1 /* 2 * Copyright (c) 2012-2015 Qualcomm Atheros, Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/interrupt.h> 18 19 #include "wil6210.h" 20 #include "trace.h" 21 22 /** 23 * Theory of operation: 24 * 25 * There is ISR pseudo-cause register, 26 * dma_rgf->DMA_RGF.PSEUDO_CAUSE.PSEUDO_CAUSE 27 * Its bits represents OR'ed bits from 3 real ISR registers: 28 * TX, RX, and MISC. 29 * 30 * Registers may be configured to either "write 1 to clear" or 31 * "clear on read" mode 32 * 33 * When handling interrupt, one have to mask/unmask interrupts for the 34 * real ISR registers, or hardware may malfunction. 35 * 36 */ 37 38 #define WIL6210_IRQ_DISABLE (0xFFFFFFFFUL) 39 #define WIL6210_IRQ_DISABLE_NO_HALP (0xF7FFFFFFUL) 40 #define WIL6210_IMC_RX (BIT_DMA_EP_RX_ICR_RX_DONE | \ 41 BIT_DMA_EP_RX_ICR_RX_HTRSH) 42 #define WIL6210_IMC_RX_NO_RX_HTRSH (WIL6210_IMC_RX & \ 43 (~(BIT_DMA_EP_RX_ICR_RX_HTRSH))) 44 #define WIL6210_IMC_TX (BIT_DMA_EP_TX_ICR_TX_DONE | \ 45 BIT_DMA_EP_TX_ICR_TX_DONE_N(0)) 46 #define WIL6210_IMC_MISC_NO_HALP (ISR_MISC_FW_READY | \ 47 ISR_MISC_MBOX_EVT | \ 48 ISR_MISC_FW_ERROR) 49 #define WIL6210_IMC_MISC (WIL6210_IMC_MISC_NO_HALP | \ 50 BIT_DMA_EP_MISC_ICR_HALP) 51 #define WIL6210_IRQ_PSEUDO_MASK (u32)(~(BIT_DMA_PSEUDO_CAUSE_RX | \ 52 BIT_DMA_PSEUDO_CAUSE_TX | \ 53 BIT_DMA_PSEUDO_CAUSE_MISC)) 54 55 #if defined(CONFIG_WIL6210_ISR_COR) 56 /* configure to Clear-On-Read mode */ 57 #define WIL_ICR_ICC_VALUE (0xFFFFFFFFUL) 58 #define WIL_ICR_ICC_MISC_VALUE (0xF7FFFFFFUL) 59 60 static inline void wil_icr_clear(u32 x, void __iomem *addr) 61 { 62 } 63 #else /* defined(CONFIG_WIL6210_ISR_COR) */ 64 /* configure to Write-1-to-Clear mode */ 65 #define WIL_ICR_ICC_VALUE (0UL) 66 #define WIL_ICR_ICC_MISC_VALUE (0UL) 67 68 static inline void wil_icr_clear(u32 x, void __iomem *addr) 69 { 70 writel(x, addr); 71 } 72 #endif /* defined(CONFIG_WIL6210_ISR_COR) */ 73 74 static inline u32 wil_ioread32_and_clear(void __iomem *addr) 75 { 76 u32 x = readl(addr); 77 78 wil_icr_clear(x, addr); 79 80 return x; 81 } 82 83 static void wil6210_mask_irq_tx(struct wil6210_priv *wil) 84 { 85 wil_w(wil, RGF_DMA_EP_TX_ICR + offsetof(struct RGF_ICR, IMS), 86 WIL6210_IRQ_DISABLE); 87 } 88 89 static void wil6210_mask_irq_rx(struct wil6210_priv *wil) 90 { 91 wil_w(wil, RGF_DMA_EP_RX_ICR + offsetof(struct RGF_ICR, IMS), 92 WIL6210_IRQ_DISABLE); 93 } 94 95 static void wil6210_mask_irq_misc(struct wil6210_priv *wil, bool mask_halp) 96 { 97 wil_dbg_irq(wil, "%s: mask_halp(%s)\n", __func__, 98 mask_halp ? "true" : "false"); 99 100 wil_w(wil, RGF_DMA_EP_MISC_ICR + offsetof(struct RGF_ICR, IMS), 101 mask_halp ? WIL6210_IRQ_DISABLE : WIL6210_IRQ_DISABLE_NO_HALP); 102 } 103 104 static void wil6210_mask_halp(struct wil6210_priv *wil) 105 { 106 wil_dbg_irq(wil, "%s()\n", __func__); 107 108 wil_w(wil, RGF_DMA_EP_MISC_ICR + offsetof(struct RGF_ICR, IMS), 109 BIT_DMA_EP_MISC_ICR_HALP); 110 } 111 112 static void wil6210_mask_irq_pseudo(struct wil6210_priv *wil) 113 { 114 wil_dbg_irq(wil, "%s()\n", __func__); 115 116 wil_w(wil, RGF_DMA_PSEUDO_CAUSE_MASK_SW, WIL6210_IRQ_DISABLE); 117 118 clear_bit(wil_status_irqen, wil->status); 119 } 120 121 void wil6210_unmask_irq_tx(struct wil6210_priv *wil) 122 { 123 wil_w(wil, RGF_DMA_EP_TX_ICR + offsetof(struct RGF_ICR, IMC), 124 WIL6210_IMC_TX); 125 } 126 127 void wil6210_unmask_irq_rx(struct wil6210_priv *wil) 128 { 129 bool unmask_rx_htrsh = test_bit(wil_status_fwconnected, wil->status); 130 131 wil_w(wil, RGF_DMA_EP_RX_ICR + offsetof(struct RGF_ICR, IMC), 132 unmask_rx_htrsh ? WIL6210_IMC_RX : WIL6210_IMC_RX_NO_RX_HTRSH); 133 } 134 135 static void wil6210_unmask_irq_misc(struct wil6210_priv *wil, bool unmask_halp) 136 { 137 wil_dbg_irq(wil, "%s: unmask_halp(%s)\n", __func__, 138 unmask_halp ? "true" : "false"); 139 140 wil_w(wil, RGF_DMA_EP_MISC_ICR + offsetof(struct RGF_ICR, IMC), 141 unmask_halp ? WIL6210_IMC_MISC : WIL6210_IMC_MISC_NO_HALP); 142 } 143 144 static void wil6210_unmask_halp(struct wil6210_priv *wil) 145 { 146 wil_dbg_irq(wil, "%s()\n", __func__); 147 148 wil_w(wil, RGF_DMA_EP_MISC_ICR + offsetof(struct RGF_ICR, IMC), 149 BIT_DMA_EP_MISC_ICR_HALP); 150 } 151 152 static void wil6210_unmask_irq_pseudo(struct wil6210_priv *wil) 153 { 154 wil_dbg_irq(wil, "%s()\n", __func__); 155 156 set_bit(wil_status_irqen, wil->status); 157 158 wil_w(wil, RGF_DMA_PSEUDO_CAUSE_MASK_SW, WIL6210_IRQ_PSEUDO_MASK); 159 } 160 161 void wil_mask_irq(struct wil6210_priv *wil) 162 { 163 wil_dbg_irq(wil, "%s()\n", __func__); 164 165 wil6210_mask_irq_tx(wil); 166 wil6210_mask_irq_rx(wil); 167 wil6210_mask_irq_misc(wil, true); 168 wil6210_mask_irq_pseudo(wil); 169 } 170 171 void wil_unmask_irq(struct wil6210_priv *wil) 172 { 173 wil_dbg_irq(wil, "%s()\n", __func__); 174 175 wil_w(wil, RGF_DMA_EP_RX_ICR + offsetof(struct RGF_ICR, ICC), 176 WIL_ICR_ICC_VALUE); 177 wil_w(wil, RGF_DMA_EP_TX_ICR + offsetof(struct RGF_ICR, ICC), 178 WIL_ICR_ICC_VALUE); 179 wil_w(wil, RGF_DMA_EP_MISC_ICR + offsetof(struct RGF_ICR, ICC), 180 WIL_ICR_ICC_MISC_VALUE); 181 182 wil6210_unmask_irq_pseudo(wil); 183 wil6210_unmask_irq_tx(wil); 184 wil6210_unmask_irq_rx(wil); 185 wil6210_unmask_irq_misc(wil, true); 186 } 187 188 void wil_configure_interrupt_moderation(struct wil6210_priv *wil) 189 { 190 wil_dbg_irq(wil, "%s()\n", __func__); 191 192 /* disable interrupt moderation for monitor 193 * to get better timestamp precision 194 */ 195 if (wil->wdev->iftype == NL80211_IFTYPE_MONITOR) 196 return; 197 198 /* Disable and clear tx counter before (re)configuration */ 199 wil_w(wil, RGF_DMA_ITR_TX_CNT_CTL, BIT_DMA_ITR_TX_CNT_CTL_CLR); 200 wil_w(wil, RGF_DMA_ITR_TX_CNT_TRSH, wil->tx_max_burst_duration); 201 wil_info(wil, "set ITR_TX_CNT_TRSH = %d usec\n", 202 wil->tx_max_burst_duration); 203 /* Configure TX max burst duration timer to use usec units */ 204 wil_w(wil, RGF_DMA_ITR_TX_CNT_CTL, 205 BIT_DMA_ITR_TX_CNT_CTL_EN | BIT_DMA_ITR_TX_CNT_CTL_EXT_TIC_SEL); 206 207 /* Disable and clear tx idle counter before (re)configuration */ 208 wil_w(wil, RGF_DMA_ITR_TX_IDL_CNT_CTL, BIT_DMA_ITR_TX_IDL_CNT_CTL_CLR); 209 wil_w(wil, RGF_DMA_ITR_TX_IDL_CNT_TRSH, wil->tx_interframe_timeout); 210 wil_info(wil, "set ITR_TX_IDL_CNT_TRSH = %d usec\n", 211 wil->tx_interframe_timeout); 212 /* Configure TX max burst duration timer to use usec units */ 213 wil_w(wil, RGF_DMA_ITR_TX_IDL_CNT_CTL, BIT_DMA_ITR_TX_IDL_CNT_CTL_EN | 214 BIT_DMA_ITR_TX_IDL_CNT_CTL_EXT_TIC_SEL); 215 216 /* Disable and clear rx counter before (re)configuration */ 217 wil_w(wil, RGF_DMA_ITR_RX_CNT_CTL, BIT_DMA_ITR_RX_CNT_CTL_CLR); 218 wil_w(wil, RGF_DMA_ITR_RX_CNT_TRSH, wil->rx_max_burst_duration); 219 wil_info(wil, "set ITR_RX_CNT_TRSH = %d usec\n", 220 wil->rx_max_burst_duration); 221 /* Configure TX max burst duration timer to use usec units */ 222 wil_w(wil, RGF_DMA_ITR_RX_CNT_CTL, 223 BIT_DMA_ITR_RX_CNT_CTL_EN | BIT_DMA_ITR_RX_CNT_CTL_EXT_TIC_SEL); 224 225 /* Disable and clear rx idle counter before (re)configuration */ 226 wil_w(wil, RGF_DMA_ITR_RX_IDL_CNT_CTL, BIT_DMA_ITR_RX_IDL_CNT_CTL_CLR); 227 wil_w(wil, RGF_DMA_ITR_RX_IDL_CNT_TRSH, wil->rx_interframe_timeout); 228 wil_info(wil, "set ITR_RX_IDL_CNT_TRSH = %d usec\n", 229 wil->rx_interframe_timeout); 230 /* Configure TX max burst duration timer to use usec units */ 231 wil_w(wil, RGF_DMA_ITR_RX_IDL_CNT_CTL, BIT_DMA_ITR_RX_IDL_CNT_CTL_EN | 232 BIT_DMA_ITR_RX_IDL_CNT_CTL_EXT_TIC_SEL); 233 } 234 235 static irqreturn_t wil6210_irq_rx(int irq, void *cookie) 236 { 237 struct wil6210_priv *wil = cookie; 238 u32 isr = wil_ioread32_and_clear(wil->csr + 239 HOSTADDR(RGF_DMA_EP_RX_ICR) + 240 offsetof(struct RGF_ICR, ICR)); 241 bool need_unmask = true; 242 243 trace_wil6210_irq_rx(isr); 244 wil_dbg_irq(wil, "ISR RX 0x%08x\n", isr); 245 246 if (unlikely(!isr)) { 247 wil_err(wil, "spurious IRQ: RX\n"); 248 return IRQ_NONE; 249 } 250 251 wil6210_mask_irq_rx(wil); 252 253 /* RX_DONE and RX_HTRSH interrupts are the same if interrupt 254 * moderation is not used. Interrupt moderation may cause RX 255 * buffer overflow while RX_DONE is delayed. The required 256 * action is always the same - should empty the accumulated 257 * packets from the RX ring. 258 */ 259 if (likely(isr & (BIT_DMA_EP_RX_ICR_RX_DONE | 260 BIT_DMA_EP_RX_ICR_RX_HTRSH))) { 261 wil_dbg_irq(wil, "RX done / RX_HTRSH received, ISR (0x%x)\n", 262 isr); 263 264 isr &= ~(BIT_DMA_EP_RX_ICR_RX_DONE | 265 BIT_DMA_EP_RX_ICR_RX_HTRSH); 266 if (likely(test_bit(wil_status_fwready, wil->status))) { 267 if (likely(test_bit(wil_status_napi_en, wil->status))) { 268 wil_dbg_txrx(wil, "NAPI(Rx) schedule\n"); 269 need_unmask = false; 270 napi_schedule(&wil->napi_rx); 271 } else { 272 wil_err(wil, 273 "Got Rx interrupt while stopping interface\n"); 274 } 275 } else { 276 wil_err(wil, "Got Rx interrupt while in reset\n"); 277 } 278 } 279 280 if (unlikely(isr)) 281 wil_err(wil, "un-handled RX ISR bits 0x%08x\n", isr); 282 283 /* Rx IRQ will be enabled when NAPI processing finished */ 284 285 atomic_inc(&wil->isr_count_rx); 286 287 if (unlikely(need_unmask)) 288 wil6210_unmask_irq_rx(wil); 289 290 return IRQ_HANDLED; 291 } 292 293 static irqreturn_t wil6210_irq_tx(int irq, void *cookie) 294 { 295 struct wil6210_priv *wil = cookie; 296 u32 isr = wil_ioread32_and_clear(wil->csr + 297 HOSTADDR(RGF_DMA_EP_TX_ICR) + 298 offsetof(struct RGF_ICR, ICR)); 299 bool need_unmask = true; 300 301 trace_wil6210_irq_tx(isr); 302 wil_dbg_irq(wil, "ISR TX 0x%08x\n", isr); 303 304 if (unlikely(!isr)) { 305 wil_err(wil, "spurious IRQ: TX\n"); 306 return IRQ_NONE; 307 } 308 309 wil6210_mask_irq_tx(wil); 310 311 if (likely(isr & BIT_DMA_EP_TX_ICR_TX_DONE)) { 312 wil_dbg_irq(wil, "TX done\n"); 313 isr &= ~BIT_DMA_EP_TX_ICR_TX_DONE; 314 /* clear also all VRING interrupts */ 315 isr &= ~(BIT(25) - 1UL); 316 if (likely(test_bit(wil_status_fwready, wil->status))) { 317 wil_dbg_txrx(wil, "NAPI(Tx) schedule\n"); 318 need_unmask = false; 319 napi_schedule(&wil->napi_tx); 320 } else { 321 wil_err(wil, "Got Tx interrupt while in reset\n"); 322 } 323 } 324 325 if (unlikely(isr)) 326 wil_err(wil, "un-handled TX ISR bits 0x%08x\n", isr); 327 328 /* Tx IRQ will be enabled when NAPI processing finished */ 329 330 atomic_inc(&wil->isr_count_tx); 331 332 if (unlikely(need_unmask)) 333 wil6210_unmask_irq_tx(wil); 334 335 return IRQ_HANDLED; 336 } 337 338 static void wil_notify_fw_error(struct wil6210_priv *wil) 339 { 340 struct device *dev = &wil_to_ndev(wil)->dev; 341 char *envp[3] = { 342 [0] = "SOURCE=wil6210", 343 [1] = "EVENT=FW_ERROR", 344 [2] = NULL, 345 }; 346 wil_err(wil, "Notify about firmware error\n"); 347 kobject_uevent_env(&dev->kobj, KOBJ_CHANGE, envp); 348 } 349 350 static void wil_cache_mbox_regs(struct wil6210_priv *wil) 351 { 352 /* make shadow copy of registers that should not change on run time */ 353 wil_memcpy_fromio_32(&wil->mbox_ctl, wil->csr + HOST_MBOX, 354 sizeof(struct wil6210_mbox_ctl)); 355 wil_mbox_ring_le2cpus(&wil->mbox_ctl.rx); 356 wil_mbox_ring_le2cpus(&wil->mbox_ctl.tx); 357 } 358 359 static irqreturn_t wil6210_irq_misc(int irq, void *cookie) 360 { 361 struct wil6210_priv *wil = cookie; 362 u32 isr = wil_ioread32_and_clear(wil->csr + 363 HOSTADDR(RGF_DMA_EP_MISC_ICR) + 364 offsetof(struct RGF_ICR, ICR)); 365 366 trace_wil6210_irq_misc(isr); 367 wil_dbg_irq(wil, "ISR MISC 0x%08x\n", isr); 368 369 if (!isr) { 370 wil_err(wil, "spurious IRQ: MISC\n"); 371 return IRQ_NONE; 372 } 373 374 wil6210_mask_irq_misc(wil, false); 375 376 if (isr & ISR_MISC_FW_ERROR) { 377 u32 fw_assert_code = wil_r(wil, RGF_FW_ASSERT_CODE); 378 u32 ucode_assert_code = wil_r(wil, RGF_UCODE_ASSERT_CODE); 379 380 wil_err(wil, 381 "Firmware error detected, assert codes FW 0x%08x, UCODE 0x%08x\n", 382 fw_assert_code, ucode_assert_code); 383 clear_bit(wil_status_fwready, wil->status); 384 /* 385 * do not clear @isr here - we do 2-nd part in thread 386 * there, user space get notified, and it should be done 387 * in non-atomic context 388 */ 389 } 390 391 if (isr & ISR_MISC_FW_READY) { 392 wil_dbg_irq(wil, "IRQ: FW ready\n"); 393 wil_cache_mbox_regs(wil); 394 set_bit(wil_status_mbox_ready, wil->status); 395 /** 396 * Actual FW ready indicated by the 397 * WMI_FW_READY_EVENTID 398 */ 399 isr &= ~ISR_MISC_FW_READY; 400 } 401 402 if (isr & BIT_DMA_EP_MISC_ICR_HALP) { 403 wil_dbg_irq(wil, "%s: HALP IRQ invoked\n", __func__); 404 wil6210_mask_halp(wil); 405 isr &= ~BIT_DMA_EP_MISC_ICR_HALP; 406 complete(&wil->halp.comp); 407 } 408 409 wil->isr_misc = isr; 410 411 if (isr) { 412 return IRQ_WAKE_THREAD; 413 } else { 414 wil6210_unmask_irq_misc(wil, false); 415 return IRQ_HANDLED; 416 } 417 } 418 419 static irqreturn_t wil6210_irq_misc_thread(int irq, void *cookie) 420 { 421 struct wil6210_priv *wil = cookie; 422 u32 isr = wil->isr_misc; 423 424 trace_wil6210_irq_misc_thread(isr); 425 wil_dbg_irq(wil, "Thread ISR MISC 0x%08x\n", isr); 426 427 if (isr & ISR_MISC_FW_ERROR) { 428 wil->recovery_state = fw_recovery_pending; 429 wil_fw_core_dump(wil); 430 wil_notify_fw_error(wil); 431 isr &= ~ISR_MISC_FW_ERROR; 432 if (wil->platform_ops.notify) { 433 wil_err(wil, "notify platform driver about FW crash"); 434 wil->platform_ops.notify(wil->platform_handle, 435 WIL_PLATFORM_EVT_FW_CRASH); 436 } else { 437 wil_fw_error_recovery(wil); 438 } 439 } 440 if (isr & ISR_MISC_MBOX_EVT) { 441 wil_dbg_irq(wil, "MBOX event\n"); 442 wmi_recv_cmd(wil); 443 isr &= ~ISR_MISC_MBOX_EVT; 444 } 445 446 if (isr) 447 wil_dbg_irq(wil, "un-handled MISC ISR bits 0x%08x\n", isr); 448 449 wil->isr_misc = 0; 450 451 wil6210_unmask_irq_misc(wil, false); 452 453 return IRQ_HANDLED; 454 } 455 456 /** 457 * thread IRQ handler 458 */ 459 static irqreturn_t wil6210_thread_irq(int irq, void *cookie) 460 { 461 struct wil6210_priv *wil = cookie; 462 463 wil_dbg_irq(wil, "Thread IRQ\n"); 464 /* Discover real IRQ cause */ 465 if (wil->isr_misc) 466 wil6210_irq_misc_thread(irq, cookie); 467 468 wil6210_unmask_irq_pseudo(wil); 469 470 return IRQ_HANDLED; 471 } 472 473 /* DEBUG 474 * There is subtle bug in hardware that causes IRQ to raise when it should be 475 * masked. It is quite rare and hard to debug. 476 * 477 * Catch irq issue if it happens and print all I can. 478 */ 479 static int wil6210_debug_irq_mask(struct wil6210_priv *wil, u32 pseudo_cause) 480 { 481 if (!test_bit(wil_status_irqen, wil->status)) { 482 u32 icm_rx = wil_ioread32_and_clear(wil->csr + 483 HOSTADDR(RGF_DMA_EP_RX_ICR) + 484 offsetof(struct RGF_ICR, ICM)); 485 u32 icr_rx = wil_ioread32_and_clear(wil->csr + 486 HOSTADDR(RGF_DMA_EP_RX_ICR) + 487 offsetof(struct RGF_ICR, ICR)); 488 u32 imv_rx = wil_r(wil, RGF_DMA_EP_RX_ICR + 489 offsetof(struct RGF_ICR, IMV)); 490 u32 icm_tx = wil_ioread32_and_clear(wil->csr + 491 HOSTADDR(RGF_DMA_EP_TX_ICR) + 492 offsetof(struct RGF_ICR, ICM)); 493 u32 icr_tx = wil_ioread32_and_clear(wil->csr + 494 HOSTADDR(RGF_DMA_EP_TX_ICR) + 495 offsetof(struct RGF_ICR, ICR)); 496 u32 imv_tx = wil_r(wil, RGF_DMA_EP_TX_ICR + 497 offsetof(struct RGF_ICR, IMV)); 498 u32 icm_misc = wil_ioread32_and_clear(wil->csr + 499 HOSTADDR(RGF_DMA_EP_MISC_ICR) + 500 offsetof(struct RGF_ICR, ICM)); 501 u32 icr_misc = wil_ioread32_and_clear(wil->csr + 502 HOSTADDR(RGF_DMA_EP_MISC_ICR) + 503 offsetof(struct RGF_ICR, ICR)); 504 u32 imv_misc = wil_r(wil, RGF_DMA_EP_MISC_ICR + 505 offsetof(struct RGF_ICR, IMV)); 506 wil_err(wil, "IRQ when it should be masked: pseudo 0x%08x\n" 507 "Rx icm:icr:imv 0x%08x 0x%08x 0x%08x\n" 508 "Tx icm:icr:imv 0x%08x 0x%08x 0x%08x\n" 509 "Misc icm:icr:imv 0x%08x 0x%08x 0x%08x\n", 510 pseudo_cause, 511 icm_rx, icr_rx, imv_rx, 512 icm_tx, icr_tx, imv_tx, 513 icm_misc, icr_misc, imv_misc); 514 515 return -EINVAL; 516 } 517 518 return 0; 519 } 520 521 static irqreturn_t wil6210_hardirq(int irq, void *cookie) 522 { 523 irqreturn_t rc = IRQ_HANDLED; 524 struct wil6210_priv *wil = cookie; 525 u32 pseudo_cause = wil_r(wil, RGF_DMA_PSEUDO_CAUSE); 526 527 /** 528 * pseudo_cause is Clear-On-Read, no need to ACK 529 */ 530 if (unlikely((pseudo_cause == 0) || ((pseudo_cause & 0xff) == 0xff))) 531 return IRQ_NONE; 532 533 /* FIXME: IRQ mask debug */ 534 if (unlikely(wil6210_debug_irq_mask(wil, pseudo_cause))) 535 return IRQ_NONE; 536 537 trace_wil6210_irq_pseudo(pseudo_cause); 538 wil_dbg_irq(wil, "Pseudo IRQ 0x%08x\n", pseudo_cause); 539 540 wil6210_mask_irq_pseudo(wil); 541 542 /* Discover real IRQ cause 543 * There are 2 possible phases for every IRQ: 544 * - hard IRQ handler called right here 545 * - threaded handler called later 546 * 547 * Hard IRQ handler reads and clears ISR. 548 * 549 * If threaded handler requested, hard IRQ handler 550 * returns IRQ_WAKE_THREAD and saves ISR register value 551 * for the threaded handler use. 552 * 553 * voting for wake thread - need at least 1 vote 554 */ 555 if ((pseudo_cause & BIT_DMA_PSEUDO_CAUSE_RX) && 556 (wil6210_irq_rx(irq, cookie) == IRQ_WAKE_THREAD)) 557 rc = IRQ_WAKE_THREAD; 558 559 if ((pseudo_cause & BIT_DMA_PSEUDO_CAUSE_TX) && 560 (wil6210_irq_tx(irq, cookie) == IRQ_WAKE_THREAD)) 561 rc = IRQ_WAKE_THREAD; 562 563 if ((pseudo_cause & BIT_DMA_PSEUDO_CAUSE_MISC) && 564 (wil6210_irq_misc(irq, cookie) == IRQ_WAKE_THREAD)) 565 rc = IRQ_WAKE_THREAD; 566 567 /* if thread is requested, it will unmask IRQ */ 568 if (rc != IRQ_WAKE_THREAD) 569 wil6210_unmask_irq_pseudo(wil); 570 571 return rc; 572 } 573 574 /* can't use wil_ioread32_and_clear because ICC value is not set yet */ 575 static inline void wil_clear32(void __iomem *addr) 576 { 577 u32 x = readl(addr); 578 579 writel(x, addr); 580 } 581 582 void wil6210_clear_irq(struct wil6210_priv *wil) 583 { 584 wil_clear32(wil->csr + HOSTADDR(RGF_DMA_EP_RX_ICR) + 585 offsetof(struct RGF_ICR, ICR)); 586 wil_clear32(wil->csr + HOSTADDR(RGF_DMA_EP_TX_ICR) + 587 offsetof(struct RGF_ICR, ICR)); 588 wil_clear32(wil->csr + HOSTADDR(RGF_DMA_EP_MISC_ICR) + 589 offsetof(struct RGF_ICR, ICR)); 590 wmb(); /* make sure write completed */ 591 } 592 593 void wil6210_set_halp(struct wil6210_priv *wil) 594 { 595 wil_dbg_misc(wil, "%s()\n", __func__); 596 597 wil_w(wil, RGF_DMA_EP_MISC_ICR + offsetof(struct RGF_ICR, ICS), 598 BIT_DMA_EP_MISC_ICR_HALP); 599 } 600 601 void wil6210_clear_halp(struct wil6210_priv *wil) 602 { 603 wil_dbg_misc(wil, "%s()\n", __func__); 604 605 wil_w(wil, RGF_DMA_EP_MISC_ICR + offsetof(struct RGF_ICR, ICR), 606 BIT_DMA_EP_MISC_ICR_HALP); 607 wil6210_unmask_halp(wil); 608 } 609 610 int wil6210_init_irq(struct wil6210_priv *wil, int irq, bool use_msi) 611 { 612 int rc; 613 614 wil_dbg_misc(wil, "%s(%s)\n", __func__, use_msi ? "MSI" : "INTx"); 615 616 rc = request_threaded_irq(irq, wil6210_hardirq, 617 wil6210_thread_irq, 618 use_msi ? 0 : IRQF_SHARED, 619 WIL_NAME, wil); 620 return rc; 621 } 622 623 void wil6210_fini_irq(struct wil6210_priv *wil, int irq) 624 { 625 wil_dbg_misc(wil, "%s()\n", __func__); 626 627 wil_mask_irq(wil); 628 free_irq(irq, wil); 629 } 630