1 /*
2  * Atheros CARL9170 driver
3  *
4  * mac80211 interaction code
5  *
6  * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
7  * Copyright 2009, 2010, Christian Lamparter <chunkeey@googlemail.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; see the file COPYING.  If not, see
21  * http://www.gnu.org/licenses/.
22  *
23  * This file incorporates work covered by the following copyright and
24  * permission notice:
25  *    Copyright (c) 2007-2008 Atheros Communications, Inc.
26  *
27  *    Permission to use, copy, modify, and/or distribute this software for any
28  *    purpose with or without fee is hereby granted, provided that the above
29  *    copyright notice and this permission notice appear in all copies.
30  *
31  *    THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
32  *    WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
33  *    MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
34  *    ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
35  *    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
36  *    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
37  *    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
38  */
39 
40 #include <linux/slab.h>
41 #include <linux/module.h>
42 #include <linux/etherdevice.h>
43 #include <linux/random.h>
44 #include <net/mac80211.h>
45 #include <net/cfg80211.h>
46 #include "hw.h"
47 #include "carl9170.h"
48 #include "cmd.h"
49 
50 static bool modparam_nohwcrypt;
51 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
52 MODULE_PARM_DESC(nohwcrypt, "Disable hardware crypto offload.");
53 
54 int modparam_noht;
55 module_param_named(noht, modparam_noht, int, S_IRUGO);
56 MODULE_PARM_DESC(noht, "Disable MPDU aggregation.");
57 
58 #define RATE(_bitrate, _hw_rate, _txpidx, _flags) {	\
59 	.bitrate	= (_bitrate),			\
60 	.flags		= (_flags),			\
61 	.hw_value	= (_hw_rate) | (_txpidx) << 4,	\
62 }
63 
64 struct ieee80211_rate __carl9170_ratetable[] = {
65 	RATE(10, 0, 0, 0),
66 	RATE(20, 1, 1, IEEE80211_RATE_SHORT_PREAMBLE),
67 	RATE(55, 2, 2, IEEE80211_RATE_SHORT_PREAMBLE),
68 	RATE(110, 3, 3, IEEE80211_RATE_SHORT_PREAMBLE),
69 	RATE(60, 0xb, 0, 0),
70 	RATE(90, 0xf, 0, 0),
71 	RATE(120, 0xa, 0, 0),
72 	RATE(180, 0xe, 0, 0),
73 	RATE(240, 0x9, 0, 0),
74 	RATE(360, 0xd, 1, 0),
75 	RATE(480, 0x8, 2, 0),
76 	RATE(540, 0xc, 3, 0),
77 };
78 #undef RATE
79 
80 #define carl9170_g_ratetable	(__carl9170_ratetable + 0)
81 #define carl9170_g_ratetable_size	12
82 #define carl9170_a_ratetable	(__carl9170_ratetable + 4)
83 #define carl9170_a_ratetable_size	8
84 
85 /*
86  * NB: The hw_value is used as an index into the carl9170_phy_freq_params
87  *     array in phy.c so that we don't have to do frequency lookups!
88  */
89 #define CHAN(_freq, _idx) {		\
90 	.center_freq	= (_freq),	\
91 	.hw_value	= (_idx),	\
92 	.max_power	= 18, /* XXX */	\
93 }
94 
95 static struct ieee80211_channel carl9170_2ghz_chantable[] = {
96 	CHAN(2412,  0),
97 	CHAN(2417,  1),
98 	CHAN(2422,  2),
99 	CHAN(2427,  3),
100 	CHAN(2432,  4),
101 	CHAN(2437,  5),
102 	CHAN(2442,  6),
103 	CHAN(2447,  7),
104 	CHAN(2452,  8),
105 	CHAN(2457,  9),
106 	CHAN(2462, 10),
107 	CHAN(2467, 11),
108 	CHAN(2472, 12),
109 	CHAN(2484, 13),
110 };
111 
112 static struct ieee80211_channel carl9170_5ghz_chantable[] = {
113 	CHAN(4920, 14),
114 	CHAN(4940, 15),
115 	CHAN(4960, 16),
116 	CHAN(4980, 17),
117 	CHAN(5040, 18),
118 	CHAN(5060, 19),
119 	CHAN(5080, 20),
120 	CHAN(5180, 21),
121 	CHAN(5200, 22),
122 	CHAN(5220, 23),
123 	CHAN(5240, 24),
124 	CHAN(5260, 25),
125 	CHAN(5280, 26),
126 	CHAN(5300, 27),
127 	CHAN(5320, 28),
128 	CHAN(5500, 29),
129 	CHAN(5520, 30),
130 	CHAN(5540, 31),
131 	CHAN(5560, 32),
132 	CHAN(5580, 33),
133 	CHAN(5600, 34),
134 	CHAN(5620, 35),
135 	CHAN(5640, 36),
136 	CHAN(5660, 37),
137 	CHAN(5680, 38),
138 	CHAN(5700, 39),
139 	CHAN(5745, 40),
140 	CHAN(5765, 41),
141 	CHAN(5785, 42),
142 	CHAN(5805, 43),
143 	CHAN(5825, 44),
144 	CHAN(5170, 45),
145 	CHAN(5190, 46),
146 	CHAN(5210, 47),
147 	CHAN(5230, 48),
148 };
149 #undef CHAN
150 
151 #define CARL9170_HT_CAP							\
152 {									\
153 	.ht_supported	= true,						\
154 	.cap		= IEEE80211_HT_CAP_MAX_AMSDU |			\
155 			  IEEE80211_HT_CAP_SUP_WIDTH_20_40 |		\
156 			  IEEE80211_HT_CAP_SGI_40 |			\
157 			  IEEE80211_HT_CAP_DSSSCCK40 |			\
158 			  IEEE80211_HT_CAP_SM_PS,			\
159 	.ampdu_factor	= IEEE80211_HT_MAX_AMPDU_64K,			\
160 	.ampdu_density	= IEEE80211_HT_MPDU_DENSITY_8,			\
161 	.mcs		= {						\
162 		.rx_mask = { 0xff, 0xff, 0, 0, 0x1, 0, 0, 0, 0, 0, },	\
163 		.rx_highest = cpu_to_le16(300),				\
164 		.tx_params = IEEE80211_HT_MCS_TX_DEFINED,		\
165 	},								\
166 }
167 
168 static struct ieee80211_supported_band carl9170_band_2GHz = {
169 	.channels	= carl9170_2ghz_chantable,
170 	.n_channels	= ARRAY_SIZE(carl9170_2ghz_chantable),
171 	.bitrates	= carl9170_g_ratetable,
172 	.n_bitrates	= carl9170_g_ratetable_size,
173 	.ht_cap		= CARL9170_HT_CAP,
174 };
175 
176 static struct ieee80211_supported_band carl9170_band_5GHz = {
177 	.channels	= carl9170_5ghz_chantable,
178 	.n_channels	= ARRAY_SIZE(carl9170_5ghz_chantable),
179 	.bitrates	= carl9170_a_ratetable,
180 	.n_bitrates	= carl9170_a_ratetable_size,
181 	.ht_cap		= CARL9170_HT_CAP,
182 };
183 
184 static void carl9170_ampdu_gc(struct ar9170 *ar)
185 {
186 	struct carl9170_sta_tid *tid_info;
187 	LIST_HEAD(tid_gc);
188 
189 	rcu_read_lock();
190 	list_for_each_entry_rcu(tid_info, &ar->tx_ampdu_list, list) {
191 		spin_lock_bh(&ar->tx_ampdu_list_lock);
192 		if (tid_info->state == CARL9170_TID_STATE_SHUTDOWN) {
193 			tid_info->state = CARL9170_TID_STATE_KILLED;
194 			list_del_rcu(&tid_info->list);
195 			ar->tx_ampdu_list_len--;
196 			list_add_tail(&tid_info->tmp_list, &tid_gc);
197 		}
198 		spin_unlock_bh(&ar->tx_ampdu_list_lock);
199 
200 	}
201 	rcu_assign_pointer(ar->tx_ampdu_iter, tid_info);
202 	rcu_read_unlock();
203 
204 	synchronize_rcu();
205 
206 	while (!list_empty(&tid_gc)) {
207 		struct sk_buff *skb;
208 		tid_info = list_first_entry(&tid_gc, struct carl9170_sta_tid,
209 					    tmp_list);
210 
211 		while ((skb = __skb_dequeue(&tid_info->queue)))
212 			carl9170_tx_status(ar, skb, false);
213 
214 		list_del_init(&tid_info->tmp_list);
215 		kfree(tid_info);
216 	}
217 }
218 
219 static void carl9170_flush(struct ar9170 *ar, bool drop_queued)
220 {
221 	if (drop_queued) {
222 		int i;
223 
224 		/*
225 		 * We can only drop frames which have not been uploaded
226 		 * to the device yet.
227 		 */
228 
229 		for (i = 0; i < ar->hw->queues; i++) {
230 			struct sk_buff *skb;
231 
232 			while ((skb = skb_dequeue(&ar->tx_pending[i]))) {
233 				struct ieee80211_tx_info *info;
234 
235 				info = IEEE80211_SKB_CB(skb);
236 				if (info->flags & IEEE80211_TX_CTL_AMPDU)
237 					atomic_dec(&ar->tx_ampdu_upload);
238 
239 				carl9170_tx_status(ar, skb, false);
240 			}
241 		}
242 	}
243 
244 	/* Wait for all other outstanding frames to timeout. */
245 	if (atomic_read(&ar->tx_total_queued))
246 		WARN_ON(wait_for_completion_timeout(&ar->tx_flush, HZ) == 0);
247 }
248 
249 static void carl9170_flush_ba(struct ar9170 *ar)
250 {
251 	struct sk_buff_head free;
252 	struct carl9170_sta_tid *tid_info;
253 	struct sk_buff *skb;
254 
255 	__skb_queue_head_init(&free);
256 
257 	rcu_read_lock();
258 	spin_lock_bh(&ar->tx_ampdu_list_lock);
259 	list_for_each_entry_rcu(tid_info, &ar->tx_ampdu_list, list) {
260 		if (tid_info->state > CARL9170_TID_STATE_SUSPEND) {
261 			tid_info->state = CARL9170_TID_STATE_SUSPEND;
262 
263 			spin_lock(&tid_info->lock);
264 			while ((skb = __skb_dequeue(&tid_info->queue)))
265 				__skb_queue_tail(&free, skb);
266 			spin_unlock(&tid_info->lock);
267 		}
268 	}
269 	spin_unlock_bh(&ar->tx_ampdu_list_lock);
270 	rcu_read_unlock();
271 
272 	while ((skb = __skb_dequeue(&free)))
273 		carl9170_tx_status(ar, skb, false);
274 }
275 
276 static void carl9170_zap_queues(struct ar9170 *ar)
277 {
278 	struct carl9170_vif_info *cvif;
279 	unsigned int i;
280 
281 	carl9170_ampdu_gc(ar);
282 
283 	carl9170_flush_ba(ar);
284 	carl9170_flush(ar, true);
285 
286 	for (i = 0; i < ar->hw->queues; i++) {
287 		spin_lock_bh(&ar->tx_status[i].lock);
288 		while (!skb_queue_empty(&ar->tx_status[i])) {
289 			struct sk_buff *skb;
290 
291 			skb = skb_peek(&ar->tx_status[i]);
292 			carl9170_tx_get_skb(skb);
293 			spin_unlock_bh(&ar->tx_status[i].lock);
294 			carl9170_tx_drop(ar, skb);
295 			spin_lock_bh(&ar->tx_status[i].lock);
296 			carl9170_tx_put_skb(skb);
297 		}
298 		spin_unlock_bh(&ar->tx_status[i].lock);
299 	}
300 
301 	BUILD_BUG_ON(CARL9170_NUM_TX_LIMIT_SOFT < 1);
302 	BUILD_BUG_ON(CARL9170_NUM_TX_LIMIT_HARD < CARL9170_NUM_TX_LIMIT_SOFT);
303 	BUILD_BUG_ON(CARL9170_NUM_TX_LIMIT_HARD >= CARL9170_BAW_BITS);
304 
305 	/* reinitialize queues statistics */
306 	memset(&ar->tx_stats, 0, sizeof(ar->tx_stats));
307 	for (i = 0; i < ar->hw->queues; i++)
308 		ar->tx_stats[i].limit = CARL9170_NUM_TX_LIMIT_HARD;
309 
310 	for (i = 0; i < DIV_ROUND_UP(ar->fw.mem_blocks, BITS_PER_LONG); i++)
311 		ar->mem_bitmap[i] = 0;
312 
313 	rcu_read_lock();
314 	list_for_each_entry_rcu(cvif, &ar->vif_list, list) {
315 		spin_lock_bh(&ar->beacon_lock);
316 		dev_kfree_skb_any(cvif->beacon);
317 		cvif->beacon = NULL;
318 		spin_unlock_bh(&ar->beacon_lock);
319 	}
320 	rcu_read_unlock();
321 
322 	atomic_set(&ar->tx_ampdu_upload, 0);
323 	atomic_set(&ar->tx_ampdu_scheduler, 0);
324 	atomic_set(&ar->tx_total_pending, 0);
325 	atomic_set(&ar->tx_total_queued, 0);
326 	atomic_set(&ar->mem_free_blocks, ar->fw.mem_blocks);
327 }
328 
329 #define CARL9170_FILL_QUEUE(queue, ai_fs, cwmin, cwmax, _txop)		\
330 do {									\
331 	queue.aifs = ai_fs;						\
332 	queue.cw_min = cwmin;						\
333 	queue.cw_max = cwmax;						\
334 	queue.txop = _txop;						\
335 } while (0)
336 
337 static int carl9170_op_start(struct ieee80211_hw *hw)
338 {
339 	struct ar9170 *ar = hw->priv;
340 	int err, i;
341 
342 	mutex_lock(&ar->mutex);
343 
344 	carl9170_zap_queues(ar);
345 
346 	/* reset QoS defaults */
347 	CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_VO], 2, 3,     7, 47);
348 	CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_VI], 2, 7,    15, 94);
349 	CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_BE], 3, 15, 1023,  0);
350 	CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_BK], 7, 15, 1023,  0);
351 	CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_SPECIAL], 2, 3, 7, 0);
352 
353 	ar->current_factor = ar->current_density = -1;
354 	/* "The first key is unique." */
355 	ar->usedkeys = 1;
356 	ar->filter_state = 0;
357 	ar->ps.last_action = jiffies;
358 	ar->ps.last_slept = jiffies;
359 	ar->erp_mode = CARL9170_ERP_AUTO;
360 
361 	/* Set "disable hw crypto offload" whenever the module parameter
362 	 * nohwcrypt is true or if the firmware does not support it.
363 	 */
364 	ar->disable_offload = modparam_nohwcrypt |
365 		ar->fw.disable_offload_fw;
366 	ar->rx_software_decryption = ar->disable_offload;
367 
368 	for (i = 0; i < ar->hw->queues; i++) {
369 		ar->queue_stop_timeout[i] = jiffies;
370 		ar->max_queue_stop_timeout[i] = 0;
371 	}
372 
373 	atomic_set(&ar->mem_allocs, 0);
374 
375 	err = carl9170_usb_open(ar);
376 	if (err)
377 		goto out;
378 
379 	err = carl9170_init_mac(ar);
380 	if (err)
381 		goto out;
382 
383 	err = carl9170_set_qos(ar);
384 	if (err)
385 		goto out;
386 
387 	if (ar->fw.rx_filter) {
388 		err = carl9170_rx_filter(ar, CARL9170_RX_FILTER_OTHER_RA |
389 			CARL9170_RX_FILTER_CTL_OTHER | CARL9170_RX_FILTER_BAD);
390 		if (err)
391 			goto out;
392 	}
393 
394 	err = carl9170_write_reg(ar, AR9170_MAC_REG_DMA_TRIGGER,
395 				 AR9170_DMA_TRIGGER_RXQ);
396 	if (err)
397 		goto out;
398 
399 	/* Clear key-cache */
400 	for (i = 0; i < AR9170_CAM_MAX_USER + 4; i++) {
401 		err = carl9170_upload_key(ar, i, NULL, AR9170_ENC_ALG_NONE,
402 					  0, NULL, 0);
403 		if (err)
404 			goto out;
405 
406 		err = carl9170_upload_key(ar, i, NULL, AR9170_ENC_ALG_NONE,
407 					  1, NULL, 0);
408 		if (err)
409 			goto out;
410 
411 		if (i < AR9170_CAM_MAX_USER) {
412 			err = carl9170_disable_key(ar, i);
413 			if (err)
414 				goto out;
415 		}
416 	}
417 
418 	carl9170_set_state_when(ar, CARL9170_IDLE, CARL9170_STARTED);
419 
420 	ieee80211_queue_delayed_work(ar->hw, &ar->stat_work,
421 		round_jiffies(msecs_to_jiffies(CARL9170_STAT_WORK)));
422 
423 	ieee80211_wake_queues(ar->hw);
424 	err = 0;
425 
426 out:
427 	mutex_unlock(&ar->mutex);
428 	return err;
429 }
430 
431 static void carl9170_cancel_worker(struct ar9170 *ar)
432 {
433 	cancel_delayed_work_sync(&ar->stat_work);
434 	cancel_delayed_work_sync(&ar->tx_janitor);
435 #ifdef CONFIG_CARL9170_LEDS
436 	cancel_delayed_work_sync(&ar->led_work);
437 #endif /* CONFIG_CARL9170_LEDS */
438 	cancel_work_sync(&ar->ps_work);
439 	cancel_work_sync(&ar->ping_work);
440 	cancel_work_sync(&ar->ampdu_work);
441 }
442 
443 static void carl9170_op_stop(struct ieee80211_hw *hw)
444 {
445 	struct ar9170 *ar = hw->priv;
446 
447 	carl9170_set_state_when(ar, CARL9170_STARTED, CARL9170_IDLE);
448 
449 	ieee80211_stop_queues(ar->hw);
450 
451 	mutex_lock(&ar->mutex);
452 	if (IS_ACCEPTING_CMD(ar)) {
453 		RCU_INIT_POINTER(ar->beacon_iter, NULL);
454 
455 		carl9170_led_set_state(ar, 0);
456 
457 		/* stop DMA */
458 		carl9170_write_reg(ar, AR9170_MAC_REG_DMA_TRIGGER, 0);
459 		carl9170_usb_stop(ar);
460 	}
461 
462 	carl9170_zap_queues(ar);
463 	mutex_unlock(&ar->mutex);
464 
465 	carl9170_cancel_worker(ar);
466 }
467 
468 static void carl9170_restart_work(struct work_struct *work)
469 {
470 	struct ar9170 *ar = container_of(work, struct ar9170,
471 					 restart_work);
472 	int err = -EIO;
473 
474 	ar->usedkeys = 0;
475 	ar->filter_state = 0;
476 	carl9170_cancel_worker(ar);
477 
478 	mutex_lock(&ar->mutex);
479 	if (!ar->force_usb_reset) {
480 		err = carl9170_usb_restart(ar);
481 		if (net_ratelimit()) {
482 			if (err)
483 				dev_err(&ar->udev->dev, "Failed to restart device (%d).\n", err);
484 			else
485 				dev_info(&ar->udev->dev, "device restarted successfully.\n");
486 		}
487 	}
488 	carl9170_zap_queues(ar);
489 	mutex_unlock(&ar->mutex);
490 
491 	if (!err && !ar->force_usb_reset) {
492 		ar->restart_counter++;
493 		atomic_set(&ar->pending_restarts, 0);
494 
495 		ieee80211_restart_hw(ar->hw);
496 	} else {
497 		/*
498 		 * The reset was unsuccessful and the device seems to
499 		 * be dead. But there's still one option: a low-level
500 		 * usb subsystem reset...
501 		 */
502 
503 		carl9170_usb_reset(ar);
504 	}
505 }
506 
507 void carl9170_restart(struct ar9170 *ar, const enum carl9170_restart_reasons r)
508 {
509 	carl9170_set_state_when(ar, CARL9170_STARTED, CARL9170_IDLE);
510 
511 	/*
512 	 * Sometimes, an error can trigger several different reset events.
513 	 * By ignoring these *surplus* reset events, the device won't be
514 	 * killed again, right after it has recovered.
515 	 */
516 	if (atomic_inc_return(&ar->pending_restarts) > 1) {
517 		dev_dbg(&ar->udev->dev, "ignoring restart (%d)\n", r);
518 		return;
519 	}
520 
521 	ieee80211_stop_queues(ar->hw);
522 
523 	dev_err(&ar->udev->dev, "restart device (%d)\n", r);
524 
525 	if (!WARN_ON(r == CARL9170_RR_NO_REASON) ||
526 	    !WARN_ON(r >= __CARL9170_RR_LAST))
527 		ar->last_reason = r;
528 
529 	if (!ar->registered)
530 		return;
531 
532 	if (!IS_ACCEPTING_CMD(ar) || ar->needs_full_reset)
533 		ar->force_usb_reset = true;
534 
535 	ieee80211_queue_work(ar->hw, &ar->restart_work);
536 
537 	/*
538 	 * At this point, the device instance might have vanished/disabled.
539 	 * So, don't put any code which access the ar9170 struct
540 	 * without proper protection.
541 	 */
542 }
543 
544 static void carl9170_ping_work(struct work_struct *work)
545 {
546 	struct ar9170 *ar = container_of(work, struct ar9170, ping_work);
547 	int err;
548 
549 	if (!IS_STARTED(ar))
550 		return;
551 
552 	mutex_lock(&ar->mutex);
553 	err = carl9170_echo_test(ar, 0xdeadbeef);
554 	if (err)
555 		carl9170_restart(ar, CARL9170_RR_UNRESPONSIVE_DEVICE);
556 	mutex_unlock(&ar->mutex);
557 }
558 
559 static int carl9170_init_interface(struct ar9170 *ar,
560 				   struct ieee80211_vif *vif)
561 {
562 	struct ath_common *common = &ar->common;
563 	int err;
564 
565 	if (!vif) {
566 		WARN_ON_ONCE(IS_STARTED(ar));
567 		return 0;
568 	}
569 
570 	memcpy(common->macaddr, vif->addr, ETH_ALEN);
571 
572 	/* We have to fall back to software crypto, whenever
573 	 * the user choose to participates in an IBSS. HW
574 	 * offload for IBSS RSN is not supported by this driver.
575 	 *
576 	 * NOTE: If the previous main interface has already
577 	 * disabled hw crypto offload, we have to keep this
578 	 * previous disable_offload setting as it was.
579 	 * Altough ideally, we should notify mac80211 and tell
580 	 * it to forget about any HW crypto offload for now.
581 	 */
582 	ar->disable_offload |= ((vif->type != NL80211_IFTYPE_STATION) &&
583 	    (vif->type != NL80211_IFTYPE_AP));
584 
585 	/* While the driver supports HW offload in a single
586 	 * P2P client configuration, it doesn't support HW
587 	 * offload in the favourit, concurrent P2P GO+CLIENT
588 	 * configuration. Hence, HW offload will always be
589 	 * disabled for P2P.
590 	 */
591 	ar->disable_offload |= vif->p2p;
592 
593 	ar->rx_software_decryption = ar->disable_offload;
594 
595 	err = carl9170_set_operating_mode(ar);
596 	return err;
597 }
598 
599 static int carl9170_op_add_interface(struct ieee80211_hw *hw,
600 				     struct ieee80211_vif *vif)
601 {
602 	struct carl9170_vif_info *vif_priv = (void *) vif->drv_priv;
603 	struct ieee80211_vif *main_vif, *old_main = NULL;
604 	struct ar9170 *ar = hw->priv;
605 	int vif_id = -1, err = 0;
606 
607 	mutex_lock(&ar->mutex);
608 	rcu_read_lock();
609 	if (vif_priv->active) {
610 		/*
611 		 * Skip the interface structure initialization,
612 		 * if the vif survived the _restart call.
613 		 */
614 		vif_id = vif_priv->id;
615 		vif_priv->enable_beacon = false;
616 
617 		spin_lock_bh(&ar->beacon_lock);
618 		dev_kfree_skb_any(vif_priv->beacon);
619 		vif_priv->beacon = NULL;
620 		spin_unlock_bh(&ar->beacon_lock);
621 
622 		goto init;
623 	}
624 
625 	/* Because the AR9170 HW's MAC doesn't provide full support for
626 	 * multiple, independent interfaces [of different operation modes].
627 	 * We have to select ONE main interface [main mode of HW], but we
628 	 * can have multiple slaves [AKA: entry in the ACK-table].
629 	 *
630 	 * The first (from HEAD/TOP) interface in the ar->vif_list is
631 	 * always the main intf. All following intfs in this list
632 	 * are considered to be slave intfs.
633 	 */
634 	main_vif = carl9170_get_main_vif(ar);
635 
636 	if (main_vif) {
637 		switch (main_vif->type) {
638 		case NL80211_IFTYPE_STATION:
639 			if (vif->type == NL80211_IFTYPE_STATION)
640 				break;
641 
642 			/* P2P GO [master] use-case
643 			 * Because the P2P GO station is selected dynamically
644 			 * by all participating peers of a WIFI Direct network,
645 			 * the driver has be able to change the main interface
646 			 * operating mode on the fly.
647 			 */
648 			if (main_vif->p2p && vif->p2p &&
649 			    vif->type == NL80211_IFTYPE_AP) {
650 				old_main = main_vif;
651 				break;
652 			}
653 
654 			err = -EBUSY;
655 			rcu_read_unlock();
656 
657 			goto unlock;
658 
659 		case NL80211_IFTYPE_MESH_POINT:
660 		case NL80211_IFTYPE_AP:
661 			if ((vif->type == NL80211_IFTYPE_STATION) ||
662 			    (vif->type == NL80211_IFTYPE_WDS) ||
663 			    (vif->type == NL80211_IFTYPE_AP) ||
664 			    (vif->type == NL80211_IFTYPE_MESH_POINT))
665 				break;
666 
667 			err = -EBUSY;
668 			rcu_read_unlock();
669 			goto unlock;
670 
671 		default:
672 			rcu_read_unlock();
673 			goto unlock;
674 		}
675 	}
676 
677 	vif_id = bitmap_find_free_region(&ar->vif_bitmap, ar->fw.vif_num, 0);
678 
679 	if (vif_id < 0) {
680 		rcu_read_unlock();
681 
682 		err = -ENOSPC;
683 		goto unlock;
684 	}
685 
686 	BUG_ON(ar->vif_priv[vif_id].id != vif_id);
687 
688 	vif_priv->active = true;
689 	vif_priv->id = vif_id;
690 	vif_priv->enable_beacon = false;
691 	ar->vifs++;
692 	if (old_main) {
693 		/* We end up in here, if the main interface is being replaced.
694 		 * Put the new main interface at the HEAD of the list and the
695 		 * previous inteface will automatically become second in line.
696 		 */
697 		list_add_rcu(&vif_priv->list, &ar->vif_list);
698 	} else {
699 		/* Add new inteface. If the list is empty, it will become the
700 		 * main inteface, otherwise it will be slave.
701 		 */
702 		list_add_tail_rcu(&vif_priv->list, &ar->vif_list);
703 	}
704 	rcu_assign_pointer(ar->vif_priv[vif_id].vif, vif);
705 
706 init:
707 	main_vif = carl9170_get_main_vif(ar);
708 
709 	if (main_vif == vif) {
710 		rcu_assign_pointer(ar->beacon_iter, vif_priv);
711 		rcu_read_unlock();
712 
713 		if (old_main) {
714 			struct carl9170_vif_info *old_main_priv =
715 				(void *) old_main->drv_priv;
716 			/* downgrade old main intf to slave intf.
717 			 * NOTE: We are no longer under rcu_read_lock.
718 			 * But we are still holding ar->mutex, so the
719 			 * vif data [id, addr] is safe.
720 			 */
721 			err = carl9170_mod_virtual_mac(ar, old_main_priv->id,
722 						       old_main->addr);
723 			if (err)
724 				goto unlock;
725 		}
726 
727 		err = carl9170_init_interface(ar, vif);
728 		if (err)
729 			goto unlock;
730 	} else {
731 		rcu_read_unlock();
732 		err = carl9170_mod_virtual_mac(ar, vif_id, vif->addr);
733 
734 		if (err)
735 			goto unlock;
736 	}
737 
738 	if (ar->fw.tx_seq_table) {
739 		err = carl9170_write_reg(ar, ar->fw.tx_seq_table + vif_id * 4,
740 					 0);
741 		if (err)
742 			goto unlock;
743 	}
744 
745 unlock:
746 	if (err && (vif_id >= 0)) {
747 		vif_priv->active = false;
748 		bitmap_release_region(&ar->vif_bitmap, vif_id, 0);
749 		ar->vifs--;
750 		RCU_INIT_POINTER(ar->vif_priv[vif_id].vif, NULL);
751 		list_del_rcu(&vif_priv->list);
752 		mutex_unlock(&ar->mutex);
753 		synchronize_rcu();
754 	} else {
755 		if (ar->vifs > 1)
756 			ar->ps.off_override |= PS_OFF_VIF;
757 
758 		mutex_unlock(&ar->mutex);
759 	}
760 
761 	return err;
762 }
763 
764 static void carl9170_op_remove_interface(struct ieee80211_hw *hw,
765 					 struct ieee80211_vif *vif)
766 {
767 	struct carl9170_vif_info *vif_priv = (void *) vif->drv_priv;
768 	struct ieee80211_vif *main_vif;
769 	struct ar9170 *ar = hw->priv;
770 	unsigned int id;
771 
772 	mutex_lock(&ar->mutex);
773 
774 	if (WARN_ON_ONCE(!vif_priv->active))
775 		goto unlock;
776 
777 	ar->vifs--;
778 
779 	rcu_read_lock();
780 	main_vif = carl9170_get_main_vif(ar);
781 
782 	id = vif_priv->id;
783 
784 	vif_priv->active = false;
785 	WARN_ON(vif_priv->enable_beacon);
786 	vif_priv->enable_beacon = false;
787 	list_del_rcu(&vif_priv->list);
788 	RCU_INIT_POINTER(ar->vif_priv[id].vif, NULL);
789 
790 	if (vif == main_vif) {
791 		rcu_read_unlock();
792 
793 		if (ar->vifs) {
794 			WARN_ON(carl9170_init_interface(ar,
795 					carl9170_get_main_vif(ar)));
796 		} else {
797 			carl9170_set_operating_mode(ar);
798 		}
799 	} else {
800 		rcu_read_unlock();
801 
802 		WARN_ON(carl9170_mod_virtual_mac(ar, id, NULL));
803 	}
804 
805 	carl9170_update_beacon(ar, false);
806 	carl9170_flush_cab(ar, id);
807 
808 	spin_lock_bh(&ar->beacon_lock);
809 	dev_kfree_skb_any(vif_priv->beacon);
810 	vif_priv->beacon = NULL;
811 	spin_unlock_bh(&ar->beacon_lock);
812 
813 	bitmap_release_region(&ar->vif_bitmap, id, 0);
814 
815 	carl9170_set_beacon_timers(ar);
816 
817 	if (ar->vifs == 1)
818 		ar->ps.off_override &= ~PS_OFF_VIF;
819 
820 unlock:
821 	mutex_unlock(&ar->mutex);
822 
823 	synchronize_rcu();
824 }
825 
826 void carl9170_ps_check(struct ar9170 *ar)
827 {
828 	ieee80211_queue_work(ar->hw, &ar->ps_work);
829 }
830 
831 /* caller must hold ar->mutex */
832 static int carl9170_ps_update(struct ar9170 *ar)
833 {
834 	bool ps = false;
835 	int err = 0;
836 
837 	if (!ar->ps.off_override)
838 		ps = (ar->hw->conf.flags & IEEE80211_CONF_PS);
839 
840 	if (ps != ar->ps.state) {
841 		err = carl9170_powersave(ar, ps);
842 		if (err)
843 			return err;
844 
845 		if (ar->ps.state && !ps) {
846 			ar->ps.sleep_ms = jiffies_to_msecs(jiffies -
847 				ar->ps.last_action);
848 		}
849 
850 		if (ps)
851 			ar->ps.last_slept = jiffies;
852 
853 		ar->ps.last_action = jiffies;
854 		ar->ps.state = ps;
855 	}
856 
857 	return 0;
858 }
859 
860 static void carl9170_ps_work(struct work_struct *work)
861 {
862 	struct ar9170 *ar = container_of(work, struct ar9170,
863 					 ps_work);
864 	mutex_lock(&ar->mutex);
865 	if (IS_STARTED(ar))
866 		WARN_ON_ONCE(carl9170_ps_update(ar) != 0);
867 	mutex_unlock(&ar->mutex);
868 }
869 
870 static int carl9170_update_survey(struct ar9170 *ar, bool flush, bool noise)
871 {
872 	int err;
873 
874 	if (noise) {
875 		err = carl9170_get_noisefloor(ar);
876 		if (err)
877 			return err;
878 	}
879 
880 	if (ar->fw.hw_counters) {
881 		err = carl9170_collect_tally(ar);
882 		if (err)
883 			return err;
884 	}
885 
886 	if (flush)
887 		memset(&ar->tally, 0, sizeof(ar->tally));
888 
889 	return 0;
890 }
891 
892 static void carl9170_stat_work(struct work_struct *work)
893 {
894 	struct ar9170 *ar = container_of(work, struct ar9170, stat_work.work);
895 	int err;
896 
897 	mutex_lock(&ar->mutex);
898 	err = carl9170_update_survey(ar, false, true);
899 	mutex_unlock(&ar->mutex);
900 
901 	if (err)
902 		return;
903 
904 	ieee80211_queue_delayed_work(ar->hw, &ar->stat_work,
905 		round_jiffies(msecs_to_jiffies(CARL9170_STAT_WORK)));
906 }
907 
908 static int carl9170_op_config(struct ieee80211_hw *hw, u32 changed)
909 {
910 	struct ar9170 *ar = hw->priv;
911 	int err = 0;
912 
913 	mutex_lock(&ar->mutex);
914 	if (changed & IEEE80211_CONF_CHANGE_LISTEN_INTERVAL) {
915 		/* TODO */
916 		err = 0;
917 	}
918 
919 	if (changed & IEEE80211_CONF_CHANGE_PS) {
920 		err = carl9170_ps_update(ar);
921 		if (err)
922 			goto out;
923 	}
924 
925 	if (changed & IEEE80211_CONF_CHANGE_SMPS) {
926 		/* TODO */
927 		err = 0;
928 	}
929 
930 	if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
931 		enum nl80211_channel_type channel_type =
932 			cfg80211_get_chandef_type(&hw->conf.chandef);
933 
934 		/* adjust slot time for 5 GHz */
935 		err = carl9170_set_slot_time(ar);
936 		if (err)
937 			goto out;
938 
939 		err = carl9170_update_survey(ar, true, false);
940 		if (err)
941 			goto out;
942 
943 		err = carl9170_set_channel(ar, hw->conf.chandef.chan,
944 					   channel_type);
945 		if (err)
946 			goto out;
947 
948 		err = carl9170_update_survey(ar, false, true);
949 		if (err)
950 			goto out;
951 
952 		err = carl9170_set_dyn_sifs_ack(ar);
953 		if (err)
954 			goto out;
955 
956 		err = carl9170_set_rts_cts_rate(ar);
957 		if (err)
958 			goto out;
959 	}
960 
961 	if (changed & IEEE80211_CONF_CHANGE_POWER) {
962 		err = carl9170_set_mac_tpc(ar, ar->hw->conf.chandef.chan);
963 		if (err)
964 			goto out;
965 	}
966 
967 out:
968 	mutex_unlock(&ar->mutex);
969 	return err;
970 }
971 
972 static u64 carl9170_op_prepare_multicast(struct ieee80211_hw *hw,
973 					 struct netdev_hw_addr_list *mc_list)
974 {
975 	struct netdev_hw_addr *ha;
976 	u64 mchash;
977 
978 	/* always get broadcast frames */
979 	mchash = 1ULL << (0xff >> 2);
980 
981 	netdev_hw_addr_list_for_each(ha, mc_list)
982 		mchash |= 1ULL << (ha->addr[5] >> 2);
983 
984 	return mchash;
985 }
986 
987 static void carl9170_op_configure_filter(struct ieee80211_hw *hw,
988 					 unsigned int changed_flags,
989 					 unsigned int *new_flags,
990 					 u64 multicast)
991 {
992 	struct ar9170 *ar = hw->priv;
993 
994 	/* mask supported flags */
995 	*new_flags &= FIF_ALLMULTI | ar->rx_filter_caps;
996 
997 	if (!IS_ACCEPTING_CMD(ar))
998 		return;
999 
1000 	mutex_lock(&ar->mutex);
1001 
1002 	ar->filter_state = *new_flags;
1003 	/*
1004 	 * We can support more by setting the sniffer bit and
1005 	 * then checking the error flags, later.
1006 	 */
1007 
1008 	if (*new_flags & FIF_ALLMULTI)
1009 		multicast = ~0ULL;
1010 
1011 	if (multicast != ar->cur_mc_hash)
1012 		WARN_ON(carl9170_update_multicast(ar, multicast));
1013 
1014 	if (changed_flags & (FIF_OTHER_BSS | FIF_PROMISC_IN_BSS)) {
1015 		ar->sniffer_enabled = !!(*new_flags &
1016 			(FIF_OTHER_BSS | FIF_PROMISC_IN_BSS));
1017 
1018 		WARN_ON(carl9170_set_operating_mode(ar));
1019 	}
1020 
1021 	if (ar->fw.rx_filter && changed_flags & ar->rx_filter_caps) {
1022 		u32 rx_filter = 0;
1023 
1024 		if (!ar->fw.ba_filter)
1025 			rx_filter |= CARL9170_RX_FILTER_CTL_OTHER;
1026 
1027 		if (!(*new_flags & (FIF_FCSFAIL | FIF_PLCPFAIL)))
1028 			rx_filter |= CARL9170_RX_FILTER_BAD;
1029 
1030 		if (!(*new_flags & FIF_CONTROL))
1031 			rx_filter |= CARL9170_RX_FILTER_CTL_OTHER;
1032 
1033 		if (!(*new_flags & FIF_PSPOLL))
1034 			rx_filter |= CARL9170_RX_FILTER_CTL_PSPOLL;
1035 
1036 		if (!(*new_flags & (FIF_OTHER_BSS | FIF_PROMISC_IN_BSS))) {
1037 			rx_filter |= CARL9170_RX_FILTER_OTHER_RA;
1038 			rx_filter |= CARL9170_RX_FILTER_DECRY_FAIL;
1039 		}
1040 
1041 		WARN_ON(carl9170_rx_filter(ar, rx_filter));
1042 	}
1043 
1044 	mutex_unlock(&ar->mutex);
1045 }
1046 
1047 
1048 static void carl9170_op_bss_info_changed(struct ieee80211_hw *hw,
1049 					 struct ieee80211_vif *vif,
1050 					 struct ieee80211_bss_conf *bss_conf,
1051 					 u32 changed)
1052 {
1053 	struct ar9170 *ar = hw->priv;
1054 	struct ath_common *common = &ar->common;
1055 	int err = 0;
1056 	struct carl9170_vif_info *vif_priv;
1057 	struct ieee80211_vif *main_vif;
1058 
1059 	mutex_lock(&ar->mutex);
1060 	vif_priv = (void *) vif->drv_priv;
1061 	main_vif = carl9170_get_main_vif(ar);
1062 	if (WARN_ON(!main_vif))
1063 		goto out;
1064 
1065 	if (changed & BSS_CHANGED_BEACON_ENABLED) {
1066 		struct carl9170_vif_info *iter;
1067 		int i = 0;
1068 
1069 		vif_priv->enable_beacon = bss_conf->enable_beacon;
1070 		rcu_read_lock();
1071 		list_for_each_entry_rcu(iter, &ar->vif_list, list) {
1072 			if (iter->active && iter->enable_beacon)
1073 				i++;
1074 
1075 		}
1076 		rcu_read_unlock();
1077 
1078 		ar->beacon_enabled = i;
1079 	}
1080 
1081 	if (changed & BSS_CHANGED_BEACON) {
1082 		err = carl9170_update_beacon(ar, false);
1083 		if (err)
1084 			goto out;
1085 	}
1086 
1087 	if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON |
1088 		       BSS_CHANGED_BEACON_INT)) {
1089 
1090 		if (main_vif != vif) {
1091 			bss_conf->beacon_int = main_vif->bss_conf.beacon_int;
1092 			bss_conf->dtim_period = main_vif->bss_conf.dtim_period;
1093 		}
1094 
1095 		/*
1096 		 * Therefore a hard limit for the broadcast traffic should
1097 		 * prevent false alarms.
1098 		 */
1099 		if (vif->type != NL80211_IFTYPE_STATION &&
1100 		    (bss_conf->beacon_int * bss_conf->dtim_period >=
1101 		     (CARL9170_QUEUE_STUCK_TIMEOUT / 2))) {
1102 			err = -EINVAL;
1103 			goto out;
1104 		}
1105 
1106 		err = carl9170_set_beacon_timers(ar);
1107 		if (err)
1108 			goto out;
1109 	}
1110 
1111 	if (changed & BSS_CHANGED_HT) {
1112 		/* TODO */
1113 		err = 0;
1114 		if (err)
1115 			goto out;
1116 	}
1117 
1118 	if (main_vif != vif)
1119 		goto out;
1120 
1121 	/*
1122 	 * The following settings can only be changed by the
1123 	 * master interface.
1124 	 */
1125 
1126 	if (changed & BSS_CHANGED_BSSID) {
1127 		memcpy(common->curbssid, bss_conf->bssid, ETH_ALEN);
1128 		err = carl9170_set_operating_mode(ar);
1129 		if (err)
1130 			goto out;
1131 	}
1132 
1133 	if (changed & BSS_CHANGED_ASSOC) {
1134 		ar->common.curaid = bss_conf->aid;
1135 		err = carl9170_set_beacon_timers(ar);
1136 		if (err)
1137 			goto out;
1138 	}
1139 
1140 	if (changed & BSS_CHANGED_ERP_SLOT) {
1141 		err = carl9170_set_slot_time(ar);
1142 		if (err)
1143 			goto out;
1144 	}
1145 
1146 	if (changed & BSS_CHANGED_BASIC_RATES) {
1147 		err = carl9170_set_mac_rates(ar);
1148 		if (err)
1149 			goto out;
1150 	}
1151 
1152 out:
1153 	WARN_ON_ONCE(err && IS_STARTED(ar));
1154 	mutex_unlock(&ar->mutex);
1155 }
1156 
1157 static u64 carl9170_op_get_tsf(struct ieee80211_hw *hw,
1158 			       struct ieee80211_vif *vif)
1159 {
1160 	struct ar9170 *ar = hw->priv;
1161 	struct carl9170_tsf_rsp tsf;
1162 	int err;
1163 
1164 	mutex_lock(&ar->mutex);
1165 	err = carl9170_exec_cmd(ar, CARL9170_CMD_READ_TSF,
1166 				0, NULL, sizeof(tsf), &tsf);
1167 	mutex_unlock(&ar->mutex);
1168 	if (WARN_ON(err))
1169 		return 0;
1170 
1171 	return le64_to_cpu(tsf.tsf_64);
1172 }
1173 
1174 static int carl9170_op_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1175 			       struct ieee80211_vif *vif,
1176 			       struct ieee80211_sta *sta,
1177 			       struct ieee80211_key_conf *key)
1178 {
1179 	struct ar9170 *ar = hw->priv;
1180 	int err = 0, i;
1181 	u8 ktype;
1182 
1183 	if (ar->disable_offload || !vif)
1184 		return -EOPNOTSUPP;
1185 
1186 	/* Fall back to software encryption whenever the driver is connected
1187 	 * to more than one network.
1188 	 *
1189 	 * This is very unfortunate, because some machines cannot handle
1190 	 * the high througput speed in 802.11n networks.
1191 	 */
1192 
1193 	if (!is_main_vif(ar, vif)) {
1194 		mutex_lock(&ar->mutex);
1195 		goto err_softw;
1196 	}
1197 
1198 	/*
1199 	 * While the hardware supports *catch-all* key, for offloading
1200 	 * group-key en-/de-cryption. The way of how the hardware
1201 	 * decides which keyId maps to which key, remains a mystery...
1202 	 */
1203 	if ((vif->type != NL80211_IFTYPE_STATION &&
1204 	     vif->type != NL80211_IFTYPE_ADHOC) &&
1205 	    !(key->flags & IEEE80211_KEY_FLAG_PAIRWISE))
1206 		return -EOPNOTSUPP;
1207 
1208 	switch (key->cipher) {
1209 	case WLAN_CIPHER_SUITE_WEP40:
1210 		ktype = AR9170_ENC_ALG_WEP64;
1211 		break;
1212 	case WLAN_CIPHER_SUITE_WEP104:
1213 		ktype = AR9170_ENC_ALG_WEP128;
1214 		break;
1215 	case WLAN_CIPHER_SUITE_TKIP:
1216 		ktype = AR9170_ENC_ALG_TKIP;
1217 		break;
1218 	case WLAN_CIPHER_SUITE_CCMP:
1219 		ktype = AR9170_ENC_ALG_AESCCMP;
1220 		key->flags |= IEEE80211_KEY_FLAG_SW_MGMT_TX;
1221 		break;
1222 	default:
1223 		return -EOPNOTSUPP;
1224 	}
1225 
1226 	mutex_lock(&ar->mutex);
1227 	if (cmd == SET_KEY) {
1228 		if (!IS_STARTED(ar)) {
1229 			err = -EOPNOTSUPP;
1230 			goto out;
1231 		}
1232 
1233 		if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
1234 			sta = NULL;
1235 
1236 			i = 64 + key->keyidx;
1237 		} else {
1238 			for (i = 0; i < 64; i++)
1239 				if (!(ar->usedkeys & BIT(i)))
1240 					break;
1241 			if (i == 64)
1242 				goto err_softw;
1243 		}
1244 
1245 		key->hw_key_idx = i;
1246 
1247 		err = carl9170_upload_key(ar, i, sta ? sta->addr : NULL,
1248 					  ktype, 0, key->key,
1249 					  min_t(u8, 16, key->keylen));
1250 		if (err)
1251 			goto out;
1252 
1253 		if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
1254 			err = carl9170_upload_key(ar, i, sta ? sta->addr :
1255 						  NULL, ktype, 1,
1256 						  key->key + 16, 16);
1257 			if (err)
1258 				goto out;
1259 
1260 			/*
1261 			 * hardware is not capable generating MMIC
1262 			 * of fragmented frames!
1263 			 */
1264 			key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
1265 		}
1266 
1267 		if (i < 64)
1268 			ar->usedkeys |= BIT(i);
1269 
1270 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
1271 	} else {
1272 		if (!IS_STARTED(ar)) {
1273 			/* The device is gone... together with the key ;-) */
1274 			err = 0;
1275 			goto out;
1276 		}
1277 
1278 		if (key->hw_key_idx < 64) {
1279 			ar->usedkeys &= ~BIT(key->hw_key_idx);
1280 		} else {
1281 			err = carl9170_upload_key(ar, key->hw_key_idx, NULL,
1282 						  AR9170_ENC_ALG_NONE, 0,
1283 						  NULL, 0);
1284 			if (err)
1285 				goto out;
1286 
1287 			if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
1288 				err = carl9170_upload_key(ar, key->hw_key_idx,
1289 							  NULL,
1290 							  AR9170_ENC_ALG_NONE,
1291 							  1, NULL, 0);
1292 				if (err)
1293 					goto out;
1294 			}
1295 
1296 		}
1297 
1298 		err = carl9170_disable_key(ar, key->hw_key_idx);
1299 		if (err)
1300 			goto out;
1301 	}
1302 
1303 out:
1304 	mutex_unlock(&ar->mutex);
1305 	return err;
1306 
1307 err_softw:
1308 	if (!ar->rx_software_decryption) {
1309 		ar->rx_software_decryption = true;
1310 		carl9170_set_operating_mode(ar);
1311 	}
1312 	mutex_unlock(&ar->mutex);
1313 	return -ENOSPC;
1314 }
1315 
1316 static int carl9170_op_sta_add(struct ieee80211_hw *hw,
1317 			       struct ieee80211_vif *vif,
1318 			       struct ieee80211_sta *sta)
1319 {
1320 	struct carl9170_sta_info *sta_info = (void *) sta->drv_priv;
1321 	unsigned int i;
1322 
1323 	atomic_set(&sta_info->pending_frames, 0);
1324 
1325 	if (sta->ht_cap.ht_supported) {
1326 		if (sta->ht_cap.ampdu_density > 6) {
1327 			/*
1328 			 * HW does support 16us AMPDU density.
1329 			 * No HT-Xmit for station.
1330 			 */
1331 
1332 			return 0;
1333 		}
1334 
1335 		for (i = 0; i < ARRAY_SIZE(sta_info->agg); i++)
1336 			RCU_INIT_POINTER(sta_info->agg[i], NULL);
1337 
1338 		sta_info->ampdu_max_len = 1 << (3 + sta->ht_cap.ampdu_factor);
1339 		sta_info->ht_sta = true;
1340 	}
1341 
1342 	return 0;
1343 }
1344 
1345 static int carl9170_op_sta_remove(struct ieee80211_hw *hw,
1346 				struct ieee80211_vif *vif,
1347 				struct ieee80211_sta *sta)
1348 {
1349 	struct ar9170 *ar = hw->priv;
1350 	struct carl9170_sta_info *sta_info = (void *) sta->drv_priv;
1351 	unsigned int i;
1352 	bool cleanup = false;
1353 
1354 	if (sta->ht_cap.ht_supported) {
1355 
1356 		sta_info->ht_sta = false;
1357 
1358 		rcu_read_lock();
1359 		for (i = 0; i < ARRAY_SIZE(sta_info->agg); i++) {
1360 			struct carl9170_sta_tid *tid_info;
1361 
1362 			tid_info = rcu_dereference(sta_info->agg[i]);
1363 			RCU_INIT_POINTER(sta_info->agg[i], NULL);
1364 
1365 			if (!tid_info)
1366 				continue;
1367 
1368 			spin_lock_bh(&ar->tx_ampdu_list_lock);
1369 			if (tid_info->state > CARL9170_TID_STATE_SHUTDOWN)
1370 				tid_info->state = CARL9170_TID_STATE_SHUTDOWN;
1371 			spin_unlock_bh(&ar->tx_ampdu_list_lock);
1372 			cleanup = true;
1373 		}
1374 		rcu_read_unlock();
1375 
1376 		if (cleanup)
1377 			carl9170_ampdu_gc(ar);
1378 	}
1379 
1380 	return 0;
1381 }
1382 
1383 static int carl9170_op_conf_tx(struct ieee80211_hw *hw,
1384 			       struct ieee80211_vif *vif, u16 queue,
1385 			       const struct ieee80211_tx_queue_params *param)
1386 {
1387 	struct ar9170 *ar = hw->priv;
1388 	int ret;
1389 
1390 	mutex_lock(&ar->mutex);
1391 	if (queue < ar->hw->queues) {
1392 		memcpy(&ar->edcf[ar9170_qmap[queue]], param, sizeof(*param));
1393 		ret = carl9170_set_qos(ar);
1394 	} else {
1395 		ret = -EINVAL;
1396 	}
1397 
1398 	mutex_unlock(&ar->mutex);
1399 	return ret;
1400 }
1401 
1402 static void carl9170_ampdu_work(struct work_struct *work)
1403 {
1404 	struct ar9170 *ar = container_of(work, struct ar9170,
1405 					 ampdu_work);
1406 
1407 	if (!IS_STARTED(ar))
1408 		return;
1409 
1410 	mutex_lock(&ar->mutex);
1411 	carl9170_ampdu_gc(ar);
1412 	mutex_unlock(&ar->mutex);
1413 }
1414 
1415 static int carl9170_op_ampdu_action(struct ieee80211_hw *hw,
1416 				    struct ieee80211_vif *vif,
1417 				    enum ieee80211_ampdu_mlme_action action,
1418 				    struct ieee80211_sta *sta,
1419 				    u16 tid, u16 *ssn, u8 buf_size)
1420 {
1421 	struct ar9170 *ar = hw->priv;
1422 	struct carl9170_sta_info *sta_info = (void *) sta->drv_priv;
1423 	struct carl9170_sta_tid *tid_info;
1424 
1425 	if (modparam_noht)
1426 		return -EOPNOTSUPP;
1427 
1428 	switch (action) {
1429 	case IEEE80211_AMPDU_TX_START:
1430 		if (!sta_info->ht_sta)
1431 			return -EOPNOTSUPP;
1432 
1433 		tid_info = kzalloc(sizeof(struct carl9170_sta_tid),
1434 				   GFP_ATOMIC);
1435 		if (!tid_info)
1436 			return -ENOMEM;
1437 
1438 		tid_info->hsn = tid_info->bsn = tid_info->snx = (*ssn);
1439 		tid_info->state = CARL9170_TID_STATE_PROGRESS;
1440 		tid_info->tid = tid;
1441 		tid_info->max = sta_info->ampdu_max_len;
1442 		tid_info->sta = sta;
1443 		tid_info->vif = vif;
1444 
1445 		INIT_LIST_HEAD(&tid_info->list);
1446 		INIT_LIST_HEAD(&tid_info->tmp_list);
1447 		skb_queue_head_init(&tid_info->queue);
1448 		spin_lock_init(&tid_info->lock);
1449 
1450 		spin_lock_bh(&ar->tx_ampdu_list_lock);
1451 		ar->tx_ampdu_list_len++;
1452 		list_add_tail_rcu(&tid_info->list, &ar->tx_ampdu_list);
1453 		rcu_assign_pointer(sta_info->agg[tid], tid_info);
1454 		spin_unlock_bh(&ar->tx_ampdu_list_lock);
1455 
1456 		ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
1457 		break;
1458 
1459 	case IEEE80211_AMPDU_TX_STOP_CONT:
1460 	case IEEE80211_AMPDU_TX_STOP_FLUSH:
1461 	case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
1462 		rcu_read_lock();
1463 		tid_info = rcu_dereference(sta_info->agg[tid]);
1464 		if (tid_info) {
1465 			spin_lock_bh(&ar->tx_ampdu_list_lock);
1466 			if (tid_info->state > CARL9170_TID_STATE_SHUTDOWN)
1467 				tid_info->state = CARL9170_TID_STATE_SHUTDOWN;
1468 			spin_unlock_bh(&ar->tx_ampdu_list_lock);
1469 		}
1470 
1471 		RCU_INIT_POINTER(sta_info->agg[tid], NULL);
1472 		rcu_read_unlock();
1473 
1474 		ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
1475 		ieee80211_queue_work(ar->hw, &ar->ampdu_work);
1476 		break;
1477 
1478 	case IEEE80211_AMPDU_TX_OPERATIONAL:
1479 		rcu_read_lock();
1480 		tid_info = rcu_dereference(sta_info->agg[tid]);
1481 
1482 		sta_info->stats[tid].clear = true;
1483 		sta_info->stats[tid].req = false;
1484 
1485 		if (tid_info) {
1486 			bitmap_zero(tid_info->bitmap, CARL9170_BAW_SIZE);
1487 			tid_info->state = CARL9170_TID_STATE_IDLE;
1488 		}
1489 		rcu_read_unlock();
1490 
1491 		if (WARN_ON_ONCE(!tid_info))
1492 			return -EFAULT;
1493 
1494 		break;
1495 
1496 	case IEEE80211_AMPDU_RX_START:
1497 	case IEEE80211_AMPDU_RX_STOP:
1498 		/* Handled by hardware */
1499 		break;
1500 
1501 	default:
1502 		return -EOPNOTSUPP;
1503 	}
1504 
1505 	return 0;
1506 }
1507 
1508 #ifdef CONFIG_CARL9170_WPC
1509 static int carl9170_register_wps_button(struct ar9170 *ar)
1510 {
1511 	struct input_dev *input;
1512 	int err;
1513 
1514 	if (!(ar->features & CARL9170_WPS_BUTTON))
1515 		return 0;
1516 
1517 	input = input_allocate_device();
1518 	if (!input)
1519 		return -ENOMEM;
1520 
1521 	snprintf(ar->wps.name, sizeof(ar->wps.name), "%s WPS Button",
1522 		 wiphy_name(ar->hw->wiphy));
1523 
1524 	snprintf(ar->wps.phys, sizeof(ar->wps.phys),
1525 		 "ieee80211/%s/input0", wiphy_name(ar->hw->wiphy));
1526 
1527 	input->name = ar->wps.name;
1528 	input->phys = ar->wps.phys;
1529 	input->id.bustype = BUS_USB;
1530 	input->dev.parent = &ar->hw->wiphy->dev;
1531 
1532 	input_set_capability(input, EV_KEY, KEY_WPS_BUTTON);
1533 
1534 	err = input_register_device(input);
1535 	if (err) {
1536 		input_free_device(input);
1537 		return err;
1538 	}
1539 
1540 	ar->wps.pbc = input;
1541 	return 0;
1542 }
1543 #endif /* CONFIG_CARL9170_WPC */
1544 
1545 #ifdef CONFIG_CARL9170_HWRNG
1546 static int carl9170_rng_get(struct ar9170 *ar)
1547 {
1548 
1549 #define RW	(CARL9170_MAX_CMD_PAYLOAD_LEN / sizeof(u32))
1550 #define RB	(CARL9170_MAX_CMD_PAYLOAD_LEN)
1551 
1552 	static const __le32 rng_load[RW] = {
1553 		[0 ... (RW - 1)] = cpu_to_le32(AR9170_RAND_REG_NUM)};
1554 
1555 	u32 buf[RW];
1556 
1557 	unsigned int i, off = 0, transfer, count;
1558 	int err;
1559 
1560 	BUILD_BUG_ON(RB > CARL9170_MAX_CMD_PAYLOAD_LEN);
1561 
1562 	if (!IS_ACCEPTING_CMD(ar) || !ar->rng.initialized)
1563 		return -EAGAIN;
1564 
1565 	count = ARRAY_SIZE(ar->rng.cache);
1566 	while (count) {
1567 		err = carl9170_exec_cmd(ar, CARL9170_CMD_RREG,
1568 					RB, (u8 *) rng_load,
1569 					RB, (u8 *) buf);
1570 		if (err)
1571 			return err;
1572 
1573 		transfer = min_t(unsigned int, count, RW);
1574 		for (i = 0; i < transfer; i++)
1575 			ar->rng.cache[off + i] = buf[i];
1576 
1577 		off += transfer;
1578 		count -= transfer;
1579 	}
1580 
1581 	ar->rng.cache_idx = 0;
1582 
1583 #undef RW
1584 #undef RB
1585 	return 0;
1586 }
1587 
1588 static int carl9170_rng_read(struct hwrng *rng, u32 *data)
1589 {
1590 	struct ar9170 *ar = (struct ar9170 *)rng->priv;
1591 	int ret = -EIO;
1592 
1593 	mutex_lock(&ar->mutex);
1594 	if (ar->rng.cache_idx >= ARRAY_SIZE(ar->rng.cache)) {
1595 		ret = carl9170_rng_get(ar);
1596 		if (ret) {
1597 			mutex_unlock(&ar->mutex);
1598 			return ret;
1599 		}
1600 	}
1601 
1602 	*data = ar->rng.cache[ar->rng.cache_idx++];
1603 	mutex_unlock(&ar->mutex);
1604 
1605 	return sizeof(u16);
1606 }
1607 
1608 static void carl9170_unregister_hwrng(struct ar9170 *ar)
1609 {
1610 	if (ar->rng.initialized) {
1611 		hwrng_unregister(&ar->rng.rng);
1612 		ar->rng.initialized = false;
1613 	}
1614 }
1615 
1616 static int carl9170_register_hwrng(struct ar9170 *ar)
1617 {
1618 	int err;
1619 
1620 	snprintf(ar->rng.name, ARRAY_SIZE(ar->rng.name),
1621 		 "%s_%s", KBUILD_MODNAME, wiphy_name(ar->hw->wiphy));
1622 	ar->rng.rng.name = ar->rng.name;
1623 	ar->rng.rng.data_read = carl9170_rng_read;
1624 	ar->rng.rng.priv = (unsigned long)ar;
1625 
1626 	if (WARN_ON(ar->rng.initialized))
1627 		return -EALREADY;
1628 
1629 	err = hwrng_register(&ar->rng.rng);
1630 	if (err) {
1631 		dev_err(&ar->udev->dev, "Failed to register the random "
1632 			"number generator (%d)\n", err);
1633 		return err;
1634 	}
1635 
1636 	ar->rng.initialized = true;
1637 
1638 	err = carl9170_rng_get(ar);
1639 	if (err) {
1640 		carl9170_unregister_hwrng(ar);
1641 		return err;
1642 	}
1643 
1644 	return 0;
1645 }
1646 #endif /* CONFIG_CARL9170_HWRNG */
1647 
1648 static int carl9170_op_get_survey(struct ieee80211_hw *hw, int idx,
1649 				struct survey_info *survey)
1650 {
1651 	struct ar9170 *ar = hw->priv;
1652 	struct ieee80211_channel *chan;
1653 	struct ieee80211_supported_band *band;
1654 	int err, b, i;
1655 
1656 	chan = ar->channel;
1657 	if (!chan)
1658 		return -ENODEV;
1659 
1660 	if (idx == chan->hw_value) {
1661 		mutex_lock(&ar->mutex);
1662 		err = carl9170_update_survey(ar, false, true);
1663 		mutex_unlock(&ar->mutex);
1664 		if (err)
1665 			return err;
1666 	}
1667 
1668 	for (b = 0; b < IEEE80211_NUM_BANDS; b++) {
1669 		band = ar->hw->wiphy->bands[b];
1670 
1671 		if (!band)
1672 			continue;
1673 
1674 		for (i = 0; i < band->n_channels; i++) {
1675 			if (band->channels[i].hw_value == idx) {
1676 				chan = &band->channels[i];
1677 				goto found;
1678 			}
1679 		}
1680 	}
1681 	return -ENOENT;
1682 
1683 found:
1684 	memcpy(survey, &ar->survey[idx], sizeof(*survey));
1685 
1686 	survey->channel = chan;
1687 	survey->filled = SURVEY_INFO_NOISE_DBM;
1688 
1689 	if (ar->channel == chan)
1690 		survey->filled |= SURVEY_INFO_IN_USE;
1691 
1692 	if (ar->fw.hw_counters) {
1693 		survey->filled |= SURVEY_INFO_TIME |
1694 				  SURVEY_INFO_TIME_BUSY |
1695 				  SURVEY_INFO_TIME_TX;
1696 	}
1697 
1698 	return 0;
1699 }
1700 
1701 static void carl9170_op_flush(struct ieee80211_hw *hw,
1702 			      struct ieee80211_vif *vif,
1703 			      u32 queues, bool drop)
1704 {
1705 	struct ar9170 *ar = hw->priv;
1706 	unsigned int vid;
1707 
1708 	mutex_lock(&ar->mutex);
1709 	for_each_set_bit(vid, &ar->vif_bitmap, ar->fw.vif_num)
1710 		carl9170_flush_cab(ar, vid);
1711 
1712 	carl9170_flush(ar, drop);
1713 	mutex_unlock(&ar->mutex);
1714 }
1715 
1716 static int carl9170_op_get_stats(struct ieee80211_hw *hw,
1717 				 struct ieee80211_low_level_stats *stats)
1718 {
1719 	struct ar9170 *ar = hw->priv;
1720 
1721 	memset(stats, 0, sizeof(*stats));
1722 	stats->dot11ACKFailureCount = ar->tx_ack_failures;
1723 	stats->dot11FCSErrorCount = ar->tx_fcs_errors;
1724 	return 0;
1725 }
1726 
1727 static void carl9170_op_sta_notify(struct ieee80211_hw *hw,
1728 				   struct ieee80211_vif *vif,
1729 				   enum sta_notify_cmd cmd,
1730 				   struct ieee80211_sta *sta)
1731 {
1732 	struct carl9170_sta_info *sta_info = (void *) sta->drv_priv;
1733 
1734 	switch (cmd) {
1735 	case STA_NOTIFY_SLEEP:
1736 		sta_info->sleeping = true;
1737 		if (atomic_read(&sta_info->pending_frames))
1738 			ieee80211_sta_block_awake(hw, sta, true);
1739 		break;
1740 
1741 	case STA_NOTIFY_AWAKE:
1742 		sta_info->sleeping = false;
1743 		break;
1744 	}
1745 }
1746 
1747 static bool carl9170_tx_frames_pending(struct ieee80211_hw *hw)
1748 {
1749 	struct ar9170 *ar = hw->priv;
1750 
1751 	return !!atomic_read(&ar->tx_total_queued);
1752 }
1753 
1754 static const struct ieee80211_ops carl9170_ops = {
1755 	.start			= carl9170_op_start,
1756 	.stop			= carl9170_op_stop,
1757 	.tx			= carl9170_op_tx,
1758 	.flush			= carl9170_op_flush,
1759 	.add_interface		= carl9170_op_add_interface,
1760 	.remove_interface	= carl9170_op_remove_interface,
1761 	.config			= carl9170_op_config,
1762 	.prepare_multicast	= carl9170_op_prepare_multicast,
1763 	.configure_filter	= carl9170_op_configure_filter,
1764 	.conf_tx		= carl9170_op_conf_tx,
1765 	.bss_info_changed	= carl9170_op_bss_info_changed,
1766 	.get_tsf		= carl9170_op_get_tsf,
1767 	.set_key		= carl9170_op_set_key,
1768 	.sta_add		= carl9170_op_sta_add,
1769 	.sta_remove		= carl9170_op_sta_remove,
1770 	.sta_notify		= carl9170_op_sta_notify,
1771 	.get_survey		= carl9170_op_get_survey,
1772 	.get_stats		= carl9170_op_get_stats,
1773 	.ampdu_action		= carl9170_op_ampdu_action,
1774 	.tx_frames_pending	= carl9170_tx_frames_pending,
1775 };
1776 
1777 void *carl9170_alloc(size_t priv_size)
1778 {
1779 	struct ieee80211_hw *hw;
1780 	struct ar9170 *ar;
1781 	struct sk_buff *skb;
1782 	int i;
1783 
1784 	/*
1785 	 * this buffer is used for rx stream reconstruction.
1786 	 * Under heavy load this device (or the transport layer?)
1787 	 * tends to split the streams into separate rx descriptors.
1788 	 */
1789 
1790 	skb = __dev_alloc_skb(AR9170_RX_STREAM_MAX_SIZE, GFP_KERNEL);
1791 	if (!skb)
1792 		goto err_nomem;
1793 
1794 	hw = ieee80211_alloc_hw(priv_size, &carl9170_ops);
1795 	if (!hw)
1796 		goto err_nomem;
1797 
1798 	ar = hw->priv;
1799 	ar->hw = hw;
1800 	ar->rx_failover = skb;
1801 
1802 	memset(&ar->rx_plcp, 0, sizeof(struct ar9170_rx_head));
1803 	ar->rx_has_plcp = false;
1804 
1805 	/*
1806 	 * Here's a hidden pitfall!
1807 	 *
1808 	 * All 4 AC queues work perfectly well under _legacy_ operation.
1809 	 * However as soon as aggregation is enabled, the traffic flow
1810 	 * gets very bumpy. Therefore we have to _switch_ to a
1811 	 * software AC with a single HW queue.
1812 	 */
1813 	hw->queues = __AR9170_NUM_TXQ;
1814 
1815 	mutex_init(&ar->mutex);
1816 	spin_lock_init(&ar->beacon_lock);
1817 	spin_lock_init(&ar->cmd_lock);
1818 	spin_lock_init(&ar->tx_stats_lock);
1819 	spin_lock_init(&ar->tx_ampdu_list_lock);
1820 	spin_lock_init(&ar->mem_lock);
1821 	spin_lock_init(&ar->state_lock);
1822 	atomic_set(&ar->pending_restarts, 0);
1823 	ar->vifs = 0;
1824 	for (i = 0; i < ar->hw->queues; i++) {
1825 		skb_queue_head_init(&ar->tx_status[i]);
1826 		skb_queue_head_init(&ar->tx_pending[i]);
1827 
1828 		INIT_LIST_HEAD(&ar->bar_list[i]);
1829 		spin_lock_init(&ar->bar_list_lock[i]);
1830 	}
1831 	INIT_WORK(&ar->ps_work, carl9170_ps_work);
1832 	INIT_WORK(&ar->ping_work, carl9170_ping_work);
1833 	INIT_WORK(&ar->restart_work, carl9170_restart_work);
1834 	INIT_WORK(&ar->ampdu_work, carl9170_ampdu_work);
1835 	INIT_DELAYED_WORK(&ar->stat_work, carl9170_stat_work);
1836 	INIT_DELAYED_WORK(&ar->tx_janitor, carl9170_tx_janitor);
1837 	INIT_LIST_HEAD(&ar->tx_ampdu_list);
1838 	rcu_assign_pointer(ar->tx_ampdu_iter,
1839 			   (struct carl9170_sta_tid *) &ar->tx_ampdu_list);
1840 
1841 	bitmap_zero(&ar->vif_bitmap, ar->fw.vif_num);
1842 	INIT_LIST_HEAD(&ar->vif_list);
1843 	init_completion(&ar->tx_flush);
1844 
1845 	/* firmware decides which modes we support */
1846 	hw->wiphy->interface_modes = 0;
1847 
1848 	hw->flags |= IEEE80211_HW_RX_INCLUDES_FCS |
1849 		     IEEE80211_HW_MFP_CAPABLE |
1850 		     IEEE80211_HW_REPORTS_TX_ACK_STATUS |
1851 		     IEEE80211_HW_SUPPORTS_PS |
1852 		     IEEE80211_HW_PS_NULLFUNC_STACK |
1853 		     IEEE80211_HW_NEED_DTIM_BEFORE_ASSOC |
1854 		     IEEE80211_HW_SUPPORTS_RC_TABLE |
1855 		     IEEE80211_HW_SIGNAL_DBM |
1856 		     IEEE80211_HW_SUPPORTS_HT_CCK_RATES;
1857 
1858 	if (!modparam_noht) {
1859 		/*
1860 		 * see the comment above, why we allow the user
1861 		 * to disable HT by a module parameter.
1862 		 */
1863 		hw->flags |= IEEE80211_HW_AMPDU_AGGREGATION;
1864 	}
1865 
1866 	hw->extra_tx_headroom = sizeof(struct _carl9170_tx_superframe);
1867 	hw->sta_data_size = sizeof(struct carl9170_sta_info);
1868 	hw->vif_data_size = sizeof(struct carl9170_vif_info);
1869 
1870 	hw->max_rates = CARL9170_TX_MAX_RATES;
1871 	hw->max_rate_tries = CARL9170_TX_USER_RATE_TRIES;
1872 
1873 	for (i = 0; i < ARRAY_SIZE(ar->noise); i++)
1874 		ar->noise[i] = -95; /* ATH_DEFAULT_NOISE_FLOOR */
1875 
1876 	return ar;
1877 
1878 err_nomem:
1879 	kfree_skb(skb);
1880 	return ERR_PTR(-ENOMEM);
1881 }
1882 
1883 static int carl9170_read_eeprom(struct ar9170 *ar)
1884 {
1885 #define RW	8	/* number of words to read at once */
1886 #define RB	(sizeof(u32) * RW)
1887 	u8 *eeprom = (void *)&ar->eeprom;
1888 	__le32 offsets[RW];
1889 	int i, j, err;
1890 
1891 	BUILD_BUG_ON(sizeof(ar->eeprom) & 3);
1892 
1893 	BUILD_BUG_ON(RB > CARL9170_MAX_CMD_LEN - 4);
1894 #ifndef __CHECKER__
1895 	/* don't want to handle trailing remains */
1896 	BUILD_BUG_ON(sizeof(ar->eeprom) % RB);
1897 #endif
1898 
1899 	for (i = 0; i < sizeof(ar->eeprom) / RB; i++) {
1900 		for (j = 0; j < RW; j++)
1901 			offsets[j] = cpu_to_le32(AR9170_EEPROM_START +
1902 						 RB * i + 4 * j);
1903 
1904 		err = carl9170_exec_cmd(ar, CARL9170_CMD_RREG,
1905 					RB, (u8 *) &offsets,
1906 					RB, eeprom + RB * i);
1907 		if (err)
1908 			return err;
1909 	}
1910 
1911 #undef RW
1912 #undef RB
1913 	return 0;
1914 }
1915 
1916 static int carl9170_parse_eeprom(struct ar9170 *ar)
1917 {
1918 	struct ath_regulatory *regulatory = &ar->common.regulatory;
1919 	unsigned int rx_streams, tx_streams, tx_params = 0;
1920 	int bands = 0;
1921 	int chans = 0;
1922 
1923 	if (ar->eeprom.length == cpu_to_le16(0xffff))
1924 		return -ENODATA;
1925 
1926 	rx_streams = hweight8(ar->eeprom.rx_mask);
1927 	tx_streams = hweight8(ar->eeprom.tx_mask);
1928 
1929 	if (rx_streams != tx_streams) {
1930 		tx_params = IEEE80211_HT_MCS_TX_RX_DIFF;
1931 
1932 		WARN_ON(!(tx_streams >= 1 && tx_streams <=
1933 			IEEE80211_HT_MCS_TX_MAX_STREAMS));
1934 
1935 		tx_params = (tx_streams - 1) <<
1936 			    IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT;
1937 
1938 		carl9170_band_2GHz.ht_cap.mcs.tx_params |= tx_params;
1939 		carl9170_band_5GHz.ht_cap.mcs.tx_params |= tx_params;
1940 	}
1941 
1942 	if (ar->eeprom.operating_flags & AR9170_OPFLAG_2GHZ) {
1943 		ar->hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
1944 			&carl9170_band_2GHz;
1945 		chans += carl9170_band_2GHz.n_channels;
1946 		bands++;
1947 	}
1948 	if (ar->eeprom.operating_flags & AR9170_OPFLAG_5GHZ) {
1949 		ar->hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1950 			&carl9170_band_5GHz;
1951 		chans += carl9170_band_5GHz.n_channels;
1952 		bands++;
1953 	}
1954 
1955 	if (!bands)
1956 		return -EINVAL;
1957 
1958 	ar->survey = kzalloc(sizeof(struct survey_info) * chans, GFP_KERNEL);
1959 	if (!ar->survey)
1960 		return -ENOMEM;
1961 	ar->num_channels = chans;
1962 
1963 	regulatory->current_rd = le16_to_cpu(ar->eeprom.reg_domain[0]);
1964 
1965 	/* second part of wiphy init */
1966 	SET_IEEE80211_PERM_ADDR(ar->hw, ar->eeprom.mac_address);
1967 
1968 	return 0;
1969 }
1970 
1971 static void carl9170_reg_notifier(struct wiphy *wiphy,
1972 				  struct regulatory_request *request)
1973 {
1974 	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
1975 	struct ar9170 *ar = hw->priv;
1976 
1977 	ath_reg_notifier_apply(wiphy, request, &ar->common.regulatory);
1978 }
1979 
1980 int carl9170_register(struct ar9170 *ar)
1981 {
1982 	struct ath_regulatory *regulatory = &ar->common.regulatory;
1983 	int err = 0, i;
1984 
1985 	if (WARN_ON(ar->mem_bitmap))
1986 		return -EINVAL;
1987 
1988 	ar->mem_bitmap = kzalloc(roundup(ar->fw.mem_blocks, BITS_PER_LONG) *
1989 				 sizeof(unsigned long), GFP_KERNEL);
1990 
1991 	if (!ar->mem_bitmap)
1992 		return -ENOMEM;
1993 
1994 	/* try to read EEPROM, init MAC addr */
1995 	err = carl9170_read_eeprom(ar);
1996 	if (err)
1997 		return err;
1998 
1999 	err = carl9170_parse_eeprom(ar);
2000 	if (err)
2001 		return err;
2002 
2003 	err = ath_regd_init(regulatory, ar->hw->wiphy,
2004 			    carl9170_reg_notifier);
2005 	if (err)
2006 		return err;
2007 
2008 	if (modparam_noht) {
2009 		carl9170_band_2GHz.ht_cap.ht_supported = false;
2010 		carl9170_band_5GHz.ht_cap.ht_supported = false;
2011 	}
2012 
2013 	for (i = 0; i < ar->fw.vif_num; i++) {
2014 		ar->vif_priv[i].id = i;
2015 		ar->vif_priv[i].vif = NULL;
2016 	}
2017 
2018 	err = ieee80211_register_hw(ar->hw);
2019 	if (err)
2020 		return err;
2021 
2022 	/* mac80211 interface is now registered */
2023 	ar->registered = true;
2024 
2025 	if (!ath_is_world_regd(regulatory))
2026 		regulatory_hint(ar->hw->wiphy, regulatory->alpha2);
2027 
2028 #ifdef CONFIG_CARL9170_DEBUGFS
2029 	carl9170_debugfs_register(ar);
2030 #endif /* CONFIG_CARL9170_DEBUGFS */
2031 
2032 	err = carl9170_led_init(ar);
2033 	if (err)
2034 		goto err_unreg;
2035 
2036 #ifdef CONFIG_CARL9170_LEDS
2037 	err = carl9170_led_register(ar);
2038 	if (err)
2039 		goto err_unreg;
2040 #endif /* CONFIG_CARL9170_LEDS */
2041 
2042 #ifdef CONFIG_CARL9170_WPC
2043 	err = carl9170_register_wps_button(ar);
2044 	if (err)
2045 		goto err_unreg;
2046 #endif /* CONFIG_CARL9170_WPC */
2047 
2048 #ifdef CONFIG_CARL9170_HWRNG
2049 	err = carl9170_register_hwrng(ar);
2050 	if (err)
2051 		goto err_unreg;
2052 #endif /* CONFIG_CARL9170_HWRNG */
2053 
2054 	dev_info(&ar->udev->dev, "Atheros AR9170 is registered as '%s'\n",
2055 		 wiphy_name(ar->hw->wiphy));
2056 
2057 	return 0;
2058 
2059 err_unreg:
2060 	carl9170_unregister(ar);
2061 	return err;
2062 }
2063 
2064 void carl9170_unregister(struct ar9170 *ar)
2065 {
2066 	if (!ar->registered)
2067 		return;
2068 
2069 	ar->registered = false;
2070 
2071 #ifdef CONFIG_CARL9170_LEDS
2072 	carl9170_led_unregister(ar);
2073 #endif /* CONFIG_CARL9170_LEDS */
2074 
2075 #ifdef CONFIG_CARL9170_DEBUGFS
2076 	carl9170_debugfs_unregister(ar);
2077 #endif /* CONFIG_CARL9170_DEBUGFS */
2078 
2079 #ifdef CONFIG_CARL9170_WPC
2080 	if (ar->wps.pbc) {
2081 		input_unregister_device(ar->wps.pbc);
2082 		ar->wps.pbc = NULL;
2083 	}
2084 #endif /* CONFIG_CARL9170_WPC */
2085 
2086 #ifdef CONFIG_CARL9170_HWRNG
2087 	carl9170_unregister_hwrng(ar);
2088 #endif /* CONFIG_CARL9170_HWRNG */
2089 
2090 	carl9170_cancel_worker(ar);
2091 	cancel_work_sync(&ar->restart_work);
2092 
2093 	ieee80211_unregister_hw(ar->hw);
2094 }
2095 
2096 void carl9170_free(struct ar9170 *ar)
2097 {
2098 	WARN_ON(ar->registered);
2099 	WARN_ON(IS_INITIALIZED(ar));
2100 
2101 	kfree_skb(ar->rx_failover);
2102 	ar->rx_failover = NULL;
2103 
2104 	kfree(ar->mem_bitmap);
2105 	ar->mem_bitmap = NULL;
2106 
2107 	kfree(ar->survey);
2108 	ar->survey = NULL;
2109 
2110 	mutex_destroy(&ar->mutex);
2111 
2112 	ieee80211_free_hw(ar->hw);
2113 }
2114