1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/dma-mapping.h> 18 #include "ath9k.h" 19 #include "ar9003_mac.h" 20 21 #define BITS_PER_BYTE 8 22 #define OFDM_PLCP_BITS 22 23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1) 24 #define L_STF 8 25 #define L_LTF 8 26 #define L_SIG 4 27 #define HT_SIG 8 28 #define HT_STF 4 29 #define HT_LTF(_ns) (4 * (_ns)) 30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */ 31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */ 32 #define TIME_SYMBOLS(t) ((t) >> 2) 33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18) 34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2) 35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18) 36 37 38 static u16 bits_per_symbol[][2] = { 39 /* 20MHz 40MHz */ 40 { 26, 54 }, /* 0: BPSK */ 41 { 52, 108 }, /* 1: QPSK 1/2 */ 42 { 78, 162 }, /* 2: QPSK 3/4 */ 43 { 104, 216 }, /* 3: 16-QAM 1/2 */ 44 { 156, 324 }, /* 4: 16-QAM 3/4 */ 45 { 208, 432 }, /* 5: 64-QAM 2/3 */ 46 { 234, 486 }, /* 6: 64-QAM 3/4 */ 47 { 260, 540 }, /* 7: 64-QAM 5/6 */ 48 }; 49 50 #define IS_HT_RATE(_rate) ((_rate) & 0x80) 51 52 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 53 struct ath_atx_tid *tid, struct sk_buff *skb); 54 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, 55 int tx_flags, struct ath_txq *txq); 56 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 57 struct ath_txq *txq, struct list_head *bf_q, 58 struct ath_tx_status *ts, int txok); 59 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 60 struct list_head *head, bool internal); 61 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 62 struct ath_tx_status *ts, int nframes, int nbad, 63 int txok); 64 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 65 int seqno); 66 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, 67 struct ath_txq *txq, 68 struct ath_atx_tid *tid, 69 struct sk_buff *skb); 70 71 enum { 72 MCS_HT20, 73 MCS_HT20_SGI, 74 MCS_HT40, 75 MCS_HT40_SGI, 76 }; 77 78 /*********************/ 79 /* Aggregation logic */ 80 /*********************/ 81 82 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq) 83 __acquires(&txq->axq_lock) 84 { 85 spin_lock_bh(&txq->axq_lock); 86 } 87 88 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq) 89 __releases(&txq->axq_lock) 90 { 91 spin_unlock_bh(&txq->axq_lock); 92 } 93 94 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq) 95 __releases(&txq->axq_lock) 96 { 97 struct sk_buff_head q; 98 struct sk_buff *skb; 99 100 __skb_queue_head_init(&q); 101 skb_queue_splice_init(&txq->complete_q, &q); 102 spin_unlock_bh(&txq->axq_lock); 103 104 while ((skb = __skb_dequeue(&q))) 105 ieee80211_tx_status(sc->hw, skb); 106 } 107 108 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid) 109 { 110 struct ath_atx_ac *ac = tid->ac; 111 112 if (tid->paused) 113 return; 114 115 if (tid->sched) 116 return; 117 118 tid->sched = true; 119 list_add_tail(&tid->list, &ac->tid_q); 120 121 if (ac->sched) 122 return; 123 124 ac->sched = true; 125 list_add_tail(&ac->list, &txq->axq_acq); 126 } 127 128 static struct ath_frame_info *get_frame_info(struct sk_buff *skb) 129 { 130 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 131 BUILD_BUG_ON(sizeof(struct ath_frame_info) > 132 sizeof(tx_info->rate_driver_data)); 133 return (struct ath_frame_info *) &tx_info->rate_driver_data[0]; 134 } 135 136 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno) 137 { 138 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno, 139 seqno << IEEE80211_SEQ_SEQ_SHIFT); 140 } 141 142 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta, 143 struct ath_buf *bf) 144 { 145 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates, 146 ARRAY_SIZE(bf->rates)); 147 } 148 149 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid) 150 { 151 struct ath_txq *txq = tid->ac->txq; 152 struct sk_buff *skb; 153 struct ath_buf *bf; 154 struct list_head bf_head; 155 struct ath_tx_status ts; 156 struct ath_frame_info *fi; 157 bool sendbar = false; 158 159 INIT_LIST_HEAD(&bf_head); 160 161 memset(&ts, 0, sizeof(ts)); 162 163 while ((skb = __skb_dequeue(&tid->buf_q))) { 164 fi = get_frame_info(skb); 165 bf = fi->bf; 166 167 if (!bf) { 168 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 169 if (!bf) { 170 ieee80211_free_txskb(sc->hw, skb); 171 continue; 172 } 173 } 174 175 if (fi->retries) { 176 list_add_tail(&bf->list, &bf_head); 177 ath_tx_update_baw(sc, tid, bf->bf_state.seqno); 178 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0); 179 sendbar = true; 180 } else { 181 ath_set_rates(tid->an->vif, tid->an->sta, bf); 182 ath_tx_send_normal(sc, txq, NULL, skb); 183 } 184 } 185 186 if (sendbar) { 187 ath_txq_unlock(sc, txq); 188 ath_send_bar(tid, tid->seq_start); 189 ath_txq_lock(sc, txq); 190 } 191 } 192 193 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 194 int seqno) 195 { 196 int index, cindex; 197 198 index = ATH_BA_INDEX(tid->seq_start, seqno); 199 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 200 201 __clear_bit(cindex, tid->tx_buf); 202 203 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) { 204 INCR(tid->seq_start, IEEE80211_SEQ_MAX); 205 INCR(tid->baw_head, ATH_TID_MAX_BUFS); 206 if (tid->bar_index >= 0) 207 tid->bar_index--; 208 } 209 } 210 211 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 212 u16 seqno) 213 { 214 int index, cindex; 215 216 index = ATH_BA_INDEX(tid->seq_start, seqno); 217 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 218 __set_bit(cindex, tid->tx_buf); 219 220 if (index >= ((tid->baw_tail - tid->baw_head) & 221 (ATH_TID_MAX_BUFS - 1))) { 222 tid->baw_tail = cindex; 223 INCR(tid->baw_tail, ATH_TID_MAX_BUFS); 224 } 225 } 226 227 /* 228 * TODO: For frame(s) that are in the retry state, we will reuse the 229 * sequence number(s) without setting the retry bit. The 230 * alternative is to give up on these and BAR the receiver's window 231 * forward. 232 */ 233 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq, 234 struct ath_atx_tid *tid) 235 236 { 237 struct sk_buff *skb; 238 struct ath_buf *bf; 239 struct list_head bf_head; 240 struct ath_tx_status ts; 241 struct ath_frame_info *fi; 242 243 memset(&ts, 0, sizeof(ts)); 244 INIT_LIST_HEAD(&bf_head); 245 246 while ((skb = __skb_dequeue(&tid->buf_q))) { 247 fi = get_frame_info(skb); 248 bf = fi->bf; 249 250 if (!bf) { 251 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq); 252 continue; 253 } 254 255 list_add_tail(&bf->list, &bf_head); 256 257 ath_tx_update_baw(sc, tid, bf->bf_state.seqno); 258 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0); 259 } 260 261 tid->seq_next = tid->seq_start; 262 tid->baw_tail = tid->baw_head; 263 tid->bar_index = -1; 264 } 265 266 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq, 267 struct sk_buff *skb, int count) 268 { 269 struct ath_frame_info *fi = get_frame_info(skb); 270 struct ath_buf *bf = fi->bf; 271 struct ieee80211_hdr *hdr; 272 int prev = fi->retries; 273 274 TX_STAT_INC(txq->axq_qnum, a_retries); 275 fi->retries += count; 276 277 if (prev > 0) 278 return; 279 280 hdr = (struct ieee80211_hdr *)skb->data; 281 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY); 282 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 283 sizeof(*hdr), DMA_TO_DEVICE); 284 } 285 286 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc) 287 { 288 struct ath_buf *bf = NULL; 289 290 spin_lock_bh(&sc->tx.txbuflock); 291 292 if (unlikely(list_empty(&sc->tx.txbuf))) { 293 spin_unlock_bh(&sc->tx.txbuflock); 294 return NULL; 295 } 296 297 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list); 298 list_del(&bf->list); 299 300 spin_unlock_bh(&sc->tx.txbuflock); 301 302 return bf; 303 } 304 305 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf) 306 { 307 spin_lock_bh(&sc->tx.txbuflock); 308 list_add_tail(&bf->list, &sc->tx.txbuf); 309 spin_unlock_bh(&sc->tx.txbuflock); 310 } 311 312 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf) 313 { 314 struct ath_buf *tbf; 315 316 tbf = ath_tx_get_buffer(sc); 317 if (WARN_ON(!tbf)) 318 return NULL; 319 320 ATH_TXBUF_RESET(tbf); 321 322 tbf->bf_mpdu = bf->bf_mpdu; 323 tbf->bf_buf_addr = bf->bf_buf_addr; 324 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len); 325 tbf->bf_state = bf->bf_state; 326 327 return tbf; 328 } 329 330 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf, 331 struct ath_tx_status *ts, int txok, 332 int *nframes, int *nbad) 333 { 334 struct ath_frame_info *fi; 335 u16 seq_st = 0; 336 u32 ba[WME_BA_BMP_SIZE >> 5]; 337 int ba_index; 338 int isaggr = 0; 339 340 *nbad = 0; 341 *nframes = 0; 342 343 isaggr = bf_isaggr(bf); 344 if (isaggr) { 345 seq_st = ts->ts_seqnum; 346 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); 347 } 348 349 while (bf) { 350 fi = get_frame_info(bf->bf_mpdu); 351 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno); 352 353 (*nframes)++; 354 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index))) 355 (*nbad)++; 356 357 bf = bf->bf_next; 358 } 359 } 360 361 362 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq, 363 struct ath_buf *bf, struct list_head *bf_q, 364 struct ath_tx_status *ts, int txok) 365 { 366 struct ath_node *an = NULL; 367 struct sk_buff *skb; 368 struct ieee80211_sta *sta; 369 struct ieee80211_hw *hw = sc->hw; 370 struct ieee80211_hdr *hdr; 371 struct ieee80211_tx_info *tx_info; 372 struct ath_atx_tid *tid = NULL; 373 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf; 374 struct list_head bf_head; 375 struct sk_buff_head bf_pending; 376 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first; 377 u32 ba[WME_BA_BMP_SIZE >> 5]; 378 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0; 379 bool rc_update = true, isba; 380 struct ieee80211_tx_rate rates[4]; 381 struct ath_frame_info *fi; 382 int nframes; 383 u8 tidno; 384 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH); 385 int i, retries; 386 int bar_index = -1; 387 388 skb = bf->bf_mpdu; 389 hdr = (struct ieee80211_hdr *)skb->data; 390 391 tx_info = IEEE80211_SKB_CB(skb); 392 393 memcpy(rates, bf->rates, sizeof(rates)); 394 395 retries = ts->ts_longretry + 1; 396 for (i = 0; i < ts->ts_rateindex; i++) 397 retries += rates[i].count; 398 399 rcu_read_lock(); 400 401 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2); 402 if (!sta) { 403 rcu_read_unlock(); 404 405 INIT_LIST_HEAD(&bf_head); 406 while (bf) { 407 bf_next = bf->bf_next; 408 409 if (!bf->bf_stale || bf_next != NULL) 410 list_move_tail(&bf->list, &bf_head); 411 412 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0); 413 414 bf = bf_next; 415 } 416 return; 417 } 418 419 an = (struct ath_node *)sta->drv_priv; 420 tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK; 421 tid = ATH_AN_2_TID(an, tidno); 422 seq_first = tid->seq_start; 423 isba = ts->ts_flags & ATH9K_TX_BA; 424 425 /* 426 * The hardware occasionally sends a tx status for the wrong TID. 427 * In this case, the BA status cannot be considered valid and all 428 * subframes need to be retransmitted 429 * 430 * Only BlockAcks have a TID and therefore normal Acks cannot be 431 * checked 432 */ 433 if (isba && tidno != ts->tid) 434 txok = false; 435 436 isaggr = bf_isaggr(bf); 437 memset(ba, 0, WME_BA_BMP_SIZE >> 3); 438 439 if (isaggr && txok) { 440 if (ts->ts_flags & ATH9K_TX_BA) { 441 seq_st = ts->ts_seqnum; 442 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); 443 } else { 444 /* 445 * AR5416 can become deaf/mute when BA 446 * issue happens. Chip needs to be reset. 447 * But AP code may have sychronization issues 448 * when perform internal reset in this routine. 449 * Only enable reset in STA mode for now. 450 */ 451 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION) 452 needreset = 1; 453 } 454 } 455 456 __skb_queue_head_init(&bf_pending); 457 458 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad); 459 while (bf) { 460 u16 seqno = bf->bf_state.seqno; 461 462 txfail = txpending = sendbar = 0; 463 bf_next = bf->bf_next; 464 465 skb = bf->bf_mpdu; 466 tx_info = IEEE80211_SKB_CB(skb); 467 fi = get_frame_info(skb); 468 469 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) { 470 /* 471 * Outside of the current BlockAck window, 472 * maybe part of a previous session 473 */ 474 txfail = 1; 475 } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) { 476 /* transmit completion, subframe is 477 * acked by block ack */ 478 acked_cnt++; 479 } else if (!isaggr && txok) { 480 /* transmit completion */ 481 acked_cnt++; 482 } else if (flush) { 483 txpending = 1; 484 } else if (fi->retries < ATH_MAX_SW_RETRIES) { 485 if (txok || !an->sleeping) 486 ath_tx_set_retry(sc, txq, bf->bf_mpdu, 487 retries); 488 489 txpending = 1; 490 } else { 491 txfail = 1; 492 txfail_cnt++; 493 bar_index = max_t(int, bar_index, 494 ATH_BA_INDEX(seq_first, seqno)); 495 } 496 497 /* 498 * Make sure the last desc is reclaimed if it 499 * not a holding desc. 500 */ 501 INIT_LIST_HEAD(&bf_head); 502 if (bf_next != NULL || !bf_last->bf_stale) 503 list_move_tail(&bf->list, &bf_head); 504 505 if (!txpending) { 506 /* 507 * complete the acked-ones/xretried ones; update 508 * block-ack window 509 */ 510 ath_tx_update_baw(sc, tid, seqno); 511 512 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) { 513 memcpy(tx_info->control.rates, rates, sizeof(rates)); 514 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok); 515 rc_update = false; 516 } 517 518 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 519 !txfail); 520 } else { 521 /* retry the un-acked ones */ 522 if (bf->bf_next == NULL && bf_last->bf_stale) { 523 struct ath_buf *tbf; 524 525 tbf = ath_clone_txbuf(sc, bf_last); 526 /* 527 * Update tx baw and complete the 528 * frame with failed status if we 529 * run out of tx buf. 530 */ 531 if (!tbf) { 532 ath_tx_update_baw(sc, tid, seqno); 533 534 ath_tx_complete_buf(sc, bf, txq, 535 &bf_head, ts, 0); 536 bar_index = max_t(int, bar_index, 537 ATH_BA_INDEX(seq_first, seqno)); 538 break; 539 } 540 541 fi->bf = tbf; 542 } 543 544 /* 545 * Put this buffer to the temporary pending 546 * queue to retain ordering 547 */ 548 __skb_queue_tail(&bf_pending, skb); 549 } 550 551 bf = bf_next; 552 } 553 554 /* prepend un-acked frames to the beginning of the pending frame queue */ 555 if (!skb_queue_empty(&bf_pending)) { 556 if (an->sleeping) 557 ieee80211_sta_set_buffered(sta, tid->tidno, true); 558 559 skb_queue_splice(&bf_pending, &tid->buf_q); 560 if (!an->sleeping) { 561 ath_tx_queue_tid(txq, tid); 562 563 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY)) 564 tid->ac->clear_ps_filter = true; 565 } 566 } 567 568 if (bar_index >= 0) { 569 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index); 570 571 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq)) 572 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq); 573 574 ath_txq_unlock(sc, txq); 575 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1)); 576 ath_txq_lock(sc, txq); 577 } 578 579 rcu_read_unlock(); 580 581 if (needreset) 582 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR); 583 } 584 585 static bool bf_is_ampdu_not_probing(struct ath_buf *bf) 586 { 587 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu); 588 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE); 589 } 590 591 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq, 592 struct ath_tx_status *ts, struct ath_buf *bf, 593 struct list_head *bf_head) 594 { 595 struct ieee80211_tx_info *info; 596 bool txok, flush; 597 598 txok = !(ts->ts_status & ATH9K_TXERR_MASK); 599 flush = !!(ts->ts_status & ATH9K_TX_FLUSH); 600 txq->axq_tx_inprogress = false; 601 602 txq->axq_depth--; 603 if (bf_is_ampdu_not_probing(bf)) 604 txq->axq_ampdu_depth--; 605 606 if (!bf_isampdu(bf)) { 607 if (!flush) { 608 info = IEEE80211_SKB_CB(bf->bf_mpdu); 609 memcpy(info->control.rates, bf->rates, 610 sizeof(info->control.rates)); 611 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok); 612 } 613 ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok); 614 } else 615 ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok); 616 617 if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && !flush) 618 ath_txq_schedule(sc, txq); 619 } 620 621 static bool ath_lookup_legacy(struct ath_buf *bf) 622 { 623 struct sk_buff *skb; 624 struct ieee80211_tx_info *tx_info; 625 struct ieee80211_tx_rate *rates; 626 int i; 627 628 skb = bf->bf_mpdu; 629 tx_info = IEEE80211_SKB_CB(skb); 630 rates = tx_info->control.rates; 631 632 for (i = 0; i < 4; i++) { 633 if (!rates[i].count || rates[i].idx < 0) 634 break; 635 636 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) 637 return true; 638 } 639 640 return false; 641 } 642 643 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf, 644 struct ath_atx_tid *tid) 645 { 646 struct sk_buff *skb; 647 struct ieee80211_tx_info *tx_info; 648 struct ieee80211_tx_rate *rates; 649 u32 max_4ms_framelen, frmlen; 650 u16 aggr_limit, bt_aggr_limit, legacy = 0; 651 int q = tid->ac->txq->mac80211_qnum; 652 int i; 653 654 skb = bf->bf_mpdu; 655 tx_info = IEEE80211_SKB_CB(skb); 656 rates = bf->rates; 657 658 /* 659 * Find the lowest frame length among the rate series that will have a 660 * 4ms (or TXOP limited) transmit duration. 661 */ 662 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX; 663 664 for (i = 0; i < 4; i++) { 665 int modeidx; 666 667 if (!rates[i].count) 668 continue; 669 670 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) { 671 legacy = 1; 672 break; 673 } 674 675 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 676 modeidx = MCS_HT40; 677 else 678 modeidx = MCS_HT20; 679 680 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 681 modeidx++; 682 683 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx]; 684 max_4ms_framelen = min(max_4ms_framelen, frmlen); 685 } 686 687 /* 688 * limit aggregate size by the minimum rate if rate selected is 689 * not a probe rate, if rate selected is a probe rate then 690 * avoid aggregation of this packet. 691 */ 692 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy) 693 return 0; 694 695 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX); 696 697 /* 698 * Override the default aggregation limit for BTCOEX. 699 */ 700 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen); 701 if (bt_aggr_limit) 702 aggr_limit = bt_aggr_limit; 703 704 /* 705 * h/w can accept aggregates up to 16 bit lengths (65535). 706 * The IE, however can hold up to 65536, which shows up here 707 * as zero. Ignore 65536 since we are constrained by hw. 708 */ 709 if (tid->an->maxampdu) 710 aggr_limit = min(aggr_limit, tid->an->maxampdu); 711 712 return aggr_limit; 713 } 714 715 /* 716 * Returns the number of delimiters to be added to 717 * meet the minimum required mpdudensity. 718 */ 719 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid, 720 struct ath_buf *bf, u16 frmlen, 721 bool first_subfrm) 722 { 723 #define FIRST_DESC_NDELIMS 60 724 u32 nsymbits, nsymbols; 725 u16 minlen; 726 u8 flags, rix; 727 int width, streams, half_gi, ndelim, mindelim; 728 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 729 730 /* Select standard number of delimiters based on frame length alone */ 731 ndelim = ATH_AGGR_GET_NDELIM(frmlen); 732 733 /* 734 * If encryption enabled, hardware requires some more padding between 735 * subframes. 736 * TODO - this could be improved to be dependent on the rate. 737 * The hardware can keep up at lower rates, but not higher rates 738 */ 739 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) && 740 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) 741 ndelim += ATH_AGGR_ENCRYPTDELIM; 742 743 /* 744 * Add delimiter when using RTS/CTS with aggregation 745 * and non enterprise AR9003 card 746 */ 747 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) && 748 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE)) 749 ndelim = max(ndelim, FIRST_DESC_NDELIMS); 750 751 /* 752 * Convert desired mpdu density from microeconds to bytes based 753 * on highest rate in rate series (i.e. first rate) to determine 754 * required minimum length for subframe. Take into account 755 * whether high rate is 20 or 40Mhz and half or full GI. 756 * 757 * If there is no mpdu density restriction, no further calculation 758 * is needed. 759 */ 760 761 if (tid->an->mpdudensity == 0) 762 return ndelim; 763 764 rix = bf->rates[0].idx; 765 flags = bf->rates[0].flags; 766 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0; 767 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0; 768 769 if (half_gi) 770 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity); 771 else 772 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity); 773 774 if (nsymbols == 0) 775 nsymbols = 1; 776 777 streams = HT_RC_2_STREAMS(rix); 778 nsymbits = bits_per_symbol[rix % 8][width] * streams; 779 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE; 780 781 if (frmlen < minlen) { 782 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ; 783 ndelim = max(mindelim, ndelim); 784 } 785 786 return ndelim; 787 } 788 789 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc, 790 struct ath_txq *txq, 791 struct ath_atx_tid *tid, 792 struct list_head *bf_q, 793 int *aggr_len) 794 { 795 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4) 796 struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL; 797 int rl = 0, nframes = 0, ndelim, prev_al = 0; 798 u16 aggr_limit = 0, al = 0, bpad = 0, 799 al_delta, h_baw = tid->baw_size / 2; 800 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE; 801 struct ieee80211_tx_info *tx_info; 802 struct ath_frame_info *fi; 803 struct sk_buff *skb; 804 u16 seqno; 805 806 do { 807 skb = skb_peek(&tid->buf_q); 808 fi = get_frame_info(skb); 809 bf = fi->bf; 810 if (!fi->bf) 811 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 812 813 if (!bf) { 814 __skb_unlink(skb, &tid->buf_q); 815 ieee80211_free_txskb(sc->hw, skb); 816 continue; 817 } 818 819 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR; 820 seqno = bf->bf_state.seqno; 821 822 /* do not step over block-ack window */ 823 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) { 824 status = ATH_AGGR_BAW_CLOSED; 825 break; 826 } 827 828 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) { 829 struct ath_tx_status ts = {}; 830 struct list_head bf_head; 831 832 INIT_LIST_HEAD(&bf_head); 833 list_add(&bf->list, &bf_head); 834 __skb_unlink(skb, &tid->buf_q); 835 ath_tx_update_baw(sc, tid, seqno); 836 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0); 837 continue; 838 } 839 840 if (!bf_first) 841 bf_first = bf; 842 843 if (!rl) { 844 ath_set_rates(tid->an->vif, tid->an->sta, bf); 845 aggr_limit = ath_lookup_rate(sc, bf, tid); 846 rl = 1; 847 } 848 849 /* do not exceed aggregation limit */ 850 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen; 851 852 if (nframes && 853 ((aggr_limit < (al + bpad + al_delta + prev_al)) || 854 ath_lookup_legacy(bf))) { 855 status = ATH_AGGR_LIMITED; 856 break; 857 } 858 859 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 860 if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) 861 break; 862 863 /* do not exceed subframe limit */ 864 if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) { 865 status = ATH_AGGR_LIMITED; 866 break; 867 } 868 869 /* add padding for previous frame to aggregation length */ 870 al += bpad + al_delta; 871 872 /* 873 * Get the delimiters needed to meet the MPDU 874 * density for this node. 875 */ 876 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen, 877 !nframes); 878 bpad = PADBYTES(al_delta) + (ndelim << 2); 879 880 nframes++; 881 bf->bf_next = NULL; 882 883 /* link buffers of this frame to the aggregate */ 884 if (!fi->retries) 885 ath_tx_addto_baw(sc, tid, seqno); 886 bf->bf_state.ndelim = ndelim; 887 888 __skb_unlink(skb, &tid->buf_q); 889 list_add_tail(&bf->list, bf_q); 890 if (bf_prev) 891 bf_prev->bf_next = bf; 892 893 bf_prev = bf; 894 895 } while (!skb_queue_empty(&tid->buf_q)); 896 897 *aggr_len = al; 898 899 return status; 900 #undef PADBYTES 901 } 902 903 /* 904 * rix - rate index 905 * pktlen - total bytes (delims + data + fcs + pads + pad delims) 906 * width - 0 for 20 MHz, 1 for 40 MHz 907 * half_gi - to use 4us v/s 3.6 us for symbol time 908 */ 909 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen, 910 int width, int half_gi, bool shortPreamble) 911 { 912 u32 nbits, nsymbits, duration, nsymbols; 913 int streams; 914 915 /* find number of symbols: PLCP + data */ 916 streams = HT_RC_2_STREAMS(rix); 917 nbits = (pktlen << 3) + OFDM_PLCP_BITS; 918 nsymbits = bits_per_symbol[rix % 8][width] * streams; 919 nsymbols = (nbits + nsymbits - 1) / nsymbits; 920 921 if (!half_gi) 922 duration = SYMBOL_TIME(nsymbols); 923 else 924 duration = SYMBOL_TIME_HALFGI(nsymbols); 925 926 /* addup duration for legacy/ht training and signal fields */ 927 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 928 929 return duration; 930 } 931 932 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi) 933 { 934 int streams = HT_RC_2_STREAMS(mcs); 935 int symbols, bits; 936 int bytes = 0; 937 938 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec); 939 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams; 940 bits -= OFDM_PLCP_BITS; 941 bytes = bits / 8; 942 bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 943 if (bytes > 65532) 944 bytes = 65532; 945 946 return bytes; 947 } 948 949 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop) 950 { 951 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi; 952 int mcs; 953 954 /* 4ms is the default (and maximum) duration */ 955 if (!txop || txop > 4096) 956 txop = 4096; 957 958 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20]; 959 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI]; 960 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40]; 961 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI]; 962 for (mcs = 0; mcs < 32; mcs++) { 963 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false); 964 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true); 965 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false); 966 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true); 967 } 968 } 969 970 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, 971 struct ath_tx_info *info, int len) 972 { 973 struct ath_hw *ah = sc->sc_ah; 974 struct sk_buff *skb; 975 struct ieee80211_tx_info *tx_info; 976 struct ieee80211_tx_rate *rates; 977 const struct ieee80211_rate *rate; 978 struct ieee80211_hdr *hdr; 979 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 980 int i; 981 u8 rix = 0; 982 983 skb = bf->bf_mpdu; 984 tx_info = IEEE80211_SKB_CB(skb); 985 rates = bf->rates; 986 hdr = (struct ieee80211_hdr *)skb->data; 987 988 /* set dur_update_en for l-sig computation except for PS-Poll frames */ 989 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control); 990 info->rtscts_rate = fi->rtscts_rate; 991 992 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) { 993 bool is_40, is_sgi, is_sp; 994 int phy; 995 996 if (!rates[i].count || (rates[i].idx < 0)) 997 continue; 998 999 rix = rates[i].idx; 1000 info->rates[i].Tries = rates[i].count; 1001 1002 if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) { 1003 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1004 info->flags |= ATH9K_TXDESC_RTSENA; 1005 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { 1006 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1007 info->flags |= ATH9K_TXDESC_CTSENA; 1008 } 1009 1010 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 1011 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040; 1012 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 1013 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI; 1014 1015 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI); 1016 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH); 1017 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE); 1018 1019 if (rates[i].flags & IEEE80211_TX_RC_MCS) { 1020 /* MCS rates */ 1021 info->rates[i].Rate = rix | 0x80; 1022 info->rates[i].ChSel = ath_txchainmask_reduction(sc, 1023 ah->txchainmask, info->rates[i].Rate); 1024 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len, 1025 is_40, is_sgi, is_sp); 1026 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC)) 1027 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC; 1028 continue; 1029 } 1030 1031 /* legacy rates */ 1032 rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx]; 1033 if ((tx_info->band == IEEE80211_BAND_2GHZ) && 1034 !(rate->flags & IEEE80211_RATE_ERP_G)) 1035 phy = WLAN_RC_PHY_CCK; 1036 else 1037 phy = WLAN_RC_PHY_OFDM; 1038 1039 info->rates[i].Rate = rate->hw_value; 1040 if (rate->hw_value_short) { 1041 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 1042 info->rates[i].Rate |= rate->hw_value_short; 1043 } else { 1044 is_sp = false; 1045 } 1046 1047 if (bf->bf_state.bfs_paprd) 1048 info->rates[i].ChSel = ah->txchainmask; 1049 else 1050 info->rates[i].ChSel = ath_txchainmask_reduction(sc, 1051 ah->txchainmask, info->rates[i].Rate); 1052 1053 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah, 1054 phy, rate->bitrate * 100, len, rix, is_sp); 1055 } 1056 1057 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */ 1058 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit)) 1059 info->flags &= ~ATH9K_TXDESC_RTSENA; 1060 1061 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */ 1062 if (info->flags & ATH9K_TXDESC_RTSENA) 1063 info->flags &= ~ATH9K_TXDESC_CTSENA; 1064 } 1065 1066 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb) 1067 { 1068 struct ieee80211_hdr *hdr; 1069 enum ath9k_pkt_type htype; 1070 __le16 fc; 1071 1072 hdr = (struct ieee80211_hdr *)skb->data; 1073 fc = hdr->frame_control; 1074 1075 if (ieee80211_is_beacon(fc)) 1076 htype = ATH9K_PKT_TYPE_BEACON; 1077 else if (ieee80211_is_probe_resp(fc)) 1078 htype = ATH9K_PKT_TYPE_PROBE_RESP; 1079 else if (ieee80211_is_atim(fc)) 1080 htype = ATH9K_PKT_TYPE_ATIM; 1081 else if (ieee80211_is_pspoll(fc)) 1082 htype = ATH9K_PKT_TYPE_PSPOLL; 1083 else 1084 htype = ATH9K_PKT_TYPE_NORMAL; 1085 1086 return htype; 1087 } 1088 1089 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf, 1090 struct ath_txq *txq, int len) 1091 { 1092 struct ath_hw *ah = sc->sc_ah; 1093 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1094 struct ath_buf *bf_first = bf; 1095 struct ath_tx_info info; 1096 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR); 1097 1098 memset(&info, 0, sizeof(info)); 1099 info.is_first = true; 1100 info.is_last = true; 1101 info.txpower = MAX_RATE_POWER; 1102 info.qcu = txq->axq_qnum; 1103 1104 info.flags = ATH9K_TXDESC_INTREQ; 1105 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) 1106 info.flags |= ATH9K_TXDESC_NOACK; 1107 if (tx_info->flags & IEEE80211_TX_CTL_LDPC) 1108 info.flags |= ATH9K_TXDESC_LDPC; 1109 1110 ath_buf_set_rate(sc, bf, &info, len); 1111 1112 if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) 1113 info.flags |= ATH9K_TXDESC_CLRDMASK; 1114 1115 if (bf->bf_state.bfs_paprd) 1116 info.flags |= (u32) bf->bf_state.bfs_paprd << ATH9K_TXDESC_PAPRD_S; 1117 1118 1119 while (bf) { 1120 struct sk_buff *skb = bf->bf_mpdu; 1121 struct ath_frame_info *fi = get_frame_info(skb); 1122 1123 info.type = get_hw_packet_type(skb); 1124 if (bf->bf_next) 1125 info.link = bf->bf_next->bf_daddr; 1126 else 1127 info.link = 0; 1128 1129 info.buf_addr[0] = bf->bf_buf_addr; 1130 info.buf_len[0] = skb->len; 1131 info.pkt_len = fi->framelen; 1132 info.keyix = fi->keyix; 1133 info.keytype = fi->keytype; 1134 1135 if (aggr) { 1136 if (bf == bf_first) 1137 info.aggr = AGGR_BUF_FIRST; 1138 else if (!bf->bf_next) 1139 info.aggr = AGGR_BUF_LAST; 1140 else 1141 info.aggr = AGGR_BUF_MIDDLE; 1142 1143 info.ndelim = bf->bf_state.ndelim; 1144 info.aggr_len = len; 1145 } 1146 1147 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info); 1148 bf = bf->bf_next; 1149 } 1150 } 1151 1152 static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq, 1153 struct ath_atx_tid *tid) 1154 { 1155 struct ath_buf *bf; 1156 enum ATH_AGGR_STATUS status; 1157 struct ieee80211_tx_info *tx_info; 1158 struct list_head bf_q; 1159 int aggr_len; 1160 1161 do { 1162 if (skb_queue_empty(&tid->buf_q)) 1163 return; 1164 1165 INIT_LIST_HEAD(&bf_q); 1166 1167 status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len); 1168 1169 /* 1170 * no frames picked up to be aggregated; 1171 * block-ack window is not open. 1172 */ 1173 if (list_empty(&bf_q)) 1174 break; 1175 1176 bf = list_first_entry(&bf_q, struct ath_buf, list); 1177 bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list); 1178 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1179 1180 if (tid->ac->clear_ps_filter) { 1181 tid->ac->clear_ps_filter = false; 1182 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1183 } else { 1184 tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT; 1185 } 1186 1187 /* if only one frame, send as non-aggregate */ 1188 if (bf == bf->bf_lastbf) { 1189 aggr_len = get_frame_info(bf->bf_mpdu)->framelen; 1190 bf->bf_state.bf_type = BUF_AMPDU; 1191 } else { 1192 TX_STAT_INC(txq->axq_qnum, a_aggr); 1193 } 1194 1195 ath_tx_fill_desc(sc, bf, txq, aggr_len); 1196 ath_tx_txqaddbuf(sc, txq, &bf_q, false); 1197 } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH && 1198 status != ATH_AGGR_BAW_CLOSED); 1199 } 1200 1201 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta, 1202 u16 tid, u16 *ssn) 1203 { 1204 struct ath_atx_tid *txtid; 1205 struct ath_node *an; 1206 u8 density; 1207 1208 an = (struct ath_node *)sta->drv_priv; 1209 txtid = ATH_AN_2_TID(an, tid); 1210 1211 /* update ampdu factor/density, they may have changed. This may happen 1212 * in HT IBSS when a beacon with HT-info is received after the station 1213 * has already been added. 1214 */ 1215 if (sta->ht_cap.ht_supported) { 1216 an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + 1217 sta->ht_cap.ampdu_factor); 1218 density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density); 1219 an->mpdudensity = density; 1220 } 1221 1222 txtid->active = true; 1223 txtid->paused = true; 1224 *ssn = txtid->seq_start = txtid->seq_next; 1225 txtid->bar_index = -1; 1226 1227 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf)); 1228 txtid->baw_head = txtid->baw_tail = 0; 1229 1230 return 0; 1231 } 1232 1233 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid) 1234 { 1235 struct ath_node *an = (struct ath_node *)sta->drv_priv; 1236 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid); 1237 struct ath_txq *txq = txtid->ac->txq; 1238 1239 ath_txq_lock(sc, txq); 1240 txtid->active = false; 1241 txtid->paused = true; 1242 ath_tx_flush_tid(sc, txtid); 1243 ath_txq_unlock_complete(sc, txq); 1244 } 1245 1246 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc, 1247 struct ath_node *an) 1248 { 1249 struct ath_atx_tid *tid; 1250 struct ath_atx_ac *ac; 1251 struct ath_txq *txq; 1252 bool buffered; 1253 int tidno; 1254 1255 for (tidno = 0, tid = &an->tid[tidno]; 1256 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) { 1257 1258 if (!tid->sched) 1259 continue; 1260 1261 ac = tid->ac; 1262 txq = ac->txq; 1263 1264 ath_txq_lock(sc, txq); 1265 1266 buffered = !skb_queue_empty(&tid->buf_q); 1267 1268 tid->sched = false; 1269 list_del(&tid->list); 1270 1271 if (ac->sched) { 1272 ac->sched = false; 1273 list_del(&ac->list); 1274 } 1275 1276 ath_txq_unlock(sc, txq); 1277 1278 ieee80211_sta_set_buffered(sta, tidno, buffered); 1279 } 1280 } 1281 1282 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an) 1283 { 1284 struct ath_atx_tid *tid; 1285 struct ath_atx_ac *ac; 1286 struct ath_txq *txq; 1287 int tidno; 1288 1289 for (tidno = 0, tid = &an->tid[tidno]; 1290 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) { 1291 1292 ac = tid->ac; 1293 txq = ac->txq; 1294 1295 ath_txq_lock(sc, txq); 1296 ac->clear_ps_filter = true; 1297 1298 if (!skb_queue_empty(&tid->buf_q) && !tid->paused) { 1299 ath_tx_queue_tid(txq, tid); 1300 ath_txq_schedule(sc, txq); 1301 } 1302 1303 ath_txq_unlock_complete(sc, txq); 1304 } 1305 } 1306 1307 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, 1308 u16 tidno) 1309 { 1310 struct ath_atx_tid *tid; 1311 struct ath_node *an; 1312 struct ath_txq *txq; 1313 1314 an = (struct ath_node *)sta->drv_priv; 1315 tid = ATH_AN_2_TID(an, tidno); 1316 txq = tid->ac->txq; 1317 1318 ath_txq_lock(sc, txq); 1319 1320 tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor; 1321 tid->paused = false; 1322 1323 if (!skb_queue_empty(&tid->buf_q)) { 1324 ath_tx_queue_tid(txq, tid); 1325 ath_txq_schedule(sc, txq); 1326 } 1327 1328 ath_txq_unlock_complete(sc, txq); 1329 } 1330 1331 /********************/ 1332 /* Queue Management */ 1333 /********************/ 1334 1335 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 1336 { 1337 struct ath_hw *ah = sc->sc_ah; 1338 struct ath9k_tx_queue_info qi; 1339 static const int subtype_txq_to_hwq[] = { 1340 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE, 1341 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK, 1342 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI, 1343 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO, 1344 }; 1345 int axq_qnum, i; 1346 1347 memset(&qi, 0, sizeof(qi)); 1348 qi.tqi_subtype = subtype_txq_to_hwq[subtype]; 1349 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT; 1350 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT; 1351 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT; 1352 qi.tqi_physCompBuf = 0; 1353 1354 /* 1355 * Enable interrupts only for EOL and DESC conditions. 1356 * We mark tx descriptors to receive a DESC interrupt 1357 * when a tx queue gets deep; otherwise waiting for the 1358 * EOL to reap descriptors. Note that this is done to 1359 * reduce interrupt load and this only defers reaping 1360 * descriptors, never transmitting frames. Aside from 1361 * reducing interrupts this also permits more concurrency. 1362 * The only potential downside is if the tx queue backs 1363 * up in which case the top half of the kernel may backup 1364 * due to a lack of tx descriptors. 1365 * 1366 * The UAPSD queue is an exception, since we take a desc- 1367 * based intr on the EOSP frames. 1368 */ 1369 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1370 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE; 1371 } else { 1372 if (qtype == ATH9K_TX_QUEUE_UAPSD) 1373 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE; 1374 else 1375 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | 1376 TXQ_FLAG_TXDESCINT_ENABLE; 1377 } 1378 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi); 1379 if (axq_qnum == -1) { 1380 /* 1381 * NB: don't print a message, this happens 1382 * normally on parts with too few tx queues 1383 */ 1384 return NULL; 1385 } 1386 if (!ATH_TXQ_SETUP(sc, axq_qnum)) { 1387 struct ath_txq *txq = &sc->tx.txq[axq_qnum]; 1388 1389 txq->axq_qnum = axq_qnum; 1390 txq->mac80211_qnum = -1; 1391 txq->axq_link = NULL; 1392 __skb_queue_head_init(&txq->complete_q); 1393 INIT_LIST_HEAD(&txq->axq_q); 1394 INIT_LIST_HEAD(&txq->axq_acq); 1395 spin_lock_init(&txq->axq_lock); 1396 txq->axq_depth = 0; 1397 txq->axq_ampdu_depth = 0; 1398 txq->axq_tx_inprogress = false; 1399 sc->tx.txqsetup |= 1<<axq_qnum; 1400 1401 txq->txq_headidx = txq->txq_tailidx = 0; 1402 for (i = 0; i < ATH_TXFIFO_DEPTH; i++) 1403 INIT_LIST_HEAD(&txq->txq_fifo[i]); 1404 } 1405 return &sc->tx.txq[axq_qnum]; 1406 } 1407 1408 int ath_txq_update(struct ath_softc *sc, int qnum, 1409 struct ath9k_tx_queue_info *qinfo) 1410 { 1411 struct ath_hw *ah = sc->sc_ah; 1412 int error = 0; 1413 struct ath9k_tx_queue_info qi; 1414 1415 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum); 1416 1417 ath9k_hw_get_txq_props(ah, qnum, &qi); 1418 qi.tqi_aifs = qinfo->tqi_aifs; 1419 qi.tqi_cwmin = qinfo->tqi_cwmin; 1420 qi.tqi_cwmax = qinfo->tqi_cwmax; 1421 qi.tqi_burstTime = qinfo->tqi_burstTime; 1422 qi.tqi_readyTime = qinfo->tqi_readyTime; 1423 1424 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) { 1425 ath_err(ath9k_hw_common(sc->sc_ah), 1426 "Unable to update hardware queue %u!\n", qnum); 1427 error = -EIO; 1428 } else { 1429 ath9k_hw_resettxqueue(ah, qnum); 1430 } 1431 1432 return error; 1433 } 1434 1435 int ath_cabq_update(struct ath_softc *sc) 1436 { 1437 struct ath9k_tx_queue_info qi; 1438 struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf; 1439 int qnum = sc->beacon.cabq->axq_qnum; 1440 1441 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi); 1442 /* 1443 * Ensure the readytime % is within the bounds. 1444 */ 1445 if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND) 1446 sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND; 1447 else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND) 1448 sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND; 1449 1450 qi.tqi_readyTime = (cur_conf->beacon_interval * 1451 sc->config.cabqReadytime) / 100; 1452 ath_txq_update(sc, qnum, &qi); 1453 1454 return 0; 1455 } 1456 1457 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq, 1458 struct list_head *list) 1459 { 1460 struct ath_buf *bf, *lastbf; 1461 struct list_head bf_head; 1462 struct ath_tx_status ts; 1463 1464 memset(&ts, 0, sizeof(ts)); 1465 ts.ts_status = ATH9K_TX_FLUSH; 1466 INIT_LIST_HEAD(&bf_head); 1467 1468 while (!list_empty(list)) { 1469 bf = list_first_entry(list, struct ath_buf, list); 1470 1471 if (bf->bf_stale) { 1472 list_del(&bf->list); 1473 1474 ath_tx_return_buffer(sc, bf); 1475 continue; 1476 } 1477 1478 lastbf = bf->bf_lastbf; 1479 list_cut_position(&bf_head, list, &lastbf->list); 1480 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 1481 } 1482 } 1483 1484 /* 1485 * Drain a given TX queue (could be Beacon or Data) 1486 * 1487 * This assumes output has been stopped and 1488 * we do not need to block ath_tx_tasklet. 1489 */ 1490 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq) 1491 { 1492 ath_txq_lock(sc, txq); 1493 1494 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1495 int idx = txq->txq_tailidx; 1496 1497 while (!list_empty(&txq->txq_fifo[idx])) { 1498 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]); 1499 1500 INCR(idx, ATH_TXFIFO_DEPTH); 1501 } 1502 txq->txq_tailidx = idx; 1503 } 1504 1505 txq->axq_link = NULL; 1506 txq->axq_tx_inprogress = false; 1507 ath_drain_txq_list(sc, txq, &txq->axq_q); 1508 1509 ath_txq_unlock_complete(sc, txq); 1510 } 1511 1512 bool ath_drain_all_txq(struct ath_softc *sc) 1513 { 1514 struct ath_hw *ah = sc->sc_ah; 1515 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1516 struct ath_txq *txq; 1517 int i; 1518 u32 npend = 0; 1519 1520 if (test_bit(SC_OP_INVALID, &sc->sc_flags)) 1521 return true; 1522 1523 ath9k_hw_abort_tx_dma(ah); 1524 1525 /* Check if any queue remains active */ 1526 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1527 if (!ATH_TXQ_SETUP(sc, i)) 1528 continue; 1529 1530 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum)) 1531 npend |= BIT(i); 1532 } 1533 1534 if (npend) 1535 ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend); 1536 1537 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1538 if (!ATH_TXQ_SETUP(sc, i)) 1539 continue; 1540 1541 /* 1542 * The caller will resume queues with ieee80211_wake_queues. 1543 * Mark the queue as not stopped to prevent ath_tx_complete 1544 * from waking the queue too early. 1545 */ 1546 txq = &sc->tx.txq[i]; 1547 txq->stopped = false; 1548 ath_draintxq(sc, txq); 1549 } 1550 1551 return !npend; 1552 } 1553 1554 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 1555 { 1556 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum); 1557 sc->tx.txqsetup &= ~(1<<txq->axq_qnum); 1558 } 1559 1560 /* For each axq_acq entry, for each tid, try to schedule packets 1561 * for transmit until ampdu_depth has reached min Q depth. 1562 */ 1563 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq) 1564 { 1565 struct ath_atx_ac *ac, *ac_tmp, *last_ac; 1566 struct ath_atx_tid *tid, *last_tid; 1567 1568 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) || 1569 list_empty(&txq->axq_acq) || 1570 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) 1571 return; 1572 1573 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list); 1574 last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list); 1575 1576 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) { 1577 last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list); 1578 list_del(&ac->list); 1579 ac->sched = false; 1580 1581 while (!list_empty(&ac->tid_q)) { 1582 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, 1583 list); 1584 list_del(&tid->list); 1585 tid->sched = false; 1586 1587 if (tid->paused) 1588 continue; 1589 1590 ath_tx_sched_aggr(sc, txq, tid); 1591 1592 /* 1593 * add tid to round-robin queue if more frames 1594 * are pending for the tid 1595 */ 1596 if (!skb_queue_empty(&tid->buf_q)) 1597 ath_tx_queue_tid(txq, tid); 1598 1599 if (tid == last_tid || 1600 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) 1601 break; 1602 } 1603 1604 if (!list_empty(&ac->tid_q) && !ac->sched) { 1605 ac->sched = true; 1606 list_add_tail(&ac->list, &txq->axq_acq); 1607 } 1608 1609 if (ac == last_ac || 1610 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) 1611 return; 1612 } 1613 } 1614 1615 /***********/ 1616 /* TX, DMA */ 1617 /***********/ 1618 1619 /* 1620 * Insert a chain of ath_buf (descriptors) on a txq and 1621 * assume the descriptors are already chained together by caller. 1622 */ 1623 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 1624 struct list_head *head, bool internal) 1625 { 1626 struct ath_hw *ah = sc->sc_ah; 1627 struct ath_common *common = ath9k_hw_common(ah); 1628 struct ath_buf *bf, *bf_last; 1629 bool puttxbuf = false; 1630 bool edma; 1631 1632 /* 1633 * Insert the frame on the outbound list and 1634 * pass it on to the hardware. 1635 */ 1636 1637 if (list_empty(head)) 1638 return; 1639 1640 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA); 1641 bf = list_first_entry(head, struct ath_buf, list); 1642 bf_last = list_entry(head->prev, struct ath_buf, list); 1643 1644 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n", 1645 txq->axq_qnum, txq->axq_depth); 1646 1647 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) { 1648 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]); 1649 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH); 1650 puttxbuf = true; 1651 } else { 1652 list_splice_tail_init(head, &txq->axq_q); 1653 1654 if (txq->axq_link) { 1655 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr); 1656 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n", 1657 txq->axq_qnum, txq->axq_link, 1658 ito64(bf->bf_daddr), bf->bf_desc); 1659 } else if (!edma) 1660 puttxbuf = true; 1661 1662 txq->axq_link = bf_last->bf_desc; 1663 } 1664 1665 if (puttxbuf) { 1666 TX_STAT_INC(txq->axq_qnum, puttxbuf); 1667 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 1668 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n", 1669 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc); 1670 } 1671 1672 if (!edma) { 1673 TX_STAT_INC(txq->axq_qnum, txstart); 1674 ath9k_hw_txstart(ah, txq->axq_qnum); 1675 } 1676 1677 if (!internal) { 1678 txq->axq_depth++; 1679 if (bf_is_ampdu_not_probing(bf)) 1680 txq->axq_ampdu_depth++; 1681 } 1682 } 1683 1684 static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid, 1685 struct sk_buff *skb, struct ath_tx_control *txctl) 1686 { 1687 struct ath_frame_info *fi = get_frame_info(skb); 1688 struct list_head bf_head; 1689 struct ath_buf *bf; 1690 1691 /* 1692 * Do not queue to h/w when any of the following conditions is true: 1693 * - there are pending frames in software queue 1694 * - the TID is currently paused for ADDBA/BAR request 1695 * - seqno is not within block-ack window 1696 * - h/w queue depth exceeds low water mark 1697 */ 1698 if (!skb_queue_empty(&tid->buf_q) || tid->paused || 1699 !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) || 1700 txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) { 1701 /* 1702 * Add this frame to software queue for scheduling later 1703 * for aggregation. 1704 */ 1705 TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw); 1706 __skb_queue_tail(&tid->buf_q, skb); 1707 if (!txctl->an || !txctl->an->sleeping) 1708 ath_tx_queue_tid(txctl->txq, tid); 1709 return; 1710 } 1711 1712 bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb); 1713 if (!bf) { 1714 ieee80211_free_txskb(sc->hw, skb); 1715 return; 1716 } 1717 1718 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1719 bf->bf_state.bf_type = BUF_AMPDU; 1720 INIT_LIST_HEAD(&bf_head); 1721 list_add(&bf->list, &bf_head); 1722 1723 /* Add sub-frame to BAW */ 1724 ath_tx_addto_baw(sc, tid, bf->bf_state.seqno); 1725 1726 /* Queue to h/w without aggregation */ 1727 TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw); 1728 bf->bf_lastbf = bf; 1729 ath_tx_fill_desc(sc, bf, txctl->txq, fi->framelen); 1730 ath_tx_txqaddbuf(sc, txctl->txq, &bf_head, false); 1731 } 1732 1733 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 1734 struct ath_atx_tid *tid, struct sk_buff *skb) 1735 { 1736 struct ath_frame_info *fi = get_frame_info(skb); 1737 struct list_head bf_head; 1738 struct ath_buf *bf; 1739 1740 bf = fi->bf; 1741 1742 INIT_LIST_HEAD(&bf_head); 1743 list_add_tail(&bf->list, &bf_head); 1744 bf->bf_state.bf_type = 0; 1745 1746 bf->bf_next = NULL; 1747 bf->bf_lastbf = bf; 1748 ath_tx_fill_desc(sc, bf, txq, fi->framelen); 1749 ath_tx_txqaddbuf(sc, txq, &bf_head, false); 1750 TX_STAT_INC(txq->axq_qnum, queued); 1751 } 1752 1753 static void setup_frame_info(struct ieee80211_hw *hw, 1754 struct ieee80211_sta *sta, 1755 struct sk_buff *skb, 1756 int framelen) 1757 { 1758 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1759 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key; 1760 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1761 const struct ieee80211_rate *rate; 1762 struct ath_frame_info *fi = get_frame_info(skb); 1763 struct ath_node *an = NULL; 1764 enum ath9k_key_type keytype; 1765 bool short_preamble = false; 1766 1767 /* 1768 * We check if Short Preamble is needed for the CTS rate by 1769 * checking the BSS's global flag. 1770 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used. 1771 */ 1772 if (tx_info->control.vif && 1773 tx_info->control.vif->bss_conf.use_short_preamble) 1774 short_preamble = true; 1775 1776 rate = ieee80211_get_rts_cts_rate(hw, tx_info); 1777 keytype = ath9k_cmn_get_hw_crypto_keytype(skb); 1778 1779 if (sta) 1780 an = (struct ath_node *) sta->drv_priv; 1781 1782 memset(fi, 0, sizeof(*fi)); 1783 if (hw_key) 1784 fi->keyix = hw_key->hw_key_idx; 1785 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0) 1786 fi->keyix = an->ps_key; 1787 else 1788 fi->keyix = ATH9K_TXKEYIX_INVALID; 1789 fi->keytype = keytype; 1790 fi->framelen = framelen; 1791 fi->rtscts_rate = rate->hw_value; 1792 if (short_preamble) 1793 fi->rtscts_rate |= rate->hw_value_short; 1794 } 1795 1796 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate) 1797 { 1798 struct ath_hw *ah = sc->sc_ah; 1799 struct ath9k_channel *curchan = ah->curchan; 1800 1801 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && 1802 (curchan->channelFlags & CHANNEL_5GHZ) && 1803 (chainmask == 0x7) && (rate < 0x90)) 1804 return 0x3; 1805 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) && 1806 IS_CCK_RATE(rate)) 1807 return 0x2; 1808 else 1809 return chainmask; 1810 } 1811 1812 /* 1813 * Assign a descriptor (and sequence number if necessary, 1814 * and map buffer for DMA. Frees skb on error 1815 */ 1816 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, 1817 struct ath_txq *txq, 1818 struct ath_atx_tid *tid, 1819 struct sk_buff *skb) 1820 { 1821 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1822 struct ath_frame_info *fi = get_frame_info(skb); 1823 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1824 struct ath_buf *bf; 1825 int fragno; 1826 u16 seqno; 1827 1828 bf = ath_tx_get_buffer(sc); 1829 if (!bf) { 1830 ath_dbg(common, XMIT, "TX buffers are full\n"); 1831 return NULL; 1832 } 1833 1834 ATH_TXBUF_RESET(bf); 1835 1836 if (tid) { 1837 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG; 1838 seqno = tid->seq_next; 1839 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT); 1840 1841 if (fragno) 1842 hdr->seq_ctrl |= cpu_to_le16(fragno); 1843 1844 if (!ieee80211_has_morefrags(hdr->frame_control)) 1845 INCR(tid->seq_next, IEEE80211_SEQ_MAX); 1846 1847 bf->bf_state.seqno = seqno; 1848 } 1849 1850 bf->bf_mpdu = skb; 1851 1852 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 1853 skb->len, DMA_TO_DEVICE); 1854 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) { 1855 bf->bf_mpdu = NULL; 1856 bf->bf_buf_addr = 0; 1857 ath_err(ath9k_hw_common(sc->sc_ah), 1858 "dma_mapping_error() on TX\n"); 1859 ath_tx_return_buffer(sc, bf); 1860 return NULL; 1861 } 1862 1863 fi->bf = bf; 1864 1865 return bf; 1866 } 1867 1868 /* Upon failure caller should free skb */ 1869 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb, 1870 struct ath_tx_control *txctl) 1871 { 1872 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1873 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1874 struct ieee80211_sta *sta = txctl->sta; 1875 struct ieee80211_vif *vif = info->control.vif; 1876 struct ath_softc *sc = hw->priv; 1877 struct ath_txq *txq = txctl->txq; 1878 struct ath_atx_tid *tid = NULL; 1879 struct ath_buf *bf; 1880 int padpos, padsize; 1881 int frmlen = skb->len + FCS_LEN; 1882 u8 tidno; 1883 int q; 1884 1885 /* NOTE: sta can be NULL according to net/mac80211.h */ 1886 if (sta) 1887 txctl->an = (struct ath_node *)sta->drv_priv; 1888 1889 if (info->control.hw_key) 1890 frmlen += info->control.hw_key->icv_len; 1891 1892 /* 1893 * As a temporary workaround, assign seq# here; this will likely need 1894 * to be cleaned up to work better with Beacon transmission and virtual 1895 * BSSes. 1896 */ 1897 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { 1898 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) 1899 sc->tx.seq_no += 0x10; 1900 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); 1901 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no); 1902 } 1903 1904 /* Add the padding after the header if this is not already done */ 1905 padpos = ieee80211_hdrlen(hdr->frame_control); 1906 padsize = padpos & 3; 1907 if (padsize && skb->len > padpos) { 1908 if (skb_headroom(skb) < padsize) 1909 return -ENOMEM; 1910 1911 skb_push(skb, padsize); 1912 memmove(skb->data, skb->data + padsize, padpos); 1913 hdr = (struct ieee80211_hdr *) skb->data; 1914 } 1915 1916 if ((vif && vif->type != NL80211_IFTYPE_AP && 1917 vif->type != NL80211_IFTYPE_AP_VLAN) || 1918 !ieee80211_is_data(hdr->frame_control)) 1919 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1920 1921 setup_frame_info(hw, sta, skb, frmlen); 1922 1923 /* 1924 * At this point, the vif, hw_key and sta pointers in the tx control 1925 * info are no longer valid (overwritten by the ath_frame_info data. 1926 */ 1927 1928 q = skb_get_queue_mapping(skb); 1929 1930 ath_txq_lock(sc, txq); 1931 if (txq == sc->tx.txq_map[q] && 1932 ++txq->pending_frames > sc->tx.txq_max_pending[q] && 1933 !txq->stopped) { 1934 ieee80211_stop_queue(sc->hw, q); 1935 txq->stopped = true; 1936 } 1937 1938 if (txctl->an && ieee80211_is_data_qos(hdr->frame_control)) { 1939 tidno = ieee80211_get_qos_ctl(hdr)[0] & 1940 IEEE80211_QOS_CTL_TID_MASK; 1941 tid = ATH_AN_2_TID(txctl->an, tidno); 1942 1943 WARN_ON(tid->ac->txq != txctl->txq); 1944 } 1945 1946 if ((info->flags & IEEE80211_TX_CTL_AMPDU) && tid) { 1947 /* 1948 * Try aggregation if it's a unicast data frame 1949 * and the destination is HT capable. 1950 */ 1951 ath_tx_send_ampdu(sc, tid, skb, txctl); 1952 goto out; 1953 } 1954 1955 bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb); 1956 if (!bf) { 1957 if (txctl->paprd) 1958 dev_kfree_skb_any(skb); 1959 else 1960 ieee80211_free_txskb(sc->hw, skb); 1961 goto out; 1962 } 1963 1964 bf->bf_state.bfs_paprd = txctl->paprd; 1965 1966 if (txctl->paprd) 1967 bf->bf_state.bfs_paprd_timestamp = jiffies; 1968 1969 ath_set_rates(vif, sta, bf); 1970 ath_tx_send_normal(sc, txctl->txq, tid, skb); 1971 1972 out: 1973 ath_txq_unlock(sc, txq); 1974 1975 return 0; 1976 } 1977 1978 /*****************/ 1979 /* TX Completion */ 1980 /*****************/ 1981 1982 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, 1983 int tx_flags, struct ath_txq *txq) 1984 { 1985 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1986 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1987 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data; 1988 int q, padpos, padsize; 1989 unsigned long flags; 1990 1991 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb); 1992 1993 if (sc->sc_ah->caldata) 1994 sc->sc_ah->caldata->paprd_packet_sent = true; 1995 1996 if (!(tx_flags & ATH_TX_ERROR)) 1997 /* Frame was ACKed */ 1998 tx_info->flags |= IEEE80211_TX_STAT_ACK; 1999 2000 padpos = ieee80211_hdrlen(hdr->frame_control); 2001 padsize = padpos & 3; 2002 if (padsize && skb->len>padpos+padsize) { 2003 /* 2004 * Remove MAC header padding before giving the frame back to 2005 * mac80211. 2006 */ 2007 memmove(skb->data + padsize, skb->data, padpos); 2008 skb_pull(skb, padsize); 2009 } 2010 2011 spin_lock_irqsave(&sc->sc_pm_lock, flags); 2012 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) { 2013 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK; 2014 ath_dbg(common, PS, 2015 "Going back to sleep after having received TX status (0x%lx)\n", 2016 sc->ps_flags & (PS_WAIT_FOR_BEACON | 2017 PS_WAIT_FOR_CAB | 2018 PS_WAIT_FOR_PSPOLL_DATA | 2019 PS_WAIT_FOR_TX_ACK)); 2020 } 2021 spin_unlock_irqrestore(&sc->sc_pm_lock, flags); 2022 2023 q = skb_get_queue_mapping(skb); 2024 if (txq == sc->tx.txq_map[q]) { 2025 if (WARN_ON(--txq->pending_frames < 0)) 2026 txq->pending_frames = 0; 2027 2028 if (txq->stopped && 2029 txq->pending_frames < sc->tx.txq_max_pending[q]) { 2030 ieee80211_wake_queue(sc->hw, q); 2031 txq->stopped = false; 2032 } 2033 } 2034 2035 __skb_queue_tail(&txq->complete_q, skb); 2036 } 2037 2038 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 2039 struct ath_txq *txq, struct list_head *bf_q, 2040 struct ath_tx_status *ts, int txok) 2041 { 2042 struct sk_buff *skb = bf->bf_mpdu; 2043 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2044 unsigned long flags; 2045 int tx_flags = 0; 2046 2047 if (!txok) 2048 tx_flags |= ATH_TX_ERROR; 2049 2050 if (ts->ts_status & ATH9K_TXERR_FILT) 2051 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; 2052 2053 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE); 2054 bf->bf_buf_addr = 0; 2055 2056 if (bf->bf_state.bfs_paprd) { 2057 if (time_after(jiffies, 2058 bf->bf_state.bfs_paprd_timestamp + 2059 msecs_to_jiffies(ATH_PAPRD_TIMEOUT))) 2060 dev_kfree_skb_any(skb); 2061 else 2062 complete(&sc->paprd_complete); 2063 } else { 2064 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags); 2065 ath_tx_complete(sc, skb, tx_flags, txq); 2066 } 2067 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't 2068 * accidentally reference it later. 2069 */ 2070 bf->bf_mpdu = NULL; 2071 2072 /* 2073 * Return the list of ath_buf of this mpdu to free queue 2074 */ 2075 spin_lock_irqsave(&sc->tx.txbuflock, flags); 2076 list_splice_tail_init(bf_q, &sc->tx.txbuf); 2077 spin_unlock_irqrestore(&sc->tx.txbuflock, flags); 2078 } 2079 2080 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 2081 struct ath_tx_status *ts, int nframes, int nbad, 2082 int txok) 2083 { 2084 struct sk_buff *skb = bf->bf_mpdu; 2085 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2086 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2087 struct ieee80211_hw *hw = sc->hw; 2088 struct ath_hw *ah = sc->sc_ah; 2089 u8 i, tx_rateindex; 2090 2091 if (txok) 2092 tx_info->status.ack_signal = ts->ts_rssi; 2093 2094 tx_rateindex = ts->ts_rateindex; 2095 WARN_ON(tx_rateindex >= hw->max_rates); 2096 2097 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 2098 tx_info->flags |= IEEE80211_TX_STAT_AMPDU; 2099 2100 BUG_ON(nbad > nframes); 2101 } 2102 tx_info->status.ampdu_len = nframes; 2103 tx_info->status.ampdu_ack_len = nframes - nbad; 2104 2105 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 && 2106 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) { 2107 /* 2108 * If an underrun error is seen assume it as an excessive 2109 * retry only if max frame trigger level has been reached 2110 * (2 KB for single stream, and 4 KB for dual stream). 2111 * Adjust the long retry as if the frame was tried 2112 * hw->max_rate_tries times to affect how rate control updates 2113 * PER for the failed rate. 2114 * In case of congestion on the bus penalizing this type of 2115 * underruns should help hardware actually transmit new frames 2116 * successfully by eventually preferring slower rates. 2117 * This itself should also alleviate congestion on the bus. 2118 */ 2119 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN | 2120 ATH9K_TX_DELIM_UNDERRUN)) && 2121 ieee80211_is_data(hdr->frame_control) && 2122 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level) 2123 tx_info->status.rates[tx_rateindex].count = 2124 hw->max_rate_tries; 2125 } 2126 2127 for (i = tx_rateindex + 1; i < hw->max_rates; i++) { 2128 tx_info->status.rates[i].count = 0; 2129 tx_info->status.rates[i].idx = -1; 2130 } 2131 2132 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1; 2133 } 2134 2135 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 2136 { 2137 struct ath_hw *ah = sc->sc_ah; 2138 struct ath_common *common = ath9k_hw_common(ah); 2139 struct ath_buf *bf, *lastbf, *bf_held = NULL; 2140 struct list_head bf_head; 2141 struct ath_desc *ds; 2142 struct ath_tx_status ts; 2143 int status; 2144 2145 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n", 2146 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum), 2147 txq->axq_link); 2148 2149 ath_txq_lock(sc, txq); 2150 for (;;) { 2151 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags)) 2152 break; 2153 2154 if (list_empty(&txq->axq_q)) { 2155 txq->axq_link = NULL; 2156 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) 2157 ath_txq_schedule(sc, txq); 2158 break; 2159 } 2160 bf = list_first_entry(&txq->axq_q, struct ath_buf, list); 2161 2162 /* 2163 * There is a race condition that a BH gets scheduled 2164 * after sw writes TxE and before hw re-load the last 2165 * descriptor to get the newly chained one. 2166 * Software must keep the last DONE descriptor as a 2167 * holding descriptor - software does so by marking 2168 * it with the STALE flag. 2169 */ 2170 bf_held = NULL; 2171 if (bf->bf_stale) { 2172 bf_held = bf; 2173 if (list_is_last(&bf_held->list, &txq->axq_q)) 2174 break; 2175 2176 bf = list_entry(bf_held->list.next, struct ath_buf, 2177 list); 2178 } 2179 2180 lastbf = bf->bf_lastbf; 2181 ds = lastbf->bf_desc; 2182 2183 memset(&ts, 0, sizeof(ts)); 2184 status = ath9k_hw_txprocdesc(ah, ds, &ts); 2185 if (status == -EINPROGRESS) 2186 break; 2187 2188 TX_STAT_INC(txq->axq_qnum, txprocdesc); 2189 2190 /* 2191 * Remove ath_buf's of the same transmit unit from txq, 2192 * however leave the last descriptor back as the holding 2193 * descriptor for hw. 2194 */ 2195 lastbf->bf_stale = true; 2196 INIT_LIST_HEAD(&bf_head); 2197 if (!list_is_singular(&lastbf->list)) 2198 list_cut_position(&bf_head, 2199 &txq->axq_q, lastbf->list.prev); 2200 2201 if (bf_held) { 2202 list_del(&bf_held->list); 2203 ath_tx_return_buffer(sc, bf_held); 2204 } 2205 2206 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2207 } 2208 ath_txq_unlock_complete(sc, txq); 2209 } 2210 2211 void ath_tx_tasklet(struct ath_softc *sc) 2212 { 2213 struct ath_hw *ah = sc->sc_ah; 2214 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs; 2215 int i; 2216 2217 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 2218 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i))) 2219 ath_tx_processq(sc, &sc->tx.txq[i]); 2220 } 2221 } 2222 2223 void ath_tx_edma_tasklet(struct ath_softc *sc) 2224 { 2225 struct ath_tx_status ts; 2226 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2227 struct ath_hw *ah = sc->sc_ah; 2228 struct ath_txq *txq; 2229 struct ath_buf *bf, *lastbf; 2230 struct list_head bf_head; 2231 struct list_head *fifo_list; 2232 int status; 2233 2234 for (;;) { 2235 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags)) 2236 break; 2237 2238 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts); 2239 if (status == -EINPROGRESS) 2240 break; 2241 if (status == -EIO) { 2242 ath_dbg(common, XMIT, "Error processing tx status\n"); 2243 break; 2244 } 2245 2246 /* Process beacon completions separately */ 2247 if (ts.qid == sc->beacon.beaconq) { 2248 sc->beacon.tx_processed = true; 2249 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK); 2250 continue; 2251 } 2252 2253 txq = &sc->tx.txq[ts.qid]; 2254 2255 ath_txq_lock(sc, txq); 2256 2257 TX_STAT_INC(txq->axq_qnum, txprocdesc); 2258 2259 fifo_list = &txq->txq_fifo[txq->txq_tailidx]; 2260 if (list_empty(fifo_list)) { 2261 ath_txq_unlock(sc, txq); 2262 return; 2263 } 2264 2265 bf = list_first_entry(fifo_list, struct ath_buf, list); 2266 if (bf->bf_stale) { 2267 list_del(&bf->list); 2268 ath_tx_return_buffer(sc, bf); 2269 bf = list_first_entry(fifo_list, struct ath_buf, list); 2270 } 2271 2272 lastbf = bf->bf_lastbf; 2273 2274 INIT_LIST_HEAD(&bf_head); 2275 if (list_is_last(&lastbf->list, fifo_list)) { 2276 list_splice_tail_init(fifo_list, &bf_head); 2277 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH); 2278 2279 if (!list_empty(&txq->axq_q)) { 2280 struct list_head bf_q; 2281 2282 INIT_LIST_HEAD(&bf_q); 2283 txq->axq_link = NULL; 2284 list_splice_tail_init(&txq->axq_q, &bf_q); 2285 ath_tx_txqaddbuf(sc, txq, &bf_q, true); 2286 } 2287 } else { 2288 lastbf->bf_stale = true; 2289 if (bf != lastbf) 2290 list_cut_position(&bf_head, fifo_list, 2291 lastbf->list.prev); 2292 } 2293 2294 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2295 ath_txq_unlock_complete(sc, txq); 2296 } 2297 } 2298 2299 /*****************/ 2300 /* Init, Cleanup */ 2301 /*****************/ 2302 2303 static int ath_txstatus_setup(struct ath_softc *sc, int size) 2304 { 2305 struct ath_descdma *dd = &sc->txsdma; 2306 u8 txs_len = sc->sc_ah->caps.txs_len; 2307 2308 dd->dd_desc_len = size * txs_len; 2309 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len, 2310 &dd->dd_desc_paddr, GFP_KERNEL); 2311 if (!dd->dd_desc) 2312 return -ENOMEM; 2313 2314 return 0; 2315 } 2316 2317 static int ath_tx_edma_init(struct ath_softc *sc) 2318 { 2319 int err; 2320 2321 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE); 2322 if (!err) 2323 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc, 2324 sc->txsdma.dd_desc_paddr, 2325 ATH_TXSTATUS_RING_SIZE); 2326 2327 return err; 2328 } 2329 2330 int ath_tx_init(struct ath_softc *sc, int nbufs) 2331 { 2332 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2333 int error = 0; 2334 2335 spin_lock_init(&sc->tx.txbuflock); 2336 2337 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf, 2338 "tx", nbufs, 1, 1); 2339 if (error != 0) { 2340 ath_err(common, 2341 "Failed to allocate tx descriptors: %d\n", error); 2342 return error; 2343 } 2344 2345 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf, 2346 "beacon", ATH_BCBUF, 1, 1); 2347 if (error != 0) { 2348 ath_err(common, 2349 "Failed to allocate beacon descriptors: %d\n", error); 2350 return error; 2351 } 2352 2353 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work); 2354 2355 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 2356 error = ath_tx_edma_init(sc); 2357 2358 return error; 2359 } 2360 2361 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an) 2362 { 2363 struct ath_atx_tid *tid; 2364 struct ath_atx_ac *ac; 2365 int tidno, acno; 2366 2367 for (tidno = 0, tid = &an->tid[tidno]; 2368 tidno < IEEE80211_NUM_TIDS; 2369 tidno++, tid++) { 2370 tid->an = an; 2371 tid->tidno = tidno; 2372 tid->seq_start = tid->seq_next = 0; 2373 tid->baw_size = WME_MAX_BA; 2374 tid->baw_head = tid->baw_tail = 0; 2375 tid->sched = false; 2376 tid->paused = false; 2377 tid->active = false; 2378 __skb_queue_head_init(&tid->buf_q); 2379 acno = TID_TO_WME_AC(tidno); 2380 tid->ac = &an->ac[acno]; 2381 } 2382 2383 for (acno = 0, ac = &an->ac[acno]; 2384 acno < IEEE80211_NUM_ACS; acno++, ac++) { 2385 ac->sched = false; 2386 ac->txq = sc->tx.txq_map[acno]; 2387 INIT_LIST_HEAD(&ac->tid_q); 2388 } 2389 } 2390 2391 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an) 2392 { 2393 struct ath_atx_ac *ac; 2394 struct ath_atx_tid *tid; 2395 struct ath_txq *txq; 2396 int tidno; 2397 2398 for (tidno = 0, tid = &an->tid[tidno]; 2399 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) { 2400 2401 ac = tid->ac; 2402 txq = ac->txq; 2403 2404 ath_txq_lock(sc, txq); 2405 2406 if (tid->sched) { 2407 list_del(&tid->list); 2408 tid->sched = false; 2409 } 2410 2411 if (ac->sched) { 2412 list_del(&ac->list); 2413 tid->ac->sched = false; 2414 } 2415 2416 ath_tid_drain(sc, txq, tid); 2417 tid->active = false; 2418 2419 ath_txq_unlock(sc, txq); 2420 } 2421 } 2422