1 /* 2 * Atheros CARL9170 driver 3 * 4 * 802.11 xmit & status routines 5 * 6 * Copyright 2008, Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2009, 2010, Christian Lamparter <chunkeey@googlemail.com> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; see the file COPYING. If not, see 21 * http://www.gnu.org/licenses/. 22 * 23 * This file incorporates work covered by the following copyright and 24 * permission notice: 25 * Copyright (c) 2007-2008 Atheros Communications, Inc. 26 * 27 * Permission to use, copy, modify, and/or distribute this software for any 28 * purpose with or without fee is hereby granted, provided that the above 29 * copyright notice and this permission notice appear in all copies. 30 * 31 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 32 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 33 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 34 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 35 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 36 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 37 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 38 */ 39 40 #include <linux/slab.h> 41 #include <linux/module.h> 42 #include <linux/etherdevice.h> 43 #include <net/mac80211.h> 44 #include "carl9170.h" 45 #include "hw.h" 46 #include "cmd.h" 47 48 static inline unsigned int __carl9170_get_queue(struct ar9170 *ar, 49 unsigned int queue) 50 { 51 if (unlikely(modparam_noht)) { 52 return queue; 53 } else { 54 /* 55 * This is just another workaround, until 56 * someone figures out how to get QoS and 57 * AMPDU to play nicely together. 58 */ 59 60 return 2; /* AC_BE */ 61 } 62 } 63 64 static inline unsigned int carl9170_get_queue(struct ar9170 *ar, 65 struct sk_buff *skb) 66 { 67 return __carl9170_get_queue(ar, skb_get_queue_mapping(skb)); 68 } 69 70 static bool is_mem_full(struct ar9170 *ar) 71 { 72 return (DIV_ROUND_UP(IEEE80211_MAX_FRAME_LEN, ar->fw.mem_block_size) > 73 atomic_read(&ar->mem_free_blocks)); 74 } 75 76 static void carl9170_tx_accounting(struct ar9170 *ar, struct sk_buff *skb) 77 { 78 int queue, i; 79 bool mem_full; 80 81 atomic_inc(&ar->tx_total_queued); 82 83 queue = skb_get_queue_mapping(skb); 84 spin_lock_bh(&ar->tx_stats_lock); 85 86 /* 87 * The driver has to accept the frame, regardless if the queue is 88 * full to the brim, or not. We have to do the queuing internally, 89 * since mac80211 assumes that a driver which can operate with 90 * aggregated frames does not reject frames for this reason. 91 */ 92 ar->tx_stats[queue].len++; 93 ar->tx_stats[queue].count++; 94 95 mem_full = is_mem_full(ar); 96 for (i = 0; i < ar->hw->queues; i++) { 97 if (mem_full || ar->tx_stats[i].len >= ar->tx_stats[i].limit) { 98 ieee80211_stop_queue(ar->hw, i); 99 ar->queue_stop_timeout[i] = jiffies; 100 } 101 } 102 103 spin_unlock_bh(&ar->tx_stats_lock); 104 } 105 106 /* needs rcu_read_lock */ 107 static struct ieee80211_sta *__carl9170_get_tx_sta(struct ar9170 *ar, 108 struct sk_buff *skb) 109 { 110 struct _carl9170_tx_superframe *super = (void *) skb->data; 111 struct ieee80211_hdr *hdr = (void *) super->frame_data; 112 struct ieee80211_vif *vif; 113 unsigned int vif_id; 114 115 vif_id = (super->s.misc & CARL9170_TX_SUPER_MISC_VIF_ID) >> 116 CARL9170_TX_SUPER_MISC_VIF_ID_S; 117 118 if (WARN_ON_ONCE(vif_id >= AR9170_MAX_VIRTUAL_MAC)) 119 return NULL; 120 121 vif = rcu_dereference(ar->vif_priv[vif_id].vif); 122 if (unlikely(!vif)) 123 return NULL; 124 125 /* 126 * Normally we should use wrappers like ieee80211_get_DA to get 127 * the correct peer ieee80211_sta. 128 * 129 * But there is a problem with indirect traffic (broadcasts, or 130 * data which is designated for other stations) in station mode. 131 * The frame will be directed to the AP for distribution and not 132 * to the actual destination. 133 */ 134 135 return ieee80211_find_sta(vif, hdr->addr1); 136 } 137 138 static void carl9170_tx_ps_unblock(struct ar9170 *ar, struct sk_buff *skb) 139 { 140 struct ieee80211_sta *sta; 141 struct carl9170_sta_info *sta_info; 142 143 rcu_read_lock(); 144 sta = __carl9170_get_tx_sta(ar, skb); 145 if (unlikely(!sta)) 146 goto out_rcu; 147 148 sta_info = (struct carl9170_sta_info *) sta->drv_priv; 149 if (atomic_dec_return(&sta_info->pending_frames) == 0) 150 ieee80211_sta_block_awake(ar->hw, sta, false); 151 152 out_rcu: 153 rcu_read_unlock(); 154 } 155 156 static void carl9170_tx_accounting_free(struct ar9170 *ar, struct sk_buff *skb) 157 { 158 int queue; 159 160 queue = skb_get_queue_mapping(skb); 161 162 spin_lock_bh(&ar->tx_stats_lock); 163 164 ar->tx_stats[queue].len--; 165 166 if (!is_mem_full(ar)) { 167 unsigned int i; 168 for (i = 0; i < ar->hw->queues; i++) { 169 if (ar->tx_stats[i].len >= CARL9170_NUM_TX_LIMIT_SOFT) 170 continue; 171 172 if (ieee80211_queue_stopped(ar->hw, i)) { 173 unsigned long tmp; 174 175 tmp = jiffies - ar->queue_stop_timeout[i]; 176 if (tmp > ar->max_queue_stop_timeout[i]) 177 ar->max_queue_stop_timeout[i] = tmp; 178 } 179 180 ieee80211_wake_queue(ar->hw, i); 181 } 182 } 183 184 spin_unlock_bh(&ar->tx_stats_lock); 185 186 if (atomic_dec_and_test(&ar->tx_total_queued)) 187 complete(&ar->tx_flush); 188 } 189 190 static int carl9170_alloc_dev_space(struct ar9170 *ar, struct sk_buff *skb) 191 { 192 struct _carl9170_tx_superframe *super = (void *) skb->data; 193 unsigned int chunks; 194 int cookie = -1; 195 196 atomic_inc(&ar->mem_allocs); 197 198 chunks = DIV_ROUND_UP(skb->len, ar->fw.mem_block_size); 199 if (unlikely(atomic_sub_return(chunks, &ar->mem_free_blocks) < 0)) { 200 atomic_add(chunks, &ar->mem_free_blocks); 201 return -ENOSPC; 202 } 203 204 spin_lock_bh(&ar->mem_lock); 205 cookie = bitmap_find_free_region(ar->mem_bitmap, ar->fw.mem_blocks, 0); 206 spin_unlock_bh(&ar->mem_lock); 207 208 if (unlikely(cookie < 0)) { 209 atomic_add(chunks, &ar->mem_free_blocks); 210 return -ENOSPC; 211 } 212 213 super = (void *) skb->data; 214 215 /* 216 * Cookie #0 serves two special purposes: 217 * 1. The firmware might use it generate BlockACK frames 218 * in responds of an incoming BlockAckReqs. 219 * 220 * 2. Prevent double-free bugs. 221 */ 222 super->s.cookie = (u8) cookie + 1; 223 return 0; 224 } 225 226 static void carl9170_release_dev_space(struct ar9170 *ar, struct sk_buff *skb) 227 { 228 struct _carl9170_tx_superframe *super = (void *) skb->data; 229 int cookie; 230 231 /* make a local copy of the cookie */ 232 cookie = super->s.cookie; 233 /* invalidate cookie */ 234 super->s.cookie = 0; 235 236 /* 237 * Do a out-of-bounds check on the cookie: 238 * 239 * * cookie "0" is reserved and won't be assigned to any 240 * out-going frame. Internally however, it is used to 241 * mark no longer/un-accounted frames and serves as a 242 * cheap way of preventing frames from being freed 243 * twice by _accident_. NB: There is a tiny race... 244 * 245 * * obviously, cookie number is limited by the amount 246 * of available memory blocks, so the number can 247 * never execeed the mem_blocks count. 248 */ 249 if (WARN_ON_ONCE(cookie == 0) || 250 WARN_ON_ONCE(cookie > ar->fw.mem_blocks)) 251 return; 252 253 atomic_add(DIV_ROUND_UP(skb->len, ar->fw.mem_block_size), 254 &ar->mem_free_blocks); 255 256 spin_lock_bh(&ar->mem_lock); 257 bitmap_release_region(ar->mem_bitmap, cookie - 1, 0); 258 spin_unlock_bh(&ar->mem_lock); 259 } 260 261 /* Called from any context */ 262 static void carl9170_tx_release(struct kref *ref) 263 { 264 struct ar9170 *ar; 265 struct carl9170_tx_info *arinfo; 266 struct ieee80211_tx_info *txinfo; 267 struct sk_buff *skb; 268 269 arinfo = container_of(ref, struct carl9170_tx_info, ref); 270 txinfo = container_of((void *) arinfo, struct ieee80211_tx_info, 271 rate_driver_data); 272 skb = container_of((void *) txinfo, struct sk_buff, cb); 273 274 ar = arinfo->ar; 275 if (WARN_ON_ONCE(!ar)) 276 return; 277 278 /* 279 * This does not call ieee80211_tx_info_clear_status() because 280 * carl9170_tx_fill_rateinfo() has filled the rate information 281 * before we get to this point. 282 */ 283 memset_after(&txinfo->status, 0, rates); 284 285 if (atomic_read(&ar->tx_total_queued)) 286 ar->tx_schedule = true; 287 288 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) { 289 if (!atomic_read(&ar->tx_ampdu_upload)) 290 ar->tx_ampdu_schedule = true; 291 292 if (txinfo->flags & IEEE80211_TX_STAT_AMPDU) { 293 struct _carl9170_tx_superframe *super; 294 295 super = (void *)skb->data; 296 txinfo->status.ampdu_len = super->s.rix; 297 txinfo->status.ampdu_ack_len = super->s.cnt; 298 } else if ((txinfo->flags & IEEE80211_TX_STAT_ACK) && 299 !(txinfo->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)) { 300 /* 301 * drop redundant tx_status reports: 302 * 303 * 1. ampdu_ack_len of the final tx_status does 304 * include the feedback of this particular frame. 305 * 306 * 2. tx_status_irqsafe only queues up to 128 307 * tx feedback reports and discards the rest. 308 * 309 * 3. minstrel_ht is picky, it only accepts 310 * reports of frames with the TX_STATUS_AMPDU flag. 311 * 312 * 4. mac80211 is not particularly interested in 313 * feedback either [CTL_REQ_TX_STATUS not set] 314 */ 315 316 ieee80211_free_txskb(ar->hw, skb); 317 return; 318 } else { 319 /* 320 * Either the frame transmission has failed or 321 * mac80211 requested tx status. 322 */ 323 } 324 } 325 326 skb_pull(skb, sizeof(struct _carl9170_tx_superframe)); 327 ieee80211_tx_status_irqsafe(ar->hw, skb); 328 } 329 330 void carl9170_tx_get_skb(struct sk_buff *skb) 331 { 332 struct carl9170_tx_info *arinfo = (void *) 333 (IEEE80211_SKB_CB(skb))->rate_driver_data; 334 kref_get(&arinfo->ref); 335 } 336 337 int carl9170_tx_put_skb(struct sk_buff *skb) 338 { 339 struct carl9170_tx_info *arinfo = (void *) 340 (IEEE80211_SKB_CB(skb))->rate_driver_data; 341 342 return kref_put(&arinfo->ref, carl9170_tx_release); 343 } 344 345 /* Caller must hold the tid_info->lock & rcu_read_lock */ 346 static void carl9170_tx_shift_bm(struct ar9170 *ar, 347 struct carl9170_sta_tid *tid_info, u16 seq) 348 { 349 u16 off; 350 351 off = SEQ_DIFF(seq, tid_info->bsn); 352 353 if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS)) 354 return; 355 356 /* 357 * Sanity check. For each MPDU we set the bit in bitmap and 358 * clear it once we received the tx_status. 359 * But if the bit is already cleared then we've been bitten 360 * by a bug. 361 */ 362 WARN_ON_ONCE(!test_and_clear_bit(off, tid_info->bitmap)); 363 364 off = SEQ_DIFF(tid_info->snx, tid_info->bsn); 365 if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS)) 366 return; 367 368 if (!bitmap_empty(tid_info->bitmap, off)) 369 off = find_first_bit(tid_info->bitmap, off); 370 371 tid_info->bsn += off; 372 tid_info->bsn &= 0x0fff; 373 374 bitmap_shift_right(tid_info->bitmap, tid_info->bitmap, 375 off, CARL9170_BAW_BITS); 376 } 377 378 static void carl9170_tx_status_process_ampdu(struct ar9170 *ar, 379 struct sk_buff *skb, struct ieee80211_tx_info *txinfo) 380 { 381 struct _carl9170_tx_superframe *super = (void *) skb->data; 382 struct ieee80211_hdr *hdr = (void *) super->frame_data; 383 struct ieee80211_sta *sta; 384 struct carl9170_sta_info *sta_info; 385 struct carl9170_sta_tid *tid_info; 386 u8 tid; 387 388 if (!(txinfo->flags & IEEE80211_TX_CTL_AMPDU) || 389 txinfo->flags & IEEE80211_TX_CTL_INJECTED) 390 return; 391 392 rcu_read_lock(); 393 sta = __carl9170_get_tx_sta(ar, skb); 394 if (unlikely(!sta)) 395 goto out_rcu; 396 397 tid = ieee80211_get_tid(hdr); 398 399 sta_info = (void *) sta->drv_priv; 400 tid_info = rcu_dereference(sta_info->agg[tid]); 401 if (!tid_info) 402 goto out_rcu; 403 404 spin_lock_bh(&tid_info->lock); 405 if (likely(tid_info->state >= CARL9170_TID_STATE_IDLE)) 406 carl9170_tx_shift_bm(ar, tid_info, get_seq_h(hdr)); 407 408 if (sta_info->stats[tid].clear) { 409 sta_info->stats[tid].clear = false; 410 sta_info->stats[tid].req = false; 411 sta_info->stats[tid].ampdu_len = 0; 412 sta_info->stats[tid].ampdu_ack_len = 0; 413 } 414 415 sta_info->stats[tid].ampdu_len++; 416 if (txinfo->status.rates[0].count == 1) 417 sta_info->stats[tid].ampdu_ack_len++; 418 419 if (!(txinfo->flags & IEEE80211_TX_STAT_ACK)) 420 sta_info->stats[tid].req = true; 421 422 if (super->f.mac_control & cpu_to_le16(AR9170_TX_MAC_IMM_BA)) { 423 super->s.rix = sta_info->stats[tid].ampdu_len; 424 super->s.cnt = sta_info->stats[tid].ampdu_ack_len; 425 txinfo->flags |= IEEE80211_TX_STAT_AMPDU; 426 if (sta_info->stats[tid].req) 427 txinfo->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK; 428 429 sta_info->stats[tid].clear = true; 430 } 431 spin_unlock_bh(&tid_info->lock); 432 433 out_rcu: 434 rcu_read_unlock(); 435 } 436 437 static void carl9170_tx_bar_status(struct ar9170 *ar, struct sk_buff *skb, 438 struct ieee80211_tx_info *tx_info) 439 { 440 struct _carl9170_tx_superframe *super = (void *) skb->data; 441 struct ieee80211_bar *bar = (void *) super->frame_data; 442 443 /* 444 * Unlike all other frames, the status report for BARs does 445 * not directly come from the hardware as it is incapable of 446 * matching a BA to a previously send BAR. 447 * Instead the RX-path will scan for incoming BAs and set the 448 * IEEE80211_TX_STAT_ACK if it sees one that was likely 449 * caused by a BAR from us. 450 */ 451 452 if (unlikely(ieee80211_is_back_req(bar->frame_control)) && 453 !(tx_info->flags & IEEE80211_TX_STAT_ACK)) { 454 struct carl9170_bar_list_entry *entry; 455 int queue = skb_get_queue_mapping(skb); 456 457 rcu_read_lock(); 458 list_for_each_entry_rcu(entry, &ar->bar_list[queue], list) { 459 if (entry->skb == skb) { 460 spin_lock_bh(&ar->bar_list_lock[queue]); 461 list_del_rcu(&entry->list); 462 spin_unlock_bh(&ar->bar_list_lock[queue]); 463 kfree_rcu(entry, head); 464 goto out; 465 } 466 } 467 468 WARN(1, "bar not found in %d - ra:%pM ta:%pM c:%x ssn:%x\n", 469 queue, bar->ra, bar->ta, bar->control, 470 bar->start_seq_num); 471 out: 472 rcu_read_unlock(); 473 } 474 } 475 476 void carl9170_tx_status(struct ar9170 *ar, struct sk_buff *skb, 477 const bool success) 478 { 479 struct ieee80211_tx_info *txinfo; 480 481 carl9170_tx_accounting_free(ar, skb); 482 483 txinfo = IEEE80211_SKB_CB(skb); 484 485 carl9170_tx_bar_status(ar, skb, txinfo); 486 487 if (success) 488 txinfo->flags |= IEEE80211_TX_STAT_ACK; 489 else 490 ar->tx_ack_failures++; 491 492 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) 493 carl9170_tx_status_process_ampdu(ar, skb, txinfo); 494 495 carl9170_tx_ps_unblock(ar, skb); 496 carl9170_tx_put_skb(skb); 497 } 498 499 /* This function may be called form any context */ 500 void carl9170_tx_callback(struct ar9170 *ar, struct sk_buff *skb) 501 { 502 struct ieee80211_tx_info *txinfo = IEEE80211_SKB_CB(skb); 503 504 atomic_dec(&ar->tx_total_pending); 505 506 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) 507 atomic_dec(&ar->tx_ampdu_upload); 508 509 if (carl9170_tx_put_skb(skb)) 510 tasklet_hi_schedule(&ar->usb_tasklet); 511 } 512 513 static struct sk_buff *carl9170_get_queued_skb(struct ar9170 *ar, u8 cookie, 514 struct sk_buff_head *queue) 515 { 516 struct sk_buff *skb; 517 518 spin_lock_bh(&queue->lock); 519 skb_queue_walk(queue, skb) { 520 struct _carl9170_tx_superframe *txc = (void *) skb->data; 521 522 if (txc->s.cookie != cookie) 523 continue; 524 525 __skb_unlink(skb, queue); 526 spin_unlock_bh(&queue->lock); 527 528 carl9170_release_dev_space(ar, skb); 529 return skb; 530 } 531 spin_unlock_bh(&queue->lock); 532 533 return NULL; 534 } 535 536 static void carl9170_tx_fill_rateinfo(struct ar9170 *ar, unsigned int rix, 537 unsigned int tries, struct ieee80211_tx_info *txinfo) 538 { 539 unsigned int i; 540 541 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { 542 if (txinfo->status.rates[i].idx < 0) 543 break; 544 545 if (i == rix) { 546 txinfo->status.rates[i].count = tries; 547 i++; 548 break; 549 } 550 } 551 552 for (; i < IEEE80211_TX_MAX_RATES; i++) { 553 txinfo->status.rates[i].idx = -1; 554 txinfo->status.rates[i].count = 0; 555 } 556 } 557 558 static void carl9170_check_queue_stop_timeout(struct ar9170 *ar) 559 { 560 int i; 561 struct sk_buff *skb; 562 struct ieee80211_tx_info *txinfo; 563 struct carl9170_tx_info *arinfo; 564 bool restart = false; 565 566 for (i = 0; i < ar->hw->queues; i++) { 567 spin_lock_bh(&ar->tx_status[i].lock); 568 569 skb = skb_peek(&ar->tx_status[i]); 570 571 if (!skb) 572 goto next; 573 574 txinfo = IEEE80211_SKB_CB(skb); 575 arinfo = (void *) txinfo->rate_driver_data; 576 577 if (time_is_before_jiffies(arinfo->timeout + 578 msecs_to_jiffies(CARL9170_QUEUE_STUCK_TIMEOUT)) == true) 579 restart = true; 580 581 next: 582 spin_unlock_bh(&ar->tx_status[i].lock); 583 } 584 585 if (restart) { 586 /* 587 * At least one queue has been stuck for long enough. 588 * Give the device a kick and hope it gets back to 589 * work. 590 * 591 * possible reasons may include: 592 * - frames got lost/corrupted (bad connection to the device) 593 * - stalled rx processing/usb controller hiccups 594 * - firmware errors/bugs 595 * - every bug you can think of. 596 * - all bugs you can't... 597 * - ... 598 */ 599 carl9170_restart(ar, CARL9170_RR_STUCK_TX); 600 } 601 } 602 603 static void carl9170_tx_ampdu_timeout(struct ar9170 *ar) 604 { 605 struct carl9170_sta_tid *iter; 606 struct sk_buff *skb; 607 struct ieee80211_tx_info *txinfo; 608 struct carl9170_tx_info *arinfo; 609 struct ieee80211_sta *sta; 610 611 rcu_read_lock(); 612 list_for_each_entry_rcu(iter, &ar->tx_ampdu_list, list) { 613 if (iter->state < CARL9170_TID_STATE_IDLE) 614 continue; 615 616 spin_lock_bh(&iter->lock); 617 skb = skb_peek(&iter->queue); 618 if (!skb) 619 goto unlock; 620 621 txinfo = IEEE80211_SKB_CB(skb); 622 arinfo = (void *)txinfo->rate_driver_data; 623 if (time_is_after_jiffies(arinfo->timeout + 624 msecs_to_jiffies(CARL9170_QUEUE_TIMEOUT))) 625 goto unlock; 626 627 sta = iter->sta; 628 if (WARN_ON(!sta)) 629 goto unlock; 630 631 ieee80211_stop_tx_ba_session(sta, iter->tid); 632 unlock: 633 spin_unlock_bh(&iter->lock); 634 635 } 636 rcu_read_unlock(); 637 } 638 639 void carl9170_tx_janitor(struct work_struct *work) 640 { 641 struct ar9170 *ar = container_of(work, struct ar9170, 642 tx_janitor.work); 643 if (!IS_STARTED(ar)) 644 return; 645 646 ar->tx_janitor_last_run = jiffies; 647 648 carl9170_check_queue_stop_timeout(ar); 649 carl9170_tx_ampdu_timeout(ar); 650 651 if (!atomic_read(&ar->tx_total_queued)) 652 return; 653 654 ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor, 655 msecs_to_jiffies(CARL9170_TX_TIMEOUT)); 656 } 657 658 static void __carl9170_tx_process_status(struct ar9170 *ar, 659 const uint8_t cookie, const uint8_t info) 660 { 661 struct sk_buff *skb; 662 struct ieee80211_tx_info *txinfo; 663 unsigned int r, t, q; 664 bool success = true; 665 666 q = ar9170_qmap(info & CARL9170_TX_STATUS_QUEUE); 667 668 skb = carl9170_get_queued_skb(ar, cookie, &ar->tx_status[q]); 669 if (!skb) { 670 /* 671 * We have lost the race to another thread. 672 */ 673 674 return ; 675 } 676 677 txinfo = IEEE80211_SKB_CB(skb); 678 679 if (!(info & CARL9170_TX_STATUS_SUCCESS)) 680 success = false; 681 682 r = (info & CARL9170_TX_STATUS_RIX) >> CARL9170_TX_STATUS_RIX_S; 683 t = (info & CARL9170_TX_STATUS_TRIES) >> CARL9170_TX_STATUS_TRIES_S; 684 685 carl9170_tx_fill_rateinfo(ar, r, t, txinfo); 686 carl9170_tx_status(ar, skb, success); 687 } 688 689 void carl9170_tx_process_status(struct ar9170 *ar, 690 const struct carl9170_rsp *cmd) 691 { 692 unsigned int i; 693 694 for (i = 0; i < cmd->hdr.ext; i++) { 695 if (WARN_ON(i > ((cmd->hdr.len / 2) + 1))) { 696 print_hex_dump_bytes("UU:", DUMP_PREFIX_NONE, 697 (void *) cmd, cmd->hdr.len + 4); 698 break; 699 } 700 701 __carl9170_tx_process_status(ar, cmd->_tx_status[i].cookie, 702 cmd->_tx_status[i].info); 703 } 704 } 705 706 static void carl9170_tx_rate_tpc_chains(struct ar9170 *ar, 707 struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate, 708 unsigned int *phyrate, unsigned int *tpc, unsigned int *chains) 709 { 710 struct ieee80211_rate *rate = NULL; 711 u8 *txpower; 712 unsigned int idx; 713 714 idx = txrate->idx; 715 *tpc = 0; 716 *phyrate = 0; 717 718 if (txrate->flags & IEEE80211_TX_RC_MCS) { 719 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) { 720 /* +1 dBm for HT40 */ 721 *tpc += 2; 722 723 if (info->band == NL80211_BAND_2GHZ) 724 txpower = ar->power_2G_ht40; 725 else 726 txpower = ar->power_5G_ht40; 727 } else { 728 if (info->band == NL80211_BAND_2GHZ) 729 txpower = ar->power_2G_ht20; 730 else 731 txpower = ar->power_5G_ht20; 732 } 733 734 *phyrate = txrate->idx; 735 *tpc += txpower[idx & 7]; 736 } else { 737 if (info->band == NL80211_BAND_2GHZ) { 738 if (idx < 4) 739 txpower = ar->power_2G_cck; 740 else 741 txpower = ar->power_2G_ofdm; 742 } else { 743 txpower = ar->power_5G_leg; 744 idx += 4; 745 } 746 747 rate = &__carl9170_ratetable[idx]; 748 *tpc += txpower[(rate->hw_value & 0x30) >> 4]; 749 *phyrate = rate->hw_value & 0xf; 750 } 751 752 if (ar->eeprom.tx_mask == 1) { 753 *chains = AR9170_TX_PHY_TXCHAIN_1; 754 } else { 755 if (!(txrate->flags & IEEE80211_TX_RC_MCS) && 756 rate && rate->bitrate >= 360) 757 *chains = AR9170_TX_PHY_TXCHAIN_1; 758 else 759 *chains = AR9170_TX_PHY_TXCHAIN_2; 760 } 761 762 *tpc = min_t(unsigned int, *tpc, ar->hw->conf.power_level * 2); 763 } 764 765 static __le32 carl9170_tx_physet(struct ar9170 *ar, 766 struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate) 767 { 768 unsigned int power = 0, chains = 0, phyrate = 0; 769 __le32 tmp; 770 771 tmp = cpu_to_le32(0); 772 773 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 774 tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ << 775 AR9170_TX_PHY_BW_S); 776 /* this works because 40 MHz is 2 and dup is 3 */ 777 if (txrate->flags & IEEE80211_TX_RC_DUP_DATA) 778 tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ_DUP << 779 AR9170_TX_PHY_BW_S); 780 781 if (txrate->flags & IEEE80211_TX_RC_SHORT_GI) 782 tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_GI); 783 784 if (txrate->flags & IEEE80211_TX_RC_MCS) { 785 SET_VAL(AR9170_TX_PHY_MCS, phyrate, txrate->idx); 786 787 /* heavy clip control */ 788 tmp |= cpu_to_le32((txrate->idx & 0x7) << 789 AR9170_TX_PHY_TX_HEAVY_CLIP_S); 790 791 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_HT); 792 793 /* 794 * green field preamble does not work. 795 * 796 * if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD) 797 * tmp |= cpu_to_le32(AR9170_TX_PHY_GREENFIELD); 798 */ 799 } else { 800 if (info->band == NL80211_BAND_2GHZ) { 801 if (txrate->idx <= AR9170_TX_PHY_RATE_CCK_11M) 802 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_CCK); 803 else 804 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM); 805 } else { 806 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM); 807 } 808 809 /* 810 * short preamble seems to be broken too. 811 * 812 * if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 813 * tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_PREAMBLE); 814 */ 815 } 816 carl9170_tx_rate_tpc_chains(ar, info, txrate, 817 &phyrate, &power, &chains); 818 819 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_MCS, phyrate)); 820 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TX_PWR, power)); 821 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TXCHAIN, chains)); 822 return tmp; 823 } 824 825 static bool carl9170_tx_rts_check(struct ar9170 *ar, 826 struct ieee80211_tx_rate *rate, 827 bool ampdu, bool multi) 828 { 829 switch (ar->erp_mode) { 830 case CARL9170_ERP_AUTO: 831 if (ampdu) 832 break; 833 fallthrough; 834 835 case CARL9170_ERP_MAC80211: 836 if (!(rate->flags & IEEE80211_TX_RC_USE_RTS_CTS)) 837 break; 838 fallthrough; 839 840 case CARL9170_ERP_RTS: 841 if (likely(!multi)) 842 return true; 843 break; 844 845 default: 846 break; 847 } 848 849 return false; 850 } 851 852 static bool carl9170_tx_cts_check(struct ar9170 *ar, 853 struct ieee80211_tx_rate *rate) 854 { 855 switch (ar->erp_mode) { 856 case CARL9170_ERP_AUTO: 857 case CARL9170_ERP_MAC80211: 858 if (!(rate->flags & IEEE80211_TX_RC_USE_CTS_PROTECT)) 859 break; 860 fallthrough; 861 862 case CARL9170_ERP_CTS: 863 return true; 864 865 default: 866 break; 867 } 868 869 return false; 870 } 871 872 static void carl9170_tx_get_rates(struct ar9170 *ar, 873 struct ieee80211_vif *vif, 874 struct ieee80211_sta *sta, 875 struct sk_buff *skb) 876 { 877 struct ieee80211_tx_info *info; 878 879 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES < CARL9170_TX_MAX_RATES); 880 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES > IEEE80211_TX_RATE_TABLE_SIZE); 881 882 info = IEEE80211_SKB_CB(skb); 883 884 ieee80211_get_tx_rates(vif, sta, skb, 885 info->control.rates, 886 IEEE80211_TX_MAX_RATES); 887 } 888 889 static void carl9170_tx_apply_rateset(struct ar9170 *ar, 890 struct ieee80211_tx_info *sinfo, 891 struct sk_buff *skb) 892 { 893 struct ieee80211_tx_rate *txrate; 894 struct ieee80211_tx_info *info; 895 struct _carl9170_tx_superframe *txc = (void *) skb->data; 896 int i; 897 bool ampdu; 898 bool no_ack; 899 900 info = IEEE80211_SKB_CB(skb); 901 ampdu = !!(info->flags & IEEE80211_TX_CTL_AMPDU); 902 no_ack = !!(info->flags & IEEE80211_TX_CTL_NO_ACK); 903 904 /* Set the rate control probe flag for all (sub-) frames. 905 * This is because the TX_STATS_AMPDU flag is only set on 906 * the last frame, so it has to be inherited. 907 */ 908 info->flags |= (sinfo->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE); 909 910 /* NOTE: For the first rate, the ERP & AMPDU flags are directly 911 * taken from mac_control. For all fallback rate, the firmware 912 * updates the mac_control flags from the rate info field. 913 */ 914 for (i = 0; i < CARL9170_TX_MAX_RATES; i++) { 915 __le32 phy_set; 916 917 txrate = &sinfo->control.rates[i]; 918 if (txrate->idx < 0) 919 break; 920 921 phy_set = carl9170_tx_physet(ar, info, txrate); 922 if (i == 0) { 923 __le16 mac_tmp = cpu_to_le16(0); 924 925 /* first rate - part of the hw's frame header */ 926 txc->f.phy_control = phy_set; 927 928 if (ampdu && txrate->flags & IEEE80211_TX_RC_MCS) 929 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_AGGR); 930 931 if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack)) 932 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_RTS); 933 else if (carl9170_tx_cts_check(ar, txrate)) 934 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_CTS); 935 936 txc->f.mac_control |= mac_tmp; 937 } else { 938 /* fallback rates are stored in the firmware's 939 * retry rate set array. 940 */ 941 txc->s.rr[i - 1] = phy_set; 942 } 943 944 SET_VAL(CARL9170_TX_SUPER_RI_TRIES, txc->s.ri[i], 945 txrate->count); 946 947 if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack)) 948 txc->s.ri[i] |= (AR9170_TX_MAC_PROT_RTS << 949 CARL9170_TX_SUPER_RI_ERP_PROT_S); 950 else if (carl9170_tx_cts_check(ar, txrate)) 951 txc->s.ri[i] |= (AR9170_TX_MAC_PROT_CTS << 952 CARL9170_TX_SUPER_RI_ERP_PROT_S); 953 954 if (ampdu && (txrate->flags & IEEE80211_TX_RC_MCS)) 955 txc->s.ri[i] |= CARL9170_TX_SUPER_RI_AMPDU; 956 } 957 } 958 959 static int carl9170_tx_prepare(struct ar9170 *ar, 960 struct ieee80211_sta *sta, 961 struct sk_buff *skb) 962 { 963 struct ieee80211_hdr *hdr; 964 struct _carl9170_tx_superframe *txc; 965 struct carl9170_vif_info *cvif; 966 struct ieee80211_tx_info *info; 967 struct carl9170_tx_info *arinfo; 968 unsigned int hw_queue; 969 __le16 mac_tmp; 970 u16 len; 971 972 BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data)); 973 BUILD_BUG_ON(sizeof(struct _carl9170_tx_superdesc) != 974 CARL9170_TX_SUPERDESC_LEN); 975 976 BUILD_BUG_ON(sizeof(struct _ar9170_tx_hwdesc) != 977 AR9170_TX_HWDESC_LEN); 978 979 BUILD_BUG_ON(AR9170_MAX_VIRTUAL_MAC > 980 ((CARL9170_TX_SUPER_MISC_VIF_ID >> 981 CARL9170_TX_SUPER_MISC_VIF_ID_S) + 1)); 982 983 hw_queue = ar9170_qmap(carl9170_get_queue(ar, skb)); 984 985 hdr = (void *)skb->data; 986 info = IEEE80211_SKB_CB(skb); 987 len = skb->len; 988 989 /* 990 * Note: If the frame was sent through a monitor interface, 991 * the ieee80211_vif pointer can be NULL. 992 */ 993 if (likely(info->control.vif)) 994 cvif = (void *) info->control.vif->drv_priv; 995 else 996 cvif = NULL; 997 998 txc = skb_push(skb, sizeof(*txc)); 999 memset(txc, 0, sizeof(*txc)); 1000 1001 SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, txc->s.misc, hw_queue); 1002 1003 if (likely(cvif)) 1004 SET_VAL(CARL9170_TX_SUPER_MISC_VIF_ID, txc->s.misc, cvif->id); 1005 1006 if (unlikely(info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM)) 1007 txc->s.misc |= CARL9170_TX_SUPER_MISC_CAB; 1008 1009 if (unlikely(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)) 1010 txc->s.misc |= CARL9170_TX_SUPER_MISC_ASSIGN_SEQ; 1011 1012 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control))) 1013 txc->s.misc |= CARL9170_TX_SUPER_MISC_FILL_IN_TSF; 1014 1015 mac_tmp = cpu_to_le16(AR9170_TX_MAC_HW_DURATION | 1016 AR9170_TX_MAC_BACKOFF); 1017 mac_tmp |= cpu_to_le16((hw_queue << AR9170_TX_MAC_QOS_S) & 1018 AR9170_TX_MAC_QOS); 1019 1020 if (unlikely(info->flags & IEEE80211_TX_CTL_NO_ACK)) 1021 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_NO_ACK); 1022 1023 if (info->control.hw_key) { 1024 len += info->control.hw_key->icv_len; 1025 1026 switch (info->control.hw_key->cipher) { 1027 case WLAN_CIPHER_SUITE_WEP40: 1028 case WLAN_CIPHER_SUITE_WEP104: 1029 case WLAN_CIPHER_SUITE_TKIP: 1030 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_RC4); 1031 break; 1032 case WLAN_CIPHER_SUITE_CCMP: 1033 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_AES); 1034 break; 1035 default: 1036 WARN_ON(1); 1037 goto err_out; 1038 } 1039 } 1040 1041 if (info->flags & IEEE80211_TX_CTL_AMPDU) { 1042 unsigned int density, factor; 1043 1044 if (unlikely(!sta || !cvif)) 1045 goto err_out; 1046 1047 factor = min_t(unsigned int, 1u, sta->ht_cap.ampdu_factor); 1048 density = sta->ht_cap.ampdu_density; 1049 1050 if (density) { 1051 /* 1052 * Watch out! 1053 * 1054 * Otus uses slightly different density values than 1055 * those from the 802.11n spec. 1056 */ 1057 1058 density = max_t(unsigned int, density + 1, 7u); 1059 } 1060 1061 SET_VAL(CARL9170_TX_SUPER_AMPDU_DENSITY, 1062 txc->s.ampdu_settings, density); 1063 1064 SET_VAL(CARL9170_TX_SUPER_AMPDU_FACTOR, 1065 txc->s.ampdu_settings, factor); 1066 } 1067 1068 txc->s.len = cpu_to_le16(skb->len); 1069 txc->f.length = cpu_to_le16(len + FCS_LEN); 1070 txc->f.mac_control = mac_tmp; 1071 1072 arinfo = (void *)info->rate_driver_data; 1073 arinfo->timeout = jiffies; 1074 arinfo->ar = ar; 1075 kref_init(&arinfo->ref); 1076 return 0; 1077 1078 err_out: 1079 skb_pull(skb, sizeof(*txc)); 1080 return -EINVAL; 1081 } 1082 1083 static void carl9170_set_immba(struct ar9170 *ar, struct sk_buff *skb) 1084 { 1085 struct _carl9170_tx_superframe *super; 1086 1087 super = (void *) skb->data; 1088 super->f.mac_control |= cpu_to_le16(AR9170_TX_MAC_IMM_BA); 1089 } 1090 1091 static void carl9170_set_ampdu_params(struct ar9170 *ar, struct sk_buff *skb) 1092 { 1093 struct _carl9170_tx_superframe *super; 1094 int tmp; 1095 1096 super = (void *) skb->data; 1097 1098 tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_DENSITY) << 1099 CARL9170_TX_SUPER_AMPDU_DENSITY_S; 1100 1101 /* 1102 * If you haven't noticed carl9170_tx_prepare has already filled 1103 * in all ampdu spacing & factor parameters. 1104 * Now it's the time to check whenever the settings have to be 1105 * updated by the firmware, or if everything is still the same. 1106 * 1107 * There's no sane way to handle different density values with 1108 * this hardware, so we may as well just do the compare in the 1109 * driver. 1110 */ 1111 1112 if (tmp != ar->current_density) { 1113 ar->current_density = tmp; 1114 super->s.ampdu_settings |= 1115 CARL9170_TX_SUPER_AMPDU_COMMIT_DENSITY; 1116 } 1117 1118 tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_FACTOR) << 1119 CARL9170_TX_SUPER_AMPDU_FACTOR_S; 1120 1121 if (tmp != ar->current_factor) { 1122 ar->current_factor = tmp; 1123 super->s.ampdu_settings |= 1124 CARL9170_TX_SUPER_AMPDU_COMMIT_FACTOR; 1125 } 1126 } 1127 1128 static void carl9170_tx_ampdu(struct ar9170 *ar) 1129 { 1130 struct sk_buff_head agg; 1131 struct carl9170_sta_tid *tid_info; 1132 struct sk_buff *skb, *first; 1133 struct ieee80211_tx_info *tx_info_first; 1134 unsigned int i = 0, done_ampdus = 0; 1135 u16 seq, queue, tmpssn; 1136 1137 atomic_inc(&ar->tx_ampdu_scheduler); 1138 ar->tx_ampdu_schedule = false; 1139 1140 if (atomic_read(&ar->tx_ampdu_upload)) 1141 return; 1142 1143 if (!ar->tx_ampdu_list_len) 1144 return; 1145 1146 __skb_queue_head_init(&agg); 1147 1148 rcu_read_lock(); 1149 tid_info = rcu_dereference(ar->tx_ampdu_iter); 1150 if (WARN_ON_ONCE(!tid_info)) { 1151 rcu_read_unlock(); 1152 return; 1153 } 1154 1155 retry: 1156 list_for_each_entry_continue_rcu(tid_info, &ar->tx_ampdu_list, list) { 1157 i++; 1158 1159 if (tid_info->state < CARL9170_TID_STATE_PROGRESS) 1160 continue; 1161 1162 queue = TID_TO_WME_AC(tid_info->tid); 1163 1164 spin_lock_bh(&tid_info->lock); 1165 if (tid_info->state != CARL9170_TID_STATE_XMIT) 1166 goto processed; 1167 1168 tid_info->counter++; 1169 first = skb_peek(&tid_info->queue); 1170 tmpssn = carl9170_get_seq(first); 1171 seq = tid_info->snx; 1172 1173 if (unlikely(tmpssn != seq)) { 1174 tid_info->state = CARL9170_TID_STATE_IDLE; 1175 1176 goto processed; 1177 } 1178 1179 tx_info_first = NULL; 1180 while ((skb = skb_peek(&tid_info->queue))) { 1181 /* strict 0, 1, ..., n - 1, n frame sequence order */ 1182 if (unlikely(carl9170_get_seq(skb) != seq)) 1183 break; 1184 1185 /* don't upload more than AMPDU FACTOR allows. */ 1186 if (unlikely(SEQ_DIFF(tid_info->snx, tid_info->bsn) >= 1187 (tid_info->max - 1))) 1188 break; 1189 1190 if (!tx_info_first) { 1191 carl9170_tx_get_rates(ar, tid_info->vif, 1192 tid_info->sta, first); 1193 tx_info_first = IEEE80211_SKB_CB(first); 1194 } 1195 1196 carl9170_tx_apply_rateset(ar, tx_info_first, skb); 1197 1198 atomic_inc(&ar->tx_ampdu_upload); 1199 tid_info->snx = seq = SEQ_NEXT(seq); 1200 __skb_unlink(skb, &tid_info->queue); 1201 1202 __skb_queue_tail(&agg, skb); 1203 1204 if (skb_queue_len(&agg) >= CARL9170_NUM_TX_AGG_MAX) 1205 break; 1206 } 1207 1208 if (skb_queue_empty(&tid_info->queue) || 1209 carl9170_get_seq(skb_peek(&tid_info->queue)) != 1210 tid_info->snx) { 1211 /* stop TID, if A-MPDU frames are still missing, 1212 * or whenever the queue is empty. 1213 */ 1214 1215 tid_info->state = CARL9170_TID_STATE_IDLE; 1216 } 1217 done_ampdus++; 1218 1219 processed: 1220 spin_unlock_bh(&tid_info->lock); 1221 1222 if (skb_queue_empty(&agg)) 1223 continue; 1224 1225 /* apply ampdu spacing & factor settings */ 1226 carl9170_set_ampdu_params(ar, skb_peek(&agg)); 1227 1228 /* set aggregation push bit */ 1229 carl9170_set_immba(ar, skb_peek_tail(&agg)); 1230 1231 spin_lock_bh(&ar->tx_pending[queue].lock); 1232 skb_queue_splice_tail_init(&agg, &ar->tx_pending[queue]); 1233 spin_unlock_bh(&ar->tx_pending[queue].lock); 1234 ar->tx_schedule = true; 1235 } 1236 if ((done_ampdus++ == 0) && (i++ == 0)) 1237 goto retry; 1238 1239 rcu_assign_pointer(ar->tx_ampdu_iter, tid_info); 1240 rcu_read_unlock(); 1241 } 1242 1243 static struct sk_buff *carl9170_tx_pick_skb(struct ar9170 *ar, 1244 struct sk_buff_head *queue) 1245 { 1246 struct sk_buff *skb; 1247 struct ieee80211_tx_info *info; 1248 struct carl9170_tx_info *arinfo; 1249 1250 BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data)); 1251 1252 spin_lock_bh(&queue->lock); 1253 skb = skb_peek(queue); 1254 if (unlikely(!skb)) 1255 goto err_unlock; 1256 1257 if (carl9170_alloc_dev_space(ar, skb)) 1258 goto err_unlock; 1259 1260 __skb_unlink(skb, queue); 1261 spin_unlock_bh(&queue->lock); 1262 1263 info = IEEE80211_SKB_CB(skb); 1264 arinfo = (void *) info->rate_driver_data; 1265 1266 arinfo->timeout = jiffies; 1267 return skb; 1268 1269 err_unlock: 1270 spin_unlock_bh(&queue->lock); 1271 return NULL; 1272 } 1273 1274 void carl9170_tx_drop(struct ar9170 *ar, struct sk_buff *skb) 1275 { 1276 struct _carl9170_tx_superframe *super; 1277 uint8_t q = 0; 1278 1279 ar->tx_dropped++; 1280 1281 super = (void *)skb->data; 1282 SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, q, 1283 ar9170_qmap(carl9170_get_queue(ar, skb))); 1284 __carl9170_tx_process_status(ar, super->s.cookie, q); 1285 } 1286 1287 static bool carl9170_tx_ps_drop(struct ar9170 *ar, struct sk_buff *skb) 1288 { 1289 struct ieee80211_sta *sta; 1290 struct carl9170_sta_info *sta_info; 1291 struct ieee80211_tx_info *tx_info; 1292 1293 rcu_read_lock(); 1294 sta = __carl9170_get_tx_sta(ar, skb); 1295 if (!sta) 1296 goto out_rcu; 1297 1298 sta_info = (void *) sta->drv_priv; 1299 tx_info = IEEE80211_SKB_CB(skb); 1300 1301 if (unlikely(sta_info->sleeping) && 1302 !(tx_info->flags & (IEEE80211_TX_CTL_NO_PS_BUFFER | 1303 IEEE80211_TX_CTL_CLEAR_PS_FILT))) { 1304 rcu_read_unlock(); 1305 1306 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) 1307 atomic_dec(&ar->tx_ampdu_upload); 1308 1309 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; 1310 carl9170_release_dev_space(ar, skb); 1311 carl9170_tx_status(ar, skb, false); 1312 return true; 1313 } 1314 1315 out_rcu: 1316 rcu_read_unlock(); 1317 return false; 1318 } 1319 1320 static void carl9170_bar_check(struct ar9170 *ar, struct sk_buff *skb) 1321 { 1322 struct _carl9170_tx_superframe *super = (void *) skb->data; 1323 struct ieee80211_bar *bar = (void *) super->frame_data; 1324 1325 if (unlikely(ieee80211_is_back_req(bar->frame_control)) && 1326 skb->len >= sizeof(struct ieee80211_bar)) { 1327 struct carl9170_bar_list_entry *entry; 1328 unsigned int queue = skb_get_queue_mapping(skb); 1329 1330 entry = kmalloc(sizeof(*entry), GFP_ATOMIC); 1331 if (!WARN_ON_ONCE(!entry)) { 1332 entry->skb = skb; 1333 spin_lock_bh(&ar->bar_list_lock[queue]); 1334 list_add_tail_rcu(&entry->list, &ar->bar_list[queue]); 1335 spin_unlock_bh(&ar->bar_list_lock[queue]); 1336 } 1337 } 1338 } 1339 1340 static void carl9170_tx(struct ar9170 *ar) 1341 { 1342 struct sk_buff *skb; 1343 unsigned int i, q; 1344 bool schedule_garbagecollector = false; 1345 1346 ar->tx_schedule = false; 1347 1348 if (unlikely(!IS_STARTED(ar))) 1349 return; 1350 1351 carl9170_usb_handle_tx_err(ar); 1352 1353 for (i = 0; i < ar->hw->queues; i++) { 1354 while (!skb_queue_empty(&ar->tx_pending[i])) { 1355 skb = carl9170_tx_pick_skb(ar, &ar->tx_pending[i]); 1356 if (unlikely(!skb)) 1357 break; 1358 1359 if (unlikely(carl9170_tx_ps_drop(ar, skb))) 1360 continue; 1361 1362 carl9170_bar_check(ar, skb); 1363 1364 atomic_inc(&ar->tx_total_pending); 1365 1366 q = __carl9170_get_queue(ar, i); 1367 /* 1368 * NB: tx_status[i] vs. tx_status[q], 1369 * TODO: Move into pick_skb or alloc_dev_space. 1370 */ 1371 skb_queue_tail(&ar->tx_status[q], skb); 1372 1373 /* 1374 * increase ref count to "2". 1375 * Ref counting is the easiest way to solve the 1376 * race between the urb's completion routine: 1377 * carl9170_tx_callback 1378 * and wlan tx status functions: 1379 * carl9170_tx_status/janitor. 1380 */ 1381 carl9170_tx_get_skb(skb); 1382 1383 carl9170_usb_tx(ar, skb); 1384 schedule_garbagecollector = true; 1385 } 1386 } 1387 1388 if (!schedule_garbagecollector) 1389 return; 1390 1391 ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor, 1392 msecs_to_jiffies(CARL9170_TX_TIMEOUT)); 1393 } 1394 1395 static bool carl9170_tx_ampdu_queue(struct ar9170 *ar, 1396 struct ieee80211_sta *sta, struct sk_buff *skb, 1397 struct ieee80211_tx_info *txinfo) 1398 { 1399 struct carl9170_sta_info *sta_info; 1400 struct carl9170_sta_tid *agg; 1401 struct sk_buff *iter; 1402 u16 tid, seq, qseq, off; 1403 bool run = false; 1404 1405 tid = carl9170_get_tid(skb); 1406 seq = carl9170_get_seq(skb); 1407 sta_info = (void *) sta->drv_priv; 1408 1409 rcu_read_lock(); 1410 agg = rcu_dereference(sta_info->agg[tid]); 1411 1412 if (!agg) 1413 goto err_unlock_rcu; 1414 1415 spin_lock_bh(&agg->lock); 1416 if (unlikely(agg->state < CARL9170_TID_STATE_IDLE)) 1417 goto err_unlock; 1418 1419 /* check if sequence is within the BA window */ 1420 if (unlikely(!BAW_WITHIN(agg->bsn, CARL9170_BAW_BITS, seq))) 1421 goto err_unlock; 1422 1423 if (WARN_ON_ONCE(!BAW_WITHIN(agg->snx, CARL9170_BAW_BITS, seq))) 1424 goto err_unlock; 1425 1426 off = SEQ_DIFF(seq, agg->bsn); 1427 if (WARN_ON_ONCE(test_and_set_bit(off, agg->bitmap))) 1428 goto err_unlock; 1429 1430 if (likely(BAW_WITHIN(agg->hsn, CARL9170_BAW_BITS, seq))) { 1431 __skb_queue_tail(&agg->queue, skb); 1432 agg->hsn = seq; 1433 goto queued; 1434 } 1435 1436 skb_queue_reverse_walk(&agg->queue, iter) { 1437 qseq = carl9170_get_seq(iter); 1438 1439 if (BAW_WITHIN(qseq, CARL9170_BAW_BITS, seq)) { 1440 __skb_queue_after(&agg->queue, iter, skb); 1441 goto queued; 1442 } 1443 } 1444 1445 __skb_queue_head(&agg->queue, skb); 1446 queued: 1447 1448 if (unlikely(agg->state != CARL9170_TID_STATE_XMIT)) { 1449 if (agg->snx == carl9170_get_seq(skb_peek(&agg->queue))) { 1450 agg->state = CARL9170_TID_STATE_XMIT; 1451 run = true; 1452 } 1453 } 1454 1455 spin_unlock_bh(&agg->lock); 1456 rcu_read_unlock(); 1457 1458 return run; 1459 1460 err_unlock: 1461 spin_unlock_bh(&agg->lock); 1462 1463 err_unlock_rcu: 1464 rcu_read_unlock(); 1465 txinfo->flags &= ~IEEE80211_TX_CTL_AMPDU; 1466 carl9170_tx_status(ar, skb, false); 1467 ar->tx_dropped++; 1468 return false; 1469 } 1470 1471 void carl9170_op_tx(struct ieee80211_hw *hw, 1472 struct ieee80211_tx_control *control, 1473 struct sk_buff *skb) 1474 { 1475 struct ar9170 *ar = hw->priv; 1476 struct ieee80211_tx_info *info; 1477 struct ieee80211_sta *sta = control->sta; 1478 struct ieee80211_vif *vif; 1479 bool run; 1480 1481 if (unlikely(!IS_STARTED(ar))) 1482 goto err_free; 1483 1484 info = IEEE80211_SKB_CB(skb); 1485 vif = info->control.vif; 1486 1487 if (unlikely(carl9170_tx_prepare(ar, sta, skb))) 1488 goto err_free; 1489 1490 carl9170_tx_accounting(ar, skb); 1491 /* 1492 * from now on, one has to use carl9170_tx_status to free 1493 * all ressouces which are associated with the frame. 1494 */ 1495 1496 if (sta) { 1497 struct carl9170_sta_info *stai = (void *) sta->drv_priv; 1498 atomic_inc(&stai->pending_frames); 1499 } 1500 1501 if (info->flags & IEEE80211_TX_CTL_AMPDU) { 1502 /* to static code analyzers and reviewers: 1503 * mac80211 guarantees that a valid "sta" 1504 * reference is present, if a frame is to 1505 * be part of an ampdu. Hence any extra 1506 * sta == NULL checks are redundant in this 1507 * special case. 1508 */ 1509 run = carl9170_tx_ampdu_queue(ar, sta, skb, info); 1510 if (run) 1511 carl9170_tx_ampdu(ar); 1512 1513 } else { 1514 unsigned int queue = skb_get_queue_mapping(skb); 1515 1516 carl9170_tx_get_rates(ar, vif, sta, skb); 1517 carl9170_tx_apply_rateset(ar, info, skb); 1518 skb_queue_tail(&ar->tx_pending[queue], skb); 1519 } 1520 1521 carl9170_tx(ar); 1522 return; 1523 1524 err_free: 1525 ar->tx_dropped++; 1526 ieee80211_free_txskb(ar->hw, skb); 1527 } 1528 1529 void carl9170_tx_scheduler(struct ar9170 *ar) 1530 { 1531 1532 if (ar->tx_ampdu_schedule) 1533 carl9170_tx_ampdu(ar); 1534 1535 if (ar->tx_schedule) 1536 carl9170_tx(ar); 1537 } 1538 1539 /* caller has to take rcu_read_lock */ 1540 static struct carl9170_vif_info *carl9170_pick_beaconing_vif(struct ar9170 *ar) 1541 { 1542 struct carl9170_vif_info *cvif; 1543 int i = 1; 1544 1545 /* The AR9170 hardware has no fancy beacon queue or some 1546 * other scheduling mechanism. So, the driver has to make 1547 * due by setting the two beacon timers (pretbtt and tbtt) 1548 * once and then swapping the beacon address in the HW's 1549 * register file each time the pretbtt fires. 1550 */ 1551 1552 cvif = rcu_dereference(ar->beacon_iter); 1553 if (ar->vifs > 0 && cvif) { 1554 do { 1555 list_for_each_entry_continue_rcu(cvif, &ar->vif_list, 1556 list) { 1557 if (cvif->active && cvif->enable_beacon) 1558 goto out; 1559 } 1560 } while (ar->beacon_enabled && i--); 1561 } 1562 1563 out: 1564 RCU_INIT_POINTER(ar->beacon_iter, cvif); 1565 return cvif; 1566 } 1567 1568 static bool carl9170_tx_beacon_physet(struct ar9170 *ar, struct sk_buff *skb, 1569 u32 *ht1, u32 *plcp) 1570 { 1571 struct ieee80211_tx_info *txinfo; 1572 struct ieee80211_tx_rate *rate; 1573 unsigned int power, chains; 1574 bool ht_rate; 1575 1576 txinfo = IEEE80211_SKB_CB(skb); 1577 rate = &txinfo->control.rates[0]; 1578 ht_rate = !!(txinfo->control.rates[0].flags & IEEE80211_TX_RC_MCS); 1579 carl9170_tx_rate_tpc_chains(ar, txinfo, rate, plcp, &power, &chains); 1580 1581 *ht1 = AR9170_MAC_BCN_HT1_TX_ANT0; 1582 if (chains == AR9170_TX_PHY_TXCHAIN_2) 1583 *ht1 |= AR9170_MAC_BCN_HT1_TX_ANT1; 1584 SET_VAL(AR9170_MAC_BCN_HT1_PWR_CTRL, *ht1, 7); 1585 SET_VAL(AR9170_MAC_BCN_HT1_TPC, *ht1, power); 1586 SET_VAL(AR9170_MAC_BCN_HT1_CHAIN_MASK, *ht1, chains); 1587 1588 if (ht_rate) { 1589 *ht1 |= AR9170_MAC_BCN_HT1_HT_EN; 1590 if (rate->flags & IEEE80211_TX_RC_SHORT_GI) 1591 *plcp |= AR9170_MAC_BCN_HT2_SGI; 1592 1593 if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) { 1594 *ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_SHARED; 1595 *plcp |= AR9170_MAC_BCN_HT2_BW40; 1596 } else if (rate->flags & IEEE80211_TX_RC_DUP_DATA) { 1597 *ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_DUP; 1598 *plcp |= AR9170_MAC_BCN_HT2_BW40; 1599 } 1600 1601 SET_VAL(AR9170_MAC_BCN_HT2_LEN, *plcp, skb->len + FCS_LEN); 1602 } else { 1603 if (*plcp <= AR9170_TX_PHY_RATE_CCK_11M) 1604 *plcp |= ((skb->len + FCS_LEN) << (3 + 16)) + 0x0400; 1605 else 1606 *plcp |= ((skb->len + FCS_LEN) << 16) + 0x0010; 1607 } 1608 1609 return ht_rate; 1610 } 1611 1612 int carl9170_update_beacon(struct ar9170 *ar, const bool submit) 1613 { 1614 struct sk_buff *skb = NULL; 1615 struct carl9170_vif_info *cvif; 1616 __le32 *data, *old = NULL; 1617 u32 word, ht1, plcp, off, addr, len; 1618 int i = 0, err = 0; 1619 bool ht_rate; 1620 1621 rcu_read_lock(); 1622 cvif = carl9170_pick_beaconing_vif(ar); 1623 if (!cvif) 1624 goto out_unlock; 1625 1626 skb = ieee80211_beacon_get_tim(ar->hw, carl9170_get_vif(cvif), 1627 NULL, NULL); 1628 1629 if (!skb) { 1630 err = -ENOMEM; 1631 goto err_free; 1632 } 1633 1634 spin_lock_bh(&ar->beacon_lock); 1635 data = (__le32 *)skb->data; 1636 if (cvif->beacon) 1637 old = (__le32 *)cvif->beacon->data; 1638 1639 off = cvif->id * AR9170_MAC_BCN_LENGTH_MAX; 1640 addr = ar->fw.beacon_addr + off; 1641 len = roundup(skb->len + FCS_LEN, 4); 1642 1643 if ((off + len) > ar->fw.beacon_max_len) { 1644 if (net_ratelimit()) { 1645 wiphy_err(ar->hw->wiphy, "beacon does not " 1646 "fit into device memory!\n"); 1647 } 1648 err = -EINVAL; 1649 goto err_unlock; 1650 } 1651 1652 if (len > AR9170_MAC_BCN_LENGTH_MAX) { 1653 if (net_ratelimit()) { 1654 wiphy_err(ar->hw->wiphy, "no support for beacons " 1655 "bigger than %d (yours:%d).\n", 1656 AR9170_MAC_BCN_LENGTH_MAX, len); 1657 } 1658 1659 err = -EMSGSIZE; 1660 goto err_unlock; 1661 } 1662 1663 ht_rate = carl9170_tx_beacon_physet(ar, skb, &ht1, &plcp); 1664 1665 carl9170_async_regwrite_begin(ar); 1666 carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT1, ht1); 1667 if (ht_rate) 1668 carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT2, plcp); 1669 else 1670 carl9170_async_regwrite(AR9170_MAC_REG_BCN_PLCP, plcp); 1671 1672 for (i = 0; i < DIV_ROUND_UP(skb->len, 4); i++) { 1673 /* 1674 * XXX: This accesses beyond skb data for up 1675 * to the last 3 bytes!! 1676 */ 1677 1678 if (old && (data[i] == old[i])) 1679 continue; 1680 1681 word = le32_to_cpu(data[i]); 1682 carl9170_async_regwrite(addr + 4 * i, word); 1683 } 1684 carl9170_async_regwrite_finish(); 1685 1686 dev_kfree_skb_any(cvif->beacon); 1687 cvif->beacon = NULL; 1688 1689 err = carl9170_async_regwrite_result(); 1690 if (!err) 1691 cvif->beacon = skb; 1692 spin_unlock_bh(&ar->beacon_lock); 1693 if (err) 1694 goto err_free; 1695 1696 if (submit) { 1697 err = carl9170_bcn_ctrl(ar, cvif->id, 1698 CARL9170_BCN_CTRL_CAB_TRIGGER, 1699 addr, skb->len + FCS_LEN); 1700 1701 if (err) 1702 goto err_free; 1703 } 1704 out_unlock: 1705 rcu_read_unlock(); 1706 return 0; 1707 1708 err_unlock: 1709 spin_unlock_bh(&ar->beacon_lock); 1710 1711 err_free: 1712 rcu_read_unlock(); 1713 dev_kfree_skb_any(skb); 1714 return err; 1715 } 1716