEUP_TRIGGER_BCAST; 754 memset(&wil->suspend_stats, 0, sizeof(wil->suspend_stats)); 755 wil->ring_idle_trsh = 16; 756 757 wil->reply_mid = U8_MAX; 758 wil->max_vifs = 1; 759 wil->max_assoc_sta = max_assoc_sta; 760 761 /* edma configuration can be updated via debugfs before allocation */ 762 wil->num_rx_status_rings = WIL_DEFAULT_NUM_RX_STATUS_RINGS; 763 wil->tx_status_ring_order = WIL_TX_SRING_SIZE_ORDER_DEFAULT; 764 765 /* Rx status ring size should be bigger than the number of RX buffers 766 * in order to prevent backpressure on the status ring, which may 767 * cause HW freeze. 768 */ 769 wil->rx_status_ring_order = WIL_RX_SRING_SIZE_ORDER_DEFAULT; 770 /* Number of RX buffer IDs should be bigger than the RX descriptor 771 * ring size as in HW reorder flow, the HW can consume additional 772 * buffers before releasing the previous ones. 773 */ 774 wil->rx_buff_id_count = WIL_RX_BUFF_ARR_SIZE_DEFAULT; 775 776 wil->amsdu_en = 1; 777 778 return 0; 779 780 out_wmi_wq: 781 destroy_workqueue(wil->wmi_wq); 782 783 return -EAGAIN; 784 } 785 786 void wil6210_bus_request(struct wil6210_priv *wil, u32 kbps) 787 { 788 if (wil->platform_ops.bus_request) { 789 wil->bus_request_kbps = kbps; 790 wil->platform_ops.bus_request(wil->platform_handle, kbps); 791 } 792 } 793 794 /** 795 * wil6210_disconnect - disconnect one connection 796 * @vif: virtual interface context 797 * @bssid: peer to disconnect, NULL to disconnect all 798 * @reason_code: Reason code for the Disassociation frame 799 * 800 * Disconnect and release associated resources. Issue WMI 801 * command(s) to trigger MAC disconnect. When command was issued 802 * successfully, call the wil6210_disconnect_complete function 803 * to handle the event synchronously 804 */ 805 void wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid, 806 u16 reason_code) 807 { 808 struct wil6210_priv *wil = vif_to_wil(vif); 809 810 wil_dbg_misc(wil, "disconnecting\n"); 811 812 del_timer_sync(&vif->connect_timer); 813 _wil6210_disconnect(vif, bssid, reason_code); 814 } 815 816 /** 817 * wil6210_disconnect_complete - handle disconnect event 818 * @vif: virtual interface context 819 * @bssid: peer to disconnect, NULL to disconnect all 820 * @reason_code: Reason code for the Disassociation frame 821 * 822 * Release associated resources and indicate upper layers the 823 * connection is terminated. 824 */ 825 void wil6210_disconnect_complete(struct wil6210_vif *vif, const u8 *bssid, 826 u16 reason_code) 827 { 828 struct wil6210_priv *wil = vif_to_wil(vif); 829 830 wil_dbg_misc(wil, "got disconnect\n"); 831 832 del_timer_sync(&vif->connect_timer); 833 _wil6210_disconnect_complete(vif, bssid, reason_code); 834 } 835 836 void wil_priv_deinit(struct wil6210_priv *wil) 837 { 838 wil_dbg_misc(wil, "priv_deinit\n"); 839 840 wil_set_recovery_state(wil, fw_recovery_idle); 841 cancel_work_sync(&wil->fw_error_worker); 842 wmi_event_flush(wil); 843 destroy_workqueue(wil->wq_service); 844 destroy_workqueue(wil->wmi_wq); 845 kfree(wil->brd_info); 846 } 847 848 static void wil_shutdown_bl(struct wil6210_priv *wil) 849 { 850 u32 val; 851 852 wil_s(wil, RGF_USER_BL + 853 offsetof(struct bl_dedicated_registers_v1, 854 bl_shutdown_handshake), BL_SHUTDOWN_HS_GRTD); 855 856 usleep_range(100, 150); 857 858 val = wil_r(wil, RGF_USER_BL + 859 offsetof(struct bl_dedicated_registers_v1, 860 bl_shutdown_handshake)); 861 if (val & BL_SHUTDOWN_HS_RTD) { 862 wil_dbg_misc(wil, "BL is ready for halt\n"); 863 return; 864 } 865 866 wil_err(wil, "BL did not report ready for halt\n"); 867 } 868 869 /* this format is used by ARC embedded CPU for instruction memory */ 870 static inline u32 ARC_me_imm32(u32 d) 871 { 872 return ((d & 0xffff0000) >> 16) | ((d & 0x0000ffff) << 16); 873 } 874 875 /* defines access to interrupt vectors for wil_freeze_bl */ 876 #define ARC_IRQ_VECTOR_OFFSET(N) ((N) * 8) 877 /* ARC long jump instruction */ 878 #define ARC_JAL_INST (0x20200f80) 879 880 static void wil_freeze_bl(struct wil6210_priv *wil) 881 { 882 u32 jal, upc, saved; 883 u32 ivt3 = ARC_IRQ_VECTOR_OFFSET(3); 884 885 jal = wil_r(wil, wil->iccm_base + ivt3); 886 if (jal != ARC_me_imm32(ARC_JAL_INST)) { 887 wil_dbg_misc(wil, "invalid IVT entry found, skipping\n"); 888 return; 889 } 890 891 /* prevent the target from entering deep sleep 892 * and disabling memory access 893 */ 894 saved = wil_r(wil, RGF_USER_USAGE_8); 895 wil_w(wil, RGF_USER_USAGE_8, saved | BIT_USER_PREVENT_DEEP_SLEEP); 896 usleep_range(20, 25); /* let the BL process the bit */ 897 898 /* redirect to endless loop in the INT_L1 context and let it trap */ 899 wil_w(wil, wil->iccm_base + ivt3 + 4, ARC_me_imm32(ivt3)); 900 usleep_range(20, 25); /* let the BL get into the trap */ 901 902 /* verify the BL is frozen */ 903 upc = wil_r(wil, RGF_USER_CPU_PC); 904 if (upc < ivt3 || (upc > (ivt3 + 8))) 905 wil_dbg_misc(wil, "BL freeze failed, PC=0x%08X\n", upc); 906 907 wil_w(wil, RGF_USER_USAGE_8, saved); 908 } 909 910 static void wil_bl_prepare_halt(struct wil6210_priv *wil) 911 { 912 u32 tmp, ver; 913 914 /* before halting device CPU driver must make sure BL is not accessing 915 * host memory. This is done differently depending on BL version: 916 * 1. For very old BL versions the procedure is skipped 917 * (not supported). 918 * 2. For old BL version we use a special trick to freeze the BL 919 * 3. For new BL versions we shutdown the BL using handshake procedure. 920 */ 921 tmp = wil_r(wil, RGF_USER_BL + 922 offsetof(struct bl_dedicated_registers_v0, 923 boot_loader_struct_version)); 924 if (!tmp) { 925 wil_dbg_misc(wil, "old BL, skipping halt preparation\n"); 926 return; 927 } 928 929 tmp = wil_r(wil, RGF_USER_BL + 930 offsetof(struct bl_dedicated_registers_v1, 931 bl_shutdown_handshake)); 932 ver = BL_SHUTDOWN_HS_PROT_VER(tmp); 933 934 if (ver > 0) 935 wil_shutdown_bl(wil); 936 else 937 wil_freeze_bl(wil); 938 } 939 940 static inline void wil_halt_cpu(struct wil6210_priv *wil) 941 { 942 if (wil->hw_version >= HW_VER_TALYN_MB) { 943 wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB, 944 BIT_USER_USER_CPU_MAN_RST); 945 wil_w(wil, RGF_USER_MAC_CPU_0_TALYN_MB, 946 BIT_USER_MAC_CPU_MAN_RST); 947 } else { 948 wil_w(wil, RGF_USER_USER_CPU_0, BIT_USER_USER_CPU_MAN_RST); 949 wil_w(wil, RGF_USER_MAC_CPU_0, BIT_USER_MAC_CPU_MAN_RST); 950 } 951 } 952 953 static inline void wil_release_cpu(struct wil6210_priv *wil) 954 { 955 /* Start CPU */ 956 if (wil->hw_version >= HW_VER_TALYN_MB) 957 wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB, 1); 958 else 959 wil_w(wil, RGF_USER_USER_CPU_0, 1); 960 } 961 962 static void wil_set_oob_mode(struct wil6210_priv *wil, u8 mode) 963 { 964 wil_info(wil, "oob_mode to %d\n", mode); 965 switch (mode) { 966 case 0: 967 wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE | 968 BIT_USER_OOB_R2_MODE); 969 break; 970 case 1: 971 wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE); 972 wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE); 973 break; 974 case 2: 975 wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE); 976 wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE); 977 break; 978 default: 979 wil_err(wil, "invalid oob_mode: %d\n", mode); 980 } 981 } 982 983 static int wil_wait_device_ready(struct wil6210_priv *wil, int no_flash) 984 { 985 int delay = 0; 986 u32 x, x1 = 0; 987 988 /* wait until device ready. */ 989 if (no_flash) { 990 msleep(PMU_READY_DELAY_MS); 991 992 wil_dbg_misc(wil, "Reset completed\n"); 993 } else { 994 do { 995 msleep(RST_DELAY); 996 x = wil_r(wil, RGF_USER_BL + 997 offsetof(struct bl_dedicated_registers_v0, 998 boot_loader_ready)); 999 if (x1 != x) { 1000 wil_dbg_misc(wil, "BL.ready 0x%08x => 0x%08x\n", 1001 x1, x); 1002 x1 = x; 1003 } 1004 if (delay++ > RST_COUNT) { 1005 wil_err(wil, "Reset not completed, bl.ready 0x%08x\n", 1006 x); 1007 return -ETIME; 1008 } 1009 } while (x != BL_READY); 1010 1011 wil_dbg_misc(wil, "Reset completed in %d ms\n", 1012 delay * RST_DELAY); 1013 } 1014 1015 return 0; 1016 } 1017 1018 static int wil_wait_device_ready_talyn_mb(struct wil6210_priv *wil) 1019 { 1020 u32 otp_hw; 1021 u8 signature_status; 1022 bool otp_signature_err; 1023 bool hw_section_done; 1024 u32 otp_qc_secured; 1025 int delay = 0; 1026 1027 /* Wait for OTP signature test to complete */ 1028 usleep_range(2000, 2200); 1029 1030 wil->boot_config = WIL_BOOT_ERR; 1031 1032 /* Poll until OTP signature status is valid. 1033 * In vanilla and development modes, when signature test is complete 1034 * HW sets BIT_OTP_SIGNATURE_ERR_TALYN_MB. 1035 * In production mode BIT_OTP_SIGNATURE_ERR_TALYN_MB remains 0, poll 1036 * for signature status change to 2 or 3. 1037 */ 1038 do { 1039 otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1); 1040 signature_status = WIL_GET_BITS(otp_hw, 8, 9); 1041 otp_signature_err = otp_hw & BIT_OTP_SIGNATURE_ERR_TALYN_MB; 1042 1043 if (otp_signature_err && 1044 signature_status == WIL_SIG_STATUS_VANILLA) { 1045 wil->boot_config = WIL_BOOT_VANILLA; 1046 break; 1047 } 1048 if (otp_signature_err && 1049 signature_status == WIL_SIG_STATUS_DEVELOPMENT) { 1050 wil->boot_config = WIL_BOOT_DEVELOPMENT; 1051 break; 1052 } 1053 if (!otp_signature_err && 1054 signature_status == WIL_SIG_STATUS_PRODUCTION) { 1055 wil->boot_config = WIL_BOOT_PRODUCTION; 1056 break; 1057 } 1058 if (!otp_signature_err && 1059 signature_status == 1060 WIL_SIG_STATUS_CORRUPTED_PRODUCTION) { 1061 /* Unrecognized OTP signature found. Possibly a 1062 * corrupted production signature, access control 1063 * is applied as in production mode, therefore 1064 * do not fail 1065 */ 1066 wil->boot_config = WIL_BOOT_PRODUCTION; 1067 break; 1068 } 1069 if (delay++ > OTP_HW_COUNT) 1070 break; 1071 1072 usleep_range(OTP_HW_DELAY, OTP_HW_DELAY + 10); 1073 } while (!otp_signature_err && signature_status == 0); 1074 1075 if (wil->boot_config == WIL_BOOT_ERR) { 1076 wil_err(wil, 1077 "invalid boot config, signature_status %d otp_signature_err %d\n", 1078 signature_status, otp_signature_err); 1079 return -ETIME; 1080 } 1081 1082 wil_dbg_misc(wil, 1083 "signature test done in %d usec, otp_hw 0x%x, boot_config %d\n", 1084 delay * OTP_HW_DELAY, otp_hw, wil->boot_config); 1085 1086 if (wil->boot_config == WIL_BOOT_VANILLA) 1087 /* Assuming not SPI boot (currently not supported) */ 1088 goto out; 1089 1090 hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB; 1091 delay = 0; 1092 1093 while (!hw_section_done) { 1094 msleep(RST_DELAY); 1095 1096 otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1); 1097 hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB; 1098 1099 if (delay++ > RST_COUNT) { 1100 wil_err(wil, "TO waiting for hw_section_done\n"); 1101 return -ETIME; 1102 } 1103 } 1104 1105 wil_dbg_misc(wil, "HW section done in %d ms\n", delay * RST_DELAY); 1106 1107 otp_qc_secured = wil_r(wil, RGF_OTP_QC_SECURED); 1108 wil->secured_boot = otp_qc_secured & BIT_BOOT_FROM_ROM ? 1 : 0; 1109 wil_dbg_misc(wil, "secured boot is %sabled\n", 1110 wil->secured_boot ? "en" : "dis"); 1111 1112 out: 1113 wil_dbg_misc(wil, "Reset completed\n"); 1114 1115 return 0; 1116 } 1117 1118 static int wil_target_reset(struct wil6210_priv *wil, int no_flash) 1119 { 1120 u32 x; 1121 int rc; 1122 1123 wil_dbg_misc(wil, "Resetting \"%s\"...\n", wil->hw_name); 1124 1125 if (wil->hw_version < HW_VER_TALYN) { 1126 /* Clear MAC link up */ 1127 wil_s(wil, RGF_HP_CTRL, BIT(15)); 1128 wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0, 1129 BIT_HPAL_PERST_FROM_PAD); 1130 wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0, BIT_CAR_PERST_RST); 1131 } 1132 1133 wil_halt_cpu(wil); 1134 1135 if (!no_flash) { 1136 /* clear all boot loader "ready" bits */ 1137 wil_w(wil, RGF_USER_BL + 1138 offsetof(struct bl_dedicated_registers_v0, 1139 boot_loader_ready), 0); 1140 /* this should be safe to write even with old BLs */ 1141 wil_w(wil, RGF_USER_BL + 1142 offsetof(struct bl_dedicated_registers_v1, 1143 bl_shutdown_handshake), 0); 1144 } 1145 /* Clear Fw Download notification */ 1146 wil_c(wil, RGF_USER_USAGE_6, BIT(0)); 1147 1148 wil_s(wil, RGF_CAF_OSC_CONTROL, BIT_CAF_OSC_XTAL_EN); 1149 /* XTAL stabilization should take about 3ms */ 1150 usleep_range(5000, 7000); 1151 x = wil_r(wil, RGF_CAF_PLL_LOCK_STATUS); 1152 if (!(x & BIT_CAF_OSC_DIG_XTAL_STABLE)) { 1153 wil_err(wil, "Xtal stabilization timeout\n" 1154 "RGF_CAF_PLL_LOCK_STATUS = 0x%08x\n", x); 1155 return -ETIME; 1156 } 1157 /* switch 10k to XTAL*/ 1158 wil_c(wil, RGF_USER_SPARROW_M_4, BIT_SPARROW_M_4_SEL_SLEEP_OR_REF); 1159 /* 40 MHz */ 1160 wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_CAR_AHB_SW_SEL); 1161 1162 wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x3ff81f); 1163 wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0xf); 1164 1165 if (wil->hw_version >= HW_VER_TALYN_MB) { 1166 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x7e000000); 1167 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f); 1168 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0xc00000f0); 1169 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00); 1170 } else { 1171 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0xfe000000); 1172 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f); 1173 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x000000f0); 1174 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00); 1175 } 1176 1177 wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x0); 1178 wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0x0); 1179 1180 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0); 1181 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0); 1182 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0); 1183 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0); 1184 1185 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x00000003); 1186 /* reset A2 PCIE AHB */ 1187 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x00008000); 1188 1189 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0); 1190 1191 if (wil->hw_version == HW_VER_TALYN_MB) 1192 rc = wil_wait_device_ready_talyn_mb(wil); 1193 else 1194 rc = wil_wait_device_ready(wil, no_flash); 1195 if (rc) 1196 return rc; 1197 1198 wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_RST_PWGD); 1199 1200 /* enable fix for HW bug related to the SA/DA swap in AP Rx */ 1201 wil_s(wil, RGF_DMA_OFUL_NID_0, BIT_DMA_OFUL_NID_0_RX_EXT_TR_EN | 1202 BIT_DMA_OFUL_NID_0_RX_EXT_A3_SRC); 1203 1204 if (wil->hw_version < HW_VER_TALYN_MB && no_flash) { 1205 /* Reset OTP HW vectors to fit 40MHz */ 1206 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME1, 0x60001); 1207 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME2, 0x20027); 1208 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME3, 0x1); 1209 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME4, 0x20027); 1210 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME5, 0x30003); 1211 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME6, 0x20002); 1212 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME7, 0x60001); 1213 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME8, 0x60001); 1214 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME9, 0x60001); 1215 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME10, 0x60001); 1216 wil_w(wil, RGF_USER_XPM_RD_DOUT_SAMPLE_TIME, 0x57); 1217 } 1218 1219 return 0; 1220 } 1221 1222 static void wil_collect_fw_info(struct wil6210_priv *wil) 1223 { 1224 struct wiphy *wiphy = wil_to_wiphy(wil); 1225 u8 retry_short; 1226 int rc; 1227 1228 wil_refresh_fw_capabilities(wil); 1229 1230 rc = wmi_get_mgmt_retry(wil, &retry_short); 1231 if (!rc) { 1232 wiphy->retry_short = retry_short; 1233 wil_dbg_misc(wil, "FW retry_short: %d\n", retry_short); 1234 } 1235 } 1236 1237 void wil_refresh_fw_capabilities(struct wil6210_priv *wil) 1238 { 1239 struct wiphy *wiphy = wil_to_wiphy(wil); 1240 int features; 1241 1242 wil->keep_radio_on_during_sleep = 1243 test_bit(WIL_PLATFORM_CAPA_RADIO_ON_IN_SUSPEND, 1244 wil->platform_capa) && 1245 test_bit(WMI_FW_CAPABILITY_D3_SUSPEND, wil->fw_capabilities); 1246 1247 wil_info(wil, "keep_radio_on_during_sleep (%d)\n", 1248 wil->keep_radio_on_during_sleep); 1249 1250 if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities)) 1251 wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM; 1252 else 1253 wiphy->signal_type = CFG80211_SIGNAL_TYPE_UNSPEC; 1254 1255 if (test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities)) { 1256 wiphy->max_sched_scan_reqs = 1; 1257 wiphy->max_sched_scan_ssids = WMI_MAX_PNO_SSID_NUM; 1258 wiphy->max_match_sets = WMI_MAX_PNO_SSID_NUM; 1259 wiphy->max_sched_scan_ie_len = WMI_MAX_IE_LEN; 1260 wiphy->max_sched_scan_plans = WMI_MAX_PLANS_NUM; 1261 } 1262 1263 if (test_bit(WMI_FW_CAPABILITY_TX_REQ_EXT, wil->fw_capabilities)) 1264 wiphy->flags |= WIPHY_FLAG_OFFCHAN_TX; 1265 1266 if (wil->platform_ops.set_features) { 1267 features = (test_bit(WMI_FW_CAPABILITY_REF_CLOCK_CONTROL, 1268 wil->fw_capabilities) && 1269 test_bit(WIL_PLATFORM_CAPA_EXT_CLK, 1270 wil->platform_capa)) ? 1271 BIT(WIL_PLATFORM_FEATURE_FW_EXT_CLK_CONTROL) : 0; 1272 1273 if (wil->n_msi == 3) 1274 features |= BIT(WIL_PLATFORM_FEATURE_TRIPLE_MSI); 1275 1276 wil->platform_ops.set_features(wil->platform_handle, features); 1277 } 1278 1279 if (test_bit(WMI_FW_CAPABILITY_BACK_WIN_SIZE_64, 1280 wil->fw_capabilities)) { 1281 wil->max_agg_wsize = WIL_MAX_AGG_WSIZE_64; 1282 wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE_128; 1283 } else { 1284 wil->max_agg_wsize = WIL_MAX_AGG_WSIZE; 1285 wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE; 1286 } 1287 1288 update_supported_bands(wil); 1289 } 1290 1291 void wil_mbox_ring_le2cpus(struct wil6210_mbox_ring *r) 1292 { 1293 le32_to_cpus(&r->base); 1294 le16_to_cpus(&r->entry_size); 1295 le16_to_cpus(&r->size); 1296 le32_to_cpus(&r->tail); 1297 le32_to_cpus(&r->head); 1298 } 1299 1300 /* construct actual board file name to use */ 1301 void wil_get_board_file(struct wil6210_priv *wil, char *buf, size_t len) 1302 { 1303 const char *board_file; 1304 const char *wil_talyn_fw_name = ftm_mode ? WIL_FW_NAME_FTM_TALYN : 1305 WIL_FW_NAME_TALYN; 1306 1307 if (wil->board_file) { 1308 board_file = wil->board_file; 1309 } else { 1310 /* If specific FW file is used for Talyn, 1311 * use specific board file 1312 */ 1313 if (strcmp(wil->wil_fw_name, wil_talyn_fw_name) == 0) 1314 board_file = WIL_BRD_NAME_TALYN; 1315 else 1316 board_file = WIL_BOARD_FILE_NAME; 1317 } 1318 1319 strlcpy(buf, board_file, len); 1320 } 1321 1322 static int wil_get_bl_info(struct wil6210_priv *wil) 1323 { 1324 struct net_device *ndev = wil->main_ndev; 1325 struct wiphy *wiphy = wil_to_wiphy(wil); 1326 union { 1327 struct bl_dedicated_registers_v0 bl0; 1328 struct bl_dedicated_registers_v1 bl1; 1329 } bl; 1330 u32 bl_ver; 1331 u8 *mac; 1332 u16 rf_status; 1333 1334 wil_memcpy_fromio_32(&bl, wil->csr + HOSTADDR(RGF_USER_BL), 1335 sizeof(bl)); 1336 bl_ver = le32_to_cpu(bl.bl0.boot_loader_struct_version); 1337 mac = bl.bl0.mac_address; 1338 1339 if (bl_ver == 0) { 1340 le32_to_cpus(&bl.bl0.rf_type); 1341 le32_to_cpus(&bl.bl0.baseband_type); 1342 rf_status = 0; /* actually, unknown */ 1343 wil_info(wil, 1344 "Boot Loader struct v%d: MAC = %pM RF = 0x%08x bband = 0x%08x\n", 1345 bl_ver, mac, 1346 bl.bl0.rf_type, bl.bl0.baseband_type); 1347 wil_info(wil, "Boot Loader build unknown for struct v0\n"); 1348 } else { 1349 le16_to_cpus(&bl.bl1.rf_type); 1350 rf_status = le16_to_cpu(bl.bl1.rf_status); 1351 le32_to_cpus(&bl.bl1.baseband_type); 1352 le16_to_cpus(&bl.bl1.bl_version_subminor); 1353 le16_to_cpus(&bl.bl1.bl_version_build); 1354 wil_info(wil, 1355 "Boot Loader struct v%d: MAC = %pM RF = 0x%04x (status 0x%04x) bband = 0x%08x\n", 1356 bl_ver, mac, 1357 bl.bl1.rf_type, rf_status, 1358 bl.bl1.baseband_type); 1359 wil_info(wil, "Boot Loader build %d.%d.%d.%d\n", 1360 bl.bl1.bl_version_major, bl.bl1.bl_version_minor, 1361 bl.bl1.bl_version_subminor, bl.bl1.bl_version_build); 1362 } 1363 1364 if (!is_valid_ether_addr(mac)) { 1365 wil_err(wil, "BL: Invalid MAC %pM\n", mac); 1366 return -EINVAL; 1367 } 1368 1369 ether_addr_copy(ndev->perm_addr, mac); 1370 ether_addr_copy(wiphy->perm_addr, mac); 1371 if (!is_valid_ether_addr(ndev->dev_addr)) 1372 ether_addr_copy(ndev->dev_addr, mac); 1373 1374 if (rf_status) {/* bad RF cable? */ 1375 wil_err(wil, "RF communication error 0x%04x", 1376 rf_status); 1377 return -EAGAIN; 1378 } 1379 1380 return 0; 1381 } 1382 1383 static void wil_bl_crash_info(struct wil6210_priv *wil, bool is_err) 1384 { 1385 u32 bl_assert_code, bl_assert_blink, bl_magic_number; 1386 u32 bl_ver = wil_r(wil, RGF_USER_BL + 1387 offsetof(struct bl_dedicated_registers_v0, 1388 boot_loader_struct_version)); 1389 1390 if (bl_ver < 2) 1391 return; 1392 1393 bl_assert_code = wil_r(wil, RGF_USER_BL + 1394 offsetof(struct bl_dedicated_registers_v1, 1395 bl_assert_code)); 1396 bl_assert_blink = wil_r(wil, RGF_USER_BL + 1397 offsetof(struct bl_dedicated_registers_v1, 1398 bl_assert_blink)); 1399 bl_magic_number = wil_r(wil, RGF_USER_BL + 1400 offsetof(struct bl_dedicated_registers_v1, 1401 bl_magic_number)); 1402 1403 if (is_err) { 1404 wil_err(wil, 1405 "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n", 1406 bl_assert_code, bl_assert_blink, bl_magic_number); 1407 } else { 1408 wil_dbg_misc(wil, 1409 "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n", 1410 bl_assert_code, bl_assert_blink, bl_magic_number); 1411 } 1412 } 1413 1414 static int wil_get_otp_info(struct wil6210_priv *wil) 1415 { 1416 struct net_device *ndev = wil->main_ndev; 1417 struct wiphy *wiphy = wil_to_wiphy(wil); 1418 u8 mac[8]; 1419 int mac_addr; 1420 1421 /* OEM MAC has precedence */ 1422 mac_addr = RGF_OTP_OEM_MAC; 1423 wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr), sizeof(mac)); 1424 1425 if (is_valid_ether_addr(mac)) { 1426 wil_info(wil, "using OEM MAC %pM\n", mac); 1427 } else { 1428 if (wil->hw_version >= HW_VER_TALYN_MB) 1429 mac_addr = RGF_OTP_MAC_TALYN_MB; 1430 else 1431 mac_addr = RGF_OTP_MAC; 1432 1433 wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr), 1434 sizeof(mac)); 1435 } 1436 1437 if (!is_valid_ether_addr(mac)) { 1438 wil_err(wil, "Invalid MAC %pM\n", mac); 1439 return -EINVAL; 1440 } 1441 1442 ether_addr_copy(ndev->perm_addr, mac); 1443 ether_addr_copy(wiphy->perm_addr, mac); 1444 if (!is_valid_ether_addr(ndev->dev_addr)) 1445 ether_addr_copy(ndev->dev_addr, mac); 1446 1447 return 0; 1448 } 1449 1450 static int wil_wait_for_fw_ready(struct wil6210_priv *wil) 1451 { 1452 ulong to = msecs_to_jiffies(2000); 1453 ulong left = wait_for_completion_timeout(&wil->wmi_ready, to); 1454 1455 if (0 == left) { 1456 wil_err(wil, "Firmware not ready\n"); 1457 return -ETIME; 1458 } else { 1459 wil_info(wil, "FW ready after %d ms. HW version 0x%08x\n", 1460 jiffies_to_msecs(to-left), wil->hw_version); 1461 } 1462 return 0; 1463 } 1464 1465 void wil_abort_scan(struct wil6210_vif *vif, bool sync) 1466 { 1467 struct wil6210_priv *wil = vif_to_wil(vif); 1468 int rc; 1469 struct cfg80211_scan_info info = { 1470 .aborted = true, 1471 }; 1472 1473 lockdep_assert_held(&wil->vif_mutex); 1474 1475 if (!vif->scan_request) 1476 return; 1477 1478 wil_dbg_misc(wil, "Abort scan_request 0x%p\n", vif->scan_request); 1479 del_timer_sync(&vif->scan_timer); 1480 mutex_unlock(&wil->vif_mutex); 1481 rc = wmi_abort_scan(vif); 1482 if (!rc && sync) 1483 wait_event_interruptible_timeout(wil->wq, !vif->scan_request, 1484 msecs_to_jiffies( 1485 WAIT_FOR_SCAN_ABORT_MS)); 1486 1487 mutex_lock(&wil->vif_mutex); 1488 if (vif->scan_request) { 1489 cfg80211_scan_done(vif->scan_request, &info); 1490 vif->scan_request = NULL; 1491 } 1492 } 1493 1494 void wil_abort_scan_all_vifs(struct wil6210_priv *wil, bool sync) 1495 { 1496 int i; 1497 1498 lockdep_assert_held(&wil->vif_mutex); 1499 1500 for (i = 0; i < GET_MAX_VIFS(wil); i++) { 1501 struct wil6210_vif *vif = wil->vifs[i]; 1502 1503 if (vif) 1504 wil_abort_scan(vif, sync); 1505 } 1506 } 1507 1508 int wil_ps_update(struct wil6210_priv *wil, enum wmi_ps_profile_type ps_profile) 1509 { 1510 int rc; 1511 1512 if (!test_bit(WMI_FW_CAPABILITY_PS_CONFIG, wil->fw_capabilities)) { 1513 wil_err(wil, "set_power_mgmt not supported\n"); 1514 return -EOPNOTSUPP; 1515 } 1516 1517 rc = wmi_ps_dev_profile_cfg(wil, ps_profile); 1518 if (rc) 1519 wil_err(wil, "wmi_ps_dev_profile_cfg failed (%d)\n", rc); 1520 else 1521 wil->ps_profile = ps_profile; 1522 1523 return rc; 1524 } 1525 1526 static void wil_pre_fw_config(struct wil6210_priv *wil) 1527 { 1528 wil_clear_fw_log_addr(wil); 1529 /* Mark FW as loaded from host */ 1530 wil_s(wil, RGF_USER_USAGE_6, 1); 1531 1532 /* clear any interrupts which on-card-firmware 1533 * may have set 1534 */ 1535 wil6210_clear_irq(wil); 1536 /* CAF_ICR - clear and mask */ 1537 /* it is W1C, clear by writing back same value */ 1538 if (wil->hw_version < HW_VER_TALYN_MB) { 1539 wil_s(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, ICR), 0); 1540 wil_w(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, IMV), ~0); 1541 } 1542 /* clear PAL_UNIT_ICR (potential D0->D3 leftover) 1543 * In Talyn-MB host cannot access this register due to 1544 * access control, hence PAL_UNIT_ICR is cleared by the FW 1545 */ 1546 if (wil->hw_version < HW_VER_TALYN_MB) 1547 wil_s(wil, RGF_PAL_UNIT_ICR + offsetof(struct RGF_ICR, ICR), 1548 0); 1549 1550 if (wil->fw_calib_result > 0) { 1551 __le32 val = cpu_to_le32(wil->fw_calib_result | 1552 (CALIB_RESULT_SIGNATURE << 8)); 1553 wil_w(wil, RGF_USER_FW_CALIB_RESULT, (u32 __force)val); 1554 } 1555 } 1556 1557 static int wil_restore_vifs(struct wil6210_priv *wil) 1558 { 1559 struct wil6210_vif *vif; 1560 struct net_device *ndev; 1561 struct wireless_dev *wdev; 1562 int i, rc; 1563 1564 for (i = 0; i < GET_MAX_VIFS(wil); i++) { 1565 vif = wil->vifs[i]; 1566 if (!vif) 1567 continue; 1568 vif->ap_isolate = 0; 1569 if (vif->mid) { 1570 ndev = vif_to_ndev(vif); 1571 wdev = vif_to_wdev(vif); 1572 rc = wmi_port_allocate(wil, vif->mid, ndev->dev_addr, 1573 wdev->iftype); 1574 if (rc) { 1575 wil_err(wil, "fail to restore VIF %d type %d, rc %d\n", 1576 i, wdev->iftype, rc); 1577 return rc; 1578 } 1579 } 1580 } 1581 1582 return 0; 1583 } 1584 1585 /* 1586 * Clear FW and ucode log start addr to indicate FW log is not ready. The host 1587 * driver clears the addresses before FW starts and FW initializes the address 1588 * when it is ready to send logs. 1589 */ 1590 void wil_clear_fw_log_addr(struct wil6210_priv *wil) 1591 { 1592 /* FW log addr */ 1593 wil_w(wil, RGF_USER_USAGE_1, 0); 1594 /* ucode log addr */ 1595 wil_w(wil, RGF_USER_USAGE_2, 0); 1596 wil_dbg_misc(wil, "Cleared FW and ucode log address"); 1597 } 1598 1599 /* 1600 * We reset all the structures, and we reset the UMAC. 1601 * After calling this routine, you're expected to reload 1602 * the firmware. 1603 */ 1604 int wil_reset(struct wil6210_priv *wil, bool load_fw) 1605 { 1606 int rc, i; 1607 unsigned long status_flags = BIT(wil_status_resetting); 1608 int no_flash; 1609 struct wil6210_vif *vif; 1610 1611 wil_dbg_misc(wil, "reset\n"); 1612 1613 WARN_ON(!mutex_is_locked(&wil->mutex)); 1614 WARN_ON(test_bit(wil_status_napi_en, wil->status)); 1615 1616 if (debug_fw) { 1617 static const u8 mac[ETH_ALEN] = { 1618 0x00, 0xde, 0xad, 0x12, 0x34, 0x56, 1619 }; 1620 struct net_device *ndev = wil->main_ndev; 1621 1622 ether_addr_copy(ndev->perm_addr, mac); 1623 ether_addr_copy(ndev->dev_addr, ndev->perm_addr); 1624 return 0; 1625 } 1626 1627 if (wil->hw_version == HW_VER_UNKNOWN) 1628 return -ENODEV; 1629 1630 if (test_bit(WIL_PLATFORM_CAPA_T_PWR_ON_0, wil->platform_capa) && 1631 wil->hw_version < HW_VER_TALYN_MB) { 1632 wil_dbg_misc(wil, "Notify FW to set T_POWER_ON=0\n"); 1633 wil_s(wil, RGF_USER_USAGE_8, BIT_USER_SUPPORT_T_POWER_ON_0); 1634 } 1635 1636 if (test_bit(WIL_PLATFORM_CAPA_EXT_CLK, wil->platform_capa)) { 1637 wil_dbg_misc(wil, "Notify FW on ext clock configuration\n"); 1638 wil_s(wil, RGF_USER_USAGE_8, BIT_USER_EXT_CLK); 1639 } 1640 1641 if (wil->platform_ops.notify) { 1642 rc = wil->platform_ops.notify(wil->platform_handle, 1643 WIL_PLATFORM_EVT_PRE_RESET); 1644 if (rc) 1645 wil_err(wil, "PRE_RESET platform notify failed, rc %d\n", 1646 rc); 1647 } 1648 1649 set_bit(wil_status_resetting, wil->status); 1650 mutex_lock(&wil->vif_mutex); 1651 wil_abort_scan_all_vifs(wil, false); 1652 mutex_unlock(&wil->vif_mutex); 1653 1654 for (i = 0; i < GET_MAX_VIFS(wil); i++) { 1655 vif = wil->vifs[i]; 1656 if (vif) { 1657 cancel_work_sync(&vif->disconnect_worker); 1658 wil6210_disconnect(vif, NULL, 1659 WLAN_REASON_DEAUTH_LEAVING); 1660 vif->ptk_rekey_state = WIL_REKEY_IDLE; 1661 } 1662 } 1663 wil_bcast_fini_all(wil); 1664 1665 /* Disable device led before reset*/ 1666 wmi_led_cfg(wil, false); 1667 1668 /* prevent NAPI from being scheduled and prevent wmi commands */ 1669 mutex_lock(&wil->wmi_mutex); 1670 if (test_bit(wil_status_suspending, wil->status)) 1671 status_flags |= BIT(wil_status_suspending); 1672 bitmap_and(wil->status, wil->status, &status_flags, 1673 wil_status_last); 1674 wil_dbg_misc(wil, "wil->status (0x%lx)\n", *wil->status); 1675 mutex_unlock(&wil->wmi_mutex); 1676 1677 wil_mask_irq(wil); 1678 1679 wmi_event_flush(wil); 1680 1681 flush_workqueue(wil->wq_service); 1682 flush_workqueue(wil->wmi_wq); 1683 1684 no_flash = test_bit(hw_capa_no_flash, wil->hw_capa); 1685 if (!no_flash) 1686 wil_bl_crash_info(wil, false); 1687 wil_disable_irq(wil); 1688 rc = wil_target_reset(wil, no_flash); 1689 wil6210_clear_irq(wil); 1690 wil_enable_irq(wil); 1691 wil->txrx_ops.rx_fini(wil); 1692 wil->txrx_ops.tx_fini(wil); 1693 if (rc) { 1694 if (!no_flash) 1695 wil_bl_crash_info(wil, true); 1696 goto out; 1697 } 1698 1699 if (no_flash) { 1700 rc = wil_get_otp_info(wil); 1701 } else { 1702 rc = wil_get_bl_info(wil); 1703 if (rc == -EAGAIN && !load_fw) 1704 /* ignore RF error if not going up */ 1705 rc = 0; 1706 } 1707 if (rc) 1708 goto out; 1709 1710 wil_set_oob_mode(wil, oob_mode); 1711 if (load_fw) { 1712 char board_file[WIL_BOARD_FILE_MAX_NAMELEN]; 1713 1714 if (wil->secured_boot) { 1715 wil_err(wil, "secured boot is not supported\n"); 1716 return -ENOTSUPP; 1717 } 1718 1719 board_file[0] = '\0'; 1720 wil_get_board_file(wil, board_file, sizeof(board_file)); 1721 wil_info(wil, "Use firmware <%s> + board <%s>\n", 1722 wil->wil_fw_name, board_file); 1723 1724 if (!no_flash) 1725 wil_bl_prepare_halt(wil); 1726 1727 wil_halt_cpu(wil); 1728 memset(wil->fw_version, 0, sizeof(wil->fw_version)); 1729 /* Loading f/w from the file */ 1730 rc = wil_request_firmware(wil, wil->wil_fw_name, true); 1731 if (rc) 1732 goto out; 1733 if (wil->num_of_brd_entries) 1734 rc = wil_request_board(wil, board_file); 1735 else 1736 rc = wil_request_firmware(wil, board_file, true); 1737 if (rc) 1738 goto out; 1739 1740 wil_pre_fw_config(wil); 1741 wil_release_cpu(wil); 1742 } 1743 1744 /* init after reset */ 1745 reinit_completion(&wil->wmi_ready); 1746 reinit_completion(&wil->wmi_call); 1747 reinit_completion(&wil->halp.comp); 1748 1749 clear_bit(wil_status_resetting, wil->status); 1750 1751 if (load_fw) { 1752 wil_unmask_irq(wil); 1753 1754 /* we just started MAC, wait for FW ready */ 1755 rc = wil_wait_for_fw_ready(wil); 1756 if (rc) 1757 return rc; 1758 1759 /* check FW is responsive */ 1760 rc = wmi_echo(wil); 1761 if (rc) { 1762 wil_err(wil, "wmi_echo failed, rc %d\n", rc); 1763 return rc; 1764 } 1765 1766 wil->txrx_ops.configure_interrupt_moderation(wil); 1767 1768 /* Enable OFU rdy valid bug fix, to prevent hang in oful34_rx 1769 * while there is back-pressure from Host during RX 1770 */ 1771 if (wil->hw_version >= HW_VER_TALYN_MB) 1772 wil_s(wil, RGF_DMA_MISC_CTL, 1773 BIT_OFUL34_RDY_VALID_BUG_FIX_EN); 1774 1775 rc = wil_restore_vifs(wil); 1776 if (rc) { 1777 wil_err(wil, "failed to restore vifs, rc %d\n", rc); 1778 return rc; 1779 } 1780 1781 wil_collect_fw_info(wil); 1782 1783 if (wil->ps_profile != WMI_PS_PROFILE_TYPE_DEFAULT) 1784 wil_ps_update(wil, wil->ps_profile); 1785 1786 if (wil->platform_ops.notify) { 1787 rc = wil->platform_ops.notify(wil->platform_handle, 1788 WIL_PLATFORM_EVT_FW_RDY); 1789 if (rc) { 1790 wil_err(wil, "FW_RDY notify failed, rc %d\n", 1791 rc); 1792 rc = 0; 1793 } 1794 } 1795 } 1796 1797 return rc; 1798 1799 out: 1800 clear_bit(wil_status_resetting, wil->status); 1801 return rc; 1802 } 1803 1804 void wil_fw_error_recovery(struct wil6210_priv *wil) 1805 { 1806 wil_dbg_misc(wil, "starting fw error recovery\n"); 1807 1808 if (test_bit(wil_status_resetting, wil->status)) { 1809 wil_info(wil, "Reset already in progress\n"); 1810 return; 1811 } 1812 1813 wil->recovery_state = fw_recovery_pending; 1814 schedule_work(&wil->fw_error_worker); 1815 } 1816 1817 int __wil_up(struct wil6210_priv *wil) 1818 { 1819 struct net_device *ndev = wil->main_ndev; 1820 struct wireless_dev *wdev = ndev->ieee80211_ptr; 1821 int rc; 1822 1823 WARN_ON(!mutex_is_locked(&wil->mutex)); 1824 1825 down_write(&wil->mem_lock); 1826 rc = wil_reset(wil, true); 1827 up_write(&wil->mem_lock); 1828 if (rc) 1829 return rc; 1830 1831 /* Rx RING. After MAC and beacon */ 1832 if (rx_ring_order == 0) 1833 rx_ring_order = wil->hw_version < HW_VER_TALYN_MB ? 1834 WIL_RX_RING_SIZE_ORDER_DEFAULT : 1835 WIL_RX_RING_SIZE_ORDER_TALYN_DEFAULT; 1836 1837 rc = wil->txrx_ops.rx_init(wil, rx_ring_order); 1838 if (rc) 1839 return rc; 1840 1841 rc = wil->txrx_ops.tx_init(wil); 1842 if (rc) 1843 return rc; 1844 1845 switch (wdev->iftype) { 1846 case NL80211_IFTYPE_STATION: 1847 wil_dbg_misc(wil, "type: STATION\n"); 1848 ndev->type = ARPHRD_ETHER; 1849 break; 1850 case NL80211_IFTYPE_AP: 1851 wil_dbg_misc(wil, "type: AP\n"); 1852 ndev->type = ARPHRD_ETHER; 1853 break; 1854 case NL80211_IFTYPE_P2P_CLIENT: 1855 wil_dbg_misc(wil, "type: P2P_CLIENT\n"); 1856 ndev->type = ARPHRD_ETHER; 1857 break; 1858 case NL80211_IFTYPE_P2P_GO: 1859 wil_dbg_misc(wil, "type: P2P_GO\n"); 1860 ndev->type = ARPHRD_ETHER; 1861 break; 1862 case NL80211_IFTYPE_MONITOR: 1863 wil_dbg_misc(wil, "type: Monitor\n"); 1864 ndev->type = ARPHRD_IEEE80211_RADIOTAP; 1865 /* ARPHRD_IEEE80211 or ARPHRD_IEEE80211_RADIOTAP ? */ 1866 break; 1867 default: 1868 return -EOPNOTSUPP; 1869 } 1870 1871 /* MAC address - pre-requisite for other commands */ 1872 wmi_set_mac_address(wil, ndev->dev_addr); 1873 1874 wil_dbg_misc(wil, "NAPI enable\n"); 1875 napi_enable(&wil->napi_rx); 1876 napi_enable(&wil->napi_tx); 1877 set_bit(wil_status_napi_en, wil->status); 1878 1879 wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS); 1880 1881 return 0; 1882 } 1883 1884 int wil_up(struct wil6210_priv *wil) 1885 { 1886 int rc; 1887 1888 wil_dbg_misc(wil, "up\n"); 1889 1890 mutex_lock(&wil->mutex); 1891 rc = __wil_up(wil); 1892 mutex_unlock(&wil->mutex); 1893 1894 return rc; 1895 } 1896 1897 int __wil_down(struct wil6210_priv *wil) 1898 { 1899 int rc; 1900 WARN_ON(!mutex_is_locked(&wil->mutex)); 1901 1902 set_bit(wil_status_resetting, wil->status); 1903 1904 wil6210_bus_request(wil, 0); 1905 1906 wil_disable_irq(wil); 1907 if (test_and_clear_bit(wil_status_napi_en, wil->status)) { 1908 napi_disable(&wil->napi_rx); 1909 napi_disable(&wil->napi_tx); 1910 wil_dbg_misc(wil, "NAPI disable\n"); 1911 } 1912 wil_enable_irq(wil); 1913 1914 mutex_lock(&wil->vif_mutex); 1915 wil_p2p_stop_radio_operations(wil); 1916 wil_abort_scan_all_vifs(wil, false); 1917 mutex_unlock(&wil->vif_mutex); 1918 1919 down_write(&wil->mem_lock); 1920 rc = wil_reset(wil, false); 1921 up_write(&wil->mem_lock); 1922 1923 return rc; 1924 } 1925 1926 int wil_down(struct wil6210_priv *wil) 1927 { 1928 int rc; 1929 1930 wil_dbg_misc(wil, "down\n"); 1931 1932 wil_set_recovery_state(wil, fw_recovery_idle); 1933 mutex_lock(&wil->mutex); 1934 rc = __wil_down(wil); 1935 mutex_unlock(&wil->mutex); 1936 1937 return rc; 1938 } 1939 1940 int wil_find_cid(struct wil6210_priv *wil, u8 mid, const u8 *mac) 1941 { 1942 int i; 1943 int rc = -ENOENT; 1944 1945 for (i = 0; i < wil->max_assoc_sta; i++) { 1946 if (wil->sta[i].mid == mid && 1947 wil->sta[i].status != wil_sta_unused && 1948 ether_addr_equal(wil->sta[i].addr, mac)) { 1949 rc = i; 1950 break; 1951 } 1952 } 1953 1954 return rc; 1955 } 1956 1957 void wil_halp_vote(struct wil6210_priv *wil) 1958 { 1959 unsigned long rc; 1960 unsigned long to_jiffies = msecs_to_jiffies(WAIT_FOR_HALP_VOTE_MS); 1961 1962 if (wil->hw_version >= HW_VER_TALYN_MB) 1963 return; 1964 1965 mutex_lock(&wil->halp.lock); 1966 1967 wil_dbg_irq(wil, "halp_vote: start, HALP ref_cnt (%d)\n", 1968 wil->halp.ref_cnt); 1969 1970 if (++wil->halp.ref_cnt == 1) { 1971 reinit_completion(&wil->halp.comp); 1972 /* mark to IRQ context to handle HALP ICR */ 1973 wil->halp.handle_icr = true; 1974 wil6210_set_halp(wil); 1975 rc = wait_for_completion_timeout(&wil->halp.comp, to_jiffies); 1976 if (!rc) { 1977 wil_err(wil, "HALP vote timed out\n"); 1978 /* Mask HALP as done in case the interrupt is raised */ 1979 wil->halp.handle_icr = false; 1980 wil6210_mask_halp(wil); 1981 } else { 1982 wil_dbg_irq(wil, 1983 "halp_vote: HALP vote completed after %d ms\n", 1984 jiffies_to_msecs(to_jiffies - rc)); 1985 } 1986 } 1987 1988 wil_dbg_irq(wil, "halp_vote: end, HALP ref_cnt (%d)\n", 1989 wil->halp.ref_cnt); 1990 1991 mutex_unlock(&wil->halp.lock); 1992 } 1993 1994 void wil_halp_unvote(struct wil6210_priv *wil) 1995 { 1996 if (wil->hw_version >= HW_VER_TALYN_MB) 1997 return; 1998 1999 WARN_ON(wil->halp.ref_cnt == 0); 2000 2001 mutex_lock(&wil->halp.lock); 2002 2003 wil_dbg_irq(wil, "halp_unvote: start, HALP ref_cnt (%d)\n", 2004 wil->halp.ref_cnt); 2005 2006 if (--wil->halp.ref_cnt == 0) { 2007 wil6210_clear_halp(wil); 2008 wil_dbg_irq(wil, "HALP unvote\n"); 2009 } 2010 2011 wil_dbg_irq(wil, "halp_unvote:end, HALP ref_cnt (%d)\n", 2012 wil->halp.ref_cnt); 2013 2014 mutex_unlock(&wil->halp.lock); 2015 } 2016 2017 void wil_init_txrx_ops(struct wil6210_priv *wil) 2018 { 2019 if (wil->use_enhanced_dma_hw) 2020 wil_init_txrx_ops_edma(wil); 2021 else 2022 wil_init_txrx_ops_legacy_dma(wil); 2023 } 2024