1 /* 2 * Atheros CARL9170 driver 3 * 4 * 802.11 xmit & status routines 5 * 6 * Copyright 2008, Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2009, 2010, Christian Lamparter <chunkeey@googlemail.com> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; see the file COPYING. If not, see 21 * http://www.gnu.org/licenses/. 22 * 23 * This file incorporates work covered by the following copyright and 24 * permission notice: 25 * Copyright (c) 2007-2008 Atheros Communications, Inc. 26 * 27 * Permission to use, copy, modify, and/or distribute this software for any 28 * purpose with or without fee is hereby granted, provided that the above 29 * copyright notice and this permission notice appear in all copies. 30 * 31 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 32 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 33 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 34 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 35 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 36 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 37 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 38 */ 39 40 #include <linux/init.h> 41 #include <linux/slab.h> 42 #include <linux/module.h> 43 #include <linux/etherdevice.h> 44 #include <net/mac80211.h> 45 #include "carl9170.h" 46 #include "hw.h" 47 #include "cmd.h" 48 49 static inline unsigned int __carl9170_get_queue(struct ar9170 *ar, 50 unsigned int queue) 51 { 52 if (unlikely(modparam_noht)) { 53 return queue; 54 } else { 55 /* 56 * This is just another workaround, until 57 * someone figures out how to get QoS and 58 * AMPDU to play nicely together. 59 */ 60 61 return 2; /* AC_BE */ 62 } 63 } 64 65 static inline unsigned int carl9170_get_queue(struct ar9170 *ar, 66 struct sk_buff *skb) 67 { 68 return __carl9170_get_queue(ar, skb_get_queue_mapping(skb)); 69 } 70 71 static bool is_mem_full(struct ar9170 *ar) 72 { 73 return (DIV_ROUND_UP(IEEE80211_MAX_FRAME_LEN, ar->fw.mem_block_size) > 74 atomic_read(&ar->mem_free_blocks)); 75 } 76 77 static void carl9170_tx_accounting(struct ar9170 *ar, struct sk_buff *skb) 78 { 79 int queue, i; 80 bool mem_full; 81 82 atomic_inc(&ar->tx_total_queued); 83 84 queue = skb_get_queue_mapping(skb); 85 spin_lock_bh(&ar->tx_stats_lock); 86 87 /* 88 * The driver has to accept the frame, regardless if the queue is 89 * full to the brim, or not. We have to do the queuing internally, 90 * since mac80211 assumes that a driver which can operate with 91 * aggregated frames does not reject frames for this reason. 92 */ 93 ar->tx_stats[queue].len++; 94 ar->tx_stats[queue].count++; 95 96 mem_full = is_mem_full(ar); 97 for (i = 0; i < ar->hw->queues; i++) { 98 if (mem_full || ar->tx_stats[i].len >= ar->tx_stats[i].limit) { 99 ieee80211_stop_queue(ar->hw, i); 100 ar->queue_stop_timeout[i] = jiffies; 101 } 102 } 103 104 spin_unlock_bh(&ar->tx_stats_lock); 105 } 106 107 /* needs rcu_read_lock */ 108 static struct ieee80211_sta *__carl9170_get_tx_sta(struct ar9170 *ar, 109 struct sk_buff *skb) 110 { 111 struct _carl9170_tx_superframe *super = (void *) skb->data; 112 struct ieee80211_hdr *hdr = (void *) super->frame_data; 113 struct ieee80211_vif *vif; 114 unsigned int vif_id; 115 116 vif_id = (super->s.misc & CARL9170_TX_SUPER_MISC_VIF_ID) >> 117 CARL9170_TX_SUPER_MISC_VIF_ID_S; 118 119 if (WARN_ON_ONCE(vif_id >= AR9170_MAX_VIRTUAL_MAC)) 120 return NULL; 121 122 vif = rcu_dereference(ar->vif_priv[vif_id].vif); 123 if (unlikely(!vif)) 124 return NULL; 125 126 /* 127 * Normally we should use wrappers like ieee80211_get_DA to get 128 * the correct peer ieee80211_sta. 129 * 130 * But there is a problem with indirect traffic (broadcasts, or 131 * data which is designated for other stations) in station mode. 132 * The frame will be directed to the AP for distribution and not 133 * to the actual destination. 134 */ 135 136 return ieee80211_find_sta(vif, hdr->addr1); 137 } 138 139 static void carl9170_tx_ps_unblock(struct ar9170 *ar, struct sk_buff *skb) 140 { 141 struct ieee80211_sta *sta; 142 struct carl9170_sta_info *sta_info; 143 144 rcu_read_lock(); 145 sta = __carl9170_get_tx_sta(ar, skb); 146 if (unlikely(!sta)) 147 goto out_rcu; 148 149 sta_info = (struct carl9170_sta_info *) sta->drv_priv; 150 if (atomic_dec_return(&sta_info->pending_frames) == 0) 151 ieee80211_sta_block_awake(ar->hw, sta, false); 152 153 out_rcu: 154 rcu_read_unlock(); 155 } 156 157 static void carl9170_tx_accounting_free(struct ar9170 *ar, struct sk_buff *skb) 158 { 159 int queue; 160 161 queue = skb_get_queue_mapping(skb); 162 163 spin_lock_bh(&ar->tx_stats_lock); 164 165 ar->tx_stats[queue].len--; 166 167 if (!is_mem_full(ar)) { 168 unsigned int i; 169 for (i = 0; i < ar->hw->queues; i++) { 170 if (ar->tx_stats[i].len >= CARL9170_NUM_TX_LIMIT_SOFT) 171 continue; 172 173 if (ieee80211_queue_stopped(ar->hw, i)) { 174 unsigned long tmp; 175 176 tmp = jiffies - ar->queue_stop_timeout[i]; 177 if (tmp > ar->max_queue_stop_timeout[i]) 178 ar->max_queue_stop_timeout[i] = tmp; 179 } 180 181 ieee80211_wake_queue(ar->hw, i); 182 } 183 } 184 185 spin_unlock_bh(&ar->tx_stats_lock); 186 187 if (atomic_dec_and_test(&ar->tx_total_queued)) 188 complete(&ar->tx_flush); 189 } 190 191 static int carl9170_alloc_dev_space(struct ar9170 *ar, struct sk_buff *skb) 192 { 193 struct _carl9170_tx_superframe *super = (void *) skb->data; 194 unsigned int chunks; 195 int cookie = -1; 196 197 atomic_inc(&ar->mem_allocs); 198 199 chunks = DIV_ROUND_UP(skb->len, ar->fw.mem_block_size); 200 if (unlikely(atomic_sub_return(chunks, &ar->mem_free_blocks) < 0)) { 201 atomic_add(chunks, &ar->mem_free_blocks); 202 return -ENOSPC; 203 } 204 205 spin_lock_bh(&ar->mem_lock); 206 cookie = bitmap_find_free_region(ar->mem_bitmap, ar->fw.mem_blocks, 0); 207 spin_unlock_bh(&ar->mem_lock); 208 209 if (unlikely(cookie < 0)) { 210 atomic_add(chunks, &ar->mem_free_blocks); 211 return -ENOSPC; 212 } 213 214 super = (void *) skb->data; 215 216 /* 217 * Cookie #0 serves two special purposes: 218 * 1. The firmware might use it generate BlockACK frames 219 * in responds of an incoming BlockAckReqs. 220 * 221 * 2. Prevent double-free bugs. 222 */ 223 super->s.cookie = (u8) cookie + 1; 224 return 0; 225 } 226 227 static void carl9170_release_dev_space(struct ar9170 *ar, struct sk_buff *skb) 228 { 229 struct _carl9170_tx_superframe *super = (void *) skb->data; 230 int cookie; 231 232 /* make a local copy of the cookie */ 233 cookie = super->s.cookie; 234 /* invalidate cookie */ 235 super->s.cookie = 0; 236 237 /* 238 * Do a out-of-bounds check on the cookie: 239 * 240 * * cookie "0" is reserved and won't be assigned to any 241 * out-going frame. Internally however, it is used to 242 * mark no longer/un-accounted frames and serves as a 243 * cheap way of preventing frames from being freed 244 * twice by _accident_. NB: There is a tiny race... 245 * 246 * * obviously, cookie number is limited by the amount 247 * of available memory blocks, so the number can 248 * never execeed the mem_blocks count. 249 */ 250 if (unlikely(WARN_ON_ONCE(cookie == 0) || 251 WARN_ON_ONCE(cookie > ar->fw.mem_blocks))) 252 return; 253 254 atomic_add(DIV_ROUND_UP(skb->len, ar->fw.mem_block_size), 255 &ar->mem_free_blocks); 256 257 spin_lock_bh(&ar->mem_lock); 258 bitmap_release_region(ar->mem_bitmap, cookie - 1, 0); 259 spin_unlock_bh(&ar->mem_lock); 260 } 261 262 /* Called from any context */ 263 static void carl9170_tx_release(struct kref *ref) 264 { 265 struct ar9170 *ar; 266 struct carl9170_tx_info *arinfo; 267 struct ieee80211_tx_info *txinfo; 268 struct sk_buff *skb; 269 270 arinfo = container_of(ref, struct carl9170_tx_info, ref); 271 txinfo = container_of((void *) arinfo, struct ieee80211_tx_info, 272 rate_driver_data); 273 skb = container_of((void *) txinfo, struct sk_buff, cb); 274 275 ar = arinfo->ar; 276 if (WARN_ON_ONCE(!ar)) 277 return; 278 279 BUILD_BUG_ON( 280 offsetof(struct ieee80211_tx_info, status.ack_signal) != 20); 281 282 memset(&txinfo->status.ack_signal, 0, 283 sizeof(struct ieee80211_tx_info) - 284 offsetof(struct ieee80211_tx_info, status.ack_signal)); 285 286 if (atomic_read(&ar->tx_total_queued)) 287 ar->tx_schedule = true; 288 289 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) { 290 if (!atomic_read(&ar->tx_ampdu_upload)) 291 ar->tx_ampdu_schedule = true; 292 293 if (txinfo->flags & IEEE80211_TX_STAT_AMPDU) { 294 struct _carl9170_tx_superframe *super; 295 296 super = (void *)skb->data; 297 txinfo->status.ampdu_len = super->s.rix; 298 txinfo->status.ampdu_ack_len = super->s.cnt; 299 } else if ((txinfo->flags & IEEE80211_TX_STAT_ACK) && 300 !(txinfo->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)) { 301 /* 302 * drop redundant tx_status reports: 303 * 304 * 1. ampdu_ack_len of the final tx_status does 305 * include the feedback of this particular frame. 306 * 307 * 2. tx_status_irqsafe only queues up to 128 308 * tx feedback reports and discards the rest. 309 * 310 * 3. minstrel_ht is picky, it only accepts 311 * reports of frames with the TX_STATUS_AMPDU flag. 312 * 313 * 4. mac80211 is not particularly interested in 314 * feedback either [CTL_REQ_TX_STATUS not set] 315 */ 316 317 ieee80211_free_txskb(ar->hw, skb); 318 return; 319 } else { 320 /* 321 * Either the frame transmission has failed or 322 * mac80211 requested tx status. 323 */ 324 } 325 } 326 327 skb_pull(skb, sizeof(struct _carl9170_tx_superframe)); 328 ieee80211_tx_status_irqsafe(ar->hw, skb); 329 } 330 331 void carl9170_tx_get_skb(struct sk_buff *skb) 332 { 333 struct carl9170_tx_info *arinfo = (void *) 334 (IEEE80211_SKB_CB(skb))->rate_driver_data; 335 kref_get(&arinfo->ref); 336 } 337 338 int carl9170_tx_put_skb(struct sk_buff *skb) 339 { 340 struct carl9170_tx_info *arinfo = (void *) 341 (IEEE80211_SKB_CB(skb))->rate_driver_data; 342 343 return kref_put(&arinfo->ref, carl9170_tx_release); 344 } 345 346 /* Caller must hold the tid_info->lock & rcu_read_lock */ 347 static void carl9170_tx_shift_bm(struct ar9170 *ar, 348 struct carl9170_sta_tid *tid_info, u16 seq) 349 { 350 u16 off; 351 352 off = SEQ_DIFF(seq, tid_info->bsn); 353 354 if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS)) 355 return; 356 357 /* 358 * Sanity check. For each MPDU we set the bit in bitmap and 359 * clear it once we received the tx_status. 360 * But if the bit is already cleared then we've been bitten 361 * by a bug. 362 */ 363 WARN_ON_ONCE(!test_and_clear_bit(off, tid_info->bitmap)); 364 365 off = SEQ_DIFF(tid_info->snx, tid_info->bsn); 366 if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS)) 367 return; 368 369 if (!bitmap_empty(tid_info->bitmap, off)) 370 off = find_first_bit(tid_info->bitmap, off); 371 372 tid_info->bsn += off; 373 tid_info->bsn &= 0x0fff; 374 375 bitmap_shift_right(tid_info->bitmap, tid_info->bitmap, 376 off, CARL9170_BAW_BITS); 377 } 378 379 static void carl9170_tx_status_process_ampdu(struct ar9170 *ar, 380 struct sk_buff *skb, struct ieee80211_tx_info *txinfo) 381 { 382 struct _carl9170_tx_superframe *super = (void *) skb->data; 383 struct ieee80211_hdr *hdr = (void *) super->frame_data; 384 struct ieee80211_sta *sta; 385 struct carl9170_sta_info *sta_info; 386 struct carl9170_sta_tid *tid_info; 387 u8 tid; 388 389 if (!(txinfo->flags & IEEE80211_TX_CTL_AMPDU) || 390 txinfo->flags & IEEE80211_TX_CTL_INJECTED) 391 return; 392 393 rcu_read_lock(); 394 sta = __carl9170_get_tx_sta(ar, skb); 395 if (unlikely(!sta)) 396 goto out_rcu; 397 398 tid = get_tid_h(hdr); 399 400 sta_info = (void *) sta->drv_priv; 401 tid_info = rcu_dereference(sta_info->agg[tid]); 402 if (!tid_info) 403 goto out_rcu; 404 405 spin_lock_bh(&tid_info->lock); 406 if (likely(tid_info->state >= CARL9170_TID_STATE_IDLE)) 407 carl9170_tx_shift_bm(ar, tid_info, get_seq_h(hdr)); 408 409 if (sta_info->stats[tid].clear) { 410 sta_info->stats[tid].clear = false; 411 sta_info->stats[tid].req = false; 412 sta_info->stats[tid].ampdu_len = 0; 413 sta_info->stats[tid].ampdu_ack_len = 0; 414 } 415 416 sta_info->stats[tid].ampdu_len++; 417 if (txinfo->status.rates[0].count == 1) 418 sta_info->stats[tid].ampdu_ack_len++; 419 420 if (!(txinfo->flags & IEEE80211_TX_STAT_ACK)) 421 sta_info->stats[tid].req = true; 422 423 if (super->f.mac_control & cpu_to_le16(AR9170_TX_MAC_IMM_BA)) { 424 super->s.rix = sta_info->stats[tid].ampdu_len; 425 super->s.cnt = sta_info->stats[tid].ampdu_ack_len; 426 txinfo->flags |= IEEE80211_TX_STAT_AMPDU; 427 if (sta_info->stats[tid].req) 428 txinfo->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK; 429 430 sta_info->stats[tid].clear = true; 431 } 432 spin_unlock_bh(&tid_info->lock); 433 434 out_rcu: 435 rcu_read_unlock(); 436 } 437 438 static void carl9170_tx_bar_status(struct ar9170 *ar, struct sk_buff *skb, 439 struct ieee80211_tx_info *tx_info) 440 { 441 struct _carl9170_tx_superframe *super = (void *) skb->data; 442 struct ieee80211_bar *bar = (void *) super->frame_data; 443 444 /* 445 * Unlike all other frames, the status report for BARs does 446 * not directly come from the hardware as it is incapable of 447 * matching a BA to a previously send BAR. 448 * Instead the RX-path will scan for incoming BAs and set the 449 * IEEE80211_TX_STAT_ACK if it sees one that was likely 450 * caused by a BAR from us. 451 */ 452 453 if (unlikely(ieee80211_is_back_req(bar->frame_control)) && 454 !(tx_info->flags & IEEE80211_TX_STAT_ACK)) { 455 struct carl9170_bar_list_entry *entry; 456 int queue = skb_get_queue_mapping(skb); 457 458 rcu_read_lock(); 459 list_for_each_entry_rcu(entry, &ar->bar_list[queue], list) { 460 if (entry->skb == skb) { 461 spin_lock_bh(&ar->bar_list_lock[queue]); 462 list_del_rcu(&entry->list); 463 spin_unlock_bh(&ar->bar_list_lock[queue]); 464 kfree_rcu(entry, head); 465 goto out; 466 } 467 } 468 469 WARN(1, "bar not found in %d - ra:%pM ta:%pM c:%x ssn:%x\n", 470 queue, bar->ra, bar->ta, bar->control, 471 bar->start_seq_num); 472 out: 473 rcu_read_unlock(); 474 } 475 } 476 477 void carl9170_tx_status(struct ar9170 *ar, struct sk_buff *skb, 478 const bool success) 479 { 480 struct ieee80211_tx_info *txinfo; 481 482 carl9170_tx_accounting_free(ar, skb); 483 484 txinfo = IEEE80211_SKB_CB(skb); 485 486 carl9170_tx_bar_status(ar, skb, txinfo); 487 488 if (success) 489 txinfo->flags |= IEEE80211_TX_STAT_ACK; 490 else 491 ar->tx_ack_failures++; 492 493 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) 494 carl9170_tx_status_process_ampdu(ar, skb, txinfo); 495 496 carl9170_tx_ps_unblock(ar, skb); 497 carl9170_tx_put_skb(skb); 498 } 499 500 /* This function may be called form any context */ 501 void carl9170_tx_callback(struct ar9170 *ar, struct sk_buff *skb) 502 { 503 struct ieee80211_tx_info *txinfo = IEEE80211_SKB_CB(skb); 504 505 atomic_dec(&ar->tx_total_pending); 506 507 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) 508 atomic_dec(&ar->tx_ampdu_upload); 509 510 if (carl9170_tx_put_skb(skb)) 511 tasklet_hi_schedule(&ar->usb_tasklet); 512 } 513 514 static struct sk_buff *carl9170_get_queued_skb(struct ar9170 *ar, u8 cookie, 515 struct sk_buff_head *queue) 516 { 517 struct sk_buff *skb; 518 519 spin_lock_bh(&queue->lock); 520 skb_queue_walk(queue, skb) { 521 struct _carl9170_tx_superframe *txc = (void *) skb->data; 522 523 if (txc->s.cookie != cookie) 524 continue; 525 526 __skb_unlink(skb, queue); 527 spin_unlock_bh(&queue->lock); 528 529 carl9170_release_dev_space(ar, skb); 530 return skb; 531 } 532 spin_unlock_bh(&queue->lock); 533 534 return NULL; 535 } 536 537 static void carl9170_tx_fill_rateinfo(struct ar9170 *ar, unsigned int rix, 538 unsigned int tries, struct ieee80211_tx_info *txinfo) 539 { 540 unsigned int i; 541 542 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { 543 if (txinfo->status.rates[i].idx < 0) 544 break; 545 546 if (i == rix) { 547 txinfo->status.rates[i].count = tries; 548 i++; 549 break; 550 } 551 } 552 553 for (; i < IEEE80211_TX_MAX_RATES; i++) { 554 txinfo->status.rates[i].idx = -1; 555 txinfo->status.rates[i].count = 0; 556 } 557 } 558 559 static void carl9170_check_queue_stop_timeout(struct ar9170 *ar) 560 { 561 int i; 562 struct sk_buff *skb; 563 struct ieee80211_tx_info *txinfo; 564 struct carl9170_tx_info *arinfo; 565 bool restart = false; 566 567 for (i = 0; i < ar->hw->queues; i++) { 568 spin_lock_bh(&ar->tx_status[i].lock); 569 570 skb = skb_peek(&ar->tx_status[i]); 571 572 if (!skb) 573 goto next; 574 575 txinfo = IEEE80211_SKB_CB(skb); 576 arinfo = (void *) txinfo->rate_driver_data; 577 578 if (time_is_before_jiffies(arinfo->timeout + 579 msecs_to_jiffies(CARL9170_QUEUE_STUCK_TIMEOUT)) == true) 580 restart = true; 581 582 next: 583 spin_unlock_bh(&ar->tx_status[i].lock); 584 } 585 586 if (restart) { 587 /* 588 * At least one queue has been stuck for long enough. 589 * Give the device a kick and hope it gets back to 590 * work. 591 * 592 * possible reasons may include: 593 * - frames got lost/corrupted (bad connection to the device) 594 * - stalled rx processing/usb controller hiccups 595 * - firmware errors/bugs 596 * - every bug you can think of. 597 * - all bugs you can't... 598 * - ... 599 */ 600 carl9170_restart(ar, CARL9170_RR_STUCK_TX); 601 } 602 } 603 604 static void carl9170_tx_ampdu_timeout(struct ar9170 *ar) 605 { 606 struct carl9170_sta_tid *iter; 607 struct sk_buff *skb; 608 struct ieee80211_tx_info *txinfo; 609 struct carl9170_tx_info *arinfo; 610 struct ieee80211_sta *sta; 611 612 rcu_read_lock(); 613 list_for_each_entry_rcu(iter, &ar->tx_ampdu_list, list) { 614 if (iter->state < CARL9170_TID_STATE_IDLE) 615 continue; 616 617 spin_lock_bh(&iter->lock); 618 skb = skb_peek(&iter->queue); 619 if (!skb) 620 goto unlock; 621 622 txinfo = IEEE80211_SKB_CB(skb); 623 arinfo = (void *)txinfo->rate_driver_data; 624 if (time_is_after_jiffies(arinfo->timeout + 625 msecs_to_jiffies(CARL9170_QUEUE_TIMEOUT))) 626 goto unlock; 627 628 sta = iter->sta; 629 if (WARN_ON(!sta)) 630 goto unlock; 631 632 ieee80211_stop_tx_ba_session(sta, iter->tid); 633 unlock: 634 spin_unlock_bh(&iter->lock); 635 636 } 637 rcu_read_unlock(); 638 } 639 640 void carl9170_tx_janitor(struct work_struct *work) 641 { 642 struct ar9170 *ar = container_of(work, struct ar9170, 643 tx_janitor.work); 644 if (!IS_STARTED(ar)) 645 return; 646 647 ar->tx_janitor_last_run = jiffies; 648 649 carl9170_check_queue_stop_timeout(ar); 650 carl9170_tx_ampdu_timeout(ar); 651 652 if (!atomic_read(&ar->tx_total_queued)) 653 return; 654 655 ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor, 656 msecs_to_jiffies(CARL9170_TX_TIMEOUT)); 657 } 658 659 static void __carl9170_tx_process_status(struct ar9170 *ar, 660 const uint8_t cookie, const uint8_t info) 661 { 662 struct sk_buff *skb; 663 struct ieee80211_tx_info *txinfo; 664 unsigned int r, t, q; 665 bool success = true; 666 667 q = ar9170_qmap[info & CARL9170_TX_STATUS_QUEUE]; 668 669 skb = carl9170_get_queued_skb(ar, cookie, &ar->tx_status[q]); 670 if (!skb) { 671 /* 672 * We have lost the race to another thread. 673 */ 674 675 return ; 676 } 677 678 txinfo = IEEE80211_SKB_CB(skb); 679 680 if (!(info & CARL9170_TX_STATUS_SUCCESS)) 681 success = false; 682 683 r = (info & CARL9170_TX_STATUS_RIX) >> CARL9170_TX_STATUS_RIX_S; 684 t = (info & CARL9170_TX_STATUS_TRIES) >> CARL9170_TX_STATUS_TRIES_S; 685 686 carl9170_tx_fill_rateinfo(ar, r, t, txinfo); 687 carl9170_tx_status(ar, skb, success); 688 } 689 690 void carl9170_tx_process_status(struct ar9170 *ar, 691 const struct carl9170_rsp *cmd) 692 { 693 unsigned int i; 694 695 for (i = 0; i < cmd->hdr.ext; i++) { 696 if (WARN_ON(i > ((cmd->hdr.len / 2) + 1))) { 697 print_hex_dump_bytes("UU:", DUMP_PREFIX_NONE, 698 (void *) cmd, cmd->hdr.len + 4); 699 break; 700 } 701 702 __carl9170_tx_process_status(ar, cmd->_tx_status[i].cookie, 703 cmd->_tx_status[i].info); 704 } 705 } 706 707 static void carl9170_tx_rate_tpc_chains(struct ar9170 *ar, 708 struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate, 709 unsigned int *phyrate, unsigned int *tpc, unsigned int *chains) 710 { 711 struct ieee80211_rate *rate = NULL; 712 u8 *txpower; 713 unsigned int idx; 714 715 idx = txrate->idx; 716 *tpc = 0; 717 *phyrate = 0; 718 719 if (txrate->flags & IEEE80211_TX_RC_MCS) { 720 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) { 721 /* +1 dBm for HT40 */ 722 *tpc += 2; 723 724 if (info->band == IEEE80211_BAND_2GHZ) 725 txpower = ar->power_2G_ht40; 726 else 727 txpower = ar->power_5G_ht40; 728 } else { 729 if (info->band == IEEE80211_BAND_2GHZ) 730 txpower = ar->power_2G_ht20; 731 else 732 txpower = ar->power_5G_ht20; 733 } 734 735 *phyrate = txrate->idx; 736 *tpc += txpower[idx & 7]; 737 } else { 738 if (info->band == IEEE80211_BAND_2GHZ) { 739 if (idx < 4) 740 txpower = ar->power_2G_cck; 741 else 742 txpower = ar->power_2G_ofdm; 743 } else { 744 txpower = ar->power_5G_leg; 745 idx += 4; 746 } 747 748 rate = &__carl9170_ratetable[idx]; 749 *tpc += txpower[(rate->hw_value & 0x30) >> 4]; 750 *phyrate = rate->hw_value & 0xf; 751 } 752 753 if (ar->eeprom.tx_mask == 1) { 754 *chains = AR9170_TX_PHY_TXCHAIN_1; 755 } else { 756 if (!(txrate->flags & IEEE80211_TX_RC_MCS) && 757 rate && rate->bitrate >= 360) 758 *chains = AR9170_TX_PHY_TXCHAIN_1; 759 else 760 *chains = AR9170_TX_PHY_TXCHAIN_2; 761 } 762 763 *tpc = min_t(unsigned int, *tpc, ar->hw->conf.power_level * 2); 764 } 765 766 static __le32 carl9170_tx_physet(struct ar9170 *ar, 767 struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate) 768 { 769 unsigned int power = 0, chains = 0, phyrate = 0; 770 __le32 tmp; 771 772 tmp = cpu_to_le32(0); 773 774 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 775 tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ << 776 AR9170_TX_PHY_BW_S); 777 /* this works because 40 MHz is 2 and dup is 3 */ 778 if (txrate->flags & IEEE80211_TX_RC_DUP_DATA) 779 tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ_DUP << 780 AR9170_TX_PHY_BW_S); 781 782 if (txrate->flags & IEEE80211_TX_RC_SHORT_GI) 783 tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_GI); 784 785 if (txrate->flags & IEEE80211_TX_RC_MCS) { 786 SET_VAL(AR9170_TX_PHY_MCS, phyrate, txrate->idx); 787 788 /* heavy clip control */ 789 tmp |= cpu_to_le32((txrate->idx & 0x7) << 790 AR9170_TX_PHY_TX_HEAVY_CLIP_S); 791 792 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_HT); 793 794 /* 795 * green field preamble does not work. 796 * 797 * if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD) 798 * tmp |= cpu_to_le32(AR9170_TX_PHY_GREENFIELD); 799 */ 800 } else { 801 if (info->band == IEEE80211_BAND_2GHZ) { 802 if (txrate->idx <= AR9170_TX_PHY_RATE_CCK_11M) 803 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_CCK); 804 else 805 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM); 806 } else { 807 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM); 808 } 809 810 /* 811 * short preamble seems to be broken too. 812 * 813 * if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 814 * tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_PREAMBLE); 815 */ 816 } 817 carl9170_tx_rate_tpc_chains(ar, info, txrate, 818 &phyrate, &power, &chains); 819 820 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_MCS, phyrate)); 821 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TX_PWR, power)); 822 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TXCHAIN, chains)); 823 return tmp; 824 } 825 826 static bool carl9170_tx_rts_check(struct ar9170 *ar, 827 struct ieee80211_tx_rate *rate, 828 bool ampdu, bool multi) 829 { 830 switch (ar->erp_mode) { 831 case CARL9170_ERP_AUTO: 832 if (ampdu) 833 break; 834 835 case CARL9170_ERP_MAC80211: 836 if (!(rate->flags & IEEE80211_TX_RC_USE_RTS_CTS)) 837 break; 838 839 case CARL9170_ERP_RTS: 840 if (likely(!multi)) 841 return true; 842 843 default: 844 break; 845 } 846 847 return false; 848 } 849 850 static bool carl9170_tx_cts_check(struct ar9170 *ar, 851 struct ieee80211_tx_rate *rate) 852 { 853 switch (ar->erp_mode) { 854 case CARL9170_ERP_AUTO: 855 case CARL9170_ERP_MAC80211: 856 if (!(rate->flags & IEEE80211_TX_RC_USE_CTS_PROTECT)) 857 break; 858 859 case CARL9170_ERP_CTS: 860 return true; 861 862 default: 863 break; 864 } 865 866 return false; 867 } 868 869 static void carl9170_tx_get_rates(struct ar9170 *ar, 870 struct ieee80211_vif *vif, 871 struct ieee80211_sta *sta, 872 struct sk_buff *skb) 873 { 874 struct ieee80211_tx_info *info; 875 876 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES < CARL9170_TX_MAX_RATES); 877 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES > IEEE80211_TX_RATE_TABLE_SIZE); 878 879 info = IEEE80211_SKB_CB(skb); 880 881 ieee80211_get_tx_rates(vif, sta, skb, 882 info->control.rates, 883 IEEE80211_TX_MAX_RATES); 884 } 885 886 static void carl9170_tx_apply_rateset(struct ar9170 *ar, 887 struct ieee80211_tx_info *sinfo, 888 struct sk_buff *skb) 889 { 890 struct ieee80211_tx_rate *txrate; 891 struct ieee80211_tx_info *info; 892 struct _carl9170_tx_superframe *txc = (void *) skb->data; 893 int i; 894 bool ampdu; 895 bool no_ack; 896 897 info = IEEE80211_SKB_CB(skb); 898 ampdu = !!(info->flags & IEEE80211_TX_CTL_AMPDU); 899 no_ack = !!(info->flags & IEEE80211_TX_CTL_NO_ACK); 900 901 /* Set the rate control probe flag for all (sub-) frames. 902 * This is because the TX_STATS_AMPDU flag is only set on 903 * the last frame, so it has to be inherited. 904 */ 905 info->flags |= (sinfo->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE); 906 907 /* NOTE: For the first rate, the ERP & AMPDU flags are directly 908 * taken from mac_control. For all fallback rate, the firmware 909 * updates the mac_control flags from the rate info field. 910 */ 911 for (i = 0; i < CARL9170_TX_MAX_RATES; i++) { 912 __le32 phy_set; 913 914 txrate = &sinfo->control.rates[i]; 915 if (txrate->idx < 0) 916 break; 917 918 phy_set = carl9170_tx_physet(ar, info, txrate); 919 if (i == 0) { 920 __le16 mac_tmp = cpu_to_le16(0); 921 922 /* first rate - part of the hw's frame header */ 923 txc->f.phy_control = phy_set; 924 925 if (ampdu && txrate->flags & IEEE80211_TX_RC_MCS) 926 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_AGGR); 927 928 if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack)) 929 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_RTS); 930 else if (carl9170_tx_cts_check(ar, txrate)) 931 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_CTS); 932 933 txc->f.mac_control |= mac_tmp; 934 } else { 935 /* fallback rates are stored in the firmware's 936 * retry rate set array. 937 */ 938 txc->s.rr[i - 1] = phy_set; 939 } 940 941 SET_VAL(CARL9170_TX_SUPER_RI_TRIES, txc->s.ri[i], 942 txrate->count); 943 944 if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack)) 945 txc->s.ri[i] |= (AR9170_TX_MAC_PROT_RTS << 946 CARL9170_TX_SUPER_RI_ERP_PROT_S); 947 else if (carl9170_tx_cts_check(ar, txrate)) 948 txc->s.ri[i] |= (AR9170_TX_MAC_PROT_CTS << 949 CARL9170_TX_SUPER_RI_ERP_PROT_S); 950 951 if (ampdu && (txrate->flags & IEEE80211_TX_RC_MCS)) 952 txc->s.ri[i] |= CARL9170_TX_SUPER_RI_AMPDU; 953 } 954 } 955 956 static int carl9170_tx_prepare(struct ar9170 *ar, 957 struct ieee80211_sta *sta, 958 struct sk_buff *skb) 959 { 960 struct ieee80211_hdr *hdr; 961 struct _carl9170_tx_superframe *txc; 962 struct carl9170_vif_info *cvif; 963 struct ieee80211_tx_info *info; 964 struct carl9170_tx_info *arinfo; 965 unsigned int hw_queue; 966 __le16 mac_tmp; 967 u16 len; 968 969 BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data)); 970 BUILD_BUG_ON(sizeof(struct _carl9170_tx_superdesc) != 971 CARL9170_TX_SUPERDESC_LEN); 972 973 BUILD_BUG_ON(sizeof(struct _ar9170_tx_hwdesc) != 974 AR9170_TX_HWDESC_LEN); 975 976 BUILD_BUG_ON(AR9170_MAX_VIRTUAL_MAC > 977 ((CARL9170_TX_SUPER_MISC_VIF_ID >> 978 CARL9170_TX_SUPER_MISC_VIF_ID_S) + 1)); 979 980 hw_queue = ar9170_qmap[carl9170_get_queue(ar, skb)]; 981 982 hdr = (void *)skb->data; 983 info = IEEE80211_SKB_CB(skb); 984 len = skb->len; 985 986 /* 987 * Note: If the frame was sent through a monitor interface, 988 * the ieee80211_vif pointer can be NULL. 989 */ 990 if (likely(info->control.vif)) 991 cvif = (void *) info->control.vif->drv_priv; 992 else 993 cvif = NULL; 994 995 txc = (void *)skb_push(skb, sizeof(*txc)); 996 memset(txc, 0, sizeof(*txc)); 997 998 SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, txc->s.misc, hw_queue); 999 1000 if (likely(cvif)) 1001 SET_VAL(CARL9170_TX_SUPER_MISC_VIF_ID, txc->s.misc, cvif->id); 1002 1003 if (unlikely(info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM)) 1004 txc->s.misc |= CARL9170_TX_SUPER_MISC_CAB; 1005 1006 if (unlikely(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)) 1007 txc->s.misc |= CARL9170_TX_SUPER_MISC_ASSIGN_SEQ; 1008 1009 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control))) 1010 txc->s.misc |= CARL9170_TX_SUPER_MISC_FILL_IN_TSF; 1011 1012 mac_tmp = cpu_to_le16(AR9170_TX_MAC_HW_DURATION | 1013 AR9170_TX_MAC_BACKOFF); 1014 mac_tmp |= cpu_to_le16((hw_queue << AR9170_TX_MAC_QOS_S) & 1015 AR9170_TX_MAC_QOS); 1016 1017 if (unlikely(info->flags & IEEE80211_TX_CTL_NO_ACK)) 1018 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_NO_ACK); 1019 1020 if (info->control.hw_key) { 1021 len += info->control.hw_key->icv_len; 1022 1023 switch (info->control.hw_key->cipher) { 1024 case WLAN_CIPHER_SUITE_WEP40: 1025 case WLAN_CIPHER_SUITE_WEP104: 1026 case WLAN_CIPHER_SUITE_TKIP: 1027 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_RC4); 1028 break; 1029 case WLAN_CIPHER_SUITE_CCMP: 1030 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_AES); 1031 break; 1032 default: 1033 WARN_ON(1); 1034 goto err_out; 1035 } 1036 } 1037 1038 if (info->flags & IEEE80211_TX_CTL_AMPDU) { 1039 unsigned int density, factor; 1040 1041 if (unlikely(!sta || !cvif)) 1042 goto err_out; 1043 1044 factor = min_t(unsigned int, 1u, sta->ht_cap.ampdu_factor); 1045 density = sta->ht_cap.ampdu_density; 1046 1047 if (density) { 1048 /* 1049 * Watch out! 1050 * 1051 * Otus uses slightly different density values than 1052 * those from the 802.11n spec. 1053 */ 1054 1055 density = max_t(unsigned int, density + 1, 7u); 1056 } 1057 1058 SET_VAL(CARL9170_TX_SUPER_AMPDU_DENSITY, 1059 txc->s.ampdu_settings, density); 1060 1061 SET_VAL(CARL9170_TX_SUPER_AMPDU_FACTOR, 1062 txc->s.ampdu_settings, factor); 1063 } 1064 1065 txc->s.len = cpu_to_le16(skb->len); 1066 txc->f.length = cpu_to_le16(len + FCS_LEN); 1067 txc->f.mac_control = mac_tmp; 1068 1069 arinfo = (void *)info->rate_driver_data; 1070 arinfo->timeout = jiffies; 1071 arinfo->ar = ar; 1072 kref_init(&arinfo->ref); 1073 return 0; 1074 1075 err_out: 1076 skb_pull(skb, sizeof(*txc)); 1077 return -EINVAL; 1078 } 1079 1080 static void carl9170_set_immba(struct ar9170 *ar, struct sk_buff *skb) 1081 { 1082 struct _carl9170_tx_superframe *super; 1083 1084 super = (void *) skb->data; 1085 super->f.mac_control |= cpu_to_le16(AR9170_TX_MAC_IMM_BA); 1086 } 1087 1088 static void carl9170_set_ampdu_params(struct ar9170 *ar, struct sk_buff *skb) 1089 { 1090 struct _carl9170_tx_superframe *super; 1091 int tmp; 1092 1093 super = (void *) skb->data; 1094 1095 tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_DENSITY) << 1096 CARL9170_TX_SUPER_AMPDU_DENSITY_S; 1097 1098 /* 1099 * If you haven't noticed carl9170_tx_prepare has already filled 1100 * in all ampdu spacing & factor parameters. 1101 * Now it's the time to check whenever the settings have to be 1102 * updated by the firmware, or if everything is still the same. 1103 * 1104 * There's no sane way to handle different density values with 1105 * this hardware, so we may as well just do the compare in the 1106 * driver. 1107 */ 1108 1109 if (tmp != ar->current_density) { 1110 ar->current_density = tmp; 1111 super->s.ampdu_settings |= 1112 CARL9170_TX_SUPER_AMPDU_COMMIT_DENSITY; 1113 } 1114 1115 tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_FACTOR) << 1116 CARL9170_TX_SUPER_AMPDU_FACTOR_S; 1117 1118 if (tmp != ar->current_factor) { 1119 ar->current_factor = tmp; 1120 super->s.ampdu_settings |= 1121 CARL9170_TX_SUPER_AMPDU_COMMIT_FACTOR; 1122 } 1123 } 1124 1125 static void carl9170_tx_ampdu(struct ar9170 *ar) 1126 { 1127 struct sk_buff_head agg; 1128 struct carl9170_sta_tid *tid_info; 1129 struct sk_buff *skb, *first; 1130 struct ieee80211_tx_info *tx_info_first; 1131 unsigned int i = 0, done_ampdus = 0; 1132 u16 seq, queue, tmpssn; 1133 1134 atomic_inc(&ar->tx_ampdu_scheduler); 1135 ar->tx_ampdu_schedule = false; 1136 1137 if (atomic_read(&ar->tx_ampdu_upload)) 1138 return; 1139 1140 if (!ar->tx_ampdu_list_len) 1141 return; 1142 1143 __skb_queue_head_init(&agg); 1144 1145 rcu_read_lock(); 1146 tid_info = rcu_dereference(ar->tx_ampdu_iter); 1147 if (WARN_ON_ONCE(!tid_info)) { 1148 rcu_read_unlock(); 1149 return; 1150 } 1151 1152 retry: 1153 list_for_each_entry_continue_rcu(tid_info, &ar->tx_ampdu_list, list) { 1154 i++; 1155 1156 if (tid_info->state < CARL9170_TID_STATE_PROGRESS) 1157 continue; 1158 1159 queue = TID_TO_WME_AC(tid_info->tid); 1160 1161 spin_lock_bh(&tid_info->lock); 1162 if (tid_info->state != CARL9170_TID_STATE_XMIT) 1163 goto processed; 1164 1165 tid_info->counter++; 1166 first = skb_peek(&tid_info->queue); 1167 tmpssn = carl9170_get_seq(first); 1168 seq = tid_info->snx; 1169 1170 if (unlikely(tmpssn != seq)) { 1171 tid_info->state = CARL9170_TID_STATE_IDLE; 1172 1173 goto processed; 1174 } 1175 1176 tx_info_first = NULL; 1177 while ((skb = skb_peek(&tid_info->queue))) { 1178 /* strict 0, 1, ..., n - 1, n frame sequence order */ 1179 if (unlikely(carl9170_get_seq(skb) != seq)) 1180 break; 1181 1182 /* don't upload more than AMPDU FACTOR allows. */ 1183 if (unlikely(SEQ_DIFF(tid_info->snx, tid_info->bsn) >= 1184 (tid_info->max - 1))) 1185 break; 1186 1187 if (!tx_info_first) { 1188 carl9170_tx_get_rates(ar, tid_info->vif, 1189 tid_info->sta, first); 1190 tx_info_first = IEEE80211_SKB_CB(first); 1191 } 1192 1193 carl9170_tx_apply_rateset(ar, tx_info_first, skb); 1194 1195 atomic_inc(&ar->tx_ampdu_upload); 1196 tid_info->snx = seq = SEQ_NEXT(seq); 1197 __skb_unlink(skb, &tid_info->queue); 1198 1199 __skb_queue_tail(&agg, skb); 1200 1201 if (skb_queue_len(&agg) >= CARL9170_NUM_TX_AGG_MAX) 1202 break; 1203 } 1204 1205 if (skb_queue_empty(&tid_info->queue) || 1206 carl9170_get_seq(skb_peek(&tid_info->queue)) != 1207 tid_info->snx) { 1208 /* stop TID, if A-MPDU frames are still missing, 1209 * or whenever the queue is empty. 1210 */ 1211 1212 tid_info->state = CARL9170_TID_STATE_IDLE; 1213 } 1214 done_ampdus++; 1215 1216 processed: 1217 spin_unlock_bh(&tid_info->lock); 1218 1219 if (skb_queue_empty(&agg)) 1220 continue; 1221 1222 /* apply ampdu spacing & factor settings */ 1223 carl9170_set_ampdu_params(ar, skb_peek(&agg)); 1224 1225 /* set aggregation push bit */ 1226 carl9170_set_immba(ar, skb_peek_tail(&agg)); 1227 1228 spin_lock_bh(&ar->tx_pending[queue].lock); 1229 skb_queue_splice_tail_init(&agg, &ar->tx_pending[queue]); 1230 spin_unlock_bh(&ar->tx_pending[queue].lock); 1231 ar->tx_schedule = true; 1232 } 1233 if ((done_ampdus++ == 0) && (i++ == 0)) 1234 goto retry; 1235 1236 rcu_assign_pointer(ar->tx_ampdu_iter, tid_info); 1237 rcu_read_unlock(); 1238 } 1239 1240 static struct sk_buff *carl9170_tx_pick_skb(struct ar9170 *ar, 1241 struct sk_buff_head *queue) 1242 { 1243 struct sk_buff *skb; 1244 struct ieee80211_tx_info *info; 1245 struct carl9170_tx_info *arinfo; 1246 1247 BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data)); 1248 1249 spin_lock_bh(&queue->lock); 1250 skb = skb_peek(queue); 1251 if (unlikely(!skb)) 1252 goto err_unlock; 1253 1254 if (carl9170_alloc_dev_space(ar, skb)) 1255 goto err_unlock; 1256 1257 __skb_unlink(skb, queue); 1258 spin_unlock_bh(&queue->lock); 1259 1260 info = IEEE80211_SKB_CB(skb); 1261 arinfo = (void *) info->rate_driver_data; 1262 1263 arinfo->timeout = jiffies; 1264 return skb; 1265 1266 err_unlock: 1267 spin_unlock_bh(&queue->lock); 1268 return NULL; 1269 } 1270 1271 void carl9170_tx_drop(struct ar9170 *ar, struct sk_buff *skb) 1272 { 1273 struct _carl9170_tx_superframe *super; 1274 uint8_t q = 0; 1275 1276 ar->tx_dropped++; 1277 1278 super = (void *)skb->data; 1279 SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, q, 1280 ar9170_qmap[carl9170_get_queue(ar, skb)]); 1281 __carl9170_tx_process_status(ar, super->s.cookie, q); 1282 } 1283 1284 static bool carl9170_tx_ps_drop(struct ar9170 *ar, struct sk_buff *skb) 1285 { 1286 struct ieee80211_sta *sta; 1287 struct carl9170_sta_info *sta_info; 1288 struct ieee80211_tx_info *tx_info; 1289 1290 rcu_read_lock(); 1291 sta = __carl9170_get_tx_sta(ar, skb); 1292 if (!sta) 1293 goto out_rcu; 1294 1295 sta_info = (void *) sta->drv_priv; 1296 tx_info = IEEE80211_SKB_CB(skb); 1297 1298 if (unlikely(sta_info->sleeping) && 1299 !(tx_info->flags & (IEEE80211_TX_CTL_NO_PS_BUFFER | 1300 IEEE80211_TX_CTL_CLEAR_PS_FILT))) { 1301 rcu_read_unlock(); 1302 1303 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) 1304 atomic_dec(&ar->tx_ampdu_upload); 1305 1306 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; 1307 carl9170_release_dev_space(ar, skb); 1308 carl9170_tx_status(ar, skb, false); 1309 return true; 1310 } 1311 1312 out_rcu: 1313 rcu_read_unlock(); 1314 return false; 1315 } 1316 1317 static void carl9170_bar_check(struct ar9170 *ar, struct sk_buff *skb) 1318 { 1319 struct _carl9170_tx_superframe *super = (void *) skb->data; 1320 struct ieee80211_bar *bar = (void *) super->frame_data; 1321 1322 if (unlikely(ieee80211_is_back_req(bar->frame_control)) && 1323 skb->len >= sizeof(struct ieee80211_bar)) { 1324 struct carl9170_bar_list_entry *entry; 1325 unsigned int queue = skb_get_queue_mapping(skb); 1326 1327 entry = kmalloc(sizeof(*entry), GFP_ATOMIC); 1328 if (!WARN_ON_ONCE(!entry)) { 1329 entry->skb = skb; 1330 spin_lock_bh(&ar->bar_list_lock[queue]); 1331 list_add_tail_rcu(&entry->list, &ar->bar_list[queue]); 1332 spin_unlock_bh(&ar->bar_list_lock[queue]); 1333 } 1334 } 1335 } 1336 1337 static void carl9170_tx(struct ar9170 *ar) 1338 { 1339 struct sk_buff *skb; 1340 unsigned int i, q; 1341 bool schedule_garbagecollector = false; 1342 1343 ar->tx_schedule = false; 1344 1345 if (unlikely(!IS_STARTED(ar))) 1346 return; 1347 1348 carl9170_usb_handle_tx_err(ar); 1349 1350 for (i = 0; i < ar->hw->queues; i++) { 1351 while (!skb_queue_empty(&ar->tx_pending[i])) { 1352 skb = carl9170_tx_pick_skb(ar, &ar->tx_pending[i]); 1353 if (unlikely(!skb)) 1354 break; 1355 1356 if (unlikely(carl9170_tx_ps_drop(ar, skb))) 1357 continue; 1358 1359 carl9170_bar_check(ar, skb); 1360 1361 atomic_inc(&ar->tx_total_pending); 1362 1363 q = __carl9170_get_queue(ar, i); 1364 /* 1365 * NB: tx_status[i] vs. tx_status[q], 1366 * TODO: Move into pick_skb or alloc_dev_space. 1367 */ 1368 skb_queue_tail(&ar->tx_status[q], skb); 1369 1370 /* 1371 * increase ref count to "2". 1372 * Ref counting is the easiest way to solve the 1373 * race between the urb's completion routine: 1374 * carl9170_tx_callback 1375 * and wlan tx status functions: 1376 * carl9170_tx_status/janitor. 1377 */ 1378 carl9170_tx_get_skb(skb); 1379 1380 carl9170_usb_tx(ar, skb); 1381 schedule_garbagecollector = true; 1382 } 1383 } 1384 1385 if (!schedule_garbagecollector) 1386 return; 1387 1388 ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor, 1389 msecs_to_jiffies(CARL9170_TX_TIMEOUT)); 1390 } 1391 1392 static bool carl9170_tx_ampdu_queue(struct ar9170 *ar, 1393 struct ieee80211_sta *sta, struct sk_buff *skb, 1394 struct ieee80211_tx_info *txinfo) 1395 { 1396 struct carl9170_sta_info *sta_info; 1397 struct carl9170_sta_tid *agg; 1398 struct sk_buff *iter; 1399 u16 tid, seq, qseq, off; 1400 bool run = false; 1401 1402 tid = carl9170_get_tid(skb); 1403 seq = carl9170_get_seq(skb); 1404 sta_info = (void *) sta->drv_priv; 1405 1406 rcu_read_lock(); 1407 agg = rcu_dereference(sta_info->agg[tid]); 1408 1409 if (!agg) 1410 goto err_unlock_rcu; 1411 1412 spin_lock_bh(&agg->lock); 1413 if (unlikely(agg->state < CARL9170_TID_STATE_IDLE)) 1414 goto err_unlock; 1415 1416 /* check if sequence is within the BA window */ 1417 if (unlikely(!BAW_WITHIN(agg->bsn, CARL9170_BAW_BITS, seq))) 1418 goto err_unlock; 1419 1420 if (WARN_ON_ONCE(!BAW_WITHIN(agg->snx, CARL9170_BAW_BITS, seq))) 1421 goto err_unlock; 1422 1423 off = SEQ_DIFF(seq, agg->bsn); 1424 if (WARN_ON_ONCE(test_and_set_bit(off, agg->bitmap))) 1425 goto err_unlock; 1426 1427 if (likely(BAW_WITHIN(agg->hsn, CARL9170_BAW_BITS, seq))) { 1428 __skb_queue_tail(&agg->queue, skb); 1429 agg->hsn = seq; 1430 goto queued; 1431 } 1432 1433 skb_queue_reverse_walk(&agg->queue, iter) { 1434 qseq = carl9170_get_seq(iter); 1435 1436 if (BAW_WITHIN(qseq, CARL9170_BAW_BITS, seq)) { 1437 __skb_queue_after(&agg->queue, iter, skb); 1438 goto queued; 1439 } 1440 } 1441 1442 __skb_queue_head(&agg->queue, skb); 1443 queued: 1444 1445 if (unlikely(agg->state != CARL9170_TID_STATE_XMIT)) { 1446 if (agg->snx == carl9170_get_seq(skb_peek(&agg->queue))) { 1447 agg->state = CARL9170_TID_STATE_XMIT; 1448 run = true; 1449 } 1450 } 1451 1452 spin_unlock_bh(&agg->lock); 1453 rcu_read_unlock(); 1454 1455 return run; 1456 1457 err_unlock: 1458 spin_unlock_bh(&agg->lock); 1459 1460 err_unlock_rcu: 1461 rcu_read_unlock(); 1462 txinfo->flags &= ~IEEE80211_TX_CTL_AMPDU; 1463 carl9170_tx_status(ar, skb, false); 1464 ar->tx_dropped++; 1465 return false; 1466 } 1467 1468 void carl9170_op_tx(struct ieee80211_hw *hw, 1469 struct ieee80211_tx_control *control, 1470 struct sk_buff *skb) 1471 { 1472 struct ar9170 *ar = hw->priv; 1473 struct ieee80211_tx_info *info; 1474 struct ieee80211_sta *sta = control->sta; 1475 struct ieee80211_vif *vif; 1476 bool run; 1477 1478 if (unlikely(!IS_STARTED(ar))) 1479 goto err_free; 1480 1481 info = IEEE80211_SKB_CB(skb); 1482 vif = info->control.vif; 1483 1484 if (unlikely(carl9170_tx_prepare(ar, sta, skb))) 1485 goto err_free; 1486 1487 carl9170_tx_accounting(ar, skb); 1488 /* 1489 * from now on, one has to use carl9170_tx_status to free 1490 * all ressouces which are associated with the frame. 1491 */ 1492 1493 if (sta) { 1494 struct carl9170_sta_info *stai = (void *) sta->drv_priv; 1495 atomic_inc(&stai->pending_frames); 1496 } 1497 1498 if (info->flags & IEEE80211_TX_CTL_AMPDU) { 1499 /* to static code analyzers and reviewers: 1500 * mac80211 guarantees that a valid "sta" 1501 * reference is present, if a frame is to 1502 * be part of an ampdu. Hence any extra 1503 * sta == NULL checks are redundant in this 1504 * special case. 1505 */ 1506 run = carl9170_tx_ampdu_queue(ar, sta, skb, info); 1507 if (run) 1508 carl9170_tx_ampdu(ar); 1509 1510 } else { 1511 unsigned int queue = skb_get_queue_mapping(skb); 1512 1513 carl9170_tx_get_rates(ar, vif, sta, skb); 1514 carl9170_tx_apply_rateset(ar, info, skb); 1515 skb_queue_tail(&ar->tx_pending[queue], skb); 1516 } 1517 1518 carl9170_tx(ar); 1519 return; 1520 1521 err_free: 1522 ar->tx_dropped++; 1523 ieee80211_free_txskb(ar->hw, skb); 1524 } 1525 1526 void carl9170_tx_scheduler(struct ar9170 *ar) 1527 { 1528 1529 if (ar->tx_ampdu_schedule) 1530 carl9170_tx_ampdu(ar); 1531 1532 if (ar->tx_schedule) 1533 carl9170_tx(ar); 1534 } 1535 1536 /* caller has to take rcu_read_lock */ 1537 static struct carl9170_vif_info *carl9170_pick_beaconing_vif(struct ar9170 *ar) 1538 { 1539 struct carl9170_vif_info *cvif; 1540 int i = 1; 1541 1542 /* The AR9170 hardware has no fancy beacon queue or some 1543 * other scheduling mechanism. So, the driver has to make 1544 * due by setting the two beacon timers (pretbtt and tbtt) 1545 * once and then swapping the beacon address in the HW's 1546 * register file each time the pretbtt fires. 1547 */ 1548 1549 cvif = rcu_dereference(ar->beacon_iter); 1550 if (ar->vifs > 0 && cvif) { 1551 do { 1552 list_for_each_entry_continue_rcu(cvif, &ar->vif_list, 1553 list) { 1554 if (cvif->active && cvif->enable_beacon) 1555 goto out; 1556 } 1557 } while (ar->beacon_enabled && i--); 1558 } 1559 1560 out: 1561 rcu_assign_pointer(ar->beacon_iter, cvif); 1562 return cvif; 1563 } 1564 1565 static bool carl9170_tx_beacon_physet(struct ar9170 *ar, struct sk_buff *skb, 1566 u32 *ht1, u32 *plcp) 1567 { 1568 struct ieee80211_tx_info *txinfo; 1569 struct ieee80211_tx_rate *rate; 1570 unsigned int power, chains; 1571 bool ht_rate; 1572 1573 txinfo = IEEE80211_SKB_CB(skb); 1574 rate = &txinfo->control.rates[0]; 1575 ht_rate = !!(txinfo->control.rates[0].flags & IEEE80211_TX_RC_MCS); 1576 carl9170_tx_rate_tpc_chains(ar, txinfo, rate, plcp, &power, &chains); 1577 1578 *ht1 = AR9170_MAC_BCN_HT1_TX_ANT0; 1579 if (chains == AR9170_TX_PHY_TXCHAIN_2) 1580 *ht1 |= AR9170_MAC_BCN_HT1_TX_ANT1; 1581 SET_VAL(AR9170_MAC_BCN_HT1_PWR_CTRL, *ht1, 7); 1582 SET_VAL(AR9170_MAC_BCN_HT1_TPC, *ht1, power); 1583 SET_VAL(AR9170_MAC_BCN_HT1_CHAIN_MASK, *ht1, chains); 1584 1585 if (ht_rate) { 1586 *ht1 |= AR9170_MAC_BCN_HT1_HT_EN; 1587 if (rate->flags & IEEE80211_TX_RC_SHORT_GI) 1588 *plcp |= AR9170_MAC_BCN_HT2_SGI; 1589 1590 if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) { 1591 *ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_SHARED; 1592 *plcp |= AR9170_MAC_BCN_HT2_BW40; 1593 } else if (rate->flags & IEEE80211_TX_RC_DUP_DATA) { 1594 *ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_DUP; 1595 *plcp |= AR9170_MAC_BCN_HT2_BW40; 1596 } 1597 1598 SET_VAL(AR9170_MAC_BCN_HT2_LEN, *plcp, skb->len + FCS_LEN); 1599 } else { 1600 if (*plcp <= AR9170_TX_PHY_RATE_CCK_11M) 1601 *plcp |= ((skb->len + FCS_LEN) << (3 + 16)) + 0x0400; 1602 else 1603 *plcp |= ((skb->len + FCS_LEN) << 16) + 0x0010; 1604 } 1605 1606 return ht_rate; 1607 } 1608 1609 int carl9170_update_beacon(struct ar9170 *ar, const bool submit) 1610 { 1611 struct sk_buff *skb = NULL; 1612 struct carl9170_vif_info *cvif; 1613 __le32 *data, *old = NULL; 1614 u32 word, ht1, plcp, off, addr, len; 1615 int i = 0, err = 0; 1616 bool ht_rate; 1617 1618 rcu_read_lock(); 1619 cvif = carl9170_pick_beaconing_vif(ar); 1620 if (!cvif) 1621 goto out_unlock; 1622 1623 skb = ieee80211_beacon_get_tim(ar->hw, carl9170_get_vif(cvif), 1624 NULL, NULL); 1625 1626 if (!skb) { 1627 err = -ENOMEM; 1628 goto err_free; 1629 } 1630 1631 spin_lock_bh(&ar->beacon_lock); 1632 data = (__le32 *)skb->data; 1633 if (cvif->beacon) 1634 old = (__le32 *)cvif->beacon->data; 1635 1636 off = cvif->id * AR9170_MAC_BCN_LENGTH_MAX; 1637 addr = ar->fw.beacon_addr + off; 1638 len = roundup(skb->len + FCS_LEN, 4); 1639 1640 if ((off + len) > ar->fw.beacon_max_len) { 1641 if (net_ratelimit()) { 1642 wiphy_err(ar->hw->wiphy, "beacon does not " 1643 "fit into device memory!\n"); 1644 } 1645 err = -EINVAL; 1646 goto err_unlock; 1647 } 1648 1649 if (len > AR9170_MAC_BCN_LENGTH_MAX) { 1650 if (net_ratelimit()) { 1651 wiphy_err(ar->hw->wiphy, "no support for beacons " 1652 "bigger than %d (yours:%d).\n", 1653 AR9170_MAC_BCN_LENGTH_MAX, len); 1654 } 1655 1656 err = -EMSGSIZE; 1657 goto err_unlock; 1658 } 1659 1660 ht_rate = carl9170_tx_beacon_physet(ar, skb, &ht1, &plcp); 1661 1662 carl9170_async_regwrite_begin(ar); 1663 carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT1, ht1); 1664 if (ht_rate) 1665 carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT2, plcp); 1666 else 1667 carl9170_async_regwrite(AR9170_MAC_REG_BCN_PLCP, plcp); 1668 1669 for (i = 0; i < DIV_ROUND_UP(skb->len, 4); i++) { 1670 /* 1671 * XXX: This accesses beyond skb data for up 1672 * to the last 3 bytes!! 1673 */ 1674 1675 if (old && (data[i] == old[i])) 1676 continue; 1677 1678 word = le32_to_cpu(data[i]); 1679 carl9170_async_regwrite(addr + 4 * i, word); 1680 } 1681 carl9170_async_regwrite_finish(); 1682 1683 dev_kfree_skb_any(cvif->beacon); 1684 cvif->beacon = NULL; 1685 1686 err = carl9170_async_regwrite_result(); 1687 if (!err) 1688 cvif->beacon = skb; 1689 spin_unlock_bh(&ar->beacon_lock); 1690 if (err) 1691 goto err_free; 1692 1693 if (submit) { 1694 err = carl9170_bcn_ctrl(ar, cvif->id, 1695 CARL9170_BCN_CTRL_CAB_TRIGGER, 1696 addr, skb->len + FCS_LEN); 1697 1698 if (err) 1699 goto err_free; 1700 } 1701 out_unlock: 1702 rcu_read_unlock(); 1703 return 0; 1704 1705 err_unlock: 1706 spin_unlock_bh(&ar->beacon_lock); 1707 1708 err_free: 1709 rcu_read_unlock(); 1710 dev_kfree_skb_any(skb); 1711 return err; 1712 } 1713