xref: /openbmc/linux/drivers/net/wireless/ath/dfs_pri_detector.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /*
2  * Copyright (c) 2012 Neratec Solutions AG
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 
20 #include "ath.h"
21 #include "dfs_pattern_detector.h"
22 #include "dfs_pri_detector.h"
23 
24 struct ath_dfs_pool_stats global_dfs_pool_stats = {};
25 
26 #define DFS_POOL_STAT_INC(c) (global_dfs_pool_stats.c++)
27 #define DFS_POOL_STAT_DEC(c) (global_dfs_pool_stats.c--)
28 #define GET_PRI_TO_USE(MIN, MAX, RUNTIME) \
29 	(MIN + PRI_TOLERANCE == MAX - PRI_TOLERANCE ? \
30 	MIN + PRI_TOLERANCE : RUNTIME)
31 
32 /**
33  * struct pulse_elem - elements in pulse queue
34  * @ts: time stamp in usecs
35  */
36 struct pulse_elem {
37 	struct list_head head;
38 	u64 ts;
39 };
40 
41 /**
42  * pde_get_multiple() - get number of multiples considering a given tolerance
43  * @return factor if abs(val - factor*fraction) <= tolerance, 0 otherwise
44  */
45 static u32 pde_get_multiple(u32 val, u32 fraction, u32 tolerance)
46 {
47 	u32 remainder;
48 	u32 factor;
49 	u32 delta;
50 
51 	if (fraction == 0)
52 		return 0;
53 
54 	delta = (val < fraction) ? (fraction - val) : (val - fraction);
55 
56 	if (delta <= tolerance)
57 		/* val and fraction are within tolerance */
58 		return 1;
59 
60 	factor = val / fraction;
61 	remainder = val % fraction;
62 	if (remainder > tolerance) {
63 		/* no exact match */
64 		if ((fraction - remainder) <= tolerance)
65 			/* remainder is within tolerance */
66 			factor++;
67 		else
68 			factor = 0;
69 	}
70 	return factor;
71 }
72 
73 /**
74  * DOC: Singleton Pulse and Sequence Pools
75  *
76  * Instances of pri_sequence and pulse_elem are kept in singleton pools to
77  * reduce the number of dynamic allocations. They are shared between all
78  * instances and grow up to the peak number of simultaneously used objects.
79  *
80  * Memory is freed after all references to the pools are released.
81  */
82 static u32 singleton_pool_references;
83 static LIST_HEAD(pulse_pool);
84 static LIST_HEAD(pseq_pool);
85 static DEFINE_SPINLOCK(pool_lock);
86 
87 static void pool_register_ref(void)
88 {
89 	spin_lock_bh(&pool_lock);
90 	singleton_pool_references++;
91 	DFS_POOL_STAT_INC(pool_reference);
92 	spin_unlock_bh(&pool_lock);
93 }
94 
95 static void pool_deregister_ref(void)
96 {
97 	spin_lock_bh(&pool_lock);
98 	singleton_pool_references--;
99 	DFS_POOL_STAT_DEC(pool_reference);
100 	if (singleton_pool_references == 0) {
101 		/* free singleton pools with no references left */
102 		struct pri_sequence *ps, *ps0;
103 		struct pulse_elem *p, *p0;
104 
105 		list_for_each_entry_safe(p, p0, &pulse_pool, head) {
106 			list_del(&p->head);
107 			DFS_POOL_STAT_DEC(pulse_allocated);
108 			kfree(p);
109 		}
110 		list_for_each_entry_safe(ps, ps0, &pseq_pool, head) {
111 			list_del(&ps->head);
112 			DFS_POOL_STAT_DEC(pseq_allocated);
113 			kfree(ps);
114 		}
115 	}
116 	spin_unlock_bh(&pool_lock);
117 }
118 
119 static void pool_put_pulse_elem(struct pulse_elem *pe)
120 {
121 	spin_lock_bh(&pool_lock);
122 	list_add(&pe->head, &pulse_pool);
123 	DFS_POOL_STAT_DEC(pulse_used);
124 	spin_unlock_bh(&pool_lock);
125 }
126 
127 static void pool_put_pseq_elem(struct pri_sequence *pse)
128 {
129 	spin_lock_bh(&pool_lock);
130 	list_add(&pse->head, &pseq_pool);
131 	DFS_POOL_STAT_DEC(pseq_used);
132 	spin_unlock_bh(&pool_lock);
133 }
134 
135 static struct pri_sequence *pool_get_pseq_elem(void)
136 {
137 	struct pri_sequence *pse = NULL;
138 	spin_lock_bh(&pool_lock);
139 	if (!list_empty(&pseq_pool)) {
140 		pse = list_first_entry(&pseq_pool, struct pri_sequence, head);
141 		list_del(&pse->head);
142 		DFS_POOL_STAT_INC(pseq_used);
143 	}
144 	spin_unlock_bh(&pool_lock);
145 	return pse;
146 }
147 
148 static struct pulse_elem *pool_get_pulse_elem(void)
149 {
150 	struct pulse_elem *pe = NULL;
151 	spin_lock_bh(&pool_lock);
152 	if (!list_empty(&pulse_pool)) {
153 		pe = list_first_entry(&pulse_pool, struct pulse_elem, head);
154 		list_del(&pe->head);
155 		DFS_POOL_STAT_INC(pulse_used);
156 	}
157 	spin_unlock_bh(&pool_lock);
158 	return pe;
159 }
160 
161 static struct pulse_elem *pulse_queue_get_tail(struct pri_detector *pde)
162 {
163 	struct list_head *l = &pde->pulses;
164 	if (list_empty(l))
165 		return NULL;
166 	return list_entry(l->prev, struct pulse_elem, head);
167 }
168 
169 static bool pulse_queue_dequeue(struct pri_detector *pde)
170 {
171 	struct pulse_elem *p = pulse_queue_get_tail(pde);
172 	if (p != NULL) {
173 		list_del_init(&p->head);
174 		pde->count--;
175 		/* give it back to pool */
176 		pool_put_pulse_elem(p);
177 	}
178 	return (pde->count > 0);
179 }
180 
181 /* remove pulses older than window */
182 static void pulse_queue_check_window(struct pri_detector *pde)
183 {
184 	u64 min_valid_ts;
185 	struct pulse_elem *p;
186 
187 	/* there is no delta time with less than 2 pulses */
188 	if (pde->count < 2)
189 		return;
190 
191 	if (pde->last_ts <= pde->window_size)
192 		return;
193 
194 	min_valid_ts = pde->last_ts - pde->window_size;
195 	while ((p = pulse_queue_get_tail(pde)) != NULL) {
196 		if (p->ts >= min_valid_ts)
197 			return;
198 		pulse_queue_dequeue(pde);
199 	}
200 }
201 
202 static bool pulse_queue_enqueue(struct pri_detector *pde, u64 ts)
203 {
204 	struct pulse_elem *p = pool_get_pulse_elem();
205 	if (p == NULL) {
206 		p = kmalloc(sizeof(*p), GFP_ATOMIC);
207 		if (p == NULL) {
208 			DFS_POOL_STAT_INC(pulse_alloc_error);
209 			return false;
210 		}
211 		DFS_POOL_STAT_INC(pulse_allocated);
212 		DFS_POOL_STAT_INC(pulse_used);
213 	}
214 	INIT_LIST_HEAD(&p->head);
215 	p->ts = ts;
216 	list_add(&p->head, &pde->pulses);
217 	pde->count++;
218 	pde->last_ts = ts;
219 	pulse_queue_check_window(pde);
220 	if (pde->count >= pde->max_count)
221 		pulse_queue_dequeue(pde);
222 	return true;
223 }
224 
225 static bool pseq_handler_create_sequences(struct pri_detector *pde,
226 					  u64 ts, u32 min_count)
227 {
228 	struct pulse_elem *p;
229 	list_for_each_entry(p, &pde->pulses, head) {
230 		struct pri_sequence ps, *new_ps;
231 		struct pulse_elem *p2;
232 		u32 tmp_false_count;
233 		u64 min_valid_ts;
234 		u32 delta_ts = ts - p->ts;
235 
236 		if (delta_ts < pde->rs->pri_min)
237 			/* ignore too small pri */
238 			continue;
239 
240 		if (delta_ts > pde->rs->pri_max)
241 			/* stop on too large pri (sorted list) */
242 			break;
243 
244 		/* build a new sequence with new potential pri */
245 		ps.count = 2;
246 		ps.count_falses = 0;
247 		ps.first_ts = p->ts;
248 		ps.last_ts = ts;
249 		ps.pri = GET_PRI_TO_USE(pde->rs->pri_min,
250 			pde->rs->pri_max, ts - p->ts);
251 		ps.dur = ps.pri * (pde->rs->ppb - 1)
252 				+ 2 * pde->rs->max_pri_tolerance;
253 
254 		p2 = p;
255 		tmp_false_count = 0;
256 		min_valid_ts = ts - ps.dur;
257 		/* check which past pulses are candidates for new sequence */
258 		list_for_each_entry_continue(p2, &pde->pulses, head) {
259 			u32 factor;
260 			if (p2->ts < min_valid_ts)
261 				/* stop on crossing window border */
262 				break;
263 			/* check if pulse match (multi)PRI */
264 			factor = pde_get_multiple(ps.last_ts - p2->ts, ps.pri,
265 						  pde->rs->max_pri_tolerance);
266 			if (factor > 0) {
267 				ps.count++;
268 				ps.first_ts = p2->ts;
269 				/*
270 				 * on match, add the intermediate falses
271 				 * and reset counter
272 				 */
273 				ps.count_falses += tmp_false_count;
274 				tmp_false_count = 0;
275 			} else {
276 				/* this is a potential false one */
277 				tmp_false_count++;
278 			}
279 		}
280 		if (ps.count <= min_count)
281 			/* did not reach minimum count, drop sequence */
282 			continue;
283 
284 		/* this is a valid one, add it */
285 		ps.deadline_ts = ps.first_ts + ps.dur;
286 		new_ps = pool_get_pseq_elem();
287 		if (new_ps == NULL) {
288 			new_ps = kmalloc(sizeof(*new_ps), GFP_ATOMIC);
289 			if (new_ps == NULL) {
290 				DFS_POOL_STAT_INC(pseq_alloc_error);
291 				return false;
292 			}
293 			DFS_POOL_STAT_INC(pseq_allocated);
294 			DFS_POOL_STAT_INC(pseq_used);
295 		}
296 		memcpy(new_ps, &ps, sizeof(ps));
297 		INIT_LIST_HEAD(&new_ps->head);
298 		list_add(&new_ps->head, &pde->sequences);
299 	}
300 	return true;
301 }
302 
303 /* check new ts and add to all matching existing sequences */
304 static u32
305 pseq_handler_add_to_existing_seqs(struct pri_detector *pde, u64 ts)
306 {
307 	u32 max_count = 0;
308 	struct pri_sequence *ps, *ps2;
309 	list_for_each_entry_safe(ps, ps2, &pde->sequences, head) {
310 		u32 delta_ts;
311 		u32 factor;
312 
313 		/* first ensure that sequence is within window */
314 		if (ts > ps->deadline_ts) {
315 			list_del_init(&ps->head);
316 			pool_put_pseq_elem(ps);
317 			continue;
318 		}
319 
320 		delta_ts = ts - ps->last_ts;
321 		factor = pde_get_multiple(delta_ts, ps->pri,
322 					  pde->rs->max_pri_tolerance);
323 		if (factor > 0) {
324 			ps->last_ts = ts;
325 			ps->count++;
326 
327 			if (max_count < ps->count)
328 				max_count = ps->count;
329 		} else {
330 			ps->count_falses++;
331 		}
332 	}
333 	return max_count;
334 }
335 
336 static struct pri_sequence *
337 pseq_handler_check_detection(struct pri_detector *pde)
338 {
339 	struct pri_sequence *ps;
340 
341 	if (list_empty(&pde->sequences))
342 		return NULL;
343 
344 	list_for_each_entry(ps, &pde->sequences, head) {
345 		/*
346 		 * we assume to have enough matching confidence if we
347 		 * 1) have enough pulses
348 		 * 2) have more matching than false pulses
349 		 */
350 		if ((ps->count >= pde->rs->ppb_thresh) &&
351 		    (ps->count * pde->rs->num_pri >= ps->count_falses))
352 			return ps;
353 	}
354 	return NULL;
355 }
356 
357 
358 /* free pulse queue and sequences list and give objects back to pools */
359 static void pri_detector_reset(struct pri_detector *pde, u64 ts)
360 {
361 	struct pri_sequence *ps, *ps0;
362 	struct pulse_elem *p, *p0;
363 	list_for_each_entry_safe(ps, ps0, &pde->sequences, head) {
364 		list_del_init(&ps->head);
365 		pool_put_pseq_elem(ps);
366 	}
367 	list_for_each_entry_safe(p, p0, &pde->pulses, head) {
368 		list_del_init(&p->head);
369 		pool_put_pulse_elem(p);
370 	}
371 	pde->count = 0;
372 	pde->last_ts = ts;
373 }
374 
375 static void pri_detector_exit(struct pri_detector *de)
376 {
377 	pri_detector_reset(de, 0);
378 	pool_deregister_ref();
379 	kfree(de);
380 }
381 
382 static struct pri_sequence *pri_detector_add_pulse(struct pri_detector *de,
383 						   struct pulse_event *event)
384 {
385 	u32 max_updated_seq;
386 	struct pri_sequence *ps;
387 	u64 ts = event->ts;
388 	const struct radar_detector_specs *rs = de->rs;
389 
390 	/* ignore pulses not within width range */
391 	if ((rs->width_min > event->width) || (rs->width_max < event->width))
392 		return NULL;
393 
394 	if ((ts - de->last_ts) < rs->max_pri_tolerance)
395 		/* if delta to last pulse is too short, don't use this pulse */
396 		return NULL;
397 	/* radar detector spec needs chirp, but not detected */
398 	if (rs->chirp && rs->chirp != event->chirp)
399 		return NULL;
400 
401 	de->last_ts = ts;
402 
403 	max_updated_seq = pseq_handler_add_to_existing_seqs(de, ts);
404 
405 	if (!pseq_handler_create_sequences(de, ts, max_updated_seq)) {
406 		pri_detector_reset(de, ts);
407 		return NULL;
408 	}
409 
410 	ps = pseq_handler_check_detection(de);
411 
412 	if (ps == NULL)
413 		pulse_queue_enqueue(de, ts);
414 
415 	return ps;
416 }
417 
418 struct pri_detector *pri_detector_init(const struct radar_detector_specs *rs)
419 {
420 	struct pri_detector *de;
421 
422 	de = kzalloc(sizeof(*de), GFP_ATOMIC);
423 	if (de == NULL)
424 		return NULL;
425 	de->exit = pri_detector_exit;
426 	de->add_pulse = pri_detector_add_pulse;
427 	de->reset = pri_detector_reset;
428 
429 	INIT_LIST_HEAD(&de->sequences);
430 	INIT_LIST_HEAD(&de->pulses);
431 	de->window_size = rs->pri_max * rs->ppb * rs->num_pri;
432 	de->max_count = rs->ppb * 2;
433 	de->rs = rs;
434 
435 	pool_register_ref();
436 	return de;
437 }
438