1 /* 2 * Atheros CARL9170 driver 3 * 4 * mac80211 interaction code 5 * 6 * Copyright 2008, Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2009, 2010, Christian Lamparter <chunkeey@googlemail.com> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; see the file COPYING. If not, see 21 * http://www.gnu.org/licenses/. 22 * 23 * This file incorporates work covered by the following copyright and 24 * permission notice: 25 * Copyright (c) 2007-2008 Atheros Communications, Inc. 26 * 27 * Permission to use, copy, modify, and/or distribute this software for any 28 * purpose with or without fee is hereby granted, provided that the above 29 * copyright notice and this permission notice appear in all copies. 30 * 31 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 32 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 33 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 34 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 35 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 36 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 37 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 38 */ 39 40 #include <linux/slab.h> 41 #include <linux/module.h> 42 #include <linux/etherdevice.h> 43 #include <linux/random.h> 44 #include <net/mac80211.h> 45 #include <net/cfg80211.h> 46 #include "hw.h" 47 #include "carl9170.h" 48 #include "cmd.h" 49 50 static bool modparam_nohwcrypt; 51 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444); 52 MODULE_PARM_DESC(nohwcrypt, "Disable hardware crypto offload."); 53 54 int modparam_noht; 55 module_param_named(noht, modparam_noht, int, 0444); 56 MODULE_PARM_DESC(noht, "Disable MPDU aggregation."); 57 58 #define RATE(_bitrate, _hw_rate, _txpidx, _flags) { \ 59 .bitrate = (_bitrate), \ 60 .flags = (_flags), \ 61 .hw_value = (_hw_rate) | (_txpidx) << 4, \ 62 } 63 64 struct ieee80211_rate __carl9170_ratetable[] = { 65 RATE(10, 0, 0, 0), 66 RATE(20, 1, 1, IEEE80211_RATE_SHORT_PREAMBLE), 67 RATE(55, 2, 2, IEEE80211_RATE_SHORT_PREAMBLE), 68 RATE(110, 3, 3, IEEE80211_RATE_SHORT_PREAMBLE), 69 RATE(60, 0xb, 0, 0), 70 RATE(90, 0xf, 0, 0), 71 RATE(120, 0xa, 0, 0), 72 RATE(180, 0xe, 0, 0), 73 RATE(240, 0x9, 0, 0), 74 RATE(360, 0xd, 1, 0), 75 RATE(480, 0x8, 2, 0), 76 RATE(540, 0xc, 3, 0), 77 }; 78 #undef RATE 79 80 #define carl9170_g_ratetable (__carl9170_ratetable + 0) 81 #define carl9170_g_ratetable_size 12 82 #define carl9170_a_ratetable (__carl9170_ratetable + 4) 83 #define carl9170_a_ratetable_size 8 84 85 /* 86 * NB: The hw_value is used as an index into the carl9170_phy_freq_params 87 * array in phy.c so that we don't have to do frequency lookups! 88 */ 89 #define CHAN(_freq, _idx) { \ 90 .center_freq = (_freq), \ 91 .hw_value = (_idx), \ 92 .max_power = 18, /* XXX */ \ 93 } 94 95 static struct ieee80211_channel carl9170_2ghz_chantable[] = { 96 CHAN(2412, 0), 97 CHAN(2417, 1), 98 CHAN(2422, 2), 99 CHAN(2427, 3), 100 CHAN(2432, 4), 101 CHAN(2437, 5), 102 CHAN(2442, 6), 103 CHAN(2447, 7), 104 CHAN(2452, 8), 105 CHAN(2457, 9), 106 CHAN(2462, 10), 107 CHAN(2467, 11), 108 CHAN(2472, 12), 109 CHAN(2484, 13), 110 }; 111 112 static struct ieee80211_channel carl9170_5ghz_chantable[] = { 113 CHAN(4920, 14), 114 CHAN(4940, 15), 115 CHAN(4960, 16), 116 CHAN(4980, 17), 117 CHAN(5040, 18), 118 CHAN(5060, 19), 119 CHAN(5080, 20), 120 CHAN(5180, 21), 121 CHAN(5200, 22), 122 CHAN(5220, 23), 123 CHAN(5240, 24), 124 CHAN(5260, 25), 125 CHAN(5280, 26), 126 CHAN(5300, 27), 127 CHAN(5320, 28), 128 CHAN(5500, 29), 129 CHAN(5520, 30), 130 CHAN(5540, 31), 131 CHAN(5560, 32), 132 CHAN(5580, 33), 133 CHAN(5600, 34), 134 CHAN(5620, 35), 135 CHAN(5640, 36), 136 CHAN(5660, 37), 137 CHAN(5680, 38), 138 CHAN(5700, 39), 139 CHAN(5745, 40), 140 CHAN(5765, 41), 141 CHAN(5785, 42), 142 CHAN(5805, 43), 143 CHAN(5825, 44), 144 CHAN(5170, 45), 145 CHAN(5190, 46), 146 CHAN(5210, 47), 147 CHAN(5230, 48), 148 }; 149 #undef CHAN 150 151 #define CARL9170_HT_CAP \ 152 { \ 153 .ht_supported = true, \ 154 .cap = IEEE80211_HT_CAP_MAX_AMSDU | \ 155 IEEE80211_HT_CAP_SUP_WIDTH_20_40 | \ 156 IEEE80211_HT_CAP_SGI_40 | \ 157 IEEE80211_HT_CAP_DSSSCCK40 | \ 158 IEEE80211_HT_CAP_SM_PS, \ 159 .ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K, \ 160 .ampdu_density = IEEE80211_HT_MPDU_DENSITY_8, \ 161 .mcs = { \ 162 .rx_mask = { 0xff, 0xff, 0, 0, 0x1, 0, 0, 0, 0, 0, }, \ 163 .rx_highest = cpu_to_le16(300), \ 164 .tx_params = IEEE80211_HT_MCS_TX_DEFINED, \ 165 }, \ 166 } 167 168 static struct ieee80211_supported_band carl9170_band_2GHz = { 169 .channels = carl9170_2ghz_chantable, 170 .n_channels = ARRAY_SIZE(carl9170_2ghz_chantable), 171 .bitrates = carl9170_g_ratetable, 172 .n_bitrates = carl9170_g_ratetable_size, 173 .ht_cap = CARL9170_HT_CAP, 174 }; 175 176 static struct ieee80211_supported_band carl9170_band_5GHz = { 177 .channels = carl9170_5ghz_chantable, 178 .n_channels = ARRAY_SIZE(carl9170_5ghz_chantable), 179 .bitrates = carl9170_a_ratetable, 180 .n_bitrates = carl9170_a_ratetable_size, 181 .ht_cap = CARL9170_HT_CAP, 182 }; 183 184 static void carl9170_ampdu_gc(struct ar9170 *ar) 185 { 186 struct carl9170_sta_tid *tid_info; 187 LIST_HEAD(tid_gc); 188 189 rcu_read_lock(); 190 list_for_each_entry_rcu(tid_info, &ar->tx_ampdu_list, list) { 191 spin_lock_bh(&ar->tx_ampdu_list_lock); 192 if (tid_info->state == CARL9170_TID_STATE_SHUTDOWN) { 193 tid_info->state = CARL9170_TID_STATE_KILLED; 194 list_del_rcu(&tid_info->list); 195 ar->tx_ampdu_list_len--; 196 list_add_tail(&tid_info->tmp_list, &tid_gc); 197 } 198 spin_unlock_bh(&ar->tx_ampdu_list_lock); 199 200 } 201 rcu_assign_pointer(ar->tx_ampdu_iter, tid_info); 202 rcu_read_unlock(); 203 204 synchronize_rcu(); 205 206 while (!list_empty(&tid_gc)) { 207 struct sk_buff *skb; 208 tid_info = list_first_entry(&tid_gc, struct carl9170_sta_tid, 209 tmp_list); 210 211 while ((skb = __skb_dequeue(&tid_info->queue))) 212 carl9170_tx_status(ar, skb, false); 213 214 list_del_init(&tid_info->tmp_list); 215 kfree(tid_info); 216 } 217 } 218 219 static void carl9170_flush(struct ar9170 *ar, bool drop_queued) 220 { 221 if (drop_queued) { 222 int i; 223 224 /* 225 * We can only drop frames which have not been uploaded 226 * to the device yet. 227 */ 228 229 for (i = 0; i < ar->hw->queues; i++) { 230 struct sk_buff *skb; 231 232 while ((skb = skb_dequeue(&ar->tx_pending[i]))) { 233 struct ieee80211_tx_info *info; 234 235 info = IEEE80211_SKB_CB(skb); 236 if (info->flags & IEEE80211_TX_CTL_AMPDU) 237 atomic_dec(&ar->tx_ampdu_upload); 238 239 carl9170_tx_status(ar, skb, false); 240 } 241 } 242 } 243 244 /* Wait for all other outstanding frames to timeout. */ 245 if (atomic_read(&ar->tx_total_queued)) 246 WARN_ON(wait_for_completion_timeout(&ar->tx_flush, HZ) == 0); 247 } 248 249 static void carl9170_flush_ba(struct ar9170 *ar) 250 { 251 struct sk_buff_head free; 252 struct carl9170_sta_tid *tid_info; 253 struct sk_buff *skb; 254 255 __skb_queue_head_init(&free); 256 257 rcu_read_lock(); 258 spin_lock_bh(&ar->tx_ampdu_list_lock); 259 list_for_each_entry_rcu(tid_info, &ar->tx_ampdu_list, list) { 260 if (tid_info->state > CARL9170_TID_STATE_SUSPEND) { 261 tid_info->state = CARL9170_TID_STATE_SUSPEND; 262 263 spin_lock(&tid_info->lock); 264 while ((skb = __skb_dequeue(&tid_info->queue))) 265 __skb_queue_tail(&free, skb); 266 spin_unlock(&tid_info->lock); 267 } 268 } 269 spin_unlock_bh(&ar->tx_ampdu_list_lock); 270 rcu_read_unlock(); 271 272 while ((skb = __skb_dequeue(&free))) 273 carl9170_tx_status(ar, skb, false); 274 } 275 276 static void carl9170_zap_queues(struct ar9170 *ar) 277 { 278 struct carl9170_vif_info *cvif; 279 unsigned int i; 280 281 carl9170_ampdu_gc(ar); 282 283 carl9170_flush_ba(ar); 284 carl9170_flush(ar, true); 285 286 for (i = 0; i < ar->hw->queues; i++) { 287 spin_lock_bh(&ar->tx_status[i].lock); 288 while (!skb_queue_empty(&ar->tx_status[i])) { 289 struct sk_buff *skb; 290 291 skb = skb_peek(&ar->tx_status[i]); 292 carl9170_tx_get_skb(skb); 293 spin_unlock_bh(&ar->tx_status[i].lock); 294 carl9170_tx_drop(ar, skb); 295 spin_lock_bh(&ar->tx_status[i].lock); 296 carl9170_tx_put_skb(skb); 297 } 298 spin_unlock_bh(&ar->tx_status[i].lock); 299 } 300 301 BUILD_BUG_ON(CARL9170_NUM_TX_LIMIT_SOFT < 1); 302 BUILD_BUG_ON(CARL9170_NUM_TX_LIMIT_HARD < CARL9170_NUM_TX_LIMIT_SOFT); 303 BUILD_BUG_ON(CARL9170_NUM_TX_LIMIT_HARD >= CARL9170_BAW_BITS); 304 305 /* reinitialize queues statistics */ 306 memset(&ar->tx_stats, 0, sizeof(ar->tx_stats)); 307 for (i = 0; i < ar->hw->queues; i++) 308 ar->tx_stats[i].limit = CARL9170_NUM_TX_LIMIT_HARD; 309 310 bitmap_zero(ar->mem_bitmap, ar->fw.mem_blocks); 311 312 rcu_read_lock(); 313 list_for_each_entry_rcu(cvif, &ar->vif_list, list) { 314 spin_lock_bh(&ar->beacon_lock); 315 dev_kfree_skb_any(cvif->beacon); 316 cvif->beacon = NULL; 317 spin_unlock_bh(&ar->beacon_lock); 318 } 319 rcu_read_unlock(); 320 321 atomic_set(&ar->tx_ampdu_upload, 0); 322 atomic_set(&ar->tx_ampdu_scheduler, 0); 323 atomic_set(&ar->tx_total_pending, 0); 324 atomic_set(&ar->tx_total_queued, 0); 325 atomic_set(&ar->mem_free_blocks, ar->fw.mem_blocks); 326 } 327 328 #define CARL9170_FILL_QUEUE(queue, ai_fs, cwmin, cwmax, _txop) \ 329 do { \ 330 queue.aifs = ai_fs; \ 331 queue.cw_min = cwmin; \ 332 queue.cw_max = cwmax; \ 333 queue.txop = _txop; \ 334 } while (0) 335 336 static int carl9170_op_start(struct ieee80211_hw *hw) 337 { 338 struct ar9170 *ar = hw->priv; 339 int err, i; 340 341 mutex_lock(&ar->mutex); 342 343 carl9170_zap_queues(ar); 344 345 /* reset QoS defaults */ 346 CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_VO], 2, 3, 7, 47); 347 CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_VI], 2, 7, 15, 94); 348 CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_BE], 3, 15, 1023, 0); 349 CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_BK], 7, 15, 1023, 0); 350 CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_SPECIAL], 2, 3, 7, 0); 351 352 ar->current_factor = ar->current_density = -1; 353 /* "The first key is unique." */ 354 ar->usedkeys = 1; 355 ar->filter_state = 0; 356 ar->ps.last_action = jiffies; 357 ar->ps.last_slept = jiffies; 358 ar->erp_mode = CARL9170_ERP_AUTO; 359 360 /* Set "disable hw crypto offload" whenever the module parameter 361 * nohwcrypt is true or if the firmware does not support it. 362 */ 363 ar->disable_offload = modparam_nohwcrypt | 364 ar->fw.disable_offload_fw; 365 ar->rx_software_decryption = ar->disable_offload; 366 367 for (i = 0; i < ar->hw->queues; i++) { 368 ar->queue_stop_timeout[i] = jiffies; 369 ar->max_queue_stop_timeout[i] = 0; 370 } 371 372 atomic_set(&ar->mem_allocs, 0); 373 374 err = carl9170_usb_open(ar); 375 if (err) 376 goto out; 377 378 err = carl9170_init_mac(ar); 379 if (err) 380 goto out; 381 382 err = carl9170_set_qos(ar); 383 if (err) 384 goto out; 385 386 if (ar->fw.rx_filter) { 387 err = carl9170_rx_filter(ar, CARL9170_RX_FILTER_OTHER_RA | 388 CARL9170_RX_FILTER_CTL_OTHER | CARL9170_RX_FILTER_BAD); 389 if (err) 390 goto out; 391 } 392 393 err = carl9170_write_reg(ar, AR9170_MAC_REG_DMA_TRIGGER, 394 AR9170_DMA_TRIGGER_RXQ); 395 if (err) 396 goto out; 397 398 /* Clear key-cache */ 399 for (i = 0; i < AR9170_CAM_MAX_USER + 4; i++) { 400 err = carl9170_upload_key(ar, i, NULL, AR9170_ENC_ALG_NONE, 401 0, NULL, 0); 402 if (err) 403 goto out; 404 405 err = carl9170_upload_key(ar, i, NULL, AR9170_ENC_ALG_NONE, 406 1, NULL, 0); 407 if (err) 408 goto out; 409 410 if (i < AR9170_CAM_MAX_USER) { 411 err = carl9170_disable_key(ar, i); 412 if (err) 413 goto out; 414 } 415 } 416 417 carl9170_set_state_when(ar, CARL9170_IDLE, CARL9170_STARTED); 418 419 ieee80211_queue_delayed_work(ar->hw, &ar->stat_work, 420 round_jiffies(msecs_to_jiffies(CARL9170_STAT_WORK))); 421 422 ieee80211_wake_queues(ar->hw); 423 err = 0; 424 425 out: 426 mutex_unlock(&ar->mutex); 427 return err; 428 } 429 430 static void carl9170_cancel_worker(struct ar9170 *ar) 431 { 432 cancel_delayed_work_sync(&ar->stat_work); 433 cancel_delayed_work_sync(&ar->tx_janitor); 434 #ifdef CONFIG_CARL9170_LEDS 435 cancel_delayed_work_sync(&ar->led_work); 436 #endif /* CONFIG_CARL9170_LEDS */ 437 cancel_work_sync(&ar->ps_work); 438 cancel_work_sync(&ar->ping_work); 439 cancel_work_sync(&ar->ampdu_work); 440 } 441 442 static void carl9170_op_stop(struct ieee80211_hw *hw) 443 { 444 struct ar9170 *ar = hw->priv; 445 446 carl9170_set_state_when(ar, CARL9170_STARTED, CARL9170_IDLE); 447 448 ieee80211_stop_queues(ar->hw); 449 450 mutex_lock(&ar->mutex); 451 if (IS_ACCEPTING_CMD(ar)) { 452 RCU_INIT_POINTER(ar->beacon_iter, NULL); 453 454 carl9170_led_set_state(ar, 0); 455 456 /* stop DMA */ 457 carl9170_write_reg(ar, AR9170_MAC_REG_DMA_TRIGGER, 0); 458 carl9170_usb_stop(ar); 459 } 460 461 carl9170_zap_queues(ar); 462 mutex_unlock(&ar->mutex); 463 464 carl9170_cancel_worker(ar); 465 } 466 467 static void carl9170_restart_work(struct work_struct *work) 468 { 469 struct ar9170 *ar = container_of(work, struct ar9170, 470 restart_work); 471 int err = -EIO; 472 473 ar->usedkeys = 0; 474 ar->filter_state = 0; 475 carl9170_cancel_worker(ar); 476 477 mutex_lock(&ar->mutex); 478 if (!ar->force_usb_reset) { 479 err = carl9170_usb_restart(ar); 480 if (net_ratelimit()) { 481 if (err) 482 dev_err(&ar->udev->dev, "Failed to restart device (%d).\n", err); 483 else 484 dev_info(&ar->udev->dev, "device restarted successfully.\n"); 485 } 486 } 487 carl9170_zap_queues(ar); 488 mutex_unlock(&ar->mutex); 489 490 if (!err && !ar->force_usb_reset) { 491 ar->restart_counter++; 492 atomic_set(&ar->pending_restarts, 0); 493 494 ieee80211_restart_hw(ar->hw); 495 } else { 496 /* 497 * The reset was unsuccessful and the device seems to 498 * be dead. But there's still one option: a low-level 499 * usb subsystem reset... 500 */ 501 502 carl9170_usb_reset(ar); 503 } 504 } 505 506 void carl9170_restart(struct ar9170 *ar, const enum carl9170_restart_reasons r) 507 { 508 carl9170_set_state_when(ar, CARL9170_STARTED, CARL9170_IDLE); 509 510 /* 511 * Sometimes, an error can trigger several different reset events. 512 * By ignoring these *surplus* reset events, the device won't be 513 * killed again, right after it has recovered. 514 */ 515 if (atomic_inc_return(&ar->pending_restarts) > 1) { 516 dev_dbg(&ar->udev->dev, "ignoring restart (%d)\n", r); 517 return; 518 } 519 520 ieee80211_stop_queues(ar->hw); 521 522 dev_err(&ar->udev->dev, "restart device (%d)\n", r); 523 524 if (!WARN_ON(r == CARL9170_RR_NO_REASON) || 525 !WARN_ON(r >= __CARL9170_RR_LAST)) 526 ar->last_reason = r; 527 528 if (!ar->registered) 529 return; 530 531 if (!IS_ACCEPTING_CMD(ar) || ar->needs_full_reset) 532 ar->force_usb_reset = true; 533 534 ieee80211_queue_work(ar->hw, &ar->restart_work); 535 536 /* 537 * At this point, the device instance might have vanished/disabled. 538 * So, don't put any code which access the ar9170 struct 539 * without proper protection. 540 */ 541 } 542 543 static void carl9170_ping_work(struct work_struct *work) 544 { 545 struct ar9170 *ar = container_of(work, struct ar9170, ping_work); 546 int err; 547 548 if (!IS_STARTED(ar)) 549 return; 550 551 mutex_lock(&ar->mutex); 552 err = carl9170_echo_test(ar, 0xdeadbeef); 553 if (err) 554 carl9170_restart(ar, CARL9170_RR_UNRESPONSIVE_DEVICE); 555 mutex_unlock(&ar->mutex); 556 } 557 558 static int carl9170_init_interface(struct ar9170 *ar, 559 struct ieee80211_vif *vif) 560 { 561 struct ath_common *common = &ar->common; 562 int err; 563 564 if (!vif) { 565 WARN_ON_ONCE(IS_STARTED(ar)); 566 return 0; 567 } 568 569 memcpy(common->macaddr, vif->addr, ETH_ALEN); 570 571 /* We have to fall back to software crypto, whenever 572 * the user choose to participates in an IBSS. HW 573 * offload for IBSS RSN is not supported by this driver. 574 * 575 * NOTE: If the previous main interface has already 576 * disabled hw crypto offload, we have to keep this 577 * previous disable_offload setting as it was. 578 * Altough ideally, we should notify mac80211 and tell 579 * it to forget about any HW crypto offload for now. 580 */ 581 ar->disable_offload |= ((vif->type != NL80211_IFTYPE_STATION) && 582 (vif->type != NL80211_IFTYPE_AP)); 583 584 /* The driver used to have P2P GO+CLIENT support, 585 * but since this was dropped and we don't know if 586 * there are any gremlins lurking in the shadows, 587 * so best we keep HW offload disabled for P2P. 588 */ 589 ar->disable_offload |= vif->p2p; 590 591 ar->rx_software_decryption = ar->disable_offload; 592 593 err = carl9170_set_operating_mode(ar); 594 return err; 595 } 596 597 static int carl9170_op_add_interface(struct ieee80211_hw *hw, 598 struct ieee80211_vif *vif) 599 { 600 struct carl9170_vif_info *vif_priv = (void *) vif->drv_priv; 601 struct ieee80211_vif *main_vif, *old_main = NULL; 602 struct ar9170 *ar = hw->priv; 603 int vif_id = -1, err = 0; 604 605 mutex_lock(&ar->mutex); 606 rcu_read_lock(); 607 if (vif_priv->active) { 608 /* 609 * Skip the interface structure initialization, 610 * if the vif survived the _restart call. 611 */ 612 vif_id = vif_priv->id; 613 vif_priv->enable_beacon = false; 614 615 spin_lock_bh(&ar->beacon_lock); 616 dev_kfree_skb_any(vif_priv->beacon); 617 vif_priv->beacon = NULL; 618 spin_unlock_bh(&ar->beacon_lock); 619 620 goto init; 621 } 622 623 /* Because the AR9170 HW's MAC doesn't provide full support for 624 * multiple, independent interfaces [of different operation modes]. 625 * We have to select ONE main interface [main mode of HW], but we 626 * can have multiple slaves [AKA: entry in the ACK-table]. 627 * 628 * The first (from HEAD/TOP) interface in the ar->vif_list is 629 * always the main intf. All following intfs in this list 630 * are considered to be slave intfs. 631 */ 632 main_vif = carl9170_get_main_vif(ar); 633 634 if (main_vif) { 635 switch (main_vif->type) { 636 case NL80211_IFTYPE_STATION: 637 if (vif->type == NL80211_IFTYPE_STATION) 638 break; 639 640 err = -EBUSY; 641 rcu_read_unlock(); 642 643 goto unlock; 644 645 case NL80211_IFTYPE_MESH_POINT: 646 case NL80211_IFTYPE_AP: 647 if ((vif->type == NL80211_IFTYPE_STATION) || 648 (vif->type == NL80211_IFTYPE_AP) || 649 (vif->type == NL80211_IFTYPE_MESH_POINT)) 650 break; 651 652 err = -EBUSY; 653 rcu_read_unlock(); 654 goto unlock; 655 656 default: 657 rcu_read_unlock(); 658 goto unlock; 659 } 660 } 661 662 vif_id = bitmap_find_free_region(&ar->vif_bitmap, ar->fw.vif_num, 0); 663 664 if (vif_id < 0) { 665 rcu_read_unlock(); 666 667 err = -ENOSPC; 668 goto unlock; 669 } 670 671 BUG_ON(ar->vif_priv[vif_id].id != vif_id); 672 673 vif_priv->active = true; 674 vif_priv->id = vif_id; 675 vif_priv->enable_beacon = false; 676 ar->vifs++; 677 if (old_main) { 678 /* We end up in here, if the main interface is being replaced. 679 * Put the new main interface at the HEAD of the list and the 680 * previous inteface will automatically become second in line. 681 */ 682 list_add_rcu(&vif_priv->list, &ar->vif_list); 683 } else { 684 /* Add new inteface. If the list is empty, it will become the 685 * main inteface, otherwise it will be slave. 686 */ 687 list_add_tail_rcu(&vif_priv->list, &ar->vif_list); 688 } 689 rcu_assign_pointer(ar->vif_priv[vif_id].vif, vif); 690 691 init: 692 main_vif = carl9170_get_main_vif(ar); 693 694 if (main_vif == vif) { 695 rcu_assign_pointer(ar->beacon_iter, vif_priv); 696 rcu_read_unlock(); 697 698 if (old_main) { 699 struct carl9170_vif_info *old_main_priv = 700 (void *) old_main->drv_priv; 701 /* downgrade old main intf to slave intf. 702 * NOTE: We are no longer under rcu_read_lock. 703 * But we are still holding ar->mutex, so the 704 * vif data [id, addr] is safe. 705 */ 706 err = carl9170_mod_virtual_mac(ar, old_main_priv->id, 707 old_main->addr); 708 if (err) 709 goto unlock; 710 } 711 712 err = carl9170_init_interface(ar, vif); 713 if (err) 714 goto unlock; 715 } else { 716 rcu_read_unlock(); 717 err = carl9170_mod_virtual_mac(ar, vif_id, vif->addr); 718 719 if (err) 720 goto unlock; 721 } 722 723 if (ar->fw.tx_seq_table) { 724 err = carl9170_write_reg(ar, ar->fw.tx_seq_table + vif_id * 4, 725 0); 726 if (err) 727 goto unlock; 728 } 729 730 unlock: 731 if (err && (vif_id >= 0)) { 732 vif_priv->active = false; 733 bitmap_release_region(&ar->vif_bitmap, vif_id, 0); 734 ar->vifs--; 735 RCU_INIT_POINTER(ar->vif_priv[vif_id].vif, NULL); 736 list_del_rcu(&vif_priv->list); 737 mutex_unlock(&ar->mutex); 738 synchronize_rcu(); 739 } else { 740 if (ar->vifs > 1) 741 ar->ps.off_override |= PS_OFF_VIF; 742 743 mutex_unlock(&ar->mutex); 744 } 745 746 return err; 747 } 748 749 static void carl9170_op_remove_interface(struct ieee80211_hw *hw, 750 struct ieee80211_vif *vif) 751 { 752 struct carl9170_vif_info *vif_priv = (void *) vif->drv_priv; 753 struct ieee80211_vif *main_vif; 754 struct ar9170 *ar = hw->priv; 755 unsigned int id; 756 757 mutex_lock(&ar->mutex); 758 759 if (WARN_ON_ONCE(!vif_priv->active)) 760 goto unlock; 761 762 ar->vifs--; 763 764 rcu_read_lock(); 765 main_vif = carl9170_get_main_vif(ar); 766 767 id = vif_priv->id; 768 769 vif_priv->active = false; 770 WARN_ON(vif_priv->enable_beacon); 771 vif_priv->enable_beacon = false; 772 list_del_rcu(&vif_priv->list); 773 RCU_INIT_POINTER(ar->vif_priv[id].vif, NULL); 774 775 if (vif == main_vif) { 776 rcu_read_unlock(); 777 778 if (ar->vifs) { 779 WARN_ON(carl9170_init_interface(ar, 780 carl9170_get_main_vif(ar))); 781 } else { 782 carl9170_set_operating_mode(ar); 783 } 784 } else { 785 rcu_read_unlock(); 786 787 WARN_ON(carl9170_mod_virtual_mac(ar, id, NULL)); 788 } 789 790 carl9170_update_beacon(ar, false); 791 carl9170_flush_cab(ar, id); 792 793 spin_lock_bh(&ar->beacon_lock); 794 dev_kfree_skb_any(vif_priv->beacon); 795 vif_priv->beacon = NULL; 796 spin_unlock_bh(&ar->beacon_lock); 797 798 bitmap_release_region(&ar->vif_bitmap, id, 0); 799 800 carl9170_set_beacon_timers(ar); 801 802 if (ar->vifs == 1) 803 ar->ps.off_override &= ~PS_OFF_VIF; 804 805 unlock: 806 mutex_unlock(&ar->mutex); 807 808 synchronize_rcu(); 809 } 810 811 void carl9170_ps_check(struct ar9170 *ar) 812 { 813 ieee80211_queue_work(ar->hw, &ar->ps_work); 814 } 815 816 /* caller must hold ar->mutex */ 817 static int carl9170_ps_update(struct ar9170 *ar) 818 { 819 bool ps = false; 820 int err = 0; 821 822 if (!ar->ps.off_override) 823 ps = (ar->hw->conf.flags & IEEE80211_CONF_PS); 824 825 if (ps != ar->ps.state) { 826 err = carl9170_powersave(ar, ps); 827 if (err) 828 return err; 829 830 if (ar->ps.state && !ps) { 831 ar->ps.sleep_ms = jiffies_to_msecs(jiffies - 832 ar->ps.last_action); 833 } 834 835 if (ps) 836 ar->ps.last_slept = jiffies; 837 838 ar->ps.last_action = jiffies; 839 ar->ps.state = ps; 840 } 841 842 return 0; 843 } 844 845 static void carl9170_ps_work(struct work_struct *work) 846 { 847 struct ar9170 *ar = container_of(work, struct ar9170, 848 ps_work); 849 mutex_lock(&ar->mutex); 850 if (IS_STARTED(ar)) 851 WARN_ON_ONCE(carl9170_ps_update(ar) != 0); 852 mutex_unlock(&ar->mutex); 853 } 854 855 static int carl9170_update_survey(struct ar9170 *ar, bool flush, bool noise) 856 { 857 int err; 858 859 if (noise) { 860 err = carl9170_get_noisefloor(ar); 861 if (err) 862 return err; 863 } 864 865 if (ar->fw.hw_counters) { 866 err = carl9170_collect_tally(ar); 867 if (err) 868 return err; 869 } 870 871 if (flush) 872 memset(&ar->tally, 0, sizeof(ar->tally)); 873 874 return 0; 875 } 876 877 static void carl9170_stat_work(struct work_struct *work) 878 { 879 struct ar9170 *ar = container_of(work, struct ar9170, stat_work.work); 880 int err; 881 882 mutex_lock(&ar->mutex); 883 err = carl9170_update_survey(ar, false, true); 884 mutex_unlock(&ar->mutex); 885 886 if (err) 887 return; 888 889 ieee80211_queue_delayed_work(ar->hw, &ar->stat_work, 890 round_jiffies(msecs_to_jiffies(CARL9170_STAT_WORK))); 891 } 892 893 static int carl9170_op_config(struct ieee80211_hw *hw, u32 changed) 894 { 895 struct ar9170 *ar = hw->priv; 896 int err = 0; 897 898 mutex_lock(&ar->mutex); 899 if (changed & IEEE80211_CONF_CHANGE_LISTEN_INTERVAL) { 900 /* TODO */ 901 err = 0; 902 } 903 904 if (changed & IEEE80211_CONF_CHANGE_PS) { 905 err = carl9170_ps_update(ar); 906 if (err) 907 goto out; 908 } 909 910 if (changed & IEEE80211_CONF_CHANGE_SMPS) { 911 /* TODO */ 912 err = 0; 913 } 914 915 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) { 916 enum nl80211_channel_type channel_type = 917 cfg80211_get_chandef_type(&hw->conf.chandef); 918 919 /* adjust slot time for 5 GHz */ 920 err = carl9170_set_slot_time(ar); 921 if (err) 922 goto out; 923 924 err = carl9170_update_survey(ar, true, false); 925 if (err) 926 goto out; 927 928 err = carl9170_set_channel(ar, hw->conf.chandef.chan, 929 channel_type); 930 if (err) 931 goto out; 932 933 err = carl9170_update_survey(ar, false, true); 934 if (err) 935 goto out; 936 937 err = carl9170_set_dyn_sifs_ack(ar); 938 if (err) 939 goto out; 940 941 err = carl9170_set_rts_cts_rate(ar); 942 if (err) 943 goto out; 944 } 945 946 if (changed & IEEE80211_CONF_CHANGE_POWER) { 947 err = carl9170_set_mac_tpc(ar, ar->hw->conf.chandef.chan); 948 if (err) 949 goto out; 950 } 951 952 out: 953 mutex_unlock(&ar->mutex); 954 return err; 955 } 956 957 static u64 carl9170_op_prepare_multicast(struct ieee80211_hw *hw, 958 struct netdev_hw_addr_list *mc_list) 959 { 960 struct netdev_hw_addr *ha; 961 u64 mchash; 962 963 /* always get broadcast frames */ 964 mchash = 1ULL << (0xff >> 2); 965 966 netdev_hw_addr_list_for_each(ha, mc_list) 967 mchash |= 1ULL << (ha->addr[5] >> 2); 968 969 return mchash; 970 } 971 972 static void carl9170_op_configure_filter(struct ieee80211_hw *hw, 973 unsigned int changed_flags, 974 unsigned int *new_flags, 975 u64 multicast) 976 { 977 struct ar9170 *ar = hw->priv; 978 979 /* mask supported flags */ 980 *new_flags &= FIF_ALLMULTI | ar->rx_filter_caps; 981 982 if (!IS_ACCEPTING_CMD(ar)) 983 return; 984 985 mutex_lock(&ar->mutex); 986 987 ar->filter_state = *new_flags; 988 /* 989 * We can support more by setting the sniffer bit and 990 * then checking the error flags, later. 991 */ 992 993 if (*new_flags & FIF_ALLMULTI) 994 multicast = ~0ULL; 995 996 if (multicast != ar->cur_mc_hash) 997 WARN_ON(carl9170_update_multicast(ar, multicast)); 998 999 if (changed_flags & FIF_OTHER_BSS) { 1000 ar->sniffer_enabled = !!(*new_flags & FIF_OTHER_BSS); 1001 1002 WARN_ON(carl9170_set_operating_mode(ar)); 1003 } 1004 1005 if (ar->fw.rx_filter && changed_flags & ar->rx_filter_caps) { 1006 u32 rx_filter = 0; 1007 1008 if (!ar->fw.ba_filter) 1009 rx_filter |= CARL9170_RX_FILTER_CTL_OTHER; 1010 1011 if (!(*new_flags & (FIF_FCSFAIL | FIF_PLCPFAIL))) 1012 rx_filter |= CARL9170_RX_FILTER_BAD; 1013 1014 if (!(*new_flags & FIF_CONTROL)) 1015 rx_filter |= CARL9170_RX_FILTER_CTL_OTHER; 1016 1017 if (!(*new_flags & FIF_PSPOLL)) 1018 rx_filter |= CARL9170_RX_FILTER_CTL_PSPOLL; 1019 1020 if (!(*new_flags & FIF_OTHER_BSS)) { 1021 rx_filter |= CARL9170_RX_FILTER_OTHER_RA; 1022 rx_filter |= CARL9170_RX_FILTER_DECRY_FAIL; 1023 } 1024 1025 WARN_ON(carl9170_rx_filter(ar, rx_filter)); 1026 } 1027 1028 mutex_unlock(&ar->mutex); 1029 } 1030 1031 1032 static void carl9170_op_bss_info_changed(struct ieee80211_hw *hw, 1033 struct ieee80211_vif *vif, 1034 struct ieee80211_bss_conf *bss_conf, 1035 u32 changed) 1036 { 1037 struct ar9170 *ar = hw->priv; 1038 struct ath_common *common = &ar->common; 1039 int err = 0; 1040 struct carl9170_vif_info *vif_priv; 1041 struct ieee80211_vif *main_vif; 1042 1043 mutex_lock(&ar->mutex); 1044 vif_priv = (void *) vif->drv_priv; 1045 main_vif = carl9170_get_main_vif(ar); 1046 if (WARN_ON(!main_vif)) 1047 goto out; 1048 1049 if (changed & BSS_CHANGED_BEACON_ENABLED) { 1050 struct carl9170_vif_info *iter; 1051 int i = 0; 1052 1053 vif_priv->enable_beacon = bss_conf->enable_beacon; 1054 rcu_read_lock(); 1055 list_for_each_entry_rcu(iter, &ar->vif_list, list) { 1056 if (iter->active && iter->enable_beacon) 1057 i++; 1058 1059 } 1060 rcu_read_unlock(); 1061 1062 ar->beacon_enabled = i; 1063 } 1064 1065 if (changed & BSS_CHANGED_BEACON) { 1066 err = carl9170_update_beacon(ar, false); 1067 if (err) 1068 goto out; 1069 } 1070 1071 if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON | 1072 BSS_CHANGED_BEACON_INT)) { 1073 1074 if (main_vif != vif) { 1075 bss_conf->beacon_int = main_vif->bss_conf.beacon_int; 1076 bss_conf->dtim_period = main_vif->bss_conf.dtim_period; 1077 } 1078 1079 /* 1080 * Therefore a hard limit for the broadcast traffic should 1081 * prevent false alarms. 1082 */ 1083 if (vif->type != NL80211_IFTYPE_STATION && 1084 (bss_conf->beacon_int * bss_conf->dtim_period >= 1085 (CARL9170_QUEUE_STUCK_TIMEOUT / 2))) { 1086 err = -EINVAL; 1087 goto out; 1088 } 1089 1090 err = carl9170_set_beacon_timers(ar); 1091 if (err) 1092 goto out; 1093 } 1094 1095 if (changed & BSS_CHANGED_HT) { 1096 /* TODO */ 1097 err = 0; 1098 if (err) 1099 goto out; 1100 } 1101 1102 if (main_vif != vif) 1103 goto out; 1104 1105 /* 1106 * The following settings can only be changed by the 1107 * master interface. 1108 */ 1109 1110 if (changed & BSS_CHANGED_BSSID) { 1111 memcpy(common->curbssid, bss_conf->bssid, ETH_ALEN); 1112 err = carl9170_set_operating_mode(ar); 1113 if (err) 1114 goto out; 1115 } 1116 1117 if (changed & BSS_CHANGED_ASSOC) { 1118 ar->common.curaid = bss_conf->aid; 1119 err = carl9170_set_beacon_timers(ar); 1120 if (err) 1121 goto out; 1122 } 1123 1124 if (changed & BSS_CHANGED_ERP_SLOT) { 1125 err = carl9170_set_slot_time(ar); 1126 if (err) 1127 goto out; 1128 } 1129 1130 if (changed & BSS_CHANGED_BASIC_RATES) { 1131 err = carl9170_set_mac_rates(ar); 1132 if (err) 1133 goto out; 1134 } 1135 1136 out: 1137 WARN_ON_ONCE(err && IS_STARTED(ar)); 1138 mutex_unlock(&ar->mutex); 1139 } 1140 1141 static u64 carl9170_op_get_tsf(struct ieee80211_hw *hw, 1142 struct ieee80211_vif *vif) 1143 { 1144 struct ar9170 *ar = hw->priv; 1145 struct carl9170_tsf_rsp tsf; 1146 int err; 1147 1148 mutex_lock(&ar->mutex); 1149 err = carl9170_exec_cmd(ar, CARL9170_CMD_READ_TSF, 1150 0, NULL, sizeof(tsf), &tsf); 1151 mutex_unlock(&ar->mutex); 1152 if (WARN_ON(err)) 1153 return 0; 1154 1155 return le64_to_cpu(tsf.tsf_64); 1156 } 1157 1158 static int carl9170_op_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, 1159 struct ieee80211_vif *vif, 1160 struct ieee80211_sta *sta, 1161 struct ieee80211_key_conf *key) 1162 { 1163 struct ar9170 *ar = hw->priv; 1164 int err = 0, i; 1165 u8 ktype; 1166 1167 if (ar->disable_offload || !vif) 1168 return -EOPNOTSUPP; 1169 1170 /* Fall back to software encryption whenever the driver is connected 1171 * to more than one network. 1172 * 1173 * This is very unfortunate, because some machines cannot handle 1174 * the high througput speed in 802.11n networks. 1175 */ 1176 1177 if (!is_main_vif(ar, vif)) { 1178 mutex_lock(&ar->mutex); 1179 goto err_softw; 1180 } 1181 1182 /* 1183 * While the hardware supports *catch-all* key, for offloading 1184 * group-key en-/de-cryption. The way of how the hardware 1185 * decides which keyId maps to which key, remains a mystery... 1186 */ 1187 if ((vif->type != NL80211_IFTYPE_STATION && 1188 vif->type != NL80211_IFTYPE_ADHOC) && 1189 !(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) 1190 return -EOPNOTSUPP; 1191 1192 switch (key->cipher) { 1193 case WLAN_CIPHER_SUITE_WEP40: 1194 ktype = AR9170_ENC_ALG_WEP64; 1195 break; 1196 case WLAN_CIPHER_SUITE_WEP104: 1197 ktype = AR9170_ENC_ALG_WEP128; 1198 break; 1199 case WLAN_CIPHER_SUITE_TKIP: 1200 ktype = AR9170_ENC_ALG_TKIP; 1201 break; 1202 case WLAN_CIPHER_SUITE_CCMP: 1203 ktype = AR9170_ENC_ALG_AESCCMP; 1204 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT_TX; 1205 break; 1206 default: 1207 return -EOPNOTSUPP; 1208 } 1209 1210 mutex_lock(&ar->mutex); 1211 if (cmd == SET_KEY) { 1212 if (!IS_STARTED(ar)) { 1213 err = -EOPNOTSUPP; 1214 goto out; 1215 } 1216 1217 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) { 1218 sta = NULL; 1219 1220 i = 64 + key->keyidx; 1221 } else { 1222 for (i = 0; i < 64; i++) 1223 if (!(ar->usedkeys & BIT(i))) 1224 break; 1225 if (i == 64) 1226 goto err_softw; 1227 } 1228 1229 key->hw_key_idx = i; 1230 1231 err = carl9170_upload_key(ar, i, sta ? sta->addr : NULL, 1232 ktype, 0, key->key, 1233 min_t(u8, 16, key->keylen)); 1234 if (err) 1235 goto out; 1236 1237 if (key->cipher == WLAN_CIPHER_SUITE_TKIP) { 1238 err = carl9170_upload_key(ar, i, sta ? sta->addr : 1239 NULL, ktype, 1, 1240 key->key + 16, 16); 1241 if (err) 1242 goto out; 1243 1244 /* 1245 * hardware is not capable generating MMIC 1246 * of fragmented frames! 1247 */ 1248 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC; 1249 } 1250 1251 if (i < 64) 1252 ar->usedkeys |= BIT(i); 1253 1254 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; 1255 } else { 1256 if (!IS_STARTED(ar)) { 1257 /* The device is gone... together with the key ;-) */ 1258 err = 0; 1259 goto out; 1260 } 1261 1262 if (key->hw_key_idx < 64) { 1263 ar->usedkeys &= ~BIT(key->hw_key_idx); 1264 } else { 1265 err = carl9170_upload_key(ar, key->hw_key_idx, NULL, 1266 AR9170_ENC_ALG_NONE, 0, 1267 NULL, 0); 1268 if (err) 1269 goto out; 1270 1271 if (key->cipher == WLAN_CIPHER_SUITE_TKIP) { 1272 err = carl9170_upload_key(ar, key->hw_key_idx, 1273 NULL, 1274 AR9170_ENC_ALG_NONE, 1275 1, NULL, 0); 1276 if (err) 1277 goto out; 1278 } 1279 1280 } 1281 1282 err = carl9170_disable_key(ar, key->hw_key_idx); 1283 if (err) 1284 goto out; 1285 } 1286 1287 out: 1288 mutex_unlock(&ar->mutex); 1289 return err; 1290 1291 err_softw: 1292 if (!ar->rx_software_decryption) { 1293 ar->rx_software_decryption = true; 1294 carl9170_set_operating_mode(ar); 1295 } 1296 mutex_unlock(&ar->mutex); 1297 return -ENOSPC; 1298 } 1299 1300 static int carl9170_op_sta_add(struct ieee80211_hw *hw, 1301 struct ieee80211_vif *vif, 1302 struct ieee80211_sta *sta) 1303 { 1304 struct carl9170_sta_info *sta_info = (void *) sta->drv_priv; 1305 unsigned int i; 1306 1307 atomic_set(&sta_info->pending_frames, 0); 1308 1309 if (sta->ht_cap.ht_supported) { 1310 if (sta->ht_cap.ampdu_density > 6) { 1311 /* 1312 * HW does support 16us AMPDU density. 1313 * No HT-Xmit for station. 1314 */ 1315 1316 return 0; 1317 } 1318 1319 for (i = 0; i < ARRAY_SIZE(sta_info->agg); i++) 1320 RCU_INIT_POINTER(sta_info->agg[i], NULL); 1321 1322 sta_info->ampdu_max_len = 1 << (3 + sta->ht_cap.ampdu_factor); 1323 sta_info->ht_sta = true; 1324 } 1325 1326 return 0; 1327 } 1328 1329 static int carl9170_op_sta_remove(struct ieee80211_hw *hw, 1330 struct ieee80211_vif *vif, 1331 struct ieee80211_sta *sta) 1332 { 1333 struct ar9170 *ar = hw->priv; 1334 struct carl9170_sta_info *sta_info = (void *) sta->drv_priv; 1335 unsigned int i; 1336 bool cleanup = false; 1337 1338 if (sta->ht_cap.ht_supported) { 1339 1340 sta_info->ht_sta = false; 1341 1342 rcu_read_lock(); 1343 for (i = 0; i < ARRAY_SIZE(sta_info->agg); i++) { 1344 struct carl9170_sta_tid *tid_info; 1345 1346 tid_info = rcu_dereference(sta_info->agg[i]); 1347 RCU_INIT_POINTER(sta_info->agg[i], NULL); 1348 1349 if (!tid_info) 1350 continue; 1351 1352 spin_lock_bh(&ar->tx_ampdu_list_lock); 1353 if (tid_info->state > CARL9170_TID_STATE_SHUTDOWN) 1354 tid_info->state = CARL9170_TID_STATE_SHUTDOWN; 1355 spin_unlock_bh(&ar->tx_ampdu_list_lock); 1356 cleanup = true; 1357 } 1358 rcu_read_unlock(); 1359 1360 if (cleanup) 1361 carl9170_ampdu_gc(ar); 1362 } 1363 1364 return 0; 1365 } 1366 1367 static int carl9170_op_conf_tx(struct ieee80211_hw *hw, 1368 struct ieee80211_vif *vif, u16 queue, 1369 const struct ieee80211_tx_queue_params *param) 1370 { 1371 struct ar9170 *ar = hw->priv; 1372 int ret; 1373 1374 mutex_lock(&ar->mutex); 1375 memcpy(&ar->edcf[ar9170_qmap(queue)], param, sizeof(*param)); 1376 ret = carl9170_set_qos(ar); 1377 mutex_unlock(&ar->mutex); 1378 return ret; 1379 } 1380 1381 static void carl9170_ampdu_work(struct work_struct *work) 1382 { 1383 struct ar9170 *ar = container_of(work, struct ar9170, 1384 ampdu_work); 1385 1386 if (!IS_STARTED(ar)) 1387 return; 1388 1389 mutex_lock(&ar->mutex); 1390 carl9170_ampdu_gc(ar); 1391 mutex_unlock(&ar->mutex); 1392 } 1393 1394 static int carl9170_op_ampdu_action(struct ieee80211_hw *hw, 1395 struct ieee80211_vif *vif, 1396 struct ieee80211_ampdu_params *params) 1397 { 1398 struct ieee80211_sta *sta = params->sta; 1399 enum ieee80211_ampdu_mlme_action action = params->action; 1400 u16 tid = params->tid; 1401 u16 *ssn = ¶ms->ssn; 1402 struct ar9170 *ar = hw->priv; 1403 struct carl9170_sta_info *sta_info = (void *) sta->drv_priv; 1404 struct carl9170_sta_tid *tid_info; 1405 1406 if (modparam_noht) 1407 return -EOPNOTSUPP; 1408 1409 switch (action) { 1410 case IEEE80211_AMPDU_TX_START: 1411 if (!sta_info->ht_sta) 1412 return -EOPNOTSUPP; 1413 1414 tid_info = kzalloc(sizeof(struct carl9170_sta_tid), 1415 GFP_ATOMIC); 1416 if (!tid_info) 1417 return -ENOMEM; 1418 1419 tid_info->hsn = tid_info->bsn = tid_info->snx = (*ssn); 1420 tid_info->state = CARL9170_TID_STATE_PROGRESS; 1421 tid_info->tid = tid; 1422 tid_info->max = sta_info->ampdu_max_len; 1423 tid_info->sta = sta; 1424 tid_info->vif = vif; 1425 1426 INIT_LIST_HEAD(&tid_info->list); 1427 INIT_LIST_HEAD(&tid_info->tmp_list); 1428 skb_queue_head_init(&tid_info->queue); 1429 spin_lock_init(&tid_info->lock); 1430 1431 spin_lock_bh(&ar->tx_ampdu_list_lock); 1432 ar->tx_ampdu_list_len++; 1433 list_add_tail_rcu(&tid_info->list, &ar->tx_ampdu_list); 1434 rcu_assign_pointer(sta_info->agg[tid], tid_info); 1435 spin_unlock_bh(&ar->tx_ampdu_list_lock); 1436 1437 return IEEE80211_AMPDU_TX_START_IMMEDIATE; 1438 1439 case IEEE80211_AMPDU_TX_STOP_CONT: 1440 case IEEE80211_AMPDU_TX_STOP_FLUSH: 1441 case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: 1442 rcu_read_lock(); 1443 tid_info = rcu_dereference(sta_info->agg[tid]); 1444 if (tid_info) { 1445 spin_lock_bh(&ar->tx_ampdu_list_lock); 1446 if (tid_info->state > CARL9170_TID_STATE_SHUTDOWN) 1447 tid_info->state = CARL9170_TID_STATE_SHUTDOWN; 1448 spin_unlock_bh(&ar->tx_ampdu_list_lock); 1449 } 1450 1451 RCU_INIT_POINTER(sta_info->agg[tid], NULL); 1452 rcu_read_unlock(); 1453 1454 ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid); 1455 ieee80211_queue_work(ar->hw, &ar->ampdu_work); 1456 break; 1457 1458 case IEEE80211_AMPDU_TX_OPERATIONAL: 1459 rcu_read_lock(); 1460 tid_info = rcu_dereference(sta_info->agg[tid]); 1461 1462 sta_info->stats[tid].clear = true; 1463 sta_info->stats[tid].req = false; 1464 1465 if (tid_info) { 1466 bitmap_zero(tid_info->bitmap, CARL9170_BAW_SIZE); 1467 tid_info->state = CARL9170_TID_STATE_IDLE; 1468 } 1469 rcu_read_unlock(); 1470 1471 if (WARN_ON_ONCE(!tid_info)) 1472 return -EFAULT; 1473 1474 break; 1475 1476 case IEEE80211_AMPDU_RX_START: 1477 case IEEE80211_AMPDU_RX_STOP: 1478 /* Handled by hardware */ 1479 break; 1480 1481 default: 1482 return -EOPNOTSUPP; 1483 } 1484 1485 return 0; 1486 } 1487 1488 #ifdef CONFIG_CARL9170_WPC 1489 static int carl9170_register_wps_button(struct ar9170 *ar) 1490 { 1491 struct input_dev *input; 1492 int err; 1493 1494 if (!(ar->features & CARL9170_WPS_BUTTON)) 1495 return 0; 1496 1497 input = input_allocate_device(); 1498 if (!input) 1499 return -ENOMEM; 1500 1501 snprintf(ar->wps.name, sizeof(ar->wps.name), "%s WPS Button", 1502 wiphy_name(ar->hw->wiphy)); 1503 1504 snprintf(ar->wps.phys, sizeof(ar->wps.phys), 1505 "ieee80211/%s/input0", wiphy_name(ar->hw->wiphy)); 1506 1507 input->name = ar->wps.name; 1508 input->phys = ar->wps.phys; 1509 input->id.bustype = BUS_USB; 1510 input->dev.parent = &ar->hw->wiphy->dev; 1511 1512 input_set_capability(input, EV_KEY, KEY_WPS_BUTTON); 1513 1514 err = input_register_device(input); 1515 if (err) { 1516 input_free_device(input); 1517 return err; 1518 } 1519 1520 ar->wps.pbc = input; 1521 return 0; 1522 } 1523 #endif /* CONFIG_CARL9170_WPC */ 1524 1525 #ifdef CONFIG_CARL9170_HWRNG 1526 static int carl9170_rng_get(struct ar9170 *ar) 1527 { 1528 1529 #define RW (CARL9170_MAX_CMD_PAYLOAD_LEN / sizeof(u32)) 1530 #define RB (CARL9170_MAX_CMD_PAYLOAD_LEN) 1531 1532 static const __le32 rng_load[RW] = { 1533 [0 ... (RW - 1)] = cpu_to_le32(AR9170_RAND_REG_NUM)}; 1534 1535 u32 buf[RW]; 1536 1537 unsigned int i, off = 0, transfer, count; 1538 int err; 1539 1540 BUILD_BUG_ON(RB > CARL9170_MAX_CMD_PAYLOAD_LEN); 1541 1542 if (!IS_ACCEPTING_CMD(ar) || !ar->rng.initialized) 1543 return -EAGAIN; 1544 1545 count = ARRAY_SIZE(ar->rng.cache); 1546 while (count) { 1547 err = carl9170_exec_cmd(ar, CARL9170_CMD_RREG, 1548 RB, (u8 *) rng_load, 1549 RB, (u8 *) buf); 1550 if (err) 1551 return err; 1552 1553 transfer = min_t(unsigned int, count, RW); 1554 for (i = 0; i < transfer; i++) 1555 ar->rng.cache[off + i] = buf[i]; 1556 1557 off += transfer; 1558 count -= transfer; 1559 } 1560 1561 ar->rng.cache_idx = 0; 1562 1563 #undef RW 1564 #undef RB 1565 return 0; 1566 } 1567 1568 static int carl9170_rng_read(struct hwrng *rng, u32 *data) 1569 { 1570 struct ar9170 *ar = (struct ar9170 *)rng->priv; 1571 int ret = -EIO; 1572 1573 mutex_lock(&ar->mutex); 1574 if (ar->rng.cache_idx >= ARRAY_SIZE(ar->rng.cache)) { 1575 ret = carl9170_rng_get(ar); 1576 if (ret) { 1577 mutex_unlock(&ar->mutex); 1578 return ret; 1579 } 1580 } 1581 1582 *data = ar->rng.cache[ar->rng.cache_idx++]; 1583 mutex_unlock(&ar->mutex); 1584 1585 return sizeof(u16); 1586 } 1587 1588 static void carl9170_unregister_hwrng(struct ar9170 *ar) 1589 { 1590 if (ar->rng.initialized) { 1591 hwrng_unregister(&ar->rng.rng); 1592 ar->rng.initialized = false; 1593 } 1594 } 1595 1596 static int carl9170_register_hwrng(struct ar9170 *ar) 1597 { 1598 int err; 1599 1600 snprintf(ar->rng.name, ARRAY_SIZE(ar->rng.name), 1601 "%s_%s", KBUILD_MODNAME, wiphy_name(ar->hw->wiphy)); 1602 ar->rng.rng.name = ar->rng.name; 1603 ar->rng.rng.data_read = carl9170_rng_read; 1604 ar->rng.rng.priv = (unsigned long)ar; 1605 1606 if (WARN_ON(ar->rng.initialized)) 1607 return -EALREADY; 1608 1609 err = hwrng_register(&ar->rng.rng); 1610 if (err) { 1611 dev_err(&ar->udev->dev, "Failed to register the random " 1612 "number generator (%d)\n", err); 1613 return err; 1614 } 1615 1616 ar->rng.initialized = true; 1617 1618 err = carl9170_rng_get(ar); 1619 if (err) { 1620 carl9170_unregister_hwrng(ar); 1621 return err; 1622 } 1623 1624 return 0; 1625 } 1626 #endif /* CONFIG_CARL9170_HWRNG */ 1627 1628 static int carl9170_op_get_survey(struct ieee80211_hw *hw, int idx, 1629 struct survey_info *survey) 1630 { 1631 struct ar9170 *ar = hw->priv; 1632 struct ieee80211_channel *chan; 1633 struct ieee80211_supported_band *band; 1634 int err, b, i; 1635 1636 chan = ar->channel; 1637 if (!chan) 1638 return -ENODEV; 1639 1640 if (idx == chan->hw_value) { 1641 mutex_lock(&ar->mutex); 1642 err = carl9170_update_survey(ar, false, true); 1643 mutex_unlock(&ar->mutex); 1644 if (err) 1645 return err; 1646 } 1647 1648 for (b = 0; b < NUM_NL80211_BANDS; b++) { 1649 band = ar->hw->wiphy->bands[b]; 1650 1651 if (!band) 1652 continue; 1653 1654 for (i = 0; i < band->n_channels; i++) { 1655 if (band->channels[i].hw_value == idx) { 1656 chan = &band->channels[i]; 1657 goto found; 1658 } 1659 } 1660 } 1661 return -ENOENT; 1662 1663 found: 1664 memcpy(survey, &ar->survey[idx], sizeof(*survey)); 1665 1666 survey->channel = chan; 1667 survey->filled = SURVEY_INFO_NOISE_DBM; 1668 1669 if (ar->channel == chan) 1670 survey->filled |= SURVEY_INFO_IN_USE; 1671 1672 if (ar->fw.hw_counters) { 1673 survey->filled |= SURVEY_INFO_TIME | 1674 SURVEY_INFO_TIME_BUSY | 1675 SURVEY_INFO_TIME_TX; 1676 } 1677 1678 return 0; 1679 } 1680 1681 static void carl9170_op_flush(struct ieee80211_hw *hw, 1682 struct ieee80211_vif *vif, 1683 u32 queues, bool drop) 1684 { 1685 struct ar9170 *ar = hw->priv; 1686 unsigned int vid; 1687 1688 mutex_lock(&ar->mutex); 1689 for_each_set_bit(vid, &ar->vif_bitmap, ar->fw.vif_num) 1690 carl9170_flush_cab(ar, vid); 1691 1692 carl9170_flush(ar, drop); 1693 mutex_unlock(&ar->mutex); 1694 } 1695 1696 static int carl9170_op_get_stats(struct ieee80211_hw *hw, 1697 struct ieee80211_low_level_stats *stats) 1698 { 1699 struct ar9170 *ar = hw->priv; 1700 1701 memset(stats, 0, sizeof(*stats)); 1702 stats->dot11ACKFailureCount = ar->tx_ack_failures; 1703 stats->dot11FCSErrorCount = ar->tx_fcs_errors; 1704 return 0; 1705 } 1706 1707 static void carl9170_op_sta_notify(struct ieee80211_hw *hw, 1708 struct ieee80211_vif *vif, 1709 enum sta_notify_cmd cmd, 1710 struct ieee80211_sta *sta) 1711 { 1712 struct carl9170_sta_info *sta_info = (void *) sta->drv_priv; 1713 1714 switch (cmd) { 1715 case STA_NOTIFY_SLEEP: 1716 sta_info->sleeping = true; 1717 if (atomic_read(&sta_info->pending_frames)) 1718 ieee80211_sta_block_awake(hw, sta, true); 1719 break; 1720 1721 case STA_NOTIFY_AWAKE: 1722 sta_info->sleeping = false; 1723 break; 1724 } 1725 } 1726 1727 static bool carl9170_tx_frames_pending(struct ieee80211_hw *hw) 1728 { 1729 struct ar9170 *ar = hw->priv; 1730 1731 return !!atomic_read(&ar->tx_total_queued); 1732 } 1733 1734 static const struct ieee80211_ops carl9170_ops = { 1735 .start = carl9170_op_start, 1736 .stop = carl9170_op_stop, 1737 .tx = carl9170_op_tx, 1738 .flush = carl9170_op_flush, 1739 .add_interface = carl9170_op_add_interface, 1740 .remove_interface = carl9170_op_remove_interface, 1741 .config = carl9170_op_config, 1742 .prepare_multicast = carl9170_op_prepare_multicast, 1743 .configure_filter = carl9170_op_configure_filter, 1744 .conf_tx = carl9170_op_conf_tx, 1745 .bss_info_changed = carl9170_op_bss_info_changed, 1746 .get_tsf = carl9170_op_get_tsf, 1747 .set_key = carl9170_op_set_key, 1748 .sta_add = carl9170_op_sta_add, 1749 .sta_remove = carl9170_op_sta_remove, 1750 .sta_notify = carl9170_op_sta_notify, 1751 .get_survey = carl9170_op_get_survey, 1752 .get_stats = carl9170_op_get_stats, 1753 .ampdu_action = carl9170_op_ampdu_action, 1754 .tx_frames_pending = carl9170_tx_frames_pending, 1755 }; 1756 1757 void *carl9170_alloc(size_t priv_size) 1758 { 1759 struct ieee80211_hw *hw; 1760 struct ar9170 *ar; 1761 struct sk_buff *skb; 1762 int i; 1763 1764 /* 1765 * this buffer is used for rx stream reconstruction. 1766 * Under heavy load this device (or the transport layer?) 1767 * tends to split the streams into separate rx descriptors. 1768 */ 1769 1770 skb = __dev_alloc_skb(AR9170_RX_STREAM_MAX_SIZE, GFP_KERNEL); 1771 if (!skb) 1772 goto err_nomem; 1773 1774 hw = ieee80211_alloc_hw(priv_size, &carl9170_ops); 1775 if (!hw) 1776 goto err_nomem; 1777 1778 ar = hw->priv; 1779 ar->hw = hw; 1780 ar->rx_failover = skb; 1781 1782 memset(&ar->rx_plcp, 0, sizeof(struct ar9170_rx_head)); 1783 ar->rx_has_plcp = false; 1784 1785 /* 1786 * Here's a hidden pitfall! 1787 * 1788 * All 4 AC queues work perfectly well under _legacy_ operation. 1789 * However as soon as aggregation is enabled, the traffic flow 1790 * gets very bumpy. Therefore we have to _switch_ to a 1791 * software AC with a single HW queue. 1792 */ 1793 hw->queues = __AR9170_NUM_TXQ; 1794 1795 mutex_init(&ar->mutex); 1796 spin_lock_init(&ar->beacon_lock); 1797 spin_lock_init(&ar->cmd_lock); 1798 spin_lock_init(&ar->tx_stats_lock); 1799 spin_lock_init(&ar->tx_ampdu_list_lock); 1800 spin_lock_init(&ar->mem_lock); 1801 spin_lock_init(&ar->state_lock); 1802 atomic_set(&ar->pending_restarts, 0); 1803 ar->vifs = 0; 1804 for (i = 0; i < ar->hw->queues; i++) { 1805 skb_queue_head_init(&ar->tx_status[i]); 1806 skb_queue_head_init(&ar->tx_pending[i]); 1807 1808 INIT_LIST_HEAD(&ar->bar_list[i]); 1809 spin_lock_init(&ar->bar_list_lock[i]); 1810 } 1811 INIT_WORK(&ar->ps_work, carl9170_ps_work); 1812 INIT_WORK(&ar->ping_work, carl9170_ping_work); 1813 INIT_WORK(&ar->restart_work, carl9170_restart_work); 1814 INIT_WORK(&ar->ampdu_work, carl9170_ampdu_work); 1815 INIT_DELAYED_WORK(&ar->stat_work, carl9170_stat_work); 1816 INIT_DELAYED_WORK(&ar->tx_janitor, carl9170_tx_janitor); 1817 INIT_LIST_HEAD(&ar->tx_ampdu_list); 1818 rcu_assign_pointer(ar->tx_ampdu_iter, 1819 (struct carl9170_sta_tid *) &ar->tx_ampdu_list); 1820 1821 bitmap_zero(&ar->vif_bitmap, ar->fw.vif_num); 1822 INIT_LIST_HEAD(&ar->vif_list); 1823 init_completion(&ar->tx_flush); 1824 1825 /* firmware decides which modes we support */ 1826 hw->wiphy->interface_modes = 0; 1827 1828 ieee80211_hw_set(hw, RX_INCLUDES_FCS); 1829 ieee80211_hw_set(hw, MFP_CAPABLE); 1830 ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS); 1831 ieee80211_hw_set(hw, SUPPORTS_PS); 1832 ieee80211_hw_set(hw, PS_NULLFUNC_STACK); 1833 ieee80211_hw_set(hw, NEED_DTIM_BEFORE_ASSOC); 1834 ieee80211_hw_set(hw, SUPPORTS_RC_TABLE); 1835 ieee80211_hw_set(hw, SIGNAL_DBM); 1836 ieee80211_hw_set(hw, SUPPORTS_HT_CCK_RATES); 1837 1838 if (!modparam_noht) { 1839 /* 1840 * see the comment above, why we allow the user 1841 * to disable HT by a module parameter. 1842 */ 1843 ieee80211_hw_set(hw, AMPDU_AGGREGATION); 1844 } 1845 1846 hw->extra_tx_headroom = sizeof(struct _carl9170_tx_superframe); 1847 hw->sta_data_size = sizeof(struct carl9170_sta_info); 1848 hw->vif_data_size = sizeof(struct carl9170_vif_info); 1849 1850 hw->max_rates = CARL9170_TX_MAX_RATES; 1851 hw->max_rate_tries = CARL9170_TX_USER_RATE_TRIES; 1852 1853 for (i = 0; i < ARRAY_SIZE(ar->noise); i++) 1854 ar->noise[i] = -95; /* ATH_DEFAULT_NOISE_FLOOR */ 1855 1856 wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); 1857 1858 return ar; 1859 1860 err_nomem: 1861 kfree_skb(skb); 1862 return ERR_PTR(-ENOMEM); 1863 } 1864 1865 static int carl9170_read_eeprom(struct ar9170 *ar) 1866 { 1867 #define RW 8 /* number of words to read at once */ 1868 #define RB (sizeof(u32) * RW) 1869 u8 *eeprom = (void *)&ar->eeprom; 1870 __le32 offsets[RW]; 1871 int i, j, err; 1872 1873 BUILD_BUG_ON(sizeof(ar->eeprom) & 3); 1874 1875 BUILD_BUG_ON(RB > CARL9170_MAX_CMD_LEN - 4); 1876 #ifndef __CHECKER__ 1877 /* don't want to handle trailing remains */ 1878 BUILD_BUG_ON(sizeof(ar->eeprom) % RB); 1879 #endif 1880 1881 for (i = 0; i < sizeof(ar->eeprom) / RB; i++) { 1882 for (j = 0; j < RW; j++) 1883 offsets[j] = cpu_to_le32(AR9170_EEPROM_START + 1884 RB * i + 4 * j); 1885 1886 err = carl9170_exec_cmd(ar, CARL9170_CMD_RREG, 1887 RB, (u8 *) &offsets, 1888 RB, eeprom + RB * i); 1889 if (err) 1890 return err; 1891 } 1892 1893 #undef RW 1894 #undef RB 1895 return 0; 1896 } 1897 1898 static int carl9170_parse_eeprom(struct ar9170 *ar) 1899 { 1900 struct ath_regulatory *regulatory = &ar->common.regulatory; 1901 unsigned int rx_streams, tx_streams, tx_params = 0; 1902 int bands = 0; 1903 int chans = 0; 1904 1905 if (ar->eeprom.length == cpu_to_le16(0xffff)) 1906 return -ENODATA; 1907 1908 rx_streams = hweight8(ar->eeprom.rx_mask); 1909 tx_streams = hweight8(ar->eeprom.tx_mask); 1910 1911 if (rx_streams != tx_streams) { 1912 tx_params = IEEE80211_HT_MCS_TX_RX_DIFF; 1913 1914 WARN_ON(!(tx_streams >= 1 && tx_streams <= 1915 IEEE80211_HT_MCS_TX_MAX_STREAMS)); 1916 1917 tx_params = (tx_streams - 1) << 1918 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT; 1919 1920 carl9170_band_2GHz.ht_cap.mcs.tx_params |= tx_params; 1921 carl9170_band_5GHz.ht_cap.mcs.tx_params |= tx_params; 1922 } 1923 1924 if (ar->eeprom.operating_flags & AR9170_OPFLAG_2GHZ) { 1925 ar->hw->wiphy->bands[NL80211_BAND_2GHZ] = 1926 &carl9170_band_2GHz; 1927 chans += carl9170_band_2GHz.n_channels; 1928 bands++; 1929 } 1930 if (ar->eeprom.operating_flags & AR9170_OPFLAG_5GHZ) { 1931 ar->hw->wiphy->bands[NL80211_BAND_5GHZ] = 1932 &carl9170_band_5GHz; 1933 chans += carl9170_band_5GHz.n_channels; 1934 bands++; 1935 } 1936 1937 if (!bands) 1938 return -EINVAL; 1939 1940 ar->survey = kcalloc(chans, sizeof(struct survey_info), GFP_KERNEL); 1941 if (!ar->survey) 1942 return -ENOMEM; 1943 ar->num_channels = chans; 1944 1945 regulatory->current_rd = le16_to_cpu(ar->eeprom.reg_domain[0]); 1946 1947 /* second part of wiphy init */ 1948 SET_IEEE80211_PERM_ADDR(ar->hw, ar->eeprom.mac_address); 1949 1950 return 0; 1951 } 1952 1953 static void carl9170_reg_notifier(struct wiphy *wiphy, 1954 struct regulatory_request *request) 1955 { 1956 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy); 1957 struct ar9170 *ar = hw->priv; 1958 1959 ath_reg_notifier_apply(wiphy, request, &ar->common.regulatory); 1960 } 1961 1962 int carl9170_register(struct ar9170 *ar) 1963 { 1964 struct ath_regulatory *regulatory = &ar->common.regulatory; 1965 int err = 0, i; 1966 1967 if (WARN_ON(ar->mem_bitmap)) 1968 return -EINVAL; 1969 1970 ar->mem_bitmap = bitmap_zalloc(ar->fw.mem_blocks, GFP_KERNEL); 1971 1972 if (!ar->mem_bitmap) 1973 return -ENOMEM; 1974 1975 /* try to read EEPROM, init MAC addr */ 1976 err = carl9170_read_eeprom(ar); 1977 if (err) 1978 return err; 1979 1980 err = carl9170_parse_eeprom(ar); 1981 if (err) 1982 return err; 1983 1984 err = ath_regd_init(regulatory, ar->hw->wiphy, 1985 carl9170_reg_notifier); 1986 if (err) 1987 return err; 1988 1989 if (modparam_noht) { 1990 carl9170_band_2GHz.ht_cap.ht_supported = false; 1991 carl9170_band_5GHz.ht_cap.ht_supported = false; 1992 } 1993 1994 for (i = 0; i < ar->fw.vif_num; i++) { 1995 ar->vif_priv[i].id = i; 1996 ar->vif_priv[i].vif = NULL; 1997 } 1998 1999 err = ieee80211_register_hw(ar->hw); 2000 if (err) 2001 return err; 2002 2003 /* mac80211 interface is now registered */ 2004 ar->registered = true; 2005 2006 if (!ath_is_world_regd(regulatory)) 2007 regulatory_hint(ar->hw->wiphy, regulatory->alpha2); 2008 2009 #ifdef CONFIG_CARL9170_DEBUGFS 2010 carl9170_debugfs_register(ar); 2011 #endif /* CONFIG_CARL9170_DEBUGFS */ 2012 2013 err = carl9170_led_init(ar); 2014 if (err) 2015 goto err_unreg; 2016 2017 #ifdef CONFIG_CARL9170_LEDS 2018 err = carl9170_led_register(ar); 2019 if (err) 2020 goto err_unreg; 2021 #endif /* CONFIG_CARL9170_LEDS */ 2022 2023 #ifdef CONFIG_CARL9170_WPC 2024 err = carl9170_register_wps_button(ar); 2025 if (err) 2026 goto err_unreg; 2027 #endif /* CONFIG_CARL9170_WPC */ 2028 2029 #ifdef CONFIG_CARL9170_HWRNG 2030 err = carl9170_register_hwrng(ar); 2031 if (err) 2032 goto err_unreg; 2033 #endif /* CONFIG_CARL9170_HWRNG */ 2034 2035 dev_info(&ar->udev->dev, "Atheros AR9170 is registered as '%s'\n", 2036 wiphy_name(ar->hw->wiphy)); 2037 2038 return 0; 2039 2040 err_unreg: 2041 carl9170_unregister(ar); 2042 return err; 2043 } 2044 2045 void carl9170_unregister(struct ar9170 *ar) 2046 { 2047 if (!ar->registered) 2048 return; 2049 2050 ar->registered = false; 2051 2052 #ifdef CONFIG_CARL9170_LEDS 2053 carl9170_led_unregister(ar); 2054 #endif /* CONFIG_CARL9170_LEDS */ 2055 2056 #ifdef CONFIG_CARL9170_DEBUGFS 2057 carl9170_debugfs_unregister(ar); 2058 #endif /* CONFIG_CARL9170_DEBUGFS */ 2059 2060 #ifdef CONFIG_CARL9170_WPC 2061 if (ar->wps.pbc) { 2062 input_unregister_device(ar->wps.pbc); 2063 ar->wps.pbc = NULL; 2064 } 2065 #endif /* CONFIG_CARL9170_WPC */ 2066 2067 #ifdef CONFIG_CARL9170_HWRNG 2068 carl9170_unregister_hwrng(ar); 2069 #endif /* CONFIG_CARL9170_HWRNG */ 2070 2071 carl9170_cancel_worker(ar); 2072 cancel_work_sync(&ar->restart_work); 2073 2074 ieee80211_unregister_hw(ar->hw); 2075 } 2076 2077 void carl9170_free(struct ar9170 *ar) 2078 { 2079 WARN_ON(ar->registered); 2080 WARN_ON(IS_INITIALIZED(ar)); 2081 2082 kfree_skb(ar->rx_failover); 2083 ar->rx_failover = NULL; 2084 2085 bitmap_free(ar->mem_bitmap); 2086 ar->mem_bitmap = NULL; 2087 2088 kfree(ar->survey); 2089 ar->survey = NULL; 2090 2091 mutex_destroy(&ar->mutex); 2092 2093 ieee80211_free_hw(ar->hw); 2094 } 2095