xref: /openbmc/linux/drivers/net/wireless/ath/key.c (revision 8fdff1dc)
1 /*
2  * Copyright (c) 2009 Atheros Communications Inc.
3  * Copyright (c) 2010 Bruno Randolf <br1@einfach.org>
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/export.h>
19 #include <asm/unaligned.h>
20 #include <net/mac80211.h>
21 
22 #include "ath.h"
23 #include "reg.h"
24 
25 #define REG_READ			(common->ops->read)
26 #define REG_WRITE(_ah, _reg, _val)	(common->ops->write)(_ah, _val, _reg)
27 #define ENABLE_REGWRITE_BUFFER(_ah)			\
28 	if (common->ops->enable_write_buffer)		\
29 		common->ops->enable_write_buffer((_ah));
30 
31 #define REGWRITE_BUFFER_FLUSH(_ah)			\
32 	if (common->ops->write_flush)			\
33 		common->ops->write_flush((_ah));
34 
35 
36 #define IEEE80211_WEP_NKID      4       /* number of key ids */
37 
38 /************************/
39 /* Key Cache Management */
40 /************************/
41 
42 bool ath_hw_keyreset(struct ath_common *common, u16 entry)
43 {
44 	u32 keyType;
45 	void *ah = common->ah;
46 
47 	if (entry >= common->keymax) {
48 		ath_err(common, "keycache entry %u out of range\n", entry);
49 		return false;
50 	}
51 
52 	keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
53 
54 	ENABLE_REGWRITE_BUFFER(ah);
55 
56 	REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
57 	REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
58 	REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
59 	REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
60 	REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
61 	REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
62 	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
63 	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
64 
65 	if (keyType == AR_KEYTABLE_TYPE_TKIP) {
66 		u16 micentry = entry + 64;
67 
68 		REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
69 		REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
70 		REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
71 		REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
72 		if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
73 			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
74 			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
75 				  AR_KEYTABLE_TYPE_CLR);
76 		}
77 
78 	}
79 
80 	REGWRITE_BUFFER_FLUSH(ah);
81 
82 	return true;
83 }
84 EXPORT_SYMBOL(ath_hw_keyreset);
85 
86 static bool ath_hw_keysetmac(struct ath_common *common,
87 			     u16 entry, const u8 *mac)
88 {
89 	u32 macHi, macLo;
90 	u32 unicast_flag = AR_KEYTABLE_VALID;
91 	void *ah = common->ah;
92 
93 	if (entry >= common->keymax) {
94 		ath_err(common, "keycache entry %u out of range\n", entry);
95 		return false;
96 	}
97 
98 	if (mac != NULL) {
99 		/*
100 		 * AR_KEYTABLE_VALID indicates that the address is a unicast
101 		 * address, which must match the transmitter address for
102 		 * decrypting frames.
103 		 * Not setting this bit allows the hardware to use the key
104 		 * for multicast frame decryption.
105 		 */
106 		if (mac[0] & 0x01)
107 			unicast_flag = 0;
108 
109 		macLo = get_unaligned_le32(mac);
110 		macHi = get_unaligned_le16(mac + 4);
111 		macLo >>= 1;
112 		macLo |= (macHi & 1) << 31;
113 		macHi >>= 1;
114 	} else {
115 		macLo = macHi = 0;
116 	}
117 	ENABLE_REGWRITE_BUFFER(ah);
118 
119 	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
120 	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
121 
122 	REGWRITE_BUFFER_FLUSH(ah);
123 
124 	return true;
125 }
126 
127 static bool ath_hw_set_keycache_entry(struct ath_common *common, u16 entry,
128 				      const struct ath_keyval *k,
129 				      const u8 *mac)
130 {
131 	void *ah = common->ah;
132 	u32 key0, key1, key2, key3, key4;
133 	u32 keyType;
134 
135 	if (entry >= common->keymax) {
136 		ath_err(common, "keycache entry %u out of range\n", entry);
137 		return false;
138 	}
139 
140 	switch (k->kv_type) {
141 	case ATH_CIPHER_AES_OCB:
142 		keyType = AR_KEYTABLE_TYPE_AES;
143 		break;
144 	case ATH_CIPHER_AES_CCM:
145 		if (!(common->crypt_caps & ATH_CRYPT_CAP_CIPHER_AESCCM)) {
146 			ath_dbg(common, ANY,
147 				"AES-CCM not supported by this mac rev\n");
148 			return false;
149 		}
150 		keyType = AR_KEYTABLE_TYPE_CCM;
151 		break;
152 	case ATH_CIPHER_TKIP:
153 		keyType = AR_KEYTABLE_TYPE_TKIP;
154 		if (entry + 64 >= common->keymax) {
155 			ath_dbg(common, ANY,
156 				"entry %u inappropriate for TKIP\n", entry);
157 			return false;
158 		}
159 		break;
160 	case ATH_CIPHER_WEP:
161 		if (k->kv_len < WLAN_KEY_LEN_WEP40) {
162 			ath_dbg(common, ANY, "WEP key length %u too small\n",
163 				k->kv_len);
164 			return false;
165 		}
166 		if (k->kv_len <= WLAN_KEY_LEN_WEP40)
167 			keyType = AR_KEYTABLE_TYPE_40;
168 		else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
169 			keyType = AR_KEYTABLE_TYPE_104;
170 		else
171 			keyType = AR_KEYTABLE_TYPE_128;
172 		break;
173 	case ATH_CIPHER_CLR:
174 		keyType = AR_KEYTABLE_TYPE_CLR;
175 		break;
176 	default:
177 		ath_err(common, "cipher %u not supported\n", k->kv_type);
178 		return false;
179 	}
180 
181 	key0 = get_unaligned_le32(k->kv_val + 0);
182 	key1 = get_unaligned_le16(k->kv_val + 4);
183 	key2 = get_unaligned_le32(k->kv_val + 6);
184 	key3 = get_unaligned_le16(k->kv_val + 10);
185 	key4 = get_unaligned_le32(k->kv_val + 12);
186 	if (k->kv_len <= WLAN_KEY_LEN_WEP104)
187 		key4 &= 0xff;
188 
189 	/*
190 	 * Note: Key cache registers access special memory area that requires
191 	 * two 32-bit writes to actually update the values in the internal
192 	 * memory. Consequently, the exact order and pairs used here must be
193 	 * maintained.
194 	 */
195 
196 	if (keyType == AR_KEYTABLE_TYPE_TKIP) {
197 		u16 micentry = entry + 64;
198 
199 		/*
200 		 * Write inverted key[47:0] first to avoid Michael MIC errors
201 		 * on frames that could be sent or received at the same time.
202 		 * The correct key will be written in the end once everything
203 		 * else is ready.
204 		 */
205 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
206 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
207 
208 		/* Write key[95:48] */
209 		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
210 		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
211 
212 		/* Write key[127:96] and key type */
213 		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
214 		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
215 
216 		/* Write MAC address for the entry */
217 		(void) ath_hw_keysetmac(common, entry, mac);
218 
219 		if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
220 			/*
221 			 * TKIP uses two key cache entries:
222 			 * Michael MIC TX/RX keys in the same key cache entry
223 			 * (idx = main index + 64):
224 			 * key0 [31:0] = RX key [31:0]
225 			 * key1 [15:0] = TX key [31:16]
226 			 * key1 [31:16] = reserved
227 			 * key2 [31:0] = RX key [63:32]
228 			 * key3 [15:0] = TX key [15:0]
229 			 * key3 [31:16] = reserved
230 			 * key4 [31:0] = TX key [63:32]
231 			 */
232 			u32 mic0, mic1, mic2, mic3, mic4;
233 
234 			mic0 = get_unaligned_le32(k->kv_mic + 0);
235 			mic2 = get_unaligned_le32(k->kv_mic + 4);
236 			mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
237 			mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
238 			mic4 = get_unaligned_le32(k->kv_txmic + 4);
239 
240 			ENABLE_REGWRITE_BUFFER(ah);
241 
242 			/* Write RX[31:0] and TX[31:16] */
243 			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
244 			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
245 
246 			/* Write RX[63:32] and TX[15:0] */
247 			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
248 			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
249 
250 			/* Write TX[63:32] and keyType(reserved) */
251 			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
252 			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
253 				  AR_KEYTABLE_TYPE_CLR);
254 
255 			REGWRITE_BUFFER_FLUSH(ah);
256 
257 		} else {
258 			/*
259 			 * TKIP uses four key cache entries (two for group
260 			 * keys):
261 			 * Michael MIC TX/RX keys are in different key cache
262 			 * entries (idx = main index + 64 for TX and
263 			 * main index + 32 + 96 for RX):
264 			 * key0 [31:0] = TX/RX MIC key [31:0]
265 			 * key1 [31:0] = reserved
266 			 * key2 [31:0] = TX/RX MIC key [63:32]
267 			 * key3 [31:0] = reserved
268 			 * key4 [31:0] = reserved
269 			 *
270 			 * Upper layer code will call this function separately
271 			 * for TX and RX keys when these registers offsets are
272 			 * used.
273 			 */
274 			u32 mic0, mic2;
275 
276 			mic0 = get_unaligned_le32(k->kv_mic + 0);
277 			mic2 = get_unaligned_le32(k->kv_mic + 4);
278 
279 			ENABLE_REGWRITE_BUFFER(ah);
280 
281 			/* Write MIC key[31:0] */
282 			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
283 			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
284 
285 			/* Write MIC key[63:32] */
286 			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
287 			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
288 
289 			/* Write TX[63:32] and keyType(reserved) */
290 			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
291 			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
292 				  AR_KEYTABLE_TYPE_CLR);
293 
294 			REGWRITE_BUFFER_FLUSH(ah);
295 		}
296 
297 		ENABLE_REGWRITE_BUFFER(ah);
298 
299 		/* MAC address registers are reserved for the MIC entry */
300 		REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
301 		REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
302 
303 		/*
304 		 * Write the correct (un-inverted) key[47:0] last to enable
305 		 * TKIP now that all other registers are set with correct
306 		 * values.
307 		 */
308 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
309 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
310 
311 		REGWRITE_BUFFER_FLUSH(ah);
312 	} else {
313 		ENABLE_REGWRITE_BUFFER(ah);
314 
315 		/* Write key[47:0] */
316 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
317 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
318 
319 		/* Write key[95:48] */
320 		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
321 		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
322 
323 		/* Write key[127:96] and key type */
324 		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
325 		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
326 
327 		REGWRITE_BUFFER_FLUSH(ah);
328 
329 		/* Write MAC address for the entry */
330 		(void) ath_hw_keysetmac(common, entry, mac);
331 	}
332 
333 	return true;
334 }
335 
336 static int ath_setkey_tkip(struct ath_common *common, u16 keyix, const u8 *key,
337 			   struct ath_keyval *hk, const u8 *addr,
338 			   bool authenticator)
339 {
340 	const u8 *key_rxmic;
341 	const u8 *key_txmic;
342 
343 	key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
344 	key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
345 
346 	if (addr == NULL) {
347 		/*
348 		 * Group key installation - only two key cache entries are used
349 		 * regardless of splitmic capability since group key is only
350 		 * used either for TX or RX.
351 		 */
352 		if (authenticator) {
353 			memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
354 			memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
355 		} else {
356 			memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
357 			memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
358 		}
359 		return ath_hw_set_keycache_entry(common, keyix, hk, addr);
360 	}
361 	if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
362 		/* TX and RX keys share the same key cache entry. */
363 		memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
364 		memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
365 		return ath_hw_set_keycache_entry(common, keyix, hk, addr);
366 	}
367 
368 	/* Separate key cache entries for TX and RX */
369 
370 	/* TX key goes at first index, RX key at +32. */
371 	memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
372 	if (!ath_hw_set_keycache_entry(common, keyix, hk, NULL)) {
373 		/* TX MIC entry failed. No need to proceed further */
374 		ath_err(common, "Setting TX MIC Key Failed\n");
375 		return 0;
376 	}
377 
378 	memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
379 	/* XXX delete tx key on failure? */
380 	return ath_hw_set_keycache_entry(common, keyix + 32, hk, addr);
381 }
382 
383 static int ath_reserve_key_cache_slot_tkip(struct ath_common *common)
384 {
385 	int i;
386 
387 	for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
388 		if (test_bit(i, common->keymap) ||
389 		    test_bit(i + 64, common->keymap))
390 			continue; /* At least one part of TKIP key allocated */
391 		if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) &&
392 		    (test_bit(i + 32, common->keymap) ||
393 		     test_bit(i + 64 + 32, common->keymap)))
394 			continue; /* At least one part of TKIP key allocated */
395 
396 		/* Found a free slot for a TKIP key */
397 		return i;
398 	}
399 	return -1;
400 }
401 
402 static int ath_reserve_key_cache_slot(struct ath_common *common,
403 				      u32 cipher)
404 {
405 	int i;
406 
407 	if (cipher == WLAN_CIPHER_SUITE_TKIP)
408 		return ath_reserve_key_cache_slot_tkip(common);
409 
410 	/* First, try to find slots that would not be available for TKIP. */
411 	if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
412 		for (i = IEEE80211_WEP_NKID; i < common->keymax / 4; i++) {
413 			if (!test_bit(i, common->keymap) &&
414 			    (test_bit(i + 32, common->keymap) ||
415 			     test_bit(i + 64, common->keymap) ||
416 			     test_bit(i + 64 + 32, common->keymap)))
417 				return i;
418 			if (!test_bit(i + 32, common->keymap) &&
419 			    (test_bit(i, common->keymap) ||
420 			     test_bit(i + 64, common->keymap) ||
421 			     test_bit(i + 64 + 32, common->keymap)))
422 				return i + 32;
423 			if (!test_bit(i + 64, common->keymap) &&
424 			    (test_bit(i , common->keymap) ||
425 			     test_bit(i + 32, common->keymap) ||
426 			     test_bit(i + 64 + 32, common->keymap)))
427 				return i + 64;
428 			if (!test_bit(i + 64 + 32, common->keymap) &&
429 			    (test_bit(i, common->keymap) ||
430 			     test_bit(i + 32, common->keymap) ||
431 			     test_bit(i + 64, common->keymap)))
432 				return i + 64 + 32;
433 		}
434 	} else {
435 		for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
436 			if (!test_bit(i, common->keymap) &&
437 			    test_bit(i + 64, common->keymap))
438 				return i;
439 			if (test_bit(i, common->keymap) &&
440 			    !test_bit(i + 64, common->keymap))
441 				return i + 64;
442 		}
443 	}
444 
445 	/* No partially used TKIP slots, pick any available slot */
446 	for (i = IEEE80211_WEP_NKID; i < common->keymax; i++) {
447 		/* Do not allow slots that could be needed for TKIP group keys
448 		 * to be used. This limitation could be removed if we know that
449 		 * TKIP will not be used. */
450 		if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
451 			continue;
452 		if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
453 			if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
454 				continue;
455 			if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
456 				continue;
457 		}
458 
459 		if (!test_bit(i, common->keymap))
460 			return i; /* Found a free slot for a key */
461 	}
462 
463 	/* No free slot found */
464 	return -1;
465 }
466 
467 /*
468  * Configure encryption in the HW.
469  */
470 int ath_key_config(struct ath_common *common,
471 			  struct ieee80211_vif *vif,
472 			  struct ieee80211_sta *sta,
473 			  struct ieee80211_key_conf *key)
474 {
475 	struct ath_keyval hk;
476 	const u8 *mac = NULL;
477 	u8 gmac[ETH_ALEN];
478 	int ret = 0;
479 	int idx;
480 
481 	memset(&hk, 0, sizeof(hk));
482 
483 	switch (key->cipher) {
484 	case 0:
485 		hk.kv_type = ATH_CIPHER_CLR;
486 		break;
487 	case WLAN_CIPHER_SUITE_WEP40:
488 	case WLAN_CIPHER_SUITE_WEP104:
489 		hk.kv_type = ATH_CIPHER_WEP;
490 		break;
491 	case WLAN_CIPHER_SUITE_TKIP:
492 		hk.kv_type = ATH_CIPHER_TKIP;
493 		break;
494 	case WLAN_CIPHER_SUITE_CCMP:
495 		hk.kv_type = ATH_CIPHER_AES_CCM;
496 		break;
497 	default:
498 		return -EOPNOTSUPP;
499 	}
500 
501 	hk.kv_len = key->keylen;
502 	if (key->keylen)
503 		memcpy(hk.kv_val, key->key, key->keylen);
504 
505 	if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
506 		switch (vif->type) {
507 		case NL80211_IFTYPE_AP:
508 			memcpy(gmac, vif->addr, ETH_ALEN);
509 			gmac[0] |= 0x01;
510 			mac = gmac;
511 			idx = ath_reserve_key_cache_slot(common, key->cipher);
512 			break;
513 		case NL80211_IFTYPE_ADHOC:
514 			if (!sta) {
515 				idx = key->keyidx;
516 				break;
517 			}
518 			memcpy(gmac, sta->addr, ETH_ALEN);
519 			gmac[0] |= 0x01;
520 			mac = gmac;
521 			idx = ath_reserve_key_cache_slot(common, key->cipher);
522 			break;
523 		default:
524 			idx = key->keyidx;
525 			break;
526 		}
527 	} else if (key->keyidx) {
528 		if (WARN_ON(!sta))
529 			return -EOPNOTSUPP;
530 		mac = sta->addr;
531 
532 		if (vif->type != NL80211_IFTYPE_AP) {
533 			/* Only keyidx 0 should be used with unicast key, but
534 			 * allow this for client mode for now. */
535 			idx = key->keyidx;
536 		} else
537 			return -EIO;
538 	} else {
539 		if (WARN_ON(!sta))
540 			return -EOPNOTSUPP;
541 		mac = sta->addr;
542 
543 		idx = ath_reserve_key_cache_slot(common, key->cipher);
544 	}
545 
546 	if (idx < 0)
547 		return -ENOSPC; /* no free key cache entries */
548 
549 	if (key->cipher == WLAN_CIPHER_SUITE_TKIP)
550 		ret = ath_setkey_tkip(common, idx, key->key, &hk, mac,
551 				      vif->type == NL80211_IFTYPE_AP);
552 	else
553 		ret = ath_hw_set_keycache_entry(common, idx, &hk, mac);
554 
555 	if (!ret)
556 		return -EIO;
557 
558 	set_bit(idx, common->keymap);
559 	if (key->cipher == WLAN_CIPHER_SUITE_CCMP)
560 		set_bit(idx, common->ccmp_keymap);
561 
562 	if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
563 		set_bit(idx + 64, common->keymap);
564 		set_bit(idx, common->tkip_keymap);
565 		set_bit(idx + 64, common->tkip_keymap);
566 		if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
567 			set_bit(idx + 32, common->keymap);
568 			set_bit(idx + 64 + 32, common->keymap);
569 			set_bit(idx + 32, common->tkip_keymap);
570 			set_bit(idx + 64 + 32, common->tkip_keymap);
571 		}
572 	}
573 
574 	return idx;
575 }
576 EXPORT_SYMBOL(ath_key_config);
577 
578 /*
579  * Delete Key.
580  */
581 void ath_key_delete(struct ath_common *common, struct ieee80211_key_conf *key)
582 {
583 	ath_hw_keyreset(common, key->hw_key_idx);
584 	if (key->hw_key_idx < IEEE80211_WEP_NKID)
585 		return;
586 
587 	clear_bit(key->hw_key_idx, common->keymap);
588 	clear_bit(key->hw_key_idx, common->ccmp_keymap);
589 	if (key->cipher != WLAN_CIPHER_SUITE_TKIP)
590 		return;
591 
592 	clear_bit(key->hw_key_idx + 64, common->keymap);
593 
594 	clear_bit(key->hw_key_idx, common->tkip_keymap);
595 	clear_bit(key->hw_key_idx + 64, common->tkip_keymap);
596 
597 	if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
598 		ath_hw_keyreset(common, key->hw_key_idx + 32);
599 		clear_bit(key->hw_key_idx + 32, common->keymap);
600 		clear_bit(key->hw_key_idx + 64 + 32, common->keymap);
601 
602 		clear_bit(key->hw_key_idx + 32, common->tkip_keymap);
603 		clear_bit(key->hw_key_idx + 64 + 32, common->tkip_keymap);
604 	}
605 }
606 EXPORT_SYMBOL(ath_key_delete);
607