xref: /openbmc/linux/drivers/net/wireless/ath/wil6210/main.c (revision 4b0aaacee51eb6592a03fdefd5ce97558518e291)
1 /*
2  * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
3  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/moduleparam.h>
19 #include <linux/if_arp.h>
20 #include <linux/etherdevice.h>
21 
22 #include "wil6210.h"
23 #include "txrx.h"
24 #include "txrx_edma.h"
25 #include "wmi.h"
26 #include "boot_loader.h"
27 
28 #define WAIT_FOR_HALP_VOTE_MS 100
29 #define WAIT_FOR_SCAN_ABORT_MS 1000
30 #define WIL_DEFAULT_NUM_RX_STATUS_RINGS 1
31 #define WIL_BOARD_FILE_MAX_NAMELEN 128
32 
33 bool debug_fw; /* = false; */
34 module_param(debug_fw, bool, 0444);
35 MODULE_PARM_DESC(debug_fw, " do not perform card reset. For FW debug");
36 
37 static u8 oob_mode;
38 module_param(oob_mode, byte, 0444);
39 MODULE_PARM_DESC(oob_mode,
40 		 " enable out of the box (OOB) mode in FW, for diagnostics and certification");
41 
42 bool no_fw_recovery;
43 module_param(no_fw_recovery, bool, 0644);
44 MODULE_PARM_DESC(no_fw_recovery, " disable automatic FW error recovery");
45 
46 /* if not set via modparam, will be set to default value of 1/8 of
47  * rx ring size during init flow
48  */
49 unsigned short rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_INIT;
50 module_param(rx_ring_overflow_thrsh, ushort, 0444);
51 MODULE_PARM_DESC(rx_ring_overflow_thrsh,
52 		 " RX ring overflow threshold in descriptors.");
53 
54 /* We allow allocation of more than 1 page buffers to support large packets.
55  * It is suboptimal behavior performance wise in case MTU above page size.
56  */
57 unsigned int mtu_max = TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
58 static int mtu_max_set(const char *val, const struct kernel_param *kp)
59 {
60 	int ret;
61 
62 	/* sets mtu_max directly. no need to restore it in case of
63 	 * illegal value since we assume this will fail insmod
64 	 */
65 	ret = param_set_uint(val, kp);
66 	if (ret)
67 		return ret;
68 
69 	if (mtu_max < 68 || mtu_max > WIL_MAX_ETH_MTU)
70 		ret = -EINVAL;
71 
72 	return ret;
73 }
74 
75 static const struct kernel_param_ops mtu_max_ops = {
76 	.set = mtu_max_set,
77 	.get = param_get_uint,
78 };
79 
80 module_param_cb(mtu_max, &mtu_max_ops, &mtu_max, 0444);
81 MODULE_PARM_DESC(mtu_max, " Max MTU value.");
82 
83 static uint rx_ring_order = WIL_RX_RING_SIZE_ORDER_DEFAULT;
84 static uint tx_ring_order = WIL_TX_RING_SIZE_ORDER_DEFAULT;
85 static uint bcast_ring_order = WIL_BCAST_RING_SIZE_ORDER_DEFAULT;
86 
87 static int ring_order_set(const char *val, const struct kernel_param *kp)
88 {
89 	int ret;
90 	uint x;
91 
92 	ret = kstrtouint(val, 0, &x);
93 	if (ret)
94 		return ret;
95 
96 	if ((x < WIL_RING_SIZE_ORDER_MIN) || (x > WIL_RING_SIZE_ORDER_MAX))
97 		return -EINVAL;
98 
99 	*((uint *)kp->arg) = x;
100 
101 	return 0;
102 }
103 
104 static const struct kernel_param_ops ring_order_ops = {
105 	.set = ring_order_set,
106 	.get = param_get_uint,
107 };
108 
109 module_param_cb(rx_ring_order, &ring_order_ops, &rx_ring_order, 0444);
110 MODULE_PARM_DESC(rx_ring_order, " Rx ring order; size = 1 << order");
111 module_param_cb(tx_ring_order, &ring_order_ops, &tx_ring_order, 0444);
112 MODULE_PARM_DESC(tx_ring_order, " Tx ring order; size = 1 << order");
113 module_param_cb(bcast_ring_order, &ring_order_ops, &bcast_ring_order, 0444);
114 MODULE_PARM_DESC(bcast_ring_order, " Bcast ring order; size = 1 << order");
115 
116 enum {
117 	WIL_BOOT_ERR,
118 	WIL_BOOT_VANILLA,
119 	WIL_BOOT_PRODUCTION,
120 	WIL_BOOT_DEVELOPMENT,
121 };
122 
123 enum {
124 	WIL_SIG_STATUS_VANILLA = 0x0,
125 	WIL_SIG_STATUS_DEVELOPMENT = 0x1,
126 	WIL_SIG_STATUS_PRODUCTION = 0x2,
127 	WIL_SIG_STATUS_CORRUPTED_PRODUCTION = 0x3,
128 };
129 
130 #define RST_DELAY (20) /* msec, for loop in @wil_wait_device_ready */
131 #define RST_COUNT (1 + 1000/RST_DELAY) /* round up to be above 1 sec total */
132 
133 #define PMU_READY_DELAY_MS (4) /* ms, for sleep in @wil_wait_device_ready */
134 
135 #define OTP_HW_DELAY (200) /* usec, loop in @wil_wait_device_ready_talyn_mb */
136 /* round up to be above 2 ms total */
137 #define OTP_HW_COUNT (1 + 2000 / OTP_HW_DELAY)
138 
139 /*
140  * Due to a hardware issue,
141  * one has to read/write to/from NIC in 32-bit chunks;
142  * regular memcpy_fromio and siblings will
143  * not work on 64-bit platform - it uses 64-bit transactions
144  *
145  * Force 32-bit transactions to enable NIC on 64-bit platforms
146  *
147  * To avoid byte swap on big endian host, __raw_{read|write}l
148  * should be used - {read|write}l would swap bytes to provide
149  * little endian on PCI value in host endianness.
150  */
151 void wil_memcpy_fromio_32(void *dst, const volatile void __iomem *src,
152 			  size_t count)
153 {
154 	u32 *d = dst;
155 	const volatile u32 __iomem *s = src;
156 
157 	for (; count >= 4; count -= 4)
158 		*d++ = __raw_readl(s++);
159 
160 	if (unlikely(count)) {
161 		/* count can be 1..3 */
162 		u32 tmp = __raw_readl(s);
163 
164 		memcpy(d, &tmp, count);
165 	}
166 }
167 
168 void wil_memcpy_toio_32(volatile void __iomem *dst, const void *src,
169 			size_t count)
170 {
171 	volatile u32 __iomem *d = dst;
172 	const u32 *s = src;
173 
174 	for (; count >= 4; count -= 4)
175 		__raw_writel(*s++, d++);
176 
177 	if (unlikely(count)) {
178 		/* count can be 1..3 */
179 		u32 tmp = 0;
180 
181 		memcpy(&tmp, s, count);
182 		__raw_writel(tmp, d);
183 	}
184 }
185 
186 static void wil_ring_fini_tx(struct wil6210_priv *wil, int id)
187 {
188 	struct wil_ring *ring = &wil->ring_tx[id];
189 	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
190 
191 	lockdep_assert_held(&wil->mutex);
192 
193 	if (!ring->va)
194 		return;
195 
196 	wil_dbg_misc(wil, "vring_fini_tx: id=%d\n", id);
197 
198 	spin_lock_bh(&txdata->lock);
199 	txdata->dot1x_open = false;
200 	txdata->mid = U8_MAX;
201 	txdata->enabled = 0; /* no Tx can be in progress or start anew */
202 	spin_unlock_bh(&txdata->lock);
203 	/* napi_synchronize waits for completion of the current NAPI but will
204 	 * not prevent the next NAPI run.
205 	 * Add a memory barrier to guarantee that txdata->enabled is zeroed
206 	 * before napi_synchronize so that the next scheduled NAPI will not
207 	 * handle this vring
208 	 */
209 	wmb();
210 	/* make sure NAPI won't touch this vring */
211 	if (test_bit(wil_status_napi_en, wil->status))
212 		napi_synchronize(&wil->napi_tx);
213 
214 	wil->txrx_ops.ring_fini_tx(wil, ring);
215 }
216 
217 static void wil_disconnect_cid(struct wil6210_vif *vif, int cid,
218 			       u16 reason_code, bool from_event)
219 __acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock)
220 {
221 	uint i;
222 	struct wil6210_priv *wil = vif_to_wil(vif);
223 	struct net_device *ndev = vif_to_ndev(vif);
224 	struct wireless_dev *wdev = vif_to_wdev(vif);
225 	struct wil_sta_info *sta = &wil->sta[cid];
226 
227 	might_sleep();
228 	wil_dbg_misc(wil, "disconnect_cid: CID %d, MID %d, status %d\n",
229 		     cid, sta->mid, sta->status);
230 	/* inform upper/lower layers */
231 	if (sta->status != wil_sta_unused) {
232 		if (vif->mid != sta->mid) {
233 			wil_err(wil, "STA MID mismatch with VIF MID(%d)\n",
234 				vif->mid);
235 			/* let FW override sta->mid but be more strict with
236 			 * user space requests
237 			 */
238 			if (!from_event)
239 				return;
240 		}
241 		if (!from_event) {
242 			bool del_sta = (wdev->iftype == NL80211_IFTYPE_AP) ?
243 						disable_ap_sme : false;
244 			wmi_disconnect_sta(vif, sta->addr, reason_code,
245 					   true, del_sta);
246 		}
247 
248 		switch (wdev->iftype) {
249 		case NL80211_IFTYPE_AP:
250 		case NL80211_IFTYPE_P2P_GO:
251 			/* AP-like interface */
252 			cfg80211_del_sta(ndev, sta->addr, GFP_KERNEL);
253 			break;
254 		default:
255 			break;
256 		}
257 		sta->status = wil_sta_unused;
258 		sta->mid = U8_MAX;
259 	}
260 	/* reorder buffers */
261 	for (i = 0; i < WIL_STA_TID_NUM; i++) {
262 		struct wil_tid_ampdu_rx *r;
263 
264 		spin_lock_bh(&sta->tid_rx_lock);
265 
266 		r = sta->tid_rx[i];
267 		sta->tid_rx[i] = NULL;
268 		wil_tid_ampdu_rx_free(wil, r);
269 
270 		spin_unlock_bh(&sta->tid_rx_lock);
271 	}
272 	/* crypto context */
273 	memset(sta->tid_crypto_rx, 0, sizeof(sta->tid_crypto_rx));
274 	memset(&sta->group_crypto_rx, 0, sizeof(sta->group_crypto_rx));
275 	/* release vrings */
276 	for (i = 0; i < ARRAY_SIZE(wil->ring_tx); i++) {
277 		if (wil->ring2cid_tid[i][0] == cid)
278 			wil_ring_fini_tx(wil, i);
279 	}
280 	/* statistics */
281 	memset(&sta->stats, 0, sizeof(sta->stats));
282 	sta->stats.tx_latency_min_us = U32_MAX;
283 }
284 
285 static bool wil_vif_is_connected(struct wil6210_priv *wil, u8 mid)
286 {
287 	int i;
288 
289 	for (i = 0; i < ARRAY_SIZE(wil->sta); i++) {
290 		if (wil->sta[i].mid == mid &&
291 		    wil->sta[i].status == wil_sta_connected)
292 			return true;
293 	}
294 
295 	return false;
296 }
297 
298 static void _wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
299 				u16 reason_code, bool from_event)
300 {
301 	struct wil6210_priv *wil = vif_to_wil(vif);
302 	int cid = -ENOENT;
303 	struct net_device *ndev;
304 	struct wireless_dev *wdev;
305 
306 	if (unlikely(!vif))
307 		return;
308 
309 	ndev = vif_to_ndev(vif);
310 	wdev = vif_to_wdev(vif);
311 
312 	might_sleep();
313 	wil_info(wil, "bssid=%pM, reason=%d, ev%s\n", bssid,
314 		 reason_code, from_event ? "+" : "-");
315 
316 	/* Cases are:
317 	 * - disconnect single STA, still connected
318 	 * - disconnect single STA, already disconnected
319 	 * - disconnect all
320 	 *
321 	 * For "disconnect all", there are 3 options:
322 	 * - bssid == NULL
323 	 * - bssid is broadcast address (ff:ff:ff:ff:ff:ff)
324 	 * - bssid is our MAC address
325 	 */
326 	if (bssid && !is_broadcast_ether_addr(bssid) &&
327 	    !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) {
328 		cid = wil_find_cid(wil, vif->mid, bssid);
329 		wil_dbg_misc(wil, "Disconnect %pM, CID=%d, reason=%d\n",
330 			     bssid, cid, reason_code);
331 		if (cid >= 0) /* disconnect 1 peer */
332 			wil_disconnect_cid(vif, cid, reason_code, from_event);
333 	} else { /* all */
334 		wil_dbg_misc(wil, "Disconnect all\n");
335 		for (cid = 0; cid < WIL6210_MAX_CID; cid++)
336 			wil_disconnect_cid(vif, cid, reason_code, from_event);
337 	}
338 
339 	/* link state */
340 	switch (wdev->iftype) {
341 	case NL80211_IFTYPE_STATION:
342 	case NL80211_IFTYPE_P2P_CLIENT:
343 		wil_bcast_fini(vif);
344 		wil_update_net_queues_bh(wil, vif, NULL, true);
345 		netif_carrier_off(ndev);
346 		if (!wil_has_other_active_ifaces(wil, ndev, false, true))
347 			wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
348 
349 		if (test_and_clear_bit(wil_vif_fwconnected, vif->status)) {
350 			atomic_dec(&wil->connected_vifs);
351 			cfg80211_disconnected(ndev, reason_code,
352 					      NULL, 0,
353 					      vif->locally_generated_disc,
354 					      GFP_KERNEL);
355 			vif->locally_generated_disc = false;
356 		} else if (test_bit(wil_vif_fwconnecting, vif->status)) {
357 			cfg80211_connect_result(ndev, bssid, NULL, 0, NULL, 0,
358 						WLAN_STATUS_UNSPECIFIED_FAILURE,
359 						GFP_KERNEL);
360 			vif->bss = NULL;
361 		}
362 		clear_bit(wil_vif_fwconnecting, vif->status);
363 		break;
364 	case NL80211_IFTYPE_AP:
365 	case NL80211_IFTYPE_P2P_GO:
366 		if (!wil_vif_is_connected(wil, vif->mid)) {
367 			wil_update_net_queues_bh(wil, vif, NULL, true);
368 			if (test_and_clear_bit(wil_vif_fwconnected,
369 					       vif->status))
370 				atomic_dec(&wil->connected_vifs);
371 		} else {
372 			wil_update_net_queues_bh(wil, vif, NULL, false);
373 		}
374 		break;
375 	default:
376 		break;
377 	}
378 }
379 
380 void wil_disconnect_worker(struct work_struct *work)
381 {
382 	struct wil6210_vif *vif = container_of(work,
383 			struct wil6210_vif, disconnect_worker);
384 	struct wil6210_priv *wil = vif_to_wil(vif);
385 	struct net_device *ndev = vif_to_ndev(vif);
386 	int rc;
387 	struct {
388 		struct wmi_cmd_hdr wmi;
389 		struct wmi_disconnect_event evt;
390 	} __packed reply;
391 
392 	if (test_bit(wil_vif_fwconnected, vif->status))
393 		/* connect succeeded after all */
394 		return;
395 
396 	if (!test_bit(wil_vif_fwconnecting, vif->status))
397 		/* already disconnected */
398 		return;
399 
400 	memset(&reply, 0, sizeof(reply));
401 
402 	rc = wmi_call(wil, WMI_DISCONNECT_CMDID, vif->mid, NULL, 0,
403 		      WMI_DISCONNECT_EVENTID, &reply, sizeof(reply),
404 		      WIL6210_DISCONNECT_TO_MS);
405 	if (rc) {
406 		wil_err(wil, "disconnect error %d\n", rc);
407 		return;
408 	}
409 
410 	wil_update_net_queues_bh(wil, vif, NULL, true);
411 	netif_carrier_off(ndev);
412 	cfg80211_connect_result(ndev, NULL, NULL, 0, NULL, 0,
413 				WLAN_STATUS_UNSPECIFIED_FAILURE, GFP_KERNEL);
414 	clear_bit(wil_vif_fwconnecting, vif->status);
415 }
416 
417 static int wil_wait_for_recovery(struct wil6210_priv *wil)
418 {
419 	if (wait_event_interruptible(wil->wq, wil->recovery_state !=
420 				     fw_recovery_pending)) {
421 		wil_err(wil, "Interrupt, canceling recovery\n");
422 		return -ERESTARTSYS;
423 	}
424 	if (wil->recovery_state != fw_recovery_running) {
425 		wil_info(wil, "Recovery cancelled\n");
426 		return -EINTR;
427 	}
428 	wil_info(wil, "Proceed with recovery\n");
429 	return 0;
430 }
431 
432 void wil_set_recovery_state(struct wil6210_priv *wil, int state)
433 {
434 	wil_dbg_misc(wil, "set_recovery_state: %d -> %d\n",
435 		     wil->recovery_state, state);
436 
437 	wil->recovery_state = state;
438 	wake_up_interruptible(&wil->wq);
439 }
440 
441 bool wil_is_recovery_blocked(struct wil6210_priv *wil)
442 {
443 	return no_fw_recovery && (wil->recovery_state == fw_recovery_pending);
444 }
445 
446 static void wil_fw_error_worker(struct work_struct *work)
447 {
448 	struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
449 						fw_error_worker);
450 	struct net_device *ndev = wil->main_ndev;
451 	struct wireless_dev *wdev;
452 
453 	wil_dbg_misc(wil, "fw error worker\n");
454 
455 	if (!ndev || !(ndev->flags & IFF_UP)) {
456 		wil_info(wil, "No recovery - interface is down\n");
457 		return;
458 	}
459 	wdev = ndev->ieee80211_ptr;
460 
461 	/* increment @recovery_count if less then WIL6210_FW_RECOVERY_TO
462 	 * passed since last recovery attempt
463 	 */
464 	if (time_is_after_jiffies(wil->last_fw_recovery +
465 				  WIL6210_FW_RECOVERY_TO))
466 		wil->recovery_count++;
467 	else
468 		wil->recovery_count = 1; /* fw was alive for a long time */
469 
470 	if (wil->recovery_count > WIL6210_FW_RECOVERY_RETRIES) {
471 		wil_err(wil, "too many recovery attempts (%d), giving up\n",
472 			wil->recovery_count);
473 		return;
474 	}
475 
476 	wil->last_fw_recovery = jiffies;
477 
478 	wil_info(wil, "fw error recovery requested (try %d)...\n",
479 		 wil->recovery_count);
480 	if (!no_fw_recovery)
481 		wil->recovery_state = fw_recovery_running;
482 	if (wil_wait_for_recovery(wil) != 0)
483 		return;
484 
485 	mutex_lock(&wil->mutex);
486 	/* Needs adaptation for multiple VIFs
487 	 * need to go over all VIFs and consider the appropriate
488 	 * recovery.
489 	 */
490 	switch (wdev->iftype) {
491 	case NL80211_IFTYPE_STATION:
492 	case NL80211_IFTYPE_P2P_CLIENT:
493 	case NL80211_IFTYPE_MONITOR:
494 		/* silent recovery, upper layers will see disconnect */
495 		__wil_down(wil);
496 		__wil_up(wil);
497 		break;
498 	case NL80211_IFTYPE_AP:
499 	case NL80211_IFTYPE_P2P_GO:
500 		wil_info(wil, "No recovery for AP-like interface\n");
501 		/* recovery in these modes is done by upper layers */
502 		break;
503 	default:
504 		wil_err(wil, "No recovery - unknown interface type %d\n",
505 			wdev->iftype);
506 		break;
507 	}
508 	mutex_unlock(&wil->mutex);
509 }
510 
511 static int wil_find_free_ring(struct wil6210_priv *wil)
512 {
513 	int i;
514 	int min_ring_id = wil_get_min_tx_ring_id(wil);
515 
516 	for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
517 		if (!wil->ring_tx[i].va)
518 			return i;
519 	}
520 	return -EINVAL;
521 }
522 
523 int wil_ring_init_tx(struct wil6210_vif *vif, int cid)
524 {
525 	struct wil6210_priv *wil = vif_to_wil(vif);
526 	int rc = -EINVAL, ringid;
527 
528 	if (cid < 0) {
529 		wil_err(wil, "No connection pending\n");
530 		goto out;
531 	}
532 	ringid = wil_find_free_ring(wil);
533 	if (ringid < 0) {
534 		wil_err(wil, "No free vring found\n");
535 		goto out;
536 	}
537 
538 	wil_dbg_wmi(wil, "Configure for connection CID %d MID %d ring %d\n",
539 		    cid, vif->mid, ringid);
540 
541 	rc = wil->txrx_ops.ring_init_tx(vif, ringid, 1 << tx_ring_order,
542 					cid, 0);
543 	if (rc)
544 		wil_err(wil, "init TX for CID %d MID %d vring %d failed\n",
545 			cid, vif->mid, ringid);
546 
547 out:
548 	return rc;
549 }
550 
551 int wil_bcast_init(struct wil6210_vif *vif)
552 {
553 	struct wil6210_priv *wil = vif_to_wil(vif);
554 	int ri = vif->bcast_ring, rc;
555 
556 	if (ri >= 0 && wil->ring_tx[ri].va)
557 		return 0;
558 
559 	ri = wil_find_free_ring(wil);
560 	if (ri < 0)
561 		return ri;
562 
563 	vif->bcast_ring = ri;
564 	rc = wil->txrx_ops.ring_init_bcast(vif, ri, 1 << bcast_ring_order);
565 	if (rc)
566 		vif->bcast_ring = -1;
567 
568 	return rc;
569 }
570 
571 void wil_bcast_fini(struct wil6210_vif *vif)
572 {
573 	struct wil6210_priv *wil = vif_to_wil(vif);
574 	int ri = vif->bcast_ring;
575 
576 	if (ri < 0)
577 		return;
578 
579 	vif->bcast_ring = -1;
580 	wil_ring_fini_tx(wil, ri);
581 }
582 
583 void wil_bcast_fini_all(struct wil6210_priv *wil)
584 {
585 	int i;
586 	struct wil6210_vif *vif;
587 
588 	for (i = 0; i < wil->max_vifs; i++) {
589 		vif = wil->vifs[i];
590 		if (vif)
591 			wil_bcast_fini(vif);
592 	}
593 }
594 
595 int wil_priv_init(struct wil6210_priv *wil)
596 {
597 	uint i;
598 
599 	wil_dbg_misc(wil, "priv_init\n");
600 
601 	memset(wil->sta, 0, sizeof(wil->sta));
602 	for (i = 0; i < WIL6210_MAX_CID; i++) {
603 		spin_lock_init(&wil->sta[i].tid_rx_lock);
604 		wil->sta[i].mid = U8_MAX;
605 	}
606 
607 	for (i = 0; i < WIL6210_MAX_TX_RINGS; i++)
608 		spin_lock_init(&wil->ring_tx_data[i].lock);
609 
610 	mutex_init(&wil->mutex);
611 	mutex_init(&wil->vif_mutex);
612 	mutex_init(&wil->wmi_mutex);
613 	mutex_init(&wil->halp.lock);
614 
615 	init_completion(&wil->wmi_ready);
616 	init_completion(&wil->wmi_call);
617 	init_completion(&wil->halp.comp);
618 
619 	INIT_WORK(&wil->wmi_event_worker, wmi_event_worker);
620 	INIT_WORK(&wil->fw_error_worker, wil_fw_error_worker);
621 
622 	INIT_LIST_HEAD(&wil->pending_wmi_ev);
623 	spin_lock_init(&wil->wmi_ev_lock);
624 	spin_lock_init(&wil->net_queue_lock);
625 	init_waitqueue_head(&wil->wq);
626 
627 	wil->wmi_wq = create_singlethread_workqueue(WIL_NAME "_wmi");
628 	if (!wil->wmi_wq)
629 		return -EAGAIN;
630 
631 	wil->wq_service = create_singlethread_workqueue(WIL_NAME "_service");
632 	if (!wil->wq_service)
633 		goto out_wmi_wq;
634 
635 	wil->last_fw_recovery = jiffies;
636 	wil->tx_interframe_timeout = WIL6210_ITR_TX_INTERFRAME_TIMEOUT_DEFAULT;
637 	wil->rx_interframe_timeout = WIL6210_ITR_RX_INTERFRAME_TIMEOUT_DEFAULT;
638 	wil->tx_max_burst_duration = WIL6210_ITR_TX_MAX_BURST_DURATION_DEFAULT;
639 	wil->rx_max_burst_duration = WIL6210_ITR_RX_MAX_BURST_DURATION_DEFAULT;
640 
641 	if (rx_ring_overflow_thrsh == WIL6210_RX_HIGH_TRSH_INIT)
642 		rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_DEFAULT;
643 
644 	wil->ps_profile =  WMI_PS_PROFILE_TYPE_DEFAULT;
645 
646 	wil->wakeup_trigger = WMI_WAKEUP_TRIGGER_UCAST |
647 			      WMI_WAKEUP_TRIGGER_BCAST;
648 	memset(&wil->suspend_stats, 0, sizeof(wil->suspend_stats));
649 	wil->ring_idle_trsh = 16;
650 
651 	wil->reply_mid = U8_MAX;
652 	wil->max_vifs = 1;
653 
654 	/* edma configuration can be updated via debugfs before allocation */
655 	wil->num_rx_status_rings = WIL_DEFAULT_NUM_RX_STATUS_RINGS;
656 	wil->use_compressed_rx_status = true;
657 	wil->use_rx_hw_reordering = true;
658 	wil->tx_status_ring_order = WIL_TX_SRING_SIZE_ORDER_DEFAULT;
659 
660 	/* Rx status ring size should be bigger than the number of RX buffers
661 	 * in order to prevent backpressure on the status ring, which may
662 	 * cause HW freeze.
663 	 */
664 	wil->rx_status_ring_order = WIL_RX_SRING_SIZE_ORDER_DEFAULT;
665 	/* Number of RX buffer IDs should be bigger than the RX descriptor
666 	 * ring size as in HW reorder flow, the HW can consume additional
667 	 * buffers before releasing the previous ones.
668 	 */
669 	wil->rx_buff_id_count = WIL_RX_BUFF_ARR_SIZE_DEFAULT;
670 
671 	wil->amsdu_en = 1;
672 
673 	return 0;
674 
675 out_wmi_wq:
676 	destroy_workqueue(wil->wmi_wq);
677 
678 	return -EAGAIN;
679 }
680 
681 void wil6210_bus_request(struct wil6210_priv *wil, u32 kbps)
682 {
683 	if (wil->platform_ops.bus_request) {
684 		wil->bus_request_kbps = kbps;
685 		wil->platform_ops.bus_request(wil->platform_handle, kbps);
686 	}
687 }
688 
689 /**
690  * wil6210_disconnect - disconnect one connection
691  * @vif: virtual interface context
692  * @bssid: peer to disconnect, NULL to disconnect all
693  * @reason_code: Reason code for the Disassociation frame
694  * @from_event: whether is invoked from FW event handler
695  *
696  * Disconnect and release associated resources. If invoked not from the
697  * FW event handler, issue WMI command(s) to trigger MAC disconnect.
698  */
699 void wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
700 			u16 reason_code, bool from_event)
701 {
702 	struct wil6210_priv *wil = vif_to_wil(vif);
703 
704 	wil_dbg_misc(wil, "disconnect\n");
705 
706 	del_timer_sync(&vif->connect_timer);
707 	_wil6210_disconnect(vif, bssid, reason_code, from_event);
708 }
709 
710 void wil_priv_deinit(struct wil6210_priv *wil)
711 {
712 	wil_dbg_misc(wil, "priv_deinit\n");
713 
714 	wil_set_recovery_state(wil, fw_recovery_idle);
715 	cancel_work_sync(&wil->fw_error_worker);
716 	wmi_event_flush(wil);
717 	destroy_workqueue(wil->wq_service);
718 	destroy_workqueue(wil->wmi_wq);
719 }
720 
721 static void wil_shutdown_bl(struct wil6210_priv *wil)
722 {
723 	u32 val;
724 
725 	wil_s(wil, RGF_USER_BL +
726 	      offsetof(struct bl_dedicated_registers_v1,
727 		       bl_shutdown_handshake), BL_SHUTDOWN_HS_GRTD);
728 
729 	usleep_range(100, 150);
730 
731 	val = wil_r(wil, RGF_USER_BL +
732 		    offsetof(struct bl_dedicated_registers_v1,
733 			     bl_shutdown_handshake));
734 	if (val & BL_SHUTDOWN_HS_RTD) {
735 		wil_dbg_misc(wil, "BL is ready for halt\n");
736 		return;
737 	}
738 
739 	wil_err(wil, "BL did not report ready for halt\n");
740 }
741 
742 /* this format is used by ARC embedded CPU for instruction memory */
743 static inline u32 ARC_me_imm32(u32 d)
744 {
745 	return ((d & 0xffff0000) >> 16) | ((d & 0x0000ffff) << 16);
746 }
747 
748 /* defines access to interrupt vectors for wil_freeze_bl */
749 #define ARC_IRQ_VECTOR_OFFSET(N)	((N) * 8)
750 /* ARC long jump instruction */
751 #define ARC_JAL_INST			(0x20200f80)
752 
753 static void wil_freeze_bl(struct wil6210_priv *wil)
754 {
755 	u32 jal, upc, saved;
756 	u32 ivt3 = ARC_IRQ_VECTOR_OFFSET(3);
757 
758 	jal = wil_r(wil, wil->iccm_base + ivt3);
759 	if (jal != ARC_me_imm32(ARC_JAL_INST)) {
760 		wil_dbg_misc(wil, "invalid IVT entry found, skipping\n");
761 		return;
762 	}
763 
764 	/* prevent the target from entering deep sleep
765 	 * and disabling memory access
766 	 */
767 	saved = wil_r(wil, RGF_USER_USAGE_8);
768 	wil_w(wil, RGF_USER_USAGE_8, saved | BIT_USER_PREVENT_DEEP_SLEEP);
769 	usleep_range(20, 25); /* let the BL process the bit */
770 
771 	/* redirect to endless loop in the INT_L1 context and let it trap */
772 	wil_w(wil, wil->iccm_base + ivt3 + 4, ARC_me_imm32(ivt3));
773 	usleep_range(20, 25); /* let the BL get into the trap */
774 
775 	/* verify the BL is frozen */
776 	upc = wil_r(wil, RGF_USER_CPU_PC);
777 	if (upc < ivt3 || (upc > (ivt3 + 8)))
778 		wil_dbg_misc(wil, "BL freeze failed, PC=0x%08X\n", upc);
779 
780 	wil_w(wil, RGF_USER_USAGE_8, saved);
781 }
782 
783 static void wil_bl_prepare_halt(struct wil6210_priv *wil)
784 {
785 	u32 tmp, ver;
786 
787 	/* before halting device CPU driver must make sure BL is not accessing
788 	 * host memory. This is done differently depending on BL version:
789 	 * 1. For very old BL versions the procedure is skipped
790 	 * (not supported).
791 	 * 2. For old BL version we use a special trick to freeze the BL
792 	 * 3. For new BL versions we shutdown the BL using handshake procedure.
793 	 */
794 	tmp = wil_r(wil, RGF_USER_BL +
795 		    offsetof(struct bl_dedicated_registers_v0,
796 			     boot_loader_struct_version));
797 	if (!tmp) {
798 		wil_dbg_misc(wil, "old BL, skipping halt preparation\n");
799 		return;
800 	}
801 
802 	tmp = wil_r(wil, RGF_USER_BL +
803 		    offsetof(struct bl_dedicated_registers_v1,
804 			     bl_shutdown_handshake));
805 	ver = BL_SHUTDOWN_HS_PROT_VER(tmp);
806 
807 	if (ver > 0)
808 		wil_shutdown_bl(wil);
809 	else
810 		wil_freeze_bl(wil);
811 }
812 
813 static inline void wil_halt_cpu(struct wil6210_priv *wil)
814 {
815 	if (wil->hw_version >= HW_VER_TALYN_MB) {
816 		wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB,
817 		      BIT_USER_USER_CPU_MAN_RST);
818 		wil_w(wil, RGF_USER_MAC_CPU_0_TALYN_MB,
819 		      BIT_USER_MAC_CPU_MAN_RST);
820 	} else {
821 		wil_w(wil, RGF_USER_USER_CPU_0, BIT_USER_USER_CPU_MAN_RST);
822 		wil_w(wil, RGF_USER_MAC_CPU_0,  BIT_USER_MAC_CPU_MAN_RST);
823 	}
824 }
825 
826 static inline void wil_release_cpu(struct wil6210_priv *wil)
827 {
828 	/* Start CPU */
829 	if (wil->hw_version >= HW_VER_TALYN_MB)
830 		wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB, 1);
831 	else
832 		wil_w(wil, RGF_USER_USER_CPU_0, 1);
833 }
834 
835 static void wil_set_oob_mode(struct wil6210_priv *wil, u8 mode)
836 {
837 	wil_info(wil, "oob_mode to %d\n", mode);
838 	switch (mode) {
839 	case 0:
840 		wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE |
841 		      BIT_USER_OOB_R2_MODE);
842 		break;
843 	case 1:
844 		wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
845 		wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
846 		break;
847 	case 2:
848 		wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
849 		wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
850 		break;
851 	default:
852 		wil_err(wil, "invalid oob_mode: %d\n", mode);
853 	}
854 }
855 
856 static int wil_wait_device_ready(struct wil6210_priv *wil, int no_flash)
857 {
858 	int delay = 0;
859 	u32 x, x1 = 0;
860 
861 	/* wait until device ready. */
862 	if (no_flash) {
863 		msleep(PMU_READY_DELAY_MS);
864 
865 		wil_dbg_misc(wil, "Reset completed\n");
866 	} else {
867 		do {
868 			msleep(RST_DELAY);
869 			x = wil_r(wil, RGF_USER_BL +
870 				  offsetof(struct bl_dedicated_registers_v0,
871 					   boot_loader_ready));
872 			if (x1 != x) {
873 				wil_dbg_misc(wil, "BL.ready 0x%08x => 0x%08x\n",
874 					     x1, x);
875 				x1 = x;
876 			}
877 			if (delay++ > RST_COUNT) {
878 				wil_err(wil, "Reset not completed, bl.ready 0x%08x\n",
879 					x);
880 				return -ETIME;
881 			}
882 		} while (x != BL_READY);
883 
884 		wil_dbg_misc(wil, "Reset completed in %d ms\n",
885 			     delay * RST_DELAY);
886 	}
887 
888 	return 0;
889 }
890 
891 static int wil_wait_device_ready_talyn_mb(struct wil6210_priv *wil)
892 {
893 	u32 otp_hw;
894 	u8 signature_status;
895 	bool otp_signature_err;
896 	bool hw_section_done;
897 	u32 otp_qc_secured;
898 	int delay = 0;
899 
900 	/* Wait for OTP signature test to complete */
901 	usleep_range(2000, 2200);
902 
903 	wil->boot_config = WIL_BOOT_ERR;
904 
905 	/* Poll until OTP signature status is valid.
906 	 * In vanilla and development modes, when signature test is complete
907 	 * HW sets BIT_OTP_SIGNATURE_ERR_TALYN_MB.
908 	 * In production mode BIT_OTP_SIGNATURE_ERR_TALYN_MB remains 0, poll
909 	 * for signature status change to 2 or 3.
910 	 */
911 	do {
912 		otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1);
913 		signature_status = WIL_GET_BITS(otp_hw, 8, 9);
914 		otp_signature_err = otp_hw & BIT_OTP_SIGNATURE_ERR_TALYN_MB;
915 
916 		if (otp_signature_err &&
917 		    signature_status == WIL_SIG_STATUS_VANILLA) {
918 			wil->boot_config = WIL_BOOT_VANILLA;
919 			break;
920 		}
921 		if (otp_signature_err &&
922 		    signature_status == WIL_SIG_STATUS_DEVELOPMENT) {
923 			wil->boot_config = WIL_BOOT_DEVELOPMENT;
924 			break;
925 		}
926 		if (!otp_signature_err &&
927 		    signature_status == WIL_SIG_STATUS_PRODUCTION) {
928 			wil->boot_config = WIL_BOOT_PRODUCTION;
929 			break;
930 		}
931 		if  (!otp_signature_err &&
932 		     signature_status ==
933 		     WIL_SIG_STATUS_CORRUPTED_PRODUCTION) {
934 			/* Unrecognized OTP signature found. Possibly a
935 			 * corrupted production signature, access control
936 			 * is applied as in production mode, therefore
937 			 * do not fail
938 			 */
939 			wil->boot_config = WIL_BOOT_PRODUCTION;
940 			break;
941 		}
942 		if (delay++ > OTP_HW_COUNT)
943 			break;
944 
945 		usleep_range(OTP_HW_DELAY, OTP_HW_DELAY + 10);
946 	} while (!otp_signature_err && signature_status == 0);
947 
948 	if (wil->boot_config == WIL_BOOT_ERR) {
949 		wil_err(wil,
950 			"invalid boot config, signature_status %d otp_signature_err %d\n",
951 			signature_status, otp_signature_err);
952 		return -ETIME;
953 	}
954 
955 	wil_dbg_misc(wil,
956 		     "signature test done in %d usec, otp_hw 0x%x, boot_config %d\n",
957 		     delay * OTP_HW_DELAY, otp_hw, wil->boot_config);
958 
959 	if (wil->boot_config == WIL_BOOT_VANILLA)
960 		/* Assuming not SPI boot (currently not supported) */
961 		goto out;
962 
963 	hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB;
964 	delay = 0;
965 
966 	while (!hw_section_done) {
967 		msleep(RST_DELAY);
968 
969 		otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1);
970 		hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB;
971 
972 		if (delay++ > RST_COUNT) {
973 			wil_err(wil, "TO waiting for hw_section_done\n");
974 			return -ETIME;
975 		}
976 	}
977 
978 	wil_dbg_misc(wil, "HW section done in %d ms\n", delay * RST_DELAY);
979 
980 	otp_qc_secured = wil_r(wil, RGF_OTP_QC_SECURED);
981 	wil->secured_boot = otp_qc_secured & BIT_BOOT_FROM_ROM ? 1 : 0;
982 	wil_dbg_misc(wil, "secured boot is %sabled\n",
983 		     wil->secured_boot ? "en" : "dis");
984 
985 out:
986 	wil_dbg_misc(wil, "Reset completed\n");
987 
988 	return 0;
989 }
990 
991 static int wil_target_reset(struct wil6210_priv *wil, int no_flash)
992 {
993 	u32 x;
994 	int rc;
995 
996 	wil_dbg_misc(wil, "Resetting \"%s\"...\n", wil->hw_name);
997 
998 	/* Clear MAC link up */
999 	wil_s(wil, RGF_HP_CTRL, BIT(15));
1000 	wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0, BIT_HPAL_PERST_FROM_PAD);
1001 	wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0, BIT_CAR_PERST_RST);
1002 
1003 	wil_halt_cpu(wil);
1004 
1005 	if (!no_flash) {
1006 		/* clear all boot loader "ready" bits */
1007 		wil_w(wil, RGF_USER_BL +
1008 		      offsetof(struct bl_dedicated_registers_v0,
1009 			       boot_loader_ready), 0);
1010 		/* this should be safe to write even with old BLs */
1011 		wil_w(wil, RGF_USER_BL +
1012 		      offsetof(struct bl_dedicated_registers_v1,
1013 			       bl_shutdown_handshake), 0);
1014 	}
1015 	/* Clear Fw Download notification */
1016 	wil_c(wil, RGF_USER_USAGE_6, BIT(0));
1017 
1018 	wil_s(wil, RGF_CAF_OSC_CONTROL, BIT_CAF_OSC_XTAL_EN);
1019 	/* XTAL stabilization should take about 3ms */
1020 	usleep_range(5000, 7000);
1021 	x = wil_r(wil, RGF_CAF_PLL_LOCK_STATUS);
1022 	if (!(x & BIT_CAF_OSC_DIG_XTAL_STABLE)) {
1023 		wil_err(wil, "Xtal stabilization timeout\n"
1024 			"RGF_CAF_PLL_LOCK_STATUS = 0x%08x\n", x);
1025 		return -ETIME;
1026 	}
1027 	/* switch 10k to XTAL*/
1028 	wil_c(wil, RGF_USER_SPARROW_M_4, BIT_SPARROW_M_4_SEL_SLEEP_OR_REF);
1029 	/* 40 MHz */
1030 	wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_CAR_AHB_SW_SEL);
1031 
1032 	wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x3ff81f);
1033 	wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0xf);
1034 
1035 	if (wil->hw_version >= HW_VER_TALYN_MB) {
1036 		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x7e000000);
1037 		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f);
1038 		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0xc00000f0);
1039 		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00);
1040 	} else {
1041 		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0xfe000000);
1042 		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f);
1043 		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x000000f0);
1044 		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00);
1045 	}
1046 
1047 	wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x0);
1048 	wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0x0);
1049 
1050 	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0);
1051 	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0);
1052 	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0);
1053 	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
1054 
1055 	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x00000003);
1056 	/* reset A2 PCIE AHB */
1057 	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x00008000);
1058 
1059 	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
1060 
1061 	if (wil->hw_version == HW_VER_TALYN_MB)
1062 		rc = wil_wait_device_ready_talyn_mb(wil);
1063 	else
1064 		rc = wil_wait_device_ready(wil, no_flash);
1065 	if (rc)
1066 		return rc;
1067 
1068 	wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_RST_PWGD);
1069 
1070 	/* enable fix for HW bug related to the SA/DA swap in AP Rx */
1071 	wil_s(wil, RGF_DMA_OFUL_NID_0, BIT_DMA_OFUL_NID_0_RX_EXT_TR_EN |
1072 	      BIT_DMA_OFUL_NID_0_RX_EXT_A3_SRC);
1073 
1074 	if (wil->hw_version < HW_VER_TALYN_MB && no_flash) {
1075 		/* Reset OTP HW vectors to fit 40MHz */
1076 		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME1, 0x60001);
1077 		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME2, 0x20027);
1078 		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME3, 0x1);
1079 		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME4, 0x20027);
1080 		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME5, 0x30003);
1081 		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME6, 0x20002);
1082 		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME7, 0x60001);
1083 		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME8, 0x60001);
1084 		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME9, 0x60001);
1085 		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME10, 0x60001);
1086 		wil_w(wil, RGF_USER_XPM_RD_DOUT_SAMPLE_TIME, 0x57);
1087 	}
1088 
1089 	return 0;
1090 }
1091 
1092 static void wil_collect_fw_info(struct wil6210_priv *wil)
1093 {
1094 	struct wiphy *wiphy = wil_to_wiphy(wil);
1095 	u8 retry_short;
1096 	int rc;
1097 
1098 	wil_refresh_fw_capabilities(wil);
1099 
1100 	rc = wmi_get_mgmt_retry(wil, &retry_short);
1101 	if (!rc) {
1102 		wiphy->retry_short = retry_short;
1103 		wil_dbg_misc(wil, "FW retry_short: %d\n", retry_short);
1104 	}
1105 }
1106 
1107 void wil_refresh_fw_capabilities(struct wil6210_priv *wil)
1108 {
1109 	struct wiphy *wiphy = wil_to_wiphy(wil);
1110 	int features;
1111 
1112 	wil->keep_radio_on_during_sleep =
1113 		test_bit(WIL_PLATFORM_CAPA_RADIO_ON_IN_SUSPEND,
1114 			 wil->platform_capa) &&
1115 		test_bit(WMI_FW_CAPABILITY_D3_SUSPEND, wil->fw_capabilities);
1116 
1117 	wil_info(wil, "keep_radio_on_during_sleep (%d)\n",
1118 		 wil->keep_radio_on_during_sleep);
1119 
1120 	if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities))
1121 		wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
1122 	else
1123 		wiphy->signal_type = CFG80211_SIGNAL_TYPE_UNSPEC;
1124 
1125 	if (test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities)) {
1126 		wiphy->max_sched_scan_reqs = 1;
1127 		wiphy->max_sched_scan_ssids = WMI_MAX_PNO_SSID_NUM;
1128 		wiphy->max_match_sets = WMI_MAX_PNO_SSID_NUM;
1129 		wiphy->max_sched_scan_ie_len = WMI_MAX_IE_LEN;
1130 		wiphy->max_sched_scan_plans = WMI_MAX_PLANS_NUM;
1131 	}
1132 
1133 	if (test_bit(WMI_FW_CAPABILITY_TX_REQ_EXT, wil->fw_capabilities))
1134 		wiphy->flags |= WIPHY_FLAG_OFFCHAN_TX;
1135 
1136 	if (wil->platform_ops.set_features) {
1137 		features = (test_bit(WMI_FW_CAPABILITY_REF_CLOCK_CONTROL,
1138 				     wil->fw_capabilities) &&
1139 			    test_bit(WIL_PLATFORM_CAPA_EXT_CLK,
1140 				     wil->platform_capa)) ?
1141 			BIT(WIL_PLATFORM_FEATURE_FW_EXT_CLK_CONTROL) : 0;
1142 
1143 		if (wil->n_msi == 3)
1144 			features |= BIT(WIL_PLATFORM_FEATURE_TRIPLE_MSI);
1145 
1146 		wil->platform_ops.set_features(wil->platform_handle, features);
1147 	}
1148 
1149 	if (test_bit(WMI_FW_CAPABILITY_BACK_WIN_SIZE_64,
1150 		     wil->fw_capabilities)) {
1151 		wil->max_agg_wsize = WIL_MAX_AGG_WSIZE_64;
1152 		wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE_128;
1153 	} else {
1154 		wil->max_agg_wsize = WIL_MAX_AGG_WSIZE;
1155 		wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE;
1156 	}
1157 }
1158 
1159 void wil_mbox_ring_le2cpus(struct wil6210_mbox_ring *r)
1160 {
1161 	le32_to_cpus(&r->base);
1162 	le16_to_cpus(&r->entry_size);
1163 	le16_to_cpus(&r->size);
1164 	le32_to_cpus(&r->tail);
1165 	le32_to_cpus(&r->head);
1166 }
1167 
1168 /* construct actual board file name to use */
1169 void wil_get_board_file(struct wil6210_priv *wil, char *buf, size_t len)
1170 {
1171 	const char *board_file;
1172 	const char *wil_talyn_fw_name = ftm_mode ? WIL_FW_NAME_FTM_TALYN :
1173 			      WIL_FW_NAME_TALYN;
1174 
1175 	if (wil->board_file) {
1176 		board_file = wil->board_file;
1177 	} else {
1178 		/* If specific FW file is used for Talyn,
1179 		 * use specific board file
1180 		 */
1181 		if (strcmp(wil->wil_fw_name, wil_talyn_fw_name) == 0)
1182 			board_file = WIL_BRD_NAME_TALYN;
1183 		else
1184 			board_file = WIL_BOARD_FILE_NAME;
1185 	}
1186 
1187 	strlcpy(buf, board_file, len);
1188 }
1189 
1190 static int wil_get_bl_info(struct wil6210_priv *wil)
1191 {
1192 	struct net_device *ndev = wil->main_ndev;
1193 	struct wiphy *wiphy = wil_to_wiphy(wil);
1194 	union {
1195 		struct bl_dedicated_registers_v0 bl0;
1196 		struct bl_dedicated_registers_v1 bl1;
1197 	} bl;
1198 	u32 bl_ver;
1199 	u8 *mac;
1200 	u16 rf_status;
1201 
1202 	wil_memcpy_fromio_32(&bl, wil->csr + HOSTADDR(RGF_USER_BL),
1203 			     sizeof(bl));
1204 	bl_ver = le32_to_cpu(bl.bl0.boot_loader_struct_version);
1205 	mac = bl.bl0.mac_address;
1206 
1207 	if (bl_ver == 0) {
1208 		le32_to_cpus(&bl.bl0.rf_type);
1209 		le32_to_cpus(&bl.bl0.baseband_type);
1210 		rf_status = 0; /* actually, unknown */
1211 		wil_info(wil,
1212 			 "Boot Loader struct v%d: MAC = %pM RF = 0x%08x bband = 0x%08x\n",
1213 			 bl_ver, mac,
1214 			 bl.bl0.rf_type, bl.bl0.baseband_type);
1215 		wil_info(wil, "Boot Loader build unknown for struct v0\n");
1216 	} else {
1217 		le16_to_cpus(&bl.bl1.rf_type);
1218 		rf_status = le16_to_cpu(bl.bl1.rf_status);
1219 		le32_to_cpus(&bl.bl1.baseband_type);
1220 		le16_to_cpus(&bl.bl1.bl_version_subminor);
1221 		le16_to_cpus(&bl.bl1.bl_version_build);
1222 		wil_info(wil,
1223 			 "Boot Loader struct v%d: MAC = %pM RF = 0x%04x (status 0x%04x) bband = 0x%08x\n",
1224 			 bl_ver, mac,
1225 			 bl.bl1.rf_type, rf_status,
1226 			 bl.bl1.baseband_type);
1227 		wil_info(wil, "Boot Loader build %d.%d.%d.%d\n",
1228 			 bl.bl1.bl_version_major, bl.bl1.bl_version_minor,
1229 			 bl.bl1.bl_version_subminor, bl.bl1.bl_version_build);
1230 	}
1231 
1232 	if (!is_valid_ether_addr(mac)) {
1233 		wil_err(wil, "BL: Invalid MAC %pM\n", mac);
1234 		return -EINVAL;
1235 	}
1236 
1237 	ether_addr_copy(ndev->perm_addr, mac);
1238 	ether_addr_copy(wiphy->perm_addr, mac);
1239 	if (!is_valid_ether_addr(ndev->dev_addr))
1240 		ether_addr_copy(ndev->dev_addr, mac);
1241 
1242 	if (rf_status) {/* bad RF cable? */
1243 		wil_err(wil, "RF communication error 0x%04x",
1244 			rf_status);
1245 		return -EAGAIN;
1246 	}
1247 
1248 	return 0;
1249 }
1250 
1251 static void wil_bl_crash_info(struct wil6210_priv *wil, bool is_err)
1252 {
1253 	u32 bl_assert_code, bl_assert_blink, bl_magic_number;
1254 	u32 bl_ver = wil_r(wil, RGF_USER_BL +
1255 			   offsetof(struct bl_dedicated_registers_v0,
1256 				    boot_loader_struct_version));
1257 
1258 	if (bl_ver < 2)
1259 		return;
1260 
1261 	bl_assert_code = wil_r(wil, RGF_USER_BL +
1262 			       offsetof(struct bl_dedicated_registers_v1,
1263 					bl_assert_code));
1264 	bl_assert_blink = wil_r(wil, RGF_USER_BL +
1265 				offsetof(struct bl_dedicated_registers_v1,
1266 					 bl_assert_blink));
1267 	bl_magic_number = wil_r(wil, RGF_USER_BL +
1268 				offsetof(struct bl_dedicated_registers_v1,
1269 					 bl_magic_number));
1270 
1271 	if (is_err) {
1272 		wil_err(wil,
1273 			"BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
1274 			bl_assert_code, bl_assert_blink, bl_magic_number);
1275 	} else {
1276 		wil_dbg_misc(wil,
1277 			     "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
1278 			     bl_assert_code, bl_assert_blink, bl_magic_number);
1279 	}
1280 }
1281 
1282 static int wil_get_otp_info(struct wil6210_priv *wil)
1283 {
1284 	struct net_device *ndev = wil->main_ndev;
1285 	struct wiphy *wiphy = wil_to_wiphy(wil);
1286 	u8 mac[8];
1287 	int mac_addr;
1288 
1289 	if (wil->hw_version >= HW_VER_TALYN_MB)
1290 		mac_addr = RGF_OTP_MAC_TALYN_MB;
1291 	else
1292 		mac_addr = RGF_OTP_MAC;
1293 
1294 	wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr),
1295 			     sizeof(mac));
1296 	if (!is_valid_ether_addr(mac)) {
1297 		wil_err(wil, "Invalid MAC %pM\n", mac);
1298 		return -EINVAL;
1299 	}
1300 
1301 	ether_addr_copy(ndev->perm_addr, mac);
1302 	ether_addr_copy(wiphy->perm_addr, mac);
1303 	if (!is_valid_ether_addr(ndev->dev_addr))
1304 		ether_addr_copy(ndev->dev_addr, mac);
1305 
1306 	return 0;
1307 }
1308 
1309 static int wil_wait_for_fw_ready(struct wil6210_priv *wil)
1310 {
1311 	ulong to = msecs_to_jiffies(2000);
1312 	ulong left = wait_for_completion_timeout(&wil->wmi_ready, to);
1313 
1314 	if (0 == left) {
1315 		wil_err(wil, "Firmware not ready\n");
1316 		return -ETIME;
1317 	} else {
1318 		wil_info(wil, "FW ready after %d ms. HW version 0x%08x\n",
1319 			 jiffies_to_msecs(to-left), wil->hw_version);
1320 	}
1321 	return 0;
1322 }
1323 
1324 void wil_abort_scan(struct wil6210_vif *vif, bool sync)
1325 {
1326 	struct wil6210_priv *wil = vif_to_wil(vif);
1327 	int rc;
1328 	struct cfg80211_scan_info info = {
1329 		.aborted = true,
1330 	};
1331 
1332 	lockdep_assert_held(&wil->vif_mutex);
1333 
1334 	if (!vif->scan_request)
1335 		return;
1336 
1337 	wil_dbg_misc(wil, "Abort scan_request 0x%p\n", vif->scan_request);
1338 	del_timer_sync(&vif->scan_timer);
1339 	mutex_unlock(&wil->vif_mutex);
1340 	rc = wmi_abort_scan(vif);
1341 	if (!rc && sync)
1342 		wait_event_interruptible_timeout(wil->wq, !vif->scan_request,
1343 						 msecs_to_jiffies(
1344 						 WAIT_FOR_SCAN_ABORT_MS));
1345 
1346 	mutex_lock(&wil->vif_mutex);
1347 	if (vif->scan_request) {
1348 		cfg80211_scan_done(vif->scan_request, &info);
1349 		vif->scan_request = NULL;
1350 	}
1351 }
1352 
1353 void wil_abort_scan_all_vifs(struct wil6210_priv *wil, bool sync)
1354 {
1355 	int i;
1356 
1357 	lockdep_assert_held(&wil->vif_mutex);
1358 
1359 	for (i = 0; i < wil->max_vifs; i++) {
1360 		struct wil6210_vif *vif = wil->vifs[i];
1361 
1362 		if (vif)
1363 			wil_abort_scan(vif, sync);
1364 	}
1365 }
1366 
1367 int wil_ps_update(struct wil6210_priv *wil, enum wmi_ps_profile_type ps_profile)
1368 {
1369 	int rc;
1370 
1371 	if (!test_bit(WMI_FW_CAPABILITY_PS_CONFIG, wil->fw_capabilities)) {
1372 		wil_err(wil, "set_power_mgmt not supported\n");
1373 		return -EOPNOTSUPP;
1374 	}
1375 
1376 	rc  = wmi_ps_dev_profile_cfg(wil, ps_profile);
1377 	if (rc)
1378 		wil_err(wil, "wmi_ps_dev_profile_cfg failed (%d)\n", rc);
1379 	else
1380 		wil->ps_profile = ps_profile;
1381 
1382 	return rc;
1383 }
1384 
1385 static void wil_pre_fw_config(struct wil6210_priv *wil)
1386 {
1387 	/* Mark FW as loaded from host */
1388 	wil_s(wil, RGF_USER_USAGE_6, 1);
1389 
1390 	/* clear any interrupts which on-card-firmware
1391 	 * may have set
1392 	 */
1393 	wil6210_clear_irq(wil);
1394 	/* CAF_ICR - clear and mask */
1395 	/* it is W1C, clear by writing back same value */
1396 	wil_s(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, ICR), 0);
1397 	wil_w(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, IMV), ~0);
1398 	/* clear PAL_UNIT_ICR (potential D0->D3 leftover)
1399 	 * In Talyn-MB host cannot access this register due to
1400 	 * access control, hence PAL_UNIT_ICR is cleared by the FW
1401 	 */
1402 	if (wil->hw_version < HW_VER_TALYN_MB)
1403 		wil_s(wil, RGF_PAL_UNIT_ICR + offsetof(struct RGF_ICR, ICR),
1404 		      0);
1405 
1406 	if (wil->fw_calib_result > 0) {
1407 		__le32 val = cpu_to_le32(wil->fw_calib_result |
1408 						(CALIB_RESULT_SIGNATURE << 8));
1409 		wil_w(wil, RGF_USER_FW_CALIB_RESULT, (u32 __force)val);
1410 	}
1411 }
1412 
1413 static int wil_restore_vifs(struct wil6210_priv *wil)
1414 {
1415 	struct wil6210_vif *vif;
1416 	struct net_device *ndev;
1417 	struct wireless_dev *wdev;
1418 	int i, rc;
1419 
1420 	for (i = 0; i < wil->max_vifs; i++) {
1421 		vif = wil->vifs[i];
1422 		if (!vif)
1423 			continue;
1424 		vif->ap_isolate = 0;
1425 		if (vif->mid) {
1426 			ndev = vif_to_ndev(vif);
1427 			wdev = vif_to_wdev(vif);
1428 			rc = wmi_port_allocate(wil, vif->mid, ndev->dev_addr,
1429 					       wdev->iftype);
1430 			if (rc) {
1431 				wil_err(wil, "fail to restore VIF %d type %d, rc %d\n",
1432 					i, wdev->iftype, rc);
1433 				return rc;
1434 			}
1435 		}
1436 	}
1437 
1438 	return 0;
1439 }
1440 
1441 /*
1442  * We reset all the structures, and we reset the UMAC.
1443  * After calling this routine, you're expected to reload
1444  * the firmware.
1445  */
1446 int wil_reset(struct wil6210_priv *wil, bool load_fw)
1447 {
1448 	int rc, i;
1449 	unsigned long status_flags = BIT(wil_status_resetting);
1450 	int no_flash;
1451 	struct wil6210_vif *vif;
1452 
1453 	wil_dbg_misc(wil, "reset\n");
1454 
1455 	WARN_ON(!mutex_is_locked(&wil->mutex));
1456 	WARN_ON(test_bit(wil_status_napi_en, wil->status));
1457 
1458 	if (debug_fw) {
1459 		static const u8 mac[ETH_ALEN] = {
1460 			0x00, 0xde, 0xad, 0x12, 0x34, 0x56,
1461 		};
1462 		struct net_device *ndev = wil->main_ndev;
1463 
1464 		ether_addr_copy(ndev->perm_addr, mac);
1465 		ether_addr_copy(ndev->dev_addr, ndev->perm_addr);
1466 		return 0;
1467 	}
1468 
1469 	if (wil->hw_version == HW_VER_UNKNOWN)
1470 		return -ENODEV;
1471 
1472 	if (test_bit(WIL_PLATFORM_CAPA_T_PWR_ON_0, wil->platform_capa)) {
1473 		wil_dbg_misc(wil, "Notify FW to set T_POWER_ON=0\n");
1474 		wil_s(wil, RGF_USER_USAGE_8, BIT_USER_SUPPORT_T_POWER_ON_0);
1475 	}
1476 
1477 	if (test_bit(WIL_PLATFORM_CAPA_EXT_CLK, wil->platform_capa)) {
1478 		wil_dbg_misc(wil, "Notify FW on ext clock configuration\n");
1479 		wil_s(wil, RGF_USER_USAGE_8, BIT_USER_EXT_CLK);
1480 	}
1481 
1482 	if (wil->platform_ops.notify) {
1483 		rc = wil->platform_ops.notify(wil->platform_handle,
1484 					      WIL_PLATFORM_EVT_PRE_RESET);
1485 		if (rc)
1486 			wil_err(wil, "PRE_RESET platform notify failed, rc %d\n",
1487 				rc);
1488 	}
1489 
1490 	set_bit(wil_status_resetting, wil->status);
1491 	if (test_bit(wil_status_collecting_dumps, wil->status)) {
1492 		/* Device collects crash dump, cancel the reset.
1493 		 * following crash dump collection, reset would take place.
1494 		 */
1495 		wil_dbg_misc(wil, "reject reset while collecting crash dump\n");
1496 		rc = -EBUSY;
1497 		goto out;
1498 	}
1499 
1500 	mutex_lock(&wil->vif_mutex);
1501 	wil_abort_scan_all_vifs(wil, false);
1502 	mutex_unlock(&wil->vif_mutex);
1503 
1504 	for (i = 0; i < wil->max_vifs; i++) {
1505 		vif = wil->vifs[i];
1506 		if (vif) {
1507 			cancel_work_sync(&vif->disconnect_worker);
1508 			wil6210_disconnect(vif, NULL,
1509 					   WLAN_REASON_DEAUTH_LEAVING, false);
1510 		}
1511 	}
1512 	wil_bcast_fini_all(wil);
1513 
1514 	/* Disable device led before reset*/
1515 	wmi_led_cfg(wil, false);
1516 
1517 	/* prevent NAPI from being scheduled and prevent wmi commands */
1518 	mutex_lock(&wil->wmi_mutex);
1519 	if (test_bit(wil_status_suspending, wil->status))
1520 		status_flags |= BIT(wil_status_suspending);
1521 	bitmap_and(wil->status, wil->status, &status_flags,
1522 		   wil_status_last);
1523 	wil_dbg_misc(wil, "wil->status (0x%lx)\n", *wil->status);
1524 	mutex_unlock(&wil->wmi_mutex);
1525 
1526 	wil_mask_irq(wil);
1527 
1528 	wmi_event_flush(wil);
1529 
1530 	flush_workqueue(wil->wq_service);
1531 	flush_workqueue(wil->wmi_wq);
1532 
1533 	no_flash = test_bit(hw_capa_no_flash, wil->hw_capa);
1534 	if (!no_flash)
1535 		wil_bl_crash_info(wil, false);
1536 	wil_disable_irq(wil);
1537 	rc = wil_target_reset(wil, no_flash);
1538 	wil6210_clear_irq(wil);
1539 	wil_enable_irq(wil);
1540 	wil->txrx_ops.rx_fini(wil);
1541 	wil->txrx_ops.tx_fini(wil);
1542 	if (rc) {
1543 		if (!no_flash)
1544 			wil_bl_crash_info(wil, true);
1545 		goto out;
1546 	}
1547 
1548 	if (no_flash) {
1549 		rc = wil_get_otp_info(wil);
1550 	} else {
1551 		rc = wil_get_bl_info(wil);
1552 		if (rc == -EAGAIN && !load_fw)
1553 			/* ignore RF error if not going up */
1554 			rc = 0;
1555 	}
1556 	if (rc)
1557 		goto out;
1558 
1559 	wil_set_oob_mode(wil, oob_mode);
1560 	if (load_fw) {
1561 		char board_file[WIL_BOARD_FILE_MAX_NAMELEN];
1562 
1563 		if  (wil->secured_boot) {
1564 			wil_err(wil, "secured boot is not supported\n");
1565 			return -ENOTSUPP;
1566 		}
1567 
1568 		board_file[0] = '\0';
1569 		wil_get_board_file(wil, board_file, sizeof(board_file));
1570 		wil_info(wil, "Use firmware <%s> + board <%s>\n",
1571 			 wil->wil_fw_name, board_file);
1572 
1573 		if (!no_flash)
1574 			wil_bl_prepare_halt(wil);
1575 
1576 		wil_halt_cpu(wil);
1577 		memset(wil->fw_version, 0, sizeof(wil->fw_version));
1578 		/* Loading f/w from the file */
1579 		rc = wil_request_firmware(wil, wil->wil_fw_name, true);
1580 		if (rc)
1581 			goto out;
1582 		if (wil->brd_file_addr)
1583 			rc = wil_request_board(wil, board_file);
1584 		else
1585 			rc = wil_request_firmware(wil, board_file, true);
1586 		if (rc)
1587 			goto out;
1588 
1589 		wil_pre_fw_config(wil);
1590 		wil_release_cpu(wil);
1591 	}
1592 
1593 	/* init after reset */
1594 	reinit_completion(&wil->wmi_ready);
1595 	reinit_completion(&wil->wmi_call);
1596 	reinit_completion(&wil->halp.comp);
1597 
1598 	clear_bit(wil_status_resetting, wil->status);
1599 
1600 	if (load_fw) {
1601 		wil_unmask_irq(wil);
1602 
1603 		/* we just started MAC, wait for FW ready */
1604 		rc = wil_wait_for_fw_ready(wil);
1605 		if (rc)
1606 			return rc;
1607 
1608 		/* check FW is responsive */
1609 		rc = wmi_echo(wil);
1610 		if (rc) {
1611 			wil_err(wil, "wmi_echo failed, rc %d\n", rc);
1612 			return rc;
1613 		}
1614 
1615 		wil->txrx_ops.configure_interrupt_moderation(wil);
1616 
1617 		/* Enable OFU rdy valid bug fix, to prevent hang in oful34_rx
1618 		 * while there is back-pressure from Host during RX
1619 		 */
1620 		if (wil->hw_version >= HW_VER_TALYN_MB)
1621 			wil_s(wil, RGF_DMA_MISC_CTL,
1622 			      BIT_OFUL34_RDY_VALID_BUG_FIX_EN);
1623 
1624 		rc = wil_restore_vifs(wil);
1625 		if (rc) {
1626 			wil_err(wil, "failed to restore vifs, rc %d\n", rc);
1627 			return rc;
1628 		}
1629 
1630 		wil_collect_fw_info(wil);
1631 
1632 		if (wil->ps_profile != WMI_PS_PROFILE_TYPE_DEFAULT)
1633 			wil_ps_update(wil, wil->ps_profile);
1634 
1635 		if (wil->platform_ops.notify) {
1636 			rc = wil->platform_ops.notify(wil->platform_handle,
1637 						      WIL_PLATFORM_EVT_FW_RDY);
1638 			if (rc) {
1639 				wil_err(wil, "FW_RDY notify failed, rc %d\n",
1640 					rc);
1641 				rc = 0;
1642 			}
1643 		}
1644 	}
1645 
1646 	return rc;
1647 
1648 out:
1649 	clear_bit(wil_status_resetting, wil->status);
1650 	return rc;
1651 }
1652 
1653 void wil_fw_error_recovery(struct wil6210_priv *wil)
1654 {
1655 	wil_dbg_misc(wil, "starting fw error recovery\n");
1656 
1657 	if (test_bit(wil_status_resetting, wil->status)) {
1658 		wil_info(wil, "Reset already in progress\n");
1659 		return;
1660 	}
1661 
1662 	wil->recovery_state = fw_recovery_pending;
1663 	schedule_work(&wil->fw_error_worker);
1664 }
1665 
1666 int __wil_up(struct wil6210_priv *wil)
1667 {
1668 	struct net_device *ndev = wil->main_ndev;
1669 	struct wireless_dev *wdev = ndev->ieee80211_ptr;
1670 	int rc;
1671 
1672 	WARN_ON(!mutex_is_locked(&wil->mutex));
1673 
1674 	rc = wil_reset(wil, true);
1675 	if (rc)
1676 		return rc;
1677 
1678 	/* Rx RING. After MAC and beacon */
1679 	rc = wil->txrx_ops.rx_init(wil, 1 << rx_ring_order);
1680 	if (rc)
1681 		return rc;
1682 
1683 	rc = wil->txrx_ops.tx_init(wil);
1684 	if (rc)
1685 		return rc;
1686 
1687 	switch (wdev->iftype) {
1688 	case NL80211_IFTYPE_STATION:
1689 		wil_dbg_misc(wil, "type: STATION\n");
1690 		ndev->type = ARPHRD_ETHER;
1691 		break;
1692 	case NL80211_IFTYPE_AP:
1693 		wil_dbg_misc(wil, "type: AP\n");
1694 		ndev->type = ARPHRD_ETHER;
1695 		break;
1696 	case NL80211_IFTYPE_P2P_CLIENT:
1697 		wil_dbg_misc(wil, "type: P2P_CLIENT\n");
1698 		ndev->type = ARPHRD_ETHER;
1699 		break;
1700 	case NL80211_IFTYPE_P2P_GO:
1701 		wil_dbg_misc(wil, "type: P2P_GO\n");
1702 		ndev->type = ARPHRD_ETHER;
1703 		break;
1704 	case NL80211_IFTYPE_MONITOR:
1705 		wil_dbg_misc(wil, "type: Monitor\n");
1706 		ndev->type = ARPHRD_IEEE80211_RADIOTAP;
1707 		/* ARPHRD_IEEE80211 or ARPHRD_IEEE80211_RADIOTAP ? */
1708 		break;
1709 	default:
1710 		return -EOPNOTSUPP;
1711 	}
1712 
1713 	/* MAC address - pre-requisite for other commands */
1714 	wmi_set_mac_address(wil, ndev->dev_addr);
1715 
1716 	wil_dbg_misc(wil, "NAPI enable\n");
1717 	napi_enable(&wil->napi_rx);
1718 	napi_enable(&wil->napi_tx);
1719 	set_bit(wil_status_napi_en, wil->status);
1720 
1721 	wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
1722 
1723 	return 0;
1724 }
1725 
1726 int wil_up(struct wil6210_priv *wil)
1727 {
1728 	int rc;
1729 
1730 	wil_dbg_misc(wil, "up\n");
1731 
1732 	mutex_lock(&wil->mutex);
1733 	rc = __wil_up(wil);
1734 	mutex_unlock(&wil->mutex);
1735 
1736 	return rc;
1737 }
1738 
1739 int __wil_down(struct wil6210_priv *wil)
1740 {
1741 	WARN_ON(!mutex_is_locked(&wil->mutex));
1742 
1743 	set_bit(wil_status_resetting, wil->status);
1744 
1745 	wil6210_bus_request(wil, 0);
1746 
1747 	wil_disable_irq(wil);
1748 	if (test_and_clear_bit(wil_status_napi_en, wil->status)) {
1749 		napi_disable(&wil->napi_rx);
1750 		napi_disable(&wil->napi_tx);
1751 		wil_dbg_misc(wil, "NAPI disable\n");
1752 	}
1753 	wil_enable_irq(wil);
1754 
1755 	mutex_lock(&wil->vif_mutex);
1756 	wil_p2p_stop_radio_operations(wil);
1757 	wil_abort_scan_all_vifs(wil, false);
1758 	mutex_unlock(&wil->vif_mutex);
1759 
1760 	return wil_reset(wil, false);
1761 }
1762 
1763 int wil_down(struct wil6210_priv *wil)
1764 {
1765 	int rc;
1766 
1767 	wil_dbg_misc(wil, "down\n");
1768 
1769 	wil_set_recovery_state(wil, fw_recovery_idle);
1770 	mutex_lock(&wil->mutex);
1771 	rc = __wil_down(wil);
1772 	mutex_unlock(&wil->mutex);
1773 
1774 	return rc;
1775 }
1776 
1777 int wil_find_cid(struct wil6210_priv *wil, u8 mid, const u8 *mac)
1778 {
1779 	int i;
1780 	int rc = -ENOENT;
1781 
1782 	for (i = 0; i < ARRAY_SIZE(wil->sta); i++) {
1783 		if (wil->sta[i].mid == mid &&
1784 		    wil->sta[i].status != wil_sta_unused &&
1785 		    ether_addr_equal(wil->sta[i].addr, mac)) {
1786 			rc = i;
1787 			break;
1788 		}
1789 	}
1790 
1791 	return rc;
1792 }
1793 
1794 void wil_halp_vote(struct wil6210_priv *wil)
1795 {
1796 	unsigned long rc;
1797 	unsigned long to_jiffies = msecs_to_jiffies(WAIT_FOR_HALP_VOTE_MS);
1798 
1799 	mutex_lock(&wil->halp.lock);
1800 
1801 	wil_dbg_irq(wil, "halp_vote: start, HALP ref_cnt (%d)\n",
1802 		    wil->halp.ref_cnt);
1803 
1804 	if (++wil->halp.ref_cnt == 1) {
1805 		reinit_completion(&wil->halp.comp);
1806 		wil6210_set_halp(wil);
1807 		rc = wait_for_completion_timeout(&wil->halp.comp, to_jiffies);
1808 		if (!rc) {
1809 			wil_err(wil, "HALP vote timed out\n");
1810 			/* Mask HALP as done in case the interrupt is raised */
1811 			wil6210_mask_halp(wil);
1812 		} else {
1813 			wil_dbg_irq(wil,
1814 				    "halp_vote: HALP vote completed after %d ms\n",
1815 				    jiffies_to_msecs(to_jiffies - rc));
1816 		}
1817 	}
1818 
1819 	wil_dbg_irq(wil, "halp_vote: end, HALP ref_cnt (%d)\n",
1820 		    wil->halp.ref_cnt);
1821 
1822 	mutex_unlock(&wil->halp.lock);
1823 }
1824 
1825 void wil_halp_unvote(struct wil6210_priv *wil)
1826 {
1827 	WARN_ON(wil->halp.ref_cnt == 0);
1828 
1829 	mutex_lock(&wil->halp.lock);
1830 
1831 	wil_dbg_irq(wil, "halp_unvote: start, HALP ref_cnt (%d)\n",
1832 		    wil->halp.ref_cnt);
1833 
1834 	if (--wil->halp.ref_cnt == 0) {
1835 		wil6210_clear_halp(wil);
1836 		wil_dbg_irq(wil, "HALP unvote\n");
1837 	}
1838 
1839 	wil_dbg_irq(wil, "halp_unvote:end, HALP ref_cnt (%d)\n",
1840 		    wil->halp.ref_cnt);
1841 
1842 	mutex_unlock(&wil->halp.lock);
1843 }
1844 
1845 void wil_init_txrx_ops(struct wil6210_priv *wil)
1846 {
1847 	if (wil->use_enhanced_dma_hw)
1848 		wil_init_txrx_ops_edma(wil);
1849 	else
1850 		wil_init_txrx_ops_legacy_dma(wil);
1851 }
1852