xref: /openbmc/linux/drivers/net/wireless/ath/key.c (revision 9c1f8594)
1 /*
2  * Copyright (c) 2009 Atheros Communications Inc.
3  * Copyright (c) 2010 Bruno Randolf <br1@einfach.org>
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <asm/unaligned.h>
19 #include <net/mac80211.h>
20 
21 #include "ath.h"
22 #include "reg.h"
23 
24 #define REG_READ			(common->ops->read)
25 #define REG_WRITE(_ah, _reg, _val)	(common->ops->write)(_ah, _val, _reg)
26 #define ENABLE_REGWRITE_BUFFER(_ah)			\
27 	if (common->ops->enable_write_buffer)		\
28 		common->ops->enable_write_buffer((_ah));
29 
30 #define REGWRITE_BUFFER_FLUSH(_ah)			\
31 	if (common->ops->write_flush)			\
32 		common->ops->write_flush((_ah));
33 
34 
35 #define IEEE80211_WEP_NKID      4       /* number of key ids */
36 
37 /************************/
38 /* Key Cache Management */
39 /************************/
40 
41 bool ath_hw_keyreset(struct ath_common *common, u16 entry)
42 {
43 	u32 keyType;
44 	void *ah = common->ah;
45 
46 	if (entry >= common->keymax) {
47 		ath_err(common, "keycache entry %u out of range\n", entry);
48 		return false;
49 	}
50 
51 	keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
52 
53 	ENABLE_REGWRITE_BUFFER(ah);
54 
55 	REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
56 	REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
57 	REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
58 	REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
59 	REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
60 	REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
61 	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
62 	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
63 
64 	if (keyType == AR_KEYTABLE_TYPE_TKIP) {
65 		u16 micentry = entry + 64;
66 
67 		REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
68 		REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
69 		REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
70 		REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
71 		if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
72 			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
73 			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
74 				  AR_KEYTABLE_TYPE_CLR);
75 		}
76 
77 	}
78 
79 	REGWRITE_BUFFER_FLUSH(ah);
80 
81 	return true;
82 }
83 EXPORT_SYMBOL(ath_hw_keyreset);
84 
85 static bool ath_hw_keysetmac(struct ath_common *common,
86 			     u16 entry, const u8 *mac)
87 {
88 	u32 macHi, macLo;
89 	u32 unicast_flag = AR_KEYTABLE_VALID;
90 	void *ah = common->ah;
91 
92 	if (entry >= common->keymax) {
93 		ath_err(common, "keycache entry %u out of range\n", entry);
94 		return false;
95 	}
96 
97 	if (mac != NULL) {
98 		/*
99 		 * AR_KEYTABLE_VALID indicates that the address is a unicast
100 		 * address, which must match the transmitter address for
101 		 * decrypting frames.
102 		 * Not setting this bit allows the hardware to use the key
103 		 * for multicast frame decryption.
104 		 */
105 		if (mac[0] & 0x01)
106 			unicast_flag = 0;
107 
108 		macLo = get_unaligned_le32(mac);
109 		macHi = get_unaligned_le16(mac + 4);
110 		macLo >>= 1;
111 		macLo |= (macHi & 1) << 31;
112 		macHi >>= 1;
113 	} else {
114 		macLo = macHi = 0;
115 	}
116 	ENABLE_REGWRITE_BUFFER(ah);
117 
118 	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
119 	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
120 
121 	REGWRITE_BUFFER_FLUSH(ah);
122 
123 	return true;
124 }
125 
126 static bool ath_hw_set_keycache_entry(struct ath_common *common, u16 entry,
127 				      const struct ath_keyval *k,
128 				      const u8 *mac)
129 {
130 	void *ah = common->ah;
131 	u32 key0, key1, key2, key3, key4;
132 	u32 keyType;
133 
134 	if (entry >= common->keymax) {
135 		ath_err(common, "keycache entry %u out of range\n", entry);
136 		return false;
137 	}
138 
139 	switch (k->kv_type) {
140 	case ATH_CIPHER_AES_OCB:
141 		keyType = AR_KEYTABLE_TYPE_AES;
142 		break;
143 	case ATH_CIPHER_AES_CCM:
144 		if (!(common->crypt_caps & ATH_CRYPT_CAP_CIPHER_AESCCM)) {
145 			ath_dbg(common, ATH_DBG_ANY,
146 				"AES-CCM not supported by this mac rev\n");
147 			return false;
148 		}
149 		keyType = AR_KEYTABLE_TYPE_CCM;
150 		break;
151 	case ATH_CIPHER_TKIP:
152 		keyType = AR_KEYTABLE_TYPE_TKIP;
153 		if (entry + 64 >= common->keymax) {
154 			ath_dbg(common, ATH_DBG_ANY,
155 				"entry %u inappropriate for TKIP\n", entry);
156 			return false;
157 		}
158 		break;
159 	case ATH_CIPHER_WEP:
160 		if (k->kv_len < WLAN_KEY_LEN_WEP40) {
161 			ath_dbg(common, ATH_DBG_ANY,
162 				"WEP key length %u too small\n", k->kv_len);
163 			return false;
164 		}
165 		if (k->kv_len <= WLAN_KEY_LEN_WEP40)
166 			keyType = AR_KEYTABLE_TYPE_40;
167 		else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
168 			keyType = AR_KEYTABLE_TYPE_104;
169 		else
170 			keyType = AR_KEYTABLE_TYPE_128;
171 		break;
172 	case ATH_CIPHER_CLR:
173 		keyType = AR_KEYTABLE_TYPE_CLR;
174 		break;
175 	default:
176 		ath_err(common, "cipher %u not supported\n", k->kv_type);
177 		return false;
178 	}
179 
180 	key0 = get_unaligned_le32(k->kv_val + 0);
181 	key1 = get_unaligned_le16(k->kv_val + 4);
182 	key2 = get_unaligned_le32(k->kv_val + 6);
183 	key3 = get_unaligned_le16(k->kv_val + 10);
184 	key4 = get_unaligned_le32(k->kv_val + 12);
185 	if (k->kv_len <= WLAN_KEY_LEN_WEP104)
186 		key4 &= 0xff;
187 
188 	/*
189 	 * Note: Key cache registers access special memory area that requires
190 	 * two 32-bit writes to actually update the values in the internal
191 	 * memory. Consequently, the exact order and pairs used here must be
192 	 * maintained.
193 	 */
194 
195 	if (keyType == AR_KEYTABLE_TYPE_TKIP) {
196 		u16 micentry = entry + 64;
197 
198 		/*
199 		 * Write inverted key[47:0] first to avoid Michael MIC errors
200 		 * on frames that could be sent or received at the same time.
201 		 * The correct key will be written in the end once everything
202 		 * else is ready.
203 		 */
204 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
205 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
206 
207 		/* Write key[95:48] */
208 		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
209 		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
210 
211 		/* Write key[127:96] and key type */
212 		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
213 		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
214 
215 		/* Write MAC address for the entry */
216 		(void) ath_hw_keysetmac(common, entry, mac);
217 
218 		if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
219 			/*
220 			 * TKIP uses two key cache entries:
221 			 * Michael MIC TX/RX keys in the same key cache entry
222 			 * (idx = main index + 64):
223 			 * key0 [31:0] = RX key [31:0]
224 			 * key1 [15:0] = TX key [31:16]
225 			 * key1 [31:16] = reserved
226 			 * key2 [31:0] = RX key [63:32]
227 			 * key3 [15:0] = TX key [15:0]
228 			 * key3 [31:16] = reserved
229 			 * key4 [31:0] = TX key [63:32]
230 			 */
231 			u32 mic0, mic1, mic2, mic3, mic4;
232 
233 			mic0 = get_unaligned_le32(k->kv_mic + 0);
234 			mic2 = get_unaligned_le32(k->kv_mic + 4);
235 			mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
236 			mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
237 			mic4 = get_unaligned_le32(k->kv_txmic + 4);
238 
239 			ENABLE_REGWRITE_BUFFER(ah);
240 
241 			/* Write RX[31:0] and TX[31:16] */
242 			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
243 			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
244 
245 			/* Write RX[63:32] and TX[15:0] */
246 			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
247 			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
248 
249 			/* Write TX[63:32] and keyType(reserved) */
250 			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
251 			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
252 				  AR_KEYTABLE_TYPE_CLR);
253 
254 			REGWRITE_BUFFER_FLUSH(ah);
255 
256 		} else {
257 			/*
258 			 * TKIP uses four key cache entries (two for group
259 			 * keys):
260 			 * Michael MIC TX/RX keys are in different key cache
261 			 * entries (idx = main index + 64 for TX and
262 			 * main index + 32 + 96 for RX):
263 			 * key0 [31:0] = TX/RX MIC key [31:0]
264 			 * key1 [31:0] = reserved
265 			 * key2 [31:0] = TX/RX MIC key [63:32]
266 			 * key3 [31:0] = reserved
267 			 * key4 [31:0] = reserved
268 			 *
269 			 * Upper layer code will call this function separately
270 			 * for TX and RX keys when these registers offsets are
271 			 * used.
272 			 */
273 			u32 mic0, mic2;
274 
275 			mic0 = get_unaligned_le32(k->kv_mic + 0);
276 			mic2 = get_unaligned_le32(k->kv_mic + 4);
277 
278 			ENABLE_REGWRITE_BUFFER(ah);
279 
280 			/* Write MIC key[31:0] */
281 			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
282 			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
283 
284 			/* Write MIC key[63:32] */
285 			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
286 			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
287 
288 			/* Write TX[63:32] and keyType(reserved) */
289 			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
290 			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
291 				  AR_KEYTABLE_TYPE_CLR);
292 
293 			REGWRITE_BUFFER_FLUSH(ah);
294 		}
295 
296 		ENABLE_REGWRITE_BUFFER(ah);
297 
298 		/* MAC address registers are reserved for the MIC entry */
299 		REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
300 		REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
301 
302 		/*
303 		 * Write the correct (un-inverted) key[47:0] last to enable
304 		 * TKIP now that all other registers are set with correct
305 		 * values.
306 		 */
307 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
308 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
309 
310 		REGWRITE_BUFFER_FLUSH(ah);
311 	} else {
312 		ENABLE_REGWRITE_BUFFER(ah);
313 
314 		/* Write key[47:0] */
315 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
316 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
317 
318 		/* Write key[95:48] */
319 		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
320 		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
321 
322 		/* Write key[127:96] and key type */
323 		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
324 		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
325 
326 		REGWRITE_BUFFER_FLUSH(ah);
327 
328 		/* Write MAC address for the entry */
329 		(void) ath_hw_keysetmac(common, entry, mac);
330 	}
331 
332 	return true;
333 }
334 
335 static int ath_setkey_tkip(struct ath_common *common, u16 keyix, const u8 *key,
336 			   struct ath_keyval *hk, const u8 *addr,
337 			   bool authenticator)
338 {
339 	const u8 *key_rxmic;
340 	const u8 *key_txmic;
341 
342 	key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
343 	key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
344 
345 	if (addr == NULL) {
346 		/*
347 		 * Group key installation - only two key cache entries are used
348 		 * regardless of splitmic capability since group key is only
349 		 * used either for TX or RX.
350 		 */
351 		if (authenticator) {
352 			memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
353 			memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
354 		} else {
355 			memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
356 			memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
357 		}
358 		return ath_hw_set_keycache_entry(common, keyix, hk, addr);
359 	}
360 	if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
361 		/* TX and RX keys share the same key cache entry. */
362 		memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
363 		memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
364 		return ath_hw_set_keycache_entry(common, keyix, hk, addr);
365 	}
366 
367 	/* Separate key cache entries for TX and RX */
368 
369 	/* TX key goes at first index, RX key at +32. */
370 	memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
371 	if (!ath_hw_set_keycache_entry(common, keyix, hk, NULL)) {
372 		/* TX MIC entry failed. No need to proceed further */
373 		ath_err(common, "Setting TX MIC Key Failed\n");
374 		return 0;
375 	}
376 
377 	memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
378 	/* XXX delete tx key on failure? */
379 	return ath_hw_set_keycache_entry(common, keyix + 32, hk, addr);
380 }
381 
382 static int ath_reserve_key_cache_slot_tkip(struct ath_common *common)
383 {
384 	int i;
385 
386 	for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
387 		if (test_bit(i, common->keymap) ||
388 		    test_bit(i + 64, common->keymap))
389 			continue; /* At least one part of TKIP key allocated */
390 		if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) &&
391 		    (test_bit(i + 32, common->keymap) ||
392 		     test_bit(i + 64 + 32, common->keymap)))
393 			continue; /* At least one part of TKIP key allocated */
394 
395 		/* Found a free slot for a TKIP key */
396 		return i;
397 	}
398 	return -1;
399 }
400 
401 static int ath_reserve_key_cache_slot(struct ath_common *common,
402 				      u32 cipher)
403 {
404 	int i;
405 
406 	if (cipher == WLAN_CIPHER_SUITE_TKIP)
407 		return ath_reserve_key_cache_slot_tkip(common);
408 
409 	/* First, try to find slots that would not be available for TKIP. */
410 	if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
411 		for (i = IEEE80211_WEP_NKID; i < common->keymax / 4; i++) {
412 			if (!test_bit(i, common->keymap) &&
413 			    (test_bit(i + 32, common->keymap) ||
414 			     test_bit(i + 64, common->keymap) ||
415 			     test_bit(i + 64 + 32, common->keymap)))
416 				return i;
417 			if (!test_bit(i + 32, common->keymap) &&
418 			    (test_bit(i, common->keymap) ||
419 			     test_bit(i + 64, common->keymap) ||
420 			     test_bit(i + 64 + 32, common->keymap)))
421 				return i + 32;
422 			if (!test_bit(i + 64, common->keymap) &&
423 			    (test_bit(i , common->keymap) ||
424 			     test_bit(i + 32, common->keymap) ||
425 			     test_bit(i + 64 + 32, common->keymap)))
426 				return i + 64;
427 			if (!test_bit(i + 64 + 32, common->keymap) &&
428 			    (test_bit(i, common->keymap) ||
429 			     test_bit(i + 32, common->keymap) ||
430 			     test_bit(i + 64, common->keymap)))
431 				return i + 64 + 32;
432 		}
433 	} else {
434 		for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
435 			if (!test_bit(i, common->keymap) &&
436 			    test_bit(i + 64, common->keymap))
437 				return i;
438 			if (test_bit(i, common->keymap) &&
439 			    !test_bit(i + 64, common->keymap))
440 				return i + 64;
441 		}
442 	}
443 
444 	/* No partially used TKIP slots, pick any available slot */
445 	for (i = IEEE80211_WEP_NKID; i < common->keymax; i++) {
446 		/* Do not allow slots that could be needed for TKIP group keys
447 		 * to be used. This limitation could be removed if we know that
448 		 * TKIP will not be used. */
449 		if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
450 			continue;
451 		if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
452 			if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
453 				continue;
454 			if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
455 				continue;
456 		}
457 
458 		if (!test_bit(i, common->keymap))
459 			return i; /* Found a free slot for a key */
460 	}
461 
462 	/* No free slot found */
463 	return -1;
464 }
465 
466 /*
467  * Configure encryption in the HW.
468  */
469 int ath_key_config(struct ath_common *common,
470 			  struct ieee80211_vif *vif,
471 			  struct ieee80211_sta *sta,
472 			  struct ieee80211_key_conf *key)
473 {
474 	struct ath_keyval hk;
475 	const u8 *mac = NULL;
476 	u8 gmac[ETH_ALEN];
477 	int ret = 0;
478 	int idx;
479 
480 	memset(&hk, 0, sizeof(hk));
481 
482 	switch (key->cipher) {
483 	case 0:
484 		hk.kv_type = ATH_CIPHER_CLR;
485 		break;
486 	case WLAN_CIPHER_SUITE_WEP40:
487 	case WLAN_CIPHER_SUITE_WEP104:
488 		hk.kv_type = ATH_CIPHER_WEP;
489 		break;
490 	case WLAN_CIPHER_SUITE_TKIP:
491 		hk.kv_type = ATH_CIPHER_TKIP;
492 		break;
493 	case WLAN_CIPHER_SUITE_CCMP:
494 		hk.kv_type = ATH_CIPHER_AES_CCM;
495 		break;
496 	default:
497 		return -EOPNOTSUPP;
498 	}
499 
500 	hk.kv_len = key->keylen;
501 	if (key->keylen)
502 		memcpy(hk.kv_val, key->key, key->keylen);
503 
504 	if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
505 		switch (vif->type) {
506 		case NL80211_IFTYPE_AP:
507 			memcpy(gmac, vif->addr, ETH_ALEN);
508 			gmac[0] |= 0x01;
509 			mac = gmac;
510 			idx = ath_reserve_key_cache_slot(common, key->cipher);
511 			break;
512 		case NL80211_IFTYPE_ADHOC:
513 			if (!sta) {
514 				idx = key->keyidx;
515 				break;
516 			}
517 			memcpy(gmac, sta->addr, ETH_ALEN);
518 			gmac[0] |= 0x01;
519 			mac = gmac;
520 			idx = ath_reserve_key_cache_slot(common, key->cipher);
521 			break;
522 		default:
523 			idx = key->keyidx;
524 			break;
525 		}
526 	} else if (key->keyidx) {
527 		if (WARN_ON(!sta))
528 			return -EOPNOTSUPP;
529 		mac = sta->addr;
530 
531 		if (vif->type != NL80211_IFTYPE_AP) {
532 			/* Only keyidx 0 should be used with unicast key, but
533 			 * allow this for client mode for now. */
534 			idx = key->keyidx;
535 		} else
536 			return -EIO;
537 	} else {
538 		if (WARN_ON(!sta))
539 			return -EOPNOTSUPP;
540 		mac = sta->addr;
541 
542 		idx = ath_reserve_key_cache_slot(common, key->cipher);
543 	}
544 
545 	if (idx < 0)
546 		return -ENOSPC; /* no free key cache entries */
547 
548 	if (key->cipher == WLAN_CIPHER_SUITE_TKIP)
549 		ret = ath_setkey_tkip(common, idx, key->key, &hk, mac,
550 				      vif->type == NL80211_IFTYPE_AP);
551 	else
552 		ret = ath_hw_set_keycache_entry(common, idx, &hk, mac);
553 
554 	if (!ret)
555 		return -EIO;
556 
557 	set_bit(idx, common->keymap);
558 	if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
559 		set_bit(idx + 64, common->keymap);
560 		set_bit(idx, common->tkip_keymap);
561 		set_bit(idx + 64, common->tkip_keymap);
562 		if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
563 			set_bit(idx + 32, common->keymap);
564 			set_bit(idx + 64 + 32, common->keymap);
565 			set_bit(idx + 32, common->tkip_keymap);
566 			set_bit(idx + 64 + 32, common->tkip_keymap);
567 		}
568 	}
569 
570 	return idx;
571 }
572 EXPORT_SYMBOL(ath_key_config);
573 
574 /*
575  * Delete Key.
576  */
577 void ath_key_delete(struct ath_common *common, struct ieee80211_key_conf *key)
578 {
579 	ath_hw_keyreset(common, key->hw_key_idx);
580 	if (key->hw_key_idx < IEEE80211_WEP_NKID)
581 		return;
582 
583 	clear_bit(key->hw_key_idx, common->keymap);
584 	if (key->cipher != WLAN_CIPHER_SUITE_TKIP)
585 		return;
586 
587 	clear_bit(key->hw_key_idx + 64, common->keymap);
588 
589 	clear_bit(key->hw_key_idx, common->tkip_keymap);
590 	clear_bit(key->hw_key_idx + 64, common->tkip_keymap);
591 
592 	if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
593 		ath_hw_keyreset(common, key->hw_key_idx + 32);
594 		clear_bit(key->hw_key_idx + 32, common->keymap);
595 		clear_bit(key->hw_key_idx + 64 + 32, common->keymap);
596 
597 		clear_bit(key->hw_key_idx + 32, common->tkip_keymap);
598 		clear_bit(key->hw_key_idx + 64 + 32, common->tkip_keymap);
599 	}
600 }
601 EXPORT_SYMBOL(ath_key_delete);
602