1 /* 2 * Atheros CARL9170 driver 3 * 4 * 802.11 xmit & status routines 5 * 6 * Copyright 2008, Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2009, 2010, Christian Lamparter <chunkeey@googlemail.com> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; see the file COPYING. If not, see 21 * http://www.gnu.org/licenses/. 22 * 23 * This file incorporates work covered by the following copyright and 24 * permission notice: 25 * Copyright (c) 2007-2008 Atheros Communications, Inc. 26 * 27 * Permission to use, copy, modify, and/or distribute this software for any 28 * purpose with or without fee is hereby granted, provided that the above 29 * copyright notice and this permission notice appear in all copies. 30 * 31 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 32 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 33 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 34 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 35 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 36 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 37 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 38 */ 39 40 #include <linux/slab.h> 41 #include <linux/module.h> 42 #include <linux/etherdevice.h> 43 #include <net/mac80211.h> 44 #include "carl9170.h" 45 #include "hw.h" 46 #include "cmd.h" 47 48 static inline unsigned int __carl9170_get_queue(struct ar9170 *ar, 49 unsigned int queue) 50 { 51 if (unlikely(modparam_noht)) { 52 return queue; 53 } else { 54 /* 55 * This is just another workaround, until 56 * someone figures out how to get QoS and 57 * AMPDU to play nicely together. 58 */ 59 60 return 2; /* AC_BE */ 61 } 62 } 63 64 static inline unsigned int carl9170_get_queue(struct ar9170 *ar, 65 struct sk_buff *skb) 66 { 67 return __carl9170_get_queue(ar, skb_get_queue_mapping(skb)); 68 } 69 70 static bool is_mem_full(struct ar9170 *ar) 71 { 72 return (DIV_ROUND_UP(IEEE80211_MAX_FRAME_LEN, ar->fw.mem_block_size) > 73 atomic_read(&ar->mem_free_blocks)); 74 } 75 76 static void carl9170_tx_accounting(struct ar9170 *ar, struct sk_buff *skb) 77 { 78 int queue, i; 79 bool mem_full; 80 81 atomic_inc(&ar->tx_total_queued); 82 83 queue = skb_get_queue_mapping(skb); 84 spin_lock_bh(&ar->tx_stats_lock); 85 86 /* 87 * The driver has to accept the frame, regardless if the queue is 88 * full to the brim, or not. We have to do the queuing internally, 89 * since mac80211 assumes that a driver which can operate with 90 * aggregated frames does not reject frames for this reason. 91 */ 92 ar->tx_stats[queue].len++; 93 ar->tx_stats[queue].count++; 94 95 mem_full = is_mem_full(ar); 96 for (i = 0; i < ar->hw->queues; i++) { 97 if (mem_full || ar->tx_stats[i].len >= ar->tx_stats[i].limit) { 98 ieee80211_stop_queue(ar->hw, i); 99 ar->queue_stop_timeout[i] = jiffies; 100 } 101 } 102 103 spin_unlock_bh(&ar->tx_stats_lock); 104 } 105 106 /* needs rcu_read_lock */ 107 static struct ieee80211_sta *__carl9170_get_tx_sta(struct ar9170 *ar, 108 struct sk_buff *skb) 109 { 110 struct _carl9170_tx_superframe *super = (void *) skb->data; 111 struct ieee80211_hdr *hdr = (void *) super->frame_data; 112 struct ieee80211_vif *vif; 113 unsigned int vif_id; 114 115 vif_id = (super->s.misc & CARL9170_TX_SUPER_MISC_VIF_ID) >> 116 CARL9170_TX_SUPER_MISC_VIF_ID_S; 117 118 if (WARN_ON_ONCE(vif_id >= AR9170_MAX_VIRTUAL_MAC)) 119 return NULL; 120 121 vif = rcu_dereference(ar->vif_priv[vif_id].vif); 122 if (unlikely(!vif)) 123 return NULL; 124 125 /* 126 * Normally we should use wrappers like ieee80211_get_DA to get 127 * the correct peer ieee80211_sta. 128 * 129 * But there is a problem with indirect traffic (broadcasts, or 130 * data which is designated for other stations) in station mode. 131 * The frame will be directed to the AP for distribution and not 132 * to the actual destination. 133 */ 134 135 return ieee80211_find_sta(vif, hdr->addr1); 136 } 137 138 static void carl9170_tx_ps_unblock(struct ar9170 *ar, struct sk_buff *skb) 139 { 140 struct ieee80211_sta *sta; 141 struct carl9170_sta_info *sta_info; 142 143 rcu_read_lock(); 144 sta = __carl9170_get_tx_sta(ar, skb); 145 if (unlikely(!sta)) 146 goto out_rcu; 147 148 sta_info = (struct carl9170_sta_info *) sta->drv_priv; 149 if (atomic_dec_return(&sta_info->pending_frames) == 0) 150 ieee80211_sta_block_awake(ar->hw, sta, false); 151 152 out_rcu: 153 rcu_read_unlock(); 154 } 155 156 static void carl9170_tx_accounting_free(struct ar9170 *ar, struct sk_buff *skb) 157 { 158 int queue; 159 160 queue = skb_get_queue_mapping(skb); 161 162 spin_lock_bh(&ar->tx_stats_lock); 163 164 ar->tx_stats[queue].len--; 165 166 if (!is_mem_full(ar)) { 167 unsigned int i; 168 for (i = 0; i < ar->hw->queues; i++) { 169 if (ar->tx_stats[i].len >= CARL9170_NUM_TX_LIMIT_SOFT) 170 continue; 171 172 if (ieee80211_queue_stopped(ar->hw, i)) { 173 unsigned long tmp; 174 175 tmp = jiffies - ar->queue_stop_timeout[i]; 176 if (tmp > ar->max_queue_stop_timeout[i]) 177 ar->max_queue_stop_timeout[i] = tmp; 178 } 179 180 ieee80211_wake_queue(ar->hw, i); 181 } 182 } 183 184 spin_unlock_bh(&ar->tx_stats_lock); 185 186 if (atomic_dec_and_test(&ar->tx_total_queued)) 187 complete(&ar->tx_flush); 188 } 189 190 static int carl9170_alloc_dev_space(struct ar9170 *ar, struct sk_buff *skb) 191 { 192 struct _carl9170_tx_superframe *super = (void *) skb->data; 193 unsigned int chunks; 194 int cookie = -1; 195 196 atomic_inc(&ar->mem_allocs); 197 198 chunks = DIV_ROUND_UP(skb->len, ar->fw.mem_block_size); 199 if (unlikely(atomic_sub_return(chunks, &ar->mem_free_blocks) < 0)) { 200 atomic_add(chunks, &ar->mem_free_blocks); 201 return -ENOSPC; 202 } 203 204 spin_lock_bh(&ar->mem_lock); 205 cookie = bitmap_find_free_region(ar->mem_bitmap, ar->fw.mem_blocks, 0); 206 spin_unlock_bh(&ar->mem_lock); 207 208 if (unlikely(cookie < 0)) { 209 atomic_add(chunks, &ar->mem_free_blocks); 210 return -ENOSPC; 211 } 212 213 super = (void *) skb->data; 214 215 /* 216 * Cookie #0 serves two special purposes: 217 * 1. The firmware might use it generate BlockACK frames 218 * in responds of an incoming BlockAckReqs. 219 * 220 * 2. Prevent double-free bugs. 221 */ 222 super->s.cookie = (u8) cookie + 1; 223 return 0; 224 } 225 226 static void carl9170_release_dev_space(struct ar9170 *ar, struct sk_buff *skb) 227 { 228 struct _carl9170_tx_superframe *super = (void *) skb->data; 229 int cookie; 230 231 /* make a local copy of the cookie */ 232 cookie = super->s.cookie; 233 /* invalidate cookie */ 234 super->s.cookie = 0; 235 236 /* 237 * Do a out-of-bounds check on the cookie: 238 * 239 * * cookie "0" is reserved and won't be assigned to any 240 * out-going frame. Internally however, it is used to 241 * mark no longer/un-accounted frames and serves as a 242 * cheap way of preventing frames from being freed 243 * twice by _accident_. NB: There is a tiny race... 244 * 245 * * obviously, cookie number is limited by the amount 246 * of available memory blocks, so the number can 247 * never execeed the mem_blocks count. 248 */ 249 if (unlikely(WARN_ON_ONCE(cookie == 0) || 250 WARN_ON_ONCE(cookie > ar->fw.mem_blocks))) 251 return; 252 253 atomic_add(DIV_ROUND_UP(skb->len, ar->fw.mem_block_size), 254 &ar->mem_free_blocks); 255 256 spin_lock_bh(&ar->mem_lock); 257 bitmap_release_region(ar->mem_bitmap, cookie - 1, 0); 258 spin_unlock_bh(&ar->mem_lock); 259 } 260 261 /* Called from any context */ 262 static void carl9170_tx_release(struct kref *ref) 263 { 264 struct ar9170 *ar; 265 struct carl9170_tx_info *arinfo; 266 struct ieee80211_tx_info *txinfo; 267 struct sk_buff *skb; 268 269 arinfo = container_of(ref, struct carl9170_tx_info, ref); 270 txinfo = container_of((void *) arinfo, struct ieee80211_tx_info, 271 rate_driver_data); 272 skb = container_of((void *) txinfo, struct sk_buff, cb); 273 274 ar = arinfo->ar; 275 if (WARN_ON_ONCE(!ar)) 276 return; 277 278 BUILD_BUG_ON( 279 offsetof(struct ieee80211_tx_info, status.ack_signal) != 20); 280 281 memset(&txinfo->status.ack_signal, 0, 282 sizeof(struct ieee80211_tx_info) - 283 offsetof(struct ieee80211_tx_info, status.ack_signal)); 284 285 if (atomic_read(&ar->tx_total_queued)) 286 ar->tx_schedule = true; 287 288 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) { 289 if (!atomic_read(&ar->tx_ampdu_upload)) 290 ar->tx_ampdu_schedule = true; 291 292 if (txinfo->flags & IEEE80211_TX_STAT_AMPDU) { 293 struct _carl9170_tx_superframe *super; 294 295 super = (void *)skb->data; 296 txinfo->status.ampdu_len = super->s.rix; 297 txinfo->status.ampdu_ack_len = super->s.cnt; 298 } else if ((txinfo->flags & IEEE80211_TX_STAT_ACK) && 299 !(txinfo->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)) { 300 /* 301 * drop redundant tx_status reports: 302 * 303 * 1. ampdu_ack_len of the final tx_status does 304 * include the feedback of this particular frame. 305 * 306 * 2. tx_status_irqsafe only queues up to 128 307 * tx feedback reports and discards the rest. 308 * 309 * 3. minstrel_ht is picky, it only accepts 310 * reports of frames with the TX_STATUS_AMPDU flag. 311 * 312 * 4. mac80211 is not particularly interested in 313 * feedback either [CTL_REQ_TX_STATUS not set] 314 */ 315 316 ieee80211_free_txskb(ar->hw, skb); 317 return; 318 } else { 319 /* 320 * Either the frame transmission has failed or 321 * mac80211 requested tx status. 322 */ 323 } 324 } 325 326 skb_pull(skb, sizeof(struct _carl9170_tx_superframe)); 327 ieee80211_tx_status_irqsafe(ar->hw, skb); 328 } 329 330 void carl9170_tx_get_skb(struct sk_buff *skb) 331 { 332 struct carl9170_tx_info *arinfo = (void *) 333 (IEEE80211_SKB_CB(skb))->rate_driver_data; 334 kref_get(&arinfo->ref); 335 } 336 337 int carl9170_tx_put_skb(struct sk_buff *skb) 338 { 339 struct carl9170_tx_info *arinfo = (void *) 340 (IEEE80211_SKB_CB(skb))->rate_driver_data; 341 342 return kref_put(&arinfo->ref, carl9170_tx_release); 343 } 344 345 /* Caller must hold the tid_info->lock & rcu_read_lock */ 346 static void carl9170_tx_shift_bm(struct ar9170 *ar, 347 struct carl9170_sta_tid *tid_info, u16 seq) 348 { 349 u16 off; 350 351 off = SEQ_DIFF(seq, tid_info->bsn); 352 353 if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS)) 354 return; 355 356 /* 357 * Sanity check. For each MPDU we set the bit in bitmap and 358 * clear it once we received the tx_status. 359 * But if the bit is already cleared then we've been bitten 360 * by a bug. 361 */ 362 WARN_ON_ONCE(!test_and_clear_bit(off, tid_info->bitmap)); 363 364 off = SEQ_DIFF(tid_info->snx, tid_info->bsn); 365 if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS)) 366 return; 367 368 if (!bitmap_empty(tid_info->bitmap, off)) 369 off = find_first_bit(tid_info->bitmap, off); 370 371 tid_info->bsn += off; 372 tid_info->bsn &= 0x0fff; 373 374 bitmap_shift_right(tid_info->bitmap, tid_info->bitmap, 375 off, CARL9170_BAW_BITS); 376 } 377 378 static void carl9170_tx_status_process_ampdu(struct ar9170 *ar, 379 struct sk_buff *skb, struct ieee80211_tx_info *txinfo) 380 { 381 struct _carl9170_tx_superframe *super = (void *) skb->data; 382 struct ieee80211_hdr *hdr = (void *) super->frame_data; 383 struct ieee80211_sta *sta; 384 struct carl9170_sta_info *sta_info; 385 struct carl9170_sta_tid *tid_info; 386 u8 tid; 387 388 if (!(txinfo->flags & IEEE80211_TX_CTL_AMPDU) || 389 txinfo->flags & IEEE80211_TX_CTL_INJECTED) 390 return; 391 392 rcu_read_lock(); 393 sta = __carl9170_get_tx_sta(ar, skb); 394 if (unlikely(!sta)) 395 goto out_rcu; 396 397 tid = get_tid_h(hdr); 398 399 sta_info = (void *) sta->drv_priv; 400 tid_info = rcu_dereference(sta_info->agg[tid]); 401 if (!tid_info) 402 goto out_rcu; 403 404 spin_lock_bh(&tid_info->lock); 405 if (likely(tid_info->state >= CARL9170_TID_STATE_IDLE)) 406 carl9170_tx_shift_bm(ar, tid_info, get_seq_h(hdr)); 407 408 if (sta_info->stats[tid].clear) { 409 sta_info->stats[tid].clear = false; 410 sta_info->stats[tid].req = false; 411 sta_info->stats[tid].ampdu_len = 0; 412 sta_info->stats[tid].ampdu_ack_len = 0; 413 } 414 415 sta_info->stats[tid].ampdu_len++; 416 if (txinfo->status.rates[0].count == 1) 417 sta_info->stats[tid].ampdu_ack_len++; 418 419 if (!(txinfo->flags & IEEE80211_TX_STAT_ACK)) 420 sta_info->stats[tid].req = true; 421 422 if (super->f.mac_control & cpu_to_le16(AR9170_TX_MAC_IMM_BA)) { 423 super->s.rix = sta_info->stats[tid].ampdu_len; 424 super->s.cnt = sta_info->stats[tid].ampdu_ack_len; 425 txinfo->flags |= IEEE80211_TX_STAT_AMPDU; 426 if (sta_info->stats[tid].req) 427 txinfo->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK; 428 429 sta_info->stats[tid].clear = true; 430 } 431 spin_unlock_bh(&tid_info->lock); 432 433 out_rcu: 434 rcu_read_unlock(); 435 } 436 437 static void carl9170_tx_bar_status(struct ar9170 *ar, struct sk_buff *skb, 438 struct ieee80211_tx_info *tx_info) 439 { 440 struct _carl9170_tx_superframe *super = (void *) skb->data; 441 struct ieee80211_bar *bar = (void *) super->frame_data; 442 443 /* 444 * Unlike all other frames, the status report for BARs does 445 * not directly come from the hardware as it is incapable of 446 * matching a BA to a previously send BAR. 447 * Instead the RX-path will scan for incoming BAs and set the 448 * IEEE80211_TX_STAT_ACK if it sees one that was likely 449 * caused by a BAR from us. 450 */ 451 452 if (unlikely(ieee80211_is_back_req(bar->frame_control)) && 453 !(tx_info->flags & IEEE80211_TX_STAT_ACK)) { 454 struct carl9170_bar_list_entry *entry; 455 int queue = skb_get_queue_mapping(skb); 456 457 rcu_read_lock(); 458 list_for_each_entry_rcu(entry, &ar->bar_list[queue], list) { 459 if (entry->skb == skb) { 460 spin_lock_bh(&ar->bar_list_lock[queue]); 461 list_del_rcu(&entry->list); 462 spin_unlock_bh(&ar->bar_list_lock[queue]); 463 kfree_rcu(entry, head); 464 goto out; 465 } 466 } 467 468 WARN(1, "bar not found in %d - ra:%pM ta:%pM c:%x ssn:%x\n", 469 queue, bar->ra, bar->ta, bar->control, 470 bar->start_seq_num); 471 out: 472 rcu_read_unlock(); 473 } 474 } 475 476 void carl9170_tx_status(struct ar9170 *ar, struct sk_buff *skb, 477 const bool success) 478 { 479 struct ieee80211_tx_info *txinfo; 480 481 carl9170_tx_accounting_free(ar, skb); 482 483 txinfo = IEEE80211_SKB_CB(skb); 484 485 carl9170_tx_bar_status(ar, skb, txinfo); 486 487 if (success) 488 txinfo->flags |= IEEE80211_TX_STAT_ACK; 489 else 490 ar->tx_ack_failures++; 491 492 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) 493 carl9170_tx_status_process_ampdu(ar, skb, txinfo); 494 495 carl9170_tx_ps_unblock(ar, skb); 496 carl9170_tx_put_skb(skb); 497 } 498 499 /* This function may be called form any context */ 500 void carl9170_tx_callback(struct ar9170 *ar, struct sk_buff *skb) 501 { 502 struct ieee80211_tx_info *txinfo = IEEE80211_SKB_CB(skb); 503 504 atomic_dec(&ar->tx_total_pending); 505 506 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) 507 atomic_dec(&ar->tx_ampdu_upload); 508 509 if (carl9170_tx_put_skb(skb)) 510 tasklet_hi_schedule(&ar->usb_tasklet); 511 } 512 513 static struct sk_buff *carl9170_get_queued_skb(struct ar9170 *ar, u8 cookie, 514 struct sk_buff_head *queue) 515 { 516 struct sk_buff *skb; 517 518 spin_lock_bh(&queue->lock); 519 skb_queue_walk(queue, skb) { 520 struct _carl9170_tx_superframe *txc = (void *) skb->data; 521 522 if (txc->s.cookie != cookie) 523 continue; 524 525 __skb_unlink(skb, queue); 526 spin_unlock_bh(&queue->lock); 527 528 carl9170_release_dev_space(ar, skb); 529 return skb; 530 } 531 spin_unlock_bh(&queue->lock); 532 533 return NULL; 534 } 535 536 static void carl9170_tx_fill_rateinfo(struct ar9170 *ar, unsigned int rix, 537 unsigned int tries, struct ieee80211_tx_info *txinfo) 538 { 539 unsigned int i; 540 541 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { 542 if (txinfo->status.rates[i].idx < 0) 543 break; 544 545 if (i == rix) { 546 txinfo->status.rates[i].count = tries; 547 i++; 548 break; 549 } 550 } 551 552 for (; i < IEEE80211_TX_MAX_RATES; i++) { 553 txinfo->status.rates[i].idx = -1; 554 txinfo->status.rates[i].count = 0; 555 } 556 } 557 558 static void carl9170_check_queue_stop_timeout(struct ar9170 *ar) 559 { 560 int i; 561 struct sk_buff *skb; 562 struct ieee80211_tx_info *txinfo; 563 struct carl9170_tx_info *arinfo; 564 bool restart = false; 565 566 for (i = 0; i < ar->hw->queues; i++) { 567 spin_lock_bh(&ar->tx_status[i].lock); 568 569 skb = skb_peek(&ar->tx_status[i]); 570 571 if (!skb) 572 goto next; 573 574 txinfo = IEEE80211_SKB_CB(skb); 575 arinfo = (void *) txinfo->rate_driver_data; 576 577 if (time_is_before_jiffies(arinfo->timeout + 578 msecs_to_jiffies(CARL9170_QUEUE_STUCK_TIMEOUT)) == true) 579 restart = true; 580 581 next: 582 spin_unlock_bh(&ar->tx_status[i].lock); 583 } 584 585 if (restart) { 586 /* 587 * At least one queue has been stuck for long enough. 588 * Give the device a kick and hope it gets back to 589 * work. 590 * 591 * possible reasons may include: 592 * - frames got lost/corrupted (bad connection to the device) 593 * - stalled rx processing/usb controller hiccups 594 * - firmware errors/bugs 595 * - every bug you can think of. 596 * - all bugs you can't... 597 * - ... 598 */ 599 carl9170_restart(ar, CARL9170_RR_STUCK_TX); 600 } 601 } 602 603 static void carl9170_tx_ampdu_timeout(struct ar9170 *ar) 604 { 605 struct carl9170_sta_tid *iter; 606 struct sk_buff *skb; 607 struct ieee80211_tx_info *txinfo; 608 struct carl9170_tx_info *arinfo; 609 struct ieee80211_sta *sta; 610 611 rcu_read_lock(); 612 list_for_each_entry_rcu(iter, &ar->tx_ampdu_list, list) { 613 if (iter->state < CARL9170_TID_STATE_IDLE) 614 continue; 615 616 spin_lock_bh(&iter->lock); 617 skb = skb_peek(&iter->queue); 618 if (!skb) 619 goto unlock; 620 621 txinfo = IEEE80211_SKB_CB(skb); 622 arinfo = (void *)txinfo->rate_driver_data; 623 if (time_is_after_jiffies(arinfo->timeout + 624 msecs_to_jiffies(CARL9170_QUEUE_TIMEOUT))) 625 goto unlock; 626 627 sta = iter->sta; 628 if (WARN_ON(!sta)) 629 goto unlock; 630 631 ieee80211_stop_tx_ba_session(sta, iter->tid); 632 unlock: 633 spin_unlock_bh(&iter->lock); 634 635 } 636 rcu_read_unlock(); 637 } 638 639 void carl9170_tx_janitor(struct work_struct *work) 640 { 641 struct ar9170 *ar = container_of(work, struct ar9170, 642 tx_janitor.work); 643 if (!IS_STARTED(ar)) 644 return; 645 646 ar->tx_janitor_last_run = jiffies; 647 648 carl9170_check_queue_stop_timeout(ar); 649 carl9170_tx_ampdu_timeout(ar); 650 651 if (!atomic_read(&ar->tx_total_queued)) 652 return; 653 654 ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor, 655 msecs_to_jiffies(CARL9170_TX_TIMEOUT)); 656 } 657 658 static void __carl9170_tx_process_status(struct ar9170 *ar, 659 const uint8_t cookie, const uint8_t info) 660 { 661 struct sk_buff *skb; 662 struct ieee80211_tx_info *txinfo; 663 unsigned int r, t, q; 664 bool success = true; 665 666 q = ar9170_qmap[info & CARL9170_TX_STATUS_QUEUE]; 667 668 skb = carl9170_get_queued_skb(ar, cookie, &ar->tx_status[q]); 669 if (!skb) { 670 /* 671 * We have lost the race to another thread. 672 */ 673 674 return ; 675 } 676 677 txinfo = IEEE80211_SKB_CB(skb); 678 679 if (!(info & CARL9170_TX_STATUS_SUCCESS)) 680 success = false; 681 682 r = (info & CARL9170_TX_STATUS_RIX) >> CARL9170_TX_STATUS_RIX_S; 683 t = (info & CARL9170_TX_STATUS_TRIES) >> CARL9170_TX_STATUS_TRIES_S; 684 685 carl9170_tx_fill_rateinfo(ar, r, t, txinfo); 686 carl9170_tx_status(ar, skb, success); 687 } 688 689 void carl9170_tx_process_status(struct ar9170 *ar, 690 const struct carl9170_rsp *cmd) 691 { 692 unsigned int i; 693 694 for (i = 0; i < cmd->hdr.ext; i++) { 695 if (WARN_ON(i > ((cmd->hdr.len / 2) + 1))) { 696 print_hex_dump_bytes("UU:", DUMP_PREFIX_NONE, 697 (void *) cmd, cmd->hdr.len + 4); 698 break; 699 } 700 701 __carl9170_tx_process_status(ar, cmd->_tx_status[i].cookie, 702 cmd->_tx_status[i].info); 703 } 704 } 705 706 static void carl9170_tx_rate_tpc_chains(struct ar9170 *ar, 707 struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate, 708 unsigned int *phyrate, unsigned int *tpc, unsigned int *chains) 709 { 710 struct ieee80211_rate *rate = NULL; 711 u8 *txpower; 712 unsigned int idx; 713 714 idx = txrate->idx; 715 *tpc = 0; 716 *phyrate = 0; 717 718 if (txrate->flags & IEEE80211_TX_RC_MCS) { 719 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) { 720 /* +1 dBm for HT40 */ 721 *tpc += 2; 722 723 if (info->band == IEEE80211_BAND_2GHZ) 724 txpower = ar->power_2G_ht40; 725 else 726 txpower = ar->power_5G_ht40; 727 } else { 728 if (info->band == IEEE80211_BAND_2GHZ) 729 txpower = ar->power_2G_ht20; 730 else 731 txpower = ar->power_5G_ht20; 732 } 733 734 *phyrate = txrate->idx; 735 *tpc += txpower[idx & 7]; 736 } else { 737 if (info->band == IEEE80211_BAND_2GHZ) { 738 if (idx < 4) 739 txpower = ar->power_2G_cck; 740 else 741 txpower = ar->power_2G_ofdm; 742 } else { 743 txpower = ar->power_5G_leg; 744 idx += 4; 745 } 746 747 rate = &__carl9170_ratetable[idx]; 748 *tpc += txpower[(rate->hw_value & 0x30) >> 4]; 749 *phyrate = rate->hw_value & 0xf; 750 } 751 752 if (ar->eeprom.tx_mask == 1) { 753 *chains = AR9170_TX_PHY_TXCHAIN_1; 754 } else { 755 if (!(txrate->flags & IEEE80211_TX_RC_MCS) && 756 rate && rate->bitrate >= 360) 757 *chains = AR9170_TX_PHY_TXCHAIN_1; 758 else 759 *chains = AR9170_TX_PHY_TXCHAIN_2; 760 } 761 762 *tpc = min_t(unsigned int, *tpc, ar->hw->conf.power_level * 2); 763 } 764 765 static __le32 carl9170_tx_physet(struct ar9170 *ar, 766 struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate) 767 { 768 unsigned int power = 0, chains = 0, phyrate = 0; 769 __le32 tmp; 770 771 tmp = cpu_to_le32(0); 772 773 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 774 tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ << 775 AR9170_TX_PHY_BW_S); 776 /* this works because 40 MHz is 2 and dup is 3 */ 777 if (txrate->flags & IEEE80211_TX_RC_DUP_DATA) 778 tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ_DUP << 779 AR9170_TX_PHY_BW_S); 780 781 if (txrate->flags & IEEE80211_TX_RC_SHORT_GI) 782 tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_GI); 783 784 if (txrate->flags & IEEE80211_TX_RC_MCS) { 785 SET_VAL(AR9170_TX_PHY_MCS, phyrate, txrate->idx); 786 787 /* heavy clip control */ 788 tmp |= cpu_to_le32((txrate->idx & 0x7) << 789 AR9170_TX_PHY_TX_HEAVY_CLIP_S); 790 791 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_HT); 792 793 /* 794 * green field preamble does not work. 795 * 796 * if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD) 797 * tmp |= cpu_to_le32(AR9170_TX_PHY_GREENFIELD); 798 */ 799 } else { 800 if (info->band == IEEE80211_BAND_2GHZ) { 801 if (txrate->idx <= AR9170_TX_PHY_RATE_CCK_11M) 802 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_CCK); 803 else 804 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM); 805 } else { 806 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM); 807 } 808 809 /* 810 * short preamble seems to be broken too. 811 * 812 * if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 813 * tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_PREAMBLE); 814 */ 815 } 816 carl9170_tx_rate_tpc_chains(ar, info, txrate, 817 &phyrate, &power, &chains); 818 819 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_MCS, phyrate)); 820 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TX_PWR, power)); 821 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TXCHAIN, chains)); 822 return tmp; 823 } 824 825 static bool carl9170_tx_rts_check(struct ar9170 *ar, 826 struct ieee80211_tx_rate *rate, 827 bool ampdu, bool multi) 828 { 829 switch (ar->erp_mode) { 830 case CARL9170_ERP_AUTO: 831 if (ampdu) 832 break; 833 834 case CARL9170_ERP_MAC80211: 835 if (!(rate->flags & IEEE80211_TX_RC_USE_RTS_CTS)) 836 break; 837 838 case CARL9170_ERP_RTS: 839 if (likely(!multi)) 840 return true; 841 842 default: 843 break; 844 } 845 846 return false; 847 } 848 849 static bool carl9170_tx_cts_check(struct ar9170 *ar, 850 struct ieee80211_tx_rate *rate) 851 { 852 switch (ar->erp_mode) { 853 case CARL9170_ERP_AUTO: 854 case CARL9170_ERP_MAC80211: 855 if (!(rate->flags & IEEE80211_TX_RC_USE_CTS_PROTECT)) 856 break; 857 858 case CARL9170_ERP_CTS: 859 return true; 860 861 default: 862 break; 863 } 864 865 return false; 866 } 867 868 static void carl9170_tx_get_rates(struct ar9170 *ar, 869 struct ieee80211_vif *vif, 870 struct ieee80211_sta *sta, 871 struct sk_buff *skb) 872 { 873 struct ieee80211_tx_info *info; 874 875 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES < CARL9170_TX_MAX_RATES); 876 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES > IEEE80211_TX_RATE_TABLE_SIZE); 877 878 info = IEEE80211_SKB_CB(skb); 879 880 ieee80211_get_tx_rates(vif, sta, skb, 881 info->control.rates, 882 IEEE80211_TX_MAX_RATES); 883 } 884 885 static void carl9170_tx_apply_rateset(struct ar9170 *ar, 886 struct ieee80211_tx_info *sinfo, 887 struct sk_buff *skb) 888 { 889 struct ieee80211_tx_rate *txrate; 890 struct ieee80211_tx_info *info; 891 struct _carl9170_tx_superframe *txc = (void *) skb->data; 892 int i; 893 bool ampdu; 894 bool no_ack; 895 896 info = IEEE80211_SKB_CB(skb); 897 ampdu = !!(info->flags & IEEE80211_TX_CTL_AMPDU); 898 no_ack = !!(info->flags & IEEE80211_TX_CTL_NO_ACK); 899 900 /* Set the rate control probe flag for all (sub-) frames. 901 * This is because the TX_STATS_AMPDU flag is only set on 902 * the last frame, so it has to be inherited. 903 */ 904 info->flags |= (sinfo->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE); 905 906 /* NOTE: For the first rate, the ERP & AMPDU flags are directly 907 * taken from mac_control. For all fallback rate, the firmware 908 * updates the mac_control flags from the rate info field. 909 */ 910 for (i = 0; i < CARL9170_TX_MAX_RATES; i++) { 911 __le32 phy_set; 912 913 txrate = &sinfo->control.rates[i]; 914 if (txrate->idx < 0) 915 break; 916 917 phy_set = carl9170_tx_physet(ar, info, txrate); 918 if (i == 0) { 919 __le16 mac_tmp = cpu_to_le16(0); 920 921 /* first rate - part of the hw's frame header */ 922 txc->f.phy_control = phy_set; 923 924 if (ampdu && txrate->flags & IEEE80211_TX_RC_MCS) 925 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_AGGR); 926 927 if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack)) 928 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_RTS); 929 else if (carl9170_tx_cts_check(ar, txrate)) 930 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_CTS); 931 932 txc->f.mac_control |= mac_tmp; 933 } else { 934 /* fallback rates are stored in the firmware's 935 * retry rate set array. 936 */ 937 txc->s.rr[i - 1] = phy_set; 938 } 939 940 SET_VAL(CARL9170_TX_SUPER_RI_TRIES, txc->s.ri[i], 941 txrate->count); 942 943 if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack)) 944 txc->s.ri[i] |= (AR9170_TX_MAC_PROT_RTS << 945 CARL9170_TX_SUPER_RI_ERP_PROT_S); 946 else if (carl9170_tx_cts_check(ar, txrate)) 947 txc->s.ri[i] |= (AR9170_TX_MAC_PROT_CTS << 948 CARL9170_TX_SUPER_RI_ERP_PROT_S); 949 950 if (ampdu && (txrate->flags & IEEE80211_TX_RC_MCS)) 951 txc->s.ri[i] |= CARL9170_TX_SUPER_RI_AMPDU; 952 } 953 } 954 955 static int carl9170_tx_prepare(struct ar9170 *ar, 956 struct ieee80211_sta *sta, 957 struct sk_buff *skb) 958 { 959 struct ieee80211_hdr *hdr; 960 struct _carl9170_tx_superframe *txc; 961 struct carl9170_vif_info *cvif; 962 struct ieee80211_tx_info *info; 963 struct carl9170_tx_info *arinfo; 964 unsigned int hw_queue; 965 __le16 mac_tmp; 966 u16 len; 967 968 BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data)); 969 BUILD_BUG_ON(sizeof(struct _carl9170_tx_superdesc) != 970 CARL9170_TX_SUPERDESC_LEN); 971 972 BUILD_BUG_ON(sizeof(struct _ar9170_tx_hwdesc) != 973 AR9170_TX_HWDESC_LEN); 974 975 BUILD_BUG_ON(AR9170_MAX_VIRTUAL_MAC > 976 ((CARL9170_TX_SUPER_MISC_VIF_ID >> 977 CARL9170_TX_SUPER_MISC_VIF_ID_S) + 1)); 978 979 hw_queue = ar9170_qmap[carl9170_get_queue(ar, skb)]; 980 981 hdr = (void *)skb->data; 982 info = IEEE80211_SKB_CB(skb); 983 len = skb->len; 984 985 /* 986 * Note: If the frame was sent through a monitor interface, 987 * the ieee80211_vif pointer can be NULL. 988 */ 989 if (likely(info->control.vif)) 990 cvif = (void *) info->control.vif->drv_priv; 991 else 992 cvif = NULL; 993 994 txc = (void *)skb_push(skb, sizeof(*txc)); 995 memset(txc, 0, sizeof(*txc)); 996 997 SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, txc->s.misc, hw_queue); 998 999 if (likely(cvif)) 1000 SET_VAL(CARL9170_TX_SUPER_MISC_VIF_ID, txc->s.misc, cvif->id); 1001 1002 if (unlikely(info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM)) 1003 txc->s.misc |= CARL9170_TX_SUPER_MISC_CAB; 1004 1005 if (unlikely(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)) 1006 txc->s.misc |= CARL9170_TX_SUPER_MISC_ASSIGN_SEQ; 1007 1008 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control))) 1009 txc->s.misc |= CARL9170_TX_SUPER_MISC_FILL_IN_TSF; 1010 1011 mac_tmp = cpu_to_le16(AR9170_TX_MAC_HW_DURATION | 1012 AR9170_TX_MAC_BACKOFF); 1013 mac_tmp |= cpu_to_le16((hw_queue << AR9170_TX_MAC_QOS_S) & 1014 AR9170_TX_MAC_QOS); 1015 1016 if (unlikely(info->flags & IEEE80211_TX_CTL_NO_ACK)) 1017 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_NO_ACK); 1018 1019 if (info->control.hw_key) { 1020 len += info->control.hw_key->icv_len; 1021 1022 switch (info->control.hw_key->cipher) { 1023 case WLAN_CIPHER_SUITE_WEP40: 1024 case WLAN_CIPHER_SUITE_WEP104: 1025 case WLAN_CIPHER_SUITE_TKIP: 1026 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_RC4); 1027 break; 1028 case WLAN_CIPHER_SUITE_CCMP: 1029 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_AES); 1030 break; 1031 default: 1032 WARN_ON(1); 1033 goto err_out; 1034 } 1035 } 1036 1037 if (info->flags & IEEE80211_TX_CTL_AMPDU) { 1038 unsigned int density, factor; 1039 1040 if (unlikely(!sta || !cvif)) 1041 goto err_out; 1042 1043 factor = min_t(unsigned int, 1u, sta->ht_cap.ampdu_factor); 1044 density = sta->ht_cap.ampdu_density; 1045 1046 if (density) { 1047 /* 1048 * Watch out! 1049 * 1050 * Otus uses slightly different density values than 1051 * those from the 802.11n spec. 1052 */ 1053 1054 density = max_t(unsigned int, density + 1, 7u); 1055 } 1056 1057 SET_VAL(CARL9170_TX_SUPER_AMPDU_DENSITY, 1058 txc->s.ampdu_settings, density); 1059 1060 SET_VAL(CARL9170_TX_SUPER_AMPDU_FACTOR, 1061 txc->s.ampdu_settings, factor); 1062 } 1063 1064 txc->s.len = cpu_to_le16(skb->len); 1065 txc->f.length = cpu_to_le16(len + FCS_LEN); 1066 txc->f.mac_control = mac_tmp; 1067 1068 arinfo = (void *)info->rate_driver_data; 1069 arinfo->timeout = jiffies; 1070 arinfo->ar = ar; 1071 kref_init(&arinfo->ref); 1072 return 0; 1073 1074 err_out: 1075 skb_pull(skb, sizeof(*txc)); 1076 return -EINVAL; 1077 } 1078 1079 static void carl9170_set_immba(struct ar9170 *ar, struct sk_buff *skb) 1080 { 1081 struct _carl9170_tx_superframe *super; 1082 1083 super = (void *) skb->data; 1084 super->f.mac_control |= cpu_to_le16(AR9170_TX_MAC_IMM_BA); 1085 } 1086 1087 static void carl9170_set_ampdu_params(struct ar9170 *ar, struct sk_buff *skb) 1088 { 1089 struct _carl9170_tx_superframe *super; 1090 int tmp; 1091 1092 super = (void *) skb->data; 1093 1094 tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_DENSITY) << 1095 CARL9170_TX_SUPER_AMPDU_DENSITY_S; 1096 1097 /* 1098 * If you haven't noticed carl9170_tx_prepare has already filled 1099 * in all ampdu spacing & factor parameters. 1100 * Now it's the time to check whenever the settings have to be 1101 * updated by the firmware, or if everything is still the same. 1102 * 1103 * There's no sane way to handle different density values with 1104 * this hardware, so we may as well just do the compare in the 1105 * driver. 1106 */ 1107 1108 if (tmp != ar->current_density) { 1109 ar->current_density = tmp; 1110 super->s.ampdu_settings |= 1111 CARL9170_TX_SUPER_AMPDU_COMMIT_DENSITY; 1112 } 1113 1114 tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_FACTOR) << 1115 CARL9170_TX_SUPER_AMPDU_FACTOR_S; 1116 1117 if (tmp != ar->current_factor) { 1118 ar->current_factor = tmp; 1119 super->s.ampdu_settings |= 1120 CARL9170_TX_SUPER_AMPDU_COMMIT_FACTOR; 1121 } 1122 } 1123 1124 static void carl9170_tx_ampdu(struct ar9170 *ar) 1125 { 1126 struct sk_buff_head agg; 1127 struct carl9170_sta_tid *tid_info; 1128 struct sk_buff *skb, *first; 1129 struct ieee80211_tx_info *tx_info_first; 1130 unsigned int i = 0, done_ampdus = 0; 1131 u16 seq, queue, tmpssn; 1132 1133 atomic_inc(&ar->tx_ampdu_scheduler); 1134 ar->tx_ampdu_schedule = false; 1135 1136 if (atomic_read(&ar->tx_ampdu_upload)) 1137 return; 1138 1139 if (!ar->tx_ampdu_list_len) 1140 return; 1141 1142 __skb_queue_head_init(&agg); 1143 1144 rcu_read_lock(); 1145 tid_info = rcu_dereference(ar->tx_ampdu_iter); 1146 if (WARN_ON_ONCE(!tid_info)) { 1147 rcu_read_unlock(); 1148 return; 1149 } 1150 1151 retry: 1152 list_for_each_entry_continue_rcu(tid_info, &ar->tx_ampdu_list, list) { 1153 i++; 1154 1155 if (tid_info->state < CARL9170_TID_STATE_PROGRESS) 1156 continue; 1157 1158 queue = TID_TO_WME_AC(tid_info->tid); 1159 1160 spin_lock_bh(&tid_info->lock); 1161 if (tid_info->state != CARL9170_TID_STATE_XMIT) 1162 goto processed; 1163 1164 tid_info->counter++; 1165 first = skb_peek(&tid_info->queue); 1166 tmpssn = carl9170_get_seq(first); 1167 seq = tid_info->snx; 1168 1169 if (unlikely(tmpssn != seq)) { 1170 tid_info->state = CARL9170_TID_STATE_IDLE; 1171 1172 goto processed; 1173 } 1174 1175 tx_info_first = NULL; 1176 while ((skb = skb_peek(&tid_info->queue))) { 1177 /* strict 0, 1, ..., n - 1, n frame sequence order */ 1178 if (unlikely(carl9170_get_seq(skb) != seq)) 1179 break; 1180 1181 /* don't upload more than AMPDU FACTOR allows. */ 1182 if (unlikely(SEQ_DIFF(tid_info->snx, tid_info->bsn) >= 1183 (tid_info->max - 1))) 1184 break; 1185 1186 if (!tx_info_first) { 1187 carl9170_tx_get_rates(ar, tid_info->vif, 1188 tid_info->sta, first); 1189 tx_info_first = IEEE80211_SKB_CB(first); 1190 } 1191 1192 carl9170_tx_apply_rateset(ar, tx_info_first, skb); 1193 1194 atomic_inc(&ar->tx_ampdu_upload); 1195 tid_info->snx = seq = SEQ_NEXT(seq); 1196 __skb_unlink(skb, &tid_info->queue); 1197 1198 __skb_queue_tail(&agg, skb); 1199 1200 if (skb_queue_len(&agg) >= CARL9170_NUM_TX_AGG_MAX) 1201 break; 1202 } 1203 1204 if (skb_queue_empty(&tid_info->queue) || 1205 carl9170_get_seq(skb_peek(&tid_info->queue)) != 1206 tid_info->snx) { 1207 /* stop TID, if A-MPDU frames are still missing, 1208 * or whenever the queue is empty. 1209 */ 1210 1211 tid_info->state = CARL9170_TID_STATE_IDLE; 1212 } 1213 done_ampdus++; 1214 1215 processed: 1216 spin_unlock_bh(&tid_info->lock); 1217 1218 if (skb_queue_empty(&agg)) 1219 continue; 1220 1221 /* apply ampdu spacing & factor settings */ 1222 carl9170_set_ampdu_params(ar, skb_peek(&agg)); 1223 1224 /* set aggregation push bit */ 1225 carl9170_set_immba(ar, skb_peek_tail(&agg)); 1226 1227 spin_lock_bh(&ar->tx_pending[queue].lock); 1228 skb_queue_splice_tail_init(&agg, &ar->tx_pending[queue]); 1229 spin_unlock_bh(&ar->tx_pending[queue].lock); 1230 ar->tx_schedule = true; 1231 } 1232 if ((done_ampdus++ == 0) && (i++ == 0)) 1233 goto retry; 1234 1235 rcu_assign_pointer(ar->tx_ampdu_iter, tid_info); 1236 rcu_read_unlock(); 1237 } 1238 1239 static struct sk_buff *carl9170_tx_pick_skb(struct ar9170 *ar, 1240 struct sk_buff_head *queue) 1241 { 1242 struct sk_buff *skb; 1243 struct ieee80211_tx_info *info; 1244 struct carl9170_tx_info *arinfo; 1245 1246 BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data)); 1247 1248 spin_lock_bh(&queue->lock); 1249 skb = skb_peek(queue); 1250 if (unlikely(!skb)) 1251 goto err_unlock; 1252 1253 if (carl9170_alloc_dev_space(ar, skb)) 1254 goto err_unlock; 1255 1256 __skb_unlink(skb, queue); 1257 spin_unlock_bh(&queue->lock); 1258 1259 info = IEEE80211_SKB_CB(skb); 1260 arinfo = (void *) info->rate_driver_data; 1261 1262 arinfo->timeout = jiffies; 1263 return skb; 1264 1265 err_unlock: 1266 spin_unlock_bh(&queue->lock); 1267 return NULL; 1268 } 1269 1270 void carl9170_tx_drop(struct ar9170 *ar, struct sk_buff *skb) 1271 { 1272 struct _carl9170_tx_superframe *super; 1273 uint8_t q = 0; 1274 1275 ar->tx_dropped++; 1276 1277 super = (void *)skb->data; 1278 SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, q, 1279 ar9170_qmap[carl9170_get_queue(ar, skb)]); 1280 __carl9170_tx_process_status(ar, super->s.cookie, q); 1281 } 1282 1283 static bool carl9170_tx_ps_drop(struct ar9170 *ar, struct sk_buff *skb) 1284 { 1285 struct ieee80211_sta *sta; 1286 struct carl9170_sta_info *sta_info; 1287 struct ieee80211_tx_info *tx_info; 1288 1289 rcu_read_lock(); 1290 sta = __carl9170_get_tx_sta(ar, skb); 1291 if (!sta) 1292 goto out_rcu; 1293 1294 sta_info = (void *) sta->drv_priv; 1295 tx_info = IEEE80211_SKB_CB(skb); 1296 1297 if (unlikely(sta_info->sleeping) && 1298 !(tx_info->flags & (IEEE80211_TX_CTL_NO_PS_BUFFER | 1299 IEEE80211_TX_CTL_CLEAR_PS_FILT))) { 1300 rcu_read_unlock(); 1301 1302 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) 1303 atomic_dec(&ar->tx_ampdu_upload); 1304 1305 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; 1306 carl9170_release_dev_space(ar, skb); 1307 carl9170_tx_status(ar, skb, false); 1308 return true; 1309 } 1310 1311 out_rcu: 1312 rcu_read_unlock(); 1313 return false; 1314 } 1315 1316 static void carl9170_bar_check(struct ar9170 *ar, struct sk_buff *skb) 1317 { 1318 struct _carl9170_tx_superframe *super = (void *) skb->data; 1319 struct ieee80211_bar *bar = (void *) super->frame_data; 1320 1321 if (unlikely(ieee80211_is_back_req(bar->frame_control)) && 1322 skb->len >= sizeof(struct ieee80211_bar)) { 1323 struct carl9170_bar_list_entry *entry; 1324 unsigned int queue = skb_get_queue_mapping(skb); 1325 1326 entry = kmalloc(sizeof(*entry), GFP_ATOMIC); 1327 if (!WARN_ON_ONCE(!entry)) { 1328 entry->skb = skb; 1329 spin_lock_bh(&ar->bar_list_lock[queue]); 1330 list_add_tail_rcu(&entry->list, &ar->bar_list[queue]); 1331 spin_unlock_bh(&ar->bar_list_lock[queue]); 1332 } 1333 } 1334 } 1335 1336 static void carl9170_tx(struct ar9170 *ar) 1337 { 1338 struct sk_buff *skb; 1339 unsigned int i, q; 1340 bool schedule_garbagecollector = false; 1341 1342 ar->tx_schedule = false; 1343 1344 if (unlikely(!IS_STARTED(ar))) 1345 return; 1346 1347 carl9170_usb_handle_tx_err(ar); 1348 1349 for (i = 0; i < ar->hw->queues; i++) { 1350 while (!skb_queue_empty(&ar->tx_pending[i])) { 1351 skb = carl9170_tx_pick_skb(ar, &ar->tx_pending[i]); 1352 if (unlikely(!skb)) 1353 break; 1354 1355 if (unlikely(carl9170_tx_ps_drop(ar, skb))) 1356 continue; 1357 1358 carl9170_bar_check(ar, skb); 1359 1360 atomic_inc(&ar->tx_total_pending); 1361 1362 q = __carl9170_get_queue(ar, i); 1363 /* 1364 * NB: tx_status[i] vs. tx_status[q], 1365 * TODO: Move into pick_skb or alloc_dev_space. 1366 */ 1367 skb_queue_tail(&ar->tx_status[q], skb); 1368 1369 /* 1370 * increase ref count to "2". 1371 * Ref counting is the easiest way to solve the 1372 * race between the urb's completion routine: 1373 * carl9170_tx_callback 1374 * and wlan tx status functions: 1375 * carl9170_tx_status/janitor. 1376 */ 1377 carl9170_tx_get_skb(skb); 1378 1379 carl9170_usb_tx(ar, skb); 1380 schedule_garbagecollector = true; 1381 } 1382 } 1383 1384 if (!schedule_garbagecollector) 1385 return; 1386 1387 ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor, 1388 msecs_to_jiffies(CARL9170_TX_TIMEOUT)); 1389 } 1390 1391 static bool carl9170_tx_ampdu_queue(struct ar9170 *ar, 1392 struct ieee80211_sta *sta, struct sk_buff *skb, 1393 struct ieee80211_tx_info *txinfo) 1394 { 1395 struct carl9170_sta_info *sta_info; 1396 struct carl9170_sta_tid *agg; 1397 struct sk_buff *iter; 1398 u16 tid, seq, qseq, off; 1399 bool run = false; 1400 1401 tid = carl9170_get_tid(skb); 1402 seq = carl9170_get_seq(skb); 1403 sta_info = (void *) sta->drv_priv; 1404 1405 rcu_read_lock(); 1406 agg = rcu_dereference(sta_info->agg[tid]); 1407 1408 if (!agg) 1409 goto err_unlock_rcu; 1410 1411 spin_lock_bh(&agg->lock); 1412 if (unlikely(agg->state < CARL9170_TID_STATE_IDLE)) 1413 goto err_unlock; 1414 1415 /* check if sequence is within the BA window */ 1416 if (unlikely(!BAW_WITHIN(agg->bsn, CARL9170_BAW_BITS, seq))) 1417 goto err_unlock; 1418 1419 if (WARN_ON_ONCE(!BAW_WITHIN(agg->snx, CARL9170_BAW_BITS, seq))) 1420 goto err_unlock; 1421 1422 off = SEQ_DIFF(seq, agg->bsn); 1423 if (WARN_ON_ONCE(test_and_set_bit(off, agg->bitmap))) 1424 goto err_unlock; 1425 1426 if (likely(BAW_WITHIN(agg->hsn, CARL9170_BAW_BITS, seq))) { 1427 __skb_queue_tail(&agg->queue, skb); 1428 agg->hsn = seq; 1429 goto queued; 1430 } 1431 1432 skb_queue_reverse_walk(&agg->queue, iter) { 1433 qseq = carl9170_get_seq(iter); 1434 1435 if (BAW_WITHIN(qseq, CARL9170_BAW_BITS, seq)) { 1436 __skb_queue_after(&agg->queue, iter, skb); 1437 goto queued; 1438 } 1439 } 1440 1441 __skb_queue_head(&agg->queue, skb); 1442 queued: 1443 1444 if (unlikely(agg->state != CARL9170_TID_STATE_XMIT)) { 1445 if (agg->snx == carl9170_get_seq(skb_peek(&agg->queue))) { 1446 agg->state = CARL9170_TID_STATE_XMIT; 1447 run = true; 1448 } 1449 } 1450 1451 spin_unlock_bh(&agg->lock); 1452 rcu_read_unlock(); 1453 1454 return run; 1455 1456 err_unlock: 1457 spin_unlock_bh(&agg->lock); 1458 1459 err_unlock_rcu: 1460 rcu_read_unlock(); 1461 txinfo->flags &= ~IEEE80211_TX_CTL_AMPDU; 1462 carl9170_tx_status(ar, skb, false); 1463 ar->tx_dropped++; 1464 return false; 1465 } 1466 1467 void carl9170_op_tx(struct ieee80211_hw *hw, 1468 struct ieee80211_tx_control *control, 1469 struct sk_buff *skb) 1470 { 1471 struct ar9170 *ar = hw->priv; 1472 struct ieee80211_tx_info *info; 1473 struct ieee80211_sta *sta = control->sta; 1474 struct ieee80211_vif *vif; 1475 bool run; 1476 1477 if (unlikely(!IS_STARTED(ar))) 1478 goto err_free; 1479 1480 info = IEEE80211_SKB_CB(skb); 1481 vif = info->control.vif; 1482 1483 if (unlikely(carl9170_tx_prepare(ar, sta, skb))) 1484 goto err_free; 1485 1486 carl9170_tx_accounting(ar, skb); 1487 /* 1488 * from now on, one has to use carl9170_tx_status to free 1489 * all ressouces which are associated with the frame. 1490 */ 1491 1492 if (sta) { 1493 struct carl9170_sta_info *stai = (void *) sta->drv_priv; 1494 atomic_inc(&stai->pending_frames); 1495 } 1496 1497 if (info->flags & IEEE80211_TX_CTL_AMPDU) { 1498 /* to static code analyzers and reviewers: 1499 * mac80211 guarantees that a valid "sta" 1500 * reference is present, if a frame is to 1501 * be part of an ampdu. Hence any extra 1502 * sta == NULL checks are redundant in this 1503 * special case. 1504 */ 1505 run = carl9170_tx_ampdu_queue(ar, sta, skb, info); 1506 if (run) 1507 carl9170_tx_ampdu(ar); 1508 1509 } else { 1510 unsigned int queue = skb_get_queue_mapping(skb); 1511 1512 carl9170_tx_get_rates(ar, vif, sta, skb); 1513 carl9170_tx_apply_rateset(ar, info, skb); 1514 skb_queue_tail(&ar->tx_pending[queue], skb); 1515 } 1516 1517 carl9170_tx(ar); 1518 return; 1519 1520 err_free: 1521 ar->tx_dropped++; 1522 ieee80211_free_txskb(ar->hw, skb); 1523 } 1524 1525 void carl9170_tx_scheduler(struct ar9170 *ar) 1526 { 1527 1528 if (ar->tx_ampdu_schedule) 1529 carl9170_tx_ampdu(ar); 1530 1531 if (ar->tx_schedule) 1532 carl9170_tx(ar); 1533 } 1534 1535 /* caller has to take rcu_read_lock */ 1536 static struct carl9170_vif_info *carl9170_pick_beaconing_vif(struct ar9170 *ar) 1537 { 1538 struct carl9170_vif_info *cvif; 1539 int i = 1; 1540 1541 /* The AR9170 hardware has no fancy beacon queue or some 1542 * other scheduling mechanism. So, the driver has to make 1543 * due by setting the two beacon timers (pretbtt and tbtt) 1544 * once and then swapping the beacon address in the HW's 1545 * register file each time the pretbtt fires. 1546 */ 1547 1548 cvif = rcu_dereference(ar->beacon_iter); 1549 if (ar->vifs > 0 && cvif) { 1550 do { 1551 list_for_each_entry_continue_rcu(cvif, &ar->vif_list, 1552 list) { 1553 if (cvif->active && cvif->enable_beacon) 1554 goto out; 1555 } 1556 } while (ar->beacon_enabled && i--); 1557 } 1558 1559 out: 1560 rcu_assign_pointer(ar->beacon_iter, cvif); 1561 return cvif; 1562 } 1563 1564 static bool carl9170_tx_beacon_physet(struct ar9170 *ar, struct sk_buff *skb, 1565 u32 *ht1, u32 *plcp) 1566 { 1567 struct ieee80211_tx_info *txinfo; 1568 struct ieee80211_tx_rate *rate; 1569 unsigned int power, chains; 1570 bool ht_rate; 1571 1572 txinfo = IEEE80211_SKB_CB(skb); 1573 rate = &txinfo->control.rates[0]; 1574 ht_rate = !!(txinfo->control.rates[0].flags & IEEE80211_TX_RC_MCS); 1575 carl9170_tx_rate_tpc_chains(ar, txinfo, rate, plcp, &power, &chains); 1576 1577 *ht1 = AR9170_MAC_BCN_HT1_TX_ANT0; 1578 if (chains == AR9170_TX_PHY_TXCHAIN_2) 1579 *ht1 |= AR9170_MAC_BCN_HT1_TX_ANT1; 1580 SET_VAL(AR9170_MAC_BCN_HT1_PWR_CTRL, *ht1, 7); 1581 SET_VAL(AR9170_MAC_BCN_HT1_TPC, *ht1, power); 1582 SET_VAL(AR9170_MAC_BCN_HT1_CHAIN_MASK, *ht1, chains); 1583 1584 if (ht_rate) { 1585 *ht1 |= AR9170_MAC_BCN_HT1_HT_EN; 1586 if (rate->flags & IEEE80211_TX_RC_SHORT_GI) 1587 *plcp |= AR9170_MAC_BCN_HT2_SGI; 1588 1589 if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) { 1590 *ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_SHARED; 1591 *plcp |= AR9170_MAC_BCN_HT2_BW40; 1592 } else if (rate->flags & IEEE80211_TX_RC_DUP_DATA) { 1593 *ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_DUP; 1594 *plcp |= AR9170_MAC_BCN_HT2_BW40; 1595 } 1596 1597 SET_VAL(AR9170_MAC_BCN_HT2_LEN, *plcp, skb->len + FCS_LEN); 1598 } else { 1599 if (*plcp <= AR9170_TX_PHY_RATE_CCK_11M) 1600 *plcp |= ((skb->len + FCS_LEN) << (3 + 16)) + 0x0400; 1601 else 1602 *plcp |= ((skb->len + FCS_LEN) << 16) + 0x0010; 1603 } 1604 1605 return ht_rate; 1606 } 1607 1608 int carl9170_update_beacon(struct ar9170 *ar, const bool submit) 1609 { 1610 struct sk_buff *skb = NULL; 1611 struct carl9170_vif_info *cvif; 1612 __le32 *data, *old = NULL; 1613 u32 word, ht1, plcp, off, addr, len; 1614 int i = 0, err = 0; 1615 bool ht_rate; 1616 1617 rcu_read_lock(); 1618 cvif = carl9170_pick_beaconing_vif(ar); 1619 if (!cvif) 1620 goto out_unlock; 1621 1622 skb = ieee80211_beacon_get_tim(ar->hw, carl9170_get_vif(cvif), 1623 NULL, NULL); 1624 1625 if (!skb) { 1626 err = -ENOMEM; 1627 goto err_free; 1628 } 1629 1630 spin_lock_bh(&ar->beacon_lock); 1631 data = (__le32 *)skb->data; 1632 if (cvif->beacon) 1633 old = (__le32 *)cvif->beacon->data; 1634 1635 off = cvif->id * AR9170_MAC_BCN_LENGTH_MAX; 1636 addr = ar->fw.beacon_addr + off; 1637 len = roundup(skb->len + FCS_LEN, 4); 1638 1639 if ((off + len) > ar->fw.beacon_max_len) { 1640 if (net_ratelimit()) { 1641 wiphy_err(ar->hw->wiphy, "beacon does not " 1642 "fit into device memory!\n"); 1643 } 1644 err = -EINVAL; 1645 goto err_unlock; 1646 } 1647 1648 if (len > AR9170_MAC_BCN_LENGTH_MAX) { 1649 if (net_ratelimit()) { 1650 wiphy_err(ar->hw->wiphy, "no support for beacons " 1651 "bigger than %d (yours:%d).\n", 1652 AR9170_MAC_BCN_LENGTH_MAX, len); 1653 } 1654 1655 err = -EMSGSIZE; 1656 goto err_unlock; 1657 } 1658 1659 ht_rate = carl9170_tx_beacon_physet(ar, skb, &ht1, &plcp); 1660 1661 carl9170_async_regwrite_begin(ar); 1662 carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT1, ht1); 1663 if (ht_rate) 1664 carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT2, plcp); 1665 else 1666 carl9170_async_regwrite(AR9170_MAC_REG_BCN_PLCP, plcp); 1667 1668 for (i = 0; i < DIV_ROUND_UP(skb->len, 4); i++) { 1669 /* 1670 * XXX: This accesses beyond skb data for up 1671 * to the last 3 bytes!! 1672 */ 1673 1674 if (old && (data[i] == old[i])) 1675 continue; 1676 1677 word = le32_to_cpu(data[i]); 1678 carl9170_async_regwrite(addr + 4 * i, word); 1679 } 1680 carl9170_async_regwrite_finish(); 1681 1682 dev_kfree_skb_any(cvif->beacon); 1683 cvif->beacon = NULL; 1684 1685 err = carl9170_async_regwrite_result(); 1686 if (!err) 1687 cvif->beacon = skb; 1688 spin_unlock_bh(&ar->beacon_lock); 1689 if (err) 1690 goto err_free; 1691 1692 if (submit) { 1693 err = carl9170_bcn_ctrl(ar, cvif->id, 1694 CARL9170_BCN_CTRL_CAB_TRIGGER, 1695 addr, skb->len + FCS_LEN); 1696 1697 if (err) 1698 goto err_free; 1699 } 1700 out_unlock: 1701 rcu_read_unlock(); 1702 return 0; 1703 1704 err_unlock: 1705 spin_unlock_bh(&ar->beacon_lock); 1706 1707 err_free: 1708 rcu_read_unlock(); 1709 dev_kfree_skb_any(skb); 1710 return err; 1711 } 1712