1 /* 2 * Atheros CARL9170 driver 3 * 4 * 802.11 xmit & status routines 5 * 6 * Copyright 2008, Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2009, 2010, Christian Lamparter <chunkeey@googlemail.com> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; see the file COPYING. If not, see 21 * http://www.gnu.org/licenses/. 22 * 23 * This file incorporates work covered by the following copyright and 24 * permission notice: 25 * Copyright (c) 2007-2008 Atheros Communications, Inc. 26 * 27 * Permission to use, copy, modify, and/or distribute this software for any 28 * purpose with or without fee is hereby granted, provided that the above 29 * copyright notice and this permission notice appear in all copies. 30 * 31 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 32 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 33 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 34 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 35 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 36 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 37 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 38 */ 39 40 #include <linux/init.h> 41 #include <linux/slab.h> 42 #include <linux/module.h> 43 #include <linux/etherdevice.h> 44 #include <net/mac80211.h> 45 #include "carl9170.h" 46 #include "hw.h" 47 #include "cmd.h" 48 49 static inline unsigned int __carl9170_get_queue(struct ar9170 *ar, 50 unsigned int queue) 51 { 52 if (unlikely(modparam_noht)) { 53 return queue; 54 } else { 55 /* 56 * This is just another workaround, until 57 * someone figures out how to get QoS and 58 * AMPDU to play nicely together. 59 */ 60 61 return 2; /* AC_BE */ 62 } 63 } 64 65 static inline unsigned int carl9170_get_queue(struct ar9170 *ar, 66 struct sk_buff *skb) 67 { 68 return __carl9170_get_queue(ar, skb_get_queue_mapping(skb)); 69 } 70 71 static bool is_mem_full(struct ar9170 *ar) 72 { 73 return (DIV_ROUND_UP(IEEE80211_MAX_FRAME_LEN, ar->fw.mem_block_size) > 74 atomic_read(&ar->mem_free_blocks)); 75 } 76 77 static void carl9170_tx_accounting(struct ar9170 *ar, struct sk_buff *skb) 78 { 79 int queue, i; 80 bool mem_full; 81 82 atomic_inc(&ar->tx_total_queued); 83 84 queue = skb_get_queue_mapping(skb); 85 spin_lock_bh(&ar->tx_stats_lock); 86 87 /* 88 * The driver has to accept the frame, regardless if the queue is 89 * full to the brim, or not. We have to do the queuing internally, 90 * since mac80211 assumes that a driver which can operate with 91 * aggregated frames does not reject frames for this reason. 92 */ 93 ar->tx_stats[queue].len++; 94 ar->tx_stats[queue].count++; 95 96 mem_full = is_mem_full(ar); 97 for (i = 0; i < ar->hw->queues; i++) { 98 if (mem_full || ar->tx_stats[i].len >= ar->tx_stats[i].limit) { 99 ieee80211_stop_queue(ar->hw, i); 100 ar->queue_stop_timeout[i] = jiffies; 101 } 102 } 103 104 spin_unlock_bh(&ar->tx_stats_lock); 105 } 106 107 static void carl9170_tx_accounting_free(struct ar9170 *ar, struct sk_buff *skb) 108 { 109 struct ieee80211_tx_info *txinfo; 110 int queue; 111 112 txinfo = IEEE80211_SKB_CB(skb); 113 queue = skb_get_queue_mapping(skb); 114 115 spin_lock_bh(&ar->tx_stats_lock); 116 117 ar->tx_stats[queue].len--; 118 119 if (!is_mem_full(ar)) { 120 unsigned int i; 121 for (i = 0; i < ar->hw->queues; i++) { 122 if (ar->tx_stats[i].len >= CARL9170_NUM_TX_LIMIT_SOFT) 123 continue; 124 125 if (ieee80211_queue_stopped(ar->hw, i)) { 126 unsigned long tmp; 127 128 tmp = jiffies - ar->queue_stop_timeout[i]; 129 if (tmp > ar->max_queue_stop_timeout[i]) 130 ar->max_queue_stop_timeout[i] = tmp; 131 } 132 133 ieee80211_wake_queue(ar->hw, i); 134 } 135 } 136 137 spin_unlock_bh(&ar->tx_stats_lock); 138 if (atomic_dec_and_test(&ar->tx_total_queued)) 139 complete(&ar->tx_flush); 140 } 141 142 static int carl9170_alloc_dev_space(struct ar9170 *ar, struct sk_buff *skb) 143 { 144 struct _carl9170_tx_superframe *super = (void *) skb->data; 145 unsigned int chunks; 146 int cookie = -1; 147 148 atomic_inc(&ar->mem_allocs); 149 150 chunks = DIV_ROUND_UP(skb->len, ar->fw.mem_block_size); 151 if (unlikely(atomic_sub_return(chunks, &ar->mem_free_blocks) < 0)) { 152 atomic_add(chunks, &ar->mem_free_blocks); 153 return -ENOSPC; 154 } 155 156 spin_lock_bh(&ar->mem_lock); 157 cookie = bitmap_find_free_region(ar->mem_bitmap, ar->fw.mem_blocks, 0); 158 spin_unlock_bh(&ar->mem_lock); 159 160 if (unlikely(cookie < 0)) { 161 atomic_add(chunks, &ar->mem_free_blocks); 162 return -ENOSPC; 163 } 164 165 super = (void *) skb->data; 166 167 /* 168 * Cookie #0 serves two special purposes: 169 * 1. The firmware might use it generate BlockACK frames 170 * in responds of an incoming BlockAckReqs. 171 * 172 * 2. Prevent double-free bugs. 173 */ 174 super->s.cookie = (u8) cookie + 1; 175 return 0; 176 } 177 178 static void carl9170_release_dev_space(struct ar9170 *ar, struct sk_buff *skb) 179 { 180 struct _carl9170_tx_superframe *super = (void *) skb->data; 181 int cookie; 182 183 /* make a local copy of the cookie */ 184 cookie = super->s.cookie; 185 /* invalidate cookie */ 186 super->s.cookie = 0; 187 188 /* 189 * Do a out-of-bounds check on the cookie: 190 * 191 * * cookie "0" is reserved and won't be assigned to any 192 * out-going frame. Internally however, it is used to 193 * mark no longer/un-accounted frames and serves as a 194 * cheap way of preventing frames from being freed 195 * twice by _accident_. NB: There is a tiny race... 196 * 197 * * obviously, cookie number is limited by the amount 198 * of available memory blocks, so the number can 199 * never execeed the mem_blocks count. 200 */ 201 if (unlikely(WARN_ON_ONCE(cookie == 0) || 202 WARN_ON_ONCE(cookie > ar->fw.mem_blocks))) 203 return; 204 205 atomic_add(DIV_ROUND_UP(skb->len, ar->fw.mem_block_size), 206 &ar->mem_free_blocks); 207 208 spin_lock_bh(&ar->mem_lock); 209 bitmap_release_region(ar->mem_bitmap, cookie - 1, 0); 210 spin_unlock_bh(&ar->mem_lock); 211 } 212 213 /* Called from any context */ 214 static void carl9170_tx_release(struct kref *ref) 215 { 216 struct ar9170 *ar; 217 struct carl9170_tx_info *arinfo; 218 struct ieee80211_tx_info *txinfo; 219 struct sk_buff *skb; 220 221 arinfo = container_of(ref, struct carl9170_tx_info, ref); 222 txinfo = container_of((void *) arinfo, struct ieee80211_tx_info, 223 rate_driver_data); 224 skb = container_of((void *) txinfo, struct sk_buff, cb); 225 226 ar = arinfo->ar; 227 if (WARN_ON_ONCE(!ar)) 228 return; 229 230 BUILD_BUG_ON( 231 offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23); 232 233 memset(&txinfo->status.ampdu_ack_len, 0, 234 sizeof(struct ieee80211_tx_info) - 235 offsetof(struct ieee80211_tx_info, status.ampdu_ack_len)); 236 237 if (atomic_read(&ar->tx_total_queued)) 238 ar->tx_schedule = true; 239 240 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) { 241 if (!atomic_read(&ar->tx_ampdu_upload)) 242 ar->tx_ampdu_schedule = true; 243 244 if (txinfo->flags & IEEE80211_TX_STAT_AMPDU) { 245 struct _carl9170_tx_superframe *super; 246 247 super = (void *)skb->data; 248 txinfo->status.ampdu_len = super->s.rix; 249 txinfo->status.ampdu_ack_len = super->s.cnt; 250 } else if (txinfo->flags & IEEE80211_TX_STAT_ACK) { 251 /* 252 * drop redundant tx_status reports: 253 * 254 * 1. ampdu_ack_len of the final tx_status does 255 * include the feedback of this particular frame. 256 * 257 * 2. tx_status_irqsafe only queues up to 128 258 * tx feedback reports and discards the rest. 259 * 260 * 3. minstrel_ht is picky, it only accepts 261 * reports of frames with the TX_STATUS_AMPDU flag. 262 */ 263 264 dev_kfree_skb_any(skb); 265 return; 266 } else { 267 /* 268 * Frame has failed, but we want to keep it in 269 * case it was lost due to a power-state 270 * transition. 271 */ 272 } 273 } 274 275 skb_pull(skb, sizeof(struct _carl9170_tx_superframe)); 276 ieee80211_tx_status_irqsafe(ar->hw, skb); 277 } 278 279 void carl9170_tx_get_skb(struct sk_buff *skb) 280 { 281 struct carl9170_tx_info *arinfo = (void *) 282 (IEEE80211_SKB_CB(skb))->rate_driver_data; 283 kref_get(&arinfo->ref); 284 } 285 286 int carl9170_tx_put_skb(struct sk_buff *skb) 287 { 288 struct carl9170_tx_info *arinfo = (void *) 289 (IEEE80211_SKB_CB(skb))->rate_driver_data; 290 291 return kref_put(&arinfo->ref, carl9170_tx_release); 292 } 293 294 /* Caller must hold the tid_info->lock & rcu_read_lock */ 295 static void carl9170_tx_shift_bm(struct ar9170 *ar, 296 struct carl9170_sta_tid *tid_info, u16 seq) 297 { 298 u16 off; 299 300 off = SEQ_DIFF(seq, tid_info->bsn); 301 302 if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS)) 303 return; 304 305 /* 306 * Sanity check. For each MPDU we set the bit in bitmap and 307 * clear it once we received the tx_status. 308 * But if the bit is already cleared then we've been bitten 309 * by a bug. 310 */ 311 WARN_ON_ONCE(!test_and_clear_bit(off, tid_info->bitmap)); 312 313 off = SEQ_DIFF(tid_info->snx, tid_info->bsn); 314 if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS)) 315 return; 316 317 if (!bitmap_empty(tid_info->bitmap, off)) 318 off = find_first_bit(tid_info->bitmap, off); 319 320 tid_info->bsn += off; 321 tid_info->bsn &= 0x0fff; 322 323 bitmap_shift_right(tid_info->bitmap, tid_info->bitmap, 324 off, CARL9170_BAW_BITS); 325 } 326 327 static void carl9170_tx_status_process_ampdu(struct ar9170 *ar, 328 struct sk_buff *skb, struct ieee80211_tx_info *txinfo) 329 { 330 struct _carl9170_tx_superframe *super = (void *) skb->data; 331 struct ieee80211_hdr *hdr = (void *) super->frame_data; 332 struct ieee80211_tx_info *tx_info; 333 struct carl9170_tx_info *ar_info; 334 struct carl9170_sta_info *sta_info; 335 struct ieee80211_sta *sta; 336 struct carl9170_sta_tid *tid_info; 337 struct ieee80211_vif *vif; 338 unsigned int vif_id; 339 u8 tid; 340 341 if (!(txinfo->flags & IEEE80211_TX_CTL_AMPDU) || 342 txinfo->flags & IEEE80211_TX_CTL_INJECTED || 343 (!(super->f.mac_control & cpu_to_le16(AR9170_TX_MAC_AGGR)))) 344 return; 345 346 tx_info = IEEE80211_SKB_CB(skb); 347 ar_info = (void *) tx_info->rate_driver_data; 348 349 vif_id = (super->s.misc & CARL9170_TX_SUPER_MISC_VIF_ID) >> 350 CARL9170_TX_SUPER_MISC_VIF_ID_S; 351 352 if (WARN_ON_ONCE(vif_id >= AR9170_MAX_VIRTUAL_MAC)) 353 return; 354 355 rcu_read_lock(); 356 vif = rcu_dereference(ar->vif_priv[vif_id].vif); 357 if (unlikely(!vif)) 358 goto out_rcu; 359 360 /* 361 * Normally we should use wrappers like ieee80211_get_DA to get 362 * the correct peer ieee80211_sta. 363 * 364 * But there is a problem with indirect traffic (broadcasts, or 365 * data which is designated for other stations) in station mode. 366 * The frame will be directed to the AP for distribution and not 367 * to the actual destination. 368 */ 369 sta = ieee80211_find_sta(vif, hdr->addr1); 370 if (unlikely(!sta)) 371 goto out_rcu; 372 373 tid = get_tid_h(hdr); 374 375 sta_info = (void *) sta->drv_priv; 376 tid_info = rcu_dereference(sta_info->agg[tid]); 377 if (!tid_info) 378 goto out_rcu; 379 380 spin_lock_bh(&tid_info->lock); 381 if (likely(tid_info->state >= CARL9170_TID_STATE_IDLE)) 382 carl9170_tx_shift_bm(ar, tid_info, get_seq_h(hdr)); 383 384 if (sta_info->stats[tid].clear) { 385 sta_info->stats[tid].clear = false; 386 sta_info->stats[tid].ampdu_len = 0; 387 sta_info->stats[tid].ampdu_ack_len = 0; 388 } 389 390 sta_info->stats[tid].ampdu_len++; 391 if (txinfo->status.rates[0].count == 1) 392 sta_info->stats[tid].ampdu_ack_len++; 393 394 if (super->f.mac_control & cpu_to_le16(AR9170_TX_MAC_IMM_BA)) { 395 super->s.rix = sta_info->stats[tid].ampdu_len; 396 super->s.cnt = sta_info->stats[tid].ampdu_ack_len; 397 txinfo->flags |= IEEE80211_TX_STAT_AMPDU; 398 sta_info->stats[tid].clear = true; 399 } 400 spin_unlock_bh(&tid_info->lock); 401 402 out_rcu: 403 rcu_read_unlock(); 404 } 405 406 void carl9170_tx_status(struct ar9170 *ar, struct sk_buff *skb, 407 const bool success) 408 { 409 struct ieee80211_tx_info *txinfo; 410 411 carl9170_tx_accounting_free(ar, skb); 412 413 txinfo = IEEE80211_SKB_CB(skb); 414 415 if (success) 416 txinfo->flags |= IEEE80211_TX_STAT_ACK; 417 else 418 ar->tx_ack_failures++; 419 420 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) 421 carl9170_tx_status_process_ampdu(ar, skb, txinfo); 422 423 carl9170_tx_put_skb(skb); 424 } 425 426 /* This function may be called form any context */ 427 void carl9170_tx_callback(struct ar9170 *ar, struct sk_buff *skb) 428 { 429 struct ieee80211_tx_info *txinfo = IEEE80211_SKB_CB(skb); 430 431 atomic_dec(&ar->tx_total_pending); 432 433 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) 434 atomic_dec(&ar->tx_ampdu_upload); 435 436 if (carl9170_tx_put_skb(skb)) 437 tasklet_hi_schedule(&ar->usb_tasklet); 438 } 439 440 static struct sk_buff *carl9170_get_queued_skb(struct ar9170 *ar, u8 cookie, 441 struct sk_buff_head *queue) 442 { 443 struct sk_buff *skb; 444 445 spin_lock_bh(&queue->lock); 446 skb_queue_walk(queue, skb) { 447 struct _carl9170_tx_superframe *txc = (void *) skb->data; 448 449 if (txc->s.cookie != cookie) 450 continue; 451 452 __skb_unlink(skb, queue); 453 spin_unlock_bh(&queue->lock); 454 455 carl9170_release_dev_space(ar, skb); 456 return skb; 457 } 458 spin_unlock_bh(&queue->lock); 459 460 return NULL; 461 } 462 463 static void carl9170_tx_fill_rateinfo(struct ar9170 *ar, unsigned int rix, 464 unsigned int tries, struct ieee80211_tx_info *txinfo) 465 { 466 unsigned int i; 467 468 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { 469 if (txinfo->status.rates[i].idx < 0) 470 break; 471 472 if (i == rix) { 473 txinfo->status.rates[i].count = tries; 474 i++; 475 break; 476 } 477 } 478 479 for (; i < IEEE80211_TX_MAX_RATES; i++) { 480 txinfo->status.rates[i].idx = -1; 481 txinfo->status.rates[i].count = 0; 482 } 483 } 484 485 static void carl9170_check_queue_stop_timeout(struct ar9170 *ar) 486 { 487 int i; 488 struct sk_buff *skb; 489 struct ieee80211_tx_info *txinfo; 490 struct carl9170_tx_info *arinfo; 491 bool restart = false; 492 493 for (i = 0; i < ar->hw->queues; i++) { 494 spin_lock_bh(&ar->tx_status[i].lock); 495 496 skb = skb_peek(&ar->tx_status[i]); 497 498 if (!skb) 499 goto next; 500 501 txinfo = IEEE80211_SKB_CB(skb); 502 arinfo = (void *) txinfo->rate_driver_data; 503 504 if (time_is_before_jiffies(arinfo->timeout + 505 msecs_to_jiffies(CARL9170_QUEUE_STUCK_TIMEOUT)) == true) 506 restart = true; 507 508 next: 509 spin_unlock_bh(&ar->tx_status[i].lock); 510 } 511 512 if (restart) { 513 /* 514 * At least one queue has been stuck for long enough. 515 * Give the device a kick and hope it gets back to 516 * work. 517 * 518 * possible reasons may include: 519 * - frames got lost/corrupted (bad connection to the device) 520 * - stalled rx processing/usb controller hiccups 521 * - firmware errors/bugs 522 * - every bug you can think of. 523 * - all bugs you can't... 524 * - ... 525 */ 526 carl9170_restart(ar, CARL9170_RR_STUCK_TX); 527 } 528 } 529 530 static void carl9170_tx_ampdu_timeout(struct ar9170 *ar) 531 { 532 struct carl9170_sta_tid *iter; 533 struct sk_buff *skb; 534 struct ieee80211_tx_info *txinfo; 535 struct carl9170_tx_info *arinfo; 536 struct _carl9170_tx_superframe *super; 537 struct ieee80211_sta *sta; 538 struct ieee80211_vif *vif; 539 struct ieee80211_hdr *hdr; 540 unsigned int vif_id; 541 542 rcu_read_lock(); 543 list_for_each_entry_rcu(iter, &ar->tx_ampdu_list, list) { 544 if (iter->state < CARL9170_TID_STATE_IDLE) 545 continue; 546 547 spin_lock_bh(&iter->lock); 548 skb = skb_peek(&iter->queue); 549 if (!skb) 550 goto unlock; 551 552 txinfo = IEEE80211_SKB_CB(skb); 553 arinfo = (void *)txinfo->rate_driver_data; 554 if (time_is_after_jiffies(arinfo->timeout + 555 msecs_to_jiffies(CARL9170_QUEUE_TIMEOUT))) 556 goto unlock; 557 558 super = (void *) skb->data; 559 hdr = (void *) super->frame_data; 560 561 vif_id = (super->s.misc & CARL9170_TX_SUPER_MISC_VIF_ID) >> 562 CARL9170_TX_SUPER_MISC_VIF_ID_S; 563 564 if (WARN_ON(vif_id >= AR9170_MAX_VIRTUAL_MAC)) 565 goto unlock; 566 567 vif = rcu_dereference(ar->vif_priv[vif_id].vif); 568 if (WARN_ON(!vif)) 569 goto unlock; 570 571 sta = ieee80211_find_sta(vif, hdr->addr1); 572 if (WARN_ON(!sta)) 573 goto unlock; 574 575 ieee80211_stop_tx_ba_session(sta, iter->tid); 576 unlock: 577 spin_unlock_bh(&iter->lock); 578 579 } 580 rcu_read_unlock(); 581 } 582 583 void carl9170_tx_janitor(struct work_struct *work) 584 { 585 struct ar9170 *ar = container_of(work, struct ar9170, 586 tx_janitor.work); 587 if (!IS_STARTED(ar)) 588 return; 589 590 ar->tx_janitor_last_run = jiffies; 591 592 carl9170_check_queue_stop_timeout(ar); 593 carl9170_tx_ampdu_timeout(ar); 594 595 if (!atomic_read(&ar->tx_total_queued)) 596 return; 597 598 ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor, 599 msecs_to_jiffies(CARL9170_TX_TIMEOUT)); 600 } 601 602 static void __carl9170_tx_process_status(struct ar9170 *ar, 603 const uint8_t cookie, const uint8_t info) 604 { 605 struct sk_buff *skb; 606 struct ieee80211_tx_info *txinfo; 607 struct carl9170_tx_info *arinfo; 608 unsigned int r, t, q; 609 bool success = true; 610 611 q = ar9170_qmap[info & CARL9170_TX_STATUS_QUEUE]; 612 613 skb = carl9170_get_queued_skb(ar, cookie, &ar->tx_status[q]); 614 if (!skb) { 615 /* 616 * We have lost the race to another thread. 617 */ 618 619 return ; 620 } 621 622 txinfo = IEEE80211_SKB_CB(skb); 623 arinfo = (void *) txinfo->rate_driver_data; 624 625 if (!(info & CARL9170_TX_STATUS_SUCCESS)) 626 success = false; 627 628 r = (info & CARL9170_TX_STATUS_RIX) >> CARL9170_TX_STATUS_RIX_S; 629 t = (info & CARL9170_TX_STATUS_TRIES) >> CARL9170_TX_STATUS_TRIES_S; 630 631 carl9170_tx_fill_rateinfo(ar, r, t, txinfo); 632 carl9170_tx_status(ar, skb, success); 633 } 634 635 void carl9170_tx_process_status(struct ar9170 *ar, 636 const struct carl9170_rsp *cmd) 637 { 638 unsigned int i; 639 640 for (i = 0; i < cmd->hdr.ext; i++) { 641 if (WARN_ON(i > ((cmd->hdr.len / 2) + 1))) { 642 print_hex_dump_bytes("UU:", DUMP_PREFIX_NONE, 643 (void *) cmd, cmd->hdr.len + 4); 644 break; 645 } 646 647 __carl9170_tx_process_status(ar, cmd->_tx_status[i].cookie, 648 cmd->_tx_status[i].info); 649 } 650 } 651 652 static __le32 carl9170_tx_physet(struct ar9170 *ar, 653 struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate) 654 { 655 struct ieee80211_rate *rate = NULL; 656 u32 power, chains; 657 __le32 tmp; 658 659 tmp = cpu_to_le32(0); 660 661 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 662 tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ << 663 AR9170_TX_PHY_BW_S); 664 /* this works because 40 MHz is 2 and dup is 3 */ 665 if (txrate->flags & IEEE80211_TX_RC_DUP_DATA) 666 tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ_DUP << 667 AR9170_TX_PHY_BW_S); 668 669 if (txrate->flags & IEEE80211_TX_RC_SHORT_GI) 670 tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_GI); 671 672 if (txrate->flags & IEEE80211_TX_RC_MCS) { 673 u32 r = txrate->idx; 674 u8 *txpower; 675 676 /* heavy clip control */ 677 tmp |= cpu_to_le32((r & 0x7) << 678 AR9170_TX_PHY_TX_HEAVY_CLIP_S); 679 680 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) { 681 if (info->band == IEEE80211_BAND_5GHZ) 682 txpower = ar->power_5G_ht40; 683 else 684 txpower = ar->power_2G_ht40; 685 } else { 686 if (info->band == IEEE80211_BAND_5GHZ) 687 txpower = ar->power_5G_ht20; 688 else 689 txpower = ar->power_2G_ht20; 690 } 691 692 power = txpower[r & 7]; 693 694 /* +1 dBm for HT40 */ 695 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 696 power += 2; 697 698 r <<= AR9170_TX_PHY_MCS_S; 699 BUG_ON(r & ~AR9170_TX_PHY_MCS); 700 701 tmp |= cpu_to_le32(r & AR9170_TX_PHY_MCS); 702 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_HT); 703 704 /* 705 * green field preamble does not work. 706 * 707 * if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD) 708 * tmp |= cpu_to_le32(AR9170_TX_PHY_GREENFIELD); 709 */ 710 } else { 711 u8 *txpower; 712 u32 mod; 713 u32 phyrate; 714 u8 idx = txrate->idx; 715 716 if (info->band != IEEE80211_BAND_2GHZ) { 717 idx += 4; 718 txpower = ar->power_5G_leg; 719 mod = AR9170_TX_PHY_MOD_OFDM; 720 } else { 721 if (idx < 4) { 722 txpower = ar->power_2G_cck; 723 mod = AR9170_TX_PHY_MOD_CCK; 724 } else { 725 mod = AR9170_TX_PHY_MOD_OFDM; 726 txpower = ar->power_2G_ofdm; 727 } 728 } 729 730 rate = &__carl9170_ratetable[idx]; 731 732 phyrate = rate->hw_value & 0xF; 733 power = txpower[(rate->hw_value & 0x30) >> 4]; 734 phyrate <<= AR9170_TX_PHY_MCS_S; 735 736 tmp |= cpu_to_le32(mod); 737 tmp |= cpu_to_le32(phyrate); 738 739 /* 740 * short preamble seems to be broken too. 741 * 742 * if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 743 * tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_PREAMBLE); 744 */ 745 } 746 power <<= AR9170_TX_PHY_TX_PWR_S; 747 power &= AR9170_TX_PHY_TX_PWR; 748 tmp |= cpu_to_le32(power); 749 750 /* set TX chains */ 751 if (ar->eeprom.tx_mask == 1) { 752 chains = AR9170_TX_PHY_TXCHAIN_1; 753 } else { 754 chains = AR9170_TX_PHY_TXCHAIN_2; 755 756 /* >= 36M legacy OFDM - use only one chain */ 757 if (rate && rate->bitrate >= 360 && 758 !(txrate->flags & IEEE80211_TX_RC_MCS)) 759 chains = AR9170_TX_PHY_TXCHAIN_1; 760 } 761 tmp |= cpu_to_le32(chains << AR9170_TX_PHY_TXCHAIN_S); 762 763 return tmp; 764 } 765 766 static bool carl9170_tx_rts_check(struct ar9170 *ar, 767 struct ieee80211_tx_rate *rate, 768 bool ampdu, bool multi) 769 { 770 switch (ar->erp_mode) { 771 case CARL9170_ERP_AUTO: 772 if (ampdu) 773 break; 774 775 case CARL9170_ERP_MAC80211: 776 if (!(rate->flags & IEEE80211_TX_RC_USE_RTS_CTS)) 777 break; 778 779 case CARL9170_ERP_RTS: 780 if (likely(!multi)) 781 return true; 782 783 default: 784 break; 785 } 786 787 return false; 788 } 789 790 static bool carl9170_tx_cts_check(struct ar9170 *ar, 791 struct ieee80211_tx_rate *rate) 792 { 793 switch (ar->erp_mode) { 794 case CARL9170_ERP_AUTO: 795 case CARL9170_ERP_MAC80211: 796 if (!(rate->flags & IEEE80211_TX_RC_USE_CTS_PROTECT)) 797 break; 798 799 case CARL9170_ERP_CTS: 800 return true; 801 802 default: 803 break; 804 } 805 806 return false; 807 } 808 809 static int carl9170_tx_prepare(struct ar9170 *ar, struct sk_buff *skb) 810 { 811 struct ieee80211_hdr *hdr; 812 struct _carl9170_tx_superframe *txc; 813 struct carl9170_vif_info *cvif; 814 struct ieee80211_tx_info *info; 815 struct ieee80211_tx_rate *txrate; 816 struct ieee80211_sta *sta; 817 struct carl9170_tx_info *arinfo; 818 unsigned int hw_queue; 819 int i; 820 __le16 mac_tmp; 821 u16 len; 822 bool ampdu, no_ack; 823 824 BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data)); 825 BUILD_BUG_ON(sizeof(struct _carl9170_tx_superdesc) != 826 CARL9170_TX_SUPERDESC_LEN); 827 828 BUILD_BUG_ON(sizeof(struct _ar9170_tx_hwdesc) != 829 AR9170_TX_HWDESC_LEN); 830 831 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES < CARL9170_TX_MAX_RATES); 832 833 BUILD_BUG_ON(AR9170_MAX_VIRTUAL_MAC > 834 ((CARL9170_TX_SUPER_MISC_VIF_ID >> 835 CARL9170_TX_SUPER_MISC_VIF_ID_S) + 1)); 836 837 hw_queue = ar9170_qmap[carl9170_get_queue(ar, skb)]; 838 839 hdr = (void *)skb->data; 840 info = IEEE80211_SKB_CB(skb); 841 len = skb->len; 842 843 /* 844 * Note: If the frame was sent through a monitor interface, 845 * the ieee80211_vif pointer can be NULL. 846 */ 847 if (likely(info->control.vif)) 848 cvif = (void *) info->control.vif->drv_priv; 849 else 850 cvif = NULL; 851 852 sta = info->control.sta; 853 854 txc = (void *)skb_push(skb, sizeof(*txc)); 855 memset(txc, 0, sizeof(*txc)); 856 857 SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, txc->s.misc, hw_queue); 858 859 if (likely(cvif)) 860 SET_VAL(CARL9170_TX_SUPER_MISC_VIF_ID, txc->s.misc, cvif->id); 861 862 if (unlikely(info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM)) 863 txc->s.misc |= CARL9170_TX_SUPER_MISC_CAB; 864 865 if (unlikely(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)) 866 txc->s.misc |= CARL9170_TX_SUPER_MISC_ASSIGN_SEQ; 867 868 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control))) 869 txc->s.misc |= CARL9170_TX_SUPER_MISC_FILL_IN_TSF; 870 871 mac_tmp = cpu_to_le16(AR9170_TX_MAC_HW_DURATION | 872 AR9170_TX_MAC_BACKOFF); 873 mac_tmp |= cpu_to_le16((hw_queue << AR9170_TX_MAC_QOS_S) & 874 AR9170_TX_MAC_QOS); 875 876 no_ack = !!(info->flags & IEEE80211_TX_CTL_NO_ACK); 877 if (unlikely(no_ack)) 878 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_NO_ACK); 879 880 if (info->control.hw_key) { 881 len += info->control.hw_key->icv_len; 882 883 switch (info->control.hw_key->cipher) { 884 case WLAN_CIPHER_SUITE_WEP40: 885 case WLAN_CIPHER_SUITE_WEP104: 886 case WLAN_CIPHER_SUITE_TKIP: 887 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_RC4); 888 break; 889 case WLAN_CIPHER_SUITE_CCMP: 890 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_AES); 891 break; 892 default: 893 WARN_ON(1); 894 goto err_out; 895 } 896 } 897 898 ampdu = !!(info->flags & IEEE80211_TX_CTL_AMPDU); 899 if (ampdu) { 900 unsigned int density, factor; 901 902 if (unlikely(!sta || !cvif)) 903 goto err_out; 904 905 factor = min_t(unsigned int, 1u, sta->ht_cap.ampdu_factor); 906 density = sta->ht_cap.ampdu_density; 907 908 if (density) { 909 /* 910 * Watch out! 911 * 912 * Otus uses slightly different density values than 913 * those from the 802.11n spec. 914 */ 915 916 density = max_t(unsigned int, density + 1, 7u); 917 } 918 919 SET_VAL(CARL9170_TX_SUPER_AMPDU_DENSITY, 920 txc->s.ampdu_settings, density); 921 922 SET_VAL(CARL9170_TX_SUPER_AMPDU_FACTOR, 923 txc->s.ampdu_settings, factor); 924 925 for (i = 0; i < CARL9170_TX_MAX_RATES; i++) { 926 txrate = &info->control.rates[i]; 927 if (txrate->idx >= 0) { 928 txc->s.ri[i] = 929 CARL9170_TX_SUPER_RI_AMPDU; 930 931 if (WARN_ON(!(txrate->flags & 932 IEEE80211_TX_RC_MCS))) { 933 /* 934 * Not sure if it's even possible 935 * to aggregate non-ht rates with 936 * this HW. 937 */ 938 goto err_out; 939 } 940 continue; 941 } 942 943 txrate->idx = 0; 944 txrate->count = ar->hw->max_rate_tries; 945 } 946 947 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_AGGR); 948 } 949 950 /* 951 * NOTE: For the first rate, the ERP & AMPDU flags are directly 952 * taken from mac_control. For all fallback rate, the firmware 953 * updates the mac_control flags from the rate info field. 954 */ 955 for (i = 1; i < CARL9170_TX_MAX_RATES; i++) { 956 txrate = &info->control.rates[i]; 957 if (txrate->idx < 0) 958 break; 959 960 SET_VAL(CARL9170_TX_SUPER_RI_TRIES, txc->s.ri[i], 961 txrate->count); 962 963 if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack)) 964 txc->s.ri[i] |= (AR9170_TX_MAC_PROT_RTS << 965 CARL9170_TX_SUPER_RI_ERP_PROT_S); 966 else if (carl9170_tx_cts_check(ar, txrate)) 967 txc->s.ri[i] |= (AR9170_TX_MAC_PROT_CTS << 968 CARL9170_TX_SUPER_RI_ERP_PROT_S); 969 970 txc->s.rr[i - 1] = carl9170_tx_physet(ar, info, txrate); 971 } 972 973 txrate = &info->control.rates[0]; 974 SET_VAL(CARL9170_TX_SUPER_RI_TRIES, txc->s.ri[0], txrate->count); 975 976 if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack)) 977 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_RTS); 978 else if (carl9170_tx_cts_check(ar, txrate)) 979 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_CTS); 980 981 txc->s.len = cpu_to_le16(skb->len); 982 txc->f.length = cpu_to_le16(len + FCS_LEN); 983 txc->f.mac_control = mac_tmp; 984 txc->f.phy_control = carl9170_tx_physet(ar, info, txrate); 985 986 arinfo = (void *)info->rate_driver_data; 987 arinfo->timeout = jiffies; 988 arinfo->ar = ar; 989 kref_init(&arinfo->ref); 990 return 0; 991 992 err_out: 993 skb_pull(skb, sizeof(*txc)); 994 return -EINVAL; 995 } 996 997 static void carl9170_set_immba(struct ar9170 *ar, struct sk_buff *skb) 998 { 999 struct _carl9170_tx_superframe *super; 1000 1001 super = (void *) skb->data; 1002 super->f.mac_control |= cpu_to_le16(AR9170_TX_MAC_IMM_BA); 1003 } 1004 1005 static void carl9170_set_ampdu_params(struct ar9170 *ar, struct sk_buff *skb) 1006 { 1007 struct _carl9170_tx_superframe *super; 1008 int tmp; 1009 1010 super = (void *) skb->data; 1011 1012 tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_DENSITY) << 1013 CARL9170_TX_SUPER_AMPDU_DENSITY_S; 1014 1015 /* 1016 * If you haven't noticed carl9170_tx_prepare has already filled 1017 * in all ampdu spacing & factor parameters. 1018 * Now it's the time to check whenever the settings have to be 1019 * updated by the firmware, or if everything is still the same. 1020 * 1021 * There's no sane way to handle different density values with 1022 * this hardware, so we may as well just do the compare in the 1023 * driver. 1024 */ 1025 1026 if (tmp != ar->current_density) { 1027 ar->current_density = tmp; 1028 super->s.ampdu_settings |= 1029 CARL9170_TX_SUPER_AMPDU_COMMIT_DENSITY; 1030 } 1031 1032 tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_FACTOR) << 1033 CARL9170_TX_SUPER_AMPDU_FACTOR_S; 1034 1035 if (tmp != ar->current_factor) { 1036 ar->current_factor = tmp; 1037 super->s.ampdu_settings |= 1038 CARL9170_TX_SUPER_AMPDU_COMMIT_FACTOR; 1039 } 1040 } 1041 1042 static bool carl9170_tx_rate_check(struct ar9170 *ar, struct sk_buff *_dest, 1043 struct sk_buff *_src) 1044 { 1045 struct _carl9170_tx_superframe *dest, *src; 1046 1047 dest = (void *) _dest->data; 1048 src = (void *) _src->data; 1049 1050 /* 1051 * The mac80211 rate control algorithm expects that all MPDUs in 1052 * an AMPDU share the same tx vectors. 1053 * This is not really obvious right now, because the hardware 1054 * does the AMPDU setup according to its own rulebook. 1055 * Our nicely assembled, strictly monotonic increasing mpdu 1056 * chains will be broken up, mashed back together... 1057 */ 1058 1059 return (dest->f.phy_control == src->f.phy_control); 1060 } 1061 1062 static void carl9170_tx_ampdu(struct ar9170 *ar) 1063 { 1064 struct sk_buff_head agg; 1065 struct carl9170_sta_tid *tid_info; 1066 struct sk_buff *skb, *first; 1067 unsigned int i = 0, done_ampdus = 0; 1068 u16 seq, queue, tmpssn; 1069 1070 atomic_inc(&ar->tx_ampdu_scheduler); 1071 ar->tx_ampdu_schedule = false; 1072 1073 if (atomic_read(&ar->tx_ampdu_upload)) 1074 return; 1075 1076 if (!ar->tx_ampdu_list_len) 1077 return; 1078 1079 __skb_queue_head_init(&agg); 1080 1081 rcu_read_lock(); 1082 tid_info = rcu_dereference(ar->tx_ampdu_iter); 1083 if (WARN_ON_ONCE(!tid_info)) { 1084 rcu_read_unlock(); 1085 return; 1086 } 1087 1088 retry: 1089 list_for_each_entry_continue_rcu(tid_info, &ar->tx_ampdu_list, list) { 1090 i++; 1091 1092 if (tid_info->state < CARL9170_TID_STATE_PROGRESS) 1093 continue; 1094 1095 queue = TID_TO_WME_AC(tid_info->tid); 1096 1097 spin_lock_bh(&tid_info->lock); 1098 if (tid_info->state != CARL9170_TID_STATE_XMIT) 1099 goto processed; 1100 1101 tid_info->counter++; 1102 first = skb_peek(&tid_info->queue); 1103 tmpssn = carl9170_get_seq(first); 1104 seq = tid_info->snx; 1105 1106 if (unlikely(tmpssn != seq)) { 1107 tid_info->state = CARL9170_TID_STATE_IDLE; 1108 1109 goto processed; 1110 } 1111 1112 while ((skb = skb_peek(&tid_info->queue))) { 1113 /* strict 0, 1, ..., n - 1, n frame sequence order */ 1114 if (unlikely(carl9170_get_seq(skb) != seq)) 1115 break; 1116 1117 /* don't upload more than AMPDU FACTOR allows. */ 1118 if (unlikely(SEQ_DIFF(tid_info->snx, tid_info->bsn) >= 1119 (tid_info->max - 1))) 1120 break; 1121 1122 if (!carl9170_tx_rate_check(ar, skb, first)) 1123 break; 1124 1125 atomic_inc(&ar->tx_ampdu_upload); 1126 tid_info->snx = seq = SEQ_NEXT(seq); 1127 __skb_unlink(skb, &tid_info->queue); 1128 1129 __skb_queue_tail(&agg, skb); 1130 1131 if (skb_queue_len(&agg) >= CARL9170_NUM_TX_AGG_MAX) 1132 break; 1133 } 1134 1135 if (skb_queue_empty(&tid_info->queue) || 1136 carl9170_get_seq(skb_peek(&tid_info->queue)) != 1137 tid_info->snx) { 1138 /* 1139 * stop TID, if A-MPDU frames are still missing, 1140 * or whenever the queue is empty. 1141 */ 1142 1143 tid_info->state = CARL9170_TID_STATE_IDLE; 1144 } 1145 done_ampdus++; 1146 1147 processed: 1148 spin_unlock_bh(&tid_info->lock); 1149 1150 if (skb_queue_empty(&agg)) 1151 continue; 1152 1153 /* apply ampdu spacing & factor settings */ 1154 carl9170_set_ampdu_params(ar, skb_peek(&agg)); 1155 1156 /* set aggregation push bit */ 1157 carl9170_set_immba(ar, skb_peek_tail(&agg)); 1158 1159 spin_lock_bh(&ar->tx_pending[queue].lock); 1160 skb_queue_splice_tail_init(&agg, &ar->tx_pending[queue]); 1161 spin_unlock_bh(&ar->tx_pending[queue].lock); 1162 ar->tx_schedule = true; 1163 } 1164 if ((done_ampdus++ == 0) && (i++ == 0)) 1165 goto retry; 1166 1167 rcu_assign_pointer(ar->tx_ampdu_iter, tid_info); 1168 rcu_read_unlock(); 1169 } 1170 1171 static struct sk_buff *carl9170_tx_pick_skb(struct ar9170 *ar, 1172 struct sk_buff_head *queue) 1173 { 1174 struct sk_buff *skb; 1175 struct ieee80211_tx_info *info; 1176 struct carl9170_tx_info *arinfo; 1177 1178 BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data)); 1179 1180 spin_lock_bh(&queue->lock); 1181 skb = skb_peek(queue); 1182 if (unlikely(!skb)) 1183 goto err_unlock; 1184 1185 if (carl9170_alloc_dev_space(ar, skb)) 1186 goto err_unlock; 1187 1188 __skb_unlink(skb, queue); 1189 spin_unlock_bh(&queue->lock); 1190 1191 info = IEEE80211_SKB_CB(skb); 1192 arinfo = (void *) info->rate_driver_data; 1193 1194 arinfo->timeout = jiffies; 1195 1196 /* 1197 * increase ref count to "2". 1198 * Ref counting is the easiest way to solve the race between 1199 * the the urb's completion routine: carl9170_tx_callback and 1200 * wlan tx status functions: carl9170_tx_status/janitor. 1201 */ 1202 carl9170_tx_get_skb(skb); 1203 1204 return skb; 1205 1206 err_unlock: 1207 spin_unlock_bh(&queue->lock); 1208 return NULL; 1209 } 1210 1211 void carl9170_tx_drop(struct ar9170 *ar, struct sk_buff *skb) 1212 { 1213 struct _carl9170_tx_superframe *super; 1214 uint8_t q = 0; 1215 1216 ar->tx_dropped++; 1217 1218 super = (void *)skb->data; 1219 SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, q, 1220 ar9170_qmap[carl9170_get_queue(ar, skb)]); 1221 __carl9170_tx_process_status(ar, super->s.cookie, q); 1222 } 1223 1224 static void carl9170_tx(struct ar9170 *ar) 1225 { 1226 struct sk_buff *skb; 1227 unsigned int i, q; 1228 bool schedule_garbagecollector = false; 1229 1230 ar->tx_schedule = false; 1231 1232 if (unlikely(!IS_STARTED(ar))) 1233 return; 1234 1235 carl9170_usb_handle_tx_err(ar); 1236 1237 for (i = 0; i < ar->hw->queues; i++) { 1238 while (!skb_queue_empty(&ar->tx_pending[i])) { 1239 skb = carl9170_tx_pick_skb(ar, &ar->tx_pending[i]); 1240 if (unlikely(!skb)) 1241 break; 1242 1243 atomic_inc(&ar->tx_total_pending); 1244 1245 q = __carl9170_get_queue(ar, i); 1246 /* 1247 * NB: tx_status[i] vs. tx_status[q], 1248 * TODO: Move into pick_skb or alloc_dev_space. 1249 */ 1250 skb_queue_tail(&ar->tx_status[q], skb); 1251 1252 carl9170_usb_tx(ar, skb); 1253 schedule_garbagecollector = true; 1254 } 1255 } 1256 1257 if (!schedule_garbagecollector) 1258 return; 1259 1260 ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor, 1261 msecs_to_jiffies(CARL9170_TX_TIMEOUT)); 1262 } 1263 1264 static bool carl9170_tx_ampdu_queue(struct ar9170 *ar, 1265 struct ieee80211_sta *sta, struct sk_buff *skb) 1266 { 1267 struct _carl9170_tx_superframe *super = (void *) skb->data; 1268 struct carl9170_sta_info *sta_info; 1269 struct carl9170_sta_tid *agg; 1270 struct sk_buff *iter; 1271 unsigned int max; 1272 u16 tid, seq, qseq, off; 1273 bool run = false; 1274 1275 tid = carl9170_get_tid(skb); 1276 seq = carl9170_get_seq(skb); 1277 sta_info = (void *) sta->drv_priv; 1278 1279 rcu_read_lock(); 1280 agg = rcu_dereference(sta_info->agg[tid]); 1281 max = sta_info->ampdu_max_len; 1282 1283 if (!agg) 1284 goto err_unlock_rcu; 1285 1286 spin_lock_bh(&agg->lock); 1287 if (unlikely(agg->state < CARL9170_TID_STATE_IDLE)) 1288 goto err_unlock; 1289 1290 /* check if sequence is within the BA window */ 1291 if (unlikely(!BAW_WITHIN(agg->bsn, CARL9170_BAW_BITS, seq))) 1292 goto err_unlock; 1293 1294 if (WARN_ON_ONCE(!BAW_WITHIN(agg->snx, CARL9170_BAW_BITS, seq))) 1295 goto err_unlock; 1296 1297 off = SEQ_DIFF(seq, agg->bsn); 1298 if (WARN_ON_ONCE(test_and_set_bit(off, agg->bitmap))) 1299 goto err_unlock; 1300 1301 if (likely(BAW_WITHIN(agg->hsn, CARL9170_BAW_BITS, seq))) { 1302 __skb_queue_tail(&agg->queue, skb); 1303 agg->hsn = seq; 1304 goto queued; 1305 } 1306 1307 skb_queue_reverse_walk(&agg->queue, iter) { 1308 qseq = carl9170_get_seq(iter); 1309 1310 if (BAW_WITHIN(qseq, CARL9170_BAW_BITS, seq)) { 1311 __skb_queue_after(&agg->queue, iter, skb); 1312 goto queued; 1313 } 1314 } 1315 1316 __skb_queue_head(&agg->queue, skb); 1317 queued: 1318 1319 if (unlikely(agg->state != CARL9170_TID_STATE_XMIT)) { 1320 if (agg->snx == carl9170_get_seq(skb_peek(&agg->queue))) { 1321 agg->state = CARL9170_TID_STATE_XMIT; 1322 run = true; 1323 } 1324 } 1325 1326 spin_unlock_bh(&agg->lock); 1327 rcu_read_unlock(); 1328 1329 return run; 1330 1331 err_unlock: 1332 spin_unlock_bh(&agg->lock); 1333 1334 err_unlock_rcu: 1335 rcu_read_unlock(); 1336 super->f.mac_control &= ~cpu_to_le16(AR9170_TX_MAC_AGGR); 1337 carl9170_tx_status(ar, skb, false); 1338 ar->tx_dropped++; 1339 return false; 1340 } 1341 1342 void carl9170_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb) 1343 { 1344 struct ar9170 *ar = hw->priv; 1345 struct ieee80211_tx_info *info; 1346 struct ieee80211_sta *sta; 1347 bool run; 1348 1349 if (unlikely(!IS_STARTED(ar))) 1350 goto err_free; 1351 1352 info = IEEE80211_SKB_CB(skb); 1353 sta = info->control.sta; 1354 1355 if (unlikely(carl9170_tx_prepare(ar, skb))) 1356 goto err_free; 1357 1358 carl9170_tx_accounting(ar, skb); 1359 /* 1360 * from now on, one has to use carl9170_tx_status to free 1361 * all ressouces which are associated with the frame. 1362 */ 1363 1364 if (info->flags & IEEE80211_TX_CTL_AMPDU) { 1365 run = carl9170_tx_ampdu_queue(ar, sta, skb); 1366 if (run) 1367 carl9170_tx_ampdu(ar); 1368 1369 } else { 1370 unsigned int queue = skb_get_queue_mapping(skb); 1371 1372 skb_queue_tail(&ar->tx_pending[queue], skb); 1373 } 1374 1375 carl9170_tx(ar); 1376 return; 1377 1378 err_free: 1379 ar->tx_dropped++; 1380 dev_kfree_skb_any(skb); 1381 } 1382 1383 void carl9170_tx_scheduler(struct ar9170 *ar) 1384 { 1385 1386 if (ar->tx_ampdu_schedule) 1387 carl9170_tx_ampdu(ar); 1388 1389 if (ar->tx_schedule) 1390 carl9170_tx(ar); 1391 } 1392