1 /* 2 * Atheros CARL9170 driver 3 * 4 * 802.11 xmit & status routines 5 * 6 * Copyright 2008, Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2009, 2010, Christian Lamparter <chunkeey@googlemail.com> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; see the file COPYING. If not, see 21 * http://www.gnu.org/licenses/. 22 * 23 * This file incorporates work covered by the following copyright and 24 * permission notice: 25 * Copyright (c) 2007-2008 Atheros Communications, Inc. 26 * 27 * Permission to use, copy, modify, and/or distribute this software for any 28 * purpose with or without fee is hereby granted, provided that the above 29 * copyright notice and this permission notice appear in all copies. 30 * 31 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 32 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 33 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 34 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 35 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 36 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 37 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 38 */ 39 40 #include <linux/init.h> 41 #include <linux/slab.h> 42 #include <linux/module.h> 43 #include <linux/etherdevice.h> 44 #include <net/mac80211.h> 45 #include "carl9170.h" 46 #include "hw.h" 47 #include "cmd.h" 48 49 static inline unsigned int __carl9170_get_queue(struct ar9170 *ar, 50 unsigned int queue) 51 { 52 if (unlikely(modparam_noht)) { 53 return queue; 54 } else { 55 /* 56 * This is just another workaround, until 57 * someone figures out how to get QoS and 58 * AMPDU to play nicely together. 59 */ 60 61 return 2; /* AC_BE */ 62 } 63 } 64 65 static inline unsigned int carl9170_get_queue(struct ar9170 *ar, 66 struct sk_buff *skb) 67 { 68 return __carl9170_get_queue(ar, skb_get_queue_mapping(skb)); 69 } 70 71 static bool is_mem_full(struct ar9170 *ar) 72 { 73 return (DIV_ROUND_UP(IEEE80211_MAX_FRAME_LEN, ar->fw.mem_block_size) > 74 atomic_read(&ar->mem_free_blocks)); 75 } 76 77 static void carl9170_tx_accounting(struct ar9170 *ar, struct sk_buff *skb) 78 { 79 int queue, i; 80 bool mem_full; 81 82 atomic_inc(&ar->tx_total_queued); 83 84 queue = skb_get_queue_mapping(skb); 85 spin_lock_bh(&ar->tx_stats_lock); 86 87 /* 88 * The driver has to accept the frame, regardless if the queue is 89 * full to the brim, or not. We have to do the queuing internally, 90 * since mac80211 assumes that a driver which can operate with 91 * aggregated frames does not reject frames for this reason. 92 */ 93 ar->tx_stats[queue].len++; 94 ar->tx_stats[queue].count++; 95 96 mem_full = is_mem_full(ar); 97 for (i = 0; i < ar->hw->queues; i++) { 98 if (mem_full || ar->tx_stats[i].len >= ar->tx_stats[i].limit) { 99 ieee80211_stop_queue(ar->hw, i); 100 ar->queue_stop_timeout[i] = jiffies; 101 } 102 } 103 104 spin_unlock_bh(&ar->tx_stats_lock); 105 } 106 107 /* needs rcu_read_lock */ 108 static struct ieee80211_sta *__carl9170_get_tx_sta(struct ar9170 *ar, 109 struct sk_buff *skb) 110 { 111 struct _carl9170_tx_superframe *super = (void *) skb->data; 112 struct ieee80211_hdr *hdr = (void *) super->frame_data; 113 struct ieee80211_vif *vif; 114 unsigned int vif_id; 115 116 vif_id = (super->s.misc & CARL9170_TX_SUPER_MISC_VIF_ID) >> 117 CARL9170_TX_SUPER_MISC_VIF_ID_S; 118 119 if (WARN_ON_ONCE(vif_id >= AR9170_MAX_VIRTUAL_MAC)) 120 return NULL; 121 122 vif = rcu_dereference(ar->vif_priv[vif_id].vif); 123 if (unlikely(!vif)) 124 return NULL; 125 126 /* 127 * Normally we should use wrappers like ieee80211_get_DA to get 128 * the correct peer ieee80211_sta. 129 * 130 * But there is a problem with indirect traffic (broadcasts, or 131 * data which is designated for other stations) in station mode. 132 * The frame will be directed to the AP for distribution and not 133 * to the actual destination. 134 */ 135 136 return ieee80211_find_sta(vif, hdr->addr1); 137 } 138 139 static void carl9170_tx_ps_unblock(struct ar9170 *ar, struct sk_buff *skb) 140 { 141 struct ieee80211_sta *sta; 142 struct carl9170_sta_info *sta_info; 143 144 rcu_read_lock(); 145 sta = __carl9170_get_tx_sta(ar, skb); 146 if (unlikely(!sta)) 147 goto out_rcu; 148 149 sta_info = (struct carl9170_sta_info *) sta->drv_priv; 150 if (atomic_dec_return(&sta_info->pending_frames) == 0) 151 ieee80211_sta_block_awake(ar->hw, sta, false); 152 153 out_rcu: 154 rcu_read_unlock(); 155 } 156 157 static void carl9170_tx_accounting_free(struct ar9170 *ar, struct sk_buff *skb) 158 { 159 int queue; 160 161 queue = skb_get_queue_mapping(skb); 162 163 spin_lock_bh(&ar->tx_stats_lock); 164 165 ar->tx_stats[queue].len--; 166 167 if (!is_mem_full(ar)) { 168 unsigned int i; 169 for (i = 0; i < ar->hw->queues; i++) { 170 if (ar->tx_stats[i].len >= CARL9170_NUM_TX_LIMIT_SOFT) 171 continue; 172 173 if (ieee80211_queue_stopped(ar->hw, i)) { 174 unsigned long tmp; 175 176 tmp = jiffies - ar->queue_stop_timeout[i]; 177 if (tmp > ar->max_queue_stop_timeout[i]) 178 ar->max_queue_stop_timeout[i] = tmp; 179 } 180 181 ieee80211_wake_queue(ar->hw, i); 182 } 183 } 184 185 spin_unlock_bh(&ar->tx_stats_lock); 186 187 if (atomic_dec_and_test(&ar->tx_total_queued)) 188 complete(&ar->tx_flush); 189 } 190 191 static int carl9170_alloc_dev_space(struct ar9170 *ar, struct sk_buff *skb) 192 { 193 struct _carl9170_tx_superframe *super = (void *) skb->data; 194 unsigned int chunks; 195 int cookie = -1; 196 197 atomic_inc(&ar->mem_allocs); 198 199 chunks = DIV_ROUND_UP(skb->len, ar->fw.mem_block_size); 200 if (unlikely(atomic_sub_return(chunks, &ar->mem_free_blocks) < 0)) { 201 atomic_add(chunks, &ar->mem_free_blocks); 202 return -ENOSPC; 203 } 204 205 spin_lock_bh(&ar->mem_lock); 206 cookie = bitmap_find_free_region(ar->mem_bitmap, ar->fw.mem_blocks, 0); 207 spin_unlock_bh(&ar->mem_lock); 208 209 if (unlikely(cookie < 0)) { 210 atomic_add(chunks, &ar->mem_free_blocks); 211 return -ENOSPC; 212 } 213 214 super = (void *) skb->data; 215 216 /* 217 * Cookie #0 serves two special purposes: 218 * 1. The firmware might use it generate BlockACK frames 219 * in responds of an incoming BlockAckReqs. 220 * 221 * 2. Prevent double-free bugs. 222 */ 223 super->s.cookie = (u8) cookie + 1; 224 return 0; 225 } 226 227 static void carl9170_release_dev_space(struct ar9170 *ar, struct sk_buff *skb) 228 { 229 struct _carl9170_tx_superframe *super = (void *) skb->data; 230 int cookie; 231 232 /* make a local copy of the cookie */ 233 cookie = super->s.cookie; 234 /* invalidate cookie */ 235 super->s.cookie = 0; 236 237 /* 238 * Do a out-of-bounds check on the cookie: 239 * 240 * * cookie "0" is reserved and won't be assigned to any 241 * out-going frame. Internally however, it is used to 242 * mark no longer/un-accounted frames and serves as a 243 * cheap way of preventing frames from being freed 244 * twice by _accident_. NB: There is a tiny race... 245 * 246 * * obviously, cookie number is limited by the amount 247 * of available memory blocks, so the number can 248 * never execeed the mem_blocks count. 249 */ 250 if (unlikely(WARN_ON_ONCE(cookie == 0) || 251 WARN_ON_ONCE(cookie > ar->fw.mem_blocks))) 252 return; 253 254 atomic_add(DIV_ROUND_UP(skb->len, ar->fw.mem_block_size), 255 &ar->mem_free_blocks); 256 257 spin_lock_bh(&ar->mem_lock); 258 bitmap_release_region(ar->mem_bitmap, cookie - 1, 0); 259 spin_unlock_bh(&ar->mem_lock); 260 } 261 262 /* Called from any context */ 263 static void carl9170_tx_release(struct kref *ref) 264 { 265 struct ar9170 *ar; 266 struct carl9170_tx_info *arinfo; 267 struct ieee80211_tx_info *txinfo; 268 struct sk_buff *skb; 269 270 arinfo = container_of(ref, struct carl9170_tx_info, ref); 271 txinfo = container_of((void *) arinfo, struct ieee80211_tx_info, 272 rate_driver_data); 273 skb = container_of((void *) txinfo, struct sk_buff, cb); 274 275 ar = arinfo->ar; 276 if (WARN_ON_ONCE(!ar)) 277 return; 278 279 BUILD_BUG_ON( 280 offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23); 281 282 memset(&txinfo->status.ampdu_ack_len, 0, 283 sizeof(struct ieee80211_tx_info) - 284 offsetof(struct ieee80211_tx_info, status.ampdu_ack_len)); 285 286 if (atomic_read(&ar->tx_total_queued)) 287 ar->tx_schedule = true; 288 289 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) { 290 if (!atomic_read(&ar->tx_ampdu_upload)) 291 ar->tx_ampdu_schedule = true; 292 293 if (txinfo->flags & IEEE80211_TX_STAT_AMPDU) { 294 struct _carl9170_tx_superframe *super; 295 296 super = (void *)skb->data; 297 txinfo->status.ampdu_len = super->s.rix; 298 txinfo->status.ampdu_ack_len = super->s.cnt; 299 } else if (txinfo->flags & IEEE80211_TX_STAT_ACK) { 300 /* 301 * drop redundant tx_status reports: 302 * 303 * 1. ampdu_ack_len of the final tx_status does 304 * include the feedback of this particular frame. 305 * 306 * 2. tx_status_irqsafe only queues up to 128 307 * tx feedback reports and discards the rest. 308 * 309 * 3. minstrel_ht is picky, it only accepts 310 * reports of frames with the TX_STATUS_AMPDU flag. 311 */ 312 313 dev_kfree_skb_any(skb); 314 return; 315 } else { 316 /* 317 * Frame has failed, but we want to keep it in 318 * case it was lost due to a power-state 319 * transition. 320 */ 321 } 322 } 323 324 skb_pull(skb, sizeof(struct _carl9170_tx_superframe)); 325 ieee80211_tx_status_irqsafe(ar->hw, skb); 326 } 327 328 void carl9170_tx_get_skb(struct sk_buff *skb) 329 { 330 struct carl9170_tx_info *arinfo = (void *) 331 (IEEE80211_SKB_CB(skb))->rate_driver_data; 332 kref_get(&arinfo->ref); 333 } 334 335 int carl9170_tx_put_skb(struct sk_buff *skb) 336 { 337 struct carl9170_tx_info *arinfo = (void *) 338 (IEEE80211_SKB_CB(skb))->rate_driver_data; 339 340 return kref_put(&arinfo->ref, carl9170_tx_release); 341 } 342 343 /* Caller must hold the tid_info->lock & rcu_read_lock */ 344 static void carl9170_tx_shift_bm(struct ar9170 *ar, 345 struct carl9170_sta_tid *tid_info, u16 seq) 346 { 347 u16 off; 348 349 off = SEQ_DIFF(seq, tid_info->bsn); 350 351 if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS)) 352 return; 353 354 /* 355 * Sanity check. For each MPDU we set the bit in bitmap and 356 * clear it once we received the tx_status. 357 * But if the bit is already cleared then we've been bitten 358 * by a bug. 359 */ 360 WARN_ON_ONCE(!test_and_clear_bit(off, tid_info->bitmap)); 361 362 off = SEQ_DIFF(tid_info->snx, tid_info->bsn); 363 if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS)) 364 return; 365 366 if (!bitmap_empty(tid_info->bitmap, off)) 367 off = find_first_bit(tid_info->bitmap, off); 368 369 tid_info->bsn += off; 370 tid_info->bsn &= 0x0fff; 371 372 bitmap_shift_right(tid_info->bitmap, tid_info->bitmap, 373 off, CARL9170_BAW_BITS); 374 } 375 376 static void carl9170_tx_status_process_ampdu(struct ar9170 *ar, 377 struct sk_buff *skb, struct ieee80211_tx_info *txinfo) 378 { 379 struct _carl9170_tx_superframe *super = (void *) skb->data; 380 struct ieee80211_hdr *hdr = (void *) super->frame_data; 381 struct ieee80211_sta *sta; 382 struct carl9170_sta_info *sta_info; 383 struct carl9170_sta_tid *tid_info; 384 u8 tid; 385 386 if (!(txinfo->flags & IEEE80211_TX_CTL_AMPDU) || 387 txinfo->flags & IEEE80211_TX_CTL_INJECTED || 388 (!(super->f.mac_control & cpu_to_le16(AR9170_TX_MAC_AGGR)))) 389 return; 390 391 rcu_read_lock(); 392 sta = __carl9170_get_tx_sta(ar, skb); 393 if (unlikely(!sta)) 394 goto out_rcu; 395 396 tid = get_tid_h(hdr); 397 398 sta_info = (void *) sta->drv_priv; 399 tid_info = rcu_dereference(sta_info->agg[tid]); 400 if (!tid_info) 401 goto out_rcu; 402 403 spin_lock_bh(&tid_info->lock); 404 if (likely(tid_info->state >= CARL9170_TID_STATE_IDLE)) 405 carl9170_tx_shift_bm(ar, tid_info, get_seq_h(hdr)); 406 407 if (sta_info->stats[tid].clear) { 408 sta_info->stats[tid].clear = false; 409 sta_info->stats[tid].req = false; 410 sta_info->stats[tid].ampdu_len = 0; 411 sta_info->stats[tid].ampdu_ack_len = 0; 412 } 413 414 sta_info->stats[tid].ampdu_len++; 415 if (txinfo->status.rates[0].count == 1) 416 sta_info->stats[tid].ampdu_ack_len++; 417 418 if (!(txinfo->flags & IEEE80211_TX_STAT_ACK)) 419 sta_info->stats[tid].req = true; 420 421 if (super->f.mac_control & cpu_to_le16(AR9170_TX_MAC_IMM_BA)) { 422 super->s.rix = sta_info->stats[tid].ampdu_len; 423 super->s.cnt = sta_info->stats[tid].ampdu_ack_len; 424 txinfo->flags |= IEEE80211_TX_STAT_AMPDU; 425 if (sta_info->stats[tid].req) 426 txinfo->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK; 427 428 sta_info->stats[tid].clear = true; 429 } 430 spin_unlock_bh(&tid_info->lock); 431 432 out_rcu: 433 rcu_read_unlock(); 434 } 435 436 void carl9170_tx_status(struct ar9170 *ar, struct sk_buff *skb, 437 const bool success) 438 { 439 struct ieee80211_tx_info *txinfo; 440 441 carl9170_tx_accounting_free(ar, skb); 442 443 txinfo = IEEE80211_SKB_CB(skb); 444 445 if (success) 446 txinfo->flags |= IEEE80211_TX_STAT_ACK; 447 else 448 ar->tx_ack_failures++; 449 450 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) 451 carl9170_tx_status_process_ampdu(ar, skb, txinfo); 452 453 carl9170_tx_ps_unblock(ar, skb); 454 carl9170_tx_put_skb(skb); 455 } 456 457 /* This function may be called form any context */ 458 void carl9170_tx_callback(struct ar9170 *ar, struct sk_buff *skb) 459 { 460 struct ieee80211_tx_info *txinfo = IEEE80211_SKB_CB(skb); 461 462 atomic_dec(&ar->tx_total_pending); 463 464 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) 465 atomic_dec(&ar->tx_ampdu_upload); 466 467 if (carl9170_tx_put_skb(skb)) 468 tasklet_hi_schedule(&ar->usb_tasklet); 469 } 470 471 static struct sk_buff *carl9170_get_queued_skb(struct ar9170 *ar, u8 cookie, 472 struct sk_buff_head *queue) 473 { 474 struct sk_buff *skb; 475 476 spin_lock_bh(&queue->lock); 477 skb_queue_walk(queue, skb) { 478 struct _carl9170_tx_superframe *txc = (void *) skb->data; 479 480 if (txc->s.cookie != cookie) 481 continue; 482 483 __skb_unlink(skb, queue); 484 spin_unlock_bh(&queue->lock); 485 486 carl9170_release_dev_space(ar, skb); 487 return skb; 488 } 489 spin_unlock_bh(&queue->lock); 490 491 return NULL; 492 } 493 494 static void carl9170_tx_fill_rateinfo(struct ar9170 *ar, unsigned int rix, 495 unsigned int tries, struct ieee80211_tx_info *txinfo) 496 { 497 unsigned int i; 498 499 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { 500 if (txinfo->status.rates[i].idx < 0) 501 break; 502 503 if (i == rix) { 504 txinfo->status.rates[i].count = tries; 505 i++; 506 break; 507 } 508 } 509 510 for (; i < IEEE80211_TX_MAX_RATES; i++) { 511 txinfo->status.rates[i].idx = -1; 512 txinfo->status.rates[i].count = 0; 513 } 514 } 515 516 static void carl9170_check_queue_stop_timeout(struct ar9170 *ar) 517 { 518 int i; 519 struct sk_buff *skb; 520 struct ieee80211_tx_info *txinfo; 521 struct carl9170_tx_info *arinfo; 522 bool restart = false; 523 524 for (i = 0; i < ar->hw->queues; i++) { 525 spin_lock_bh(&ar->tx_status[i].lock); 526 527 skb = skb_peek(&ar->tx_status[i]); 528 529 if (!skb) 530 goto next; 531 532 txinfo = IEEE80211_SKB_CB(skb); 533 arinfo = (void *) txinfo->rate_driver_data; 534 535 if (time_is_before_jiffies(arinfo->timeout + 536 msecs_to_jiffies(CARL9170_QUEUE_STUCK_TIMEOUT)) == true) 537 restart = true; 538 539 next: 540 spin_unlock_bh(&ar->tx_status[i].lock); 541 } 542 543 if (restart) { 544 /* 545 * At least one queue has been stuck for long enough. 546 * Give the device a kick and hope it gets back to 547 * work. 548 * 549 * possible reasons may include: 550 * - frames got lost/corrupted (bad connection to the device) 551 * - stalled rx processing/usb controller hiccups 552 * - firmware errors/bugs 553 * - every bug you can think of. 554 * - all bugs you can't... 555 * - ... 556 */ 557 carl9170_restart(ar, CARL9170_RR_STUCK_TX); 558 } 559 } 560 561 static void carl9170_tx_ampdu_timeout(struct ar9170 *ar) 562 { 563 struct carl9170_sta_tid *iter; 564 struct sk_buff *skb; 565 struct ieee80211_tx_info *txinfo; 566 struct carl9170_tx_info *arinfo; 567 struct ieee80211_sta *sta; 568 569 rcu_read_lock(); 570 list_for_each_entry_rcu(iter, &ar->tx_ampdu_list, list) { 571 if (iter->state < CARL9170_TID_STATE_IDLE) 572 continue; 573 574 spin_lock_bh(&iter->lock); 575 skb = skb_peek(&iter->queue); 576 if (!skb) 577 goto unlock; 578 579 txinfo = IEEE80211_SKB_CB(skb); 580 arinfo = (void *)txinfo->rate_driver_data; 581 if (time_is_after_jiffies(arinfo->timeout + 582 msecs_to_jiffies(CARL9170_QUEUE_TIMEOUT))) 583 goto unlock; 584 585 sta = __carl9170_get_tx_sta(ar, skb); 586 if (WARN_ON(!sta)) 587 goto unlock; 588 589 ieee80211_stop_tx_ba_session(sta, iter->tid); 590 unlock: 591 spin_unlock_bh(&iter->lock); 592 593 } 594 rcu_read_unlock(); 595 } 596 597 void carl9170_tx_janitor(struct work_struct *work) 598 { 599 struct ar9170 *ar = container_of(work, struct ar9170, 600 tx_janitor.work); 601 if (!IS_STARTED(ar)) 602 return; 603 604 ar->tx_janitor_last_run = jiffies; 605 606 carl9170_check_queue_stop_timeout(ar); 607 carl9170_tx_ampdu_timeout(ar); 608 609 if (!atomic_read(&ar->tx_total_queued)) 610 return; 611 612 ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor, 613 msecs_to_jiffies(CARL9170_TX_TIMEOUT)); 614 } 615 616 static void __carl9170_tx_process_status(struct ar9170 *ar, 617 const uint8_t cookie, const uint8_t info) 618 { 619 struct sk_buff *skb; 620 struct ieee80211_tx_info *txinfo; 621 unsigned int r, t, q; 622 bool success = true; 623 624 q = ar9170_qmap[info & CARL9170_TX_STATUS_QUEUE]; 625 626 skb = carl9170_get_queued_skb(ar, cookie, &ar->tx_status[q]); 627 if (!skb) { 628 /* 629 * We have lost the race to another thread. 630 */ 631 632 return ; 633 } 634 635 txinfo = IEEE80211_SKB_CB(skb); 636 637 if (!(info & CARL9170_TX_STATUS_SUCCESS)) 638 success = false; 639 640 r = (info & CARL9170_TX_STATUS_RIX) >> CARL9170_TX_STATUS_RIX_S; 641 t = (info & CARL9170_TX_STATUS_TRIES) >> CARL9170_TX_STATUS_TRIES_S; 642 643 carl9170_tx_fill_rateinfo(ar, r, t, txinfo); 644 carl9170_tx_status(ar, skb, success); 645 } 646 647 void carl9170_tx_process_status(struct ar9170 *ar, 648 const struct carl9170_rsp *cmd) 649 { 650 unsigned int i; 651 652 for (i = 0; i < cmd->hdr.ext; i++) { 653 if (WARN_ON(i > ((cmd->hdr.len / 2) + 1))) { 654 print_hex_dump_bytes("UU:", DUMP_PREFIX_NONE, 655 (void *) cmd, cmd->hdr.len + 4); 656 break; 657 } 658 659 __carl9170_tx_process_status(ar, cmd->_tx_status[i].cookie, 660 cmd->_tx_status[i].info); 661 } 662 } 663 664 static void carl9170_tx_rate_tpc_chains(struct ar9170 *ar, 665 struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate, 666 unsigned int *phyrate, unsigned int *tpc, unsigned int *chains) 667 { 668 struct ieee80211_rate *rate = NULL; 669 u8 *txpower; 670 unsigned int idx; 671 672 idx = txrate->idx; 673 *tpc = 0; 674 *phyrate = 0; 675 676 if (txrate->flags & IEEE80211_TX_RC_MCS) { 677 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) { 678 /* +1 dBm for HT40 */ 679 *tpc += 2; 680 681 if (info->band == IEEE80211_BAND_2GHZ) 682 txpower = ar->power_2G_ht40; 683 else 684 txpower = ar->power_5G_ht40; 685 } else { 686 if (info->band == IEEE80211_BAND_2GHZ) 687 txpower = ar->power_2G_ht20; 688 else 689 txpower = ar->power_5G_ht20; 690 } 691 692 *phyrate = txrate->idx; 693 *tpc += txpower[idx & 7]; 694 } else { 695 if (info->band == IEEE80211_BAND_2GHZ) { 696 if (idx < 4) 697 txpower = ar->power_2G_cck; 698 else 699 txpower = ar->power_2G_ofdm; 700 } else { 701 txpower = ar->power_5G_leg; 702 idx += 4; 703 } 704 705 rate = &__carl9170_ratetable[idx]; 706 *tpc += txpower[(rate->hw_value & 0x30) >> 4]; 707 *phyrate = rate->hw_value & 0xf; 708 } 709 710 if (ar->eeprom.tx_mask == 1) { 711 *chains = AR9170_TX_PHY_TXCHAIN_1; 712 } else { 713 if (!(txrate->flags & IEEE80211_TX_RC_MCS) && 714 rate && rate->bitrate >= 360) 715 *chains = AR9170_TX_PHY_TXCHAIN_1; 716 else 717 *chains = AR9170_TX_PHY_TXCHAIN_2; 718 } 719 } 720 721 static __le32 carl9170_tx_physet(struct ar9170 *ar, 722 struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate) 723 { 724 unsigned int power = 0, chains = 0, phyrate = 0; 725 __le32 tmp; 726 727 tmp = cpu_to_le32(0); 728 729 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 730 tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ << 731 AR9170_TX_PHY_BW_S); 732 /* this works because 40 MHz is 2 and dup is 3 */ 733 if (txrate->flags & IEEE80211_TX_RC_DUP_DATA) 734 tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ_DUP << 735 AR9170_TX_PHY_BW_S); 736 737 if (txrate->flags & IEEE80211_TX_RC_SHORT_GI) 738 tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_GI); 739 740 if (txrate->flags & IEEE80211_TX_RC_MCS) { 741 SET_VAL(AR9170_TX_PHY_MCS, phyrate, txrate->idx); 742 743 /* heavy clip control */ 744 tmp |= cpu_to_le32((txrate->idx & 0x7) << 745 AR9170_TX_PHY_TX_HEAVY_CLIP_S); 746 747 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_HT); 748 749 /* 750 * green field preamble does not work. 751 * 752 * if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD) 753 * tmp |= cpu_to_le32(AR9170_TX_PHY_GREENFIELD); 754 */ 755 } else { 756 if (info->band == IEEE80211_BAND_2GHZ) { 757 if (txrate->idx <= AR9170_TX_PHY_RATE_CCK_11M) 758 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_CCK); 759 else 760 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM); 761 } else { 762 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM); 763 } 764 765 /* 766 * short preamble seems to be broken too. 767 * 768 * if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 769 * tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_PREAMBLE); 770 */ 771 } 772 carl9170_tx_rate_tpc_chains(ar, info, txrate, 773 &phyrate, &power, &chains); 774 775 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_MCS, phyrate)); 776 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TX_PWR, power)); 777 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TXCHAIN, chains)); 778 return tmp; 779 } 780 781 static bool carl9170_tx_rts_check(struct ar9170 *ar, 782 struct ieee80211_tx_rate *rate, 783 bool ampdu, bool multi) 784 { 785 switch (ar->erp_mode) { 786 case CARL9170_ERP_AUTO: 787 if (ampdu) 788 break; 789 790 case CARL9170_ERP_MAC80211: 791 if (!(rate->flags & IEEE80211_TX_RC_USE_RTS_CTS)) 792 break; 793 794 case CARL9170_ERP_RTS: 795 if (likely(!multi)) 796 return true; 797 798 default: 799 break; 800 } 801 802 return false; 803 } 804 805 static bool carl9170_tx_cts_check(struct ar9170 *ar, 806 struct ieee80211_tx_rate *rate) 807 { 808 switch (ar->erp_mode) { 809 case CARL9170_ERP_AUTO: 810 case CARL9170_ERP_MAC80211: 811 if (!(rate->flags & IEEE80211_TX_RC_USE_CTS_PROTECT)) 812 break; 813 814 case CARL9170_ERP_CTS: 815 return true; 816 817 default: 818 break; 819 } 820 821 return false; 822 } 823 824 static int carl9170_tx_prepare(struct ar9170 *ar, struct sk_buff *skb) 825 { 826 struct ieee80211_hdr *hdr; 827 struct _carl9170_tx_superframe *txc; 828 struct carl9170_vif_info *cvif; 829 struct ieee80211_tx_info *info; 830 struct ieee80211_tx_rate *txrate; 831 struct ieee80211_sta *sta; 832 struct carl9170_tx_info *arinfo; 833 unsigned int hw_queue; 834 int i; 835 __le16 mac_tmp; 836 u16 len; 837 bool ampdu, no_ack; 838 839 BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data)); 840 BUILD_BUG_ON(sizeof(struct _carl9170_tx_superdesc) != 841 CARL9170_TX_SUPERDESC_LEN); 842 843 BUILD_BUG_ON(sizeof(struct _ar9170_tx_hwdesc) != 844 AR9170_TX_HWDESC_LEN); 845 846 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES < CARL9170_TX_MAX_RATES); 847 848 BUILD_BUG_ON(AR9170_MAX_VIRTUAL_MAC > 849 ((CARL9170_TX_SUPER_MISC_VIF_ID >> 850 CARL9170_TX_SUPER_MISC_VIF_ID_S) + 1)); 851 852 hw_queue = ar9170_qmap[carl9170_get_queue(ar, skb)]; 853 854 hdr = (void *)skb->data; 855 info = IEEE80211_SKB_CB(skb); 856 len = skb->len; 857 858 /* 859 * Note: If the frame was sent through a monitor interface, 860 * the ieee80211_vif pointer can be NULL. 861 */ 862 if (likely(info->control.vif)) 863 cvif = (void *) info->control.vif->drv_priv; 864 else 865 cvif = NULL; 866 867 sta = info->control.sta; 868 869 txc = (void *)skb_push(skb, sizeof(*txc)); 870 memset(txc, 0, sizeof(*txc)); 871 872 SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, txc->s.misc, hw_queue); 873 874 if (likely(cvif)) 875 SET_VAL(CARL9170_TX_SUPER_MISC_VIF_ID, txc->s.misc, cvif->id); 876 877 if (unlikely(info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM)) 878 txc->s.misc |= CARL9170_TX_SUPER_MISC_CAB; 879 880 if (unlikely(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)) 881 txc->s.misc |= CARL9170_TX_SUPER_MISC_ASSIGN_SEQ; 882 883 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control))) 884 txc->s.misc |= CARL9170_TX_SUPER_MISC_FILL_IN_TSF; 885 886 mac_tmp = cpu_to_le16(AR9170_TX_MAC_HW_DURATION | 887 AR9170_TX_MAC_BACKOFF); 888 mac_tmp |= cpu_to_le16((hw_queue << AR9170_TX_MAC_QOS_S) & 889 AR9170_TX_MAC_QOS); 890 891 no_ack = !!(info->flags & IEEE80211_TX_CTL_NO_ACK); 892 if (unlikely(no_ack)) 893 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_NO_ACK); 894 895 if (info->control.hw_key) { 896 len += info->control.hw_key->icv_len; 897 898 switch (info->control.hw_key->cipher) { 899 case WLAN_CIPHER_SUITE_WEP40: 900 case WLAN_CIPHER_SUITE_WEP104: 901 case WLAN_CIPHER_SUITE_TKIP: 902 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_RC4); 903 break; 904 case WLAN_CIPHER_SUITE_CCMP: 905 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_AES); 906 break; 907 default: 908 WARN_ON(1); 909 goto err_out; 910 } 911 } 912 913 ampdu = !!(info->flags & IEEE80211_TX_CTL_AMPDU); 914 if (ampdu) { 915 unsigned int density, factor; 916 917 if (unlikely(!sta || !cvif)) 918 goto err_out; 919 920 factor = min_t(unsigned int, 1u, sta->ht_cap.ampdu_factor); 921 density = sta->ht_cap.ampdu_density; 922 923 if (density) { 924 /* 925 * Watch out! 926 * 927 * Otus uses slightly different density values than 928 * those from the 802.11n spec. 929 */ 930 931 density = max_t(unsigned int, density + 1, 7u); 932 } 933 934 SET_VAL(CARL9170_TX_SUPER_AMPDU_DENSITY, 935 txc->s.ampdu_settings, density); 936 937 SET_VAL(CARL9170_TX_SUPER_AMPDU_FACTOR, 938 txc->s.ampdu_settings, factor); 939 940 for (i = 0; i < CARL9170_TX_MAX_RATES; i++) { 941 txrate = &info->control.rates[i]; 942 if (txrate->idx >= 0) { 943 txc->s.ri[i] = 944 CARL9170_TX_SUPER_RI_AMPDU; 945 946 if (WARN_ON(!(txrate->flags & 947 IEEE80211_TX_RC_MCS))) { 948 /* 949 * Not sure if it's even possible 950 * to aggregate non-ht rates with 951 * this HW. 952 */ 953 goto err_out; 954 } 955 continue; 956 } 957 958 txrate->idx = 0; 959 txrate->count = ar->hw->max_rate_tries; 960 } 961 962 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_AGGR); 963 } 964 965 /* 966 * NOTE: For the first rate, the ERP & AMPDU flags are directly 967 * taken from mac_control. For all fallback rate, the firmware 968 * updates the mac_control flags from the rate info field. 969 */ 970 for (i = 1; i < CARL9170_TX_MAX_RATES; i++) { 971 txrate = &info->control.rates[i]; 972 if (txrate->idx < 0) 973 break; 974 975 SET_VAL(CARL9170_TX_SUPER_RI_TRIES, txc->s.ri[i], 976 txrate->count); 977 978 if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack)) 979 txc->s.ri[i] |= (AR9170_TX_MAC_PROT_RTS << 980 CARL9170_TX_SUPER_RI_ERP_PROT_S); 981 else if (carl9170_tx_cts_check(ar, txrate)) 982 txc->s.ri[i] |= (AR9170_TX_MAC_PROT_CTS << 983 CARL9170_TX_SUPER_RI_ERP_PROT_S); 984 985 txc->s.rr[i - 1] = carl9170_tx_physet(ar, info, txrate); 986 } 987 988 txrate = &info->control.rates[0]; 989 SET_VAL(CARL9170_TX_SUPER_RI_TRIES, txc->s.ri[0], txrate->count); 990 991 if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack)) 992 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_RTS); 993 else if (carl9170_tx_cts_check(ar, txrate)) 994 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_CTS); 995 996 txc->s.len = cpu_to_le16(skb->len); 997 txc->f.length = cpu_to_le16(len + FCS_LEN); 998 txc->f.mac_control = mac_tmp; 999 txc->f.phy_control = carl9170_tx_physet(ar, info, txrate); 1000 1001 arinfo = (void *)info->rate_driver_data; 1002 arinfo->timeout = jiffies; 1003 arinfo->ar = ar; 1004 kref_init(&arinfo->ref); 1005 return 0; 1006 1007 err_out: 1008 skb_pull(skb, sizeof(*txc)); 1009 return -EINVAL; 1010 } 1011 1012 static void carl9170_set_immba(struct ar9170 *ar, struct sk_buff *skb) 1013 { 1014 struct _carl9170_tx_superframe *super; 1015 1016 super = (void *) skb->data; 1017 super->f.mac_control |= cpu_to_le16(AR9170_TX_MAC_IMM_BA); 1018 } 1019 1020 static void carl9170_set_ampdu_params(struct ar9170 *ar, struct sk_buff *skb) 1021 { 1022 struct _carl9170_tx_superframe *super; 1023 int tmp; 1024 1025 super = (void *) skb->data; 1026 1027 tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_DENSITY) << 1028 CARL9170_TX_SUPER_AMPDU_DENSITY_S; 1029 1030 /* 1031 * If you haven't noticed carl9170_tx_prepare has already filled 1032 * in all ampdu spacing & factor parameters. 1033 * Now it's the time to check whenever the settings have to be 1034 * updated by the firmware, or if everything is still the same. 1035 * 1036 * There's no sane way to handle different density values with 1037 * this hardware, so we may as well just do the compare in the 1038 * driver. 1039 */ 1040 1041 if (tmp != ar->current_density) { 1042 ar->current_density = tmp; 1043 super->s.ampdu_settings |= 1044 CARL9170_TX_SUPER_AMPDU_COMMIT_DENSITY; 1045 } 1046 1047 tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_FACTOR) << 1048 CARL9170_TX_SUPER_AMPDU_FACTOR_S; 1049 1050 if (tmp != ar->current_factor) { 1051 ar->current_factor = tmp; 1052 super->s.ampdu_settings |= 1053 CARL9170_TX_SUPER_AMPDU_COMMIT_FACTOR; 1054 } 1055 } 1056 1057 static bool carl9170_tx_rate_check(struct ar9170 *ar, struct sk_buff *_dest, 1058 struct sk_buff *_src) 1059 { 1060 struct _carl9170_tx_superframe *dest, *src; 1061 1062 dest = (void *) _dest->data; 1063 src = (void *) _src->data; 1064 1065 /* 1066 * The mac80211 rate control algorithm expects that all MPDUs in 1067 * an AMPDU share the same tx vectors. 1068 * This is not really obvious right now, because the hardware 1069 * does the AMPDU setup according to its own rulebook. 1070 * Our nicely assembled, strictly monotonic increasing mpdu 1071 * chains will be broken up, mashed back together... 1072 */ 1073 1074 return (dest->f.phy_control == src->f.phy_control); 1075 } 1076 1077 static void carl9170_tx_ampdu(struct ar9170 *ar) 1078 { 1079 struct sk_buff_head agg; 1080 struct carl9170_sta_tid *tid_info; 1081 struct sk_buff *skb, *first; 1082 unsigned int i = 0, done_ampdus = 0; 1083 u16 seq, queue, tmpssn; 1084 1085 atomic_inc(&ar->tx_ampdu_scheduler); 1086 ar->tx_ampdu_schedule = false; 1087 1088 if (atomic_read(&ar->tx_ampdu_upload)) 1089 return; 1090 1091 if (!ar->tx_ampdu_list_len) 1092 return; 1093 1094 __skb_queue_head_init(&agg); 1095 1096 rcu_read_lock(); 1097 tid_info = rcu_dereference(ar->tx_ampdu_iter); 1098 if (WARN_ON_ONCE(!tid_info)) { 1099 rcu_read_unlock(); 1100 return; 1101 } 1102 1103 retry: 1104 list_for_each_entry_continue_rcu(tid_info, &ar->tx_ampdu_list, list) { 1105 i++; 1106 1107 if (tid_info->state < CARL9170_TID_STATE_PROGRESS) 1108 continue; 1109 1110 queue = TID_TO_WME_AC(tid_info->tid); 1111 1112 spin_lock_bh(&tid_info->lock); 1113 if (tid_info->state != CARL9170_TID_STATE_XMIT) 1114 goto processed; 1115 1116 tid_info->counter++; 1117 first = skb_peek(&tid_info->queue); 1118 tmpssn = carl9170_get_seq(first); 1119 seq = tid_info->snx; 1120 1121 if (unlikely(tmpssn != seq)) { 1122 tid_info->state = CARL9170_TID_STATE_IDLE; 1123 1124 goto processed; 1125 } 1126 1127 while ((skb = skb_peek(&tid_info->queue))) { 1128 /* strict 0, 1, ..., n - 1, n frame sequence order */ 1129 if (unlikely(carl9170_get_seq(skb) != seq)) 1130 break; 1131 1132 /* don't upload more than AMPDU FACTOR allows. */ 1133 if (unlikely(SEQ_DIFF(tid_info->snx, tid_info->bsn) >= 1134 (tid_info->max - 1))) 1135 break; 1136 1137 if (!carl9170_tx_rate_check(ar, skb, first)) 1138 break; 1139 1140 atomic_inc(&ar->tx_ampdu_upload); 1141 tid_info->snx = seq = SEQ_NEXT(seq); 1142 __skb_unlink(skb, &tid_info->queue); 1143 1144 __skb_queue_tail(&agg, skb); 1145 1146 if (skb_queue_len(&agg) >= CARL9170_NUM_TX_AGG_MAX) 1147 break; 1148 } 1149 1150 if (skb_queue_empty(&tid_info->queue) || 1151 carl9170_get_seq(skb_peek(&tid_info->queue)) != 1152 tid_info->snx) { 1153 /* 1154 * stop TID, if A-MPDU frames are still missing, 1155 * or whenever the queue is empty. 1156 */ 1157 1158 tid_info->state = CARL9170_TID_STATE_IDLE; 1159 } 1160 done_ampdus++; 1161 1162 processed: 1163 spin_unlock_bh(&tid_info->lock); 1164 1165 if (skb_queue_empty(&agg)) 1166 continue; 1167 1168 /* apply ampdu spacing & factor settings */ 1169 carl9170_set_ampdu_params(ar, skb_peek(&agg)); 1170 1171 /* set aggregation push bit */ 1172 carl9170_set_immba(ar, skb_peek_tail(&agg)); 1173 1174 spin_lock_bh(&ar->tx_pending[queue].lock); 1175 skb_queue_splice_tail_init(&agg, &ar->tx_pending[queue]); 1176 spin_unlock_bh(&ar->tx_pending[queue].lock); 1177 ar->tx_schedule = true; 1178 } 1179 if ((done_ampdus++ == 0) && (i++ == 0)) 1180 goto retry; 1181 1182 rcu_assign_pointer(ar->tx_ampdu_iter, tid_info); 1183 rcu_read_unlock(); 1184 } 1185 1186 static struct sk_buff *carl9170_tx_pick_skb(struct ar9170 *ar, 1187 struct sk_buff_head *queue) 1188 { 1189 struct sk_buff *skb; 1190 struct ieee80211_tx_info *info; 1191 struct carl9170_tx_info *arinfo; 1192 1193 BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data)); 1194 1195 spin_lock_bh(&queue->lock); 1196 skb = skb_peek(queue); 1197 if (unlikely(!skb)) 1198 goto err_unlock; 1199 1200 if (carl9170_alloc_dev_space(ar, skb)) 1201 goto err_unlock; 1202 1203 __skb_unlink(skb, queue); 1204 spin_unlock_bh(&queue->lock); 1205 1206 info = IEEE80211_SKB_CB(skb); 1207 arinfo = (void *) info->rate_driver_data; 1208 1209 arinfo->timeout = jiffies; 1210 return skb; 1211 1212 err_unlock: 1213 spin_unlock_bh(&queue->lock); 1214 return NULL; 1215 } 1216 1217 void carl9170_tx_drop(struct ar9170 *ar, struct sk_buff *skb) 1218 { 1219 struct _carl9170_tx_superframe *super; 1220 uint8_t q = 0; 1221 1222 ar->tx_dropped++; 1223 1224 super = (void *)skb->data; 1225 SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, q, 1226 ar9170_qmap[carl9170_get_queue(ar, skb)]); 1227 __carl9170_tx_process_status(ar, super->s.cookie, q); 1228 } 1229 1230 static bool carl9170_tx_ps_drop(struct ar9170 *ar, struct sk_buff *skb) 1231 { 1232 struct ieee80211_sta *sta; 1233 struct carl9170_sta_info *sta_info; 1234 1235 rcu_read_lock(); 1236 sta = __carl9170_get_tx_sta(ar, skb); 1237 if (!sta) 1238 goto out_rcu; 1239 1240 sta_info = (void *) sta->drv_priv; 1241 if (unlikely(sta_info->sleeping)) { 1242 struct ieee80211_tx_info *tx_info; 1243 1244 rcu_read_unlock(); 1245 1246 tx_info = IEEE80211_SKB_CB(skb); 1247 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) 1248 atomic_dec(&ar->tx_ampdu_upload); 1249 1250 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; 1251 carl9170_tx_status(ar, skb, false); 1252 return true; 1253 } 1254 1255 out_rcu: 1256 rcu_read_unlock(); 1257 return false; 1258 } 1259 1260 static void carl9170_tx(struct ar9170 *ar) 1261 { 1262 struct sk_buff *skb; 1263 unsigned int i, q; 1264 bool schedule_garbagecollector = false; 1265 1266 ar->tx_schedule = false; 1267 1268 if (unlikely(!IS_STARTED(ar))) 1269 return; 1270 1271 carl9170_usb_handle_tx_err(ar); 1272 1273 for (i = 0; i < ar->hw->queues; i++) { 1274 while (!skb_queue_empty(&ar->tx_pending[i])) { 1275 skb = carl9170_tx_pick_skb(ar, &ar->tx_pending[i]); 1276 if (unlikely(!skb)) 1277 break; 1278 1279 if (unlikely(carl9170_tx_ps_drop(ar, skb))) 1280 continue; 1281 1282 atomic_inc(&ar->tx_total_pending); 1283 1284 q = __carl9170_get_queue(ar, i); 1285 /* 1286 * NB: tx_status[i] vs. tx_status[q], 1287 * TODO: Move into pick_skb or alloc_dev_space. 1288 */ 1289 skb_queue_tail(&ar->tx_status[q], skb); 1290 1291 /* 1292 * increase ref count to "2". 1293 * Ref counting is the easiest way to solve the 1294 * race between the urb's completion routine: 1295 * carl9170_tx_callback 1296 * and wlan tx status functions: 1297 * carl9170_tx_status/janitor. 1298 */ 1299 carl9170_tx_get_skb(skb); 1300 1301 carl9170_usb_tx(ar, skb); 1302 schedule_garbagecollector = true; 1303 } 1304 } 1305 1306 if (!schedule_garbagecollector) 1307 return; 1308 1309 ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor, 1310 msecs_to_jiffies(CARL9170_TX_TIMEOUT)); 1311 } 1312 1313 static bool carl9170_tx_ampdu_queue(struct ar9170 *ar, 1314 struct ieee80211_sta *sta, struct sk_buff *skb) 1315 { 1316 struct _carl9170_tx_superframe *super = (void *) skb->data; 1317 struct carl9170_sta_info *sta_info; 1318 struct carl9170_sta_tid *agg; 1319 struct sk_buff *iter; 1320 u16 tid, seq, qseq, off; 1321 bool run = false; 1322 1323 tid = carl9170_get_tid(skb); 1324 seq = carl9170_get_seq(skb); 1325 sta_info = (void *) sta->drv_priv; 1326 1327 rcu_read_lock(); 1328 agg = rcu_dereference(sta_info->agg[tid]); 1329 1330 if (!agg) 1331 goto err_unlock_rcu; 1332 1333 spin_lock_bh(&agg->lock); 1334 if (unlikely(agg->state < CARL9170_TID_STATE_IDLE)) 1335 goto err_unlock; 1336 1337 /* check if sequence is within the BA window */ 1338 if (unlikely(!BAW_WITHIN(agg->bsn, CARL9170_BAW_BITS, seq))) 1339 goto err_unlock; 1340 1341 if (WARN_ON_ONCE(!BAW_WITHIN(agg->snx, CARL9170_BAW_BITS, seq))) 1342 goto err_unlock; 1343 1344 off = SEQ_DIFF(seq, agg->bsn); 1345 if (WARN_ON_ONCE(test_and_set_bit(off, agg->bitmap))) 1346 goto err_unlock; 1347 1348 if (likely(BAW_WITHIN(agg->hsn, CARL9170_BAW_BITS, seq))) { 1349 __skb_queue_tail(&agg->queue, skb); 1350 agg->hsn = seq; 1351 goto queued; 1352 } 1353 1354 skb_queue_reverse_walk(&agg->queue, iter) { 1355 qseq = carl9170_get_seq(iter); 1356 1357 if (BAW_WITHIN(qseq, CARL9170_BAW_BITS, seq)) { 1358 __skb_queue_after(&agg->queue, iter, skb); 1359 goto queued; 1360 } 1361 } 1362 1363 __skb_queue_head(&agg->queue, skb); 1364 queued: 1365 1366 if (unlikely(agg->state != CARL9170_TID_STATE_XMIT)) { 1367 if (agg->snx == carl9170_get_seq(skb_peek(&agg->queue))) { 1368 agg->state = CARL9170_TID_STATE_XMIT; 1369 run = true; 1370 } 1371 } 1372 1373 spin_unlock_bh(&agg->lock); 1374 rcu_read_unlock(); 1375 1376 return run; 1377 1378 err_unlock: 1379 spin_unlock_bh(&agg->lock); 1380 1381 err_unlock_rcu: 1382 rcu_read_unlock(); 1383 super->f.mac_control &= ~cpu_to_le16(AR9170_TX_MAC_AGGR); 1384 carl9170_tx_status(ar, skb, false); 1385 ar->tx_dropped++; 1386 return false; 1387 } 1388 1389 void carl9170_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb) 1390 { 1391 struct ar9170 *ar = hw->priv; 1392 struct ieee80211_tx_info *info; 1393 struct ieee80211_sta *sta; 1394 bool run; 1395 1396 if (unlikely(!IS_STARTED(ar))) 1397 goto err_free; 1398 1399 info = IEEE80211_SKB_CB(skb); 1400 sta = info->control.sta; 1401 1402 if (unlikely(carl9170_tx_prepare(ar, skb))) 1403 goto err_free; 1404 1405 carl9170_tx_accounting(ar, skb); 1406 /* 1407 * from now on, one has to use carl9170_tx_status to free 1408 * all ressouces which are associated with the frame. 1409 */ 1410 1411 if (sta) { 1412 struct carl9170_sta_info *stai = (void *) sta->drv_priv; 1413 atomic_inc(&stai->pending_frames); 1414 } 1415 1416 if (info->flags & IEEE80211_TX_CTL_AMPDU) { 1417 run = carl9170_tx_ampdu_queue(ar, sta, skb); 1418 if (run) 1419 carl9170_tx_ampdu(ar); 1420 1421 } else { 1422 unsigned int queue = skb_get_queue_mapping(skb); 1423 1424 skb_queue_tail(&ar->tx_pending[queue], skb); 1425 } 1426 1427 carl9170_tx(ar); 1428 return; 1429 1430 err_free: 1431 ar->tx_dropped++; 1432 dev_kfree_skb_any(skb); 1433 } 1434 1435 void carl9170_tx_scheduler(struct ar9170 *ar) 1436 { 1437 1438 if (ar->tx_ampdu_schedule) 1439 carl9170_tx_ampdu(ar); 1440 1441 if (ar->tx_schedule) 1442 carl9170_tx(ar); 1443 } 1444 1445 int carl9170_update_beacon(struct ar9170 *ar, const bool submit) 1446 { 1447 struct sk_buff *skb = NULL; 1448 struct carl9170_vif_info *cvif; 1449 struct ieee80211_tx_info *txinfo; 1450 struct ieee80211_tx_rate *rate; 1451 __le32 *data, *old = NULL; 1452 unsigned int plcp, power, chains; 1453 u32 word, ht1, off, addr, len; 1454 int i = 0, err = 0; 1455 1456 rcu_read_lock(); 1457 cvif = rcu_dereference(ar->beacon_iter); 1458 retry: 1459 if (ar->vifs == 0 || !cvif) 1460 goto out_unlock; 1461 1462 list_for_each_entry_continue_rcu(cvif, &ar->vif_list, list) { 1463 if (cvif->active && cvif->enable_beacon) 1464 goto found; 1465 } 1466 1467 if (!ar->beacon_enabled || i++) 1468 goto out_unlock; 1469 1470 goto retry; 1471 1472 found: 1473 rcu_assign_pointer(ar->beacon_iter, cvif); 1474 1475 skb = ieee80211_beacon_get_tim(ar->hw, carl9170_get_vif(cvif), 1476 NULL, NULL); 1477 1478 if (!skb) { 1479 err = -ENOMEM; 1480 goto err_free; 1481 } 1482 1483 txinfo = IEEE80211_SKB_CB(skb); 1484 spin_lock_bh(&ar->beacon_lock); 1485 data = (__le32 *)skb->data; 1486 if (cvif->beacon) 1487 old = (__le32 *)cvif->beacon->data; 1488 1489 off = cvif->id * AR9170_MAC_BCN_LENGTH_MAX; 1490 addr = ar->fw.beacon_addr + off; 1491 len = roundup(skb->len + FCS_LEN, 4); 1492 1493 if ((off + len) > ar->fw.beacon_max_len) { 1494 if (net_ratelimit()) { 1495 wiphy_err(ar->hw->wiphy, "beacon does not " 1496 "fit into device memory!\n"); 1497 } 1498 err = -EINVAL; 1499 goto err_unlock; 1500 } 1501 1502 if (len > AR9170_MAC_BCN_LENGTH_MAX) { 1503 if (net_ratelimit()) { 1504 wiphy_err(ar->hw->wiphy, "no support for beacons " 1505 "bigger than %d (yours:%d).\n", 1506 AR9170_MAC_BCN_LENGTH_MAX, len); 1507 } 1508 1509 err = -EMSGSIZE; 1510 goto err_unlock; 1511 } 1512 1513 ht1 = AR9170_MAC_BCN_HT1_TX_ANT0; 1514 rate = &txinfo->control.rates[0]; 1515 carl9170_tx_rate_tpc_chains(ar, txinfo, rate, &plcp, &power, &chains); 1516 if (!(txinfo->control.rates[0].flags & IEEE80211_TX_RC_MCS)) { 1517 if (plcp <= AR9170_TX_PHY_RATE_CCK_11M) 1518 plcp |= ((skb->len + FCS_LEN) << (3 + 16)) + 0x0400; 1519 else 1520 plcp |= ((skb->len + FCS_LEN) << 16) + 0x0010; 1521 } else { 1522 ht1 |= AR9170_MAC_BCN_HT1_HT_EN; 1523 if (rate->flags & IEEE80211_TX_RC_SHORT_GI) 1524 plcp |= AR9170_MAC_BCN_HT2_SGI; 1525 1526 if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) { 1527 ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_SHARED; 1528 plcp |= AR9170_MAC_BCN_HT2_BW40; 1529 } 1530 if (rate->flags & IEEE80211_TX_RC_DUP_DATA) { 1531 ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_DUP; 1532 plcp |= AR9170_MAC_BCN_HT2_BW40; 1533 } 1534 1535 SET_VAL(AR9170_MAC_BCN_HT2_LEN, plcp, skb->len + FCS_LEN); 1536 } 1537 1538 SET_VAL(AR9170_MAC_BCN_HT1_PWR_CTRL, ht1, 7); 1539 SET_VAL(AR9170_MAC_BCN_HT1_TPC, ht1, power); 1540 SET_VAL(AR9170_MAC_BCN_HT1_CHAIN_MASK, ht1, chains); 1541 if (chains == AR9170_TX_PHY_TXCHAIN_2) 1542 ht1 |= AR9170_MAC_BCN_HT1_TX_ANT1; 1543 1544 carl9170_async_regwrite_begin(ar); 1545 carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT1, ht1); 1546 if (!(txinfo->control.rates[0].flags & IEEE80211_TX_RC_MCS)) 1547 carl9170_async_regwrite(AR9170_MAC_REG_BCN_PLCP, plcp); 1548 else 1549 carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT2, plcp); 1550 1551 for (i = 0; i < DIV_ROUND_UP(skb->len, 4); i++) { 1552 /* 1553 * XXX: This accesses beyond skb data for up 1554 * to the last 3 bytes!! 1555 */ 1556 1557 if (old && (data[i] == old[i])) 1558 continue; 1559 1560 word = le32_to_cpu(data[i]); 1561 carl9170_async_regwrite(addr + 4 * i, word); 1562 } 1563 carl9170_async_regwrite_finish(); 1564 1565 dev_kfree_skb_any(cvif->beacon); 1566 cvif->beacon = NULL; 1567 1568 err = carl9170_async_regwrite_result(); 1569 if (!err) 1570 cvif->beacon = skb; 1571 spin_unlock_bh(&ar->beacon_lock); 1572 if (err) 1573 goto err_free; 1574 1575 if (submit) { 1576 err = carl9170_bcn_ctrl(ar, cvif->id, 1577 CARL9170_BCN_CTRL_CAB_TRIGGER, 1578 addr, skb->len + FCS_LEN); 1579 1580 if (err) 1581 goto err_free; 1582 } 1583 out_unlock: 1584 rcu_read_unlock(); 1585 return 0; 1586 1587 err_unlock: 1588 spin_unlock_bh(&ar->beacon_lock); 1589 1590 err_free: 1591 rcu_read_unlock(); 1592 dev_kfree_skb_any(skb); 1593 return err; 1594 } 1595