1 /* 2 * Copyright (c) 2012-2017 Qualcomm Atheros, Inc. 3 * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 */ 17 18 #include <linux/moduleparam.h> 19 #include <linux/if_arp.h> 20 #include <linux/etherdevice.h> 21 #include <linux/rtnetlink.h> 22 23 #include "wil6210.h" 24 #include "txrx.h" 25 #include "txrx_edma.h" 26 #include "wmi.h" 27 #include "boot_loader.h" 28 29 #define WAIT_FOR_HALP_VOTE_MS 100 30 #define WAIT_FOR_SCAN_ABORT_MS 1000 31 #define WIL_DEFAULT_NUM_RX_STATUS_RINGS 1 32 #define WIL_BOARD_FILE_MAX_NAMELEN 128 33 34 bool debug_fw; /* = false; */ 35 module_param(debug_fw, bool, 0444); 36 MODULE_PARM_DESC(debug_fw, " do not perform card reset. For FW debug"); 37 38 static u8 oob_mode; 39 module_param(oob_mode, byte, 0444); 40 MODULE_PARM_DESC(oob_mode, 41 " enable out of the box (OOB) mode in FW, for diagnostics and certification"); 42 43 bool no_fw_recovery; 44 module_param(no_fw_recovery, bool, 0644); 45 MODULE_PARM_DESC(no_fw_recovery, " disable automatic FW error recovery"); 46 47 /* if not set via modparam, will be set to default value of 1/8 of 48 * rx ring size during init flow 49 */ 50 unsigned short rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_INIT; 51 module_param(rx_ring_overflow_thrsh, ushort, 0444); 52 MODULE_PARM_DESC(rx_ring_overflow_thrsh, 53 " RX ring overflow threshold in descriptors."); 54 55 /* We allow allocation of more than 1 page buffers to support large packets. 56 * It is suboptimal behavior performance wise in case MTU above page size. 57 */ 58 unsigned int mtu_max = TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD; 59 static int mtu_max_set(const char *val, const struct kernel_param *kp) 60 { 61 int ret; 62 63 /* sets mtu_max directly. no need to restore it in case of 64 * illegal value since we assume this will fail insmod 65 */ 66 ret = param_set_uint(val, kp); 67 if (ret) 68 return ret; 69 70 if (mtu_max < 68 || mtu_max > WIL_MAX_ETH_MTU) 71 ret = -EINVAL; 72 73 return ret; 74 } 75 76 static const struct kernel_param_ops mtu_max_ops = { 77 .set = mtu_max_set, 78 .get = param_get_uint, 79 }; 80 81 module_param_cb(mtu_max, &mtu_max_ops, &mtu_max, 0444); 82 MODULE_PARM_DESC(mtu_max, " Max MTU value."); 83 84 static uint rx_ring_order; 85 static uint tx_ring_order = WIL_TX_RING_SIZE_ORDER_DEFAULT; 86 static uint bcast_ring_order = WIL_BCAST_RING_SIZE_ORDER_DEFAULT; 87 88 static int ring_order_set(const char *val, const struct kernel_param *kp) 89 { 90 int ret; 91 uint x; 92 93 ret = kstrtouint(val, 0, &x); 94 if (ret) 95 return ret; 96 97 if ((x < WIL_RING_SIZE_ORDER_MIN) || (x > WIL_RING_SIZE_ORDER_MAX)) 98 return -EINVAL; 99 100 *((uint *)kp->arg) = x; 101 102 return 0; 103 } 104 105 static const struct kernel_param_ops ring_order_ops = { 106 .set = ring_order_set, 107 .get = param_get_uint, 108 }; 109 110 module_param_cb(rx_ring_order, &ring_order_ops, &rx_ring_order, 0444); 111 MODULE_PARM_DESC(rx_ring_order, " Rx ring order; size = 1 << order"); 112 module_param_cb(tx_ring_order, &ring_order_ops, &tx_ring_order, 0444); 113 MODULE_PARM_DESC(tx_ring_order, " Tx ring order; size = 1 << order"); 114 module_param_cb(bcast_ring_order, &ring_order_ops, &bcast_ring_order, 0444); 115 MODULE_PARM_DESC(bcast_ring_order, " Bcast ring order; size = 1 << order"); 116 117 enum { 118 WIL_BOOT_ERR, 119 WIL_BOOT_VANILLA, 120 WIL_BOOT_PRODUCTION, 121 WIL_BOOT_DEVELOPMENT, 122 }; 123 124 enum { 125 WIL_SIG_STATUS_VANILLA = 0x0, 126 WIL_SIG_STATUS_DEVELOPMENT = 0x1, 127 WIL_SIG_STATUS_PRODUCTION = 0x2, 128 WIL_SIG_STATUS_CORRUPTED_PRODUCTION = 0x3, 129 }; 130 131 #define RST_DELAY (20) /* msec, for loop in @wil_wait_device_ready */ 132 #define RST_COUNT (1 + 1000/RST_DELAY) /* round up to be above 1 sec total */ 133 134 #define PMU_READY_DELAY_MS (4) /* ms, for sleep in @wil_wait_device_ready */ 135 136 #define OTP_HW_DELAY (200) /* usec, loop in @wil_wait_device_ready_talyn_mb */ 137 /* round up to be above 2 ms total */ 138 #define OTP_HW_COUNT (1 + 2000 / OTP_HW_DELAY) 139 140 /* 141 * Due to a hardware issue, 142 * one has to read/write to/from NIC in 32-bit chunks; 143 * regular memcpy_fromio and siblings will 144 * not work on 64-bit platform - it uses 64-bit transactions 145 * 146 * Force 32-bit transactions to enable NIC on 64-bit platforms 147 * 148 * To avoid byte swap on big endian host, __raw_{read|write}l 149 * should be used - {read|write}l would swap bytes to provide 150 * little endian on PCI value in host endianness. 151 */ 152 void wil_memcpy_fromio_32(void *dst, const volatile void __iomem *src, 153 size_t count) 154 { 155 u32 *d = dst; 156 const volatile u32 __iomem *s = src; 157 158 for (; count >= 4; count -= 4) 159 *d++ = __raw_readl(s++); 160 161 if (unlikely(count)) { 162 /* count can be 1..3 */ 163 u32 tmp = __raw_readl(s); 164 165 memcpy(d, &tmp, count); 166 } 167 } 168 169 void wil_memcpy_toio_32(volatile void __iomem *dst, const void *src, 170 size_t count) 171 { 172 volatile u32 __iomem *d = dst; 173 const u32 *s = src; 174 175 for (; count >= 4; count -= 4) 176 __raw_writel(*s++, d++); 177 178 if (unlikely(count)) { 179 /* count can be 1..3 */ 180 u32 tmp = 0; 181 182 memcpy(&tmp, s, count); 183 __raw_writel(tmp, d); 184 } 185 } 186 187 static void wil_ring_fini_tx(struct wil6210_priv *wil, int id) 188 { 189 struct wil_ring *ring = &wil->ring_tx[id]; 190 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id]; 191 192 lockdep_assert_held(&wil->mutex); 193 194 if (!ring->va) 195 return; 196 197 wil_dbg_misc(wil, "vring_fini_tx: id=%d\n", id); 198 199 spin_lock_bh(&txdata->lock); 200 txdata->dot1x_open = false; 201 txdata->mid = U8_MAX; 202 txdata->enabled = 0; /* no Tx can be in progress or start anew */ 203 spin_unlock_bh(&txdata->lock); 204 /* napi_synchronize waits for completion of the current NAPI but will 205 * not prevent the next NAPI run. 206 * Add a memory barrier to guarantee that txdata->enabled is zeroed 207 * before napi_synchronize so that the next scheduled NAPI will not 208 * handle this vring 209 */ 210 wmb(); 211 /* make sure NAPI won't touch this vring */ 212 if (test_bit(wil_status_napi_en, wil->status)) 213 napi_synchronize(&wil->napi_tx); 214 215 wil->txrx_ops.ring_fini_tx(wil, ring); 216 } 217 218 static bool wil_vif_is_connected(struct wil6210_priv *wil, u8 mid) 219 { 220 int i; 221 222 for (i = 0; i < max_assoc_sta; i++) { 223 if (wil->sta[i].mid == mid && 224 wil->sta[i].status == wil_sta_connected) 225 return true; 226 } 227 228 return false; 229 } 230 231 static void wil_disconnect_cid_complete(struct wil6210_vif *vif, int cid, 232 u16 reason_code) 233 __acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock) 234 { 235 uint i; 236 struct wil6210_priv *wil = vif_to_wil(vif); 237 struct net_device *ndev = vif_to_ndev(vif); 238 struct wireless_dev *wdev = vif_to_wdev(vif); 239 struct wil_sta_info *sta = &wil->sta[cid]; 240 int min_ring_id = wil_get_min_tx_ring_id(wil); 241 242 might_sleep(); 243 wil_dbg_misc(wil, 244 "disconnect_cid_complete: CID %d, MID %d, status %d\n", 245 cid, sta->mid, sta->status); 246 /* inform upper layers */ 247 if (sta->status != wil_sta_unused) { 248 if (vif->mid != sta->mid) { 249 wil_err(wil, "STA MID mismatch with VIF MID(%d)\n", 250 vif->mid); 251 } 252 253 switch (wdev->iftype) { 254 case NL80211_IFTYPE_AP: 255 case NL80211_IFTYPE_P2P_GO: 256 /* AP-like interface */ 257 cfg80211_del_sta(ndev, sta->addr, GFP_KERNEL); 258 break; 259 default: 260 break; 261 } 262 sta->status = wil_sta_unused; 263 sta->mid = U8_MAX; 264 } 265 /* reorder buffers */ 266 for (i = 0; i < WIL_STA_TID_NUM; i++) { 267 struct wil_tid_ampdu_rx *r; 268 269 spin_lock_bh(&sta->tid_rx_lock); 270 271 r = sta->tid_rx[i]; 272 sta->tid_rx[i] = NULL; 273 wil_tid_ampdu_rx_free(wil, r); 274 275 spin_unlock_bh(&sta->tid_rx_lock); 276 } 277 /* crypto context */ 278 memset(sta->tid_crypto_rx, 0, sizeof(sta->tid_crypto_rx)); 279 memset(&sta->group_crypto_rx, 0, sizeof(sta->group_crypto_rx)); 280 /* release vrings */ 281 for (i = min_ring_id; i < ARRAY_SIZE(wil->ring_tx); i++) { 282 if (wil->ring2cid_tid[i][0] == cid) 283 wil_ring_fini_tx(wil, i); 284 } 285 /* statistics */ 286 memset(&sta->stats, 0, sizeof(sta->stats)); 287 sta->stats.tx_latency_min_us = U32_MAX; 288 } 289 290 static void _wil6210_disconnect_complete(struct wil6210_vif *vif, 291 const u8 *bssid, u16 reason_code) 292 { 293 struct wil6210_priv *wil = vif_to_wil(vif); 294 int cid = -ENOENT; 295 struct net_device *ndev; 296 struct wireless_dev *wdev; 297 298 ndev = vif_to_ndev(vif); 299 wdev = vif_to_wdev(vif); 300 301 might_sleep(); 302 wil_info(wil, "disconnect_complete: bssid=%pM, reason=%d\n", 303 bssid, reason_code); 304 305 /* Cases are: 306 * - disconnect single STA, still connected 307 * - disconnect single STA, already disconnected 308 * - disconnect all 309 * 310 * For "disconnect all", there are 3 options: 311 * - bssid == NULL 312 * - bssid is broadcast address (ff:ff:ff:ff:ff:ff) 313 * - bssid is our MAC address 314 */ 315 if (bssid && !is_broadcast_ether_addr(bssid) && 316 !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) { 317 cid = wil_find_cid(wil, vif->mid, bssid); 318 wil_dbg_misc(wil, 319 "Disconnect complete %pM, CID=%d, reason=%d\n", 320 bssid, cid, reason_code); 321 if (cid >= 0) /* disconnect 1 peer */ 322 wil_disconnect_cid_complete(vif, cid, reason_code); 323 } else { /* all */ 324 wil_dbg_misc(wil, "Disconnect complete all\n"); 325 for (cid = 0; cid < max_assoc_sta; cid++) 326 wil_disconnect_cid_complete(vif, cid, reason_code); 327 } 328 329 /* link state */ 330 switch (wdev->iftype) { 331 case NL80211_IFTYPE_STATION: 332 case NL80211_IFTYPE_P2P_CLIENT: 333 wil_bcast_fini(vif); 334 wil_update_net_queues_bh(wil, vif, NULL, true); 335 netif_carrier_off(ndev); 336 if (!wil_has_other_active_ifaces(wil, ndev, false, true)) 337 wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS); 338 339 if (test_and_clear_bit(wil_vif_fwconnected, vif->status)) { 340 atomic_dec(&wil->connected_vifs); 341 cfg80211_disconnected(ndev, reason_code, 342 NULL, 0, 343 vif->locally_generated_disc, 344 GFP_KERNEL); 345 vif->locally_generated_disc = false; 346 } else if (test_bit(wil_vif_fwconnecting, vif->status)) { 347 cfg80211_connect_result(ndev, bssid, NULL, 0, NULL, 0, 348 WLAN_STATUS_UNSPECIFIED_FAILURE, 349 GFP_KERNEL); 350 vif->bss = NULL; 351 } 352 clear_bit(wil_vif_fwconnecting, vif->status); 353 clear_bit(wil_vif_ft_roam, vif->status); 354 355 break; 356 case NL80211_IFTYPE_AP: 357 case NL80211_IFTYPE_P2P_GO: 358 if (!wil_vif_is_connected(wil, vif->mid)) { 359 wil_update_net_queues_bh(wil, vif, NULL, true); 360 if (test_and_clear_bit(wil_vif_fwconnected, 361 vif->status)) 362 atomic_dec(&wil->connected_vifs); 363 } else { 364 wil_update_net_queues_bh(wil, vif, NULL, false); 365 } 366 break; 367 default: 368 break; 369 } 370 } 371 372 static int wil_disconnect_cid(struct wil6210_vif *vif, int cid, 373 u16 reason_code) 374 { 375 struct wil6210_priv *wil = vif_to_wil(vif); 376 struct wireless_dev *wdev = vif_to_wdev(vif); 377 struct wil_sta_info *sta = &wil->sta[cid]; 378 bool del_sta = false; 379 380 might_sleep(); 381 wil_dbg_misc(wil, "disconnect_cid: CID %d, MID %d, status %d\n", 382 cid, sta->mid, sta->status); 383 384 if (sta->status == wil_sta_unused) 385 return 0; 386 387 if (vif->mid != sta->mid) { 388 wil_err(wil, "STA MID mismatch with VIF MID(%d)\n", vif->mid); 389 return -EINVAL; 390 } 391 392 /* inform lower layers */ 393 if (wdev->iftype == NL80211_IFTYPE_AP && disable_ap_sme) 394 del_sta = true; 395 396 /* disconnect by sending command disconnect/del_sta and wait 397 * synchronously for WMI_DISCONNECT_EVENTID event. 398 */ 399 return wmi_disconnect_sta(vif, sta->addr, reason_code, del_sta); 400 } 401 402 static void _wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid, 403 u16 reason_code) 404 { 405 struct wil6210_priv *wil; 406 struct net_device *ndev; 407 int cid = -ENOENT; 408 409 if (unlikely(!vif)) 410 return; 411 412 wil = vif_to_wil(vif); 413 ndev = vif_to_ndev(vif); 414 415 might_sleep(); 416 wil_info(wil, "disconnect bssid=%pM, reason=%d\n", bssid, reason_code); 417 418 /* Cases are: 419 * - disconnect single STA, still connected 420 * - disconnect single STA, already disconnected 421 * - disconnect all 422 * 423 * For "disconnect all", there are 3 options: 424 * - bssid == NULL 425 * - bssid is broadcast address (ff:ff:ff:ff:ff:ff) 426 * - bssid is our MAC address 427 */ 428 if (bssid && !is_broadcast_ether_addr(bssid) && 429 !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) { 430 cid = wil_find_cid(wil, vif->mid, bssid); 431 wil_dbg_misc(wil, "Disconnect %pM, CID=%d, reason=%d\n", 432 bssid, cid, reason_code); 433 if (cid >= 0) /* disconnect 1 peer */ 434 wil_disconnect_cid(vif, cid, reason_code); 435 } else { /* all */ 436 wil_dbg_misc(wil, "Disconnect all\n"); 437 for (cid = 0; cid < max_assoc_sta; cid++) 438 wil_disconnect_cid(vif, cid, reason_code); 439 } 440 441 /* call event handler manually after processing wmi_call, 442 * to avoid deadlock - disconnect event handler acquires 443 * wil->mutex while it is already held here 444 */ 445 _wil6210_disconnect_complete(vif, bssid, reason_code); 446 } 447 448 void wil_disconnect_worker(struct work_struct *work) 449 { 450 struct wil6210_vif *vif = container_of(work, 451 struct wil6210_vif, disconnect_worker); 452 struct wil6210_priv *wil = vif_to_wil(vif); 453 struct net_device *ndev = vif_to_ndev(vif); 454 int rc; 455 struct { 456 struct wmi_cmd_hdr wmi; 457 struct wmi_disconnect_event evt; 458 } __packed reply; 459 460 if (test_bit(wil_vif_fwconnected, vif->status)) 461 /* connect succeeded after all */ 462 return; 463 464 if (!test_bit(wil_vif_fwconnecting, vif->status)) 465 /* already disconnected */ 466 return; 467 468 memset(&reply, 0, sizeof(reply)); 469 470 rc = wmi_call(wil, WMI_DISCONNECT_CMDID, vif->mid, NULL, 0, 471 WMI_DISCONNECT_EVENTID, &reply, sizeof(reply), 472 WIL6210_DISCONNECT_TO_MS); 473 if (rc) { 474 wil_err(wil, "disconnect error %d\n", rc); 475 return; 476 } 477 478 wil_update_net_queues_bh(wil, vif, NULL, true); 479 netif_carrier_off(ndev); 480 cfg80211_connect_result(ndev, NULL, NULL, 0, NULL, 0, 481 WLAN_STATUS_UNSPECIFIED_FAILURE, GFP_KERNEL); 482 clear_bit(wil_vif_fwconnecting, vif->status); 483 } 484 485 static int wil_wait_for_recovery(struct wil6210_priv *wil) 486 { 487 if (wait_event_interruptible(wil->wq, wil->recovery_state != 488 fw_recovery_pending)) { 489 wil_err(wil, "Interrupt, canceling recovery\n"); 490 return -ERESTARTSYS; 491 } 492 if (wil->recovery_state != fw_recovery_running) { 493 wil_info(wil, "Recovery cancelled\n"); 494 return -EINTR; 495 } 496 wil_info(wil, "Proceed with recovery\n"); 497 return 0; 498 } 499 500 void wil_set_recovery_state(struct wil6210_priv *wil, int state) 501 { 502 wil_dbg_misc(wil, "set_recovery_state: %d -> %d\n", 503 wil->recovery_state, state); 504 505 wil->recovery_state = state; 506 wake_up_interruptible(&wil->wq); 507 } 508 509 bool wil_is_recovery_blocked(struct wil6210_priv *wil) 510 { 511 return no_fw_recovery && (wil->recovery_state == fw_recovery_pending); 512 } 513 514 static void wil_fw_error_worker(struct work_struct *work) 515 { 516 struct wil6210_priv *wil = container_of(work, struct wil6210_priv, 517 fw_error_worker); 518 struct net_device *ndev = wil->main_ndev; 519 struct wireless_dev *wdev; 520 521 wil_dbg_misc(wil, "fw error worker\n"); 522 523 if (!ndev || !(ndev->flags & IFF_UP)) { 524 wil_info(wil, "No recovery - interface is down\n"); 525 return; 526 } 527 wdev = ndev->ieee80211_ptr; 528 529 /* increment @recovery_count if less then WIL6210_FW_RECOVERY_TO 530 * passed since last recovery attempt 531 */ 532 if (time_is_after_jiffies(wil->last_fw_recovery + 533 WIL6210_FW_RECOVERY_TO)) 534 wil->recovery_count++; 535 else 536 wil->recovery_count = 1; /* fw was alive for a long time */ 537 538 if (wil->recovery_count > WIL6210_FW_RECOVERY_RETRIES) { 539 wil_err(wil, "too many recovery attempts (%d), giving up\n", 540 wil->recovery_count); 541 return; 542 } 543 544 wil->last_fw_recovery = jiffies; 545 546 wil_info(wil, "fw error recovery requested (try %d)...\n", 547 wil->recovery_count); 548 if (!no_fw_recovery) 549 wil->recovery_state = fw_recovery_running; 550 if (wil_wait_for_recovery(wil) != 0) 551 return; 552 553 rtnl_lock(); 554 mutex_lock(&wil->mutex); 555 /* Needs adaptation for multiple VIFs 556 * need to go over all VIFs and consider the appropriate 557 * recovery because each one can have different iftype. 558 */ 559 switch (wdev->iftype) { 560 case NL80211_IFTYPE_STATION: 561 case NL80211_IFTYPE_P2P_CLIENT: 562 case NL80211_IFTYPE_MONITOR: 563 /* silent recovery, upper layers will see disconnect */ 564 __wil_down(wil); 565 __wil_up(wil); 566 break; 567 case NL80211_IFTYPE_AP: 568 case NL80211_IFTYPE_P2P_GO: 569 if (no_fw_recovery) /* upper layers do recovery */ 570 break; 571 /* silent recovery, upper layers will see disconnect */ 572 __wil_down(wil); 573 __wil_up(wil); 574 mutex_unlock(&wil->mutex); 575 wil_cfg80211_ap_recovery(wil); 576 mutex_lock(&wil->mutex); 577 wil_info(wil, "... completed\n"); 578 break; 579 default: 580 wil_err(wil, "No recovery - unknown interface type %d\n", 581 wdev->iftype); 582 break; 583 } 584 585 mutex_unlock(&wil->mutex); 586 rtnl_unlock(); 587 } 588 589 static int wil_find_free_ring(struct wil6210_priv *wil) 590 { 591 int i; 592 int min_ring_id = wil_get_min_tx_ring_id(wil); 593 594 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) { 595 if (!wil->ring_tx[i].va) 596 return i; 597 } 598 return -EINVAL; 599 } 600 601 int wil_ring_init_tx(struct wil6210_vif *vif, int cid) 602 { 603 struct wil6210_priv *wil = vif_to_wil(vif); 604 int rc = -EINVAL, ringid; 605 606 if (cid < 0) { 607 wil_err(wil, "No connection pending\n"); 608 goto out; 609 } 610 ringid = wil_find_free_ring(wil); 611 if (ringid < 0) { 612 wil_err(wil, "No free vring found\n"); 613 goto out; 614 } 615 616 wil_dbg_wmi(wil, "Configure for connection CID %d MID %d ring %d\n", 617 cid, vif->mid, ringid); 618 619 rc = wil->txrx_ops.ring_init_tx(vif, ringid, 1 << tx_ring_order, 620 cid, 0); 621 if (rc) 622 wil_err(wil, "init TX for CID %d MID %d vring %d failed\n", 623 cid, vif->mid, ringid); 624 625 out: 626 return rc; 627 } 628 629 int wil_bcast_init(struct wil6210_vif *vif) 630 { 631 struct wil6210_priv *wil = vif_to_wil(vif); 632 int ri = vif->bcast_ring, rc; 633 634 if (ri >= 0 && wil->ring_tx[ri].va) 635 return 0; 636 637 ri = wil_find_free_ring(wil); 638 if (ri < 0) 639 return ri; 640 641 vif->bcast_ring = ri; 642 rc = wil->txrx_ops.ring_init_bcast(vif, ri, 1 << bcast_ring_order); 643 if (rc) 644 vif->bcast_ring = -1; 645 646 return rc; 647 } 648 649 void wil_bcast_fini(struct wil6210_vif *vif) 650 { 651 struct wil6210_priv *wil = vif_to_wil(vif); 652 int ri = vif->bcast_ring; 653 654 if (ri < 0) 655 return; 656 657 vif->bcast_ring = -1; 658 wil_ring_fini_tx(wil, ri); 659 } 660 661 void wil_bcast_fini_all(struct wil6210_priv *wil) 662 { 663 int i; 664 struct wil6210_vif *vif; 665 666 for (i = 0; i < wil->max_vifs; i++) { 667 vif = wil->vifs[i]; 668 if (vif) 669 wil_bcast_fini(vif); 670 } 671 } 672 673 int wil_priv_init(struct wil6210_priv *wil) 674 { 675 uint i; 676 677 wil_dbg_misc(wil, "priv_init\n"); 678 679 memset(wil->sta, 0, sizeof(wil->sta)); 680 for (i = 0; i < WIL6210_MAX_CID; i++) { 681 spin_lock_init(&wil->sta[i].tid_rx_lock); 682 wil->sta[i].mid = U8_MAX; 683 } 684 685 for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) { 686 spin_lock_init(&wil->ring_tx_data[i].lock); 687 wil->ring2cid_tid[i][0] = WIL6210_MAX_CID; 688 } 689 690 mutex_init(&wil->mutex); 691 mutex_init(&wil->vif_mutex); 692 mutex_init(&wil->wmi_mutex); 693 mutex_init(&wil->halp.lock); 694 695 init_completion(&wil->wmi_ready); 696 init_completion(&wil->wmi_call); 697 init_completion(&wil->halp.comp); 698 699 INIT_WORK(&wil->wmi_event_worker, wmi_event_worker); 700 INIT_WORK(&wil->fw_error_worker, wil_fw_error_worker); 701 702 INIT_LIST_HEAD(&wil->pending_wmi_ev); 703 spin_lock_init(&wil->wmi_ev_lock); 704 spin_lock_init(&wil->net_queue_lock); 705 init_waitqueue_head(&wil->wq); 706 707 wil->wmi_wq = create_singlethread_workqueue(WIL_NAME "_wmi"); 708 if (!wil->wmi_wq) 709 return -EAGAIN; 710 711 wil->wq_service = create_singlethread_workqueue(WIL_NAME "_service"); 712 if (!wil->wq_service) 713 goto out_wmi_wq; 714 715 wil->last_fw_recovery = jiffies; 716 wil->tx_interframe_timeout = WIL6210_ITR_TX_INTERFRAME_TIMEOUT_DEFAULT; 717 wil->rx_interframe_timeout = WIL6210_ITR_RX_INTERFRAME_TIMEOUT_DEFAULT; 718 wil->tx_max_burst_duration = WIL6210_ITR_TX_MAX_BURST_DURATION_DEFAULT; 719 wil->rx_max_burst_duration = WIL6210_ITR_RX_MAX_BURST_DURATION_DEFAULT; 720 721 if (rx_ring_overflow_thrsh == WIL6210_RX_HIGH_TRSH_INIT) 722 rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_DEFAULT; 723 724 wil->ps_profile = WMI_PS_PROFILE_TYPE_DEFAULT; 725 726 wil->wakeup_trigger = WMI_WAKEUP_TRIGGER_UCAST | 727 WMI_WAKEUP_TRIGGER_BCAST; 728 memset(&wil->suspend_stats, 0, sizeof(wil->suspend_stats)); 729 wil->ring_idle_trsh = 16; 730 731 wil->reply_mid = U8_MAX; 732 wil->max_vifs = 1; 733 734 /* edma configuration can be updated via debugfs before allocation */ 735 wil->num_rx_status_rings = WIL_DEFAULT_NUM_RX_STATUS_RINGS; 736 wil->tx_status_ring_order = WIL_TX_SRING_SIZE_ORDER_DEFAULT; 737 738 /* Rx status ring size should be bigger than the number of RX buffers 739 * in order to prevent backpressure on the status ring, which may 740 * cause HW freeze. 741 */ 742 wil->rx_status_ring_order = WIL_RX_SRING_SIZE_ORDER_DEFAULT; 743 /* Number of RX buffer IDs should be bigger than the RX descriptor 744 * ring size as in HW reorder flow, the HW can consume additional 745 * buffers before releasing the previous ones. 746 */ 747 wil->rx_buff_id_count = WIL_RX_BUFF_ARR_SIZE_DEFAULT; 748 749 wil->amsdu_en = 1; 750 751 return 0; 752 753 out_wmi_wq: 754 destroy_workqueue(wil->wmi_wq); 755 756 return -EAGAIN; 757 } 758 759 void wil6210_bus_request(struct wil6210_priv *wil, u32 kbps) 760 { 761 if (wil->platform_ops.bus_request) { 762 wil->bus_request_kbps = kbps; 763 wil->platform_ops.bus_request(wil->platform_handle, kbps); 764 } 765 } 766 767 /** 768 * wil6210_disconnect - disconnect one connection 769 * @vif: virtual interface context 770 * @bssid: peer to disconnect, NULL to disconnect all 771 * @reason_code: Reason code for the Disassociation frame 772 * 773 * Disconnect and release associated resources. Issue WMI 774 * command(s) to trigger MAC disconnect. When command was issued 775 * successfully, call the wil6210_disconnect_complete function 776 * to handle the event synchronously 777 */ 778 void wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid, 779 u16 reason_code) 780 { 781 struct wil6210_priv *wil = vif_to_wil(vif); 782 783 wil_dbg_misc(wil, "disconnecting\n"); 784 785 del_timer_sync(&vif->connect_timer); 786 _wil6210_disconnect(vif, bssid, reason_code); 787 } 788 789 /** 790 * wil6210_disconnect_complete - handle disconnect event 791 * @vif: virtual interface context 792 * @bssid: peer to disconnect, NULL to disconnect all 793 * @reason_code: Reason code for the Disassociation frame 794 * 795 * Release associated resources and indicate upper layers the 796 * connection is terminated. 797 */ 798 void wil6210_disconnect_complete(struct wil6210_vif *vif, const u8 *bssid, 799 u16 reason_code) 800 { 801 struct wil6210_priv *wil = vif_to_wil(vif); 802 803 wil_dbg_misc(wil, "got disconnect\n"); 804 805 del_timer_sync(&vif->connect_timer); 806 _wil6210_disconnect_complete(vif, bssid, reason_code); 807 } 808 809 void wil_priv_deinit(struct wil6210_priv *wil) 810 { 811 wil_dbg_misc(wil, "priv_deinit\n"); 812 813 wil_set_recovery_state(wil, fw_recovery_idle); 814 cancel_work_sync(&wil->fw_error_worker); 815 wmi_event_flush(wil); 816 destroy_workqueue(wil->wq_service); 817 destroy_workqueue(wil->wmi_wq); 818 } 819 820 static void wil_shutdown_bl(struct wil6210_priv *wil) 821 { 822 u32 val; 823 824 wil_s(wil, RGF_USER_BL + 825 offsetof(struct bl_dedicated_registers_v1, 826 bl_shutdown_handshake), BL_SHUTDOWN_HS_GRTD); 827 828 usleep_range(100, 150); 829 830 val = wil_r(wil, RGF_USER_BL + 831 offsetof(struct bl_dedicated_registers_v1, 832 bl_shutdown_handshake)); 833 if (val & BL_SHUTDOWN_HS_RTD) { 834 wil_dbg_misc(wil, "BL is ready for halt\n"); 835 return; 836 } 837 838 wil_err(wil, "BL did not report ready for halt\n"); 839 } 840 841 /* this format is used by ARC embedded CPU for instruction memory */ 842 static inline u32 ARC_me_imm32(u32 d) 843 { 844 return ((d & 0xffff0000) >> 16) | ((d & 0x0000ffff) << 16); 845 } 846 847 /* defines access to interrupt vectors for wil_freeze_bl */ 848 #define ARC_IRQ_VECTOR_OFFSET(N) ((N) * 8) 849 /* ARC long jump instruction */ 850 #define ARC_JAL_INST (0x20200f80) 851 852 static void wil_freeze_bl(struct wil6210_priv *wil) 853 { 854 u32 jal, upc, saved; 855 u32 ivt3 = ARC_IRQ_VECTOR_OFFSET(3); 856 857 jal = wil_r(wil, wil->iccm_base + ivt3); 858 if (jal != ARC_me_imm32(ARC_JAL_INST)) { 859 wil_dbg_misc(wil, "invalid IVT entry found, skipping\n"); 860 return; 861 } 862 863 /* prevent the target from entering deep sleep 864 * and disabling memory access 865 */ 866 saved = wil_r(wil, RGF_USER_USAGE_8); 867 wil_w(wil, RGF_USER_USAGE_8, saved | BIT_USER_PREVENT_DEEP_SLEEP); 868 usleep_range(20, 25); /* let the BL process the bit */ 869 870 /* redirect to endless loop in the INT_L1 context and let it trap */ 871 wil_w(wil, wil->iccm_base + ivt3 + 4, ARC_me_imm32(ivt3)); 872 usleep_range(20, 25); /* let the BL get into the trap */ 873 874 /* verify the BL is frozen */ 875 upc = wil_r(wil, RGF_USER_CPU_PC); 876 if (upc < ivt3 || (upc > (ivt3 + 8))) 877 wil_dbg_misc(wil, "BL freeze failed, PC=0x%08X\n", upc); 878 879 wil_w(wil, RGF_USER_USAGE_8, saved); 880 } 881 882 static void wil_bl_prepare_halt(struct wil6210_priv *wil) 883 { 884 u32 tmp, ver; 885 886 /* before halting device CPU driver must make sure BL is not accessing 887 * host memory. This is done differently depending on BL version: 888 * 1. For very old BL versions the procedure is skipped 889 * (not supported). 890 * 2. For old BL version we use a special trick to freeze the BL 891 * 3. For new BL versions we shutdown the BL using handshake procedure. 892 */ 893 tmp = wil_r(wil, RGF_USER_BL + 894 offsetof(struct bl_dedicated_registers_v0, 895 boot_loader_struct_version)); 896 if (!tmp) { 897 wil_dbg_misc(wil, "old BL, skipping halt preparation\n"); 898 return; 899 } 900 901 tmp = wil_r(wil, RGF_USER_BL + 902 offsetof(struct bl_dedicated_registers_v1, 903 bl_shutdown_handshake)); 904 ver = BL_SHUTDOWN_HS_PROT_VER(tmp); 905 906 if (ver > 0) 907 wil_shutdown_bl(wil); 908 else 909 wil_freeze_bl(wil); 910 } 911 912 static inline void wil_halt_cpu(struct wil6210_priv *wil) 913 { 914 if (wil->hw_version >= HW_VER_TALYN_MB) { 915 wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB, 916 BIT_USER_USER_CPU_MAN_RST); 917 wil_w(wil, RGF_USER_MAC_CPU_0_TALYN_MB, 918 BIT_USER_MAC_CPU_MAN_RST); 919 } else { 920 wil_w(wil, RGF_USER_USER_CPU_0, BIT_USER_USER_CPU_MAN_RST); 921 wil_w(wil, RGF_USER_MAC_CPU_0, BIT_USER_MAC_CPU_MAN_RST); 922 } 923 } 924 925 static inline void wil_release_cpu(struct wil6210_priv *wil) 926 { 927 /* Start CPU */ 928 if (wil->hw_version >= HW_VER_TALYN_MB) 929 wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB, 1); 930 else 931 wil_w(wil, RGF_USER_USER_CPU_0, 1); 932 } 933 934 static void wil_set_oob_mode(struct wil6210_priv *wil, u8 mode) 935 { 936 wil_info(wil, "oob_mode to %d\n", mode); 937 switch (mode) { 938 case 0: 939 wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE | 940 BIT_USER_OOB_R2_MODE); 941 break; 942 case 1: 943 wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE); 944 wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE); 945 break; 946 case 2: 947 wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE); 948 wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE); 949 break; 950 default: 951 wil_err(wil, "invalid oob_mode: %d\n", mode); 952 } 953 } 954 955 static int wil_wait_device_ready(struct wil6210_priv *wil, int no_flash) 956 { 957 int delay = 0; 958 u32 x, x1 = 0; 959 960 /* wait until device ready. */ 961 if (no_flash) { 962 msleep(PMU_READY_DELAY_MS); 963 964 wil_dbg_misc(wil, "Reset completed\n"); 965 } else { 966 do { 967 msleep(RST_DELAY); 968 x = wil_r(wil, RGF_USER_BL + 969 offsetof(struct bl_dedicated_registers_v0, 970 boot_loader_ready)); 971 if (x1 != x) { 972 wil_dbg_misc(wil, "BL.ready 0x%08x => 0x%08x\n", 973 x1, x); 974 x1 = x; 975 } 976 if (delay++ > RST_COUNT) { 977 wil_err(wil, "Reset not completed, bl.ready 0x%08x\n", 978 x); 979 return -ETIME; 980 } 981 } while (x != BL_READY); 982 983 wil_dbg_misc(wil, "Reset completed in %d ms\n", 984 delay * RST_DELAY); 985 } 986 987 return 0; 988 } 989 990 static int wil_wait_device_ready_talyn_mb(struct wil6210_priv *wil) 991 { 992 u32 otp_hw; 993 u8 signature_status; 994 bool otp_signature_err; 995 bool hw_section_done; 996 u32 otp_qc_secured; 997 int delay = 0; 998 999 /* Wait for OTP signature test to complete */ 1000 usleep_range(2000, 2200); 1001 1002 wil->boot_config = WIL_BOOT_ERR; 1003 1004 /* Poll until OTP signature status is valid. 1005 * In vanilla and development modes, when signature test is complete 1006 * HW sets BIT_OTP_SIGNATURE_ERR_TALYN_MB. 1007 * In production mode BIT_OTP_SIGNATURE_ERR_TALYN_MB remains 0, poll 1008 * for signature status change to 2 or 3. 1009 */ 1010 do { 1011 otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1); 1012 signature_status = WIL_GET_BITS(otp_hw, 8, 9); 1013 otp_signature_err = otp_hw & BIT_OTP_SIGNATURE_ERR_TALYN_MB; 1014 1015 if (otp_signature_err && 1016 signature_status == WIL_SIG_STATUS_VANILLA) { 1017 wil->boot_config = WIL_BOOT_VANILLA; 1018 break; 1019 } 1020 if (otp_signature_err && 1021 signature_status == WIL_SIG_STATUS_DEVELOPMENT) { 1022 wil->boot_config = WIL_BOOT_DEVELOPMENT; 1023 break; 1024 } 1025 if (!otp_signature_err && 1026 signature_status == WIL_SIG_STATUS_PRODUCTION) { 1027 wil->boot_config = WIL_BOOT_PRODUCTION; 1028 break; 1029 } 1030 if (!otp_signature_err && 1031 signature_status == 1032 WIL_SIG_STATUS_CORRUPTED_PRODUCTION) { 1033 /* Unrecognized OTP signature found. Possibly a 1034 * corrupted production signature, access control 1035 * is applied as in production mode, therefore 1036 * do not fail 1037 */ 1038 wil->boot_config = WIL_BOOT_PRODUCTION; 1039 break; 1040 } 1041 if (delay++ > OTP_HW_COUNT) 1042 break; 1043 1044 usleep_range(OTP_HW_DELAY, OTP_HW_DELAY + 10); 1045 } while (!otp_signature_err && signature_status == 0); 1046 1047 if (wil->boot_config == WIL_BOOT_ERR) { 1048 wil_err(wil, 1049 "invalid boot config, signature_status %d otp_signature_err %d\n", 1050 signature_status, otp_signature_err); 1051 return -ETIME; 1052 } 1053 1054 wil_dbg_misc(wil, 1055 "signature test done in %d usec, otp_hw 0x%x, boot_config %d\n", 1056 delay * OTP_HW_DELAY, otp_hw, wil->boot_config); 1057 1058 if (wil->boot_config == WIL_BOOT_VANILLA) 1059 /* Assuming not SPI boot (currently not supported) */ 1060 goto out; 1061 1062 hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB; 1063 delay = 0; 1064 1065 while (!hw_section_done) { 1066 msleep(RST_DELAY); 1067 1068 otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1); 1069 hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB; 1070 1071 if (delay++ > RST_COUNT) { 1072 wil_err(wil, "TO waiting for hw_section_done\n"); 1073 return -ETIME; 1074 } 1075 } 1076 1077 wil_dbg_misc(wil, "HW section done in %d ms\n", delay * RST_DELAY); 1078 1079 otp_qc_secured = wil_r(wil, RGF_OTP_QC_SECURED); 1080 wil->secured_boot = otp_qc_secured & BIT_BOOT_FROM_ROM ? 1 : 0; 1081 wil_dbg_misc(wil, "secured boot is %sabled\n", 1082 wil->secured_boot ? "en" : "dis"); 1083 1084 out: 1085 wil_dbg_misc(wil, "Reset completed\n"); 1086 1087 return 0; 1088 } 1089 1090 static int wil_target_reset(struct wil6210_priv *wil, int no_flash) 1091 { 1092 u32 x; 1093 int rc; 1094 1095 wil_dbg_misc(wil, "Resetting \"%s\"...\n", wil->hw_name); 1096 1097 if (wil->hw_version < HW_VER_TALYN) { 1098 /* Clear MAC link up */ 1099 wil_s(wil, RGF_HP_CTRL, BIT(15)); 1100 wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0, 1101 BIT_HPAL_PERST_FROM_PAD); 1102 wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0, BIT_CAR_PERST_RST); 1103 } 1104 1105 wil_halt_cpu(wil); 1106 1107 if (!no_flash) { 1108 /* clear all boot loader "ready" bits */ 1109 wil_w(wil, RGF_USER_BL + 1110 offsetof(struct bl_dedicated_registers_v0, 1111 boot_loader_ready), 0); 1112 /* this should be safe to write even with old BLs */ 1113 wil_w(wil, RGF_USER_BL + 1114 offsetof(struct bl_dedicated_registers_v1, 1115 bl_shutdown_handshake), 0); 1116 } 1117 /* Clear Fw Download notification */ 1118 wil_c(wil, RGF_USER_USAGE_6, BIT(0)); 1119 1120 wil_s(wil, RGF_CAF_OSC_CONTROL, BIT_CAF_OSC_XTAL_EN); 1121 /* XTAL stabilization should take about 3ms */ 1122 usleep_range(5000, 7000); 1123 x = wil_r(wil, RGF_CAF_PLL_LOCK_STATUS); 1124 if (!(x & BIT_CAF_OSC_DIG_XTAL_STABLE)) { 1125 wil_err(wil, "Xtal stabilization timeout\n" 1126 "RGF_CAF_PLL_LOCK_STATUS = 0x%08x\n", x); 1127 return -ETIME; 1128 } 1129 /* switch 10k to XTAL*/ 1130 wil_c(wil, RGF_USER_SPARROW_M_4, BIT_SPARROW_M_4_SEL_SLEEP_OR_REF); 1131 /* 40 MHz */ 1132 wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_CAR_AHB_SW_SEL); 1133 1134 wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x3ff81f); 1135 wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0xf); 1136 1137 if (wil->hw_version >= HW_VER_TALYN_MB) { 1138 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x7e000000); 1139 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f); 1140 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0xc00000f0); 1141 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00); 1142 } else { 1143 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0xfe000000); 1144 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f); 1145 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x000000f0); 1146 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00); 1147 } 1148 1149 wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x0); 1150 wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0x0); 1151 1152 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0); 1153 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0); 1154 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0); 1155 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0); 1156 1157 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x00000003); 1158 /* reset A2 PCIE AHB */ 1159 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x00008000); 1160 1161 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0); 1162 1163 if (wil->hw_version == HW_VER_TALYN_MB) 1164 rc = wil_wait_device_ready_talyn_mb(wil); 1165 else 1166 rc = wil_wait_device_ready(wil, no_flash); 1167 if (rc) 1168 return rc; 1169 1170 wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_RST_PWGD); 1171 1172 /* enable fix for HW bug related to the SA/DA swap in AP Rx */ 1173 wil_s(wil, RGF_DMA_OFUL_NID_0, BIT_DMA_OFUL_NID_0_RX_EXT_TR_EN | 1174 BIT_DMA_OFUL_NID_0_RX_EXT_A3_SRC); 1175 1176 if (wil->hw_version < HW_VER_TALYN_MB && no_flash) { 1177 /* Reset OTP HW vectors to fit 40MHz */ 1178 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME1, 0x60001); 1179 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME2, 0x20027); 1180 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME3, 0x1); 1181 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME4, 0x20027); 1182 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME5, 0x30003); 1183 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME6, 0x20002); 1184 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME7, 0x60001); 1185 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME8, 0x60001); 1186 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME9, 0x60001); 1187 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME10, 0x60001); 1188 wil_w(wil, RGF_USER_XPM_RD_DOUT_SAMPLE_TIME, 0x57); 1189 } 1190 1191 return 0; 1192 } 1193 1194 static void wil_collect_fw_info(struct wil6210_priv *wil) 1195 { 1196 struct wiphy *wiphy = wil_to_wiphy(wil); 1197 u8 retry_short; 1198 int rc; 1199 1200 wil_refresh_fw_capabilities(wil); 1201 1202 rc = wmi_get_mgmt_retry(wil, &retry_short); 1203 if (!rc) { 1204 wiphy->retry_short = retry_short; 1205 wil_dbg_misc(wil, "FW retry_short: %d\n", retry_short); 1206 } 1207 } 1208 1209 void wil_refresh_fw_capabilities(struct wil6210_priv *wil) 1210 { 1211 struct wiphy *wiphy = wil_to_wiphy(wil); 1212 int features; 1213 1214 wil->keep_radio_on_during_sleep = 1215 test_bit(WIL_PLATFORM_CAPA_RADIO_ON_IN_SUSPEND, 1216 wil->platform_capa) && 1217 test_bit(WMI_FW_CAPABILITY_D3_SUSPEND, wil->fw_capabilities); 1218 1219 wil_info(wil, "keep_radio_on_during_sleep (%d)\n", 1220 wil->keep_radio_on_during_sleep); 1221 1222 if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities)) 1223 wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM; 1224 else 1225 wiphy->signal_type = CFG80211_SIGNAL_TYPE_UNSPEC; 1226 1227 if (test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities)) { 1228 wiphy->max_sched_scan_reqs = 1; 1229 wiphy->max_sched_scan_ssids = WMI_MAX_PNO_SSID_NUM; 1230 wiphy->max_match_sets = WMI_MAX_PNO_SSID_NUM; 1231 wiphy->max_sched_scan_ie_len = WMI_MAX_IE_LEN; 1232 wiphy->max_sched_scan_plans = WMI_MAX_PLANS_NUM; 1233 } 1234 1235 if (test_bit(WMI_FW_CAPABILITY_TX_REQ_EXT, wil->fw_capabilities)) 1236 wiphy->flags |= WIPHY_FLAG_OFFCHAN_TX; 1237 1238 if (wil->platform_ops.set_features) { 1239 features = (test_bit(WMI_FW_CAPABILITY_REF_CLOCK_CONTROL, 1240 wil->fw_capabilities) && 1241 test_bit(WIL_PLATFORM_CAPA_EXT_CLK, 1242 wil->platform_capa)) ? 1243 BIT(WIL_PLATFORM_FEATURE_FW_EXT_CLK_CONTROL) : 0; 1244 1245 if (wil->n_msi == 3) 1246 features |= BIT(WIL_PLATFORM_FEATURE_TRIPLE_MSI); 1247 1248 wil->platform_ops.set_features(wil->platform_handle, features); 1249 } 1250 1251 if (test_bit(WMI_FW_CAPABILITY_BACK_WIN_SIZE_64, 1252 wil->fw_capabilities)) { 1253 wil->max_agg_wsize = WIL_MAX_AGG_WSIZE_64; 1254 wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE_128; 1255 } else { 1256 wil->max_agg_wsize = WIL_MAX_AGG_WSIZE; 1257 wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE; 1258 } 1259 1260 update_supported_bands(wil); 1261 } 1262 1263 void wil_mbox_ring_le2cpus(struct wil6210_mbox_ring *r) 1264 { 1265 le32_to_cpus(&r->base); 1266 le16_to_cpus(&r->entry_size); 1267 le16_to_cpus(&r->size); 1268 le32_to_cpus(&r->tail); 1269 le32_to_cpus(&r->head); 1270 } 1271 1272 /* construct actual board file name to use */ 1273 void wil_get_board_file(struct wil6210_priv *wil, char *buf, size_t len) 1274 { 1275 const char *board_file; 1276 const char *wil_talyn_fw_name = ftm_mode ? WIL_FW_NAME_FTM_TALYN : 1277 WIL_FW_NAME_TALYN; 1278 1279 if (wil->board_file) { 1280 board_file = wil->board_file; 1281 } else { 1282 /* If specific FW file is used for Talyn, 1283 * use specific board file 1284 */ 1285 if (strcmp(wil->wil_fw_name, wil_talyn_fw_name) == 0) 1286 board_file = WIL_BRD_NAME_TALYN; 1287 else 1288 board_file = WIL_BOARD_FILE_NAME; 1289 } 1290 1291 strlcpy(buf, board_file, len); 1292 } 1293 1294 static int wil_get_bl_info(struct wil6210_priv *wil) 1295 { 1296 struct net_device *ndev = wil->main_ndev; 1297 struct wiphy *wiphy = wil_to_wiphy(wil); 1298 union { 1299 struct bl_dedicated_registers_v0 bl0; 1300 struct bl_dedicated_registers_v1 bl1; 1301 } bl; 1302 u32 bl_ver; 1303 u8 *mac; 1304 u16 rf_status; 1305 1306 wil_memcpy_fromio_32(&bl, wil->csr + HOSTADDR(RGF_USER_BL), 1307 sizeof(bl)); 1308 bl_ver = le32_to_cpu(bl.bl0.boot_loader_struct_version); 1309 mac = bl.bl0.mac_address; 1310 1311 if (bl_ver == 0) { 1312 le32_to_cpus(&bl.bl0.rf_type); 1313 le32_to_cpus(&bl.bl0.baseband_type); 1314 rf_status = 0; /* actually, unknown */ 1315 wil_info(wil, 1316 "Boot Loader struct v%d: MAC = %pM RF = 0x%08x bband = 0x%08x\n", 1317 bl_ver, mac, 1318 bl.bl0.rf_type, bl.bl0.baseband_type); 1319 wil_info(wil, "Boot Loader build unknown for struct v0\n"); 1320 } else { 1321 le16_to_cpus(&bl.bl1.rf_type); 1322 rf_status = le16_to_cpu(bl.bl1.rf_status); 1323 le32_to_cpus(&bl.bl1.baseband_type); 1324 le16_to_cpus(&bl.bl1.bl_version_subminor); 1325 le16_to_cpus(&bl.bl1.bl_version_build); 1326 wil_info(wil, 1327 "Boot Loader struct v%d: MAC = %pM RF = 0x%04x (status 0x%04x) bband = 0x%08x\n", 1328 bl_ver, mac, 1329 bl.bl1.rf_type, rf_status, 1330 bl.bl1.baseband_type); 1331 wil_info(wil, "Boot Loader build %d.%d.%d.%d\n", 1332 bl.bl1.bl_version_major, bl.bl1.bl_version_minor, 1333 bl.bl1.bl_version_subminor, bl.bl1.bl_version_build); 1334 } 1335 1336 if (!is_valid_ether_addr(mac)) { 1337 wil_err(wil, "BL: Invalid MAC %pM\n", mac); 1338 return -EINVAL; 1339 } 1340 1341 ether_addr_copy(ndev->perm_addr, mac); 1342 ether_addr_copy(wiphy->perm_addr, mac); 1343 if (!is_valid_ether_addr(ndev->dev_addr)) 1344 ether_addr_copy(ndev->dev_addr, mac); 1345 1346 if (rf_status) {/* bad RF cable? */ 1347 wil_err(wil, "RF communication error 0x%04x", 1348 rf_status); 1349 return -EAGAIN; 1350 } 1351 1352 return 0; 1353 } 1354 1355 static void wil_bl_crash_info(struct wil6210_priv *wil, bool is_err) 1356 { 1357 u32 bl_assert_code, bl_assert_blink, bl_magic_number; 1358 u32 bl_ver = wil_r(wil, RGF_USER_BL + 1359 offsetof(struct bl_dedicated_registers_v0, 1360 boot_loader_struct_version)); 1361 1362 if (bl_ver < 2) 1363 return; 1364 1365 bl_assert_code = wil_r(wil, RGF_USER_BL + 1366 offsetof(struct bl_dedicated_registers_v1, 1367 bl_assert_code)); 1368 bl_assert_blink = wil_r(wil, RGF_USER_BL + 1369 offsetof(struct bl_dedicated_registers_v1, 1370 bl_assert_blink)); 1371 bl_magic_number = wil_r(wil, RGF_USER_BL + 1372 offsetof(struct bl_dedicated_registers_v1, 1373 bl_magic_number)); 1374 1375 if (is_err) { 1376 wil_err(wil, 1377 "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n", 1378 bl_assert_code, bl_assert_blink, bl_magic_number); 1379 } else { 1380 wil_dbg_misc(wil, 1381 "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n", 1382 bl_assert_code, bl_assert_blink, bl_magic_number); 1383 } 1384 } 1385 1386 static int wil_get_otp_info(struct wil6210_priv *wil) 1387 { 1388 struct net_device *ndev = wil->main_ndev; 1389 struct wiphy *wiphy = wil_to_wiphy(wil); 1390 u8 mac[8]; 1391 int mac_addr; 1392 1393 if (wil->hw_version >= HW_VER_TALYN_MB) 1394 mac_addr = RGF_OTP_MAC_TALYN_MB; 1395 else 1396 mac_addr = RGF_OTP_MAC; 1397 1398 wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr), 1399 sizeof(mac)); 1400 if (!is_valid_ether_addr(mac)) { 1401 wil_err(wil, "Invalid MAC %pM\n", mac); 1402 return -EINVAL; 1403 } 1404 1405 ether_addr_copy(ndev->perm_addr, mac); 1406 ether_addr_copy(wiphy->perm_addr, mac); 1407 if (!is_valid_ether_addr(ndev->dev_addr)) 1408 ether_addr_copy(ndev->dev_addr, mac); 1409 1410 return 0; 1411 } 1412 1413 static int wil_wait_for_fw_ready(struct wil6210_priv *wil) 1414 { 1415 ulong to = msecs_to_jiffies(2000); 1416 ulong left = wait_for_completion_timeout(&wil->wmi_ready, to); 1417 1418 if (0 == left) { 1419 wil_err(wil, "Firmware not ready\n"); 1420 return -ETIME; 1421 } else { 1422 wil_info(wil, "FW ready after %d ms. HW version 0x%08x\n", 1423 jiffies_to_msecs(to-left), wil->hw_version); 1424 } 1425 return 0; 1426 } 1427 1428 void wil_abort_scan(struct wil6210_vif *vif, bool sync) 1429 { 1430 struct wil6210_priv *wil = vif_to_wil(vif); 1431 int rc; 1432 struct cfg80211_scan_info info = { 1433 .aborted = true, 1434 }; 1435 1436 lockdep_assert_held(&wil->vif_mutex); 1437 1438 if (!vif->scan_request) 1439 return; 1440 1441 wil_dbg_misc(wil, "Abort scan_request 0x%p\n", vif->scan_request); 1442 del_timer_sync(&vif->scan_timer); 1443 mutex_unlock(&wil->vif_mutex); 1444 rc = wmi_abort_scan(vif); 1445 if (!rc && sync) 1446 wait_event_interruptible_timeout(wil->wq, !vif->scan_request, 1447 msecs_to_jiffies( 1448 WAIT_FOR_SCAN_ABORT_MS)); 1449 1450 mutex_lock(&wil->vif_mutex); 1451 if (vif->scan_request) { 1452 cfg80211_scan_done(vif->scan_request, &info); 1453 vif->scan_request = NULL; 1454 } 1455 } 1456 1457 void wil_abort_scan_all_vifs(struct wil6210_priv *wil, bool sync) 1458 { 1459 int i; 1460 1461 lockdep_assert_held(&wil->vif_mutex); 1462 1463 for (i = 0; i < wil->max_vifs; i++) { 1464 struct wil6210_vif *vif = wil->vifs[i]; 1465 1466 if (vif) 1467 wil_abort_scan(vif, sync); 1468 } 1469 } 1470 1471 int wil_ps_update(struct wil6210_priv *wil, enum wmi_ps_profile_type ps_profile) 1472 { 1473 int rc; 1474 1475 if (!test_bit(WMI_FW_CAPABILITY_PS_CONFIG, wil->fw_capabilities)) { 1476 wil_err(wil, "set_power_mgmt not supported\n"); 1477 return -EOPNOTSUPP; 1478 } 1479 1480 rc = wmi_ps_dev_profile_cfg(wil, ps_profile); 1481 if (rc) 1482 wil_err(wil, "wmi_ps_dev_profile_cfg failed (%d)\n", rc); 1483 else 1484 wil->ps_profile = ps_profile; 1485 1486 return rc; 1487 } 1488 1489 static void wil_pre_fw_config(struct wil6210_priv *wil) 1490 { 1491 /* Mark FW as loaded from host */ 1492 wil_s(wil, RGF_USER_USAGE_6, 1); 1493 1494 /* clear any interrupts which on-card-firmware 1495 * may have set 1496 */ 1497 wil6210_clear_irq(wil); 1498 /* CAF_ICR - clear and mask */ 1499 /* it is W1C, clear by writing back same value */ 1500 if (wil->hw_version < HW_VER_TALYN_MB) { 1501 wil_s(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, ICR), 0); 1502 wil_w(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, IMV), ~0); 1503 } else { 1504 wil_s(wil, 1505 RGF_CAF_ICR_TALYN_MB + offsetof(struct RGF_ICR, ICR), 0); 1506 wil_w(wil, RGF_CAF_ICR_TALYN_MB + 1507 offsetof(struct RGF_ICR, IMV), ~0); 1508 } 1509 /* clear PAL_UNIT_ICR (potential D0->D3 leftover) 1510 * In Talyn-MB host cannot access this register due to 1511 * access control, hence PAL_UNIT_ICR is cleared by the FW 1512 */ 1513 if (wil->hw_version < HW_VER_TALYN_MB) 1514 wil_s(wil, RGF_PAL_UNIT_ICR + offsetof(struct RGF_ICR, ICR), 1515 0); 1516 1517 if (wil->fw_calib_result > 0) { 1518 __le32 val = cpu_to_le32(wil->fw_calib_result | 1519 (CALIB_RESULT_SIGNATURE << 8)); 1520 wil_w(wil, RGF_USER_FW_CALIB_RESULT, (u32 __force)val); 1521 } 1522 } 1523 1524 static int wil_restore_vifs(struct wil6210_priv *wil) 1525 { 1526 struct wil6210_vif *vif; 1527 struct net_device *ndev; 1528 struct wireless_dev *wdev; 1529 int i, rc; 1530 1531 for (i = 0; i < wil->max_vifs; i++) { 1532 vif = wil->vifs[i]; 1533 if (!vif) 1534 continue; 1535 vif->ap_isolate = 0; 1536 if (vif->mid) { 1537 ndev = vif_to_ndev(vif); 1538 wdev = vif_to_wdev(vif); 1539 rc = wmi_port_allocate(wil, vif->mid, ndev->dev_addr, 1540 wdev->iftype); 1541 if (rc) { 1542 wil_err(wil, "fail to restore VIF %d type %d, rc %d\n", 1543 i, wdev->iftype, rc); 1544 return rc; 1545 } 1546 } 1547 } 1548 1549 return 0; 1550 } 1551 1552 /* 1553 * We reset all the structures, and we reset the UMAC. 1554 * After calling this routine, you're expected to reload 1555 * the firmware. 1556 */ 1557 int wil_reset(struct wil6210_priv *wil, bool load_fw) 1558 { 1559 int rc, i; 1560 unsigned long status_flags = BIT(wil_status_resetting); 1561 int no_flash; 1562 struct wil6210_vif *vif; 1563 1564 wil_dbg_misc(wil, "reset\n"); 1565 1566 WARN_ON(!mutex_is_locked(&wil->mutex)); 1567 WARN_ON(test_bit(wil_status_napi_en, wil->status)); 1568 1569 if (debug_fw) { 1570 static const u8 mac[ETH_ALEN] = { 1571 0x00, 0xde, 0xad, 0x12, 0x34, 0x56, 1572 }; 1573 struct net_device *ndev = wil->main_ndev; 1574 1575 ether_addr_copy(ndev->perm_addr, mac); 1576 ether_addr_copy(ndev->dev_addr, ndev->perm_addr); 1577 return 0; 1578 } 1579 1580 if (wil->hw_version == HW_VER_UNKNOWN) 1581 return -ENODEV; 1582 1583 if (test_bit(WIL_PLATFORM_CAPA_T_PWR_ON_0, wil->platform_capa)) { 1584 wil_dbg_misc(wil, "Notify FW to set T_POWER_ON=0\n"); 1585 wil_s(wil, RGF_USER_USAGE_8, BIT_USER_SUPPORT_T_POWER_ON_0); 1586 } 1587 1588 if (test_bit(WIL_PLATFORM_CAPA_EXT_CLK, wil->platform_capa)) { 1589 wil_dbg_misc(wil, "Notify FW on ext clock configuration\n"); 1590 wil_s(wil, RGF_USER_USAGE_8, BIT_USER_EXT_CLK); 1591 } 1592 1593 if (wil->platform_ops.notify) { 1594 rc = wil->platform_ops.notify(wil->platform_handle, 1595 WIL_PLATFORM_EVT_PRE_RESET); 1596 if (rc) 1597 wil_err(wil, "PRE_RESET platform notify failed, rc %d\n", 1598 rc); 1599 } 1600 1601 set_bit(wil_status_resetting, wil->status); 1602 if (test_bit(wil_status_collecting_dumps, wil->status)) { 1603 /* Device collects crash dump, cancel the reset. 1604 * following crash dump collection, reset would take place. 1605 */ 1606 wil_dbg_misc(wil, "reject reset while collecting crash dump\n"); 1607 rc = -EBUSY; 1608 goto out; 1609 } 1610 1611 mutex_lock(&wil->vif_mutex); 1612 wil_abort_scan_all_vifs(wil, false); 1613 mutex_unlock(&wil->vif_mutex); 1614 1615 for (i = 0; i < wil->max_vifs; i++) { 1616 vif = wil->vifs[i]; 1617 if (vif) { 1618 cancel_work_sync(&vif->disconnect_worker); 1619 wil6210_disconnect(vif, NULL, 1620 WLAN_REASON_DEAUTH_LEAVING); 1621 } 1622 } 1623 wil_bcast_fini_all(wil); 1624 1625 /* Disable device led before reset*/ 1626 wmi_led_cfg(wil, false); 1627 1628 /* prevent NAPI from being scheduled and prevent wmi commands */ 1629 mutex_lock(&wil->wmi_mutex); 1630 if (test_bit(wil_status_suspending, wil->status)) 1631 status_flags |= BIT(wil_status_suspending); 1632 bitmap_and(wil->status, wil->status, &status_flags, 1633 wil_status_last); 1634 wil_dbg_misc(wil, "wil->status (0x%lx)\n", *wil->status); 1635 mutex_unlock(&wil->wmi_mutex); 1636 1637 wil_mask_irq(wil); 1638 1639 wmi_event_flush(wil); 1640 1641 flush_workqueue(wil->wq_service); 1642 flush_workqueue(wil->wmi_wq); 1643 1644 no_flash = test_bit(hw_capa_no_flash, wil->hw_capa); 1645 if (!no_flash) 1646 wil_bl_crash_info(wil, false); 1647 wil_disable_irq(wil); 1648 rc = wil_target_reset(wil, no_flash); 1649 wil6210_clear_irq(wil); 1650 wil_enable_irq(wil); 1651 wil->txrx_ops.rx_fini(wil); 1652 wil->txrx_ops.tx_fini(wil); 1653 if (rc) { 1654 if (!no_flash) 1655 wil_bl_crash_info(wil, true); 1656 goto out; 1657 } 1658 1659 if (no_flash) { 1660 rc = wil_get_otp_info(wil); 1661 } else { 1662 rc = wil_get_bl_info(wil); 1663 if (rc == -EAGAIN && !load_fw) 1664 /* ignore RF error if not going up */ 1665 rc = 0; 1666 } 1667 if (rc) 1668 goto out; 1669 1670 wil_set_oob_mode(wil, oob_mode); 1671 if (load_fw) { 1672 char board_file[WIL_BOARD_FILE_MAX_NAMELEN]; 1673 1674 if (wil->secured_boot) { 1675 wil_err(wil, "secured boot is not supported\n"); 1676 return -ENOTSUPP; 1677 } 1678 1679 board_file[0] = '\0'; 1680 wil_get_board_file(wil, board_file, sizeof(board_file)); 1681 wil_info(wil, "Use firmware <%s> + board <%s>\n", 1682 wil->wil_fw_name, board_file); 1683 1684 if (!no_flash) 1685 wil_bl_prepare_halt(wil); 1686 1687 wil_halt_cpu(wil); 1688 memset(wil->fw_version, 0, sizeof(wil->fw_version)); 1689 /* Loading f/w from the file */ 1690 rc = wil_request_firmware(wil, wil->wil_fw_name, true); 1691 if (rc) 1692 goto out; 1693 if (wil->brd_file_addr) 1694 rc = wil_request_board(wil, board_file); 1695 else 1696 rc = wil_request_firmware(wil, board_file, true); 1697 if (rc) 1698 goto out; 1699 1700 wil_pre_fw_config(wil); 1701 wil_release_cpu(wil); 1702 } 1703 1704 /* init after reset */ 1705 reinit_completion(&wil->wmi_ready); 1706 reinit_completion(&wil->wmi_call); 1707 reinit_completion(&wil->halp.comp); 1708 1709 clear_bit(wil_status_resetting, wil->status); 1710 1711 if (load_fw) { 1712 wil_unmask_irq(wil); 1713 1714 /* we just started MAC, wait for FW ready */ 1715 rc = wil_wait_for_fw_ready(wil); 1716 if (rc) 1717 return rc; 1718 1719 /* check FW is responsive */ 1720 rc = wmi_echo(wil); 1721 if (rc) { 1722 wil_err(wil, "wmi_echo failed, rc %d\n", rc); 1723 return rc; 1724 } 1725 1726 wil->txrx_ops.configure_interrupt_moderation(wil); 1727 1728 /* Enable OFU rdy valid bug fix, to prevent hang in oful34_rx 1729 * while there is back-pressure from Host during RX 1730 */ 1731 if (wil->hw_version >= HW_VER_TALYN_MB) 1732 wil_s(wil, RGF_DMA_MISC_CTL, 1733 BIT_OFUL34_RDY_VALID_BUG_FIX_EN); 1734 1735 rc = wil_restore_vifs(wil); 1736 if (rc) { 1737 wil_err(wil, "failed to restore vifs, rc %d\n", rc); 1738 return rc; 1739 } 1740 1741 wil_collect_fw_info(wil); 1742 1743 if (wil->ps_profile != WMI_PS_PROFILE_TYPE_DEFAULT) 1744 wil_ps_update(wil, wil->ps_profile); 1745 1746 if (wil->platform_ops.notify) { 1747 rc = wil->platform_ops.notify(wil->platform_handle, 1748 WIL_PLATFORM_EVT_FW_RDY); 1749 if (rc) { 1750 wil_err(wil, "FW_RDY notify failed, rc %d\n", 1751 rc); 1752 rc = 0; 1753 } 1754 } 1755 } 1756 1757 return rc; 1758 1759 out: 1760 clear_bit(wil_status_resetting, wil->status); 1761 return rc; 1762 } 1763 1764 void wil_fw_error_recovery(struct wil6210_priv *wil) 1765 { 1766 wil_dbg_misc(wil, "starting fw error recovery\n"); 1767 1768 if (test_bit(wil_status_resetting, wil->status)) { 1769 wil_info(wil, "Reset already in progress\n"); 1770 return; 1771 } 1772 1773 wil->recovery_state = fw_recovery_pending; 1774 schedule_work(&wil->fw_error_worker); 1775 } 1776 1777 int __wil_up(struct wil6210_priv *wil) 1778 { 1779 struct net_device *ndev = wil->main_ndev; 1780 struct wireless_dev *wdev = ndev->ieee80211_ptr; 1781 int rc; 1782 1783 WARN_ON(!mutex_is_locked(&wil->mutex)); 1784 1785 rc = wil_reset(wil, true); 1786 if (rc) 1787 return rc; 1788 1789 /* Rx RING. After MAC and beacon */ 1790 if (rx_ring_order == 0) 1791 rx_ring_order = wil->hw_version < HW_VER_TALYN_MB ? 1792 WIL_RX_RING_SIZE_ORDER_DEFAULT : 1793 WIL_RX_RING_SIZE_ORDER_TALYN_DEFAULT; 1794 1795 rc = wil->txrx_ops.rx_init(wil, rx_ring_order); 1796 if (rc) 1797 return rc; 1798 1799 rc = wil->txrx_ops.tx_init(wil); 1800 if (rc) 1801 return rc; 1802 1803 switch (wdev->iftype) { 1804 case NL80211_IFTYPE_STATION: 1805 wil_dbg_misc(wil, "type: STATION\n"); 1806 ndev->type = ARPHRD_ETHER; 1807 break; 1808 case NL80211_IFTYPE_AP: 1809 wil_dbg_misc(wil, "type: AP\n"); 1810 ndev->type = ARPHRD_ETHER; 1811 break; 1812 case NL80211_IFTYPE_P2P_CLIENT: 1813 wil_dbg_misc(wil, "type: P2P_CLIENT\n"); 1814 ndev->type = ARPHRD_ETHER; 1815 break; 1816 case NL80211_IFTYPE_P2P_GO: 1817 wil_dbg_misc(wil, "type: P2P_GO\n"); 1818 ndev->type = ARPHRD_ETHER; 1819 break; 1820 case NL80211_IFTYPE_MONITOR: 1821 wil_dbg_misc(wil, "type: Monitor\n"); 1822 ndev->type = ARPHRD_IEEE80211_RADIOTAP; 1823 /* ARPHRD_IEEE80211 or ARPHRD_IEEE80211_RADIOTAP ? */ 1824 break; 1825 default: 1826 return -EOPNOTSUPP; 1827 } 1828 1829 /* MAC address - pre-requisite for other commands */ 1830 wmi_set_mac_address(wil, ndev->dev_addr); 1831 1832 wil_dbg_misc(wil, "NAPI enable\n"); 1833 napi_enable(&wil->napi_rx); 1834 napi_enable(&wil->napi_tx); 1835 set_bit(wil_status_napi_en, wil->status); 1836 1837 wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS); 1838 1839 return 0; 1840 } 1841 1842 int wil_up(struct wil6210_priv *wil) 1843 { 1844 int rc; 1845 1846 wil_dbg_misc(wil, "up\n"); 1847 1848 mutex_lock(&wil->mutex); 1849 rc = __wil_up(wil); 1850 mutex_unlock(&wil->mutex); 1851 1852 return rc; 1853 } 1854 1855 int __wil_down(struct wil6210_priv *wil) 1856 { 1857 WARN_ON(!mutex_is_locked(&wil->mutex)); 1858 1859 set_bit(wil_status_resetting, wil->status); 1860 1861 wil6210_bus_request(wil, 0); 1862 1863 wil_disable_irq(wil); 1864 if (test_and_clear_bit(wil_status_napi_en, wil->status)) { 1865 napi_disable(&wil->napi_rx); 1866 napi_disable(&wil->napi_tx); 1867 wil_dbg_misc(wil, "NAPI disable\n"); 1868 } 1869 wil_enable_irq(wil); 1870 1871 mutex_lock(&wil->vif_mutex); 1872 wil_p2p_stop_radio_operations(wil); 1873 wil_abort_scan_all_vifs(wil, false); 1874 mutex_unlock(&wil->vif_mutex); 1875 1876 return wil_reset(wil, false); 1877 } 1878 1879 int wil_down(struct wil6210_priv *wil) 1880 { 1881 int rc; 1882 1883 wil_dbg_misc(wil, "down\n"); 1884 1885 wil_set_recovery_state(wil, fw_recovery_idle); 1886 mutex_lock(&wil->mutex); 1887 rc = __wil_down(wil); 1888 mutex_unlock(&wil->mutex); 1889 1890 return rc; 1891 } 1892 1893 int wil_find_cid(struct wil6210_priv *wil, u8 mid, const u8 *mac) 1894 { 1895 int i; 1896 int rc = -ENOENT; 1897 1898 for (i = 0; i < max_assoc_sta; i++) { 1899 if (wil->sta[i].mid == mid && 1900 wil->sta[i].status != wil_sta_unused && 1901 ether_addr_equal(wil->sta[i].addr, mac)) { 1902 rc = i; 1903 break; 1904 } 1905 } 1906 1907 return rc; 1908 } 1909 1910 void wil_halp_vote(struct wil6210_priv *wil) 1911 { 1912 unsigned long rc; 1913 unsigned long to_jiffies = msecs_to_jiffies(WAIT_FOR_HALP_VOTE_MS); 1914 1915 mutex_lock(&wil->halp.lock); 1916 1917 wil_dbg_irq(wil, "halp_vote: start, HALP ref_cnt (%d)\n", 1918 wil->halp.ref_cnt); 1919 1920 if (++wil->halp.ref_cnt == 1) { 1921 reinit_completion(&wil->halp.comp); 1922 /* mark to IRQ context to handle HALP ICR */ 1923 wil->halp.handle_icr = true; 1924 wil6210_set_halp(wil); 1925 rc = wait_for_completion_timeout(&wil->halp.comp, to_jiffies); 1926 if (!rc) { 1927 wil_err(wil, "HALP vote timed out\n"); 1928 /* Mask HALP as done in case the interrupt is raised */ 1929 wil->halp.handle_icr = false; 1930 wil6210_mask_halp(wil); 1931 } else { 1932 wil_dbg_irq(wil, 1933 "halp_vote: HALP vote completed after %d ms\n", 1934 jiffies_to_msecs(to_jiffies - rc)); 1935 } 1936 } 1937 1938 wil_dbg_irq(wil, "halp_vote: end, HALP ref_cnt (%d)\n", 1939 wil->halp.ref_cnt); 1940 1941 mutex_unlock(&wil->halp.lock); 1942 } 1943 1944 void wil_halp_unvote(struct wil6210_priv *wil) 1945 { 1946 WARN_ON(wil->halp.ref_cnt == 0); 1947 1948 mutex_lock(&wil->halp.lock); 1949 1950 wil_dbg_irq(wil, "halp_unvote: start, HALP ref_cnt (%d)\n", 1951 wil->halp.ref_cnt); 1952 1953 if (--wil->halp.ref_cnt == 0) { 1954 wil6210_clear_halp(wil); 1955 wil_dbg_irq(wil, "HALP unvote\n"); 1956 } 1957 1958 wil_dbg_irq(wil, "halp_unvote:end, HALP ref_cnt (%d)\n", 1959 wil->halp.ref_cnt); 1960 1961 mutex_unlock(&wil->halp.lock); 1962 } 1963 1964 void wil_init_txrx_ops(struct wil6210_priv *wil) 1965 { 1966 if (wil->use_enhanced_dma_hw) 1967 wil_init_txrx_ops_edma(wil); 1968 else 1969 wil_init_txrx_ops_legacy_dma(wil); 1970 } 1971