1 /*
2  * Atheros CARL9170 driver
3  *
4  * 802.11 xmit & status routines
5  *
6  * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
7  * Copyright 2009, 2010, Christian Lamparter <chunkeey@googlemail.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; see the file COPYING.  If not, see
21  * http://www.gnu.org/licenses/.
22  *
23  * This file incorporates work covered by the following copyright and
24  * permission notice:
25  *    Copyright (c) 2007-2008 Atheros Communications, Inc.
26  *
27  *    Permission to use, copy, modify, and/or distribute this software for any
28  *    purpose with or without fee is hereby granted, provided that the above
29  *    copyright notice and this permission notice appear in all copies.
30  *
31  *    THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
32  *    WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
33  *    MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
34  *    ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
35  *    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
36  *    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
37  *    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
38  */
39 
40 #include <linux/init.h>
41 #include <linux/slab.h>
42 #include <linux/module.h>
43 #include <linux/etherdevice.h>
44 #include <net/mac80211.h>
45 #include "carl9170.h"
46 #include "hw.h"
47 #include "cmd.h"
48 
49 static inline unsigned int __carl9170_get_queue(struct ar9170 *ar,
50 						unsigned int queue)
51 {
52 	if (unlikely(modparam_noht)) {
53 		return queue;
54 	} else {
55 		/*
56 		 * This is just another workaround, until
57 		 * someone figures out how to get QoS and
58 		 * AMPDU to play nicely together.
59 		 */
60 
61 		return 2;		/* AC_BE */
62 	}
63 }
64 
65 static inline unsigned int carl9170_get_queue(struct ar9170 *ar,
66 					      struct sk_buff *skb)
67 {
68 	return __carl9170_get_queue(ar, skb_get_queue_mapping(skb));
69 }
70 
71 static bool is_mem_full(struct ar9170 *ar)
72 {
73 	return (DIV_ROUND_UP(IEEE80211_MAX_FRAME_LEN, ar->fw.mem_block_size) >
74 		atomic_read(&ar->mem_free_blocks));
75 }
76 
77 static void carl9170_tx_accounting(struct ar9170 *ar, struct sk_buff *skb)
78 {
79 	int queue, i;
80 	bool mem_full;
81 
82 	atomic_inc(&ar->tx_total_queued);
83 
84 	queue = skb_get_queue_mapping(skb);
85 	spin_lock_bh(&ar->tx_stats_lock);
86 
87 	/*
88 	 * The driver has to accept the frame, regardless if the queue is
89 	 * full to the brim, or not. We have to do the queuing internally,
90 	 * since mac80211 assumes that a driver which can operate with
91 	 * aggregated frames does not reject frames for this reason.
92 	 */
93 	ar->tx_stats[queue].len++;
94 	ar->tx_stats[queue].count++;
95 
96 	mem_full = is_mem_full(ar);
97 	for (i = 0; i < ar->hw->queues; i++) {
98 		if (mem_full || ar->tx_stats[i].len >= ar->tx_stats[i].limit) {
99 			ieee80211_stop_queue(ar->hw, i);
100 			ar->queue_stop_timeout[i] = jiffies;
101 		}
102 	}
103 
104 	spin_unlock_bh(&ar->tx_stats_lock);
105 }
106 
107 /* needs rcu_read_lock */
108 static struct ieee80211_sta *__carl9170_get_tx_sta(struct ar9170 *ar,
109 						   struct sk_buff *skb)
110 {
111 	struct _carl9170_tx_superframe *super = (void *) skb->data;
112 	struct ieee80211_hdr *hdr = (void *) super->frame_data;
113 	struct ieee80211_vif *vif;
114 	unsigned int vif_id;
115 
116 	vif_id = (super->s.misc & CARL9170_TX_SUPER_MISC_VIF_ID) >>
117 		 CARL9170_TX_SUPER_MISC_VIF_ID_S;
118 
119 	if (WARN_ON_ONCE(vif_id >= AR9170_MAX_VIRTUAL_MAC))
120 		return NULL;
121 
122 	vif = rcu_dereference(ar->vif_priv[vif_id].vif);
123 	if (unlikely(!vif))
124 		return NULL;
125 
126 	/*
127 	 * Normally we should use wrappers like ieee80211_get_DA to get
128 	 * the correct peer ieee80211_sta.
129 	 *
130 	 * But there is a problem with indirect traffic (broadcasts, or
131 	 * data which is designated for other stations) in station mode.
132 	 * The frame will be directed to the AP for distribution and not
133 	 * to the actual destination.
134 	 */
135 
136 	return ieee80211_find_sta(vif, hdr->addr1);
137 }
138 
139 static void carl9170_tx_ps_unblock(struct ar9170 *ar, struct sk_buff *skb)
140 {
141 	struct ieee80211_sta *sta;
142 	struct carl9170_sta_info *sta_info;
143 
144 	rcu_read_lock();
145 	sta = __carl9170_get_tx_sta(ar, skb);
146 	if (unlikely(!sta))
147 		goto out_rcu;
148 
149 	sta_info = (struct carl9170_sta_info *) sta->drv_priv;
150 	if (atomic_dec_return(&sta_info->pending_frames) == 0)
151 		ieee80211_sta_block_awake(ar->hw, sta, false);
152 
153 out_rcu:
154 	rcu_read_unlock();
155 }
156 
157 static void carl9170_tx_accounting_free(struct ar9170 *ar, struct sk_buff *skb)
158 {
159 	int queue;
160 
161 	queue = skb_get_queue_mapping(skb);
162 
163 	spin_lock_bh(&ar->tx_stats_lock);
164 
165 	ar->tx_stats[queue].len--;
166 
167 	if (!is_mem_full(ar)) {
168 		unsigned int i;
169 		for (i = 0; i < ar->hw->queues; i++) {
170 			if (ar->tx_stats[i].len >= CARL9170_NUM_TX_LIMIT_SOFT)
171 				continue;
172 
173 			if (ieee80211_queue_stopped(ar->hw, i)) {
174 				unsigned long tmp;
175 
176 				tmp = jiffies - ar->queue_stop_timeout[i];
177 				if (tmp > ar->max_queue_stop_timeout[i])
178 					ar->max_queue_stop_timeout[i] = tmp;
179 			}
180 
181 			ieee80211_wake_queue(ar->hw, i);
182 		}
183 	}
184 
185 	spin_unlock_bh(&ar->tx_stats_lock);
186 
187 	if (atomic_dec_and_test(&ar->tx_total_queued))
188 		complete(&ar->tx_flush);
189 }
190 
191 static int carl9170_alloc_dev_space(struct ar9170 *ar, struct sk_buff *skb)
192 {
193 	struct _carl9170_tx_superframe *super = (void *) skb->data;
194 	unsigned int chunks;
195 	int cookie = -1;
196 
197 	atomic_inc(&ar->mem_allocs);
198 
199 	chunks = DIV_ROUND_UP(skb->len, ar->fw.mem_block_size);
200 	if (unlikely(atomic_sub_return(chunks, &ar->mem_free_blocks) < 0)) {
201 		atomic_add(chunks, &ar->mem_free_blocks);
202 		return -ENOSPC;
203 	}
204 
205 	spin_lock_bh(&ar->mem_lock);
206 	cookie = bitmap_find_free_region(ar->mem_bitmap, ar->fw.mem_blocks, 0);
207 	spin_unlock_bh(&ar->mem_lock);
208 
209 	if (unlikely(cookie < 0)) {
210 		atomic_add(chunks, &ar->mem_free_blocks);
211 		return -ENOSPC;
212 	}
213 
214 	super = (void *) skb->data;
215 
216 	/*
217 	 * Cookie #0 serves two special purposes:
218 	 *  1. The firmware might use it generate BlockACK frames
219 	 *     in responds of an incoming BlockAckReqs.
220 	 *
221 	 *  2. Prevent double-free bugs.
222 	 */
223 	super->s.cookie = (u8) cookie + 1;
224 	return 0;
225 }
226 
227 static void carl9170_release_dev_space(struct ar9170 *ar, struct sk_buff *skb)
228 {
229 	struct _carl9170_tx_superframe *super = (void *) skb->data;
230 	int cookie;
231 
232 	/* make a local copy of the cookie */
233 	cookie = super->s.cookie;
234 	/* invalidate cookie */
235 	super->s.cookie = 0;
236 
237 	/*
238 	 * Do a out-of-bounds check on the cookie:
239 	 *
240 	 *  * cookie "0" is reserved and won't be assigned to any
241 	 *    out-going frame. Internally however, it is used to
242 	 *    mark no longer/un-accounted frames and serves as a
243 	 *    cheap way of preventing frames from being freed
244 	 *    twice by _accident_. NB: There is a tiny race...
245 	 *
246 	 *  * obviously, cookie number is limited by the amount
247 	 *    of available memory blocks, so the number can
248 	 *    never execeed the mem_blocks count.
249 	 */
250 	if (unlikely(WARN_ON_ONCE(cookie == 0) ||
251 	    WARN_ON_ONCE(cookie > ar->fw.mem_blocks)))
252 		return;
253 
254 	atomic_add(DIV_ROUND_UP(skb->len, ar->fw.mem_block_size),
255 		   &ar->mem_free_blocks);
256 
257 	spin_lock_bh(&ar->mem_lock);
258 	bitmap_release_region(ar->mem_bitmap, cookie - 1, 0);
259 	spin_unlock_bh(&ar->mem_lock);
260 }
261 
262 /* Called from any context */
263 static void carl9170_tx_release(struct kref *ref)
264 {
265 	struct ar9170 *ar;
266 	struct carl9170_tx_info *arinfo;
267 	struct ieee80211_tx_info *txinfo;
268 	struct sk_buff *skb;
269 
270 	arinfo = container_of(ref, struct carl9170_tx_info, ref);
271 	txinfo = container_of((void *) arinfo, struct ieee80211_tx_info,
272 			      rate_driver_data);
273 	skb = container_of((void *) txinfo, struct sk_buff, cb);
274 
275 	ar = arinfo->ar;
276 	if (WARN_ON_ONCE(!ar))
277 		return;
278 
279 	BUILD_BUG_ON(
280 	    offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23);
281 
282 	memset(&txinfo->status.ampdu_ack_len, 0,
283 	       sizeof(struct ieee80211_tx_info) -
284 	       offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
285 
286 	if (atomic_read(&ar->tx_total_queued))
287 		ar->tx_schedule = true;
288 
289 	if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) {
290 		if (!atomic_read(&ar->tx_ampdu_upload))
291 			ar->tx_ampdu_schedule = true;
292 
293 		if (txinfo->flags & IEEE80211_TX_STAT_AMPDU) {
294 			struct _carl9170_tx_superframe *super;
295 
296 			super = (void *)skb->data;
297 			txinfo->status.ampdu_len = super->s.rix;
298 			txinfo->status.ampdu_ack_len = super->s.cnt;
299 		} else if ((txinfo->flags & IEEE80211_TX_STAT_ACK) &&
300 			   !(txinfo->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)) {
301 			/*
302 			 * drop redundant tx_status reports:
303 			 *
304 			 * 1. ampdu_ack_len of the final tx_status does
305 			 *    include the feedback of this particular frame.
306 			 *
307 			 * 2. tx_status_irqsafe only queues up to 128
308 			 *    tx feedback reports and discards the rest.
309 			 *
310 			 * 3. minstrel_ht is picky, it only accepts
311 			 *    reports of frames with the TX_STATUS_AMPDU flag.
312 			 *
313 			 * 4. mac80211 is not particularly interested in
314 			 *    feedback either [CTL_REQ_TX_STATUS not set]
315 			 */
316 
317 			ieee80211_free_txskb(ar->hw, skb);
318 			return;
319 		} else {
320 			/*
321 			 * Either the frame transmission has failed or
322 			 * mac80211 requested tx status.
323 			 */
324 		}
325 	}
326 
327 	skb_pull(skb, sizeof(struct _carl9170_tx_superframe));
328 	ieee80211_tx_status_irqsafe(ar->hw, skb);
329 }
330 
331 void carl9170_tx_get_skb(struct sk_buff *skb)
332 {
333 	struct carl9170_tx_info *arinfo = (void *)
334 		(IEEE80211_SKB_CB(skb))->rate_driver_data;
335 	kref_get(&arinfo->ref);
336 }
337 
338 int carl9170_tx_put_skb(struct sk_buff *skb)
339 {
340 	struct carl9170_tx_info *arinfo = (void *)
341 		(IEEE80211_SKB_CB(skb))->rate_driver_data;
342 
343 	return kref_put(&arinfo->ref, carl9170_tx_release);
344 }
345 
346 /* Caller must hold the tid_info->lock & rcu_read_lock */
347 static void carl9170_tx_shift_bm(struct ar9170 *ar,
348 	struct carl9170_sta_tid *tid_info, u16 seq)
349 {
350 	u16 off;
351 
352 	off = SEQ_DIFF(seq, tid_info->bsn);
353 
354 	if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS))
355 		return;
356 
357 	/*
358 	 * Sanity check. For each MPDU we set the bit in bitmap and
359 	 * clear it once we received the tx_status.
360 	 * But if the bit is already cleared then we've been bitten
361 	 * by a bug.
362 	 */
363 	WARN_ON_ONCE(!test_and_clear_bit(off, tid_info->bitmap));
364 
365 	off = SEQ_DIFF(tid_info->snx, tid_info->bsn);
366 	if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS))
367 		return;
368 
369 	if (!bitmap_empty(tid_info->bitmap, off))
370 		off = find_first_bit(tid_info->bitmap, off);
371 
372 	tid_info->bsn += off;
373 	tid_info->bsn &= 0x0fff;
374 
375 	bitmap_shift_right(tid_info->bitmap, tid_info->bitmap,
376 			   off, CARL9170_BAW_BITS);
377 }
378 
379 static void carl9170_tx_status_process_ampdu(struct ar9170 *ar,
380 	struct sk_buff *skb, struct ieee80211_tx_info *txinfo)
381 {
382 	struct _carl9170_tx_superframe *super = (void *) skb->data;
383 	struct ieee80211_hdr *hdr = (void *) super->frame_data;
384 	struct ieee80211_sta *sta;
385 	struct carl9170_sta_info *sta_info;
386 	struct carl9170_sta_tid *tid_info;
387 	u8 tid;
388 
389 	if (!(txinfo->flags & IEEE80211_TX_CTL_AMPDU) ||
390 	    txinfo->flags & IEEE80211_TX_CTL_INJECTED ||
391 	   (!(super->f.mac_control & cpu_to_le16(AR9170_TX_MAC_AGGR))))
392 		return;
393 
394 	rcu_read_lock();
395 	sta = __carl9170_get_tx_sta(ar, skb);
396 	if (unlikely(!sta))
397 		goto out_rcu;
398 
399 	tid = get_tid_h(hdr);
400 
401 	sta_info = (void *) sta->drv_priv;
402 	tid_info = rcu_dereference(sta_info->agg[tid]);
403 	if (!tid_info)
404 		goto out_rcu;
405 
406 	spin_lock_bh(&tid_info->lock);
407 	if (likely(tid_info->state >= CARL9170_TID_STATE_IDLE))
408 		carl9170_tx_shift_bm(ar, tid_info, get_seq_h(hdr));
409 
410 	if (sta_info->stats[tid].clear) {
411 		sta_info->stats[tid].clear = false;
412 		sta_info->stats[tid].req = false;
413 		sta_info->stats[tid].ampdu_len = 0;
414 		sta_info->stats[tid].ampdu_ack_len = 0;
415 	}
416 
417 	sta_info->stats[tid].ampdu_len++;
418 	if (txinfo->status.rates[0].count == 1)
419 		sta_info->stats[tid].ampdu_ack_len++;
420 
421 	if (!(txinfo->flags & IEEE80211_TX_STAT_ACK))
422 		sta_info->stats[tid].req = true;
423 
424 	if (super->f.mac_control & cpu_to_le16(AR9170_TX_MAC_IMM_BA)) {
425 		super->s.rix = sta_info->stats[tid].ampdu_len;
426 		super->s.cnt = sta_info->stats[tid].ampdu_ack_len;
427 		txinfo->flags |= IEEE80211_TX_STAT_AMPDU;
428 		if (sta_info->stats[tid].req)
429 			txinfo->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
430 
431 		sta_info->stats[tid].clear = true;
432 	}
433 	spin_unlock_bh(&tid_info->lock);
434 
435 out_rcu:
436 	rcu_read_unlock();
437 }
438 
439 void carl9170_tx_status(struct ar9170 *ar, struct sk_buff *skb,
440 			const bool success)
441 {
442 	struct ieee80211_tx_info *txinfo;
443 
444 	carl9170_tx_accounting_free(ar, skb);
445 
446 	txinfo = IEEE80211_SKB_CB(skb);
447 
448 	if (success)
449 		txinfo->flags |= IEEE80211_TX_STAT_ACK;
450 	else
451 		ar->tx_ack_failures++;
452 
453 	if (txinfo->flags & IEEE80211_TX_CTL_AMPDU)
454 		carl9170_tx_status_process_ampdu(ar, skb, txinfo);
455 
456 	carl9170_tx_ps_unblock(ar, skb);
457 	carl9170_tx_put_skb(skb);
458 }
459 
460 /* This function may be called form any context */
461 void carl9170_tx_callback(struct ar9170 *ar, struct sk_buff *skb)
462 {
463 	struct ieee80211_tx_info *txinfo = IEEE80211_SKB_CB(skb);
464 
465 	atomic_dec(&ar->tx_total_pending);
466 
467 	if (txinfo->flags & IEEE80211_TX_CTL_AMPDU)
468 		atomic_dec(&ar->tx_ampdu_upload);
469 
470 	if (carl9170_tx_put_skb(skb))
471 		tasklet_hi_schedule(&ar->usb_tasklet);
472 }
473 
474 static struct sk_buff *carl9170_get_queued_skb(struct ar9170 *ar, u8 cookie,
475 					       struct sk_buff_head *queue)
476 {
477 	struct sk_buff *skb;
478 
479 	spin_lock_bh(&queue->lock);
480 	skb_queue_walk(queue, skb) {
481 		struct _carl9170_tx_superframe *txc = (void *) skb->data;
482 
483 		if (txc->s.cookie != cookie)
484 			continue;
485 
486 		__skb_unlink(skb, queue);
487 		spin_unlock_bh(&queue->lock);
488 
489 		carl9170_release_dev_space(ar, skb);
490 		return skb;
491 	}
492 	spin_unlock_bh(&queue->lock);
493 
494 	return NULL;
495 }
496 
497 static void carl9170_tx_fill_rateinfo(struct ar9170 *ar, unsigned int rix,
498 	unsigned int tries, struct ieee80211_tx_info *txinfo)
499 {
500 	unsigned int i;
501 
502 	for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
503 		if (txinfo->status.rates[i].idx < 0)
504 			break;
505 
506 		if (i == rix) {
507 			txinfo->status.rates[i].count = tries;
508 			i++;
509 			break;
510 		}
511 	}
512 
513 	for (; i < IEEE80211_TX_MAX_RATES; i++) {
514 		txinfo->status.rates[i].idx = -1;
515 		txinfo->status.rates[i].count = 0;
516 	}
517 }
518 
519 static void carl9170_check_queue_stop_timeout(struct ar9170 *ar)
520 {
521 	int i;
522 	struct sk_buff *skb;
523 	struct ieee80211_tx_info *txinfo;
524 	struct carl9170_tx_info *arinfo;
525 	bool restart = false;
526 
527 	for (i = 0; i < ar->hw->queues; i++) {
528 		spin_lock_bh(&ar->tx_status[i].lock);
529 
530 		skb = skb_peek(&ar->tx_status[i]);
531 
532 		if (!skb)
533 			goto next;
534 
535 		txinfo = IEEE80211_SKB_CB(skb);
536 		arinfo = (void *) txinfo->rate_driver_data;
537 
538 		if (time_is_before_jiffies(arinfo->timeout +
539 		    msecs_to_jiffies(CARL9170_QUEUE_STUCK_TIMEOUT)) == true)
540 			restart = true;
541 
542 next:
543 		spin_unlock_bh(&ar->tx_status[i].lock);
544 	}
545 
546 	if (restart) {
547 		/*
548 		 * At least one queue has been stuck for long enough.
549 		 * Give the device a kick and hope it gets back to
550 		 * work.
551 		 *
552 		 * possible reasons may include:
553 		 *  - frames got lost/corrupted (bad connection to the device)
554 		 *  - stalled rx processing/usb controller hiccups
555 		 *  - firmware errors/bugs
556 		 *  - every bug you can think of.
557 		 *  - all bugs you can't...
558 		 *  - ...
559 		 */
560 		carl9170_restart(ar, CARL9170_RR_STUCK_TX);
561 	}
562 }
563 
564 static void carl9170_tx_ampdu_timeout(struct ar9170 *ar)
565 {
566 	struct carl9170_sta_tid *iter;
567 	struct sk_buff *skb;
568 	struct ieee80211_tx_info *txinfo;
569 	struct carl9170_tx_info *arinfo;
570 	struct ieee80211_sta *sta;
571 
572 	rcu_read_lock();
573 	list_for_each_entry_rcu(iter, &ar->tx_ampdu_list, list) {
574 		if (iter->state < CARL9170_TID_STATE_IDLE)
575 			continue;
576 
577 		spin_lock_bh(&iter->lock);
578 		skb = skb_peek(&iter->queue);
579 		if (!skb)
580 			goto unlock;
581 
582 		txinfo = IEEE80211_SKB_CB(skb);
583 		arinfo = (void *)txinfo->rate_driver_data;
584 		if (time_is_after_jiffies(arinfo->timeout +
585 		    msecs_to_jiffies(CARL9170_QUEUE_TIMEOUT)))
586 			goto unlock;
587 
588 		sta = __carl9170_get_tx_sta(ar, skb);
589 		if (WARN_ON(!sta))
590 			goto unlock;
591 
592 		ieee80211_stop_tx_ba_session(sta, iter->tid);
593 unlock:
594 		spin_unlock_bh(&iter->lock);
595 
596 	}
597 	rcu_read_unlock();
598 }
599 
600 void carl9170_tx_janitor(struct work_struct *work)
601 {
602 	struct ar9170 *ar = container_of(work, struct ar9170,
603 					 tx_janitor.work);
604 	if (!IS_STARTED(ar))
605 		return;
606 
607 	ar->tx_janitor_last_run = jiffies;
608 
609 	carl9170_check_queue_stop_timeout(ar);
610 	carl9170_tx_ampdu_timeout(ar);
611 
612 	if (!atomic_read(&ar->tx_total_queued))
613 		return;
614 
615 	ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor,
616 		msecs_to_jiffies(CARL9170_TX_TIMEOUT));
617 }
618 
619 static void __carl9170_tx_process_status(struct ar9170 *ar,
620 	const uint8_t cookie, const uint8_t info)
621 {
622 	struct sk_buff *skb;
623 	struct ieee80211_tx_info *txinfo;
624 	unsigned int r, t, q;
625 	bool success = true;
626 
627 	q = ar9170_qmap[info & CARL9170_TX_STATUS_QUEUE];
628 
629 	skb = carl9170_get_queued_skb(ar, cookie, &ar->tx_status[q]);
630 	if (!skb) {
631 		/*
632 		 * We have lost the race to another thread.
633 		 */
634 
635 		return ;
636 	}
637 
638 	txinfo = IEEE80211_SKB_CB(skb);
639 
640 	if (!(info & CARL9170_TX_STATUS_SUCCESS))
641 		success = false;
642 
643 	r = (info & CARL9170_TX_STATUS_RIX) >> CARL9170_TX_STATUS_RIX_S;
644 	t = (info & CARL9170_TX_STATUS_TRIES) >> CARL9170_TX_STATUS_TRIES_S;
645 
646 	carl9170_tx_fill_rateinfo(ar, r, t, txinfo);
647 	carl9170_tx_status(ar, skb, success);
648 }
649 
650 void carl9170_tx_process_status(struct ar9170 *ar,
651 				const struct carl9170_rsp *cmd)
652 {
653 	unsigned int i;
654 
655 	for (i = 0;  i < cmd->hdr.ext; i++) {
656 		if (WARN_ON(i > ((cmd->hdr.len / 2) + 1))) {
657 			print_hex_dump_bytes("UU:", DUMP_PREFIX_NONE,
658 					     (void *) cmd, cmd->hdr.len + 4);
659 			break;
660 		}
661 
662 		__carl9170_tx_process_status(ar, cmd->_tx_status[i].cookie,
663 					     cmd->_tx_status[i].info);
664 	}
665 }
666 
667 static void carl9170_tx_rate_tpc_chains(struct ar9170 *ar,
668 	struct ieee80211_tx_info *info,	struct ieee80211_tx_rate *txrate,
669 	unsigned int *phyrate, unsigned int *tpc, unsigned int *chains)
670 {
671 	struct ieee80211_rate *rate = NULL;
672 	u8 *txpower;
673 	unsigned int idx;
674 
675 	idx = txrate->idx;
676 	*tpc = 0;
677 	*phyrate = 0;
678 
679 	if (txrate->flags & IEEE80211_TX_RC_MCS) {
680 		if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
681 			/* +1 dBm for HT40 */
682 			*tpc += 2;
683 
684 			if (info->band == IEEE80211_BAND_2GHZ)
685 				txpower = ar->power_2G_ht40;
686 			else
687 				txpower = ar->power_5G_ht40;
688 		} else {
689 			if (info->band == IEEE80211_BAND_2GHZ)
690 				txpower = ar->power_2G_ht20;
691 			else
692 				txpower = ar->power_5G_ht20;
693 		}
694 
695 		*phyrate = txrate->idx;
696 		*tpc += txpower[idx & 7];
697 	} else {
698 		if (info->band == IEEE80211_BAND_2GHZ) {
699 			if (idx < 4)
700 				txpower = ar->power_2G_cck;
701 			else
702 				txpower = ar->power_2G_ofdm;
703 		} else {
704 			txpower = ar->power_5G_leg;
705 			idx += 4;
706 		}
707 
708 		rate = &__carl9170_ratetable[idx];
709 		*tpc += txpower[(rate->hw_value & 0x30) >> 4];
710 		*phyrate = rate->hw_value & 0xf;
711 	}
712 
713 	if (ar->eeprom.tx_mask == 1) {
714 		*chains = AR9170_TX_PHY_TXCHAIN_1;
715 	} else {
716 		if (!(txrate->flags & IEEE80211_TX_RC_MCS) &&
717 		    rate && rate->bitrate >= 360)
718 			*chains = AR9170_TX_PHY_TXCHAIN_1;
719 		else
720 			*chains = AR9170_TX_PHY_TXCHAIN_2;
721 	}
722 
723 	*tpc = min_t(unsigned int, *tpc, ar->hw->conf.power_level * 2);
724 }
725 
726 static __le32 carl9170_tx_physet(struct ar9170 *ar,
727 	struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate)
728 {
729 	unsigned int power = 0, chains = 0, phyrate = 0;
730 	__le32 tmp;
731 
732 	tmp = cpu_to_le32(0);
733 
734 	if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
735 		tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ <<
736 			AR9170_TX_PHY_BW_S);
737 	/* this works because 40 MHz is 2 and dup is 3 */
738 	if (txrate->flags & IEEE80211_TX_RC_DUP_DATA)
739 		tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ_DUP <<
740 			AR9170_TX_PHY_BW_S);
741 
742 	if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
743 		tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_GI);
744 
745 	if (txrate->flags & IEEE80211_TX_RC_MCS) {
746 		SET_VAL(AR9170_TX_PHY_MCS, phyrate, txrate->idx);
747 
748 		/* heavy clip control */
749 		tmp |= cpu_to_le32((txrate->idx & 0x7) <<
750 			AR9170_TX_PHY_TX_HEAVY_CLIP_S);
751 
752 		tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_HT);
753 
754 		/*
755 		 * green field preamble does not work.
756 		 *
757 		 * if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
758 		 * tmp |= cpu_to_le32(AR9170_TX_PHY_GREENFIELD);
759 		 */
760 	} else {
761 		if (info->band == IEEE80211_BAND_2GHZ) {
762 			if (txrate->idx <= AR9170_TX_PHY_RATE_CCK_11M)
763 				tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_CCK);
764 			else
765 				tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM);
766 		} else {
767 			tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM);
768 		}
769 
770 		/*
771 		 * short preamble seems to be broken too.
772 		 *
773 		 * if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
774 		 *	tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_PREAMBLE);
775 		 */
776 	}
777 	carl9170_tx_rate_tpc_chains(ar, info, txrate,
778 				    &phyrate, &power, &chains);
779 
780 	tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_MCS, phyrate));
781 	tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TX_PWR, power));
782 	tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TXCHAIN, chains));
783 	return tmp;
784 }
785 
786 static bool carl9170_tx_rts_check(struct ar9170 *ar,
787 				  struct ieee80211_tx_rate *rate,
788 				  bool ampdu, bool multi)
789 {
790 	switch (ar->erp_mode) {
791 	case CARL9170_ERP_AUTO:
792 		if (ampdu)
793 			break;
794 
795 	case CARL9170_ERP_MAC80211:
796 		if (!(rate->flags & IEEE80211_TX_RC_USE_RTS_CTS))
797 			break;
798 
799 	case CARL9170_ERP_RTS:
800 		if (likely(!multi))
801 			return true;
802 
803 	default:
804 		break;
805 	}
806 
807 	return false;
808 }
809 
810 static bool carl9170_tx_cts_check(struct ar9170 *ar,
811 				  struct ieee80211_tx_rate *rate)
812 {
813 	switch (ar->erp_mode) {
814 	case CARL9170_ERP_AUTO:
815 	case CARL9170_ERP_MAC80211:
816 		if (!(rate->flags & IEEE80211_TX_RC_USE_CTS_PROTECT))
817 			break;
818 
819 	case CARL9170_ERP_CTS:
820 		return true;
821 
822 	default:
823 		break;
824 	}
825 
826 	return false;
827 }
828 
829 static int carl9170_tx_prepare(struct ar9170 *ar, struct sk_buff *skb)
830 {
831 	struct ieee80211_hdr *hdr;
832 	struct _carl9170_tx_superframe *txc;
833 	struct carl9170_vif_info *cvif;
834 	struct ieee80211_tx_info *info;
835 	struct ieee80211_tx_rate *txrate;
836 	struct ieee80211_sta *sta;
837 	struct carl9170_tx_info *arinfo;
838 	unsigned int hw_queue;
839 	int i;
840 	__le16 mac_tmp;
841 	u16 len;
842 	bool ampdu, no_ack;
843 
844 	BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data));
845 	BUILD_BUG_ON(sizeof(struct _carl9170_tx_superdesc) !=
846 		     CARL9170_TX_SUPERDESC_LEN);
847 
848 	BUILD_BUG_ON(sizeof(struct _ar9170_tx_hwdesc) !=
849 		     AR9170_TX_HWDESC_LEN);
850 
851 	BUILD_BUG_ON(IEEE80211_TX_MAX_RATES < CARL9170_TX_MAX_RATES);
852 
853 	BUILD_BUG_ON(AR9170_MAX_VIRTUAL_MAC >
854 		((CARL9170_TX_SUPER_MISC_VIF_ID >>
855 		 CARL9170_TX_SUPER_MISC_VIF_ID_S) + 1));
856 
857 	hw_queue = ar9170_qmap[carl9170_get_queue(ar, skb)];
858 
859 	hdr = (void *)skb->data;
860 	info = IEEE80211_SKB_CB(skb);
861 	len = skb->len;
862 
863 	/*
864 	 * Note: If the frame was sent through a monitor interface,
865 	 * the ieee80211_vif pointer can be NULL.
866 	 */
867 	if (likely(info->control.vif))
868 		cvif = (void *) info->control.vif->drv_priv;
869 	else
870 		cvif = NULL;
871 
872 	sta = info->control.sta;
873 
874 	txc = (void *)skb_push(skb, sizeof(*txc));
875 	memset(txc, 0, sizeof(*txc));
876 
877 	SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, txc->s.misc, hw_queue);
878 
879 	if (likely(cvif))
880 		SET_VAL(CARL9170_TX_SUPER_MISC_VIF_ID, txc->s.misc, cvif->id);
881 
882 	if (unlikely(info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM))
883 		txc->s.misc |= CARL9170_TX_SUPER_MISC_CAB;
884 
885 	if (unlikely(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
886 		txc->s.misc |= CARL9170_TX_SUPER_MISC_ASSIGN_SEQ;
887 
888 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control)))
889 		txc->s.misc |= CARL9170_TX_SUPER_MISC_FILL_IN_TSF;
890 
891 	mac_tmp = cpu_to_le16(AR9170_TX_MAC_HW_DURATION |
892 			      AR9170_TX_MAC_BACKOFF);
893 	mac_tmp |= cpu_to_le16((hw_queue << AR9170_TX_MAC_QOS_S) &
894 			       AR9170_TX_MAC_QOS);
895 
896 	no_ack = !!(info->flags & IEEE80211_TX_CTL_NO_ACK);
897 	if (unlikely(no_ack))
898 		mac_tmp |= cpu_to_le16(AR9170_TX_MAC_NO_ACK);
899 
900 	if (info->control.hw_key) {
901 		len += info->control.hw_key->icv_len;
902 
903 		switch (info->control.hw_key->cipher) {
904 		case WLAN_CIPHER_SUITE_WEP40:
905 		case WLAN_CIPHER_SUITE_WEP104:
906 		case WLAN_CIPHER_SUITE_TKIP:
907 			mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_RC4);
908 			break;
909 		case WLAN_CIPHER_SUITE_CCMP:
910 			mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_AES);
911 			break;
912 		default:
913 			WARN_ON(1);
914 			goto err_out;
915 		}
916 	}
917 
918 	ampdu = !!(info->flags & IEEE80211_TX_CTL_AMPDU);
919 	if (ampdu) {
920 		unsigned int density, factor;
921 
922 		if (unlikely(!sta || !cvif))
923 			goto err_out;
924 
925 		factor = min_t(unsigned int, 1u, sta->ht_cap.ampdu_factor);
926 		density = sta->ht_cap.ampdu_density;
927 
928 		if (density) {
929 			/*
930 			 * Watch out!
931 			 *
932 			 * Otus uses slightly different density values than
933 			 * those from the 802.11n spec.
934 			 */
935 
936 			density = max_t(unsigned int, density + 1, 7u);
937 		}
938 
939 		SET_VAL(CARL9170_TX_SUPER_AMPDU_DENSITY,
940 			txc->s.ampdu_settings, density);
941 
942 		SET_VAL(CARL9170_TX_SUPER_AMPDU_FACTOR,
943 			txc->s.ampdu_settings, factor);
944 
945 		for (i = 0; i < CARL9170_TX_MAX_RATES; i++) {
946 			txrate = &info->control.rates[i];
947 			if (txrate->idx >= 0) {
948 				txc->s.ri[i] =
949 					CARL9170_TX_SUPER_RI_AMPDU;
950 
951 				if (WARN_ON(!(txrate->flags &
952 					      IEEE80211_TX_RC_MCS))) {
953 					/*
954 					 * Not sure if it's even possible
955 					 * to aggregate non-ht rates with
956 					 * this HW.
957 					 */
958 					goto err_out;
959 				}
960 				continue;
961 			}
962 
963 			txrate->idx = 0;
964 			txrate->count = ar->hw->max_rate_tries;
965 		}
966 
967 		mac_tmp |= cpu_to_le16(AR9170_TX_MAC_AGGR);
968 	}
969 
970 	/*
971 	 * NOTE: For the first rate, the ERP & AMPDU flags are directly
972 	 * taken from mac_control. For all fallback rate, the firmware
973 	 * updates the mac_control flags from the rate info field.
974 	 */
975 	for (i = 1; i < CARL9170_TX_MAX_RATES; i++) {
976 		txrate = &info->control.rates[i];
977 		if (txrate->idx < 0)
978 			break;
979 
980 		SET_VAL(CARL9170_TX_SUPER_RI_TRIES, txc->s.ri[i],
981 			txrate->count);
982 
983 		if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack))
984 			txc->s.ri[i] |= (AR9170_TX_MAC_PROT_RTS <<
985 				CARL9170_TX_SUPER_RI_ERP_PROT_S);
986 		else if (carl9170_tx_cts_check(ar, txrate))
987 			txc->s.ri[i] |= (AR9170_TX_MAC_PROT_CTS <<
988 				CARL9170_TX_SUPER_RI_ERP_PROT_S);
989 
990 		txc->s.rr[i - 1] = carl9170_tx_physet(ar, info, txrate);
991 	}
992 
993 	txrate = &info->control.rates[0];
994 	SET_VAL(CARL9170_TX_SUPER_RI_TRIES, txc->s.ri[0], txrate->count);
995 
996 	if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack))
997 		mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_RTS);
998 	else if (carl9170_tx_cts_check(ar, txrate))
999 		mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_CTS);
1000 
1001 	txc->s.len = cpu_to_le16(skb->len);
1002 	txc->f.length = cpu_to_le16(len + FCS_LEN);
1003 	txc->f.mac_control = mac_tmp;
1004 	txc->f.phy_control = carl9170_tx_physet(ar, info, txrate);
1005 
1006 	arinfo = (void *)info->rate_driver_data;
1007 	arinfo->timeout = jiffies;
1008 	arinfo->ar = ar;
1009 	kref_init(&arinfo->ref);
1010 	return 0;
1011 
1012 err_out:
1013 	skb_pull(skb, sizeof(*txc));
1014 	return -EINVAL;
1015 }
1016 
1017 static void carl9170_set_immba(struct ar9170 *ar, struct sk_buff *skb)
1018 {
1019 	struct _carl9170_tx_superframe *super;
1020 
1021 	super = (void *) skb->data;
1022 	super->f.mac_control |= cpu_to_le16(AR9170_TX_MAC_IMM_BA);
1023 }
1024 
1025 static void carl9170_set_ampdu_params(struct ar9170 *ar, struct sk_buff *skb)
1026 {
1027 	struct _carl9170_tx_superframe *super;
1028 	int tmp;
1029 
1030 	super = (void *) skb->data;
1031 
1032 	tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_DENSITY) <<
1033 		CARL9170_TX_SUPER_AMPDU_DENSITY_S;
1034 
1035 	/*
1036 	 * If you haven't noticed carl9170_tx_prepare has already filled
1037 	 * in all ampdu spacing & factor parameters.
1038 	 * Now it's the time to check whenever the settings have to be
1039 	 * updated by the firmware, or if everything is still the same.
1040 	 *
1041 	 * There's no sane way to handle different density values with
1042 	 * this hardware, so we may as well just do the compare in the
1043 	 * driver.
1044 	 */
1045 
1046 	if (tmp != ar->current_density) {
1047 		ar->current_density = tmp;
1048 		super->s.ampdu_settings |=
1049 			CARL9170_TX_SUPER_AMPDU_COMMIT_DENSITY;
1050 	}
1051 
1052 	tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_FACTOR) <<
1053 		CARL9170_TX_SUPER_AMPDU_FACTOR_S;
1054 
1055 	if (tmp != ar->current_factor) {
1056 		ar->current_factor = tmp;
1057 		super->s.ampdu_settings |=
1058 			CARL9170_TX_SUPER_AMPDU_COMMIT_FACTOR;
1059 	}
1060 }
1061 
1062 static bool carl9170_tx_rate_check(struct ar9170 *ar, struct sk_buff *_dest,
1063 				   struct sk_buff *_src)
1064 {
1065 	struct _carl9170_tx_superframe *dest, *src;
1066 
1067 	dest = (void *) _dest->data;
1068 	src = (void *) _src->data;
1069 
1070 	/*
1071 	 * The mac80211 rate control algorithm expects that all MPDUs in
1072 	 * an AMPDU share the same tx vectors.
1073 	 * This is not really obvious right now, because the hardware
1074 	 * does the AMPDU setup according to its own rulebook.
1075 	 * Our nicely assembled, strictly monotonic increasing mpdu
1076 	 * chains will be broken up, mashed back together...
1077 	 */
1078 
1079 	return (dest->f.phy_control == src->f.phy_control);
1080 }
1081 
1082 static void carl9170_tx_ampdu(struct ar9170 *ar)
1083 {
1084 	struct sk_buff_head agg;
1085 	struct carl9170_sta_tid *tid_info;
1086 	struct sk_buff *skb, *first;
1087 	unsigned int i = 0, done_ampdus = 0;
1088 	u16 seq, queue, tmpssn;
1089 
1090 	atomic_inc(&ar->tx_ampdu_scheduler);
1091 	ar->tx_ampdu_schedule = false;
1092 
1093 	if (atomic_read(&ar->tx_ampdu_upload))
1094 		return;
1095 
1096 	if (!ar->tx_ampdu_list_len)
1097 		return;
1098 
1099 	__skb_queue_head_init(&agg);
1100 
1101 	rcu_read_lock();
1102 	tid_info = rcu_dereference(ar->tx_ampdu_iter);
1103 	if (WARN_ON_ONCE(!tid_info)) {
1104 		rcu_read_unlock();
1105 		return;
1106 	}
1107 
1108 retry:
1109 	list_for_each_entry_continue_rcu(tid_info, &ar->tx_ampdu_list, list) {
1110 		i++;
1111 
1112 		if (tid_info->state < CARL9170_TID_STATE_PROGRESS)
1113 			continue;
1114 
1115 		queue = TID_TO_WME_AC(tid_info->tid);
1116 
1117 		spin_lock_bh(&tid_info->lock);
1118 		if (tid_info->state != CARL9170_TID_STATE_XMIT)
1119 			goto processed;
1120 
1121 		tid_info->counter++;
1122 		first = skb_peek(&tid_info->queue);
1123 		tmpssn = carl9170_get_seq(first);
1124 		seq = tid_info->snx;
1125 
1126 		if (unlikely(tmpssn != seq)) {
1127 			tid_info->state = CARL9170_TID_STATE_IDLE;
1128 
1129 			goto processed;
1130 		}
1131 
1132 		while ((skb = skb_peek(&tid_info->queue))) {
1133 			/* strict 0, 1, ..., n - 1, n frame sequence order */
1134 			if (unlikely(carl9170_get_seq(skb) != seq))
1135 				break;
1136 
1137 			/* don't upload more than AMPDU FACTOR allows. */
1138 			if (unlikely(SEQ_DIFF(tid_info->snx, tid_info->bsn) >=
1139 			    (tid_info->max - 1)))
1140 				break;
1141 
1142 			if (!carl9170_tx_rate_check(ar, skb, first))
1143 				break;
1144 
1145 			atomic_inc(&ar->tx_ampdu_upload);
1146 			tid_info->snx = seq = SEQ_NEXT(seq);
1147 			__skb_unlink(skb, &tid_info->queue);
1148 
1149 			__skb_queue_tail(&agg, skb);
1150 
1151 			if (skb_queue_len(&agg) >= CARL9170_NUM_TX_AGG_MAX)
1152 				break;
1153 		}
1154 
1155 		if (skb_queue_empty(&tid_info->queue) ||
1156 		    carl9170_get_seq(skb_peek(&tid_info->queue)) !=
1157 		    tid_info->snx) {
1158 			/*
1159 			 * stop TID, if A-MPDU frames are still missing,
1160 			 * or whenever the queue is empty.
1161 			 */
1162 
1163 			tid_info->state = CARL9170_TID_STATE_IDLE;
1164 		}
1165 		done_ampdus++;
1166 
1167 processed:
1168 		spin_unlock_bh(&tid_info->lock);
1169 
1170 		if (skb_queue_empty(&agg))
1171 			continue;
1172 
1173 		/* apply ampdu spacing & factor settings */
1174 		carl9170_set_ampdu_params(ar, skb_peek(&agg));
1175 
1176 		/* set aggregation push bit */
1177 		carl9170_set_immba(ar, skb_peek_tail(&agg));
1178 
1179 		spin_lock_bh(&ar->tx_pending[queue].lock);
1180 		skb_queue_splice_tail_init(&agg, &ar->tx_pending[queue]);
1181 		spin_unlock_bh(&ar->tx_pending[queue].lock);
1182 		ar->tx_schedule = true;
1183 	}
1184 	if ((done_ampdus++ == 0) && (i++ == 0))
1185 		goto retry;
1186 
1187 	rcu_assign_pointer(ar->tx_ampdu_iter, tid_info);
1188 	rcu_read_unlock();
1189 }
1190 
1191 static struct sk_buff *carl9170_tx_pick_skb(struct ar9170 *ar,
1192 					    struct sk_buff_head *queue)
1193 {
1194 	struct sk_buff *skb;
1195 	struct ieee80211_tx_info *info;
1196 	struct carl9170_tx_info *arinfo;
1197 
1198 	BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data));
1199 
1200 	spin_lock_bh(&queue->lock);
1201 	skb = skb_peek(queue);
1202 	if (unlikely(!skb))
1203 		goto err_unlock;
1204 
1205 	if (carl9170_alloc_dev_space(ar, skb))
1206 		goto err_unlock;
1207 
1208 	__skb_unlink(skb, queue);
1209 	spin_unlock_bh(&queue->lock);
1210 
1211 	info = IEEE80211_SKB_CB(skb);
1212 	arinfo = (void *) info->rate_driver_data;
1213 
1214 	arinfo->timeout = jiffies;
1215 	return skb;
1216 
1217 err_unlock:
1218 	spin_unlock_bh(&queue->lock);
1219 	return NULL;
1220 }
1221 
1222 void carl9170_tx_drop(struct ar9170 *ar, struct sk_buff *skb)
1223 {
1224 	struct _carl9170_tx_superframe *super;
1225 	uint8_t q = 0;
1226 
1227 	ar->tx_dropped++;
1228 
1229 	super = (void *)skb->data;
1230 	SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, q,
1231 		ar9170_qmap[carl9170_get_queue(ar, skb)]);
1232 	__carl9170_tx_process_status(ar, super->s.cookie, q);
1233 }
1234 
1235 static bool carl9170_tx_ps_drop(struct ar9170 *ar, struct sk_buff *skb)
1236 {
1237 	struct ieee80211_sta *sta;
1238 	struct carl9170_sta_info *sta_info;
1239 	struct ieee80211_tx_info *tx_info;
1240 
1241 	rcu_read_lock();
1242 	sta = __carl9170_get_tx_sta(ar, skb);
1243 	if (!sta)
1244 		goto out_rcu;
1245 
1246 	sta_info = (void *) sta->drv_priv;
1247 	tx_info = IEEE80211_SKB_CB(skb);
1248 
1249 	if (unlikely(sta_info->sleeping) &&
1250 	    !(tx_info->flags & (IEEE80211_TX_CTL_NO_PS_BUFFER |
1251 				IEEE80211_TX_CTL_CLEAR_PS_FILT))) {
1252 		rcu_read_unlock();
1253 
1254 		if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
1255 			atomic_dec(&ar->tx_ampdu_upload);
1256 
1257 		tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1258 		carl9170_release_dev_space(ar, skb);
1259 		carl9170_tx_status(ar, skb, false);
1260 		return true;
1261 	}
1262 
1263 out_rcu:
1264 	rcu_read_unlock();
1265 	return false;
1266 }
1267 
1268 static void carl9170_tx(struct ar9170 *ar)
1269 {
1270 	struct sk_buff *skb;
1271 	unsigned int i, q;
1272 	bool schedule_garbagecollector = false;
1273 
1274 	ar->tx_schedule = false;
1275 
1276 	if (unlikely(!IS_STARTED(ar)))
1277 		return;
1278 
1279 	carl9170_usb_handle_tx_err(ar);
1280 
1281 	for (i = 0; i < ar->hw->queues; i++) {
1282 		while (!skb_queue_empty(&ar->tx_pending[i])) {
1283 			skb = carl9170_tx_pick_skb(ar, &ar->tx_pending[i]);
1284 			if (unlikely(!skb))
1285 				break;
1286 
1287 			if (unlikely(carl9170_tx_ps_drop(ar, skb)))
1288 				continue;
1289 
1290 			atomic_inc(&ar->tx_total_pending);
1291 
1292 			q = __carl9170_get_queue(ar, i);
1293 			/*
1294 			 * NB: tx_status[i] vs. tx_status[q],
1295 			 * TODO: Move into pick_skb or alloc_dev_space.
1296 			 */
1297 			skb_queue_tail(&ar->tx_status[q], skb);
1298 
1299 			/*
1300 			 * increase ref count to "2".
1301 			 * Ref counting is the easiest way to solve the
1302 			 * race between the urb's completion routine:
1303 			 *	carl9170_tx_callback
1304 			 * and wlan tx status functions:
1305 			 *	carl9170_tx_status/janitor.
1306 			 */
1307 			carl9170_tx_get_skb(skb);
1308 
1309 			carl9170_usb_tx(ar, skb);
1310 			schedule_garbagecollector = true;
1311 		}
1312 	}
1313 
1314 	if (!schedule_garbagecollector)
1315 		return;
1316 
1317 	ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor,
1318 		msecs_to_jiffies(CARL9170_TX_TIMEOUT));
1319 }
1320 
1321 static bool carl9170_tx_ampdu_queue(struct ar9170 *ar,
1322 	struct ieee80211_sta *sta, struct sk_buff *skb)
1323 {
1324 	struct _carl9170_tx_superframe *super = (void *) skb->data;
1325 	struct carl9170_sta_info *sta_info;
1326 	struct carl9170_sta_tid *agg;
1327 	struct sk_buff *iter;
1328 	u16 tid, seq, qseq, off;
1329 	bool run = false;
1330 
1331 	tid = carl9170_get_tid(skb);
1332 	seq = carl9170_get_seq(skb);
1333 	sta_info = (void *) sta->drv_priv;
1334 
1335 	rcu_read_lock();
1336 	agg = rcu_dereference(sta_info->agg[tid]);
1337 
1338 	if (!agg)
1339 		goto err_unlock_rcu;
1340 
1341 	spin_lock_bh(&agg->lock);
1342 	if (unlikely(agg->state < CARL9170_TID_STATE_IDLE))
1343 		goto err_unlock;
1344 
1345 	/* check if sequence is within the BA window */
1346 	if (unlikely(!BAW_WITHIN(agg->bsn, CARL9170_BAW_BITS, seq)))
1347 		goto err_unlock;
1348 
1349 	if (WARN_ON_ONCE(!BAW_WITHIN(agg->snx, CARL9170_BAW_BITS, seq)))
1350 		goto err_unlock;
1351 
1352 	off = SEQ_DIFF(seq, agg->bsn);
1353 	if (WARN_ON_ONCE(test_and_set_bit(off, agg->bitmap)))
1354 		goto err_unlock;
1355 
1356 	if (likely(BAW_WITHIN(agg->hsn, CARL9170_BAW_BITS, seq))) {
1357 		__skb_queue_tail(&agg->queue, skb);
1358 		agg->hsn = seq;
1359 		goto queued;
1360 	}
1361 
1362 	skb_queue_reverse_walk(&agg->queue, iter) {
1363 		qseq = carl9170_get_seq(iter);
1364 
1365 		if (BAW_WITHIN(qseq, CARL9170_BAW_BITS, seq)) {
1366 			__skb_queue_after(&agg->queue, iter, skb);
1367 			goto queued;
1368 		}
1369 	}
1370 
1371 	__skb_queue_head(&agg->queue, skb);
1372 queued:
1373 
1374 	if (unlikely(agg->state != CARL9170_TID_STATE_XMIT)) {
1375 		if (agg->snx == carl9170_get_seq(skb_peek(&agg->queue))) {
1376 			agg->state = CARL9170_TID_STATE_XMIT;
1377 			run = true;
1378 		}
1379 	}
1380 
1381 	spin_unlock_bh(&agg->lock);
1382 	rcu_read_unlock();
1383 
1384 	return run;
1385 
1386 err_unlock:
1387 	spin_unlock_bh(&agg->lock);
1388 
1389 err_unlock_rcu:
1390 	rcu_read_unlock();
1391 	super->f.mac_control &= ~cpu_to_le16(AR9170_TX_MAC_AGGR);
1392 	carl9170_tx_status(ar, skb, false);
1393 	ar->tx_dropped++;
1394 	return false;
1395 }
1396 
1397 void carl9170_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
1398 {
1399 	struct ar9170 *ar = hw->priv;
1400 	struct ieee80211_tx_info *info;
1401 	struct ieee80211_sta *sta;
1402 	bool run;
1403 
1404 	if (unlikely(!IS_STARTED(ar)))
1405 		goto err_free;
1406 
1407 	info = IEEE80211_SKB_CB(skb);
1408 	sta = info->control.sta;
1409 
1410 	if (unlikely(carl9170_tx_prepare(ar, skb)))
1411 		goto err_free;
1412 
1413 	carl9170_tx_accounting(ar, skb);
1414 	/*
1415 	 * from now on, one has to use carl9170_tx_status to free
1416 	 * all ressouces which are associated with the frame.
1417 	 */
1418 
1419 	if (sta) {
1420 		struct carl9170_sta_info *stai = (void *) sta->drv_priv;
1421 		atomic_inc(&stai->pending_frames);
1422 	}
1423 
1424 	if (info->flags & IEEE80211_TX_CTL_AMPDU) {
1425 		run = carl9170_tx_ampdu_queue(ar, sta, skb);
1426 		if (run)
1427 			carl9170_tx_ampdu(ar);
1428 
1429 	} else {
1430 		unsigned int queue = skb_get_queue_mapping(skb);
1431 
1432 		skb_queue_tail(&ar->tx_pending[queue], skb);
1433 	}
1434 
1435 	carl9170_tx(ar);
1436 	return;
1437 
1438 err_free:
1439 	ar->tx_dropped++;
1440 	ieee80211_free_txskb(ar->hw, skb);
1441 }
1442 
1443 void carl9170_tx_scheduler(struct ar9170 *ar)
1444 {
1445 
1446 	if (ar->tx_ampdu_schedule)
1447 		carl9170_tx_ampdu(ar);
1448 
1449 	if (ar->tx_schedule)
1450 		carl9170_tx(ar);
1451 }
1452 
1453 int carl9170_update_beacon(struct ar9170 *ar, const bool submit)
1454 {
1455 	struct sk_buff *skb = NULL;
1456 	struct carl9170_vif_info *cvif;
1457 	struct ieee80211_tx_info *txinfo;
1458 	struct ieee80211_tx_rate *rate;
1459 	__le32 *data, *old = NULL;
1460 	unsigned int plcp, power, chains;
1461 	u32 word, ht1, off, addr, len;
1462 	int i = 0, err = 0;
1463 
1464 	rcu_read_lock();
1465 	cvif = rcu_dereference(ar->beacon_iter);
1466 retry:
1467 	if (ar->vifs == 0 || !cvif)
1468 		goto out_unlock;
1469 
1470 	list_for_each_entry_continue_rcu(cvif, &ar->vif_list, list) {
1471 		if (cvif->active && cvif->enable_beacon)
1472 			goto found;
1473 	}
1474 
1475 	if (!ar->beacon_enabled || i++)
1476 		goto out_unlock;
1477 
1478 	goto retry;
1479 
1480 found:
1481 	rcu_assign_pointer(ar->beacon_iter, cvif);
1482 
1483 	skb = ieee80211_beacon_get_tim(ar->hw, carl9170_get_vif(cvif),
1484 		NULL, NULL);
1485 
1486 	if (!skb) {
1487 		err = -ENOMEM;
1488 		goto err_free;
1489 	}
1490 
1491 	txinfo = IEEE80211_SKB_CB(skb);
1492 	spin_lock_bh(&ar->beacon_lock);
1493 	data = (__le32 *)skb->data;
1494 	if (cvif->beacon)
1495 		old = (__le32 *)cvif->beacon->data;
1496 
1497 	off = cvif->id * AR9170_MAC_BCN_LENGTH_MAX;
1498 	addr = ar->fw.beacon_addr + off;
1499 	len = roundup(skb->len + FCS_LEN, 4);
1500 
1501 	if ((off + len) > ar->fw.beacon_max_len) {
1502 		if (net_ratelimit()) {
1503 			wiphy_err(ar->hw->wiphy, "beacon does not "
1504 				  "fit into device memory!\n");
1505 		}
1506 		err = -EINVAL;
1507 		goto err_unlock;
1508 	}
1509 
1510 	if (len > AR9170_MAC_BCN_LENGTH_MAX) {
1511 		if (net_ratelimit()) {
1512 			wiphy_err(ar->hw->wiphy, "no support for beacons "
1513 				"bigger than %d (yours:%d).\n",
1514 				 AR9170_MAC_BCN_LENGTH_MAX, len);
1515 		}
1516 
1517 		err = -EMSGSIZE;
1518 		goto err_unlock;
1519 	}
1520 
1521 	ht1 = AR9170_MAC_BCN_HT1_TX_ANT0;
1522 	rate = &txinfo->control.rates[0];
1523 	carl9170_tx_rate_tpc_chains(ar, txinfo, rate, &plcp, &power, &chains);
1524 	if (!(txinfo->control.rates[0].flags & IEEE80211_TX_RC_MCS)) {
1525 		if (plcp <= AR9170_TX_PHY_RATE_CCK_11M)
1526 			plcp |= ((skb->len + FCS_LEN) << (3 + 16)) + 0x0400;
1527 		else
1528 			plcp |= ((skb->len + FCS_LEN) << 16) + 0x0010;
1529 	} else {
1530 		ht1 |= AR9170_MAC_BCN_HT1_HT_EN;
1531 		if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
1532 			plcp |= AR9170_MAC_BCN_HT2_SGI;
1533 
1534 		if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
1535 			ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_SHARED;
1536 			plcp |= AR9170_MAC_BCN_HT2_BW40;
1537 		}
1538 		if (rate->flags & IEEE80211_TX_RC_DUP_DATA) {
1539 			ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_DUP;
1540 			plcp |= AR9170_MAC_BCN_HT2_BW40;
1541 		}
1542 
1543 		SET_VAL(AR9170_MAC_BCN_HT2_LEN, plcp, skb->len + FCS_LEN);
1544 	}
1545 
1546 	SET_VAL(AR9170_MAC_BCN_HT1_PWR_CTRL, ht1, 7);
1547 	SET_VAL(AR9170_MAC_BCN_HT1_TPC, ht1, power);
1548 	SET_VAL(AR9170_MAC_BCN_HT1_CHAIN_MASK, ht1, chains);
1549 	if (chains == AR9170_TX_PHY_TXCHAIN_2)
1550 		ht1 |= AR9170_MAC_BCN_HT1_TX_ANT1;
1551 
1552 	carl9170_async_regwrite_begin(ar);
1553 	carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT1, ht1);
1554 	if (!(txinfo->control.rates[0].flags & IEEE80211_TX_RC_MCS))
1555 		carl9170_async_regwrite(AR9170_MAC_REG_BCN_PLCP, plcp);
1556 	else
1557 		carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT2, plcp);
1558 
1559 	for (i = 0; i < DIV_ROUND_UP(skb->len, 4); i++) {
1560 		/*
1561 		 * XXX: This accesses beyond skb data for up
1562 		 *	to the last 3 bytes!!
1563 		 */
1564 
1565 		if (old && (data[i] == old[i]))
1566 			continue;
1567 
1568 		word = le32_to_cpu(data[i]);
1569 		carl9170_async_regwrite(addr + 4 * i, word);
1570 	}
1571 	carl9170_async_regwrite_finish();
1572 
1573 	dev_kfree_skb_any(cvif->beacon);
1574 	cvif->beacon = NULL;
1575 
1576 	err = carl9170_async_regwrite_result();
1577 	if (!err)
1578 		cvif->beacon = skb;
1579 	spin_unlock_bh(&ar->beacon_lock);
1580 	if (err)
1581 		goto err_free;
1582 
1583 	if (submit) {
1584 		err = carl9170_bcn_ctrl(ar, cvif->id,
1585 					CARL9170_BCN_CTRL_CAB_TRIGGER,
1586 					addr, skb->len + FCS_LEN);
1587 
1588 		if (err)
1589 			goto err_free;
1590 	}
1591 out_unlock:
1592 	rcu_read_unlock();
1593 	return 0;
1594 
1595 err_unlock:
1596 	spin_unlock_bh(&ar->beacon_lock);
1597 
1598 err_free:
1599 	rcu_read_unlock();
1600 	dev_kfree_skb_any(skb);
1601 	return err;
1602 }
1603