xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/xmit.c (revision de2bdb3d)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20 
21 #define BITS_PER_BYTE           8
22 #define OFDM_PLCP_BITS          22
23 #define HT_RC_2_STREAMS(_rc)    ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF                   8
25 #define L_LTF                   8
26 #define L_SIG                   4
27 #define HT_SIG                  8
28 #define HT_STF                  4
29 #define HT_LTF(_ns)             (4 * (_ns))
30 #define SYMBOL_TIME(_ns)        ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5)  /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t)         ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t)  (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36 
37 
38 static u16 bits_per_symbol[][2] = {
39 	/* 20MHz 40MHz */
40 	{    26,   54 },     /*  0: BPSK */
41 	{    52,  108 },     /*  1: QPSK 1/2 */
42 	{    78,  162 },     /*  2: QPSK 3/4 */
43 	{   104,  216 },     /*  3: 16-QAM 1/2 */
44 	{   156,  324 },     /*  4: 16-QAM 3/4 */
45 	{   208,  432 },     /*  5: 64-QAM 2/3 */
46 	{   234,  486 },     /*  6: 64-QAM 3/4 */
47 	{   260,  540 },     /*  7: 64-QAM 5/6 */
48 };
49 
50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
51 			       struct ath_atx_tid *tid, struct sk_buff *skb);
52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
53 			    int tx_flags, struct ath_txq *txq,
54 			    struct ieee80211_sta *sta);
55 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
56 				struct ath_txq *txq, struct list_head *bf_q,
57 				struct ieee80211_sta *sta,
58 				struct ath_tx_status *ts, int txok);
59 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
60 			     struct list_head *head, bool internal);
61 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
62 			     struct ath_tx_status *ts, int nframes, int nbad,
63 			     int txok);
64 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
65 			      int seqno);
66 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
67 					   struct ath_txq *txq,
68 					   struct ath_atx_tid *tid,
69 					   struct sk_buff *skb);
70 
71 enum {
72 	MCS_HT20,
73 	MCS_HT20_SGI,
74 	MCS_HT40,
75 	MCS_HT40_SGI,
76 };
77 
78 /*********************/
79 /* Aggregation logic */
80 /*********************/
81 
82 static void ath_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb)
83 {
84 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
85 	struct ieee80211_sta *sta = info->status.status_driver_data[0];
86 
87 	if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
88 		ieee80211_tx_status(hw, skb);
89 		return;
90 	}
91 
92 	if (sta)
93 		ieee80211_tx_status_noskb(hw, sta, info);
94 
95 	dev_kfree_skb(skb);
96 }
97 
98 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
99 	__acquires(&txq->axq_lock)
100 {
101 	spin_lock_bh(&txq->axq_lock);
102 }
103 
104 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
105 	__releases(&txq->axq_lock)
106 {
107 	spin_unlock_bh(&txq->axq_lock);
108 }
109 
110 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
111 	__releases(&txq->axq_lock)
112 {
113 	struct ieee80211_hw *hw = sc->hw;
114 	struct sk_buff_head q;
115 	struct sk_buff *skb;
116 
117 	__skb_queue_head_init(&q);
118 	skb_queue_splice_init(&txq->complete_q, &q);
119 	spin_unlock_bh(&txq->axq_lock);
120 
121 	while ((skb = __skb_dequeue(&q)))
122 		ath_tx_status(hw, skb);
123 }
124 
125 static void ath_tx_queue_tid(struct ath_softc *sc, struct ath_txq *txq,
126 			     struct ath_atx_tid *tid)
127 {
128 	struct list_head *list;
129 	struct ath_vif *avp = (struct ath_vif *) tid->an->vif->drv_priv;
130 	struct ath_chanctx *ctx = avp->chanctx;
131 
132 	if (!ctx)
133 		return;
134 
135 	list = &ctx->acq[TID_TO_WME_AC(tid->tidno)];
136 	if (list_empty(&tid->list))
137 		list_add_tail(&tid->list, list);
138 }
139 
140 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
141 {
142 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
143 	BUILD_BUG_ON(sizeof(struct ath_frame_info) >
144 		     sizeof(tx_info->rate_driver_data));
145 	return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
146 }
147 
148 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
149 {
150 	if (!tid->an->sta)
151 		return;
152 
153 	ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
154 			   seqno << IEEE80211_SEQ_SEQ_SHIFT);
155 }
156 
157 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
158 			  struct ath_buf *bf)
159 {
160 	ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
161 			       ARRAY_SIZE(bf->rates));
162 }
163 
164 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
165 			     struct sk_buff *skb)
166 {
167 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
168 	struct ath_frame_info *fi = get_frame_info(skb);
169 	int q = fi->txq;
170 
171 	if (q < 0)
172 		return;
173 
174 	txq = sc->tx.txq_map[q];
175 	if (WARN_ON(--txq->pending_frames < 0))
176 		txq->pending_frames = 0;
177 
178 	if (txq->stopped &&
179 	    txq->pending_frames < sc->tx.txq_max_pending[q]) {
180 		if (ath9k_is_chanctx_enabled())
181 			ieee80211_wake_queue(sc->hw, info->hw_queue);
182 		else
183 			ieee80211_wake_queue(sc->hw, q);
184 		txq->stopped = false;
185 	}
186 }
187 
188 static struct ath_atx_tid *
189 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
190 {
191 	u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
192 	return ATH_AN_2_TID(an, tidno);
193 }
194 
195 static bool ath_tid_has_buffered(struct ath_atx_tid *tid)
196 {
197 	return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q);
198 }
199 
200 static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid)
201 {
202 	struct sk_buff *skb;
203 
204 	skb = __skb_dequeue(&tid->retry_q);
205 	if (!skb)
206 		skb = __skb_dequeue(&tid->buf_q);
207 
208 	return skb;
209 }
210 
211 /*
212  * ath_tx_tid_change_state:
213  * - clears a-mpdu flag of previous session
214  * - force sequence number allocation to fix next BlockAck Window
215  */
216 static void
217 ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid)
218 {
219 	struct ath_txq *txq = tid->txq;
220 	struct ieee80211_tx_info *tx_info;
221 	struct sk_buff *skb, *tskb;
222 	struct ath_buf *bf;
223 	struct ath_frame_info *fi;
224 
225 	skb_queue_walk_safe(&tid->buf_q, skb, tskb) {
226 		fi = get_frame_info(skb);
227 		bf = fi->bf;
228 
229 		tx_info = IEEE80211_SKB_CB(skb);
230 		tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
231 
232 		if (bf)
233 			continue;
234 
235 		bf = ath_tx_setup_buffer(sc, txq, tid, skb);
236 		if (!bf) {
237 			__skb_unlink(skb, &tid->buf_q);
238 			ath_txq_skb_done(sc, txq, skb);
239 			ieee80211_free_txskb(sc->hw, skb);
240 			continue;
241 		}
242 	}
243 
244 }
245 
246 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
247 {
248 	struct ath_txq *txq = tid->txq;
249 	struct sk_buff *skb;
250 	struct ath_buf *bf;
251 	struct list_head bf_head;
252 	struct ath_tx_status ts;
253 	struct ath_frame_info *fi;
254 	bool sendbar = false;
255 
256 	INIT_LIST_HEAD(&bf_head);
257 
258 	memset(&ts, 0, sizeof(ts));
259 
260 	while ((skb = __skb_dequeue(&tid->retry_q))) {
261 		fi = get_frame_info(skb);
262 		bf = fi->bf;
263 		if (!bf) {
264 			ath_txq_skb_done(sc, txq, skb);
265 			ieee80211_free_txskb(sc->hw, skb);
266 			continue;
267 		}
268 
269 		if (fi->baw_tracked) {
270 			ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
271 			sendbar = true;
272 		}
273 
274 		list_add_tail(&bf->list, &bf_head);
275 		ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
276 	}
277 
278 	if (sendbar) {
279 		ath_txq_unlock(sc, txq);
280 		ath_send_bar(tid, tid->seq_start);
281 		ath_txq_lock(sc, txq);
282 	}
283 }
284 
285 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
286 			      int seqno)
287 {
288 	int index, cindex;
289 
290 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
291 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
292 
293 	__clear_bit(cindex, tid->tx_buf);
294 
295 	while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
296 		INCR(tid->seq_start, IEEE80211_SEQ_MAX);
297 		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
298 		if (tid->bar_index >= 0)
299 			tid->bar_index--;
300 	}
301 }
302 
303 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
304 			     struct ath_buf *bf)
305 {
306 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
307 	u16 seqno = bf->bf_state.seqno;
308 	int index, cindex;
309 
310 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
311 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
312 	__set_bit(cindex, tid->tx_buf);
313 	fi->baw_tracked = 1;
314 
315 	if (index >= ((tid->baw_tail - tid->baw_head) &
316 		(ATH_TID_MAX_BUFS - 1))) {
317 		tid->baw_tail = cindex;
318 		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
319 	}
320 }
321 
322 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
323 			  struct ath_atx_tid *tid)
324 
325 {
326 	struct sk_buff *skb;
327 	struct ath_buf *bf;
328 	struct list_head bf_head;
329 	struct ath_tx_status ts;
330 	struct ath_frame_info *fi;
331 
332 	memset(&ts, 0, sizeof(ts));
333 	INIT_LIST_HEAD(&bf_head);
334 
335 	while ((skb = ath_tid_dequeue(tid))) {
336 		fi = get_frame_info(skb);
337 		bf = fi->bf;
338 
339 		if (!bf) {
340 			ath_tx_complete(sc, skb, ATH_TX_ERROR, txq, NULL);
341 			continue;
342 		}
343 
344 		list_add_tail(&bf->list, &bf_head);
345 		ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
346 	}
347 }
348 
349 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
350 			     struct sk_buff *skb, int count)
351 {
352 	struct ath_frame_info *fi = get_frame_info(skb);
353 	struct ath_buf *bf = fi->bf;
354 	struct ieee80211_hdr *hdr;
355 	int prev = fi->retries;
356 
357 	TX_STAT_INC(txq->axq_qnum, a_retries);
358 	fi->retries += count;
359 
360 	if (prev > 0)
361 		return;
362 
363 	hdr = (struct ieee80211_hdr *)skb->data;
364 	hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
365 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
366 		sizeof(*hdr), DMA_TO_DEVICE);
367 }
368 
369 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
370 {
371 	struct ath_buf *bf = NULL;
372 
373 	spin_lock_bh(&sc->tx.txbuflock);
374 
375 	if (unlikely(list_empty(&sc->tx.txbuf))) {
376 		spin_unlock_bh(&sc->tx.txbuflock);
377 		return NULL;
378 	}
379 
380 	bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
381 	list_del(&bf->list);
382 
383 	spin_unlock_bh(&sc->tx.txbuflock);
384 
385 	return bf;
386 }
387 
388 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
389 {
390 	spin_lock_bh(&sc->tx.txbuflock);
391 	list_add_tail(&bf->list, &sc->tx.txbuf);
392 	spin_unlock_bh(&sc->tx.txbuflock);
393 }
394 
395 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
396 {
397 	struct ath_buf *tbf;
398 
399 	tbf = ath_tx_get_buffer(sc);
400 	if (WARN_ON(!tbf))
401 		return NULL;
402 
403 	ATH_TXBUF_RESET(tbf);
404 
405 	tbf->bf_mpdu = bf->bf_mpdu;
406 	tbf->bf_buf_addr = bf->bf_buf_addr;
407 	memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
408 	tbf->bf_state = bf->bf_state;
409 	tbf->bf_state.stale = false;
410 
411 	return tbf;
412 }
413 
414 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
415 			        struct ath_tx_status *ts, int txok,
416 			        int *nframes, int *nbad)
417 {
418 	struct ath_frame_info *fi;
419 	u16 seq_st = 0;
420 	u32 ba[WME_BA_BMP_SIZE >> 5];
421 	int ba_index;
422 	int isaggr = 0;
423 
424 	*nbad = 0;
425 	*nframes = 0;
426 
427 	isaggr = bf_isaggr(bf);
428 	if (isaggr) {
429 		seq_st = ts->ts_seqnum;
430 		memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
431 	}
432 
433 	while (bf) {
434 		fi = get_frame_info(bf->bf_mpdu);
435 		ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
436 
437 		(*nframes)++;
438 		if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
439 			(*nbad)++;
440 
441 		bf = bf->bf_next;
442 	}
443 }
444 
445 
446 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
447 				 struct ath_buf *bf, struct list_head *bf_q,
448 				 struct ieee80211_sta *sta,
449 				 struct ath_atx_tid *tid,
450 				 struct ath_tx_status *ts, int txok)
451 {
452 	struct ath_node *an = NULL;
453 	struct sk_buff *skb;
454 	struct ieee80211_hdr *hdr;
455 	struct ieee80211_tx_info *tx_info;
456 	struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
457 	struct list_head bf_head;
458 	struct sk_buff_head bf_pending;
459 	u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
460 	u32 ba[WME_BA_BMP_SIZE >> 5];
461 	int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
462 	bool rc_update = true, isba;
463 	struct ieee80211_tx_rate rates[4];
464 	struct ath_frame_info *fi;
465 	int nframes;
466 	bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
467 	int i, retries;
468 	int bar_index = -1;
469 
470 	skb = bf->bf_mpdu;
471 	hdr = (struct ieee80211_hdr *)skb->data;
472 
473 	tx_info = IEEE80211_SKB_CB(skb);
474 
475 	memcpy(rates, bf->rates, sizeof(rates));
476 
477 	retries = ts->ts_longretry + 1;
478 	for (i = 0; i < ts->ts_rateindex; i++)
479 		retries += rates[i].count;
480 
481 	if (!sta) {
482 		INIT_LIST_HEAD(&bf_head);
483 		while (bf) {
484 			bf_next = bf->bf_next;
485 
486 			if (!bf->bf_state.stale || bf_next != NULL)
487 				list_move_tail(&bf->list, &bf_head);
488 
489 			ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, ts, 0);
490 
491 			bf = bf_next;
492 		}
493 		return;
494 	}
495 
496 	an = (struct ath_node *)sta->drv_priv;
497 	seq_first = tid->seq_start;
498 	isba = ts->ts_flags & ATH9K_TX_BA;
499 
500 	/*
501 	 * The hardware occasionally sends a tx status for the wrong TID.
502 	 * In this case, the BA status cannot be considered valid and all
503 	 * subframes need to be retransmitted
504 	 *
505 	 * Only BlockAcks have a TID and therefore normal Acks cannot be
506 	 * checked
507 	 */
508 	if (isba && tid->tidno != ts->tid)
509 		txok = false;
510 
511 	isaggr = bf_isaggr(bf);
512 	memset(ba, 0, WME_BA_BMP_SIZE >> 3);
513 
514 	if (isaggr && txok) {
515 		if (ts->ts_flags & ATH9K_TX_BA) {
516 			seq_st = ts->ts_seqnum;
517 			memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
518 		} else {
519 			/*
520 			 * AR5416 can become deaf/mute when BA
521 			 * issue happens. Chip needs to be reset.
522 			 * But AP code may have sychronization issues
523 			 * when perform internal reset in this routine.
524 			 * Only enable reset in STA mode for now.
525 			 */
526 			if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
527 				needreset = 1;
528 		}
529 	}
530 
531 	__skb_queue_head_init(&bf_pending);
532 
533 	ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
534 	while (bf) {
535 		u16 seqno = bf->bf_state.seqno;
536 
537 		txfail = txpending = sendbar = 0;
538 		bf_next = bf->bf_next;
539 
540 		skb = bf->bf_mpdu;
541 		tx_info = IEEE80211_SKB_CB(skb);
542 		fi = get_frame_info(skb);
543 
544 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
545 		    !tid->active) {
546 			/*
547 			 * Outside of the current BlockAck window,
548 			 * maybe part of a previous session
549 			 */
550 			txfail = 1;
551 		} else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
552 			/* transmit completion, subframe is
553 			 * acked by block ack */
554 			acked_cnt++;
555 		} else if (!isaggr && txok) {
556 			/* transmit completion */
557 			acked_cnt++;
558 		} else if (flush) {
559 			txpending = 1;
560 		} else if (fi->retries < ATH_MAX_SW_RETRIES) {
561 			if (txok || !an->sleeping)
562 				ath_tx_set_retry(sc, txq, bf->bf_mpdu,
563 						 retries);
564 
565 			txpending = 1;
566 		} else {
567 			txfail = 1;
568 			txfail_cnt++;
569 			bar_index = max_t(int, bar_index,
570 				ATH_BA_INDEX(seq_first, seqno));
571 		}
572 
573 		/*
574 		 * Make sure the last desc is reclaimed if it
575 		 * not a holding desc.
576 		 */
577 		INIT_LIST_HEAD(&bf_head);
578 		if (bf_next != NULL || !bf_last->bf_state.stale)
579 			list_move_tail(&bf->list, &bf_head);
580 
581 		if (!txpending) {
582 			/*
583 			 * complete the acked-ones/xretried ones; update
584 			 * block-ack window
585 			 */
586 			ath_tx_update_baw(sc, tid, seqno);
587 
588 			if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
589 				memcpy(tx_info->control.rates, rates, sizeof(rates));
590 				ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
591 				rc_update = false;
592 				if (bf == bf->bf_lastbf)
593 					ath_dynack_sample_tx_ts(sc->sc_ah,
594 								bf->bf_mpdu,
595 								ts);
596 			}
597 
598 			ath_tx_complete_buf(sc, bf, txq, &bf_head, sta, ts,
599 				!txfail);
600 		} else {
601 			if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
602 				tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
603 				ieee80211_sta_eosp(sta);
604 			}
605 			/* retry the un-acked ones */
606 			if (bf->bf_next == NULL && bf_last->bf_state.stale) {
607 				struct ath_buf *tbf;
608 
609 				tbf = ath_clone_txbuf(sc, bf_last);
610 				/*
611 				 * Update tx baw and complete the
612 				 * frame with failed status if we
613 				 * run out of tx buf.
614 				 */
615 				if (!tbf) {
616 					ath_tx_update_baw(sc, tid, seqno);
617 
618 					ath_tx_complete_buf(sc, bf, txq,
619 							    &bf_head, NULL, ts,
620 							    0);
621 					bar_index = max_t(int, bar_index,
622 						ATH_BA_INDEX(seq_first, seqno));
623 					break;
624 				}
625 
626 				fi->bf = tbf;
627 			}
628 
629 			/*
630 			 * Put this buffer to the temporary pending
631 			 * queue to retain ordering
632 			 */
633 			__skb_queue_tail(&bf_pending, skb);
634 		}
635 
636 		bf = bf_next;
637 	}
638 
639 	/* prepend un-acked frames to the beginning of the pending frame queue */
640 	if (!skb_queue_empty(&bf_pending)) {
641 		if (an->sleeping)
642 			ieee80211_sta_set_buffered(sta, tid->tidno, true);
643 
644 		skb_queue_splice_tail(&bf_pending, &tid->retry_q);
645 		if (!an->sleeping) {
646 			ath_tx_queue_tid(sc, txq, tid);
647 
648 			if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
649 				tid->clear_ps_filter = true;
650 		}
651 	}
652 
653 	if (bar_index >= 0) {
654 		u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
655 
656 		if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
657 			tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
658 
659 		ath_txq_unlock(sc, txq);
660 		ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
661 		ath_txq_lock(sc, txq);
662 	}
663 
664 	if (needreset)
665 		ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
666 }
667 
668 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
669 {
670     struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
671     return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
672 }
673 
674 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
675 				  struct ath_tx_status *ts, struct ath_buf *bf,
676 				  struct list_head *bf_head)
677 {
678 	struct ieee80211_hw *hw = sc->hw;
679 	struct ieee80211_tx_info *info;
680 	struct ieee80211_sta *sta;
681 	struct ieee80211_hdr *hdr;
682 	struct ath_atx_tid *tid = NULL;
683 	bool txok, flush;
684 
685 	txok = !(ts->ts_status & ATH9K_TXERR_MASK);
686 	flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
687 	txq->axq_tx_inprogress = false;
688 
689 	txq->axq_depth--;
690 	if (bf_is_ampdu_not_probing(bf))
691 		txq->axq_ampdu_depth--;
692 
693 	ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc,
694 					     ts->ts_rateindex);
695 
696 	hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
697 	sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
698 	if (sta) {
699 		struct ath_node *an = (struct ath_node *)sta->drv_priv;
700 		tid = ath_get_skb_tid(sc, an, bf->bf_mpdu);
701 		if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
702 			tid->clear_ps_filter = true;
703 	}
704 
705 	if (!bf_isampdu(bf)) {
706 		if (!flush) {
707 			info = IEEE80211_SKB_CB(bf->bf_mpdu);
708 			memcpy(info->control.rates, bf->rates,
709 			       sizeof(info->control.rates));
710 			ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
711 			ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts);
712 		}
713 		ath_tx_complete_buf(sc, bf, txq, bf_head, sta, ts, txok);
714 	} else
715 		ath_tx_complete_aggr(sc, txq, bf, bf_head, sta, tid, ts, txok);
716 
717 	if (!flush)
718 		ath_txq_schedule(sc, txq);
719 }
720 
721 static bool ath_lookup_legacy(struct ath_buf *bf)
722 {
723 	struct sk_buff *skb;
724 	struct ieee80211_tx_info *tx_info;
725 	struct ieee80211_tx_rate *rates;
726 	int i;
727 
728 	skb = bf->bf_mpdu;
729 	tx_info = IEEE80211_SKB_CB(skb);
730 	rates = tx_info->control.rates;
731 
732 	for (i = 0; i < 4; i++) {
733 		if (!rates[i].count || rates[i].idx < 0)
734 			break;
735 
736 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
737 			return true;
738 	}
739 
740 	return false;
741 }
742 
743 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
744 			   struct ath_atx_tid *tid)
745 {
746 	struct sk_buff *skb;
747 	struct ieee80211_tx_info *tx_info;
748 	struct ieee80211_tx_rate *rates;
749 	u32 max_4ms_framelen, frmlen;
750 	u16 aggr_limit, bt_aggr_limit, legacy = 0;
751 	int q = tid->txq->mac80211_qnum;
752 	int i;
753 
754 	skb = bf->bf_mpdu;
755 	tx_info = IEEE80211_SKB_CB(skb);
756 	rates = bf->rates;
757 
758 	/*
759 	 * Find the lowest frame length among the rate series that will have a
760 	 * 4ms (or TXOP limited) transmit duration.
761 	 */
762 	max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
763 
764 	for (i = 0; i < 4; i++) {
765 		int modeidx;
766 
767 		if (!rates[i].count)
768 			continue;
769 
770 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
771 			legacy = 1;
772 			break;
773 		}
774 
775 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
776 			modeidx = MCS_HT40;
777 		else
778 			modeidx = MCS_HT20;
779 
780 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
781 			modeidx++;
782 
783 		frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
784 		max_4ms_framelen = min(max_4ms_framelen, frmlen);
785 	}
786 
787 	/*
788 	 * limit aggregate size by the minimum rate if rate selected is
789 	 * not a probe rate, if rate selected is a probe rate then
790 	 * avoid aggregation of this packet.
791 	 */
792 	if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
793 		return 0;
794 
795 	aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
796 
797 	/*
798 	 * Override the default aggregation limit for BTCOEX.
799 	 */
800 	bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
801 	if (bt_aggr_limit)
802 		aggr_limit = bt_aggr_limit;
803 
804 	if (tid->an->maxampdu)
805 		aggr_limit = min(aggr_limit, tid->an->maxampdu);
806 
807 	return aggr_limit;
808 }
809 
810 /*
811  * Returns the number of delimiters to be added to
812  * meet the minimum required mpdudensity.
813  */
814 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
815 				  struct ath_buf *bf, u16 frmlen,
816 				  bool first_subfrm)
817 {
818 #define FIRST_DESC_NDELIMS 60
819 	u32 nsymbits, nsymbols;
820 	u16 minlen;
821 	u8 flags, rix;
822 	int width, streams, half_gi, ndelim, mindelim;
823 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
824 
825 	/* Select standard number of delimiters based on frame length alone */
826 	ndelim = ATH_AGGR_GET_NDELIM(frmlen);
827 
828 	/*
829 	 * If encryption enabled, hardware requires some more padding between
830 	 * subframes.
831 	 * TODO - this could be improved to be dependent on the rate.
832 	 *      The hardware can keep up at lower rates, but not higher rates
833 	 */
834 	if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
835 	    !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
836 		ndelim += ATH_AGGR_ENCRYPTDELIM;
837 
838 	/*
839 	 * Add delimiter when using RTS/CTS with aggregation
840 	 * and non enterprise AR9003 card
841 	 */
842 	if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
843 	    (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
844 		ndelim = max(ndelim, FIRST_DESC_NDELIMS);
845 
846 	/*
847 	 * Convert desired mpdu density from microeconds to bytes based
848 	 * on highest rate in rate series (i.e. first rate) to determine
849 	 * required minimum length for subframe. Take into account
850 	 * whether high rate is 20 or 40Mhz and half or full GI.
851 	 *
852 	 * If there is no mpdu density restriction, no further calculation
853 	 * is needed.
854 	 */
855 
856 	if (tid->an->mpdudensity == 0)
857 		return ndelim;
858 
859 	rix = bf->rates[0].idx;
860 	flags = bf->rates[0].flags;
861 	width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
862 	half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
863 
864 	if (half_gi)
865 		nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
866 	else
867 		nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
868 
869 	if (nsymbols == 0)
870 		nsymbols = 1;
871 
872 	streams = HT_RC_2_STREAMS(rix);
873 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
874 	minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
875 
876 	if (frmlen < minlen) {
877 		mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
878 		ndelim = max(mindelim, ndelim);
879 	}
880 
881 	return ndelim;
882 }
883 
884 static struct ath_buf *
885 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
886 			struct ath_atx_tid *tid, struct sk_buff_head **q)
887 {
888 	struct ieee80211_tx_info *tx_info;
889 	struct ath_frame_info *fi;
890 	struct sk_buff *skb;
891 	struct ath_buf *bf;
892 	u16 seqno;
893 
894 	while (1) {
895 		*q = &tid->retry_q;
896 		if (skb_queue_empty(*q))
897 			*q = &tid->buf_q;
898 
899 		skb = skb_peek(*q);
900 		if (!skb)
901 			break;
902 
903 		fi = get_frame_info(skb);
904 		bf = fi->bf;
905 		if (!fi->bf)
906 			bf = ath_tx_setup_buffer(sc, txq, tid, skb);
907 		else
908 			bf->bf_state.stale = false;
909 
910 		if (!bf) {
911 			__skb_unlink(skb, *q);
912 			ath_txq_skb_done(sc, txq, skb);
913 			ieee80211_free_txskb(sc->hw, skb);
914 			continue;
915 		}
916 
917 		bf->bf_next = NULL;
918 		bf->bf_lastbf = bf;
919 
920 		tx_info = IEEE80211_SKB_CB(skb);
921 		tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
922 
923 		/*
924 		 * No aggregation session is running, but there may be frames
925 		 * from a previous session or a failed attempt in the queue.
926 		 * Send them out as normal data frames
927 		 */
928 		if (!tid->active)
929 			tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
930 
931 		if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
932 			bf->bf_state.bf_type = 0;
933 			return bf;
934 		}
935 
936 		bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
937 		seqno = bf->bf_state.seqno;
938 
939 		/* do not step over block-ack window */
940 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno))
941 			break;
942 
943 		if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
944 			struct ath_tx_status ts = {};
945 			struct list_head bf_head;
946 
947 			INIT_LIST_HEAD(&bf_head);
948 			list_add(&bf->list, &bf_head);
949 			__skb_unlink(skb, *q);
950 			ath_tx_update_baw(sc, tid, seqno);
951 			ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
952 			continue;
953 		}
954 
955 		return bf;
956 	}
957 
958 	return NULL;
959 }
960 
961 static bool
962 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
963 		 struct ath_atx_tid *tid, struct list_head *bf_q,
964 		 struct ath_buf *bf_first, struct sk_buff_head *tid_q,
965 		 int *aggr_len)
966 {
967 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
968 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
969 	int nframes = 0, ndelim;
970 	u16 aggr_limit = 0, al = 0, bpad = 0,
971 	    al_delta, h_baw = tid->baw_size / 2;
972 	struct ieee80211_tx_info *tx_info;
973 	struct ath_frame_info *fi;
974 	struct sk_buff *skb;
975 	bool closed = false;
976 
977 	bf = bf_first;
978 	aggr_limit = ath_lookup_rate(sc, bf, tid);
979 
980 	do {
981 		skb = bf->bf_mpdu;
982 		fi = get_frame_info(skb);
983 
984 		/* do not exceed aggregation limit */
985 		al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
986 		if (nframes) {
987 			if (aggr_limit < al + bpad + al_delta ||
988 			    ath_lookup_legacy(bf) || nframes >= h_baw)
989 				break;
990 
991 			tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
992 			if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
993 			    !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
994 				break;
995 		}
996 
997 		/* add padding for previous frame to aggregation length */
998 		al += bpad + al_delta;
999 
1000 		/*
1001 		 * Get the delimiters needed to meet the MPDU
1002 		 * density for this node.
1003 		 */
1004 		ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
1005 						!nframes);
1006 		bpad = PADBYTES(al_delta) + (ndelim << 2);
1007 
1008 		nframes++;
1009 		bf->bf_next = NULL;
1010 
1011 		/* link buffers of this frame to the aggregate */
1012 		if (!fi->baw_tracked)
1013 			ath_tx_addto_baw(sc, tid, bf);
1014 		bf->bf_state.ndelim = ndelim;
1015 
1016 		__skb_unlink(skb, tid_q);
1017 		list_add_tail(&bf->list, bf_q);
1018 		if (bf_prev)
1019 			bf_prev->bf_next = bf;
1020 
1021 		bf_prev = bf;
1022 
1023 		bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1024 		if (!bf) {
1025 			closed = true;
1026 			break;
1027 		}
1028 	} while (ath_tid_has_buffered(tid));
1029 
1030 	bf = bf_first;
1031 	bf->bf_lastbf = bf_prev;
1032 
1033 	if (bf == bf_prev) {
1034 		al = get_frame_info(bf->bf_mpdu)->framelen;
1035 		bf->bf_state.bf_type = BUF_AMPDU;
1036 	} else {
1037 		TX_STAT_INC(txq->axq_qnum, a_aggr);
1038 	}
1039 
1040 	*aggr_len = al;
1041 
1042 	return closed;
1043 #undef PADBYTES
1044 }
1045 
1046 /*
1047  * rix - rate index
1048  * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1049  * width  - 0 for 20 MHz, 1 for 40 MHz
1050  * half_gi - to use 4us v/s 3.6 us for symbol time
1051  */
1052 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1053 			    int width, int half_gi, bool shortPreamble)
1054 {
1055 	u32 nbits, nsymbits, duration, nsymbols;
1056 	int streams;
1057 
1058 	/* find number of symbols: PLCP + data */
1059 	streams = HT_RC_2_STREAMS(rix);
1060 	nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1061 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
1062 	nsymbols = (nbits + nsymbits - 1) / nsymbits;
1063 
1064 	if (!half_gi)
1065 		duration = SYMBOL_TIME(nsymbols);
1066 	else
1067 		duration = SYMBOL_TIME_HALFGI(nsymbols);
1068 
1069 	/* addup duration for legacy/ht training and signal fields */
1070 	duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1071 
1072 	return duration;
1073 }
1074 
1075 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1076 {
1077 	int streams = HT_RC_2_STREAMS(mcs);
1078 	int symbols, bits;
1079 	int bytes = 0;
1080 
1081 	usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1082 	symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1083 	bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1084 	bits -= OFDM_PLCP_BITS;
1085 	bytes = bits / 8;
1086 	if (bytes > 65532)
1087 		bytes = 65532;
1088 
1089 	return bytes;
1090 }
1091 
1092 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1093 {
1094 	u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1095 	int mcs;
1096 
1097 	/* 4ms is the default (and maximum) duration */
1098 	if (!txop || txop > 4096)
1099 		txop = 4096;
1100 
1101 	cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1102 	cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1103 	cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1104 	cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1105 	for (mcs = 0; mcs < 32; mcs++) {
1106 		cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1107 		cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1108 		cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1109 		cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1110 	}
1111 }
1112 
1113 static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf,
1114 			       u8 rateidx, bool is_40, bool is_cck)
1115 {
1116 	u8 max_power;
1117 	struct sk_buff *skb;
1118 	struct ath_frame_info *fi;
1119 	struct ieee80211_tx_info *info;
1120 	struct ath_hw *ah = sc->sc_ah;
1121 
1122 	if (sc->tx99_state || !ah->tpc_enabled)
1123 		return MAX_RATE_POWER;
1124 
1125 	skb = bf->bf_mpdu;
1126 	fi = get_frame_info(skb);
1127 	info = IEEE80211_SKB_CB(skb);
1128 
1129 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
1130 		int txpower = fi->tx_power;
1131 
1132 		if (is_40) {
1133 			u8 power_ht40delta;
1134 			struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1135 
1136 			if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
1137 				bool is_2ghz;
1138 				struct modal_eep_header *pmodal;
1139 
1140 				is_2ghz = info->band == NL80211_BAND_2GHZ;
1141 				pmodal = &eep->modalHeader[is_2ghz];
1142 				power_ht40delta = pmodal->ht40PowerIncForPdadc;
1143 			} else {
1144 				power_ht40delta = 2;
1145 			}
1146 			txpower += power_ht40delta;
1147 		}
1148 
1149 		if (AR_SREV_9287(ah) || AR_SREV_9285(ah) ||
1150 		    AR_SREV_9271(ah)) {
1151 			txpower -= 2 * AR9287_PWR_TABLE_OFFSET_DB;
1152 		} else if (AR_SREV_9280_20_OR_LATER(ah)) {
1153 			s8 power_offset;
1154 
1155 			power_offset = ah->eep_ops->get_eeprom(ah,
1156 							EEP_PWR_TABLE_OFFSET);
1157 			txpower -= 2 * power_offset;
1158 		}
1159 
1160 		if (OLC_FOR_AR9280_20_LATER && is_cck)
1161 			txpower -= 2;
1162 
1163 		txpower = max(txpower, 0);
1164 		max_power = min_t(u8, ah->tx_power[rateidx], txpower);
1165 
1166 		/* XXX: clamp minimum TX power at 1 for AR9160 since if
1167 		 * max_power is set to 0, frames are transmitted at max
1168 		 * TX power
1169 		 */
1170 		if (!max_power && !AR_SREV_9280_20_OR_LATER(ah))
1171 			max_power = 1;
1172 	} else if (!bf->bf_state.bfs_paprd) {
1173 		if (rateidx < 8 && (info->flags & IEEE80211_TX_CTL_STBC))
1174 			max_power = min_t(u8, ah->tx_power_stbc[rateidx],
1175 					  fi->tx_power);
1176 		else
1177 			max_power = min_t(u8, ah->tx_power[rateidx],
1178 					  fi->tx_power);
1179 	} else {
1180 		max_power = ah->paprd_training_power;
1181 	}
1182 
1183 	return max_power;
1184 }
1185 
1186 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1187 			     struct ath_tx_info *info, int len, bool rts)
1188 {
1189 	struct ath_hw *ah = sc->sc_ah;
1190 	struct ath_common *common = ath9k_hw_common(ah);
1191 	struct sk_buff *skb;
1192 	struct ieee80211_tx_info *tx_info;
1193 	struct ieee80211_tx_rate *rates;
1194 	const struct ieee80211_rate *rate;
1195 	struct ieee80211_hdr *hdr;
1196 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1197 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1198 	int i;
1199 	u8 rix = 0;
1200 
1201 	skb = bf->bf_mpdu;
1202 	tx_info = IEEE80211_SKB_CB(skb);
1203 	rates = bf->rates;
1204 	hdr = (struct ieee80211_hdr *)skb->data;
1205 
1206 	/* set dur_update_en for l-sig computation except for PS-Poll frames */
1207 	info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1208 	info->rtscts_rate = fi->rtscts_rate;
1209 
1210 	for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1211 		bool is_40, is_sgi, is_sp, is_cck;
1212 		int phy;
1213 
1214 		if (!rates[i].count || (rates[i].idx < 0))
1215 			continue;
1216 
1217 		rix = rates[i].idx;
1218 		info->rates[i].Tries = rates[i].count;
1219 
1220 		/*
1221 		 * Handle RTS threshold for unaggregated HT frames.
1222 		 */
1223 		if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1224 		    (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1225 		    unlikely(rts_thresh != (u32) -1)) {
1226 			if (!rts_thresh || (len > rts_thresh))
1227 				rts = true;
1228 		}
1229 
1230 		if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1231 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1232 			info->flags |= ATH9K_TXDESC_RTSENA;
1233 		} else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1234 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1235 			info->flags |= ATH9K_TXDESC_CTSENA;
1236 		}
1237 
1238 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1239 			info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1240 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1241 			info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1242 
1243 		is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1244 		is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1245 		is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1246 
1247 		if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1248 			/* MCS rates */
1249 			info->rates[i].Rate = rix | 0x80;
1250 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1251 					ah->txchainmask, info->rates[i].Rate);
1252 			info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1253 				 is_40, is_sgi, is_sp);
1254 			if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1255 				info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1256 
1257 			info->txpower[i] = ath_get_rate_txpower(sc, bf, rix,
1258 								is_40, false);
1259 			continue;
1260 		}
1261 
1262 		/* legacy rates */
1263 		rate = &common->sbands[tx_info->band].bitrates[rates[i].idx];
1264 		if ((tx_info->band == NL80211_BAND_2GHZ) &&
1265 		    !(rate->flags & IEEE80211_RATE_ERP_G))
1266 			phy = WLAN_RC_PHY_CCK;
1267 		else
1268 			phy = WLAN_RC_PHY_OFDM;
1269 
1270 		info->rates[i].Rate = rate->hw_value;
1271 		if (rate->hw_value_short) {
1272 			if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1273 				info->rates[i].Rate |= rate->hw_value_short;
1274 		} else {
1275 			is_sp = false;
1276 		}
1277 
1278 		if (bf->bf_state.bfs_paprd)
1279 			info->rates[i].ChSel = ah->txchainmask;
1280 		else
1281 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1282 					ah->txchainmask, info->rates[i].Rate);
1283 
1284 		info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1285 			phy, rate->bitrate * 100, len, rix, is_sp);
1286 
1287 		is_cck = IS_CCK_RATE(info->rates[i].Rate);
1288 		info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, false,
1289 							is_cck);
1290 	}
1291 
1292 	/* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1293 	if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1294 		info->flags &= ~ATH9K_TXDESC_RTSENA;
1295 
1296 	/* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1297 	if (info->flags & ATH9K_TXDESC_RTSENA)
1298 		info->flags &= ~ATH9K_TXDESC_CTSENA;
1299 }
1300 
1301 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1302 {
1303 	struct ieee80211_hdr *hdr;
1304 	enum ath9k_pkt_type htype;
1305 	__le16 fc;
1306 
1307 	hdr = (struct ieee80211_hdr *)skb->data;
1308 	fc = hdr->frame_control;
1309 
1310 	if (ieee80211_is_beacon(fc))
1311 		htype = ATH9K_PKT_TYPE_BEACON;
1312 	else if (ieee80211_is_probe_resp(fc))
1313 		htype = ATH9K_PKT_TYPE_PROBE_RESP;
1314 	else if (ieee80211_is_atim(fc))
1315 		htype = ATH9K_PKT_TYPE_ATIM;
1316 	else if (ieee80211_is_pspoll(fc))
1317 		htype = ATH9K_PKT_TYPE_PSPOLL;
1318 	else
1319 		htype = ATH9K_PKT_TYPE_NORMAL;
1320 
1321 	return htype;
1322 }
1323 
1324 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1325 			     struct ath_txq *txq, int len)
1326 {
1327 	struct ath_hw *ah = sc->sc_ah;
1328 	struct ath_buf *bf_first = NULL;
1329 	struct ath_tx_info info;
1330 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1331 	bool rts = false;
1332 
1333 	memset(&info, 0, sizeof(info));
1334 	info.is_first = true;
1335 	info.is_last = true;
1336 	info.qcu = txq->axq_qnum;
1337 
1338 	while (bf) {
1339 		struct sk_buff *skb = bf->bf_mpdu;
1340 		struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1341 		struct ath_frame_info *fi = get_frame_info(skb);
1342 		bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1343 
1344 		info.type = get_hw_packet_type(skb);
1345 		if (bf->bf_next)
1346 			info.link = bf->bf_next->bf_daddr;
1347 		else
1348 			info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
1349 
1350 		if (!bf_first) {
1351 			bf_first = bf;
1352 
1353 			if (!sc->tx99_state)
1354 				info.flags = ATH9K_TXDESC_INTREQ;
1355 			if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1356 			    txq == sc->tx.uapsdq)
1357 				info.flags |= ATH9K_TXDESC_CLRDMASK;
1358 
1359 			if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1360 				info.flags |= ATH9K_TXDESC_NOACK;
1361 			if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1362 				info.flags |= ATH9K_TXDESC_LDPC;
1363 
1364 			if (bf->bf_state.bfs_paprd)
1365 				info.flags |= (u32) bf->bf_state.bfs_paprd <<
1366 					      ATH9K_TXDESC_PAPRD_S;
1367 
1368 			/*
1369 			 * mac80211 doesn't handle RTS threshold for HT because
1370 			 * the decision has to be taken based on AMPDU length
1371 			 * and aggregation is done entirely inside ath9k.
1372 			 * Set the RTS/CTS flag for the first subframe based
1373 			 * on the threshold.
1374 			 */
1375 			if (aggr && (bf == bf_first) &&
1376 			    unlikely(rts_thresh != (u32) -1)) {
1377 				/*
1378 				 * "len" is the size of the entire AMPDU.
1379 				 */
1380 				if (!rts_thresh || (len > rts_thresh))
1381 					rts = true;
1382 			}
1383 
1384 			if (!aggr)
1385 				len = fi->framelen;
1386 
1387 			ath_buf_set_rate(sc, bf, &info, len, rts);
1388 		}
1389 
1390 		info.buf_addr[0] = bf->bf_buf_addr;
1391 		info.buf_len[0] = skb->len;
1392 		info.pkt_len = fi->framelen;
1393 		info.keyix = fi->keyix;
1394 		info.keytype = fi->keytype;
1395 
1396 		if (aggr) {
1397 			if (bf == bf_first)
1398 				info.aggr = AGGR_BUF_FIRST;
1399 			else if (bf == bf_first->bf_lastbf)
1400 				info.aggr = AGGR_BUF_LAST;
1401 			else
1402 				info.aggr = AGGR_BUF_MIDDLE;
1403 
1404 			info.ndelim = bf->bf_state.ndelim;
1405 			info.aggr_len = len;
1406 		}
1407 
1408 		if (bf == bf_first->bf_lastbf)
1409 			bf_first = NULL;
1410 
1411 		ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1412 		bf = bf->bf_next;
1413 	}
1414 }
1415 
1416 static void
1417 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1418 		  struct ath_atx_tid *tid, struct list_head *bf_q,
1419 		  struct ath_buf *bf_first, struct sk_buff_head *tid_q)
1420 {
1421 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
1422 	struct sk_buff *skb;
1423 	int nframes = 0;
1424 
1425 	do {
1426 		struct ieee80211_tx_info *tx_info;
1427 		skb = bf->bf_mpdu;
1428 
1429 		nframes++;
1430 		__skb_unlink(skb, tid_q);
1431 		list_add_tail(&bf->list, bf_q);
1432 		if (bf_prev)
1433 			bf_prev->bf_next = bf;
1434 		bf_prev = bf;
1435 
1436 		if (nframes >= 2)
1437 			break;
1438 
1439 		bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1440 		if (!bf)
1441 			break;
1442 
1443 		tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1444 		if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
1445 			break;
1446 
1447 		ath_set_rates(tid->an->vif, tid->an->sta, bf);
1448 	} while (1);
1449 }
1450 
1451 static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1452 			      struct ath_atx_tid *tid, bool *stop)
1453 {
1454 	struct ath_buf *bf;
1455 	struct ieee80211_tx_info *tx_info;
1456 	struct sk_buff_head *tid_q;
1457 	struct list_head bf_q;
1458 	int aggr_len = 0;
1459 	bool aggr, last = true;
1460 
1461 	if (!ath_tid_has_buffered(tid))
1462 		return false;
1463 
1464 	INIT_LIST_HEAD(&bf_q);
1465 
1466 	bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1467 	if (!bf)
1468 		return false;
1469 
1470 	tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1471 	aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1472 	if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1473 		(!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1474 		*stop = true;
1475 		return false;
1476 	}
1477 
1478 	ath_set_rates(tid->an->vif, tid->an->sta, bf);
1479 	if (aggr)
1480 		last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf,
1481 					tid_q, &aggr_len);
1482 	else
1483 		ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q);
1484 
1485 	if (list_empty(&bf_q))
1486 		return false;
1487 
1488 	if (tid->clear_ps_filter || tid->an->no_ps_filter) {
1489 		tid->clear_ps_filter = false;
1490 		tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1491 	}
1492 
1493 	ath_tx_fill_desc(sc, bf, txq, aggr_len);
1494 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1495 	return true;
1496 }
1497 
1498 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1499 		      u16 tid, u16 *ssn)
1500 {
1501 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1502 	struct ath_atx_tid *txtid;
1503 	struct ath_txq *txq;
1504 	struct ath_node *an;
1505 	u8 density;
1506 
1507 	ath_dbg(common, XMIT, "%s called\n", __func__);
1508 
1509 	an = (struct ath_node *)sta->drv_priv;
1510 	txtid = ATH_AN_2_TID(an, tid);
1511 	txq = txtid->txq;
1512 
1513 	ath_txq_lock(sc, txq);
1514 
1515 	/* update ampdu factor/density, they may have changed. This may happen
1516 	 * in HT IBSS when a beacon with HT-info is received after the station
1517 	 * has already been added.
1518 	 */
1519 	if (sta->ht_cap.ht_supported) {
1520 		an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1521 				      sta->ht_cap.ampdu_factor)) - 1;
1522 		density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1523 		an->mpdudensity = density;
1524 	}
1525 
1526 	/* force sequence number allocation for pending frames */
1527 	ath_tx_tid_change_state(sc, txtid);
1528 
1529 	txtid->active = true;
1530 	*ssn = txtid->seq_start = txtid->seq_next;
1531 	txtid->bar_index = -1;
1532 
1533 	memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1534 	txtid->baw_head = txtid->baw_tail = 0;
1535 
1536 	ath_txq_unlock_complete(sc, txq);
1537 
1538 	return 0;
1539 }
1540 
1541 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1542 {
1543 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1544 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1545 	struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1546 	struct ath_txq *txq = txtid->txq;
1547 
1548 	ath_dbg(common, XMIT, "%s called\n", __func__);
1549 
1550 	ath_txq_lock(sc, txq);
1551 	txtid->active = false;
1552 	ath_tx_flush_tid(sc, txtid);
1553 	ath_tx_tid_change_state(sc, txtid);
1554 	ath_txq_unlock_complete(sc, txq);
1555 }
1556 
1557 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1558 		       struct ath_node *an)
1559 {
1560 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1561 	struct ath_atx_tid *tid;
1562 	struct ath_txq *txq;
1563 	bool buffered;
1564 	int tidno;
1565 
1566 	ath_dbg(common, XMIT, "%s called\n", __func__);
1567 
1568 	for (tidno = 0, tid = &an->tid[tidno];
1569 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1570 
1571 		txq = tid->txq;
1572 
1573 		ath_txq_lock(sc, txq);
1574 
1575 		if (list_empty(&tid->list)) {
1576 			ath_txq_unlock(sc, txq);
1577 			continue;
1578 		}
1579 
1580 		buffered = ath_tid_has_buffered(tid);
1581 
1582 		list_del_init(&tid->list);
1583 
1584 		ath_txq_unlock(sc, txq);
1585 
1586 		ieee80211_sta_set_buffered(sta, tidno, buffered);
1587 	}
1588 }
1589 
1590 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1591 {
1592 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1593 	struct ath_atx_tid *tid;
1594 	struct ath_txq *txq;
1595 	int tidno;
1596 
1597 	ath_dbg(common, XMIT, "%s called\n", __func__);
1598 
1599 	for (tidno = 0, tid = &an->tid[tidno];
1600 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1601 
1602 		txq = tid->txq;
1603 
1604 		ath_txq_lock(sc, txq);
1605 		tid->clear_ps_filter = true;
1606 
1607 		if (ath_tid_has_buffered(tid)) {
1608 			ath_tx_queue_tid(sc, txq, tid);
1609 			ath_txq_schedule(sc, txq);
1610 		}
1611 
1612 		ath_txq_unlock_complete(sc, txq);
1613 	}
1614 }
1615 
1616 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
1617 			u16 tidno)
1618 {
1619 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1620 	struct ath_atx_tid *tid;
1621 	struct ath_node *an;
1622 	struct ath_txq *txq;
1623 
1624 	ath_dbg(common, XMIT, "%s called\n", __func__);
1625 
1626 	an = (struct ath_node *)sta->drv_priv;
1627 	tid = ATH_AN_2_TID(an, tidno);
1628 	txq = tid->txq;
1629 
1630 	ath_txq_lock(sc, txq);
1631 
1632 	tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1633 
1634 	if (ath_tid_has_buffered(tid)) {
1635 		ath_tx_queue_tid(sc, txq, tid);
1636 		ath_txq_schedule(sc, txq);
1637 	}
1638 
1639 	ath_txq_unlock_complete(sc, txq);
1640 }
1641 
1642 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1643 				   struct ieee80211_sta *sta,
1644 				   u16 tids, int nframes,
1645 				   enum ieee80211_frame_release_type reason,
1646 				   bool more_data)
1647 {
1648 	struct ath_softc *sc = hw->priv;
1649 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1650 	struct ath_txq *txq = sc->tx.uapsdq;
1651 	struct ieee80211_tx_info *info;
1652 	struct list_head bf_q;
1653 	struct ath_buf *bf_tail = NULL, *bf;
1654 	struct sk_buff_head *tid_q;
1655 	int sent = 0;
1656 	int i;
1657 
1658 	INIT_LIST_HEAD(&bf_q);
1659 	for (i = 0; tids && nframes; i++, tids >>= 1) {
1660 		struct ath_atx_tid *tid;
1661 
1662 		if (!(tids & 1))
1663 			continue;
1664 
1665 		tid = ATH_AN_2_TID(an, i);
1666 
1667 		ath_txq_lock(sc, tid->txq);
1668 		while (nframes > 0) {
1669 			bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q);
1670 			if (!bf)
1671 				break;
1672 
1673 			__skb_unlink(bf->bf_mpdu, tid_q);
1674 			list_add_tail(&bf->list, &bf_q);
1675 			ath_set_rates(tid->an->vif, tid->an->sta, bf);
1676 			if (bf_isampdu(bf)) {
1677 				ath_tx_addto_baw(sc, tid, bf);
1678 				bf->bf_state.bf_type &= ~BUF_AGGR;
1679 			}
1680 			if (bf_tail)
1681 				bf_tail->bf_next = bf;
1682 
1683 			bf_tail = bf;
1684 			nframes--;
1685 			sent++;
1686 			TX_STAT_INC(txq->axq_qnum, a_queued_hw);
1687 
1688 			if (an->sta && !ath_tid_has_buffered(tid))
1689 				ieee80211_sta_set_buffered(an->sta, i, false);
1690 		}
1691 		ath_txq_unlock_complete(sc, tid->txq);
1692 	}
1693 
1694 	if (list_empty(&bf_q))
1695 		return;
1696 
1697 	info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1698 	info->flags |= IEEE80211_TX_STATUS_EOSP;
1699 
1700 	bf = list_first_entry(&bf_q, struct ath_buf, list);
1701 	ath_txq_lock(sc, txq);
1702 	ath_tx_fill_desc(sc, bf, txq, 0);
1703 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1704 	ath_txq_unlock(sc, txq);
1705 }
1706 
1707 /********************/
1708 /* Queue Management */
1709 /********************/
1710 
1711 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1712 {
1713 	struct ath_hw *ah = sc->sc_ah;
1714 	struct ath9k_tx_queue_info qi;
1715 	static const int subtype_txq_to_hwq[] = {
1716 		[IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1717 		[IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1718 		[IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1719 		[IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1720 	};
1721 	int axq_qnum, i;
1722 
1723 	memset(&qi, 0, sizeof(qi));
1724 	qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1725 	qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1726 	qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1727 	qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1728 	qi.tqi_physCompBuf = 0;
1729 
1730 	/*
1731 	 * Enable interrupts only for EOL and DESC conditions.
1732 	 * We mark tx descriptors to receive a DESC interrupt
1733 	 * when a tx queue gets deep; otherwise waiting for the
1734 	 * EOL to reap descriptors.  Note that this is done to
1735 	 * reduce interrupt load and this only defers reaping
1736 	 * descriptors, never transmitting frames.  Aside from
1737 	 * reducing interrupts this also permits more concurrency.
1738 	 * The only potential downside is if the tx queue backs
1739 	 * up in which case the top half of the kernel may backup
1740 	 * due to a lack of tx descriptors.
1741 	 *
1742 	 * The UAPSD queue is an exception, since we take a desc-
1743 	 * based intr on the EOSP frames.
1744 	 */
1745 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1746 		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1747 	} else {
1748 		if (qtype == ATH9K_TX_QUEUE_UAPSD)
1749 			qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1750 		else
1751 			qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1752 					TXQ_FLAG_TXDESCINT_ENABLE;
1753 	}
1754 	axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1755 	if (axq_qnum == -1) {
1756 		/*
1757 		 * NB: don't print a message, this happens
1758 		 * normally on parts with too few tx queues
1759 		 */
1760 		return NULL;
1761 	}
1762 	if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1763 		struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1764 
1765 		txq->axq_qnum = axq_qnum;
1766 		txq->mac80211_qnum = -1;
1767 		txq->axq_link = NULL;
1768 		__skb_queue_head_init(&txq->complete_q);
1769 		INIT_LIST_HEAD(&txq->axq_q);
1770 		spin_lock_init(&txq->axq_lock);
1771 		txq->axq_depth = 0;
1772 		txq->axq_ampdu_depth = 0;
1773 		txq->axq_tx_inprogress = false;
1774 		sc->tx.txqsetup |= 1<<axq_qnum;
1775 
1776 		txq->txq_headidx = txq->txq_tailidx = 0;
1777 		for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1778 			INIT_LIST_HEAD(&txq->txq_fifo[i]);
1779 	}
1780 	return &sc->tx.txq[axq_qnum];
1781 }
1782 
1783 int ath_txq_update(struct ath_softc *sc, int qnum,
1784 		   struct ath9k_tx_queue_info *qinfo)
1785 {
1786 	struct ath_hw *ah = sc->sc_ah;
1787 	int error = 0;
1788 	struct ath9k_tx_queue_info qi;
1789 
1790 	BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1791 
1792 	ath9k_hw_get_txq_props(ah, qnum, &qi);
1793 	qi.tqi_aifs = qinfo->tqi_aifs;
1794 	qi.tqi_cwmin = qinfo->tqi_cwmin;
1795 	qi.tqi_cwmax = qinfo->tqi_cwmax;
1796 	qi.tqi_burstTime = qinfo->tqi_burstTime;
1797 	qi.tqi_readyTime = qinfo->tqi_readyTime;
1798 
1799 	if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1800 		ath_err(ath9k_hw_common(sc->sc_ah),
1801 			"Unable to update hardware queue %u!\n", qnum);
1802 		error = -EIO;
1803 	} else {
1804 		ath9k_hw_resettxqueue(ah, qnum);
1805 	}
1806 
1807 	return error;
1808 }
1809 
1810 int ath_cabq_update(struct ath_softc *sc)
1811 {
1812 	struct ath9k_tx_queue_info qi;
1813 	struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon;
1814 	int qnum = sc->beacon.cabq->axq_qnum;
1815 
1816 	ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1817 
1818 	qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) *
1819 			    ATH_CABQ_READY_TIME) / 100;
1820 	ath_txq_update(sc, qnum, &qi);
1821 
1822 	return 0;
1823 }
1824 
1825 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1826 			       struct list_head *list)
1827 {
1828 	struct ath_buf *bf, *lastbf;
1829 	struct list_head bf_head;
1830 	struct ath_tx_status ts;
1831 
1832 	memset(&ts, 0, sizeof(ts));
1833 	ts.ts_status = ATH9K_TX_FLUSH;
1834 	INIT_LIST_HEAD(&bf_head);
1835 
1836 	while (!list_empty(list)) {
1837 		bf = list_first_entry(list, struct ath_buf, list);
1838 
1839 		if (bf->bf_state.stale) {
1840 			list_del(&bf->list);
1841 
1842 			ath_tx_return_buffer(sc, bf);
1843 			continue;
1844 		}
1845 
1846 		lastbf = bf->bf_lastbf;
1847 		list_cut_position(&bf_head, list, &lastbf->list);
1848 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1849 	}
1850 }
1851 
1852 /*
1853  * Drain a given TX queue (could be Beacon or Data)
1854  *
1855  * This assumes output has been stopped and
1856  * we do not need to block ath_tx_tasklet.
1857  */
1858 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1859 {
1860 	rcu_read_lock();
1861 	ath_txq_lock(sc, txq);
1862 
1863 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1864 		int idx = txq->txq_tailidx;
1865 
1866 		while (!list_empty(&txq->txq_fifo[idx])) {
1867 			ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1868 
1869 			INCR(idx, ATH_TXFIFO_DEPTH);
1870 		}
1871 		txq->txq_tailidx = idx;
1872 	}
1873 
1874 	txq->axq_link = NULL;
1875 	txq->axq_tx_inprogress = false;
1876 	ath_drain_txq_list(sc, txq, &txq->axq_q);
1877 
1878 	ath_txq_unlock_complete(sc, txq);
1879 	rcu_read_unlock();
1880 }
1881 
1882 bool ath_drain_all_txq(struct ath_softc *sc)
1883 {
1884 	struct ath_hw *ah = sc->sc_ah;
1885 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1886 	struct ath_txq *txq;
1887 	int i;
1888 	u32 npend = 0;
1889 
1890 	if (test_bit(ATH_OP_INVALID, &common->op_flags))
1891 		return true;
1892 
1893 	ath9k_hw_abort_tx_dma(ah);
1894 
1895 	/* Check if any queue remains active */
1896 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1897 		if (!ATH_TXQ_SETUP(sc, i))
1898 			continue;
1899 
1900 		if (!sc->tx.txq[i].axq_depth)
1901 			continue;
1902 
1903 		if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1904 			npend |= BIT(i);
1905 	}
1906 
1907 	if (npend) {
1908 		RESET_STAT_INC(sc, RESET_TX_DMA_ERROR);
1909 		ath_dbg(common, RESET,
1910 			"Failed to stop TX DMA, queues=0x%03x!\n", npend);
1911 	}
1912 
1913 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1914 		if (!ATH_TXQ_SETUP(sc, i))
1915 			continue;
1916 
1917 		/*
1918 		 * The caller will resume queues with ieee80211_wake_queues.
1919 		 * Mark the queue as not stopped to prevent ath_tx_complete
1920 		 * from waking the queue too early.
1921 		 */
1922 		txq = &sc->tx.txq[i];
1923 		txq->stopped = false;
1924 		ath_draintxq(sc, txq);
1925 	}
1926 
1927 	return !npend;
1928 }
1929 
1930 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1931 {
1932 	ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1933 	sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1934 }
1935 
1936 /* For each acq entry, for each tid, try to schedule packets
1937  * for transmit until ampdu_depth has reached min Q depth.
1938  */
1939 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1940 {
1941 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1942 	struct ath_atx_tid *tid, *last_tid;
1943 	struct list_head *tid_list;
1944 	bool sent = false;
1945 
1946 	if (txq->mac80211_qnum < 0)
1947 		return;
1948 
1949 	if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
1950 		return;
1951 
1952 	spin_lock_bh(&sc->chan_lock);
1953 	tid_list = &sc->cur_chan->acq[txq->mac80211_qnum];
1954 
1955 	if (list_empty(tid_list)) {
1956 		spin_unlock_bh(&sc->chan_lock);
1957 		return;
1958 	}
1959 
1960 	rcu_read_lock();
1961 
1962 	last_tid = list_entry(tid_list->prev, struct ath_atx_tid, list);
1963 	while (!list_empty(tid_list)) {
1964 		bool stop = false;
1965 
1966 		if (sc->cur_chan->stopped)
1967 			break;
1968 
1969 		tid = list_first_entry(tid_list, struct ath_atx_tid, list);
1970 		list_del_init(&tid->list);
1971 
1972 		if (ath_tx_sched_aggr(sc, txq, tid, &stop))
1973 			sent = true;
1974 
1975 		/*
1976 		 * add tid to round-robin queue if more frames
1977 		 * are pending for the tid
1978 		 */
1979 		if (ath_tid_has_buffered(tid))
1980 			ath_tx_queue_tid(sc, txq, tid);
1981 
1982 		if (stop)
1983 			break;
1984 
1985 		if (tid == last_tid) {
1986 			if (!sent)
1987 				break;
1988 
1989 			sent = false;
1990 			last_tid = list_entry(tid_list->prev,
1991 					      struct ath_atx_tid, list);
1992 		}
1993 	}
1994 
1995 	rcu_read_unlock();
1996 	spin_unlock_bh(&sc->chan_lock);
1997 }
1998 
1999 void ath_txq_schedule_all(struct ath_softc *sc)
2000 {
2001 	struct ath_txq *txq;
2002 	int i;
2003 
2004 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
2005 		txq = sc->tx.txq_map[i];
2006 
2007 		spin_lock_bh(&txq->axq_lock);
2008 		ath_txq_schedule(sc, txq);
2009 		spin_unlock_bh(&txq->axq_lock);
2010 	}
2011 }
2012 
2013 /***********/
2014 /* TX, DMA */
2015 /***********/
2016 
2017 /*
2018  * Insert a chain of ath_buf (descriptors) on a txq and
2019  * assume the descriptors are already chained together by caller.
2020  */
2021 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
2022 			     struct list_head *head, bool internal)
2023 {
2024 	struct ath_hw *ah = sc->sc_ah;
2025 	struct ath_common *common = ath9k_hw_common(ah);
2026 	struct ath_buf *bf, *bf_last;
2027 	bool puttxbuf = false;
2028 	bool edma;
2029 
2030 	/*
2031 	 * Insert the frame on the outbound list and
2032 	 * pass it on to the hardware.
2033 	 */
2034 
2035 	if (list_empty(head))
2036 		return;
2037 
2038 	edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
2039 	bf = list_first_entry(head, struct ath_buf, list);
2040 	bf_last = list_entry(head->prev, struct ath_buf, list);
2041 
2042 	ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
2043 		txq->axq_qnum, txq->axq_depth);
2044 
2045 	if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
2046 		list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
2047 		INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
2048 		puttxbuf = true;
2049 	} else {
2050 		list_splice_tail_init(head, &txq->axq_q);
2051 
2052 		if (txq->axq_link) {
2053 			ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
2054 			ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
2055 				txq->axq_qnum, txq->axq_link,
2056 				ito64(bf->bf_daddr), bf->bf_desc);
2057 		} else if (!edma)
2058 			puttxbuf = true;
2059 
2060 		txq->axq_link = bf_last->bf_desc;
2061 	}
2062 
2063 	if (puttxbuf) {
2064 		TX_STAT_INC(txq->axq_qnum, puttxbuf);
2065 		ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
2066 		ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
2067 			txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
2068 	}
2069 
2070 	if (!edma || sc->tx99_state) {
2071 		TX_STAT_INC(txq->axq_qnum, txstart);
2072 		ath9k_hw_txstart(ah, txq->axq_qnum);
2073 	}
2074 
2075 	if (!internal) {
2076 		while (bf) {
2077 			txq->axq_depth++;
2078 			if (bf_is_ampdu_not_probing(bf))
2079 				txq->axq_ampdu_depth++;
2080 
2081 			bf_last = bf->bf_lastbf;
2082 			bf = bf_last->bf_next;
2083 			bf_last->bf_next = NULL;
2084 		}
2085 	}
2086 }
2087 
2088 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
2089 			       struct ath_atx_tid *tid, struct sk_buff *skb)
2090 {
2091 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2092 	struct ath_frame_info *fi = get_frame_info(skb);
2093 	struct list_head bf_head;
2094 	struct ath_buf *bf = fi->bf;
2095 
2096 	INIT_LIST_HEAD(&bf_head);
2097 	list_add_tail(&bf->list, &bf_head);
2098 	bf->bf_state.bf_type = 0;
2099 	if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
2100 		bf->bf_state.bf_type = BUF_AMPDU;
2101 		ath_tx_addto_baw(sc, tid, bf);
2102 	}
2103 
2104 	bf->bf_next = NULL;
2105 	bf->bf_lastbf = bf;
2106 	ath_tx_fill_desc(sc, bf, txq, fi->framelen);
2107 	ath_tx_txqaddbuf(sc, txq, &bf_head, false);
2108 	TX_STAT_INC(txq->axq_qnum, queued);
2109 }
2110 
2111 static void setup_frame_info(struct ieee80211_hw *hw,
2112 			     struct ieee80211_sta *sta,
2113 			     struct sk_buff *skb,
2114 			     int framelen)
2115 {
2116 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2117 	struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
2118 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2119 	const struct ieee80211_rate *rate;
2120 	struct ath_frame_info *fi = get_frame_info(skb);
2121 	struct ath_node *an = NULL;
2122 	enum ath9k_key_type keytype;
2123 	bool short_preamble = false;
2124 	u8 txpower;
2125 
2126 	/*
2127 	 * We check if Short Preamble is needed for the CTS rate by
2128 	 * checking the BSS's global flag.
2129 	 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
2130 	 */
2131 	if (tx_info->control.vif &&
2132 	    tx_info->control.vif->bss_conf.use_short_preamble)
2133 		short_preamble = true;
2134 
2135 	rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2136 	keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2137 
2138 	if (sta)
2139 		an = (struct ath_node *) sta->drv_priv;
2140 
2141 	if (tx_info->control.vif) {
2142 		struct ieee80211_vif *vif = tx_info->control.vif;
2143 
2144 		txpower = 2 * vif->bss_conf.txpower;
2145 	} else {
2146 		struct ath_softc *sc = hw->priv;
2147 
2148 		txpower = sc->cur_chan->cur_txpower;
2149 	}
2150 
2151 	memset(fi, 0, sizeof(*fi));
2152 	fi->txq = -1;
2153 	if (hw_key)
2154 		fi->keyix = hw_key->hw_key_idx;
2155 	else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2156 		fi->keyix = an->ps_key;
2157 	else
2158 		fi->keyix = ATH9K_TXKEYIX_INVALID;
2159 	fi->keytype = keytype;
2160 	fi->framelen = framelen;
2161 	fi->tx_power = txpower;
2162 
2163 	if (!rate)
2164 		return;
2165 	fi->rtscts_rate = rate->hw_value;
2166 	if (short_preamble)
2167 		fi->rtscts_rate |= rate->hw_value_short;
2168 }
2169 
2170 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2171 {
2172 	struct ath_hw *ah = sc->sc_ah;
2173 	struct ath9k_channel *curchan = ah->curchan;
2174 
2175 	if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
2176 	    (chainmask == 0x7) && (rate < 0x90))
2177 		return 0x3;
2178 	else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2179 		 IS_CCK_RATE(rate))
2180 		return 0x2;
2181 	else
2182 		return chainmask;
2183 }
2184 
2185 /*
2186  * Assign a descriptor (and sequence number if necessary,
2187  * and map buffer for DMA. Frees skb on error
2188  */
2189 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2190 					   struct ath_txq *txq,
2191 					   struct ath_atx_tid *tid,
2192 					   struct sk_buff *skb)
2193 {
2194 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2195 	struct ath_frame_info *fi = get_frame_info(skb);
2196 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2197 	struct ath_buf *bf;
2198 	int fragno;
2199 	u16 seqno;
2200 
2201 	bf = ath_tx_get_buffer(sc);
2202 	if (!bf) {
2203 		ath_dbg(common, XMIT, "TX buffers are full\n");
2204 		return NULL;
2205 	}
2206 
2207 	ATH_TXBUF_RESET(bf);
2208 
2209 	if (tid && ieee80211_is_data_present(hdr->frame_control)) {
2210 		fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2211 		seqno = tid->seq_next;
2212 		hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2213 
2214 		if (fragno)
2215 			hdr->seq_ctrl |= cpu_to_le16(fragno);
2216 
2217 		if (!ieee80211_has_morefrags(hdr->frame_control))
2218 			INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2219 
2220 		bf->bf_state.seqno = seqno;
2221 	}
2222 
2223 	bf->bf_mpdu = skb;
2224 
2225 	bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2226 					 skb->len, DMA_TO_DEVICE);
2227 	if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2228 		bf->bf_mpdu = NULL;
2229 		bf->bf_buf_addr = 0;
2230 		ath_err(ath9k_hw_common(sc->sc_ah),
2231 			"dma_mapping_error() on TX\n");
2232 		ath_tx_return_buffer(sc, bf);
2233 		return NULL;
2234 	}
2235 
2236 	fi->bf = bf;
2237 
2238 	return bf;
2239 }
2240 
2241 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb)
2242 {
2243 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2244 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2245 	struct ieee80211_vif *vif = info->control.vif;
2246 	struct ath_vif *avp;
2247 
2248 	if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
2249 		return;
2250 
2251 	if (!vif)
2252 		return;
2253 
2254 	avp = (struct ath_vif *)vif->drv_priv;
2255 
2256 	if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2257 		avp->seq_no += 0x10;
2258 
2259 	hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2260 	hdr->seq_ctrl |= cpu_to_le16(avp->seq_no);
2261 }
2262 
2263 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2264 			  struct ath_tx_control *txctl)
2265 {
2266 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2267 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2268 	struct ieee80211_sta *sta = txctl->sta;
2269 	struct ieee80211_vif *vif = info->control.vif;
2270 	struct ath_vif *avp;
2271 	struct ath_softc *sc = hw->priv;
2272 	int frmlen = skb->len + FCS_LEN;
2273 	int padpos, padsize;
2274 
2275 	/* NOTE:  sta can be NULL according to net/mac80211.h */
2276 	if (sta)
2277 		txctl->an = (struct ath_node *)sta->drv_priv;
2278 	else if (vif && ieee80211_is_data(hdr->frame_control)) {
2279 		avp = (void *)vif->drv_priv;
2280 		txctl->an = &avp->mcast_node;
2281 	}
2282 
2283 	if (info->control.hw_key)
2284 		frmlen += info->control.hw_key->icv_len;
2285 
2286 	ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb);
2287 
2288 	if ((vif && vif->type != NL80211_IFTYPE_AP &&
2289 	            vif->type != NL80211_IFTYPE_AP_VLAN) ||
2290 	    !ieee80211_is_data(hdr->frame_control))
2291 		info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2292 
2293 	/* Add the padding after the header if this is not already done */
2294 	padpos = ieee80211_hdrlen(hdr->frame_control);
2295 	padsize = padpos & 3;
2296 	if (padsize && skb->len > padpos) {
2297 		if (skb_headroom(skb) < padsize)
2298 			return -ENOMEM;
2299 
2300 		skb_push(skb, padsize);
2301 		memmove(skb->data, skb->data + padsize, padpos);
2302 	}
2303 
2304 	setup_frame_info(hw, sta, skb, frmlen);
2305 	return 0;
2306 }
2307 
2308 
2309 /* Upon failure caller should free skb */
2310 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2311 		 struct ath_tx_control *txctl)
2312 {
2313 	struct ieee80211_hdr *hdr;
2314 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2315 	struct ieee80211_sta *sta = txctl->sta;
2316 	struct ieee80211_vif *vif = info->control.vif;
2317 	struct ath_frame_info *fi = get_frame_info(skb);
2318 	struct ath_vif *avp = NULL;
2319 	struct ath_softc *sc = hw->priv;
2320 	struct ath_txq *txq = txctl->txq;
2321 	struct ath_atx_tid *tid = NULL;
2322 	struct ath_buf *bf;
2323 	bool queue, skip_uapsd = false, ps_resp;
2324 	int q, ret;
2325 
2326 	if (vif)
2327 		avp = (void *)vif->drv_priv;
2328 
2329 	if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN)
2330 		txctl->force_channel = true;
2331 
2332 	ps_resp = !!(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE);
2333 
2334 	ret = ath_tx_prepare(hw, skb, txctl);
2335 	if (ret)
2336 	    return ret;
2337 
2338 	hdr = (struct ieee80211_hdr *) skb->data;
2339 	/*
2340 	 * At this point, the vif, hw_key and sta pointers in the tx control
2341 	 * info are no longer valid (overwritten by the ath_frame_info data.
2342 	 */
2343 
2344 	q = skb_get_queue_mapping(skb);
2345 
2346 	ath_txq_lock(sc, txq);
2347 	if (txq == sc->tx.txq_map[q]) {
2348 		fi->txq = q;
2349 		if (++txq->pending_frames > sc->tx.txq_max_pending[q] &&
2350 		    !txq->stopped) {
2351 			if (ath9k_is_chanctx_enabled())
2352 				ieee80211_stop_queue(sc->hw, info->hw_queue);
2353 			else
2354 				ieee80211_stop_queue(sc->hw, q);
2355 			txq->stopped = true;
2356 		}
2357 	}
2358 
2359 	queue = ieee80211_is_data_present(hdr->frame_control);
2360 
2361 	/* If chanctx, queue all null frames while NOA could be there */
2362 	if (ath9k_is_chanctx_enabled() &&
2363 	    ieee80211_is_nullfunc(hdr->frame_control) &&
2364 	    !txctl->force_channel)
2365 		queue = true;
2366 
2367 	/* Force queueing of all frames that belong to a virtual interface on
2368 	 * a different channel context, to ensure that they are sent on the
2369 	 * correct channel.
2370 	 */
2371 	if (((avp && avp->chanctx != sc->cur_chan) ||
2372 	     sc->cur_chan->stopped) && !txctl->force_channel) {
2373 		if (!txctl->an)
2374 			txctl->an = &avp->mcast_node;
2375 		queue = true;
2376 		skip_uapsd = true;
2377 	}
2378 
2379 	if (txctl->an && queue)
2380 		tid = ath_get_skb_tid(sc, txctl->an, skb);
2381 
2382 	if (!skip_uapsd && ps_resp) {
2383 		ath_txq_unlock(sc, txq);
2384 		txq = sc->tx.uapsdq;
2385 		ath_txq_lock(sc, txq);
2386 	} else if (txctl->an && queue) {
2387 		WARN_ON(tid->txq != txctl->txq);
2388 
2389 		if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
2390 			tid->clear_ps_filter = true;
2391 
2392 		/*
2393 		 * Add this frame to software queue for scheduling later
2394 		 * for aggregation.
2395 		 */
2396 		TX_STAT_INC(txq->axq_qnum, a_queued_sw);
2397 		__skb_queue_tail(&tid->buf_q, skb);
2398 		if (!txctl->an->sleeping)
2399 			ath_tx_queue_tid(sc, txq, tid);
2400 
2401 		ath_txq_schedule(sc, txq);
2402 		goto out;
2403 	}
2404 
2405 	bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2406 	if (!bf) {
2407 		ath_txq_skb_done(sc, txq, skb);
2408 		if (txctl->paprd)
2409 			dev_kfree_skb_any(skb);
2410 		else
2411 			ieee80211_free_txskb(sc->hw, skb);
2412 		goto out;
2413 	}
2414 
2415 	bf->bf_state.bfs_paprd = txctl->paprd;
2416 
2417 	if (txctl->paprd)
2418 		bf->bf_state.bfs_paprd_timestamp = jiffies;
2419 
2420 	ath_set_rates(vif, sta, bf);
2421 	ath_tx_send_normal(sc, txq, tid, skb);
2422 
2423 out:
2424 	ath_txq_unlock(sc, txq);
2425 
2426 	return 0;
2427 }
2428 
2429 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2430 		 struct sk_buff *skb)
2431 {
2432 	struct ath_softc *sc = hw->priv;
2433 	struct ath_tx_control txctl = {
2434 		.txq = sc->beacon.cabq
2435 	};
2436 	struct ath_tx_info info = {};
2437 	struct ieee80211_hdr *hdr;
2438 	struct ath_buf *bf_tail = NULL;
2439 	struct ath_buf *bf;
2440 	LIST_HEAD(bf_q);
2441 	int duration = 0;
2442 	int max_duration;
2443 
2444 	max_duration =
2445 		sc->cur_chan->beacon.beacon_interval * 1000 *
2446 		sc->cur_chan->beacon.dtim_period / ATH_BCBUF;
2447 
2448 	do {
2449 		struct ath_frame_info *fi = get_frame_info(skb);
2450 
2451 		if (ath_tx_prepare(hw, skb, &txctl))
2452 			break;
2453 
2454 		bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2455 		if (!bf)
2456 			break;
2457 
2458 		bf->bf_lastbf = bf;
2459 		ath_set_rates(vif, NULL, bf);
2460 		ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2461 		duration += info.rates[0].PktDuration;
2462 		if (bf_tail)
2463 			bf_tail->bf_next = bf;
2464 
2465 		list_add_tail(&bf->list, &bf_q);
2466 		bf_tail = bf;
2467 		skb = NULL;
2468 
2469 		if (duration > max_duration)
2470 			break;
2471 
2472 		skb = ieee80211_get_buffered_bc(hw, vif);
2473 	} while(skb);
2474 
2475 	if (skb)
2476 		ieee80211_free_txskb(hw, skb);
2477 
2478 	if (list_empty(&bf_q))
2479 		return;
2480 
2481 	bf = list_first_entry(&bf_q, struct ath_buf, list);
2482 	hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
2483 
2484 	if (hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_MOREDATA)) {
2485 		hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_MOREDATA);
2486 		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
2487 			sizeof(*hdr), DMA_TO_DEVICE);
2488 	}
2489 
2490 	ath_txq_lock(sc, txctl.txq);
2491 	ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2492 	ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2493 	TX_STAT_INC(txctl.txq->axq_qnum, queued);
2494 	ath_txq_unlock(sc, txctl.txq);
2495 }
2496 
2497 /*****************/
2498 /* TX Completion */
2499 /*****************/
2500 
2501 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2502 			    int tx_flags, struct ath_txq *txq,
2503 			    struct ieee80211_sta *sta)
2504 {
2505 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2506 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2507 	struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2508 	int padpos, padsize;
2509 	unsigned long flags;
2510 
2511 	ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2512 
2513 	if (sc->sc_ah->caldata)
2514 		set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
2515 
2516 	if (!(tx_flags & ATH_TX_ERROR)) {
2517 		if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
2518 			tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
2519 		else
2520 			tx_info->flags |= IEEE80211_TX_STAT_ACK;
2521 	}
2522 
2523 	if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
2524 		padpos = ieee80211_hdrlen(hdr->frame_control);
2525 		padsize = padpos & 3;
2526 		if (padsize && skb->len>padpos+padsize) {
2527 			/*
2528 			 * Remove MAC header padding before giving the frame back to
2529 			 * mac80211.
2530 			 */
2531 			memmove(skb->data + padsize, skb->data, padpos);
2532 			skb_pull(skb, padsize);
2533 		}
2534 	}
2535 
2536 	spin_lock_irqsave(&sc->sc_pm_lock, flags);
2537 	if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2538 		sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2539 		ath_dbg(common, PS,
2540 			"Going back to sleep after having received TX status (0x%lx)\n",
2541 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
2542 					PS_WAIT_FOR_CAB |
2543 					PS_WAIT_FOR_PSPOLL_DATA |
2544 					PS_WAIT_FOR_TX_ACK));
2545 	}
2546 	spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2547 
2548 	ath_txq_skb_done(sc, txq, skb);
2549 	tx_info->status.status_driver_data[0] = sta;
2550 	__skb_queue_tail(&txq->complete_q, skb);
2551 }
2552 
2553 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2554 				struct ath_txq *txq, struct list_head *bf_q,
2555 				struct ieee80211_sta *sta,
2556 				struct ath_tx_status *ts, int txok)
2557 {
2558 	struct sk_buff *skb = bf->bf_mpdu;
2559 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2560 	unsigned long flags;
2561 	int tx_flags = 0;
2562 
2563 	if (!txok)
2564 		tx_flags |= ATH_TX_ERROR;
2565 
2566 	if (ts->ts_status & ATH9K_TXERR_FILT)
2567 		tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2568 
2569 	dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2570 	bf->bf_buf_addr = 0;
2571 	if (sc->tx99_state)
2572 		goto skip_tx_complete;
2573 
2574 	if (bf->bf_state.bfs_paprd) {
2575 		if (time_after(jiffies,
2576 				bf->bf_state.bfs_paprd_timestamp +
2577 				msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2578 			dev_kfree_skb_any(skb);
2579 		else
2580 			complete(&sc->paprd_complete);
2581 	} else {
2582 		ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2583 		ath_tx_complete(sc, skb, tx_flags, txq, sta);
2584 	}
2585 skip_tx_complete:
2586 	/* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2587 	 * accidentally reference it later.
2588 	 */
2589 	bf->bf_mpdu = NULL;
2590 
2591 	/*
2592 	 * Return the list of ath_buf of this mpdu to free queue
2593 	 */
2594 	spin_lock_irqsave(&sc->tx.txbuflock, flags);
2595 	list_splice_tail_init(bf_q, &sc->tx.txbuf);
2596 	spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2597 }
2598 
2599 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2600 			     struct ath_tx_status *ts, int nframes, int nbad,
2601 			     int txok)
2602 {
2603 	struct sk_buff *skb = bf->bf_mpdu;
2604 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2605 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2606 	struct ieee80211_hw *hw = sc->hw;
2607 	struct ath_hw *ah = sc->sc_ah;
2608 	u8 i, tx_rateindex;
2609 
2610 	if (txok)
2611 		tx_info->status.ack_signal = ts->ts_rssi;
2612 
2613 	tx_rateindex = ts->ts_rateindex;
2614 	WARN_ON(tx_rateindex >= hw->max_rates);
2615 
2616 	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2617 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2618 
2619 		BUG_ON(nbad > nframes);
2620 	}
2621 	tx_info->status.ampdu_len = nframes;
2622 	tx_info->status.ampdu_ack_len = nframes - nbad;
2623 
2624 	if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2625 	    (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2626 		/*
2627 		 * If an underrun error is seen assume it as an excessive
2628 		 * retry only if max frame trigger level has been reached
2629 		 * (2 KB for single stream, and 4 KB for dual stream).
2630 		 * Adjust the long retry as if the frame was tried
2631 		 * hw->max_rate_tries times to affect how rate control updates
2632 		 * PER for the failed rate.
2633 		 * In case of congestion on the bus penalizing this type of
2634 		 * underruns should help hardware actually transmit new frames
2635 		 * successfully by eventually preferring slower rates.
2636 		 * This itself should also alleviate congestion on the bus.
2637 		 */
2638 		if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2639 		                             ATH9K_TX_DELIM_UNDERRUN)) &&
2640 		    ieee80211_is_data(hdr->frame_control) &&
2641 		    ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2642 			tx_info->status.rates[tx_rateindex].count =
2643 				hw->max_rate_tries;
2644 	}
2645 
2646 	for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2647 		tx_info->status.rates[i].count = 0;
2648 		tx_info->status.rates[i].idx = -1;
2649 	}
2650 
2651 	tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2652 }
2653 
2654 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2655 {
2656 	struct ath_hw *ah = sc->sc_ah;
2657 	struct ath_common *common = ath9k_hw_common(ah);
2658 	struct ath_buf *bf, *lastbf, *bf_held = NULL;
2659 	struct list_head bf_head;
2660 	struct ath_desc *ds;
2661 	struct ath_tx_status ts;
2662 	int status;
2663 
2664 	ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2665 		txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2666 		txq->axq_link);
2667 
2668 	ath_txq_lock(sc, txq);
2669 	for (;;) {
2670 		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2671 			break;
2672 
2673 		if (list_empty(&txq->axq_q)) {
2674 			txq->axq_link = NULL;
2675 			ath_txq_schedule(sc, txq);
2676 			break;
2677 		}
2678 		bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2679 
2680 		/*
2681 		 * There is a race condition that a BH gets scheduled
2682 		 * after sw writes TxE and before hw re-load the last
2683 		 * descriptor to get the newly chained one.
2684 		 * Software must keep the last DONE descriptor as a
2685 		 * holding descriptor - software does so by marking
2686 		 * it with the STALE flag.
2687 		 */
2688 		bf_held = NULL;
2689 		if (bf->bf_state.stale) {
2690 			bf_held = bf;
2691 			if (list_is_last(&bf_held->list, &txq->axq_q))
2692 				break;
2693 
2694 			bf = list_entry(bf_held->list.next, struct ath_buf,
2695 					list);
2696 		}
2697 
2698 		lastbf = bf->bf_lastbf;
2699 		ds = lastbf->bf_desc;
2700 
2701 		memset(&ts, 0, sizeof(ts));
2702 		status = ath9k_hw_txprocdesc(ah, ds, &ts);
2703 		if (status == -EINPROGRESS)
2704 			break;
2705 
2706 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2707 
2708 		/*
2709 		 * Remove ath_buf's of the same transmit unit from txq,
2710 		 * however leave the last descriptor back as the holding
2711 		 * descriptor for hw.
2712 		 */
2713 		lastbf->bf_state.stale = true;
2714 		INIT_LIST_HEAD(&bf_head);
2715 		if (!list_is_singular(&lastbf->list))
2716 			list_cut_position(&bf_head,
2717 				&txq->axq_q, lastbf->list.prev);
2718 
2719 		if (bf_held) {
2720 			list_del(&bf_held->list);
2721 			ath_tx_return_buffer(sc, bf_held);
2722 		}
2723 
2724 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2725 	}
2726 	ath_txq_unlock_complete(sc, txq);
2727 }
2728 
2729 void ath_tx_tasklet(struct ath_softc *sc)
2730 {
2731 	struct ath_hw *ah = sc->sc_ah;
2732 	u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2733 	int i;
2734 
2735 	rcu_read_lock();
2736 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2737 		if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2738 			ath_tx_processq(sc, &sc->tx.txq[i]);
2739 	}
2740 	rcu_read_unlock();
2741 }
2742 
2743 void ath_tx_edma_tasklet(struct ath_softc *sc)
2744 {
2745 	struct ath_tx_status ts;
2746 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2747 	struct ath_hw *ah = sc->sc_ah;
2748 	struct ath_txq *txq;
2749 	struct ath_buf *bf, *lastbf;
2750 	struct list_head bf_head;
2751 	struct list_head *fifo_list;
2752 	int status;
2753 
2754 	rcu_read_lock();
2755 	for (;;) {
2756 		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2757 			break;
2758 
2759 		status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2760 		if (status == -EINPROGRESS)
2761 			break;
2762 		if (status == -EIO) {
2763 			ath_dbg(common, XMIT, "Error processing tx status\n");
2764 			break;
2765 		}
2766 
2767 		/* Process beacon completions separately */
2768 		if (ts.qid == sc->beacon.beaconq) {
2769 			sc->beacon.tx_processed = true;
2770 			sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2771 
2772 			if (ath9k_is_chanctx_enabled()) {
2773 				ath_chanctx_event(sc, NULL,
2774 						  ATH_CHANCTX_EVENT_BEACON_SENT);
2775 			}
2776 
2777 			ath9k_csa_update(sc);
2778 			continue;
2779 		}
2780 
2781 		txq = &sc->tx.txq[ts.qid];
2782 
2783 		ath_txq_lock(sc, txq);
2784 
2785 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2786 
2787 		fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2788 		if (list_empty(fifo_list)) {
2789 			ath_txq_unlock(sc, txq);
2790 			return;
2791 		}
2792 
2793 		bf = list_first_entry(fifo_list, struct ath_buf, list);
2794 		if (bf->bf_state.stale) {
2795 			list_del(&bf->list);
2796 			ath_tx_return_buffer(sc, bf);
2797 			bf = list_first_entry(fifo_list, struct ath_buf, list);
2798 		}
2799 
2800 		lastbf = bf->bf_lastbf;
2801 
2802 		INIT_LIST_HEAD(&bf_head);
2803 		if (list_is_last(&lastbf->list, fifo_list)) {
2804 			list_splice_tail_init(fifo_list, &bf_head);
2805 			INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2806 
2807 			if (!list_empty(&txq->axq_q)) {
2808 				struct list_head bf_q;
2809 
2810 				INIT_LIST_HEAD(&bf_q);
2811 				txq->axq_link = NULL;
2812 				list_splice_tail_init(&txq->axq_q, &bf_q);
2813 				ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2814 			}
2815 		} else {
2816 			lastbf->bf_state.stale = true;
2817 			if (bf != lastbf)
2818 				list_cut_position(&bf_head, fifo_list,
2819 						  lastbf->list.prev);
2820 		}
2821 
2822 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2823 		ath_txq_unlock_complete(sc, txq);
2824 	}
2825 	rcu_read_unlock();
2826 }
2827 
2828 /*****************/
2829 /* Init, Cleanup */
2830 /*****************/
2831 
2832 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2833 {
2834 	struct ath_descdma *dd = &sc->txsdma;
2835 	u8 txs_len = sc->sc_ah->caps.txs_len;
2836 
2837 	dd->dd_desc_len = size * txs_len;
2838 	dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2839 					  &dd->dd_desc_paddr, GFP_KERNEL);
2840 	if (!dd->dd_desc)
2841 		return -ENOMEM;
2842 
2843 	return 0;
2844 }
2845 
2846 static int ath_tx_edma_init(struct ath_softc *sc)
2847 {
2848 	int err;
2849 
2850 	err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2851 	if (!err)
2852 		ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2853 					  sc->txsdma.dd_desc_paddr,
2854 					  ATH_TXSTATUS_RING_SIZE);
2855 
2856 	return err;
2857 }
2858 
2859 int ath_tx_init(struct ath_softc *sc, int nbufs)
2860 {
2861 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2862 	int error = 0;
2863 
2864 	spin_lock_init(&sc->tx.txbuflock);
2865 
2866 	error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2867 				  "tx", nbufs, 1, 1);
2868 	if (error != 0) {
2869 		ath_err(common,
2870 			"Failed to allocate tx descriptors: %d\n", error);
2871 		return error;
2872 	}
2873 
2874 	error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2875 				  "beacon", ATH_BCBUF, 1, 1);
2876 	if (error != 0) {
2877 		ath_err(common,
2878 			"Failed to allocate beacon descriptors: %d\n", error);
2879 		return error;
2880 	}
2881 
2882 	INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2883 
2884 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2885 		error = ath_tx_edma_init(sc);
2886 
2887 	return error;
2888 }
2889 
2890 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2891 {
2892 	struct ath_atx_tid *tid;
2893 	int tidno, acno;
2894 
2895 	for (tidno = 0, tid = &an->tid[tidno];
2896 	     tidno < IEEE80211_NUM_TIDS;
2897 	     tidno++, tid++) {
2898 		tid->an        = an;
2899 		tid->tidno     = tidno;
2900 		tid->seq_start = tid->seq_next = 0;
2901 		tid->baw_size  = WME_MAX_BA;
2902 		tid->baw_head  = tid->baw_tail = 0;
2903 		tid->active	   = false;
2904 		tid->clear_ps_filter = true;
2905 		__skb_queue_head_init(&tid->buf_q);
2906 		__skb_queue_head_init(&tid->retry_q);
2907 		INIT_LIST_HEAD(&tid->list);
2908 		acno = TID_TO_WME_AC(tidno);
2909 		tid->txq = sc->tx.txq_map[acno];
2910 	}
2911 }
2912 
2913 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2914 {
2915 	struct ath_atx_tid *tid;
2916 	struct ath_txq *txq;
2917 	int tidno;
2918 
2919 	for (tidno = 0, tid = &an->tid[tidno];
2920 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
2921 
2922 		txq = tid->txq;
2923 
2924 		ath_txq_lock(sc, txq);
2925 
2926 		if (!list_empty(&tid->list))
2927 			list_del_init(&tid->list);
2928 
2929 		ath_tid_drain(sc, txq, tid);
2930 		tid->active = false;
2931 
2932 		ath_txq_unlock(sc, txq);
2933 	}
2934 }
2935 
2936 #ifdef CONFIG_ATH9K_TX99
2937 
2938 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
2939 		    struct ath_tx_control *txctl)
2940 {
2941 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2942 	struct ath_frame_info *fi = get_frame_info(skb);
2943 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2944 	struct ath_buf *bf;
2945 	int padpos, padsize;
2946 
2947 	padpos = ieee80211_hdrlen(hdr->frame_control);
2948 	padsize = padpos & 3;
2949 
2950 	if (padsize && skb->len > padpos) {
2951 		if (skb_headroom(skb) < padsize) {
2952 			ath_dbg(common, XMIT,
2953 				"tx99 padding failed\n");
2954 			return -EINVAL;
2955 		}
2956 
2957 		skb_push(skb, padsize);
2958 		memmove(skb->data, skb->data + padsize, padpos);
2959 	}
2960 
2961 	fi->keyix = ATH9K_TXKEYIX_INVALID;
2962 	fi->framelen = skb->len + FCS_LEN;
2963 	fi->keytype = ATH9K_KEY_TYPE_CLEAR;
2964 
2965 	bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
2966 	if (!bf) {
2967 		ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
2968 		return -EINVAL;
2969 	}
2970 
2971 	ath_set_rates(sc->tx99_vif, NULL, bf);
2972 
2973 	ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
2974 	ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
2975 
2976 	ath_tx_send_normal(sc, txctl->txq, NULL, skb);
2977 
2978 	return 0;
2979 }
2980 
2981 #endif /* CONFIG_ATH9K_TX99 */
2982