xref: /openbmc/linux/drivers/net/wireless/ath/hw.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * Copyright (c) 2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <asm/unaligned.h>
18 
19 #include "ath.h"
20 #include "reg.h"
21 
22 #define REG_READ	(common->ops->read)
23 #define REG_WRITE	(common->ops->write)
24 
25 /**
26  * ath_hw_set_bssid_mask - filter out bssids we listen
27  *
28  * @common: the ath_common struct for the device.
29  *
30  * BSSID masking is a method used by AR5212 and newer hardware to inform PCU
31  * which bits of the interface's MAC address should be looked at when trying
32  * to decide which packets to ACK. In station mode and AP mode with a single
33  * BSS every bit matters since we lock to only one BSS. In AP mode with
34  * multiple BSSes (virtual interfaces) not every bit matters because hw must
35  * accept frames for all BSSes and so we tweak some bits of our mac address
36  * in order to have multiple BSSes.
37  *
38  * NOTE: This is a simple filter and does *not* filter out all
39  * relevant frames. Some frames that are not for us might get ACKed from us
40  * by PCU because they just match the mask.
41  *
42  * When handling multiple BSSes you can get the BSSID mask by computing the
43  * set of  ~ ( MAC XOR BSSID ) for all bssids we handle.
44  *
45  * When you do this you are essentially computing the common bits of all your
46  * BSSes. Later it is assumed the harware will "and" (&) the BSSID mask with
47  * the MAC address to obtain the relevant bits and compare the result with
48  * (frame's BSSID & mask) to see if they match.
49  *
50  * Simple example: on your card you have have two BSSes you have created with
51  * BSSID-01 and BSSID-02. Lets assume BSSID-01 will not use the MAC address.
52  * There is another BSSID-03 but you are not part of it. For simplicity's sake,
53  * assuming only 4 bits for a mac address and for BSSIDs you can then have:
54  *
55  *                  \
56  * MAC:        0001 |
57  * BSSID-01:   0100 | --> Belongs to us
58  * BSSID-02:   1001 |
59  *                  /
60  * -------------------
61  * BSSID-03:   0110  | --> External
62  * -------------------
63  *
64  * Our bssid_mask would then be:
65  *
66  *             On loop iteration for BSSID-01:
67  *             ~(0001 ^ 0100)  -> ~(0101)
68  *                             ->   1010
69  *             bssid_mask      =    1010
70  *
71  *             On loop iteration for BSSID-02:
72  *             bssid_mask &= ~(0001   ^   1001)
73  *             bssid_mask =   (1010)  & ~(0001 ^ 1001)
74  *             bssid_mask =   (1010)  & ~(1001)
75  *             bssid_mask =   (1010)  &  (0110)
76  *             bssid_mask =   0010
77  *
78  * A bssid_mask of 0010 means "only pay attention to the second least
79  * significant bit". This is because its the only bit common
80  * amongst the MAC and all BSSIDs we support. To findout what the real
81  * common bit is we can simply "&" the bssid_mask now with any BSSID we have
82  * or our MAC address (we assume the hardware uses the MAC address).
83  *
84  * Now, suppose there's an incoming frame for BSSID-03:
85  *
86  * IFRAME-01:  0110
87  *
88  * An easy eye-inspeciton of this already should tell you that this frame
89  * will not pass our check. This is beacuse the bssid_mask tells the
90  * hardware to only look at the second least significant bit and the
91  * common bit amongst the MAC and BSSIDs is 0, this frame has the 2nd LSB
92  * as 1, which does not match 0.
93  *
94  * So with IFRAME-01 we *assume* the hardware will do:
95  *
96  *     allow = (IFRAME-01 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
97  *  --> allow = (0110 & 0010) == (0010 & 0001) ? 1 : 0;
98  *  --> allow = (0010) == 0000 ? 1 : 0;
99  *  --> allow = 0
100  *
101  *  Lets now test a frame that should work:
102  *
103  * IFRAME-02:  0001 (we should allow)
104  *
105  *     allow = (0001 & 1010) == 1010
106  *
107  *     allow = (IFRAME-02 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
108  *  --> allow = (0001 & 0010) ==  (0010 & 0001) ? 1 :0;
109  *  --> allow = (0010) == (0010)
110  *  --> allow = 1
111  *
112  * Other examples:
113  *
114  * IFRAME-03:  0100 --> allowed
115  * IFRAME-04:  1001 --> allowed
116  * IFRAME-05:  1101 --> allowed but its not for us!!!
117  *
118  */
119 void ath_hw_setbssidmask(struct ath_common *common)
120 {
121 	void *ah = common->ah;
122 
123 	REG_WRITE(ah, get_unaligned_le32(common->bssidmask), AR_BSSMSKL);
124 	REG_WRITE(ah, get_unaligned_le16(common->bssidmask + 4), AR_BSSMSKU);
125 }
126 EXPORT_SYMBOL(ath_hw_setbssidmask);
127 
128 
129 /**
130  * ath_hw_cycle_counters_update - common function to update cycle counters
131  *
132  * @common: the ath_common struct for the device.
133  *
134  * This function is used to update all cycle counters in one place.
135  * It has to be called while holding common->cc_lock!
136  */
137 void ath_hw_cycle_counters_update(struct ath_common *common)
138 {
139 	u32 cycles, busy, rx, tx;
140 	void *ah = common->ah;
141 
142 	/* freeze */
143 	REG_WRITE(ah, AR_MIBC_FMC, AR_MIBC);
144 
145 	/* read */
146 	cycles = REG_READ(ah, AR_CCCNT);
147 	busy = REG_READ(ah, AR_RCCNT);
148 	rx = REG_READ(ah, AR_RFCNT);
149 	tx = REG_READ(ah, AR_TFCNT);
150 
151 	/* clear */
152 	REG_WRITE(ah, 0, AR_CCCNT);
153 	REG_WRITE(ah, 0, AR_RFCNT);
154 	REG_WRITE(ah, 0, AR_RCCNT);
155 	REG_WRITE(ah, 0, AR_TFCNT);
156 
157 	/* unfreeze */
158 	REG_WRITE(ah, 0, AR_MIBC);
159 
160 	/* update all cycle counters here */
161 	common->cc_ani.cycles += cycles;
162 	common->cc_ani.rx_busy += busy;
163 	common->cc_ani.rx_frame += rx;
164 	common->cc_ani.tx_frame += tx;
165 
166 	common->cc_survey.cycles += cycles;
167 	common->cc_survey.rx_busy += busy;
168 	common->cc_survey.rx_frame += rx;
169 	common->cc_survey.tx_frame += tx;
170 }
171 EXPORT_SYMBOL(ath_hw_cycle_counters_update);
172 
173 int32_t ath_hw_get_listen_time(struct ath_common *common)
174 {
175 	struct ath_cycle_counters *cc = &common->cc_ani;
176 	int32_t listen_time;
177 
178 	listen_time = (cc->cycles - cc->rx_frame - cc->tx_frame) /
179 		      (common->clockrate * 1000);
180 
181 	memset(cc, 0, sizeof(*cc));
182 
183 	return listen_time;
184 }
185 EXPORT_SYMBOL(ath_hw_get_listen_time);
186