1 /*
2  * Atheros CARL9170 driver
3  *
4  * 802.11 xmit & status routines
5  *
6  * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
7  * Copyright 2009, 2010, Christian Lamparter <chunkeey@googlemail.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; see the file COPYING.  If not, see
21  * http://www.gnu.org/licenses/.
22  *
23  * This file incorporates work covered by the following copyright and
24  * permission notice:
25  *    Copyright (c) 2007-2008 Atheros Communications, Inc.
26  *
27  *    Permission to use, copy, modify, and/or distribute this software for any
28  *    purpose with or without fee is hereby granted, provided that the above
29  *    copyright notice and this permission notice appear in all copies.
30  *
31  *    THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
32  *    WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
33  *    MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
34  *    ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
35  *    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
36  *    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
37  *    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
38  */
39 
40 #include <linux/slab.h>
41 #include <linux/module.h>
42 #include <linux/etherdevice.h>
43 #include <net/mac80211.h>
44 #include "carl9170.h"
45 #include "hw.h"
46 #include "cmd.h"
47 
48 static inline unsigned int __carl9170_get_queue(struct ar9170 *ar,
49 						unsigned int queue)
50 {
51 	if (unlikely(modparam_noht)) {
52 		return queue;
53 	} else {
54 		/*
55 		 * This is just another workaround, until
56 		 * someone figures out how to get QoS and
57 		 * AMPDU to play nicely together.
58 		 */
59 
60 		return 2;		/* AC_BE */
61 	}
62 }
63 
64 static inline unsigned int carl9170_get_queue(struct ar9170 *ar,
65 					      struct sk_buff *skb)
66 {
67 	return __carl9170_get_queue(ar, skb_get_queue_mapping(skb));
68 }
69 
70 static bool is_mem_full(struct ar9170 *ar)
71 {
72 	return (DIV_ROUND_UP(IEEE80211_MAX_FRAME_LEN, ar->fw.mem_block_size) >
73 		atomic_read(&ar->mem_free_blocks));
74 }
75 
76 static void carl9170_tx_accounting(struct ar9170 *ar, struct sk_buff *skb)
77 {
78 	int queue, i;
79 	bool mem_full;
80 
81 	atomic_inc(&ar->tx_total_queued);
82 
83 	queue = skb_get_queue_mapping(skb);
84 	spin_lock_bh(&ar->tx_stats_lock);
85 
86 	/*
87 	 * The driver has to accept the frame, regardless if the queue is
88 	 * full to the brim, or not. We have to do the queuing internally,
89 	 * since mac80211 assumes that a driver which can operate with
90 	 * aggregated frames does not reject frames for this reason.
91 	 */
92 	ar->tx_stats[queue].len++;
93 	ar->tx_stats[queue].count++;
94 
95 	mem_full = is_mem_full(ar);
96 	for (i = 0; i < ar->hw->queues; i++) {
97 		if (mem_full || ar->tx_stats[i].len >= ar->tx_stats[i].limit) {
98 			ieee80211_stop_queue(ar->hw, i);
99 			ar->queue_stop_timeout[i] = jiffies;
100 		}
101 	}
102 
103 	spin_unlock_bh(&ar->tx_stats_lock);
104 }
105 
106 /* needs rcu_read_lock */
107 static struct ieee80211_sta *__carl9170_get_tx_sta(struct ar9170 *ar,
108 						   struct sk_buff *skb)
109 {
110 	struct _carl9170_tx_superframe *super = (void *) skb->data;
111 	struct ieee80211_hdr *hdr = (void *) super->frame_data;
112 	struct ieee80211_vif *vif;
113 	unsigned int vif_id;
114 
115 	vif_id = (super->s.misc & CARL9170_TX_SUPER_MISC_VIF_ID) >>
116 		 CARL9170_TX_SUPER_MISC_VIF_ID_S;
117 
118 	if (WARN_ON_ONCE(vif_id >= AR9170_MAX_VIRTUAL_MAC))
119 		return NULL;
120 
121 	vif = rcu_dereference(ar->vif_priv[vif_id].vif);
122 	if (unlikely(!vif))
123 		return NULL;
124 
125 	/*
126 	 * Normally we should use wrappers like ieee80211_get_DA to get
127 	 * the correct peer ieee80211_sta.
128 	 *
129 	 * But there is a problem with indirect traffic (broadcasts, or
130 	 * data which is designated for other stations) in station mode.
131 	 * The frame will be directed to the AP for distribution and not
132 	 * to the actual destination.
133 	 */
134 
135 	return ieee80211_find_sta(vif, hdr->addr1);
136 }
137 
138 static void carl9170_tx_ps_unblock(struct ar9170 *ar, struct sk_buff *skb)
139 {
140 	struct ieee80211_sta *sta;
141 	struct carl9170_sta_info *sta_info;
142 
143 	rcu_read_lock();
144 	sta = __carl9170_get_tx_sta(ar, skb);
145 	if (unlikely(!sta))
146 		goto out_rcu;
147 
148 	sta_info = (struct carl9170_sta_info *) sta->drv_priv;
149 	if (atomic_dec_return(&sta_info->pending_frames) == 0)
150 		ieee80211_sta_block_awake(ar->hw, sta, false);
151 
152 out_rcu:
153 	rcu_read_unlock();
154 }
155 
156 static void carl9170_tx_accounting_free(struct ar9170 *ar, struct sk_buff *skb)
157 {
158 	int queue;
159 
160 	queue = skb_get_queue_mapping(skb);
161 
162 	spin_lock_bh(&ar->tx_stats_lock);
163 
164 	ar->tx_stats[queue].len--;
165 
166 	if (!is_mem_full(ar)) {
167 		unsigned int i;
168 		for (i = 0; i < ar->hw->queues; i++) {
169 			if (ar->tx_stats[i].len >= CARL9170_NUM_TX_LIMIT_SOFT)
170 				continue;
171 
172 			if (ieee80211_queue_stopped(ar->hw, i)) {
173 				unsigned long tmp;
174 
175 				tmp = jiffies - ar->queue_stop_timeout[i];
176 				if (tmp > ar->max_queue_stop_timeout[i])
177 					ar->max_queue_stop_timeout[i] = tmp;
178 			}
179 
180 			ieee80211_wake_queue(ar->hw, i);
181 		}
182 	}
183 
184 	spin_unlock_bh(&ar->tx_stats_lock);
185 
186 	if (atomic_dec_and_test(&ar->tx_total_queued))
187 		complete(&ar->tx_flush);
188 }
189 
190 static int carl9170_alloc_dev_space(struct ar9170 *ar, struct sk_buff *skb)
191 {
192 	struct _carl9170_tx_superframe *super = (void *) skb->data;
193 	unsigned int chunks;
194 	int cookie = -1;
195 
196 	atomic_inc(&ar->mem_allocs);
197 
198 	chunks = DIV_ROUND_UP(skb->len, ar->fw.mem_block_size);
199 	if (unlikely(atomic_sub_return(chunks, &ar->mem_free_blocks) < 0)) {
200 		atomic_add(chunks, &ar->mem_free_blocks);
201 		return -ENOSPC;
202 	}
203 
204 	spin_lock_bh(&ar->mem_lock);
205 	cookie = bitmap_find_free_region(ar->mem_bitmap, ar->fw.mem_blocks, 0);
206 	spin_unlock_bh(&ar->mem_lock);
207 
208 	if (unlikely(cookie < 0)) {
209 		atomic_add(chunks, &ar->mem_free_blocks);
210 		return -ENOSPC;
211 	}
212 
213 	super = (void *) skb->data;
214 
215 	/*
216 	 * Cookie #0 serves two special purposes:
217 	 *  1. The firmware might use it generate BlockACK frames
218 	 *     in responds of an incoming BlockAckReqs.
219 	 *
220 	 *  2. Prevent double-free bugs.
221 	 */
222 	super->s.cookie = (u8) cookie + 1;
223 	return 0;
224 }
225 
226 static void carl9170_release_dev_space(struct ar9170 *ar, struct sk_buff *skb)
227 {
228 	struct _carl9170_tx_superframe *super = (void *) skb->data;
229 	int cookie;
230 
231 	/* make a local copy of the cookie */
232 	cookie = super->s.cookie;
233 	/* invalidate cookie */
234 	super->s.cookie = 0;
235 
236 	/*
237 	 * Do a out-of-bounds check on the cookie:
238 	 *
239 	 *  * cookie "0" is reserved and won't be assigned to any
240 	 *    out-going frame. Internally however, it is used to
241 	 *    mark no longer/un-accounted frames and serves as a
242 	 *    cheap way of preventing frames from being freed
243 	 *    twice by _accident_. NB: There is a tiny race...
244 	 *
245 	 *  * obviously, cookie number is limited by the amount
246 	 *    of available memory blocks, so the number can
247 	 *    never execeed the mem_blocks count.
248 	 */
249 	if (WARN_ON_ONCE(cookie == 0) ||
250 	    WARN_ON_ONCE(cookie > ar->fw.mem_blocks))
251 		return;
252 
253 	atomic_add(DIV_ROUND_UP(skb->len, ar->fw.mem_block_size),
254 		   &ar->mem_free_blocks);
255 
256 	spin_lock_bh(&ar->mem_lock);
257 	bitmap_release_region(ar->mem_bitmap, cookie - 1, 0);
258 	spin_unlock_bh(&ar->mem_lock);
259 }
260 
261 /* Called from any context */
262 static void carl9170_tx_release(struct kref *ref)
263 {
264 	struct ar9170 *ar;
265 	struct carl9170_tx_info *arinfo;
266 	struct ieee80211_tx_info *txinfo;
267 	struct sk_buff *skb;
268 
269 	arinfo = container_of(ref, struct carl9170_tx_info, ref);
270 	txinfo = container_of((void *) arinfo, struct ieee80211_tx_info,
271 			      rate_driver_data);
272 	skb = container_of((void *) txinfo, struct sk_buff, cb);
273 
274 	ar = arinfo->ar;
275 	if (WARN_ON_ONCE(!ar))
276 		return;
277 
278 	BUILD_BUG_ON(
279 	    offsetof(struct ieee80211_tx_info, status.ack_signal) != 20);
280 
281 	memset(&txinfo->status.ack_signal, 0,
282 	       sizeof(struct ieee80211_tx_info) -
283 	       offsetof(struct ieee80211_tx_info, status.ack_signal));
284 
285 	if (atomic_read(&ar->tx_total_queued))
286 		ar->tx_schedule = true;
287 
288 	if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) {
289 		if (!atomic_read(&ar->tx_ampdu_upload))
290 			ar->tx_ampdu_schedule = true;
291 
292 		if (txinfo->flags & IEEE80211_TX_STAT_AMPDU) {
293 			struct _carl9170_tx_superframe *super;
294 
295 			super = (void *)skb->data;
296 			txinfo->status.ampdu_len = super->s.rix;
297 			txinfo->status.ampdu_ack_len = super->s.cnt;
298 		} else if ((txinfo->flags & IEEE80211_TX_STAT_ACK) &&
299 			   !(txinfo->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)) {
300 			/*
301 			 * drop redundant tx_status reports:
302 			 *
303 			 * 1. ampdu_ack_len of the final tx_status does
304 			 *    include the feedback of this particular frame.
305 			 *
306 			 * 2. tx_status_irqsafe only queues up to 128
307 			 *    tx feedback reports and discards the rest.
308 			 *
309 			 * 3. minstrel_ht is picky, it only accepts
310 			 *    reports of frames with the TX_STATUS_AMPDU flag.
311 			 *
312 			 * 4. mac80211 is not particularly interested in
313 			 *    feedback either [CTL_REQ_TX_STATUS not set]
314 			 */
315 
316 			ieee80211_free_txskb(ar->hw, skb);
317 			return;
318 		} else {
319 			/*
320 			 * Either the frame transmission has failed or
321 			 * mac80211 requested tx status.
322 			 */
323 		}
324 	}
325 
326 	skb_pull(skb, sizeof(struct _carl9170_tx_superframe));
327 	ieee80211_tx_status_irqsafe(ar->hw, skb);
328 }
329 
330 void carl9170_tx_get_skb(struct sk_buff *skb)
331 {
332 	struct carl9170_tx_info *arinfo = (void *)
333 		(IEEE80211_SKB_CB(skb))->rate_driver_data;
334 	kref_get(&arinfo->ref);
335 }
336 
337 int carl9170_tx_put_skb(struct sk_buff *skb)
338 {
339 	struct carl9170_tx_info *arinfo = (void *)
340 		(IEEE80211_SKB_CB(skb))->rate_driver_data;
341 
342 	return kref_put(&arinfo->ref, carl9170_tx_release);
343 }
344 
345 /* Caller must hold the tid_info->lock & rcu_read_lock */
346 static void carl9170_tx_shift_bm(struct ar9170 *ar,
347 	struct carl9170_sta_tid *tid_info, u16 seq)
348 {
349 	u16 off;
350 
351 	off = SEQ_DIFF(seq, tid_info->bsn);
352 
353 	if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS))
354 		return;
355 
356 	/*
357 	 * Sanity check. For each MPDU we set the bit in bitmap and
358 	 * clear it once we received the tx_status.
359 	 * But if the bit is already cleared then we've been bitten
360 	 * by a bug.
361 	 */
362 	WARN_ON_ONCE(!test_and_clear_bit(off, tid_info->bitmap));
363 
364 	off = SEQ_DIFF(tid_info->snx, tid_info->bsn);
365 	if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS))
366 		return;
367 
368 	if (!bitmap_empty(tid_info->bitmap, off))
369 		off = find_first_bit(tid_info->bitmap, off);
370 
371 	tid_info->bsn += off;
372 	tid_info->bsn &= 0x0fff;
373 
374 	bitmap_shift_right(tid_info->bitmap, tid_info->bitmap,
375 			   off, CARL9170_BAW_BITS);
376 }
377 
378 static void carl9170_tx_status_process_ampdu(struct ar9170 *ar,
379 	struct sk_buff *skb, struct ieee80211_tx_info *txinfo)
380 {
381 	struct _carl9170_tx_superframe *super = (void *) skb->data;
382 	struct ieee80211_hdr *hdr = (void *) super->frame_data;
383 	struct ieee80211_sta *sta;
384 	struct carl9170_sta_info *sta_info;
385 	struct carl9170_sta_tid *tid_info;
386 	u8 tid;
387 
388 	if (!(txinfo->flags & IEEE80211_TX_CTL_AMPDU) ||
389 	    txinfo->flags & IEEE80211_TX_CTL_INJECTED)
390 		return;
391 
392 	rcu_read_lock();
393 	sta = __carl9170_get_tx_sta(ar, skb);
394 	if (unlikely(!sta))
395 		goto out_rcu;
396 
397 	tid = get_tid_h(hdr);
398 
399 	sta_info = (void *) sta->drv_priv;
400 	tid_info = rcu_dereference(sta_info->agg[tid]);
401 	if (!tid_info)
402 		goto out_rcu;
403 
404 	spin_lock_bh(&tid_info->lock);
405 	if (likely(tid_info->state >= CARL9170_TID_STATE_IDLE))
406 		carl9170_tx_shift_bm(ar, tid_info, get_seq_h(hdr));
407 
408 	if (sta_info->stats[tid].clear) {
409 		sta_info->stats[tid].clear = false;
410 		sta_info->stats[tid].req = false;
411 		sta_info->stats[tid].ampdu_len = 0;
412 		sta_info->stats[tid].ampdu_ack_len = 0;
413 	}
414 
415 	sta_info->stats[tid].ampdu_len++;
416 	if (txinfo->status.rates[0].count == 1)
417 		sta_info->stats[tid].ampdu_ack_len++;
418 
419 	if (!(txinfo->flags & IEEE80211_TX_STAT_ACK))
420 		sta_info->stats[tid].req = true;
421 
422 	if (super->f.mac_control & cpu_to_le16(AR9170_TX_MAC_IMM_BA)) {
423 		super->s.rix = sta_info->stats[tid].ampdu_len;
424 		super->s.cnt = sta_info->stats[tid].ampdu_ack_len;
425 		txinfo->flags |= IEEE80211_TX_STAT_AMPDU;
426 		if (sta_info->stats[tid].req)
427 			txinfo->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
428 
429 		sta_info->stats[tid].clear = true;
430 	}
431 	spin_unlock_bh(&tid_info->lock);
432 
433 out_rcu:
434 	rcu_read_unlock();
435 }
436 
437 static void carl9170_tx_bar_status(struct ar9170 *ar, struct sk_buff *skb,
438 	struct ieee80211_tx_info *tx_info)
439 {
440 	struct _carl9170_tx_superframe *super = (void *) skb->data;
441 	struct ieee80211_bar *bar = (void *) super->frame_data;
442 
443 	/*
444 	 * Unlike all other frames, the status report for BARs does
445 	 * not directly come from the hardware as it is incapable of
446 	 * matching a BA to a previously send BAR.
447 	 * Instead the RX-path will scan for incoming BAs and set the
448 	 * IEEE80211_TX_STAT_ACK if it sees one that was likely
449 	 * caused by a BAR from us.
450 	 */
451 
452 	if (unlikely(ieee80211_is_back_req(bar->frame_control)) &&
453 	   !(tx_info->flags & IEEE80211_TX_STAT_ACK)) {
454 		struct carl9170_bar_list_entry *entry;
455 		int queue = skb_get_queue_mapping(skb);
456 
457 		rcu_read_lock();
458 		list_for_each_entry_rcu(entry, &ar->bar_list[queue], list) {
459 			if (entry->skb == skb) {
460 				spin_lock_bh(&ar->bar_list_lock[queue]);
461 				list_del_rcu(&entry->list);
462 				spin_unlock_bh(&ar->bar_list_lock[queue]);
463 				kfree_rcu(entry, head);
464 				goto out;
465 			}
466 		}
467 
468 		WARN(1, "bar not found in %d - ra:%pM ta:%pM c:%x ssn:%x\n",
469 		       queue, bar->ra, bar->ta, bar->control,
470 			bar->start_seq_num);
471 out:
472 		rcu_read_unlock();
473 	}
474 }
475 
476 void carl9170_tx_status(struct ar9170 *ar, struct sk_buff *skb,
477 			const bool success)
478 {
479 	struct ieee80211_tx_info *txinfo;
480 
481 	carl9170_tx_accounting_free(ar, skb);
482 
483 	txinfo = IEEE80211_SKB_CB(skb);
484 
485 	carl9170_tx_bar_status(ar, skb, txinfo);
486 
487 	if (success)
488 		txinfo->flags |= IEEE80211_TX_STAT_ACK;
489 	else
490 		ar->tx_ack_failures++;
491 
492 	if (txinfo->flags & IEEE80211_TX_CTL_AMPDU)
493 		carl9170_tx_status_process_ampdu(ar, skb, txinfo);
494 
495 	carl9170_tx_ps_unblock(ar, skb);
496 	carl9170_tx_put_skb(skb);
497 }
498 
499 /* This function may be called form any context */
500 void carl9170_tx_callback(struct ar9170 *ar, struct sk_buff *skb)
501 {
502 	struct ieee80211_tx_info *txinfo = IEEE80211_SKB_CB(skb);
503 
504 	atomic_dec(&ar->tx_total_pending);
505 
506 	if (txinfo->flags & IEEE80211_TX_CTL_AMPDU)
507 		atomic_dec(&ar->tx_ampdu_upload);
508 
509 	if (carl9170_tx_put_skb(skb))
510 		tasklet_hi_schedule(&ar->usb_tasklet);
511 }
512 
513 static struct sk_buff *carl9170_get_queued_skb(struct ar9170 *ar, u8 cookie,
514 					       struct sk_buff_head *queue)
515 {
516 	struct sk_buff *skb;
517 
518 	spin_lock_bh(&queue->lock);
519 	skb_queue_walk(queue, skb) {
520 		struct _carl9170_tx_superframe *txc = (void *) skb->data;
521 
522 		if (txc->s.cookie != cookie)
523 			continue;
524 
525 		__skb_unlink(skb, queue);
526 		spin_unlock_bh(&queue->lock);
527 
528 		carl9170_release_dev_space(ar, skb);
529 		return skb;
530 	}
531 	spin_unlock_bh(&queue->lock);
532 
533 	return NULL;
534 }
535 
536 static void carl9170_tx_fill_rateinfo(struct ar9170 *ar, unsigned int rix,
537 	unsigned int tries, struct ieee80211_tx_info *txinfo)
538 {
539 	unsigned int i;
540 
541 	for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
542 		if (txinfo->status.rates[i].idx < 0)
543 			break;
544 
545 		if (i == rix) {
546 			txinfo->status.rates[i].count = tries;
547 			i++;
548 			break;
549 		}
550 	}
551 
552 	for (; i < IEEE80211_TX_MAX_RATES; i++) {
553 		txinfo->status.rates[i].idx = -1;
554 		txinfo->status.rates[i].count = 0;
555 	}
556 }
557 
558 static void carl9170_check_queue_stop_timeout(struct ar9170 *ar)
559 {
560 	int i;
561 	struct sk_buff *skb;
562 	struct ieee80211_tx_info *txinfo;
563 	struct carl9170_tx_info *arinfo;
564 	bool restart = false;
565 
566 	for (i = 0; i < ar->hw->queues; i++) {
567 		spin_lock_bh(&ar->tx_status[i].lock);
568 
569 		skb = skb_peek(&ar->tx_status[i]);
570 
571 		if (!skb)
572 			goto next;
573 
574 		txinfo = IEEE80211_SKB_CB(skb);
575 		arinfo = (void *) txinfo->rate_driver_data;
576 
577 		if (time_is_before_jiffies(arinfo->timeout +
578 		    msecs_to_jiffies(CARL9170_QUEUE_STUCK_TIMEOUT)) == true)
579 			restart = true;
580 
581 next:
582 		spin_unlock_bh(&ar->tx_status[i].lock);
583 	}
584 
585 	if (restart) {
586 		/*
587 		 * At least one queue has been stuck for long enough.
588 		 * Give the device a kick and hope it gets back to
589 		 * work.
590 		 *
591 		 * possible reasons may include:
592 		 *  - frames got lost/corrupted (bad connection to the device)
593 		 *  - stalled rx processing/usb controller hiccups
594 		 *  - firmware errors/bugs
595 		 *  - every bug you can think of.
596 		 *  - all bugs you can't...
597 		 *  - ...
598 		 */
599 		carl9170_restart(ar, CARL9170_RR_STUCK_TX);
600 	}
601 }
602 
603 static void carl9170_tx_ampdu_timeout(struct ar9170 *ar)
604 {
605 	struct carl9170_sta_tid *iter;
606 	struct sk_buff *skb;
607 	struct ieee80211_tx_info *txinfo;
608 	struct carl9170_tx_info *arinfo;
609 	struct ieee80211_sta *sta;
610 
611 	rcu_read_lock();
612 	list_for_each_entry_rcu(iter, &ar->tx_ampdu_list, list) {
613 		if (iter->state < CARL9170_TID_STATE_IDLE)
614 			continue;
615 
616 		spin_lock_bh(&iter->lock);
617 		skb = skb_peek(&iter->queue);
618 		if (!skb)
619 			goto unlock;
620 
621 		txinfo = IEEE80211_SKB_CB(skb);
622 		arinfo = (void *)txinfo->rate_driver_data;
623 		if (time_is_after_jiffies(arinfo->timeout +
624 		    msecs_to_jiffies(CARL9170_QUEUE_TIMEOUT)))
625 			goto unlock;
626 
627 		sta = iter->sta;
628 		if (WARN_ON(!sta))
629 			goto unlock;
630 
631 		ieee80211_stop_tx_ba_session(sta, iter->tid);
632 unlock:
633 		spin_unlock_bh(&iter->lock);
634 
635 	}
636 	rcu_read_unlock();
637 }
638 
639 void carl9170_tx_janitor(struct work_struct *work)
640 {
641 	struct ar9170 *ar = container_of(work, struct ar9170,
642 					 tx_janitor.work);
643 	if (!IS_STARTED(ar))
644 		return;
645 
646 	ar->tx_janitor_last_run = jiffies;
647 
648 	carl9170_check_queue_stop_timeout(ar);
649 	carl9170_tx_ampdu_timeout(ar);
650 
651 	if (!atomic_read(&ar->tx_total_queued))
652 		return;
653 
654 	ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor,
655 		msecs_to_jiffies(CARL9170_TX_TIMEOUT));
656 }
657 
658 static void __carl9170_tx_process_status(struct ar9170 *ar,
659 	const uint8_t cookie, const uint8_t info)
660 {
661 	struct sk_buff *skb;
662 	struct ieee80211_tx_info *txinfo;
663 	unsigned int r, t, q;
664 	bool success = true;
665 
666 	q = ar9170_qmap(info & CARL9170_TX_STATUS_QUEUE);
667 
668 	skb = carl9170_get_queued_skb(ar, cookie, &ar->tx_status[q]);
669 	if (!skb) {
670 		/*
671 		 * We have lost the race to another thread.
672 		 */
673 
674 		return ;
675 	}
676 
677 	txinfo = IEEE80211_SKB_CB(skb);
678 
679 	if (!(info & CARL9170_TX_STATUS_SUCCESS))
680 		success = false;
681 
682 	r = (info & CARL9170_TX_STATUS_RIX) >> CARL9170_TX_STATUS_RIX_S;
683 	t = (info & CARL9170_TX_STATUS_TRIES) >> CARL9170_TX_STATUS_TRIES_S;
684 
685 	carl9170_tx_fill_rateinfo(ar, r, t, txinfo);
686 	carl9170_tx_status(ar, skb, success);
687 }
688 
689 void carl9170_tx_process_status(struct ar9170 *ar,
690 				const struct carl9170_rsp *cmd)
691 {
692 	unsigned int i;
693 
694 	for (i = 0;  i < cmd->hdr.ext; i++) {
695 		if (WARN_ON(i > ((cmd->hdr.len / 2) + 1))) {
696 			print_hex_dump_bytes("UU:", DUMP_PREFIX_NONE,
697 					     (void *) cmd, cmd->hdr.len + 4);
698 			break;
699 		}
700 
701 		__carl9170_tx_process_status(ar, cmd->_tx_status[i].cookie,
702 					     cmd->_tx_status[i].info);
703 	}
704 }
705 
706 static void carl9170_tx_rate_tpc_chains(struct ar9170 *ar,
707 	struct ieee80211_tx_info *info,	struct ieee80211_tx_rate *txrate,
708 	unsigned int *phyrate, unsigned int *tpc, unsigned int *chains)
709 {
710 	struct ieee80211_rate *rate = NULL;
711 	u8 *txpower;
712 	unsigned int idx;
713 
714 	idx = txrate->idx;
715 	*tpc = 0;
716 	*phyrate = 0;
717 
718 	if (txrate->flags & IEEE80211_TX_RC_MCS) {
719 		if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
720 			/* +1 dBm for HT40 */
721 			*tpc += 2;
722 
723 			if (info->band == NL80211_BAND_2GHZ)
724 				txpower = ar->power_2G_ht40;
725 			else
726 				txpower = ar->power_5G_ht40;
727 		} else {
728 			if (info->band == NL80211_BAND_2GHZ)
729 				txpower = ar->power_2G_ht20;
730 			else
731 				txpower = ar->power_5G_ht20;
732 		}
733 
734 		*phyrate = txrate->idx;
735 		*tpc += txpower[idx & 7];
736 	} else {
737 		if (info->band == NL80211_BAND_2GHZ) {
738 			if (idx < 4)
739 				txpower = ar->power_2G_cck;
740 			else
741 				txpower = ar->power_2G_ofdm;
742 		} else {
743 			txpower = ar->power_5G_leg;
744 			idx += 4;
745 		}
746 
747 		rate = &__carl9170_ratetable[idx];
748 		*tpc += txpower[(rate->hw_value & 0x30) >> 4];
749 		*phyrate = rate->hw_value & 0xf;
750 	}
751 
752 	if (ar->eeprom.tx_mask == 1) {
753 		*chains = AR9170_TX_PHY_TXCHAIN_1;
754 	} else {
755 		if (!(txrate->flags & IEEE80211_TX_RC_MCS) &&
756 		    rate && rate->bitrate >= 360)
757 			*chains = AR9170_TX_PHY_TXCHAIN_1;
758 		else
759 			*chains = AR9170_TX_PHY_TXCHAIN_2;
760 	}
761 
762 	*tpc = min_t(unsigned int, *tpc, ar->hw->conf.power_level * 2);
763 }
764 
765 static __le32 carl9170_tx_physet(struct ar9170 *ar,
766 	struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate)
767 {
768 	unsigned int power = 0, chains = 0, phyrate = 0;
769 	__le32 tmp;
770 
771 	tmp = cpu_to_le32(0);
772 
773 	if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
774 		tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ <<
775 			AR9170_TX_PHY_BW_S);
776 	/* this works because 40 MHz is 2 and dup is 3 */
777 	if (txrate->flags & IEEE80211_TX_RC_DUP_DATA)
778 		tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ_DUP <<
779 			AR9170_TX_PHY_BW_S);
780 
781 	if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
782 		tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_GI);
783 
784 	if (txrate->flags & IEEE80211_TX_RC_MCS) {
785 		SET_VAL(AR9170_TX_PHY_MCS, phyrate, txrate->idx);
786 
787 		/* heavy clip control */
788 		tmp |= cpu_to_le32((txrate->idx & 0x7) <<
789 			AR9170_TX_PHY_TX_HEAVY_CLIP_S);
790 
791 		tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_HT);
792 
793 		/*
794 		 * green field preamble does not work.
795 		 *
796 		 * if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
797 		 * tmp |= cpu_to_le32(AR9170_TX_PHY_GREENFIELD);
798 		 */
799 	} else {
800 		if (info->band == NL80211_BAND_2GHZ) {
801 			if (txrate->idx <= AR9170_TX_PHY_RATE_CCK_11M)
802 				tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_CCK);
803 			else
804 				tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM);
805 		} else {
806 			tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM);
807 		}
808 
809 		/*
810 		 * short preamble seems to be broken too.
811 		 *
812 		 * if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
813 		 *	tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_PREAMBLE);
814 		 */
815 	}
816 	carl9170_tx_rate_tpc_chains(ar, info, txrate,
817 				    &phyrate, &power, &chains);
818 
819 	tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_MCS, phyrate));
820 	tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TX_PWR, power));
821 	tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TXCHAIN, chains));
822 	return tmp;
823 }
824 
825 static bool carl9170_tx_rts_check(struct ar9170 *ar,
826 				  struct ieee80211_tx_rate *rate,
827 				  bool ampdu, bool multi)
828 {
829 	switch (ar->erp_mode) {
830 	case CARL9170_ERP_AUTO:
831 		if (ampdu)
832 			break;
833 		fallthrough;
834 
835 	case CARL9170_ERP_MAC80211:
836 		if (!(rate->flags & IEEE80211_TX_RC_USE_RTS_CTS))
837 			break;
838 		fallthrough;
839 
840 	case CARL9170_ERP_RTS:
841 		if (likely(!multi))
842 			return true;
843 
844 	default:
845 		break;
846 	}
847 
848 	return false;
849 }
850 
851 static bool carl9170_tx_cts_check(struct ar9170 *ar,
852 				  struct ieee80211_tx_rate *rate)
853 {
854 	switch (ar->erp_mode) {
855 	case CARL9170_ERP_AUTO:
856 	case CARL9170_ERP_MAC80211:
857 		if (!(rate->flags & IEEE80211_TX_RC_USE_CTS_PROTECT))
858 			break;
859 		fallthrough;
860 
861 	case CARL9170_ERP_CTS:
862 		return true;
863 
864 	default:
865 		break;
866 	}
867 
868 	return false;
869 }
870 
871 static void carl9170_tx_get_rates(struct ar9170 *ar,
872 				  struct ieee80211_vif *vif,
873 				  struct ieee80211_sta *sta,
874 				  struct sk_buff *skb)
875 {
876 	struct ieee80211_tx_info *info;
877 
878 	BUILD_BUG_ON(IEEE80211_TX_MAX_RATES < CARL9170_TX_MAX_RATES);
879 	BUILD_BUG_ON(IEEE80211_TX_MAX_RATES > IEEE80211_TX_RATE_TABLE_SIZE);
880 
881 	info = IEEE80211_SKB_CB(skb);
882 
883 	ieee80211_get_tx_rates(vif, sta, skb,
884 			       info->control.rates,
885 			       IEEE80211_TX_MAX_RATES);
886 }
887 
888 static void carl9170_tx_apply_rateset(struct ar9170 *ar,
889 				      struct ieee80211_tx_info *sinfo,
890 				      struct sk_buff *skb)
891 {
892 	struct ieee80211_tx_rate *txrate;
893 	struct ieee80211_tx_info *info;
894 	struct _carl9170_tx_superframe *txc = (void *) skb->data;
895 	int i;
896 	bool ampdu;
897 	bool no_ack;
898 
899 	info = IEEE80211_SKB_CB(skb);
900 	ampdu = !!(info->flags & IEEE80211_TX_CTL_AMPDU);
901 	no_ack = !!(info->flags & IEEE80211_TX_CTL_NO_ACK);
902 
903 	/* Set the rate control probe flag for all (sub-) frames.
904 	 * This is because the TX_STATS_AMPDU flag is only set on
905 	 * the last frame, so it has to be inherited.
906 	 */
907 	info->flags |= (sinfo->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
908 
909 	/* NOTE: For the first rate, the ERP & AMPDU flags are directly
910 	 * taken from mac_control. For all fallback rate, the firmware
911 	 * updates the mac_control flags from the rate info field.
912 	 */
913 	for (i = 0; i < CARL9170_TX_MAX_RATES; i++) {
914 		__le32 phy_set;
915 
916 		txrate = &sinfo->control.rates[i];
917 		if (txrate->idx < 0)
918 			break;
919 
920 		phy_set = carl9170_tx_physet(ar, info, txrate);
921 		if (i == 0) {
922 			__le16 mac_tmp = cpu_to_le16(0);
923 
924 			/* first rate - part of the hw's frame header */
925 			txc->f.phy_control = phy_set;
926 
927 			if (ampdu && txrate->flags & IEEE80211_TX_RC_MCS)
928 				mac_tmp |= cpu_to_le16(AR9170_TX_MAC_AGGR);
929 
930 			if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack))
931 				mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_RTS);
932 			else if (carl9170_tx_cts_check(ar, txrate))
933 				mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_CTS);
934 
935 			txc->f.mac_control |= mac_tmp;
936 		} else {
937 			/* fallback rates are stored in the firmware's
938 			 * retry rate set array.
939 			 */
940 			txc->s.rr[i - 1] = phy_set;
941 		}
942 
943 		SET_VAL(CARL9170_TX_SUPER_RI_TRIES, txc->s.ri[i],
944 			txrate->count);
945 
946 		if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack))
947 			txc->s.ri[i] |= (AR9170_TX_MAC_PROT_RTS <<
948 				CARL9170_TX_SUPER_RI_ERP_PROT_S);
949 		else if (carl9170_tx_cts_check(ar, txrate))
950 			txc->s.ri[i] |= (AR9170_TX_MAC_PROT_CTS <<
951 				CARL9170_TX_SUPER_RI_ERP_PROT_S);
952 
953 		if (ampdu && (txrate->flags & IEEE80211_TX_RC_MCS))
954 			txc->s.ri[i] |= CARL9170_TX_SUPER_RI_AMPDU;
955 	}
956 }
957 
958 static int carl9170_tx_prepare(struct ar9170 *ar,
959 			       struct ieee80211_sta *sta,
960 			       struct sk_buff *skb)
961 {
962 	struct ieee80211_hdr *hdr;
963 	struct _carl9170_tx_superframe *txc;
964 	struct carl9170_vif_info *cvif;
965 	struct ieee80211_tx_info *info;
966 	struct carl9170_tx_info *arinfo;
967 	unsigned int hw_queue;
968 	__le16 mac_tmp;
969 	u16 len;
970 
971 	BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data));
972 	BUILD_BUG_ON(sizeof(struct _carl9170_tx_superdesc) !=
973 		     CARL9170_TX_SUPERDESC_LEN);
974 
975 	BUILD_BUG_ON(sizeof(struct _ar9170_tx_hwdesc) !=
976 		     AR9170_TX_HWDESC_LEN);
977 
978 	BUILD_BUG_ON(AR9170_MAX_VIRTUAL_MAC >
979 		((CARL9170_TX_SUPER_MISC_VIF_ID >>
980 		 CARL9170_TX_SUPER_MISC_VIF_ID_S) + 1));
981 
982 	hw_queue = ar9170_qmap(carl9170_get_queue(ar, skb));
983 
984 	hdr = (void *)skb->data;
985 	info = IEEE80211_SKB_CB(skb);
986 	len = skb->len;
987 
988 	/*
989 	 * Note: If the frame was sent through a monitor interface,
990 	 * the ieee80211_vif pointer can be NULL.
991 	 */
992 	if (likely(info->control.vif))
993 		cvif = (void *) info->control.vif->drv_priv;
994 	else
995 		cvif = NULL;
996 
997 	txc = skb_push(skb, sizeof(*txc));
998 	memset(txc, 0, sizeof(*txc));
999 
1000 	SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, txc->s.misc, hw_queue);
1001 
1002 	if (likely(cvif))
1003 		SET_VAL(CARL9170_TX_SUPER_MISC_VIF_ID, txc->s.misc, cvif->id);
1004 
1005 	if (unlikely(info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM))
1006 		txc->s.misc |= CARL9170_TX_SUPER_MISC_CAB;
1007 
1008 	if (unlikely(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
1009 		txc->s.misc |= CARL9170_TX_SUPER_MISC_ASSIGN_SEQ;
1010 
1011 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control)))
1012 		txc->s.misc |= CARL9170_TX_SUPER_MISC_FILL_IN_TSF;
1013 
1014 	mac_tmp = cpu_to_le16(AR9170_TX_MAC_HW_DURATION |
1015 			      AR9170_TX_MAC_BACKOFF);
1016 	mac_tmp |= cpu_to_le16((hw_queue << AR9170_TX_MAC_QOS_S) &
1017 			       AR9170_TX_MAC_QOS);
1018 
1019 	if (unlikely(info->flags & IEEE80211_TX_CTL_NO_ACK))
1020 		mac_tmp |= cpu_to_le16(AR9170_TX_MAC_NO_ACK);
1021 
1022 	if (info->control.hw_key) {
1023 		len += info->control.hw_key->icv_len;
1024 
1025 		switch (info->control.hw_key->cipher) {
1026 		case WLAN_CIPHER_SUITE_WEP40:
1027 		case WLAN_CIPHER_SUITE_WEP104:
1028 		case WLAN_CIPHER_SUITE_TKIP:
1029 			mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_RC4);
1030 			break;
1031 		case WLAN_CIPHER_SUITE_CCMP:
1032 			mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_AES);
1033 			break;
1034 		default:
1035 			WARN_ON(1);
1036 			goto err_out;
1037 		}
1038 	}
1039 
1040 	if (info->flags & IEEE80211_TX_CTL_AMPDU) {
1041 		unsigned int density, factor;
1042 
1043 		if (unlikely(!sta || !cvif))
1044 			goto err_out;
1045 
1046 		factor = min_t(unsigned int, 1u, sta->ht_cap.ampdu_factor);
1047 		density = sta->ht_cap.ampdu_density;
1048 
1049 		if (density) {
1050 			/*
1051 			 * Watch out!
1052 			 *
1053 			 * Otus uses slightly different density values than
1054 			 * those from the 802.11n spec.
1055 			 */
1056 
1057 			density = max_t(unsigned int, density + 1, 7u);
1058 		}
1059 
1060 		SET_VAL(CARL9170_TX_SUPER_AMPDU_DENSITY,
1061 			txc->s.ampdu_settings, density);
1062 
1063 		SET_VAL(CARL9170_TX_SUPER_AMPDU_FACTOR,
1064 			txc->s.ampdu_settings, factor);
1065 	}
1066 
1067 	txc->s.len = cpu_to_le16(skb->len);
1068 	txc->f.length = cpu_to_le16(len + FCS_LEN);
1069 	txc->f.mac_control = mac_tmp;
1070 
1071 	arinfo = (void *)info->rate_driver_data;
1072 	arinfo->timeout = jiffies;
1073 	arinfo->ar = ar;
1074 	kref_init(&arinfo->ref);
1075 	return 0;
1076 
1077 err_out:
1078 	skb_pull(skb, sizeof(*txc));
1079 	return -EINVAL;
1080 }
1081 
1082 static void carl9170_set_immba(struct ar9170 *ar, struct sk_buff *skb)
1083 {
1084 	struct _carl9170_tx_superframe *super;
1085 
1086 	super = (void *) skb->data;
1087 	super->f.mac_control |= cpu_to_le16(AR9170_TX_MAC_IMM_BA);
1088 }
1089 
1090 static void carl9170_set_ampdu_params(struct ar9170 *ar, struct sk_buff *skb)
1091 {
1092 	struct _carl9170_tx_superframe *super;
1093 	int tmp;
1094 
1095 	super = (void *) skb->data;
1096 
1097 	tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_DENSITY) <<
1098 		CARL9170_TX_SUPER_AMPDU_DENSITY_S;
1099 
1100 	/*
1101 	 * If you haven't noticed carl9170_tx_prepare has already filled
1102 	 * in all ampdu spacing & factor parameters.
1103 	 * Now it's the time to check whenever the settings have to be
1104 	 * updated by the firmware, or if everything is still the same.
1105 	 *
1106 	 * There's no sane way to handle different density values with
1107 	 * this hardware, so we may as well just do the compare in the
1108 	 * driver.
1109 	 */
1110 
1111 	if (tmp != ar->current_density) {
1112 		ar->current_density = tmp;
1113 		super->s.ampdu_settings |=
1114 			CARL9170_TX_SUPER_AMPDU_COMMIT_DENSITY;
1115 	}
1116 
1117 	tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_FACTOR) <<
1118 		CARL9170_TX_SUPER_AMPDU_FACTOR_S;
1119 
1120 	if (tmp != ar->current_factor) {
1121 		ar->current_factor = tmp;
1122 		super->s.ampdu_settings |=
1123 			CARL9170_TX_SUPER_AMPDU_COMMIT_FACTOR;
1124 	}
1125 }
1126 
1127 static void carl9170_tx_ampdu(struct ar9170 *ar)
1128 {
1129 	struct sk_buff_head agg;
1130 	struct carl9170_sta_tid *tid_info;
1131 	struct sk_buff *skb, *first;
1132 	struct ieee80211_tx_info *tx_info_first;
1133 	unsigned int i = 0, done_ampdus = 0;
1134 	u16 seq, queue, tmpssn;
1135 
1136 	atomic_inc(&ar->tx_ampdu_scheduler);
1137 	ar->tx_ampdu_schedule = false;
1138 
1139 	if (atomic_read(&ar->tx_ampdu_upload))
1140 		return;
1141 
1142 	if (!ar->tx_ampdu_list_len)
1143 		return;
1144 
1145 	__skb_queue_head_init(&agg);
1146 
1147 	rcu_read_lock();
1148 	tid_info = rcu_dereference(ar->tx_ampdu_iter);
1149 	if (WARN_ON_ONCE(!tid_info)) {
1150 		rcu_read_unlock();
1151 		return;
1152 	}
1153 
1154 retry:
1155 	list_for_each_entry_continue_rcu(tid_info, &ar->tx_ampdu_list, list) {
1156 		i++;
1157 
1158 		if (tid_info->state < CARL9170_TID_STATE_PROGRESS)
1159 			continue;
1160 
1161 		queue = TID_TO_WME_AC(tid_info->tid);
1162 
1163 		spin_lock_bh(&tid_info->lock);
1164 		if (tid_info->state != CARL9170_TID_STATE_XMIT)
1165 			goto processed;
1166 
1167 		tid_info->counter++;
1168 		first = skb_peek(&tid_info->queue);
1169 		tmpssn = carl9170_get_seq(first);
1170 		seq = tid_info->snx;
1171 
1172 		if (unlikely(tmpssn != seq)) {
1173 			tid_info->state = CARL9170_TID_STATE_IDLE;
1174 
1175 			goto processed;
1176 		}
1177 
1178 		tx_info_first = NULL;
1179 		while ((skb = skb_peek(&tid_info->queue))) {
1180 			/* strict 0, 1, ..., n - 1, n frame sequence order */
1181 			if (unlikely(carl9170_get_seq(skb) != seq))
1182 				break;
1183 
1184 			/* don't upload more than AMPDU FACTOR allows. */
1185 			if (unlikely(SEQ_DIFF(tid_info->snx, tid_info->bsn) >=
1186 			    (tid_info->max - 1)))
1187 				break;
1188 
1189 			if (!tx_info_first) {
1190 				carl9170_tx_get_rates(ar, tid_info->vif,
1191 						      tid_info->sta, first);
1192 				tx_info_first = IEEE80211_SKB_CB(first);
1193 			}
1194 
1195 			carl9170_tx_apply_rateset(ar, tx_info_first, skb);
1196 
1197 			atomic_inc(&ar->tx_ampdu_upload);
1198 			tid_info->snx = seq = SEQ_NEXT(seq);
1199 			__skb_unlink(skb, &tid_info->queue);
1200 
1201 			__skb_queue_tail(&agg, skb);
1202 
1203 			if (skb_queue_len(&agg) >= CARL9170_NUM_TX_AGG_MAX)
1204 				break;
1205 		}
1206 
1207 		if (skb_queue_empty(&tid_info->queue) ||
1208 		    carl9170_get_seq(skb_peek(&tid_info->queue)) !=
1209 		    tid_info->snx) {
1210 			/* stop TID, if A-MPDU frames are still missing,
1211 			 * or whenever the queue is empty.
1212 			 */
1213 
1214 			tid_info->state = CARL9170_TID_STATE_IDLE;
1215 		}
1216 		done_ampdus++;
1217 
1218 processed:
1219 		spin_unlock_bh(&tid_info->lock);
1220 
1221 		if (skb_queue_empty(&agg))
1222 			continue;
1223 
1224 		/* apply ampdu spacing & factor settings */
1225 		carl9170_set_ampdu_params(ar, skb_peek(&agg));
1226 
1227 		/* set aggregation push bit */
1228 		carl9170_set_immba(ar, skb_peek_tail(&agg));
1229 
1230 		spin_lock_bh(&ar->tx_pending[queue].lock);
1231 		skb_queue_splice_tail_init(&agg, &ar->tx_pending[queue]);
1232 		spin_unlock_bh(&ar->tx_pending[queue].lock);
1233 		ar->tx_schedule = true;
1234 	}
1235 	if ((done_ampdus++ == 0) && (i++ == 0))
1236 		goto retry;
1237 
1238 	rcu_assign_pointer(ar->tx_ampdu_iter, tid_info);
1239 	rcu_read_unlock();
1240 }
1241 
1242 static struct sk_buff *carl9170_tx_pick_skb(struct ar9170 *ar,
1243 					    struct sk_buff_head *queue)
1244 {
1245 	struct sk_buff *skb;
1246 	struct ieee80211_tx_info *info;
1247 	struct carl9170_tx_info *arinfo;
1248 
1249 	BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data));
1250 
1251 	spin_lock_bh(&queue->lock);
1252 	skb = skb_peek(queue);
1253 	if (unlikely(!skb))
1254 		goto err_unlock;
1255 
1256 	if (carl9170_alloc_dev_space(ar, skb))
1257 		goto err_unlock;
1258 
1259 	__skb_unlink(skb, queue);
1260 	spin_unlock_bh(&queue->lock);
1261 
1262 	info = IEEE80211_SKB_CB(skb);
1263 	arinfo = (void *) info->rate_driver_data;
1264 
1265 	arinfo->timeout = jiffies;
1266 	return skb;
1267 
1268 err_unlock:
1269 	spin_unlock_bh(&queue->lock);
1270 	return NULL;
1271 }
1272 
1273 void carl9170_tx_drop(struct ar9170 *ar, struct sk_buff *skb)
1274 {
1275 	struct _carl9170_tx_superframe *super;
1276 	uint8_t q = 0;
1277 
1278 	ar->tx_dropped++;
1279 
1280 	super = (void *)skb->data;
1281 	SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, q,
1282 		ar9170_qmap(carl9170_get_queue(ar, skb)));
1283 	__carl9170_tx_process_status(ar, super->s.cookie, q);
1284 }
1285 
1286 static bool carl9170_tx_ps_drop(struct ar9170 *ar, struct sk_buff *skb)
1287 {
1288 	struct ieee80211_sta *sta;
1289 	struct carl9170_sta_info *sta_info;
1290 	struct ieee80211_tx_info *tx_info;
1291 
1292 	rcu_read_lock();
1293 	sta = __carl9170_get_tx_sta(ar, skb);
1294 	if (!sta)
1295 		goto out_rcu;
1296 
1297 	sta_info = (void *) sta->drv_priv;
1298 	tx_info = IEEE80211_SKB_CB(skb);
1299 
1300 	if (unlikely(sta_info->sleeping) &&
1301 	    !(tx_info->flags & (IEEE80211_TX_CTL_NO_PS_BUFFER |
1302 				IEEE80211_TX_CTL_CLEAR_PS_FILT))) {
1303 		rcu_read_unlock();
1304 
1305 		if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
1306 			atomic_dec(&ar->tx_ampdu_upload);
1307 
1308 		tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1309 		carl9170_release_dev_space(ar, skb);
1310 		carl9170_tx_status(ar, skb, false);
1311 		return true;
1312 	}
1313 
1314 out_rcu:
1315 	rcu_read_unlock();
1316 	return false;
1317 }
1318 
1319 static void carl9170_bar_check(struct ar9170 *ar, struct sk_buff *skb)
1320 {
1321 	struct _carl9170_tx_superframe *super = (void *) skb->data;
1322 	struct ieee80211_bar *bar = (void *) super->frame_data;
1323 
1324 	if (unlikely(ieee80211_is_back_req(bar->frame_control)) &&
1325 	    skb->len >= sizeof(struct ieee80211_bar)) {
1326 		struct carl9170_bar_list_entry *entry;
1327 		unsigned int queue = skb_get_queue_mapping(skb);
1328 
1329 		entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
1330 		if (!WARN_ON_ONCE(!entry)) {
1331 			entry->skb = skb;
1332 			spin_lock_bh(&ar->bar_list_lock[queue]);
1333 			list_add_tail_rcu(&entry->list, &ar->bar_list[queue]);
1334 			spin_unlock_bh(&ar->bar_list_lock[queue]);
1335 		}
1336 	}
1337 }
1338 
1339 static void carl9170_tx(struct ar9170 *ar)
1340 {
1341 	struct sk_buff *skb;
1342 	unsigned int i, q;
1343 	bool schedule_garbagecollector = false;
1344 
1345 	ar->tx_schedule = false;
1346 
1347 	if (unlikely(!IS_STARTED(ar)))
1348 		return;
1349 
1350 	carl9170_usb_handle_tx_err(ar);
1351 
1352 	for (i = 0; i < ar->hw->queues; i++) {
1353 		while (!skb_queue_empty(&ar->tx_pending[i])) {
1354 			skb = carl9170_tx_pick_skb(ar, &ar->tx_pending[i]);
1355 			if (unlikely(!skb))
1356 				break;
1357 
1358 			if (unlikely(carl9170_tx_ps_drop(ar, skb)))
1359 				continue;
1360 
1361 			carl9170_bar_check(ar, skb);
1362 
1363 			atomic_inc(&ar->tx_total_pending);
1364 
1365 			q = __carl9170_get_queue(ar, i);
1366 			/*
1367 			 * NB: tx_status[i] vs. tx_status[q],
1368 			 * TODO: Move into pick_skb or alloc_dev_space.
1369 			 */
1370 			skb_queue_tail(&ar->tx_status[q], skb);
1371 
1372 			/*
1373 			 * increase ref count to "2".
1374 			 * Ref counting is the easiest way to solve the
1375 			 * race between the urb's completion routine:
1376 			 *	carl9170_tx_callback
1377 			 * and wlan tx status functions:
1378 			 *	carl9170_tx_status/janitor.
1379 			 */
1380 			carl9170_tx_get_skb(skb);
1381 
1382 			carl9170_usb_tx(ar, skb);
1383 			schedule_garbagecollector = true;
1384 		}
1385 	}
1386 
1387 	if (!schedule_garbagecollector)
1388 		return;
1389 
1390 	ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor,
1391 		msecs_to_jiffies(CARL9170_TX_TIMEOUT));
1392 }
1393 
1394 static bool carl9170_tx_ampdu_queue(struct ar9170 *ar,
1395 	struct ieee80211_sta *sta, struct sk_buff *skb,
1396 	struct ieee80211_tx_info *txinfo)
1397 {
1398 	struct carl9170_sta_info *sta_info;
1399 	struct carl9170_sta_tid *agg;
1400 	struct sk_buff *iter;
1401 	u16 tid, seq, qseq, off;
1402 	bool run = false;
1403 
1404 	tid = carl9170_get_tid(skb);
1405 	seq = carl9170_get_seq(skb);
1406 	sta_info = (void *) sta->drv_priv;
1407 
1408 	rcu_read_lock();
1409 	agg = rcu_dereference(sta_info->agg[tid]);
1410 
1411 	if (!agg)
1412 		goto err_unlock_rcu;
1413 
1414 	spin_lock_bh(&agg->lock);
1415 	if (unlikely(agg->state < CARL9170_TID_STATE_IDLE))
1416 		goto err_unlock;
1417 
1418 	/* check if sequence is within the BA window */
1419 	if (unlikely(!BAW_WITHIN(agg->bsn, CARL9170_BAW_BITS, seq)))
1420 		goto err_unlock;
1421 
1422 	if (WARN_ON_ONCE(!BAW_WITHIN(agg->snx, CARL9170_BAW_BITS, seq)))
1423 		goto err_unlock;
1424 
1425 	off = SEQ_DIFF(seq, agg->bsn);
1426 	if (WARN_ON_ONCE(test_and_set_bit(off, agg->bitmap)))
1427 		goto err_unlock;
1428 
1429 	if (likely(BAW_WITHIN(agg->hsn, CARL9170_BAW_BITS, seq))) {
1430 		__skb_queue_tail(&agg->queue, skb);
1431 		agg->hsn = seq;
1432 		goto queued;
1433 	}
1434 
1435 	skb_queue_reverse_walk(&agg->queue, iter) {
1436 		qseq = carl9170_get_seq(iter);
1437 
1438 		if (BAW_WITHIN(qseq, CARL9170_BAW_BITS, seq)) {
1439 			__skb_queue_after(&agg->queue, iter, skb);
1440 			goto queued;
1441 		}
1442 	}
1443 
1444 	__skb_queue_head(&agg->queue, skb);
1445 queued:
1446 
1447 	if (unlikely(agg->state != CARL9170_TID_STATE_XMIT)) {
1448 		if (agg->snx == carl9170_get_seq(skb_peek(&agg->queue))) {
1449 			agg->state = CARL9170_TID_STATE_XMIT;
1450 			run = true;
1451 		}
1452 	}
1453 
1454 	spin_unlock_bh(&agg->lock);
1455 	rcu_read_unlock();
1456 
1457 	return run;
1458 
1459 err_unlock:
1460 	spin_unlock_bh(&agg->lock);
1461 
1462 err_unlock_rcu:
1463 	rcu_read_unlock();
1464 	txinfo->flags &= ~IEEE80211_TX_CTL_AMPDU;
1465 	carl9170_tx_status(ar, skb, false);
1466 	ar->tx_dropped++;
1467 	return false;
1468 }
1469 
1470 void carl9170_op_tx(struct ieee80211_hw *hw,
1471 		    struct ieee80211_tx_control *control,
1472 		    struct sk_buff *skb)
1473 {
1474 	struct ar9170 *ar = hw->priv;
1475 	struct ieee80211_tx_info *info;
1476 	struct ieee80211_sta *sta = control->sta;
1477 	struct ieee80211_vif *vif;
1478 	bool run;
1479 
1480 	if (unlikely(!IS_STARTED(ar)))
1481 		goto err_free;
1482 
1483 	info = IEEE80211_SKB_CB(skb);
1484 	vif = info->control.vif;
1485 
1486 	if (unlikely(carl9170_tx_prepare(ar, sta, skb)))
1487 		goto err_free;
1488 
1489 	carl9170_tx_accounting(ar, skb);
1490 	/*
1491 	 * from now on, one has to use carl9170_tx_status to free
1492 	 * all ressouces which are associated with the frame.
1493 	 */
1494 
1495 	if (sta) {
1496 		struct carl9170_sta_info *stai = (void *) sta->drv_priv;
1497 		atomic_inc(&stai->pending_frames);
1498 	}
1499 
1500 	if (info->flags & IEEE80211_TX_CTL_AMPDU) {
1501 		/* to static code analyzers and reviewers:
1502 		 * mac80211 guarantees that a valid "sta"
1503 		 * reference is present, if a frame is to
1504 		 * be part of an ampdu. Hence any extra
1505 		 * sta == NULL checks are redundant in this
1506 		 * special case.
1507 		 */
1508 		run = carl9170_tx_ampdu_queue(ar, sta, skb, info);
1509 		if (run)
1510 			carl9170_tx_ampdu(ar);
1511 
1512 	} else {
1513 		unsigned int queue = skb_get_queue_mapping(skb);
1514 
1515 		carl9170_tx_get_rates(ar, vif, sta, skb);
1516 		carl9170_tx_apply_rateset(ar, info, skb);
1517 		skb_queue_tail(&ar->tx_pending[queue], skb);
1518 	}
1519 
1520 	carl9170_tx(ar);
1521 	return;
1522 
1523 err_free:
1524 	ar->tx_dropped++;
1525 	ieee80211_free_txskb(ar->hw, skb);
1526 }
1527 
1528 void carl9170_tx_scheduler(struct ar9170 *ar)
1529 {
1530 
1531 	if (ar->tx_ampdu_schedule)
1532 		carl9170_tx_ampdu(ar);
1533 
1534 	if (ar->tx_schedule)
1535 		carl9170_tx(ar);
1536 }
1537 
1538 /* caller has to take rcu_read_lock */
1539 static struct carl9170_vif_info *carl9170_pick_beaconing_vif(struct ar9170 *ar)
1540 {
1541 	struct carl9170_vif_info *cvif;
1542 	int i = 1;
1543 
1544 	/* The AR9170 hardware has no fancy beacon queue or some
1545 	 * other scheduling mechanism. So, the driver has to make
1546 	 * due by setting the two beacon timers (pretbtt and tbtt)
1547 	 * once and then swapping the beacon address in the HW's
1548 	 * register file each time the pretbtt fires.
1549 	 */
1550 
1551 	cvif = rcu_dereference(ar->beacon_iter);
1552 	if (ar->vifs > 0 && cvif) {
1553 		do {
1554 			list_for_each_entry_continue_rcu(cvif, &ar->vif_list,
1555 							 list) {
1556 				if (cvif->active && cvif->enable_beacon)
1557 					goto out;
1558 			}
1559 		} while (ar->beacon_enabled && i--);
1560 	}
1561 
1562 out:
1563 	RCU_INIT_POINTER(ar->beacon_iter, cvif);
1564 	return cvif;
1565 }
1566 
1567 static bool carl9170_tx_beacon_physet(struct ar9170 *ar, struct sk_buff *skb,
1568 				      u32 *ht1, u32 *plcp)
1569 {
1570 	struct ieee80211_tx_info *txinfo;
1571 	struct ieee80211_tx_rate *rate;
1572 	unsigned int power, chains;
1573 	bool ht_rate;
1574 
1575 	txinfo = IEEE80211_SKB_CB(skb);
1576 	rate = &txinfo->control.rates[0];
1577 	ht_rate = !!(txinfo->control.rates[0].flags & IEEE80211_TX_RC_MCS);
1578 	carl9170_tx_rate_tpc_chains(ar, txinfo, rate, plcp, &power, &chains);
1579 
1580 	*ht1 = AR9170_MAC_BCN_HT1_TX_ANT0;
1581 	if (chains == AR9170_TX_PHY_TXCHAIN_2)
1582 		*ht1 |= AR9170_MAC_BCN_HT1_TX_ANT1;
1583 	SET_VAL(AR9170_MAC_BCN_HT1_PWR_CTRL, *ht1, 7);
1584 	SET_VAL(AR9170_MAC_BCN_HT1_TPC, *ht1, power);
1585 	SET_VAL(AR9170_MAC_BCN_HT1_CHAIN_MASK, *ht1, chains);
1586 
1587 	if (ht_rate) {
1588 		*ht1 |= AR9170_MAC_BCN_HT1_HT_EN;
1589 		if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
1590 			*plcp |= AR9170_MAC_BCN_HT2_SGI;
1591 
1592 		if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
1593 			*ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_SHARED;
1594 			*plcp |= AR9170_MAC_BCN_HT2_BW40;
1595 		} else if (rate->flags & IEEE80211_TX_RC_DUP_DATA) {
1596 			*ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_DUP;
1597 			*plcp |= AR9170_MAC_BCN_HT2_BW40;
1598 		}
1599 
1600 		SET_VAL(AR9170_MAC_BCN_HT2_LEN, *plcp, skb->len + FCS_LEN);
1601 	} else {
1602 		if (*plcp <= AR9170_TX_PHY_RATE_CCK_11M)
1603 			*plcp |= ((skb->len + FCS_LEN) << (3 + 16)) + 0x0400;
1604 		else
1605 			*plcp |= ((skb->len + FCS_LEN) << 16) + 0x0010;
1606 	}
1607 
1608 	return ht_rate;
1609 }
1610 
1611 int carl9170_update_beacon(struct ar9170 *ar, const bool submit)
1612 {
1613 	struct sk_buff *skb = NULL;
1614 	struct carl9170_vif_info *cvif;
1615 	__le32 *data, *old = NULL;
1616 	u32 word, ht1, plcp, off, addr, len;
1617 	int i = 0, err = 0;
1618 	bool ht_rate;
1619 
1620 	rcu_read_lock();
1621 	cvif = carl9170_pick_beaconing_vif(ar);
1622 	if (!cvif)
1623 		goto out_unlock;
1624 
1625 	skb = ieee80211_beacon_get_tim(ar->hw, carl9170_get_vif(cvif),
1626 		NULL, NULL);
1627 
1628 	if (!skb) {
1629 		err = -ENOMEM;
1630 		goto err_free;
1631 	}
1632 
1633 	spin_lock_bh(&ar->beacon_lock);
1634 	data = (__le32 *)skb->data;
1635 	if (cvif->beacon)
1636 		old = (__le32 *)cvif->beacon->data;
1637 
1638 	off = cvif->id * AR9170_MAC_BCN_LENGTH_MAX;
1639 	addr = ar->fw.beacon_addr + off;
1640 	len = roundup(skb->len + FCS_LEN, 4);
1641 
1642 	if ((off + len) > ar->fw.beacon_max_len) {
1643 		if (net_ratelimit()) {
1644 			wiphy_err(ar->hw->wiphy, "beacon does not "
1645 				  "fit into device memory!\n");
1646 		}
1647 		err = -EINVAL;
1648 		goto err_unlock;
1649 	}
1650 
1651 	if (len > AR9170_MAC_BCN_LENGTH_MAX) {
1652 		if (net_ratelimit()) {
1653 			wiphy_err(ar->hw->wiphy, "no support for beacons "
1654 				"bigger than %d (yours:%d).\n",
1655 				 AR9170_MAC_BCN_LENGTH_MAX, len);
1656 		}
1657 
1658 		err = -EMSGSIZE;
1659 		goto err_unlock;
1660 	}
1661 
1662 	ht_rate = carl9170_tx_beacon_physet(ar, skb, &ht1, &plcp);
1663 
1664 	carl9170_async_regwrite_begin(ar);
1665 	carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT1, ht1);
1666 	if (ht_rate)
1667 		carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT2, plcp);
1668 	else
1669 		carl9170_async_regwrite(AR9170_MAC_REG_BCN_PLCP, plcp);
1670 
1671 	for (i = 0; i < DIV_ROUND_UP(skb->len, 4); i++) {
1672 		/*
1673 		 * XXX: This accesses beyond skb data for up
1674 		 *	to the last 3 bytes!!
1675 		 */
1676 
1677 		if (old && (data[i] == old[i]))
1678 			continue;
1679 
1680 		word = le32_to_cpu(data[i]);
1681 		carl9170_async_regwrite(addr + 4 * i, word);
1682 	}
1683 	carl9170_async_regwrite_finish();
1684 
1685 	dev_kfree_skb_any(cvif->beacon);
1686 	cvif->beacon = NULL;
1687 
1688 	err = carl9170_async_regwrite_result();
1689 	if (!err)
1690 		cvif->beacon = skb;
1691 	spin_unlock_bh(&ar->beacon_lock);
1692 	if (err)
1693 		goto err_free;
1694 
1695 	if (submit) {
1696 		err = carl9170_bcn_ctrl(ar, cvif->id,
1697 					CARL9170_BCN_CTRL_CAB_TRIGGER,
1698 					addr, skb->len + FCS_LEN);
1699 
1700 		if (err)
1701 			goto err_free;
1702 	}
1703 out_unlock:
1704 	rcu_read_unlock();
1705 	return 0;
1706 
1707 err_unlock:
1708 	spin_unlock_bh(&ar->beacon_lock);
1709 
1710 err_free:
1711 	rcu_read_unlock();
1712 	dev_kfree_skb_any(skb);
1713 	return err;
1714 }
1715