1 /* 2 * Atheros CARL9170 driver 3 * 4 * mac80211 interaction code 5 * 6 * Copyright 2008, Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2009, 2010, Christian Lamparter <chunkeey@googlemail.com> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; see the file COPYING. If not, see 21 * http://www.gnu.org/licenses/. 22 * 23 * This file incorporates work covered by the following copyright and 24 * permission notice: 25 * Copyright (c) 2007-2008 Atheros Communications, Inc. 26 * 27 * Permission to use, copy, modify, and/or distribute this software for any 28 * purpose with or without fee is hereby granted, provided that the above 29 * copyright notice and this permission notice appear in all copies. 30 * 31 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 32 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 33 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 34 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 35 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 36 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 37 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 38 */ 39 40 #include <linux/slab.h> 41 #include <linux/module.h> 42 #include <linux/etherdevice.h> 43 #include <linux/random.h> 44 #include <net/mac80211.h> 45 #include <net/cfg80211.h> 46 #include "hw.h" 47 #include "carl9170.h" 48 #include "cmd.h" 49 50 static bool modparam_nohwcrypt; 51 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444); 52 MODULE_PARM_DESC(nohwcrypt, "Disable hardware crypto offload."); 53 54 int modparam_noht; 55 module_param_named(noht, modparam_noht, int, 0444); 56 MODULE_PARM_DESC(noht, "Disable MPDU aggregation."); 57 58 #define RATE(_bitrate, _hw_rate, _txpidx, _flags) { \ 59 .bitrate = (_bitrate), \ 60 .flags = (_flags), \ 61 .hw_value = (_hw_rate) | (_txpidx) << 4, \ 62 } 63 64 struct ieee80211_rate __carl9170_ratetable[] = { 65 RATE(10, 0, 0, 0), 66 RATE(20, 1, 1, IEEE80211_RATE_SHORT_PREAMBLE), 67 RATE(55, 2, 2, IEEE80211_RATE_SHORT_PREAMBLE), 68 RATE(110, 3, 3, IEEE80211_RATE_SHORT_PREAMBLE), 69 RATE(60, 0xb, 0, 0), 70 RATE(90, 0xf, 0, 0), 71 RATE(120, 0xa, 0, 0), 72 RATE(180, 0xe, 0, 0), 73 RATE(240, 0x9, 0, 0), 74 RATE(360, 0xd, 1, 0), 75 RATE(480, 0x8, 2, 0), 76 RATE(540, 0xc, 3, 0), 77 }; 78 #undef RATE 79 80 #define carl9170_g_ratetable (__carl9170_ratetable + 0) 81 #define carl9170_g_ratetable_size 12 82 #define carl9170_a_ratetable (__carl9170_ratetable + 4) 83 #define carl9170_a_ratetable_size 8 84 85 /* 86 * NB: The hw_value is used as an index into the carl9170_phy_freq_params 87 * array in phy.c so that we don't have to do frequency lookups! 88 */ 89 #define CHAN(_freq, _idx) { \ 90 .center_freq = (_freq), \ 91 .hw_value = (_idx), \ 92 .max_power = 18, /* XXX */ \ 93 } 94 95 static struct ieee80211_channel carl9170_2ghz_chantable[] = { 96 CHAN(2412, 0), 97 CHAN(2417, 1), 98 CHAN(2422, 2), 99 CHAN(2427, 3), 100 CHAN(2432, 4), 101 CHAN(2437, 5), 102 CHAN(2442, 6), 103 CHAN(2447, 7), 104 CHAN(2452, 8), 105 CHAN(2457, 9), 106 CHAN(2462, 10), 107 CHAN(2467, 11), 108 CHAN(2472, 12), 109 CHAN(2484, 13), 110 }; 111 112 static struct ieee80211_channel carl9170_5ghz_chantable[] = { 113 CHAN(4920, 14), 114 CHAN(4940, 15), 115 CHAN(4960, 16), 116 CHAN(4980, 17), 117 CHAN(5040, 18), 118 CHAN(5060, 19), 119 CHAN(5080, 20), 120 CHAN(5180, 21), 121 CHAN(5200, 22), 122 CHAN(5220, 23), 123 CHAN(5240, 24), 124 CHAN(5260, 25), 125 CHAN(5280, 26), 126 CHAN(5300, 27), 127 CHAN(5320, 28), 128 CHAN(5500, 29), 129 CHAN(5520, 30), 130 CHAN(5540, 31), 131 CHAN(5560, 32), 132 CHAN(5580, 33), 133 CHAN(5600, 34), 134 CHAN(5620, 35), 135 CHAN(5640, 36), 136 CHAN(5660, 37), 137 CHAN(5680, 38), 138 CHAN(5700, 39), 139 CHAN(5745, 40), 140 CHAN(5765, 41), 141 CHAN(5785, 42), 142 CHAN(5805, 43), 143 CHAN(5825, 44), 144 CHAN(5170, 45), 145 CHAN(5190, 46), 146 CHAN(5210, 47), 147 CHAN(5230, 48), 148 }; 149 #undef CHAN 150 151 #define CARL9170_HT_CAP \ 152 { \ 153 .ht_supported = true, \ 154 .cap = IEEE80211_HT_CAP_MAX_AMSDU | \ 155 IEEE80211_HT_CAP_SUP_WIDTH_20_40 | \ 156 IEEE80211_HT_CAP_SGI_40 | \ 157 IEEE80211_HT_CAP_DSSSCCK40 | \ 158 IEEE80211_HT_CAP_SM_PS, \ 159 .ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K, \ 160 .ampdu_density = IEEE80211_HT_MPDU_DENSITY_8, \ 161 .mcs = { \ 162 .rx_mask = { 0xff, 0xff, 0, 0, 0x1, 0, 0, 0, 0, 0, }, \ 163 .rx_highest = cpu_to_le16(300), \ 164 .tx_params = IEEE80211_HT_MCS_TX_DEFINED, \ 165 }, \ 166 } 167 168 static struct ieee80211_supported_band carl9170_band_2GHz = { 169 .channels = carl9170_2ghz_chantable, 170 .n_channels = ARRAY_SIZE(carl9170_2ghz_chantable), 171 .bitrates = carl9170_g_ratetable, 172 .n_bitrates = carl9170_g_ratetable_size, 173 .ht_cap = CARL9170_HT_CAP, 174 }; 175 176 static struct ieee80211_supported_band carl9170_band_5GHz = { 177 .channels = carl9170_5ghz_chantable, 178 .n_channels = ARRAY_SIZE(carl9170_5ghz_chantable), 179 .bitrates = carl9170_a_ratetable, 180 .n_bitrates = carl9170_a_ratetable_size, 181 .ht_cap = CARL9170_HT_CAP, 182 }; 183 184 static void carl9170_ampdu_gc(struct ar9170 *ar) 185 { 186 struct carl9170_sta_tid *tid_info; 187 LIST_HEAD(tid_gc); 188 189 rcu_read_lock(); 190 list_for_each_entry_rcu(tid_info, &ar->tx_ampdu_list, list) { 191 spin_lock_bh(&ar->tx_ampdu_list_lock); 192 if (tid_info->state == CARL9170_TID_STATE_SHUTDOWN) { 193 tid_info->state = CARL9170_TID_STATE_KILLED; 194 list_del_rcu(&tid_info->list); 195 ar->tx_ampdu_list_len--; 196 list_add_tail(&tid_info->tmp_list, &tid_gc); 197 } 198 spin_unlock_bh(&ar->tx_ampdu_list_lock); 199 200 } 201 rcu_assign_pointer(ar->tx_ampdu_iter, tid_info); 202 rcu_read_unlock(); 203 204 synchronize_rcu(); 205 206 while (!list_empty(&tid_gc)) { 207 struct sk_buff *skb; 208 tid_info = list_first_entry(&tid_gc, struct carl9170_sta_tid, 209 tmp_list); 210 211 while ((skb = __skb_dequeue(&tid_info->queue))) 212 carl9170_tx_status(ar, skb, false); 213 214 list_del_init(&tid_info->tmp_list); 215 kfree(tid_info); 216 } 217 } 218 219 static void carl9170_flush(struct ar9170 *ar, bool drop_queued) 220 { 221 if (drop_queued) { 222 int i; 223 224 /* 225 * We can only drop frames which have not been uploaded 226 * to the device yet. 227 */ 228 229 for (i = 0; i < ar->hw->queues; i++) { 230 struct sk_buff *skb; 231 232 while ((skb = skb_dequeue(&ar->tx_pending[i]))) { 233 struct ieee80211_tx_info *info; 234 235 info = IEEE80211_SKB_CB(skb); 236 if (info->flags & IEEE80211_TX_CTL_AMPDU) 237 atomic_dec(&ar->tx_ampdu_upload); 238 239 carl9170_tx_status(ar, skb, false); 240 } 241 } 242 } 243 244 /* Wait for all other outstanding frames to timeout. */ 245 if (atomic_read(&ar->tx_total_queued)) 246 WARN_ON(wait_for_completion_timeout(&ar->tx_flush, HZ) == 0); 247 } 248 249 static void carl9170_flush_ba(struct ar9170 *ar) 250 { 251 struct sk_buff_head free; 252 struct carl9170_sta_tid *tid_info; 253 struct sk_buff *skb; 254 255 __skb_queue_head_init(&free); 256 257 rcu_read_lock(); 258 spin_lock_bh(&ar->tx_ampdu_list_lock); 259 list_for_each_entry_rcu(tid_info, &ar->tx_ampdu_list, list) { 260 if (tid_info->state > CARL9170_TID_STATE_SUSPEND) { 261 tid_info->state = CARL9170_TID_STATE_SUSPEND; 262 263 spin_lock(&tid_info->lock); 264 while ((skb = __skb_dequeue(&tid_info->queue))) 265 __skb_queue_tail(&free, skb); 266 spin_unlock(&tid_info->lock); 267 } 268 } 269 spin_unlock_bh(&ar->tx_ampdu_list_lock); 270 rcu_read_unlock(); 271 272 while ((skb = __skb_dequeue(&free))) 273 carl9170_tx_status(ar, skb, false); 274 } 275 276 static void carl9170_zap_queues(struct ar9170 *ar) 277 { 278 struct carl9170_vif_info *cvif; 279 unsigned int i; 280 281 carl9170_ampdu_gc(ar); 282 283 carl9170_flush_ba(ar); 284 carl9170_flush(ar, true); 285 286 for (i = 0; i < ar->hw->queues; i++) { 287 spin_lock_bh(&ar->tx_status[i].lock); 288 while (!skb_queue_empty(&ar->tx_status[i])) { 289 struct sk_buff *skb; 290 291 skb = skb_peek(&ar->tx_status[i]); 292 carl9170_tx_get_skb(skb); 293 spin_unlock_bh(&ar->tx_status[i].lock); 294 carl9170_tx_drop(ar, skb); 295 spin_lock_bh(&ar->tx_status[i].lock); 296 carl9170_tx_put_skb(skb); 297 } 298 spin_unlock_bh(&ar->tx_status[i].lock); 299 } 300 301 BUILD_BUG_ON(CARL9170_NUM_TX_LIMIT_SOFT < 1); 302 BUILD_BUG_ON(CARL9170_NUM_TX_LIMIT_HARD < CARL9170_NUM_TX_LIMIT_SOFT); 303 BUILD_BUG_ON(CARL9170_NUM_TX_LIMIT_HARD >= CARL9170_BAW_BITS); 304 305 /* reinitialize queues statistics */ 306 memset(&ar->tx_stats, 0, sizeof(ar->tx_stats)); 307 for (i = 0; i < ar->hw->queues; i++) 308 ar->tx_stats[i].limit = CARL9170_NUM_TX_LIMIT_HARD; 309 310 for (i = 0; i < DIV_ROUND_UP(ar->fw.mem_blocks, BITS_PER_LONG); i++) 311 ar->mem_bitmap[i] = 0; 312 313 rcu_read_lock(); 314 list_for_each_entry_rcu(cvif, &ar->vif_list, list) { 315 spin_lock_bh(&ar->beacon_lock); 316 dev_kfree_skb_any(cvif->beacon); 317 cvif->beacon = NULL; 318 spin_unlock_bh(&ar->beacon_lock); 319 } 320 rcu_read_unlock(); 321 322 atomic_set(&ar->tx_ampdu_upload, 0); 323 atomic_set(&ar->tx_ampdu_scheduler, 0); 324 atomic_set(&ar->tx_total_pending, 0); 325 atomic_set(&ar->tx_total_queued, 0); 326 atomic_set(&ar->mem_free_blocks, ar->fw.mem_blocks); 327 } 328 329 #define CARL9170_FILL_QUEUE(queue, ai_fs, cwmin, cwmax, _txop) \ 330 do { \ 331 queue.aifs = ai_fs; \ 332 queue.cw_min = cwmin; \ 333 queue.cw_max = cwmax; \ 334 queue.txop = _txop; \ 335 } while (0) 336 337 static int carl9170_op_start(struct ieee80211_hw *hw) 338 { 339 struct ar9170 *ar = hw->priv; 340 int err, i; 341 342 mutex_lock(&ar->mutex); 343 344 carl9170_zap_queues(ar); 345 346 /* reset QoS defaults */ 347 CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_VO], 2, 3, 7, 47); 348 CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_VI], 2, 7, 15, 94); 349 CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_BE], 3, 15, 1023, 0); 350 CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_BK], 7, 15, 1023, 0); 351 CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_SPECIAL], 2, 3, 7, 0); 352 353 ar->current_factor = ar->current_density = -1; 354 /* "The first key is unique." */ 355 ar->usedkeys = 1; 356 ar->filter_state = 0; 357 ar->ps.last_action = jiffies; 358 ar->ps.last_slept = jiffies; 359 ar->erp_mode = CARL9170_ERP_AUTO; 360 361 /* Set "disable hw crypto offload" whenever the module parameter 362 * nohwcrypt is true or if the firmware does not support it. 363 */ 364 ar->disable_offload = modparam_nohwcrypt | 365 ar->fw.disable_offload_fw; 366 ar->rx_software_decryption = ar->disable_offload; 367 368 for (i = 0; i < ar->hw->queues; i++) { 369 ar->queue_stop_timeout[i] = jiffies; 370 ar->max_queue_stop_timeout[i] = 0; 371 } 372 373 atomic_set(&ar->mem_allocs, 0); 374 375 err = carl9170_usb_open(ar); 376 if (err) 377 goto out; 378 379 err = carl9170_init_mac(ar); 380 if (err) 381 goto out; 382 383 err = carl9170_set_qos(ar); 384 if (err) 385 goto out; 386 387 if (ar->fw.rx_filter) { 388 err = carl9170_rx_filter(ar, CARL9170_RX_FILTER_OTHER_RA | 389 CARL9170_RX_FILTER_CTL_OTHER | CARL9170_RX_FILTER_BAD); 390 if (err) 391 goto out; 392 } 393 394 err = carl9170_write_reg(ar, AR9170_MAC_REG_DMA_TRIGGER, 395 AR9170_DMA_TRIGGER_RXQ); 396 if (err) 397 goto out; 398 399 /* Clear key-cache */ 400 for (i = 0; i < AR9170_CAM_MAX_USER + 4; i++) { 401 err = carl9170_upload_key(ar, i, NULL, AR9170_ENC_ALG_NONE, 402 0, NULL, 0); 403 if (err) 404 goto out; 405 406 err = carl9170_upload_key(ar, i, NULL, AR9170_ENC_ALG_NONE, 407 1, NULL, 0); 408 if (err) 409 goto out; 410 411 if (i < AR9170_CAM_MAX_USER) { 412 err = carl9170_disable_key(ar, i); 413 if (err) 414 goto out; 415 } 416 } 417 418 carl9170_set_state_when(ar, CARL9170_IDLE, CARL9170_STARTED); 419 420 ieee80211_queue_delayed_work(ar->hw, &ar->stat_work, 421 round_jiffies(msecs_to_jiffies(CARL9170_STAT_WORK))); 422 423 ieee80211_wake_queues(ar->hw); 424 err = 0; 425 426 out: 427 mutex_unlock(&ar->mutex); 428 return err; 429 } 430 431 static void carl9170_cancel_worker(struct ar9170 *ar) 432 { 433 cancel_delayed_work_sync(&ar->stat_work); 434 cancel_delayed_work_sync(&ar->tx_janitor); 435 #ifdef CONFIG_CARL9170_LEDS 436 cancel_delayed_work_sync(&ar->led_work); 437 #endif /* CONFIG_CARL9170_LEDS */ 438 cancel_work_sync(&ar->ps_work); 439 cancel_work_sync(&ar->ping_work); 440 cancel_work_sync(&ar->ampdu_work); 441 } 442 443 static void carl9170_op_stop(struct ieee80211_hw *hw) 444 { 445 struct ar9170 *ar = hw->priv; 446 447 carl9170_set_state_when(ar, CARL9170_STARTED, CARL9170_IDLE); 448 449 ieee80211_stop_queues(ar->hw); 450 451 mutex_lock(&ar->mutex); 452 if (IS_ACCEPTING_CMD(ar)) { 453 RCU_INIT_POINTER(ar->beacon_iter, NULL); 454 455 carl9170_led_set_state(ar, 0); 456 457 /* stop DMA */ 458 carl9170_write_reg(ar, AR9170_MAC_REG_DMA_TRIGGER, 0); 459 carl9170_usb_stop(ar); 460 } 461 462 carl9170_zap_queues(ar); 463 mutex_unlock(&ar->mutex); 464 465 carl9170_cancel_worker(ar); 466 } 467 468 static void carl9170_restart_work(struct work_struct *work) 469 { 470 struct ar9170 *ar = container_of(work, struct ar9170, 471 restart_work); 472 int err = -EIO; 473 474 ar->usedkeys = 0; 475 ar->filter_state = 0; 476 carl9170_cancel_worker(ar); 477 478 mutex_lock(&ar->mutex); 479 if (!ar->force_usb_reset) { 480 err = carl9170_usb_restart(ar); 481 if (net_ratelimit()) { 482 if (err) 483 dev_err(&ar->udev->dev, "Failed to restart device (%d).\n", err); 484 else 485 dev_info(&ar->udev->dev, "device restarted successfully.\n"); 486 } 487 } 488 carl9170_zap_queues(ar); 489 mutex_unlock(&ar->mutex); 490 491 if (!err && !ar->force_usb_reset) { 492 ar->restart_counter++; 493 atomic_set(&ar->pending_restarts, 0); 494 495 ieee80211_restart_hw(ar->hw); 496 } else { 497 /* 498 * The reset was unsuccessful and the device seems to 499 * be dead. But there's still one option: a low-level 500 * usb subsystem reset... 501 */ 502 503 carl9170_usb_reset(ar); 504 } 505 } 506 507 void carl9170_restart(struct ar9170 *ar, const enum carl9170_restart_reasons r) 508 { 509 carl9170_set_state_when(ar, CARL9170_STARTED, CARL9170_IDLE); 510 511 /* 512 * Sometimes, an error can trigger several different reset events. 513 * By ignoring these *surplus* reset events, the device won't be 514 * killed again, right after it has recovered. 515 */ 516 if (atomic_inc_return(&ar->pending_restarts) > 1) { 517 dev_dbg(&ar->udev->dev, "ignoring restart (%d)\n", r); 518 return; 519 } 520 521 ieee80211_stop_queues(ar->hw); 522 523 dev_err(&ar->udev->dev, "restart device (%d)\n", r); 524 525 if (!WARN_ON(r == CARL9170_RR_NO_REASON) || 526 !WARN_ON(r >= __CARL9170_RR_LAST)) 527 ar->last_reason = r; 528 529 if (!ar->registered) 530 return; 531 532 if (!IS_ACCEPTING_CMD(ar) || ar->needs_full_reset) 533 ar->force_usb_reset = true; 534 535 ieee80211_queue_work(ar->hw, &ar->restart_work); 536 537 /* 538 * At this point, the device instance might have vanished/disabled. 539 * So, don't put any code which access the ar9170 struct 540 * without proper protection. 541 */ 542 } 543 544 static void carl9170_ping_work(struct work_struct *work) 545 { 546 struct ar9170 *ar = container_of(work, struct ar9170, ping_work); 547 int err; 548 549 if (!IS_STARTED(ar)) 550 return; 551 552 mutex_lock(&ar->mutex); 553 err = carl9170_echo_test(ar, 0xdeadbeef); 554 if (err) 555 carl9170_restart(ar, CARL9170_RR_UNRESPONSIVE_DEVICE); 556 mutex_unlock(&ar->mutex); 557 } 558 559 static int carl9170_init_interface(struct ar9170 *ar, 560 struct ieee80211_vif *vif) 561 { 562 struct ath_common *common = &ar->common; 563 int err; 564 565 if (!vif) { 566 WARN_ON_ONCE(IS_STARTED(ar)); 567 return 0; 568 } 569 570 memcpy(common->macaddr, vif->addr, ETH_ALEN); 571 572 /* We have to fall back to software crypto, whenever 573 * the user choose to participates in an IBSS. HW 574 * offload for IBSS RSN is not supported by this driver. 575 * 576 * NOTE: If the previous main interface has already 577 * disabled hw crypto offload, we have to keep this 578 * previous disable_offload setting as it was. 579 * Altough ideally, we should notify mac80211 and tell 580 * it to forget about any HW crypto offload for now. 581 */ 582 ar->disable_offload |= ((vif->type != NL80211_IFTYPE_STATION) && 583 (vif->type != NL80211_IFTYPE_AP)); 584 585 /* While the driver supports HW offload in a single 586 * P2P client configuration, it doesn't support HW 587 * offload in the favourit, concurrent P2P GO+CLIENT 588 * configuration. Hence, HW offload will always be 589 * disabled for P2P. 590 */ 591 ar->disable_offload |= vif->p2p; 592 593 ar->rx_software_decryption = ar->disable_offload; 594 595 err = carl9170_set_operating_mode(ar); 596 return err; 597 } 598 599 static int carl9170_op_add_interface(struct ieee80211_hw *hw, 600 struct ieee80211_vif *vif) 601 { 602 struct carl9170_vif_info *vif_priv = (void *) vif->drv_priv; 603 struct ieee80211_vif *main_vif, *old_main = NULL; 604 struct ar9170 *ar = hw->priv; 605 int vif_id = -1, err = 0; 606 607 mutex_lock(&ar->mutex); 608 rcu_read_lock(); 609 if (vif_priv->active) { 610 /* 611 * Skip the interface structure initialization, 612 * if the vif survived the _restart call. 613 */ 614 vif_id = vif_priv->id; 615 vif_priv->enable_beacon = false; 616 617 spin_lock_bh(&ar->beacon_lock); 618 dev_kfree_skb_any(vif_priv->beacon); 619 vif_priv->beacon = NULL; 620 spin_unlock_bh(&ar->beacon_lock); 621 622 goto init; 623 } 624 625 /* Because the AR9170 HW's MAC doesn't provide full support for 626 * multiple, independent interfaces [of different operation modes]. 627 * We have to select ONE main interface [main mode of HW], but we 628 * can have multiple slaves [AKA: entry in the ACK-table]. 629 * 630 * The first (from HEAD/TOP) interface in the ar->vif_list is 631 * always the main intf. All following intfs in this list 632 * are considered to be slave intfs. 633 */ 634 main_vif = carl9170_get_main_vif(ar); 635 636 if (main_vif) { 637 switch (main_vif->type) { 638 case NL80211_IFTYPE_STATION: 639 if (vif->type == NL80211_IFTYPE_STATION) 640 break; 641 642 /* P2P GO [master] use-case 643 * Because the P2P GO station is selected dynamically 644 * by all participating peers of a WIFI Direct network, 645 * the driver has be able to change the main interface 646 * operating mode on the fly. 647 */ 648 if (main_vif->p2p && vif->p2p && 649 vif->type == NL80211_IFTYPE_AP) { 650 old_main = main_vif; 651 break; 652 } 653 654 err = -EBUSY; 655 rcu_read_unlock(); 656 657 goto unlock; 658 659 case NL80211_IFTYPE_MESH_POINT: 660 case NL80211_IFTYPE_AP: 661 if ((vif->type == NL80211_IFTYPE_STATION) || 662 (vif->type == NL80211_IFTYPE_WDS) || 663 (vif->type == NL80211_IFTYPE_AP) || 664 (vif->type == NL80211_IFTYPE_MESH_POINT)) 665 break; 666 667 err = -EBUSY; 668 rcu_read_unlock(); 669 goto unlock; 670 671 default: 672 rcu_read_unlock(); 673 goto unlock; 674 } 675 } 676 677 vif_id = bitmap_find_free_region(&ar->vif_bitmap, ar->fw.vif_num, 0); 678 679 if (vif_id < 0) { 680 rcu_read_unlock(); 681 682 err = -ENOSPC; 683 goto unlock; 684 } 685 686 BUG_ON(ar->vif_priv[vif_id].id != vif_id); 687 688 vif_priv->active = true; 689 vif_priv->id = vif_id; 690 vif_priv->enable_beacon = false; 691 ar->vifs++; 692 if (old_main) { 693 /* We end up in here, if the main interface is being replaced. 694 * Put the new main interface at the HEAD of the list and the 695 * previous inteface will automatically become second in line. 696 */ 697 list_add_rcu(&vif_priv->list, &ar->vif_list); 698 } else { 699 /* Add new inteface. If the list is empty, it will become the 700 * main inteface, otherwise it will be slave. 701 */ 702 list_add_tail_rcu(&vif_priv->list, &ar->vif_list); 703 } 704 rcu_assign_pointer(ar->vif_priv[vif_id].vif, vif); 705 706 init: 707 main_vif = carl9170_get_main_vif(ar); 708 709 if (main_vif == vif) { 710 rcu_assign_pointer(ar->beacon_iter, vif_priv); 711 rcu_read_unlock(); 712 713 if (old_main) { 714 struct carl9170_vif_info *old_main_priv = 715 (void *) old_main->drv_priv; 716 /* downgrade old main intf to slave intf. 717 * NOTE: We are no longer under rcu_read_lock. 718 * But we are still holding ar->mutex, so the 719 * vif data [id, addr] is safe. 720 */ 721 err = carl9170_mod_virtual_mac(ar, old_main_priv->id, 722 old_main->addr); 723 if (err) 724 goto unlock; 725 } 726 727 err = carl9170_init_interface(ar, vif); 728 if (err) 729 goto unlock; 730 } else { 731 rcu_read_unlock(); 732 err = carl9170_mod_virtual_mac(ar, vif_id, vif->addr); 733 734 if (err) 735 goto unlock; 736 } 737 738 if (ar->fw.tx_seq_table) { 739 err = carl9170_write_reg(ar, ar->fw.tx_seq_table + vif_id * 4, 740 0); 741 if (err) 742 goto unlock; 743 } 744 745 unlock: 746 if (err && (vif_id >= 0)) { 747 vif_priv->active = false; 748 bitmap_release_region(&ar->vif_bitmap, vif_id, 0); 749 ar->vifs--; 750 RCU_INIT_POINTER(ar->vif_priv[vif_id].vif, NULL); 751 list_del_rcu(&vif_priv->list); 752 mutex_unlock(&ar->mutex); 753 synchronize_rcu(); 754 } else { 755 if (ar->vifs > 1) 756 ar->ps.off_override |= PS_OFF_VIF; 757 758 mutex_unlock(&ar->mutex); 759 } 760 761 return err; 762 } 763 764 static void carl9170_op_remove_interface(struct ieee80211_hw *hw, 765 struct ieee80211_vif *vif) 766 { 767 struct carl9170_vif_info *vif_priv = (void *) vif->drv_priv; 768 struct ieee80211_vif *main_vif; 769 struct ar9170 *ar = hw->priv; 770 unsigned int id; 771 772 mutex_lock(&ar->mutex); 773 774 if (WARN_ON_ONCE(!vif_priv->active)) 775 goto unlock; 776 777 ar->vifs--; 778 779 rcu_read_lock(); 780 main_vif = carl9170_get_main_vif(ar); 781 782 id = vif_priv->id; 783 784 vif_priv->active = false; 785 WARN_ON(vif_priv->enable_beacon); 786 vif_priv->enable_beacon = false; 787 list_del_rcu(&vif_priv->list); 788 RCU_INIT_POINTER(ar->vif_priv[id].vif, NULL); 789 790 if (vif == main_vif) { 791 rcu_read_unlock(); 792 793 if (ar->vifs) { 794 WARN_ON(carl9170_init_interface(ar, 795 carl9170_get_main_vif(ar))); 796 } else { 797 carl9170_set_operating_mode(ar); 798 } 799 } else { 800 rcu_read_unlock(); 801 802 WARN_ON(carl9170_mod_virtual_mac(ar, id, NULL)); 803 } 804 805 carl9170_update_beacon(ar, false); 806 carl9170_flush_cab(ar, id); 807 808 spin_lock_bh(&ar->beacon_lock); 809 dev_kfree_skb_any(vif_priv->beacon); 810 vif_priv->beacon = NULL; 811 spin_unlock_bh(&ar->beacon_lock); 812 813 bitmap_release_region(&ar->vif_bitmap, id, 0); 814 815 carl9170_set_beacon_timers(ar); 816 817 if (ar->vifs == 1) 818 ar->ps.off_override &= ~PS_OFF_VIF; 819 820 unlock: 821 mutex_unlock(&ar->mutex); 822 823 synchronize_rcu(); 824 } 825 826 void carl9170_ps_check(struct ar9170 *ar) 827 { 828 ieee80211_queue_work(ar->hw, &ar->ps_work); 829 } 830 831 /* caller must hold ar->mutex */ 832 static int carl9170_ps_update(struct ar9170 *ar) 833 { 834 bool ps = false; 835 int err = 0; 836 837 if (!ar->ps.off_override) 838 ps = (ar->hw->conf.flags & IEEE80211_CONF_PS); 839 840 if (ps != ar->ps.state) { 841 err = carl9170_powersave(ar, ps); 842 if (err) 843 return err; 844 845 if (ar->ps.state && !ps) { 846 ar->ps.sleep_ms = jiffies_to_msecs(jiffies - 847 ar->ps.last_action); 848 } 849 850 if (ps) 851 ar->ps.last_slept = jiffies; 852 853 ar->ps.last_action = jiffies; 854 ar->ps.state = ps; 855 } 856 857 return 0; 858 } 859 860 static void carl9170_ps_work(struct work_struct *work) 861 { 862 struct ar9170 *ar = container_of(work, struct ar9170, 863 ps_work); 864 mutex_lock(&ar->mutex); 865 if (IS_STARTED(ar)) 866 WARN_ON_ONCE(carl9170_ps_update(ar) != 0); 867 mutex_unlock(&ar->mutex); 868 } 869 870 static int carl9170_update_survey(struct ar9170 *ar, bool flush, bool noise) 871 { 872 int err; 873 874 if (noise) { 875 err = carl9170_get_noisefloor(ar); 876 if (err) 877 return err; 878 } 879 880 if (ar->fw.hw_counters) { 881 err = carl9170_collect_tally(ar); 882 if (err) 883 return err; 884 } 885 886 if (flush) 887 memset(&ar->tally, 0, sizeof(ar->tally)); 888 889 return 0; 890 } 891 892 static void carl9170_stat_work(struct work_struct *work) 893 { 894 struct ar9170 *ar = container_of(work, struct ar9170, stat_work.work); 895 int err; 896 897 mutex_lock(&ar->mutex); 898 err = carl9170_update_survey(ar, false, true); 899 mutex_unlock(&ar->mutex); 900 901 if (err) 902 return; 903 904 ieee80211_queue_delayed_work(ar->hw, &ar->stat_work, 905 round_jiffies(msecs_to_jiffies(CARL9170_STAT_WORK))); 906 } 907 908 static int carl9170_op_config(struct ieee80211_hw *hw, u32 changed) 909 { 910 struct ar9170 *ar = hw->priv; 911 int err = 0; 912 913 mutex_lock(&ar->mutex); 914 if (changed & IEEE80211_CONF_CHANGE_LISTEN_INTERVAL) { 915 /* TODO */ 916 err = 0; 917 } 918 919 if (changed & IEEE80211_CONF_CHANGE_PS) { 920 err = carl9170_ps_update(ar); 921 if (err) 922 goto out; 923 } 924 925 if (changed & IEEE80211_CONF_CHANGE_SMPS) { 926 /* TODO */ 927 err = 0; 928 } 929 930 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) { 931 enum nl80211_channel_type channel_type = 932 cfg80211_get_chandef_type(&hw->conf.chandef); 933 934 /* adjust slot time for 5 GHz */ 935 err = carl9170_set_slot_time(ar); 936 if (err) 937 goto out; 938 939 err = carl9170_update_survey(ar, true, false); 940 if (err) 941 goto out; 942 943 err = carl9170_set_channel(ar, hw->conf.chandef.chan, 944 channel_type); 945 if (err) 946 goto out; 947 948 err = carl9170_update_survey(ar, false, true); 949 if (err) 950 goto out; 951 952 err = carl9170_set_dyn_sifs_ack(ar); 953 if (err) 954 goto out; 955 956 err = carl9170_set_rts_cts_rate(ar); 957 if (err) 958 goto out; 959 } 960 961 if (changed & IEEE80211_CONF_CHANGE_POWER) { 962 err = carl9170_set_mac_tpc(ar, ar->hw->conf.chandef.chan); 963 if (err) 964 goto out; 965 } 966 967 out: 968 mutex_unlock(&ar->mutex); 969 return err; 970 } 971 972 static u64 carl9170_op_prepare_multicast(struct ieee80211_hw *hw, 973 struct netdev_hw_addr_list *mc_list) 974 { 975 struct netdev_hw_addr *ha; 976 u64 mchash; 977 978 /* always get broadcast frames */ 979 mchash = 1ULL << (0xff >> 2); 980 981 netdev_hw_addr_list_for_each(ha, mc_list) 982 mchash |= 1ULL << (ha->addr[5] >> 2); 983 984 return mchash; 985 } 986 987 static void carl9170_op_configure_filter(struct ieee80211_hw *hw, 988 unsigned int changed_flags, 989 unsigned int *new_flags, 990 u64 multicast) 991 { 992 struct ar9170 *ar = hw->priv; 993 994 /* mask supported flags */ 995 *new_flags &= FIF_ALLMULTI | ar->rx_filter_caps; 996 997 if (!IS_ACCEPTING_CMD(ar)) 998 return; 999 1000 mutex_lock(&ar->mutex); 1001 1002 ar->filter_state = *new_flags; 1003 /* 1004 * We can support more by setting the sniffer bit and 1005 * then checking the error flags, later. 1006 */ 1007 1008 if (*new_flags & FIF_ALLMULTI) 1009 multicast = ~0ULL; 1010 1011 if (multicast != ar->cur_mc_hash) 1012 WARN_ON(carl9170_update_multicast(ar, multicast)); 1013 1014 if (changed_flags & FIF_OTHER_BSS) { 1015 ar->sniffer_enabled = !!(*new_flags & FIF_OTHER_BSS); 1016 1017 WARN_ON(carl9170_set_operating_mode(ar)); 1018 } 1019 1020 if (ar->fw.rx_filter && changed_flags & ar->rx_filter_caps) { 1021 u32 rx_filter = 0; 1022 1023 if (!ar->fw.ba_filter) 1024 rx_filter |= CARL9170_RX_FILTER_CTL_OTHER; 1025 1026 if (!(*new_flags & (FIF_FCSFAIL | FIF_PLCPFAIL))) 1027 rx_filter |= CARL9170_RX_FILTER_BAD; 1028 1029 if (!(*new_flags & FIF_CONTROL)) 1030 rx_filter |= CARL9170_RX_FILTER_CTL_OTHER; 1031 1032 if (!(*new_flags & FIF_PSPOLL)) 1033 rx_filter |= CARL9170_RX_FILTER_CTL_PSPOLL; 1034 1035 if (!(*new_flags & FIF_OTHER_BSS)) { 1036 rx_filter |= CARL9170_RX_FILTER_OTHER_RA; 1037 rx_filter |= CARL9170_RX_FILTER_DECRY_FAIL; 1038 } 1039 1040 WARN_ON(carl9170_rx_filter(ar, rx_filter)); 1041 } 1042 1043 mutex_unlock(&ar->mutex); 1044 } 1045 1046 1047 static void carl9170_op_bss_info_changed(struct ieee80211_hw *hw, 1048 struct ieee80211_vif *vif, 1049 struct ieee80211_bss_conf *bss_conf, 1050 u32 changed) 1051 { 1052 struct ar9170 *ar = hw->priv; 1053 struct ath_common *common = &ar->common; 1054 int err = 0; 1055 struct carl9170_vif_info *vif_priv; 1056 struct ieee80211_vif *main_vif; 1057 1058 mutex_lock(&ar->mutex); 1059 vif_priv = (void *) vif->drv_priv; 1060 main_vif = carl9170_get_main_vif(ar); 1061 if (WARN_ON(!main_vif)) 1062 goto out; 1063 1064 if (changed & BSS_CHANGED_BEACON_ENABLED) { 1065 struct carl9170_vif_info *iter; 1066 int i = 0; 1067 1068 vif_priv->enable_beacon = bss_conf->enable_beacon; 1069 rcu_read_lock(); 1070 list_for_each_entry_rcu(iter, &ar->vif_list, list) { 1071 if (iter->active && iter->enable_beacon) 1072 i++; 1073 1074 } 1075 rcu_read_unlock(); 1076 1077 ar->beacon_enabled = i; 1078 } 1079 1080 if (changed & BSS_CHANGED_BEACON) { 1081 err = carl9170_update_beacon(ar, false); 1082 if (err) 1083 goto out; 1084 } 1085 1086 if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON | 1087 BSS_CHANGED_BEACON_INT)) { 1088 1089 if (main_vif != vif) { 1090 bss_conf->beacon_int = main_vif->bss_conf.beacon_int; 1091 bss_conf->dtim_period = main_vif->bss_conf.dtim_period; 1092 } 1093 1094 /* 1095 * Therefore a hard limit for the broadcast traffic should 1096 * prevent false alarms. 1097 */ 1098 if (vif->type != NL80211_IFTYPE_STATION && 1099 (bss_conf->beacon_int * bss_conf->dtim_period >= 1100 (CARL9170_QUEUE_STUCK_TIMEOUT / 2))) { 1101 err = -EINVAL; 1102 goto out; 1103 } 1104 1105 err = carl9170_set_beacon_timers(ar); 1106 if (err) 1107 goto out; 1108 } 1109 1110 if (changed & BSS_CHANGED_HT) { 1111 /* TODO */ 1112 err = 0; 1113 if (err) 1114 goto out; 1115 } 1116 1117 if (main_vif != vif) 1118 goto out; 1119 1120 /* 1121 * The following settings can only be changed by the 1122 * master interface. 1123 */ 1124 1125 if (changed & BSS_CHANGED_BSSID) { 1126 memcpy(common->curbssid, bss_conf->bssid, ETH_ALEN); 1127 err = carl9170_set_operating_mode(ar); 1128 if (err) 1129 goto out; 1130 } 1131 1132 if (changed & BSS_CHANGED_ASSOC) { 1133 ar->common.curaid = bss_conf->aid; 1134 err = carl9170_set_beacon_timers(ar); 1135 if (err) 1136 goto out; 1137 } 1138 1139 if (changed & BSS_CHANGED_ERP_SLOT) { 1140 err = carl9170_set_slot_time(ar); 1141 if (err) 1142 goto out; 1143 } 1144 1145 if (changed & BSS_CHANGED_BASIC_RATES) { 1146 err = carl9170_set_mac_rates(ar); 1147 if (err) 1148 goto out; 1149 } 1150 1151 out: 1152 WARN_ON_ONCE(err && IS_STARTED(ar)); 1153 mutex_unlock(&ar->mutex); 1154 } 1155 1156 static u64 carl9170_op_get_tsf(struct ieee80211_hw *hw, 1157 struct ieee80211_vif *vif) 1158 { 1159 struct ar9170 *ar = hw->priv; 1160 struct carl9170_tsf_rsp tsf; 1161 int err; 1162 1163 mutex_lock(&ar->mutex); 1164 err = carl9170_exec_cmd(ar, CARL9170_CMD_READ_TSF, 1165 0, NULL, sizeof(tsf), &tsf); 1166 mutex_unlock(&ar->mutex); 1167 if (WARN_ON(err)) 1168 return 0; 1169 1170 return le64_to_cpu(tsf.tsf_64); 1171 } 1172 1173 static int carl9170_op_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, 1174 struct ieee80211_vif *vif, 1175 struct ieee80211_sta *sta, 1176 struct ieee80211_key_conf *key) 1177 { 1178 struct ar9170 *ar = hw->priv; 1179 int err = 0, i; 1180 u8 ktype; 1181 1182 if (ar->disable_offload || !vif) 1183 return -EOPNOTSUPP; 1184 1185 /* Fall back to software encryption whenever the driver is connected 1186 * to more than one network. 1187 * 1188 * This is very unfortunate, because some machines cannot handle 1189 * the high througput speed in 802.11n networks. 1190 */ 1191 1192 if (!is_main_vif(ar, vif)) { 1193 mutex_lock(&ar->mutex); 1194 goto err_softw; 1195 } 1196 1197 /* 1198 * While the hardware supports *catch-all* key, for offloading 1199 * group-key en-/de-cryption. The way of how the hardware 1200 * decides which keyId maps to which key, remains a mystery... 1201 */ 1202 if ((vif->type != NL80211_IFTYPE_STATION && 1203 vif->type != NL80211_IFTYPE_ADHOC) && 1204 !(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) 1205 return -EOPNOTSUPP; 1206 1207 switch (key->cipher) { 1208 case WLAN_CIPHER_SUITE_WEP40: 1209 ktype = AR9170_ENC_ALG_WEP64; 1210 break; 1211 case WLAN_CIPHER_SUITE_WEP104: 1212 ktype = AR9170_ENC_ALG_WEP128; 1213 break; 1214 case WLAN_CIPHER_SUITE_TKIP: 1215 ktype = AR9170_ENC_ALG_TKIP; 1216 break; 1217 case WLAN_CIPHER_SUITE_CCMP: 1218 ktype = AR9170_ENC_ALG_AESCCMP; 1219 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT_TX; 1220 break; 1221 default: 1222 return -EOPNOTSUPP; 1223 } 1224 1225 mutex_lock(&ar->mutex); 1226 if (cmd == SET_KEY) { 1227 if (!IS_STARTED(ar)) { 1228 err = -EOPNOTSUPP; 1229 goto out; 1230 } 1231 1232 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) { 1233 sta = NULL; 1234 1235 i = 64 + key->keyidx; 1236 } else { 1237 for (i = 0; i < 64; i++) 1238 if (!(ar->usedkeys & BIT(i))) 1239 break; 1240 if (i == 64) 1241 goto err_softw; 1242 } 1243 1244 key->hw_key_idx = i; 1245 1246 err = carl9170_upload_key(ar, i, sta ? sta->addr : NULL, 1247 ktype, 0, key->key, 1248 min_t(u8, 16, key->keylen)); 1249 if (err) 1250 goto out; 1251 1252 if (key->cipher == WLAN_CIPHER_SUITE_TKIP) { 1253 err = carl9170_upload_key(ar, i, sta ? sta->addr : 1254 NULL, ktype, 1, 1255 key->key + 16, 16); 1256 if (err) 1257 goto out; 1258 1259 /* 1260 * hardware is not capable generating MMIC 1261 * of fragmented frames! 1262 */ 1263 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC; 1264 } 1265 1266 if (i < 64) 1267 ar->usedkeys |= BIT(i); 1268 1269 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; 1270 } else { 1271 if (!IS_STARTED(ar)) { 1272 /* The device is gone... together with the key ;-) */ 1273 err = 0; 1274 goto out; 1275 } 1276 1277 if (key->hw_key_idx < 64) { 1278 ar->usedkeys &= ~BIT(key->hw_key_idx); 1279 } else { 1280 err = carl9170_upload_key(ar, key->hw_key_idx, NULL, 1281 AR9170_ENC_ALG_NONE, 0, 1282 NULL, 0); 1283 if (err) 1284 goto out; 1285 1286 if (key->cipher == WLAN_CIPHER_SUITE_TKIP) { 1287 err = carl9170_upload_key(ar, key->hw_key_idx, 1288 NULL, 1289 AR9170_ENC_ALG_NONE, 1290 1, NULL, 0); 1291 if (err) 1292 goto out; 1293 } 1294 1295 } 1296 1297 err = carl9170_disable_key(ar, key->hw_key_idx); 1298 if (err) 1299 goto out; 1300 } 1301 1302 out: 1303 mutex_unlock(&ar->mutex); 1304 return err; 1305 1306 err_softw: 1307 if (!ar->rx_software_decryption) { 1308 ar->rx_software_decryption = true; 1309 carl9170_set_operating_mode(ar); 1310 } 1311 mutex_unlock(&ar->mutex); 1312 return -ENOSPC; 1313 } 1314 1315 static int carl9170_op_sta_add(struct ieee80211_hw *hw, 1316 struct ieee80211_vif *vif, 1317 struct ieee80211_sta *sta) 1318 { 1319 struct carl9170_sta_info *sta_info = (void *) sta->drv_priv; 1320 unsigned int i; 1321 1322 atomic_set(&sta_info->pending_frames, 0); 1323 1324 if (sta->ht_cap.ht_supported) { 1325 if (sta->ht_cap.ampdu_density > 6) { 1326 /* 1327 * HW does support 16us AMPDU density. 1328 * No HT-Xmit for station. 1329 */ 1330 1331 return 0; 1332 } 1333 1334 for (i = 0; i < ARRAY_SIZE(sta_info->agg); i++) 1335 RCU_INIT_POINTER(sta_info->agg[i], NULL); 1336 1337 sta_info->ampdu_max_len = 1 << (3 + sta->ht_cap.ampdu_factor); 1338 sta_info->ht_sta = true; 1339 } 1340 1341 return 0; 1342 } 1343 1344 static int carl9170_op_sta_remove(struct ieee80211_hw *hw, 1345 struct ieee80211_vif *vif, 1346 struct ieee80211_sta *sta) 1347 { 1348 struct ar9170 *ar = hw->priv; 1349 struct carl9170_sta_info *sta_info = (void *) sta->drv_priv; 1350 unsigned int i; 1351 bool cleanup = false; 1352 1353 if (sta->ht_cap.ht_supported) { 1354 1355 sta_info->ht_sta = false; 1356 1357 rcu_read_lock(); 1358 for (i = 0; i < ARRAY_SIZE(sta_info->agg); i++) { 1359 struct carl9170_sta_tid *tid_info; 1360 1361 tid_info = rcu_dereference(sta_info->agg[i]); 1362 RCU_INIT_POINTER(sta_info->agg[i], NULL); 1363 1364 if (!tid_info) 1365 continue; 1366 1367 spin_lock_bh(&ar->tx_ampdu_list_lock); 1368 if (tid_info->state > CARL9170_TID_STATE_SHUTDOWN) 1369 tid_info->state = CARL9170_TID_STATE_SHUTDOWN; 1370 spin_unlock_bh(&ar->tx_ampdu_list_lock); 1371 cleanup = true; 1372 } 1373 rcu_read_unlock(); 1374 1375 if (cleanup) 1376 carl9170_ampdu_gc(ar); 1377 } 1378 1379 return 0; 1380 } 1381 1382 static int carl9170_op_conf_tx(struct ieee80211_hw *hw, 1383 struct ieee80211_vif *vif, u16 queue, 1384 const struct ieee80211_tx_queue_params *param) 1385 { 1386 struct ar9170 *ar = hw->priv; 1387 int ret; 1388 1389 mutex_lock(&ar->mutex); 1390 if (queue < ar->hw->queues) { 1391 memcpy(&ar->edcf[ar9170_qmap[queue]], param, sizeof(*param)); 1392 ret = carl9170_set_qos(ar); 1393 } else { 1394 ret = -EINVAL; 1395 } 1396 1397 mutex_unlock(&ar->mutex); 1398 return ret; 1399 } 1400 1401 static void carl9170_ampdu_work(struct work_struct *work) 1402 { 1403 struct ar9170 *ar = container_of(work, struct ar9170, 1404 ampdu_work); 1405 1406 if (!IS_STARTED(ar)) 1407 return; 1408 1409 mutex_lock(&ar->mutex); 1410 carl9170_ampdu_gc(ar); 1411 mutex_unlock(&ar->mutex); 1412 } 1413 1414 static int carl9170_op_ampdu_action(struct ieee80211_hw *hw, 1415 struct ieee80211_vif *vif, 1416 struct ieee80211_ampdu_params *params) 1417 { 1418 struct ieee80211_sta *sta = params->sta; 1419 enum ieee80211_ampdu_mlme_action action = params->action; 1420 u16 tid = params->tid; 1421 u16 *ssn = ¶ms->ssn; 1422 struct ar9170 *ar = hw->priv; 1423 struct carl9170_sta_info *sta_info = (void *) sta->drv_priv; 1424 struct carl9170_sta_tid *tid_info; 1425 1426 if (modparam_noht) 1427 return -EOPNOTSUPP; 1428 1429 switch (action) { 1430 case IEEE80211_AMPDU_TX_START: 1431 if (!sta_info->ht_sta) 1432 return -EOPNOTSUPP; 1433 1434 tid_info = kzalloc(sizeof(struct carl9170_sta_tid), 1435 GFP_ATOMIC); 1436 if (!tid_info) 1437 return -ENOMEM; 1438 1439 tid_info->hsn = tid_info->bsn = tid_info->snx = (*ssn); 1440 tid_info->state = CARL9170_TID_STATE_PROGRESS; 1441 tid_info->tid = tid; 1442 tid_info->max = sta_info->ampdu_max_len; 1443 tid_info->sta = sta; 1444 tid_info->vif = vif; 1445 1446 INIT_LIST_HEAD(&tid_info->list); 1447 INIT_LIST_HEAD(&tid_info->tmp_list); 1448 skb_queue_head_init(&tid_info->queue); 1449 spin_lock_init(&tid_info->lock); 1450 1451 spin_lock_bh(&ar->tx_ampdu_list_lock); 1452 ar->tx_ampdu_list_len++; 1453 list_add_tail_rcu(&tid_info->list, &ar->tx_ampdu_list); 1454 rcu_assign_pointer(sta_info->agg[tid], tid_info); 1455 spin_unlock_bh(&ar->tx_ampdu_list_lock); 1456 1457 ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid); 1458 break; 1459 1460 case IEEE80211_AMPDU_TX_STOP_CONT: 1461 case IEEE80211_AMPDU_TX_STOP_FLUSH: 1462 case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: 1463 rcu_read_lock(); 1464 tid_info = rcu_dereference(sta_info->agg[tid]); 1465 if (tid_info) { 1466 spin_lock_bh(&ar->tx_ampdu_list_lock); 1467 if (tid_info->state > CARL9170_TID_STATE_SHUTDOWN) 1468 tid_info->state = CARL9170_TID_STATE_SHUTDOWN; 1469 spin_unlock_bh(&ar->tx_ampdu_list_lock); 1470 } 1471 1472 RCU_INIT_POINTER(sta_info->agg[tid], NULL); 1473 rcu_read_unlock(); 1474 1475 ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid); 1476 ieee80211_queue_work(ar->hw, &ar->ampdu_work); 1477 break; 1478 1479 case IEEE80211_AMPDU_TX_OPERATIONAL: 1480 rcu_read_lock(); 1481 tid_info = rcu_dereference(sta_info->agg[tid]); 1482 1483 sta_info->stats[tid].clear = true; 1484 sta_info->stats[tid].req = false; 1485 1486 if (tid_info) { 1487 bitmap_zero(tid_info->bitmap, CARL9170_BAW_SIZE); 1488 tid_info->state = CARL9170_TID_STATE_IDLE; 1489 } 1490 rcu_read_unlock(); 1491 1492 if (WARN_ON_ONCE(!tid_info)) 1493 return -EFAULT; 1494 1495 break; 1496 1497 case IEEE80211_AMPDU_RX_START: 1498 case IEEE80211_AMPDU_RX_STOP: 1499 /* Handled by hardware */ 1500 break; 1501 1502 default: 1503 return -EOPNOTSUPP; 1504 } 1505 1506 return 0; 1507 } 1508 1509 #ifdef CONFIG_CARL9170_WPC 1510 static int carl9170_register_wps_button(struct ar9170 *ar) 1511 { 1512 struct input_dev *input; 1513 int err; 1514 1515 if (!(ar->features & CARL9170_WPS_BUTTON)) 1516 return 0; 1517 1518 input = input_allocate_device(); 1519 if (!input) 1520 return -ENOMEM; 1521 1522 snprintf(ar->wps.name, sizeof(ar->wps.name), "%s WPS Button", 1523 wiphy_name(ar->hw->wiphy)); 1524 1525 snprintf(ar->wps.phys, sizeof(ar->wps.phys), 1526 "ieee80211/%s/input0", wiphy_name(ar->hw->wiphy)); 1527 1528 input->name = ar->wps.name; 1529 input->phys = ar->wps.phys; 1530 input->id.bustype = BUS_USB; 1531 input->dev.parent = &ar->hw->wiphy->dev; 1532 1533 input_set_capability(input, EV_KEY, KEY_WPS_BUTTON); 1534 1535 err = input_register_device(input); 1536 if (err) { 1537 input_free_device(input); 1538 return err; 1539 } 1540 1541 ar->wps.pbc = input; 1542 return 0; 1543 } 1544 #endif /* CONFIG_CARL9170_WPC */ 1545 1546 #ifdef CONFIG_CARL9170_HWRNG 1547 static int carl9170_rng_get(struct ar9170 *ar) 1548 { 1549 1550 #define RW (CARL9170_MAX_CMD_PAYLOAD_LEN / sizeof(u32)) 1551 #define RB (CARL9170_MAX_CMD_PAYLOAD_LEN) 1552 1553 static const __le32 rng_load[RW] = { 1554 [0 ... (RW - 1)] = cpu_to_le32(AR9170_RAND_REG_NUM)}; 1555 1556 u32 buf[RW]; 1557 1558 unsigned int i, off = 0, transfer, count; 1559 int err; 1560 1561 BUILD_BUG_ON(RB > CARL9170_MAX_CMD_PAYLOAD_LEN); 1562 1563 if (!IS_ACCEPTING_CMD(ar) || !ar->rng.initialized) 1564 return -EAGAIN; 1565 1566 count = ARRAY_SIZE(ar->rng.cache); 1567 while (count) { 1568 err = carl9170_exec_cmd(ar, CARL9170_CMD_RREG, 1569 RB, (u8 *) rng_load, 1570 RB, (u8 *) buf); 1571 if (err) 1572 return err; 1573 1574 transfer = min_t(unsigned int, count, RW); 1575 for (i = 0; i < transfer; i++) 1576 ar->rng.cache[off + i] = buf[i]; 1577 1578 off += transfer; 1579 count -= transfer; 1580 } 1581 1582 ar->rng.cache_idx = 0; 1583 1584 #undef RW 1585 #undef RB 1586 return 0; 1587 } 1588 1589 static int carl9170_rng_read(struct hwrng *rng, u32 *data) 1590 { 1591 struct ar9170 *ar = (struct ar9170 *)rng->priv; 1592 int ret = -EIO; 1593 1594 mutex_lock(&ar->mutex); 1595 if (ar->rng.cache_idx >= ARRAY_SIZE(ar->rng.cache)) { 1596 ret = carl9170_rng_get(ar); 1597 if (ret) { 1598 mutex_unlock(&ar->mutex); 1599 return ret; 1600 } 1601 } 1602 1603 *data = ar->rng.cache[ar->rng.cache_idx++]; 1604 mutex_unlock(&ar->mutex); 1605 1606 return sizeof(u16); 1607 } 1608 1609 static void carl9170_unregister_hwrng(struct ar9170 *ar) 1610 { 1611 if (ar->rng.initialized) { 1612 hwrng_unregister(&ar->rng.rng); 1613 ar->rng.initialized = false; 1614 } 1615 } 1616 1617 static int carl9170_register_hwrng(struct ar9170 *ar) 1618 { 1619 int err; 1620 1621 snprintf(ar->rng.name, ARRAY_SIZE(ar->rng.name), 1622 "%s_%s", KBUILD_MODNAME, wiphy_name(ar->hw->wiphy)); 1623 ar->rng.rng.name = ar->rng.name; 1624 ar->rng.rng.data_read = carl9170_rng_read; 1625 ar->rng.rng.priv = (unsigned long)ar; 1626 1627 if (WARN_ON(ar->rng.initialized)) 1628 return -EALREADY; 1629 1630 err = hwrng_register(&ar->rng.rng); 1631 if (err) { 1632 dev_err(&ar->udev->dev, "Failed to register the random " 1633 "number generator (%d)\n", err); 1634 return err; 1635 } 1636 1637 ar->rng.initialized = true; 1638 1639 err = carl9170_rng_get(ar); 1640 if (err) { 1641 carl9170_unregister_hwrng(ar); 1642 return err; 1643 } 1644 1645 return 0; 1646 } 1647 #endif /* CONFIG_CARL9170_HWRNG */ 1648 1649 static int carl9170_op_get_survey(struct ieee80211_hw *hw, int idx, 1650 struct survey_info *survey) 1651 { 1652 struct ar9170 *ar = hw->priv; 1653 struct ieee80211_channel *chan; 1654 struct ieee80211_supported_band *band; 1655 int err, b, i; 1656 1657 chan = ar->channel; 1658 if (!chan) 1659 return -ENODEV; 1660 1661 if (idx == chan->hw_value) { 1662 mutex_lock(&ar->mutex); 1663 err = carl9170_update_survey(ar, false, true); 1664 mutex_unlock(&ar->mutex); 1665 if (err) 1666 return err; 1667 } 1668 1669 for (b = 0; b < NUM_NL80211_BANDS; b++) { 1670 band = ar->hw->wiphy->bands[b]; 1671 1672 if (!band) 1673 continue; 1674 1675 for (i = 0; i < band->n_channels; i++) { 1676 if (band->channels[i].hw_value == idx) { 1677 chan = &band->channels[i]; 1678 goto found; 1679 } 1680 } 1681 } 1682 return -ENOENT; 1683 1684 found: 1685 memcpy(survey, &ar->survey[idx], sizeof(*survey)); 1686 1687 survey->channel = chan; 1688 survey->filled = SURVEY_INFO_NOISE_DBM; 1689 1690 if (ar->channel == chan) 1691 survey->filled |= SURVEY_INFO_IN_USE; 1692 1693 if (ar->fw.hw_counters) { 1694 survey->filled |= SURVEY_INFO_TIME | 1695 SURVEY_INFO_TIME_BUSY | 1696 SURVEY_INFO_TIME_TX; 1697 } 1698 1699 return 0; 1700 } 1701 1702 static void carl9170_op_flush(struct ieee80211_hw *hw, 1703 struct ieee80211_vif *vif, 1704 u32 queues, bool drop) 1705 { 1706 struct ar9170 *ar = hw->priv; 1707 unsigned int vid; 1708 1709 mutex_lock(&ar->mutex); 1710 for_each_set_bit(vid, &ar->vif_bitmap, ar->fw.vif_num) 1711 carl9170_flush_cab(ar, vid); 1712 1713 carl9170_flush(ar, drop); 1714 mutex_unlock(&ar->mutex); 1715 } 1716 1717 static int carl9170_op_get_stats(struct ieee80211_hw *hw, 1718 struct ieee80211_low_level_stats *stats) 1719 { 1720 struct ar9170 *ar = hw->priv; 1721 1722 memset(stats, 0, sizeof(*stats)); 1723 stats->dot11ACKFailureCount = ar->tx_ack_failures; 1724 stats->dot11FCSErrorCount = ar->tx_fcs_errors; 1725 return 0; 1726 } 1727 1728 static void carl9170_op_sta_notify(struct ieee80211_hw *hw, 1729 struct ieee80211_vif *vif, 1730 enum sta_notify_cmd cmd, 1731 struct ieee80211_sta *sta) 1732 { 1733 struct carl9170_sta_info *sta_info = (void *) sta->drv_priv; 1734 1735 switch (cmd) { 1736 case STA_NOTIFY_SLEEP: 1737 sta_info->sleeping = true; 1738 if (atomic_read(&sta_info->pending_frames)) 1739 ieee80211_sta_block_awake(hw, sta, true); 1740 break; 1741 1742 case STA_NOTIFY_AWAKE: 1743 sta_info->sleeping = false; 1744 break; 1745 } 1746 } 1747 1748 static bool carl9170_tx_frames_pending(struct ieee80211_hw *hw) 1749 { 1750 struct ar9170 *ar = hw->priv; 1751 1752 return !!atomic_read(&ar->tx_total_queued); 1753 } 1754 1755 static const struct ieee80211_ops carl9170_ops = { 1756 .start = carl9170_op_start, 1757 .stop = carl9170_op_stop, 1758 .tx = carl9170_op_tx, 1759 .flush = carl9170_op_flush, 1760 .add_interface = carl9170_op_add_interface, 1761 .remove_interface = carl9170_op_remove_interface, 1762 .config = carl9170_op_config, 1763 .prepare_multicast = carl9170_op_prepare_multicast, 1764 .configure_filter = carl9170_op_configure_filter, 1765 .conf_tx = carl9170_op_conf_tx, 1766 .bss_info_changed = carl9170_op_bss_info_changed, 1767 .get_tsf = carl9170_op_get_tsf, 1768 .set_key = carl9170_op_set_key, 1769 .sta_add = carl9170_op_sta_add, 1770 .sta_remove = carl9170_op_sta_remove, 1771 .sta_notify = carl9170_op_sta_notify, 1772 .get_survey = carl9170_op_get_survey, 1773 .get_stats = carl9170_op_get_stats, 1774 .ampdu_action = carl9170_op_ampdu_action, 1775 .tx_frames_pending = carl9170_tx_frames_pending, 1776 }; 1777 1778 void *carl9170_alloc(size_t priv_size) 1779 { 1780 struct ieee80211_hw *hw; 1781 struct ar9170 *ar; 1782 struct sk_buff *skb; 1783 int i; 1784 1785 /* 1786 * this buffer is used for rx stream reconstruction. 1787 * Under heavy load this device (or the transport layer?) 1788 * tends to split the streams into separate rx descriptors. 1789 */ 1790 1791 skb = __dev_alloc_skb(AR9170_RX_STREAM_MAX_SIZE, GFP_KERNEL); 1792 if (!skb) 1793 goto err_nomem; 1794 1795 hw = ieee80211_alloc_hw(priv_size, &carl9170_ops); 1796 if (!hw) 1797 goto err_nomem; 1798 1799 ar = hw->priv; 1800 ar->hw = hw; 1801 ar->rx_failover = skb; 1802 1803 memset(&ar->rx_plcp, 0, sizeof(struct ar9170_rx_head)); 1804 ar->rx_has_plcp = false; 1805 1806 /* 1807 * Here's a hidden pitfall! 1808 * 1809 * All 4 AC queues work perfectly well under _legacy_ operation. 1810 * However as soon as aggregation is enabled, the traffic flow 1811 * gets very bumpy. Therefore we have to _switch_ to a 1812 * software AC with a single HW queue. 1813 */ 1814 hw->queues = __AR9170_NUM_TXQ; 1815 1816 mutex_init(&ar->mutex); 1817 spin_lock_init(&ar->beacon_lock); 1818 spin_lock_init(&ar->cmd_lock); 1819 spin_lock_init(&ar->tx_stats_lock); 1820 spin_lock_init(&ar->tx_ampdu_list_lock); 1821 spin_lock_init(&ar->mem_lock); 1822 spin_lock_init(&ar->state_lock); 1823 atomic_set(&ar->pending_restarts, 0); 1824 ar->vifs = 0; 1825 for (i = 0; i < ar->hw->queues; i++) { 1826 skb_queue_head_init(&ar->tx_status[i]); 1827 skb_queue_head_init(&ar->tx_pending[i]); 1828 1829 INIT_LIST_HEAD(&ar->bar_list[i]); 1830 spin_lock_init(&ar->bar_list_lock[i]); 1831 } 1832 INIT_WORK(&ar->ps_work, carl9170_ps_work); 1833 INIT_WORK(&ar->ping_work, carl9170_ping_work); 1834 INIT_WORK(&ar->restart_work, carl9170_restart_work); 1835 INIT_WORK(&ar->ampdu_work, carl9170_ampdu_work); 1836 INIT_DELAYED_WORK(&ar->stat_work, carl9170_stat_work); 1837 INIT_DELAYED_WORK(&ar->tx_janitor, carl9170_tx_janitor); 1838 INIT_LIST_HEAD(&ar->tx_ampdu_list); 1839 rcu_assign_pointer(ar->tx_ampdu_iter, 1840 (struct carl9170_sta_tid *) &ar->tx_ampdu_list); 1841 1842 bitmap_zero(&ar->vif_bitmap, ar->fw.vif_num); 1843 INIT_LIST_HEAD(&ar->vif_list); 1844 init_completion(&ar->tx_flush); 1845 1846 /* firmware decides which modes we support */ 1847 hw->wiphy->interface_modes = 0; 1848 1849 ieee80211_hw_set(hw, RX_INCLUDES_FCS); 1850 ieee80211_hw_set(hw, MFP_CAPABLE); 1851 ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS); 1852 ieee80211_hw_set(hw, SUPPORTS_PS); 1853 ieee80211_hw_set(hw, PS_NULLFUNC_STACK); 1854 ieee80211_hw_set(hw, NEED_DTIM_BEFORE_ASSOC); 1855 ieee80211_hw_set(hw, SUPPORTS_RC_TABLE); 1856 ieee80211_hw_set(hw, SIGNAL_DBM); 1857 ieee80211_hw_set(hw, SUPPORTS_HT_CCK_RATES); 1858 1859 if (!modparam_noht) { 1860 /* 1861 * see the comment above, why we allow the user 1862 * to disable HT by a module parameter. 1863 */ 1864 ieee80211_hw_set(hw, AMPDU_AGGREGATION); 1865 } 1866 1867 hw->extra_tx_headroom = sizeof(struct _carl9170_tx_superframe); 1868 hw->sta_data_size = sizeof(struct carl9170_sta_info); 1869 hw->vif_data_size = sizeof(struct carl9170_vif_info); 1870 1871 hw->max_rates = CARL9170_TX_MAX_RATES; 1872 hw->max_rate_tries = CARL9170_TX_USER_RATE_TRIES; 1873 1874 for (i = 0; i < ARRAY_SIZE(ar->noise); i++) 1875 ar->noise[i] = -95; /* ATH_DEFAULT_NOISE_FLOOR */ 1876 1877 wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); 1878 1879 return ar; 1880 1881 err_nomem: 1882 kfree_skb(skb); 1883 return ERR_PTR(-ENOMEM); 1884 } 1885 1886 static int carl9170_read_eeprom(struct ar9170 *ar) 1887 { 1888 #define RW 8 /* number of words to read at once */ 1889 #define RB (sizeof(u32) * RW) 1890 u8 *eeprom = (void *)&ar->eeprom; 1891 __le32 offsets[RW]; 1892 int i, j, err; 1893 1894 BUILD_BUG_ON(sizeof(ar->eeprom) & 3); 1895 1896 BUILD_BUG_ON(RB > CARL9170_MAX_CMD_LEN - 4); 1897 #ifndef __CHECKER__ 1898 /* don't want to handle trailing remains */ 1899 BUILD_BUG_ON(sizeof(ar->eeprom) % RB); 1900 #endif 1901 1902 for (i = 0; i < sizeof(ar->eeprom) / RB; i++) { 1903 for (j = 0; j < RW; j++) 1904 offsets[j] = cpu_to_le32(AR9170_EEPROM_START + 1905 RB * i + 4 * j); 1906 1907 err = carl9170_exec_cmd(ar, CARL9170_CMD_RREG, 1908 RB, (u8 *) &offsets, 1909 RB, eeprom + RB * i); 1910 if (err) 1911 return err; 1912 } 1913 1914 #undef RW 1915 #undef RB 1916 return 0; 1917 } 1918 1919 static int carl9170_parse_eeprom(struct ar9170 *ar) 1920 { 1921 struct ath_regulatory *regulatory = &ar->common.regulatory; 1922 unsigned int rx_streams, tx_streams, tx_params = 0; 1923 int bands = 0; 1924 int chans = 0; 1925 1926 if (ar->eeprom.length == cpu_to_le16(0xffff)) 1927 return -ENODATA; 1928 1929 rx_streams = hweight8(ar->eeprom.rx_mask); 1930 tx_streams = hweight8(ar->eeprom.tx_mask); 1931 1932 if (rx_streams != tx_streams) { 1933 tx_params = IEEE80211_HT_MCS_TX_RX_DIFF; 1934 1935 WARN_ON(!(tx_streams >= 1 && tx_streams <= 1936 IEEE80211_HT_MCS_TX_MAX_STREAMS)); 1937 1938 tx_params = (tx_streams - 1) << 1939 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT; 1940 1941 carl9170_band_2GHz.ht_cap.mcs.tx_params |= tx_params; 1942 carl9170_band_5GHz.ht_cap.mcs.tx_params |= tx_params; 1943 } 1944 1945 if (ar->eeprom.operating_flags & AR9170_OPFLAG_2GHZ) { 1946 ar->hw->wiphy->bands[NL80211_BAND_2GHZ] = 1947 &carl9170_band_2GHz; 1948 chans += carl9170_band_2GHz.n_channels; 1949 bands++; 1950 } 1951 if (ar->eeprom.operating_flags & AR9170_OPFLAG_5GHZ) { 1952 ar->hw->wiphy->bands[NL80211_BAND_5GHZ] = 1953 &carl9170_band_5GHz; 1954 chans += carl9170_band_5GHz.n_channels; 1955 bands++; 1956 } 1957 1958 if (!bands) 1959 return -EINVAL; 1960 1961 ar->survey = kcalloc(chans, sizeof(struct survey_info), GFP_KERNEL); 1962 if (!ar->survey) 1963 return -ENOMEM; 1964 ar->num_channels = chans; 1965 1966 regulatory->current_rd = le16_to_cpu(ar->eeprom.reg_domain[0]); 1967 1968 /* second part of wiphy init */ 1969 SET_IEEE80211_PERM_ADDR(ar->hw, ar->eeprom.mac_address); 1970 1971 return 0; 1972 } 1973 1974 static void carl9170_reg_notifier(struct wiphy *wiphy, 1975 struct regulatory_request *request) 1976 { 1977 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy); 1978 struct ar9170 *ar = hw->priv; 1979 1980 ath_reg_notifier_apply(wiphy, request, &ar->common.regulatory); 1981 } 1982 1983 int carl9170_register(struct ar9170 *ar) 1984 { 1985 struct ath_regulatory *regulatory = &ar->common.regulatory; 1986 int err = 0, i; 1987 1988 if (WARN_ON(ar->mem_bitmap)) 1989 return -EINVAL; 1990 1991 ar->mem_bitmap = kcalloc(roundup(ar->fw.mem_blocks, BITS_PER_LONG), 1992 sizeof(unsigned long), 1993 GFP_KERNEL); 1994 1995 if (!ar->mem_bitmap) 1996 return -ENOMEM; 1997 1998 /* try to read EEPROM, init MAC addr */ 1999 err = carl9170_read_eeprom(ar); 2000 if (err) 2001 return err; 2002 2003 err = carl9170_parse_eeprom(ar); 2004 if (err) 2005 return err; 2006 2007 err = ath_regd_init(regulatory, ar->hw->wiphy, 2008 carl9170_reg_notifier); 2009 if (err) 2010 return err; 2011 2012 if (modparam_noht) { 2013 carl9170_band_2GHz.ht_cap.ht_supported = false; 2014 carl9170_band_5GHz.ht_cap.ht_supported = false; 2015 } 2016 2017 for (i = 0; i < ar->fw.vif_num; i++) { 2018 ar->vif_priv[i].id = i; 2019 ar->vif_priv[i].vif = NULL; 2020 } 2021 2022 err = ieee80211_register_hw(ar->hw); 2023 if (err) 2024 return err; 2025 2026 /* mac80211 interface is now registered */ 2027 ar->registered = true; 2028 2029 if (!ath_is_world_regd(regulatory)) 2030 regulatory_hint(ar->hw->wiphy, regulatory->alpha2); 2031 2032 #ifdef CONFIG_CARL9170_DEBUGFS 2033 carl9170_debugfs_register(ar); 2034 #endif /* CONFIG_CARL9170_DEBUGFS */ 2035 2036 err = carl9170_led_init(ar); 2037 if (err) 2038 goto err_unreg; 2039 2040 #ifdef CONFIG_CARL9170_LEDS 2041 err = carl9170_led_register(ar); 2042 if (err) 2043 goto err_unreg; 2044 #endif /* CONFIG_CARL9170_LEDS */ 2045 2046 #ifdef CONFIG_CARL9170_WPC 2047 err = carl9170_register_wps_button(ar); 2048 if (err) 2049 goto err_unreg; 2050 #endif /* CONFIG_CARL9170_WPC */ 2051 2052 #ifdef CONFIG_CARL9170_HWRNG 2053 err = carl9170_register_hwrng(ar); 2054 if (err) 2055 goto err_unreg; 2056 #endif /* CONFIG_CARL9170_HWRNG */ 2057 2058 dev_info(&ar->udev->dev, "Atheros AR9170 is registered as '%s'\n", 2059 wiphy_name(ar->hw->wiphy)); 2060 2061 return 0; 2062 2063 err_unreg: 2064 carl9170_unregister(ar); 2065 return err; 2066 } 2067 2068 void carl9170_unregister(struct ar9170 *ar) 2069 { 2070 if (!ar->registered) 2071 return; 2072 2073 ar->registered = false; 2074 2075 #ifdef CONFIG_CARL9170_LEDS 2076 carl9170_led_unregister(ar); 2077 #endif /* CONFIG_CARL9170_LEDS */ 2078 2079 #ifdef CONFIG_CARL9170_DEBUGFS 2080 carl9170_debugfs_unregister(ar); 2081 #endif /* CONFIG_CARL9170_DEBUGFS */ 2082 2083 #ifdef CONFIG_CARL9170_WPC 2084 if (ar->wps.pbc) { 2085 input_unregister_device(ar->wps.pbc); 2086 ar->wps.pbc = NULL; 2087 } 2088 #endif /* CONFIG_CARL9170_WPC */ 2089 2090 #ifdef CONFIG_CARL9170_HWRNG 2091 carl9170_unregister_hwrng(ar); 2092 #endif /* CONFIG_CARL9170_HWRNG */ 2093 2094 carl9170_cancel_worker(ar); 2095 cancel_work_sync(&ar->restart_work); 2096 2097 ieee80211_unregister_hw(ar->hw); 2098 } 2099 2100 void carl9170_free(struct ar9170 *ar) 2101 { 2102 WARN_ON(ar->registered); 2103 WARN_ON(IS_INITIALIZED(ar)); 2104 2105 kfree_skb(ar->rx_failover); 2106 ar->rx_failover = NULL; 2107 2108 kfree(ar->mem_bitmap); 2109 ar->mem_bitmap = NULL; 2110 2111 kfree(ar->survey); 2112 ar->survey = NULL; 2113 2114 mutex_destroy(&ar->mutex); 2115 2116 ieee80211_free_hw(ar->hw); 2117 } 2118