xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/xmit.c (revision d7a3d85e)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20 
21 #define BITS_PER_BYTE           8
22 #define OFDM_PLCP_BITS          22
23 #define HT_RC_2_STREAMS(_rc)    ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF                   8
25 #define L_LTF                   8
26 #define L_SIG                   4
27 #define HT_SIG                  8
28 #define HT_STF                  4
29 #define HT_LTF(_ns)             (4 * (_ns))
30 #define SYMBOL_TIME(_ns)        ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5)  /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t)         ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t)  (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36 
37 
38 static u16 bits_per_symbol[][2] = {
39 	/* 20MHz 40MHz */
40 	{    26,   54 },     /*  0: BPSK */
41 	{    52,  108 },     /*  1: QPSK 1/2 */
42 	{    78,  162 },     /*  2: QPSK 3/4 */
43 	{   104,  216 },     /*  3: 16-QAM 1/2 */
44 	{   156,  324 },     /*  4: 16-QAM 3/4 */
45 	{   208,  432 },     /*  5: 64-QAM 2/3 */
46 	{   234,  486 },     /*  6: 64-QAM 3/4 */
47 	{   260,  540 },     /*  7: 64-QAM 5/6 */
48 };
49 
50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
51 			       struct ath_atx_tid *tid, struct sk_buff *skb);
52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
53 			    int tx_flags, struct ath_txq *txq);
54 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
55 				struct ath_txq *txq, struct list_head *bf_q,
56 				struct ath_tx_status *ts, int txok);
57 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
58 			     struct list_head *head, bool internal);
59 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
60 			     struct ath_tx_status *ts, int nframes, int nbad,
61 			     int txok);
62 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
63 			      int seqno);
64 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
65 					   struct ath_txq *txq,
66 					   struct ath_atx_tid *tid,
67 					   struct sk_buff *skb);
68 
69 enum {
70 	MCS_HT20,
71 	MCS_HT20_SGI,
72 	MCS_HT40,
73 	MCS_HT40_SGI,
74 };
75 
76 /*********************/
77 /* Aggregation logic */
78 /*********************/
79 
80 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
81 	__acquires(&txq->axq_lock)
82 {
83 	spin_lock_bh(&txq->axq_lock);
84 }
85 
86 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
87 	__releases(&txq->axq_lock)
88 {
89 	spin_unlock_bh(&txq->axq_lock);
90 }
91 
92 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
93 	__releases(&txq->axq_lock)
94 {
95 	struct sk_buff_head q;
96 	struct sk_buff *skb;
97 
98 	__skb_queue_head_init(&q);
99 	skb_queue_splice_init(&txq->complete_q, &q);
100 	spin_unlock_bh(&txq->axq_lock);
101 
102 	while ((skb = __skb_dequeue(&q)))
103 		ieee80211_tx_status(sc->hw, skb);
104 }
105 
106 static void ath_tx_queue_tid(struct ath_softc *sc, struct ath_txq *txq,
107 			     struct ath_atx_tid *tid)
108 {
109 	struct ath_atx_ac *ac = tid->ac;
110 	struct list_head *list;
111 	struct ath_vif *avp = (struct ath_vif *) tid->an->vif->drv_priv;
112 	struct ath_chanctx *ctx = avp->chanctx;
113 
114 	if (!ctx)
115 		return;
116 
117 	if (tid->sched)
118 		return;
119 
120 	tid->sched = true;
121 	list_add_tail(&tid->list, &ac->tid_q);
122 
123 	if (ac->sched)
124 		return;
125 
126 	ac->sched = true;
127 
128 	list = &ctx->acq[TID_TO_WME_AC(tid->tidno)];
129 	list_add_tail(&ac->list, list);
130 }
131 
132 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
133 {
134 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
135 	BUILD_BUG_ON(sizeof(struct ath_frame_info) >
136 		     sizeof(tx_info->rate_driver_data));
137 	return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
138 }
139 
140 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
141 {
142 	if (!tid->an->sta)
143 		return;
144 
145 	ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
146 			   seqno << IEEE80211_SEQ_SEQ_SHIFT);
147 }
148 
149 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
150 			  struct ath_buf *bf)
151 {
152 	ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
153 			       ARRAY_SIZE(bf->rates));
154 }
155 
156 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
157 			     struct sk_buff *skb)
158 {
159 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
160 	struct ath_frame_info *fi = get_frame_info(skb);
161 	int q = fi->txq;
162 
163 	if (q < 0)
164 		return;
165 
166 	txq = sc->tx.txq_map[q];
167 	if (WARN_ON(--txq->pending_frames < 0))
168 		txq->pending_frames = 0;
169 
170 	if (txq->stopped &&
171 	    txq->pending_frames < sc->tx.txq_max_pending[q]) {
172 		if (ath9k_is_chanctx_enabled())
173 			ieee80211_wake_queue(sc->hw, info->hw_queue);
174 		else
175 			ieee80211_wake_queue(sc->hw, q);
176 		txq->stopped = false;
177 	}
178 }
179 
180 static struct ath_atx_tid *
181 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
182 {
183 	u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
184 	return ATH_AN_2_TID(an, tidno);
185 }
186 
187 static bool ath_tid_has_buffered(struct ath_atx_tid *tid)
188 {
189 	return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q);
190 }
191 
192 static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid)
193 {
194 	struct sk_buff *skb;
195 
196 	skb = __skb_dequeue(&tid->retry_q);
197 	if (!skb)
198 		skb = __skb_dequeue(&tid->buf_q);
199 
200 	return skb;
201 }
202 
203 /*
204  * ath_tx_tid_change_state:
205  * - clears a-mpdu flag of previous session
206  * - force sequence number allocation to fix next BlockAck Window
207  */
208 static void
209 ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid)
210 {
211 	struct ath_txq *txq = tid->ac->txq;
212 	struct ieee80211_tx_info *tx_info;
213 	struct sk_buff *skb, *tskb;
214 	struct ath_buf *bf;
215 	struct ath_frame_info *fi;
216 
217 	skb_queue_walk_safe(&tid->buf_q, skb, tskb) {
218 		fi = get_frame_info(skb);
219 		bf = fi->bf;
220 
221 		tx_info = IEEE80211_SKB_CB(skb);
222 		tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
223 
224 		if (bf)
225 			continue;
226 
227 		bf = ath_tx_setup_buffer(sc, txq, tid, skb);
228 		if (!bf) {
229 			__skb_unlink(skb, &tid->buf_q);
230 			ath_txq_skb_done(sc, txq, skb);
231 			ieee80211_free_txskb(sc->hw, skb);
232 			continue;
233 		}
234 	}
235 
236 }
237 
238 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
239 {
240 	struct ath_txq *txq = tid->ac->txq;
241 	struct sk_buff *skb;
242 	struct ath_buf *bf;
243 	struct list_head bf_head;
244 	struct ath_tx_status ts;
245 	struct ath_frame_info *fi;
246 	bool sendbar = false;
247 
248 	INIT_LIST_HEAD(&bf_head);
249 
250 	memset(&ts, 0, sizeof(ts));
251 
252 	while ((skb = __skb_dequeue(&tid->retry_q))) {
253 		fi = get_frame_info(skb);
254 		bf = fi->bf;
255 		if (!bf) {
256 			ath_txq_skb_done(sc, txq, skb);
257 			ieee80211_free_txskb(sc->hw, skb);
258 			continue;
259 		}
260 
261 		if (fi->baw_tracked) {
262 			ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
263 			sendbar = true;
264 		}
265 
266 		list_add_tail(&bf->list, &bf_head);
267 		ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
268 	}
269 
270 	if (sendbar) {
271 		ath_txq_unlock(sc, txq);
272 		ath_send_bar(tid, tid->seq_start);
273 		ath_txq_lock(sc, txq);
274 	}
275 }
276 
277 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
278 			      int seqno)
279 {
280 	int index, cindex;
281 
282 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
283 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
284 
285 	__clear_bit(cindex, tid->tx_buf);
286 
287 	while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
288 		INCR(tid->seq_start, IEEE80211_SEQ_MAX);
289 		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
290 		if (tid->bar_index >= 0)
291 			tid->bar_index--;
292 	}
293 }
294 
295 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
296 			     struct ath_buf *bf)
297 {
298 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
299 	u16 seqno = bf->bf_state.seqno;
300 	int index, cindex;
301 
302 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
303 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
304 	__set_bit(cindex, tid->tx_buf);
305 	fi->baw_tracked = 1;
306 
307 	if (index >= ((tid->baw_tail - tid->baw_head) &
308 		(ATH_TID_MAX_BUFS - 1))) {
309 		tid->baw_tail = cindex;
310 		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
311 	}
312 }
313 
314 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
315 			  struct ath_atx_tid *tid)
316 
317 {
318 	struct sk_buff *skb;
319 	struct ath_buf *bf;
320 	struct list_head bf_head;
321 	struct ath_tx_status ts;
322 	struct ath_frame_info *fi;
323 
324 	memset(&ts, 0, sizeof(ts));
325 	INIT_LIST_HEAD(&bf_head);
326 
327 	while ((skb = ath_tid_dequeue(tid))) {
328 		fi = get_frame_info(skb);
329 		bf = fi->bf;
330 
331 		if (!bf) {
332 			ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
333 			continue;
334 		}
335 
336 		list_add_tail(&bf->list, &bf_head);
337 		ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
338 	}
339 }
340 
341 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
342 			     struct sk_buff *skb, int count)
343 {
344 	struct ath_frame_info *fi = get_frame_info(skb);
345 	struct ath_buf *bf = fi->bf;
346 	struct ieee80211_hdr *hdr;
347 	int prev = fi->retries;
348 
349 	TX_STAT_INC(txq->axq_qnum, a_retries);
350 	fi->retries += count;
351 
352 	if (prev > 0)
353 		return;
354 
355 	hdr = (struct ieee80211_hdr *)skb->data;
356 	hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
357 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
358 		sizeof(*hdr), DMA_TO_DEVICE);
359 }
360 
361 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
362 {
363 	struct ath_buf *bf = NULL;
364 
365 	spin_lock_bh(&sc->tx.txbuflock);
366 
367 	if (unlikely(list_empty(&sc->tx.txbuf))) {
368 		spin_unlock_bh(&sc->tx.txbuflock);
369 		return NULL;
370 	}
371 
372 	bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
373 	list_del(&bf->list);
374 
375 	spin_unlock_bh(&sc->tx.txbuflock);
376 
377 	return bf;
378 }
379 
380 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
381 {
382 	spin_lock_bh(&sc->tx.txbuflock);
383 	list_add_tail(&bf->list, &sc->tx.txbuf);
384 	spin_unlock_bh(&sc->tx.txbuflock);
385 }
386 
387 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
388 {
389 	struct ath_buf *tbf;
390 
391 	tbf = ath_tx_get_buffer(sc);
392 	if (WARN_ON(!tbf))
393 		return NULL;
394 
395 	ATH_TXBUF_RESET(tbf);
396 
397 	tbf->bf_mpdu = bf->bf_mpdu;
398 	tbf->bf_buf_addr = bf->bf_buf_addr;
399 	memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
400 	tbf->bf_state = bf->bf_state;
401 	tbf->bf_state.stale = false;
402 
403 	return tbf;
404 }
405 
406 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
407 			        struct ath_tx_status *ts, int txok,
408 			        int *nframes, int *nbad)
409 {
410 	struct ath_frame_info *fi;
411 	u16 seq_st = 0;
412 	u32 ba[WME_BA_BMP_SIZE >> 5];
413 	int ba_index;
414 	int isaggr = 0;
415 
416 	*nbad = 0;
417 	*nframes = 0;
418 
419 	isaggr = bf_isaggr(bf);
420 	if (isaggr) {
421 		seq_st = ts->ts_seqnum;
422 		memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
423 	}
424 
425 	while (bf) {
426 		fi = get_frame_info(bf->bf_mpdu);
427 		ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
428 
429 		(*nframes)++;
430 		if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
431 			(*nbad)++;
432 
433 		bf = bf->bf_next;
434 	}
435 }
436 
437 
438 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
439 				 struct ath_buf *bf, struct list_head *bf_q,
440 				 struct ath_tx_status *ts, int txok)
441 {
442 	struct ath_node *an = NULL;
443 	struct sk_buff *skb;
444 	struct ieee80211_sta *sta;
445 	struct ieee80211_hw *hw = sc->hw;
446 	struct ieee80211_hdr *hdr;
447 	struct ieee80211_tx_info *tx_info;
448 	struct ath_atx_tid *tid = NULL;
449 	struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
450 	struct list_head bf_head;
451 	struct sk_buff_head bf_pending;
452 	u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
453 	u32 ba[WME_BA_BMP_SIZE >> 5];
454 	int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
455 	bool rc_update = true, isba;
456 	struct ieee80211_tx_rate rates[4];
457 	struct ath_frame_info *fi;
458 	int nframes;
459 	bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
460 	int i, retries;
461 	int bar_index = -1;
462 
463 	skb = bf->bf_mpdu;
464 	hdr = (struct ieee80211_hdr *)skb->data;
465 
466 	tx_info = IEEE80211_SKB_CB(skb);
467 
468 	memcpy(rates, bf->rates, sizeof(rates));
469 
470 	retries = ts->ts_longretry + 1;
471 	for (i = 0; i < ts->ts_rateindex; i++)
472 		retries += rates[i].count;
473 
474 	rcu_read_lock();
475 
476 	sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
477 	if (!sta) {
478 		rcu_read_unlock();
479 
480 		INIT_LIST_HEAD(&bf_head);
481 		while (bf) {
482 			bf_next = bf->bf_next;
483 
484 			if (!bf->bf_state.stale || bf_next != NULL)
485 				list_move_tail(&bf->list, &bf_head);
486 
487 			ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
488 
489 			bf = bf_next;
490 		}
491 		return;
492 	}
493 
494 	an = (struct ath_node *)sta->drv_priv;
495 	tid = ath_get_skb_tid(sc, an, skb);
496 	seq_first = tid->seq_start;
497 	isba = ts->ts_flags & ATH9K_TX_BA;
498 
499 	/*
500 	 * The hardware occasionally sends a tx status for the wrong TID.
501 	 * In this case, the BA status cannot be considered valid and all
502 	 * subframes need to be retransmitted
503 	 *
504 	 * Only BlockAcks have a TID and therefore normal Acks cannot be
505 	 * checked
506 	 */
507 	if (isba && tid->tidno != ts->tid)
508 		txok = false;
509 
510 	isaggr = bf_isaggr(bf);
511 	memset(ba, 0, WME_BA_BMP_SIZE >> 3);
512 
513 	if (isaggr && txok) {
514 		if (ts->ts_flags & ATH9K_TX_BA) {
515 			seq_st = ts->ts_seqnum;
516 			memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
517 		} else {
518 			/*
519 			 * AR5416 can become deaf/mute when BA
520 			 * issue happens. Chip needs to be reset.
521 			 * But AP code may have sychronization issues
522 			 * when perform internal reset in this routine.
523 			 * Only enable reset in STA mode for now.
524 			 */
525 			if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
526 				needreset = 1;
527 		}
528 	}
529 
530 	__skb_queue_head_init(&bf_pending);
531 
532 	ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
533 	while (bf) {
534 		u16 seqno = bf->bf_state.seqno;
535 
536 		txfail = txpending = sendbar = 0;
537 		bf_next = bf->bf_next;
538 
539 		skb = bf->bf_mpdu;
540 		tx_info = IEEE80211_SKB_CB(skb);
541 		fi = get_frame_info(skb);
542 
543 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
544 		    !tid->active) {
545 			/*
546 			 * Outside of the current BlockAck window,
547 			 * maybe part of a previous session
548 			 */
549 			txfail = 1;
550 		} else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
551 			/* transmit completion, subframe is
552 			 * acked by block ack */
553 			acked_cnt++;
554 		} else if (!isaggr && txok) {
555 			/* transmit completion */
556 			acked_cnt++;
557 		} else if (flush) {
558 			txpending = 1;
559 		} else if (fi->retries < ATH_MAX_SW_RETRIES) {
560 			if (txok || !an->sleeping)
561 				ath_tx_set_retry(sc, txq, bf->bf_mpdu,
562 						 retries);
563 
564 			txpending = 1;
565 		} else {
566 			txfail = 1;
567 			txfail_cnt++;
568 			bar_index = max_t(int, bar_index,
569 				ATH_BA_INDEX(seq_first, seqno));
570 		}
571 
572 		/*
573 		 * Make sure the last desc is reclaimed if it
574 		 * not a holding desc.
575 		 */
576 		INIT_LIST_HEAD(&bf_head);
577 		if (bf_next != NULL || !bf_last->bf_state.stale)
578 			list_move_tail(&bf->list, &bf_head);
579 
580 		if (!txpending) {
581 			/*
582 			 * complete the acked-ones/xretried ones; update
583 			 * block-ack window
584 			 */
585 			ath_tx_update_baw(sc, tid, seqno);
586 
587 			if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
588 				memcpy(tx_info->control.rates, rates, sizeof(rates));
589 				ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
590 				rc_update = false;
591 				if (bf == bf->bf_lastbf)
592 					ath_dynack_sample_tx_ts(sc->sc_ah,
593 								bf->bf_mpdu,
594 								ts);
595 			}
596 
597 			ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
598 				!txfail);
599 		} else {
600 			if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
601 				tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
602 				ieee80211_sta_eosp(sta);
603 			}
604 			/* retry the un-acked ones */
605 			if (bf->bf_next == NULL && bf_last->bf_state.stale) {
606 				struct ath_buf *tbf;
607 
608 				tbf = ath_clone_txbuf(sc, bf_last);
609 				/*
610 				 * Update tx baw and complete the
611 				 * frame with failed status if we
612 				 * run out of tx buf.
613 				 */
614 				if (!tbf) {
615 					ath_tx_update_baw(sc, tid, seqno);
616 
617 					ath_tx_complete_buf(sc, bf, txq,
618 							    &bf_head, ts, 0);
619 					bar_index = max_t(int, bar_index,
620 						ATH_BA_INDEX(seq_first, seqno));
621 					break;
622 				}
623 
624 				fi->bf = tbf;
625 			}
626 
627 			/*
628 			 * Put this buffer to the temporary pending
629 			 * queue to retain ordering
630 			 */
631 			__skb_queue_tail(&bf_pending, skb);
632 		}
633 
634 		bf = bf_next;
635 	}
636 
637 	/* prepend un-acked frames to the beginning of the pending frame queue */
638 	if (!skb_queue_empty(&bf_pending)) {
639 		if (an->sleeping)
640 			ieee80211_sta_set_buffered(sta, tid->tidno, true);
641 
642 		skb_queue_splice_tail(&bf_pending, &tid->retry_q);
643 		if (!an->sleeping) {
644 			ath_tx_queue_tid(sc, txq, tid);
645 
646 			if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
647 				tid->ac->clear_ps_filter = true;
648 		}
649 	}
650 
651 	if (bar_index >= 0) {
652 		u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
653 
654 		if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
655 			tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
656 
657 		ath_txq_unlock(sc, txq);
658 		ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
659 		ath_txq_lock(sc, txq);
660 	}
661 
662 	rcu_read_unlock();
663 
664 	if (needreset)
665 		ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
666 }
667 
668 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
669 {
670     struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
671     return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
672 }
673 
674 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
675 				  struct ath_tx_status *ts, struct ath_buf *bf,
676 				  struct list_head *bf_head)
677 {
678 	struct ieee80211_tx_info *info;
679 	bool txok, flush;
680 
681 	txok = !(ts->ts_status & ATH9K_TXERR_MASK);
682 	flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
683 	txq->axq_tx_inprogress = false;
684 
685 	txq->axq_depth--;
686 	if (bf_is_ampdu_not_probing(bf))
687 		txq->axq_ampdu_depth--;
688 
689 	ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc,
690 					     ts->ts_rateindex);
691 	if (!bf_isampdu(bf)) {
692 		if (!flush) {
693 			info = IEEE80211_SKB_CB(bf->bf_mpdu);
694 			memcpy(info->control.rates, bf->rates,
695 			       sizeof(info->control.rates));
696 			ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
697 			ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts);
698 		}
699 		ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
700 	} else
701 		ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
702 
703 	if (!flush)
704 		ath_txq_schedule(sc, txq);
705 }
706 
707 static bool ath_lookup_legacy(struct ath_buf *bf)
708 {
709 	struct sk_buff *skb;
710 	struct ieee80211_tx_info *tx_info;
711 	struct ieee80211_tx_rate *rates;
712 	int i;
713 
714 	skb = bf->bf_mpdu;
715 	tx_info = IEEE80211_SKB_CB(skb);
716 	rates = tx_info->control.rates;
717 
718 	for (i = 0; i < 4; i++) {
719 		if (!rates[i].count || rates[i].idx < 0)
720 			break;
721 
722 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
723 			return true;
724 	}
725 
726 	return false;
727 }
728 
729 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
730 			   struct ath_atx_tid *tid)
731 {
732 	struct sk_buff *skb;
733 	struct ieee80211_tx_info *tx_info;
734 	struct ieee80211_tx_rate *rates;
735 	u32 max_4ms_framelen, frmlen;
736 	u16 aggr_limit, bt_aggr_limit, legacy = 0;
737 	int q = tid->ac->txq->mac80211_qnum;
738 	int i;
739 
740 	skb = bf->bf_mpdu;
741 	tx_info = IEEE80211_SKB_CB(skb);
742 	rates = bf->rates;
743 
744 	/*
745 	 * Find the lowest frame length among the rate series that will have a
746 	 * 4ms (or TXOP limited) transmit duration.
747 	 */
748 	max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
749 
750 	for (i = 0; i < 4; i++) {
751 		int modeidx;
752 
753 		if (!rates[i].count)
754 			continue;
755 
756 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
757 			legacy = 1;
758 			break;
759 		}
760 
761 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
762 			modeidx = MCS_HT40;
763 		else
764 			modeidx = MCS_HT20;
765 
766 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
767 			modeidx++;
768 
769 		frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
770 		max_4ms_framelen = min(max_4ms_framelen, frmlen);
771 	}
772 
773 	/*
774 	 * limit aggregate size by the minimum rate if rate selected is
775 	 * not a probe rate, if rate selected is a probe rate then
776 	 * avoid aggregation of this packet.
777 	 */
778 	if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
779 		return 0;
780 
781 	aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
782 
783 	/*
784 	 * Override the default aggregation limit for BTCOEX.
785 	 */
786 	bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
787 	if (bt_aggr_limit)
788 		aggr_limit = bt_aggr_limit;
789 
790 	if (tid->an->maxampdu)
791 		aggr_limit = min(aggr_limit, tid->an->maxampdu);
792 
793 	return aggr_limit;
794 }
795 
796 /*
797  * Returns the number of delimiters to be added to
798  * meet the minimum required mpdudensity.
799  */
800 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
801 				  struct ath_buf *bf, u16 frmlen,
802 				  bool first_subfrm)
803 {
804 #define FIRST_DESC_NDELIMS 60
805 	u32 nsymbits, nsymbols;
806 	u16 minlen;
807 	u8 flags, rix;
808 	int width, streams, half_gi, ndelim, mindelim;
809 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
810 
811 	/* Select standard number of delimiters based on frame length alone */
812 	ndelim = ATH_AGGR_GET_NDELIM(frmlen);
813 
814 	/*
815 	 * If encryption enabled, hardware requires some more padding between
816 	 * subframes.
817 	 * TODO - this could be improved to be dependent on the rate.
818 	 *      The hardware can keep up at lower rates, but not higher rates
819 	 */
820 	if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
821 	    !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
822 		ndelim += ATH_AGGR_ENCRYPTDELIM;
823 
824 	/*
825 	 * Add delimiter when using RTS/CTS with aggregation
826 	 * and non enterprise AR9003 card
827 	 */
828 	if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
829 	    (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
830 		ndelim = max(ndelim, FIRST_DESC_NDELIMS);
831 
832 	/*
833 	 * Convert desired mpdu density from microeconds to bytes based
834 	 * on highest rate in rate series (i.e. first rate) to determine
835 	 * required minimum length for subframe. Take into account
836 	 * whether high rate is 20 or 40Mhz and half or full GI.
837 	 *
838 	 * If there is no mpdu density restriction, no further calculation
839 	 * is needed.
840 	 */
841 
842 	if (tid->an->mpdudensity == 0)
843 		return ndelim;
844 
845 	rix = bf->rates[0].idx;
846 	flags = bf->rates[0].flags;
847 	width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
848 	half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
849 
850 	if (half_gi)
851 		nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
852 	else
853 		nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
854 
855 	if (nsymbols == 0)
856 		nsymbols = 1;
857 
858 	streams = HT_RC_2_STREAMS(rix);
859 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
860 	minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
861 
862 	if (frmlen < minlen) {
863 		mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
864 		ndelim = max(mindelim, ndelim);
865 	}
866 
867 	return ndelim;
868 }
869 
870 static struct ath_buf *
871 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
872 			struct ath_atx_tid *tid, struct sk_buff_head **q)
873 {
874 	struct ieee80211_tx_info *tx_info;
875 	struct ath_frame_info *fi;
876 	struct sk_buff *skb;
877 	struct ath_buf *bf;
878 	u16 seqno;
879 
880 	while (1) {
881 		*q = &tid->retry_q;
882 		if (skb_queue_empty(*q))
883 			*q = &tid->buf_q;
884 
885 		skb = skb_peek(*q);
886 		if (!skb)
887 			break;
888 
889 		fi = get_frame_info(skb);
890 		bf = fi->bf;
891 		if (!fi->bf)
892 			bf = ath_tx_setup_buffer(sc, txq, tid, skb);
893 		else
894 			bf->bf_state.stale = false;
895 
896 		if (!bf) {
897 			__skb_unlink(skb, *q);
898 			ath_txq_skb_done(sc, txq, skb);
899 			ieee80211_free_txskb(sc->hw, skb);
900 			continue;
901 		}
902 
903 		bf->bf_next = NULL;
904 		bf->bf_lastbf = bf;
905 
906 		tx_info = IEEE80211_SKB_CB(skb);
907 		tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
908 
909 		/*
910 		 * No aggregation session is running, but there may be frames
911 		 * from a previous session or a failed attempt in the queue.
912 		 * Send them out as normal data frames
913 		 */
914 		if (!tid->active)
915 			tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
916 
917 		if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
918 			bf->bf_state.bf_type = 0;
919 			return bf;
920 		}
921 
922 		bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
923 		seqno = bf->bf_state.seqno;
924 
925 		/* do not step over block-ack window */
926 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno))
927 			break;
928 
929 		if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
930 			struct ath_tx_status ts = {};
931 			struct list_head bf_head;
932 
933 			INIT_LIST_HEAD(&bf_head);
934 			list_add(&bf->list, &bf_head);
935 			__skb_unlink(skb, *q);
936 			ath_tx_update_baw(sc, tid, seqno);
937 			ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
938 			continue;
939 		}
940 
941 		return bf;
942 	}
943 
944 	return NULL;
945 }
946 
947 static bool
948 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
949 		 struct ath_atx_tid *tid, struct list_head *bf_q,
950 		 struct ath_buf *bf_first, struct sk_buff_head *tid_q,
951 		 int *aggr_len)
952 {
953 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
954 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
955 	int nframes = 0, ndelim;
956 	u16 aggr_limit = 0, al = 0, bpad = 0,
957 	    al_delta, h_baw = tid->baw_size / 2;
958 	struct ieee80211_tx_info *tx_info;
959 	struct ath_frame_info *fi;
960 	struct sk_buff *skb;
961 	bool closed = false;
962 
963 	bf = bf_first;
964 	aggr_limit = ath_lookup_rate(sc, bf, tid);
965 
966 	do {
967 		skb = bf->bf_mpdu;
968 		fi = get_frame_info(skb);
969 
970 		/* do not exceed aggregation limit */
971 		al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
972 		if (nframes) {
973 			if (aggr_limit < al + bpad + al_delta ||
974 			    ath_lookup_legacy(bf) || nframes >= h_baw)
975 				break;
976 
977 			tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
978 			if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
979 			    !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
980 				break;
981 		}
982 
983 		/* add padding for previous frame to aggregation length */
984 		al += bpad + al_delta;
985 
986 		/*
987 		 * Get the delimiters needed to meet the MPDU
988 		 * density for this node.
989 		 */
990 		ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
991 						!nframes);
992 		bpad = PADBYTES(al_delta) + (ndelim << 2);
993 
994 		nframes++;
995 		bf->bf_next = NULL;
996 
997 		/* link buffers of this frame to the aggregate */
998 		if (!fi->baw_tracked)
999 			ath_tx_addto_baw(sc, tid, bf);
1000 		bf->bf_state.ndelim = ndelim;
1001 
1002 		__skb_unlink(skb, tid_q);
1003 		list_add_tail(&bf->list, bf_q);
1004 		if (bf_prev)
1005 			bf_prev->bf_next = bf;
1006 
1007 		bf_prev = bf;
1008 
1009 		bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1010 		if (!bf) {
1011 			closed = true;
1012 			break;
1013 		}
1014 	} while (ath_tid_has_buffered(tid));
1015 
1016 	bf = bf_first;
1017 	bf->bf_lastbf = bf_prev;
1018 
1019 	if (bf == bf_prev) {
1020 		al = get_frame_info(bf->bf_mpdu)->framelen;
1021 		bf->bf_state.bf_type = BUF_AMPDU;
1022 	} else {
1023 		TX_STAT_INC(txq->axq_qnum, a_aggr);
1024 	}
1025 
1026 	*aggr_len = al;
1027 
1028 	return closed;
1029 #undef PADBYTES
1030 }
1031 
1032 /*
1033  * rix - rate index
1034  * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1035  * width  - 0 for 20 MHz, 1 for 40 MHz
1036  * half_gi - to use 4us v/s 3.6 us for symbol time
1037  */
1038 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1039 			    int width, int half_gi, bool shortPreamble)
1040 {
1041 	u32 nbits, nsymbits, duration, nsymbols;
1042 	int streams;
1043 
1044 	/* find number of symbols: PLCP + data */
1045 	streams = HT_RC_2_STREAMS(rix);
1046 	nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1047 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
1048 	nsymbols = (nbits + nsymbits - 1) / nsymbits;
1049 
1050 	if (!half_gi)
1051 		duration = SYMBOL_TIME(nsymbols);
1052 	else
1053 		duration = SYMBOL_TIME_HALFGI(nsymbols);
1054 
1055 	/* addup duration for legacy/ht training and signal fields */
1056 	duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1057 
1058 	return duration;
1059 }
1060 
1061 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1062 {
1063 	int streams = HT_RC_2_STREAMS(mcs);
1064 	int symbols, bits;
1065 	int bytes = 0;
1066 
1067 	usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1068 	symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1069 	bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1070 	bits -= OFDM_PLCP_BITS;
1071 	bytes = bits / 8;
1072 	if (bytes > 65532)
1073 		bytes = 65532;
1074 
1075 	return bytes;
1076 }
1077 
1078 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1079 {
1080 	u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1081 	int mcs;
1082 
1083 	/* 4ms is the default (and maximum) duration */
1084 	if (!txop || txop > 4096)
1085 		txop = 4096;
1086 
1087 	cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1088 	cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1089 	cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1090 	cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1091 	for (mcs = 0; mcs < 32; mcs++) {
1092 		cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1093 		cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1094 		cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1095 		cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1096 	}
1097 }
1098 
1099 static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf,
1100 			       u8 rateidx, bool is_40, bool is_cck)
1101 {
1102 	u8 max_power;
1103 	struct sk_buff *skb;
1104 	struct ath_frame_info *fi;
1105 	struct ieee80211_tx_info *info;
1106 	struct ath_hw *ah = sc->sc_ah;
1107 
1108 	if (sc->tx99_state || !ah->tpc_enabled)
1109 		return MAX_RATE_POWER;
1110 
1111 	skb = bf->bf_mpdu;
1112 	fi = get_frame_info(skb);
1113 	info = IEEE80211_SKB_CB(skb);
1114 
1115 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
1116 		int txpower = fi->tx_power;
1117 
1118 		if (is_40) {
1119 			u8 power_ht40delta;
1120 			struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1121 
1122 			if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
1123 				bool is_2ghz;
1124 				struct modal_eep_header *pmodal;
1125 
1126 				is_2ghz = info->band == IEEE80211_BAND_2GHZ;
1127 				pmodal = &eep->modalHeader[is_2ghz];
1128 				power_ht40delta = pmodal->ht40PowerIncForPdadc;
1129 			} else {
1130 				power_ht40delta = 2;
1131 			}
1132 			txpower += power_ht40delta;
1133 		}
1134 
1135 		if (AR_SREV_9287(ah) || AR_SREV_9285(ah) ||
1136 		    AR_SREV_9271(ah)) {
1137 			txpower -= 2 * AR9287_PWR_TABLE_OFFSET_DB;
1138 		} else if (AR_SREV_9280_20_OR_LATER(ah)) {
1139 			s8 power_offset;
1140 
1141 			power_offset = ah->eep_ops->get_eeprom(ah,
1142 							EEP_PWR_TABLE_OFFSET);
1143 			txpower -= 2 * power_offset;
1144 		}
1145 
1146 		if (OLC_FOR_AR9280_20_LATER && is_cck)
1147 			txpower -= 2;
1148 
1149 		txpower = max(txpower, 0);
1150 		max_power = min_t(u8, ah->tx_power[rateidx], txpower);
1151 
1152 		/* XXX: clamp minimum TX power at 1 for AR9160 since if
1153 		 * max_power is set to 0, frames are transmitted at max
1154 		 * TX power
1155 		 */
1156 		if (!max_power && !AR_SREV_9280_20_OR_LATER(ah))
1157 			max_power = 1;
1158 	} else if (!bf->bf_state.bfs_paprd) {
1159 		if (rateidx < 8 && (info->flags & IEEE80211_TX_CTL_STBC))
1160 			max_power = min_t(u8, ah->tx_power_stbc[rateidx],
1161 					  fi->tx_power);
1162 		else
1163 			max_power = min_t(u8, ah->tx_power[rateidx],
1164 					  fi->tx_power);
1165 	} else {
1166 		max_power = ah->paprd_training_power;
1167 	}
1168 
1169 	return max_power;
1170 }
1171 
1172 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1173 			     struct ath_tx_info *info, int len, bool rts)
1174 {
1175 	struct ath_hw *ah = sc->sc_ah;
1176 	struct ath_common *common = ath9k_hw_common(ah);
1177 	struct sk_buff *skb;
1178 	struct ieee80211_tx_info *tx_info;
1179 	struct ieee80211_tx_rate *rates;
1180 	const struct ieee80211_rate *rate;
1181 	struct ieee80211_hdr *hdr;
1182 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1183 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1184 	int i;
1185 	u8 rix = 0;
1186 
1187 	skb = bf->bf_mpdu;
1188 	tx_info = IEEE80211_SKB_CB(skb);
1189 	rates = bf->rates;
1190 	hdr = (struct ieee80211_hdr *)skb->data;
1191 
1192 	/* set dur_update_en for l-sig computation except for PS-Poll frames */
1193 	info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1194 	info->rtscts_rate = fi->rtscts_rate;
1195 
1196 	for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1197 		bool is_40, is_sgi, is_sp, is_cck;
1198 		int phy;
1199 
1200 		if (!rates[i].count || (rates[i].idx < 0))
1201 			continue;
1202 
1203 		rix = rates[i].idx;
1204 		info->rates[i].Tries = rates[i].count;
1205 
1206 		/*
1207 		 * Handle RTS threshold for unaggregated HT frames.
1208 		 */
1209 		if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1210 		    (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1211 		    unlikely(rts_thresh != (u32) -1)) {
1212 			if (!rts_thresh || (len > rts_thresh))
1213 				rts = true;
1214 		}
1215 
1216 		if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1217 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1218 			info->flags |= ATH9K_TXDESC_RTSENA;
1219 		} else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1220 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1221 			info->flags |= ATH9K_TXDESC_CTSENA;
1222 		}
1223 
1224 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1225 			info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1226 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1227 			info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1228 
1229 		is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1230 		is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1231 		is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1232 
1233 		if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1234 			/* MCS rates */
1235 			info->rates[i].Rate = rix | 0x80;
1236 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1237 					ah->txchainmask, info->rates[i].Rate);
1238 			info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1239 				 is_40, is_sgi, is_sp);
1240 			if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1241 				info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1242 
1243 			info->txpower[i] = ath_get_rate_txpower(sc, bf, rix,
1244 								is_40, false);
1245 			continue;
1246 		}
1247 
1248 		/* legacy rates */
1249 		rate = &common->sbands[tx_info->band].bitrates[rates[i].idx];
1250 		if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1251 		    !(rate->flags & IEEE80211_RATE_ERP_G))
1252 			phy = WLAN_RC_PHY_CCK;
1253 		else
1254 			phy = WLAN_RC_PHY_OFDM;
1255 
1256 		info->rates[i].Rate = rate->hw_value;
1257 		if (rate->hw_value_short) {
1258 			if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1259 				info->rates[i].Rate |= rate->hw_value_short;
1260 		} else {
1261 			is_sp = false;
1262 		}
1263 
1264 		if (bf->bf_state.bfs_paprd)
1265 			info->rates[i].ChSel = ah->txchainmask;
1266 		else
1267 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1268 					ah->txchainmask, info->rates[i].Rate);
1269 
1270 		info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1271 			phy, rate->bitrate * 100, len, rix, is_sp);
1272 
1273 		is_cck = IS_CCK_RATE(info->rates[i].Rate);
1274 		info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, false,
1275 							is_cck);
1276 	}
1277 
1278 	/* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1279 	if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1280 		info->flags &= ~ATH9K_TXDESC_RTSENA;
1281 
1282 	/* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1283 	if (info->flags & ATH9K_TXDESC_RTSENA)
1284 		info->flags &= ~ATH9K_TXDESC_CTSENA;
1285 }
1286 
1287 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1288 {
1289 	struct ieee80211_hdr *hdr;
1290 	enum ath9k_pkt_type htype;
1291 	__le16 fc;
1292 
1293 	hdr = (struct ieee80211_hdr *)skb->data;
1294 	fc = hdr->frame_control;
1295 
1296 	if (ieee80211_is_beacon(fc))
1297 		htype = ATH9K_PKT_TYPE_BEACON;
1298 	else if (ieee80211_is_probe_resp(fc))
1299 		htype = ATH9K_PKT_TYPE_PROBE_RESP;
1300 	else if (ieee80211_is_atim(fc))
1301 		htype = ATH9K_PKT_TYPE_ATIM;
1302 	else if (ieee80211_is_pspoll(fc))
1303 		htype = ATH9K_PKT_TYPE_PSPOLL;
1304 	else
1305 		htype = ATH9K_PKT_TYPE_NORMAL;
1306 
1307 	return htype;
1308 }
1309 
1310 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1311 			     struct ath_txq *txq, int len)
1312 {
1313 	struct ath_hw *ah = sc->sc_ah;
1314 	struct ath_buf *bf_first = NULL;
1315 	struct ath_tx_info info;
1316 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1317 	bool rts = false;
1318 
1319 	memset(&info, 0, sizeof(info));
1320 	info.is_first = true;
1321 	info.is_last = true;
1322 	info.qcu = txq->axq_qnum;
1323 
1324 	while (bf) {
1325 		struct sk_buff *skb = bf->bf_mpdu;
1326 		struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1327 		struct ath_frame_info *fi = get_frame_info(skb);
1328 		bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1329 
1330 		info.type = get_hw_packet_type(skb);
1331 		if (bf->bf_next)
1332 			info.link = bf->bf_next->bf_daddr;
1333 		else
1334 			info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
1335 
1336 		if (!bf_first) {
1337 			bf_first = bf;
1338 
1339 			if (!sc->tx99_state)
1340 				info.flags = ATH9K_TXDESC_INTREQ;
1341 			if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1342 			    txq == sc->tx.uapsdq)
1343 				info.flags |= ATH9K_TXDESC_CLRDMASK;
1344 
1345 			if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1346 				info.flags |= ATH9K_TXDESC_NOACK;
1347 			if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1348 				info.flags |= ATH9K_TXDESC_LDPC;
1349 
1350 			if (bf->bf_state.bfs_paprd)
1351 				info.flags |= (u32) bf->bf_state.bfs_paprd <<
1352 					      ATH9K_TXDESC_PAPRD_S;
1353 
1354 			/*
1355 			 * mac80211 doesn't handle RTS threshold for HT because
1356 			 * the decision has to be taken based on AMPDU length
1357 			 * and aggregation is done entirely inside ath9k.
1358 			 * Set the RTS/CTS flag for the first subframe based
1359 			 * on the threshold.
1360 			 */
1361 			if (aggr && (bf == bf_first) &&
1362 			    unlikely(rts_thresh != (u32) -1)) {
1363 				/*
1364 				 * "len" is the size of the entire AMPDU.
1365 				 */
1366 				if (!rts_thresh || (len > rts_thresh))
1367 					rts = true;
1368 			}
1369 
1370 			if (!aggr)
1371 				len = fi->framelen;
1372 
1373 			ath_buf_set_rate(sc, bf, &info, len, rts);
1374 		}
1375 
1376 		info.buf_addr[0] = bf->bf_buf_addr;
1377 		info.buf_len[0] = skb->len;
1378 		info.pkt_len = fi->framelen;
1379 		info.keyix = fi->keyix;
1380 		info.keytype = fi->keytype;
1381 
1382 		if (aggr) {
1383 			if (bf == bf_first)
1384 				info.aggr = AGGR_BUF_FIRST;
1385 			else if (bf == bf_first->bf_lastbf)
1386 				info.aggr = AGGR_BUF_LAST;
1387 			else
1388 				info.aggr = AGGR_BUF_MIDDLE;
1389 
1390 			info.ndelim = bf->bf_state.ndelim;
1391 			info.aggr_len = len;
1392 		}
1393 
1394 		if (bf == bf_first->bf_lastbf)
1395 			bf_first = NULL;
1396 
1397 		ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1398 		bf = bf->bf_next;
1399 	}
1400 }
1401 
1402 static void
1403 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1404 		  struct ath_atx_tid *tid, struct list_head *bf_q,
1405 		  struct ath_buf *bf_first, struct sk_buff_head *tid_q)
1406 {
1407 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
1408 	struct sk_buff *skb;
1409 	int nframes = 0;
1410 
1411 	do {
1412 		struct ieee80211_tx_info *tx_info;
1413 		skb = bf->bf_mpdu;
1414 
1415 		nframes++;
1416 		__skb_unlink(skb, tid_q);
1417 		list_add_tail(&bf->list, bf_q);
1418 		if (bf_prev)
1419 			bf_prev->bf_next = bf;
1420 		bf_prev = bf;
1421 
1422 		if (nframes >= 2)
1423 			break;
1424 
1425 		bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1426 		if (!bf)
1427 			break;
1428 
1429 		tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1430 		if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
1431 			break;
1432 
1433 		ath_set_rates(tid->an->vif, tid->an->sta, bf);
1434 	} while (1);
1435 }
1436 
1437 static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1438 			      struct ath_atx_tid *tid, bool *stop)
1439 {
1440 	struct ath_buf *bf;
1441 	struct ieee80211_tx_info *tx_info;
1442 	struct sk_buff_head *tid_q;
1443 	struct list_head bf_q;
1444 	int aggr_len = 0;
1445 	bool aggr, last = true;
1446 
1447 	if (!ath_tid_has_buffered(tid))
1448 		return false;
1449 
1450 	INIT_LIST_HEAD(&bf_q);
1451 
1452 	bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1453 	if (!bf)
1454 		return false;
1455 
1456 	tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1457 	aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1458 	if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1459 		(!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1460 		*stop = true;
1461 		return false;
1462 	}
1463 
1464 	ath_set_rates(tid->an->vif, tid->an->sta, bf);
1465 	if (aggr)
1466 		last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf,
1467 					tid_q, &aggr_len);
1468 	else
1469 		ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q);
1470 
1471 	if (list_empty(&bf_q))
1472 		return false;
1473 
1474 	if (tid->ac->clear_ps_filter || tid->an->no_ps_filter) {
1475 		tid->ac->clear_ps_filter = false;
1476 		tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1477 	}
1478 
1479 	ath_tx_fill_desc(sc, bf, txq, aggr_len);
1480 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1481 	return true;
1482 }
1483 
1484 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1485 		      u16 tid, u16 *ssn)
1486 {
1487 	struct ath_atx_tid *txtid;
1488 	struct ath_txq *txq;
1489 	struct ath_node *an;
1490 	u8 density;
1491 
1492 	an = (struct ath_node *)sta->drv_priv;
1493 	txtid = ATH_AN_2_TID(an, tid);
1494 	txq = txtid->ac->txq;
1495 
1496 	ath_txq_lock(sc, txq);
1497 
1498 	/* update ampdu factor/density, they may have changed. This may happen
1499 	 * in HT IBSS when a beacon with HT-info is received after the station
1500 	 * has already been added.
1501 	 */
1502 	if (sta->ht_cap.ht_supported) {
1503 		an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1504 				      sta->ht_cap.ampdu_factor)) - 1;
1505 		density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1506 		an->mpdudensity = density;
1507 	}
1508 
1509 	/* force sequence number allocation for pending frames */
1510 	ath_tx_tid_change_state(sc, txtid);
1511 
1512 	txtid->active = true;
1513 	*ssn = txtid->seq_start = txtid->seq_next;
1514 	txtid->bar_index = -1;
1515 
1516 	memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1517 	txtid->baw_head = txtid->baw_tail = 0;
1518 
1519 	ath_txq_unlock_complete(sc, txq);
1520 
1521 	return 0;
1522 }
1523 
1524 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1525 {
1526 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1527 	struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1528 	struct ath_txq *txq = txtid->ac->txq;
1529 
1530 	ath_txq_lock(sc, txq);
1531 	txtid->active = false;
1532 	ath_tx_flush_tid(sc, txtid);
1533 	ath_tx_tid_change_state(sc, txtid);
1534 	ath_txq_unlock_complete(sc, txq);
1535 }
1536 
1537 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1538 		       struct ath_node *an)
1539 {
1540 	struct ath_atx_tid *tid;
1541 	struct ath_atx_ac *ac;
1542 	struct ath_txq *txq;
1543 	bool buffered;
1544 	int tidno;
1545 
1546 	for (tidno = 0, tid = &an->tid[tidno];
1547 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1548 
1549 		ac = tid->ac;
1550 		txq = ac->txq;
1551 
1552 		ath_txq_lock(sc, txq);
1553 
1554 		if (!tid->sched) {
1555 			ath_txq_unlock(sc, txq);
1556 			continue;
1557 		}
1558 
1559 		buffered = ath_tid_has_buffered(tid);
1560 
1561 		tid->sched = false;
1562 		list_del(&tid->list);
1563 
1564 		if (ac->sched) {
1565 			ac->sched = false;
1566 			list_del(&ac->list);
1567 		}
1568 
1569 		ath_txq_unlock(sc, txq);
1570 
1571 		ieee80211_sta_set_buffered(sta, tidno, buffered);
1572 	}
1573 }
1574 
1575 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1576 {
1577 	struct ath_atx_tid *tid;
1578 	struct ath_atx_ac *ac;
1579 	struct ath_txq *txq;
1580 	int tidno;
1581 
1582 	for (tidno = 0, tid = &an->tid[tidno];
1583 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1584 
1585 		ac = tid->ac;
1586 		txq = ac->txq;
1587 
1588 		ath_txq_lock(sc, txq);
1589 		ac->clear_ps_filter = true;
1590 
1591 		if (ath_tid_has_buffered(tid)) {
1592 			ath_tx_queue_tid(sc, txq, tid);
1593 			ath_txq_schedule(sc, txq);
1594 		}
1595 
1596 		ath_txq_unlock_complete(sc, txq);
1597 	}
1598 }
1599 
1600 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
1601 			u16 tidno)
1602 {
1603 	struct ath_atx_tid *tid;
1604 	struct ath_node *an;
1605 	struct ath_txq *txq;
1606 
1607 	an = (struct ath_node *)sta->drv_priv;
1608 	tid = ATH_AN_2_TID(an, tidno);
1609 	txq = tid->ac->txq;
1610 
1611 	ath_txq_lock(sc, txq);
1612 
1613 	tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1614 
1615 	if (ath_tid_has_buffered(tid)) {
1616 		ath_tx_queue_tid(sc, txq, tid);
1617 		ath_txq_schedule(sc, txq);
1618 	}
1619 
1620 	ath_txq_unlock_complete(sc, txq);
1621 }
1622 
1623 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1624 				   struct ieee80211_sta *sta,
1625 				   u16 tids, int nframes,
1626 				   enum ieee80211_frame_release_type reason,
1627 				   bool more_data)
1628 {
1629 	struct ath_softc *sc = hw->priv;
1630 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1631 	struct ath_txq *txq = sc->tx.uapsdq;
1632 	struct ieee80211_tx_info *info;
1633 	struct list_head bf_q;
1634 	struct ath_buf *bf_tail = NULL, *bf;
1635 	struct sk_buff_head *tid_q;
1636 	int sent = 0;
1637 	int i;
1638 
1639 	INIT_LIST_HEAD(&bf_q);
1640 	for (i = 0; tids && nframes; i++, tids >>= 1) {
1641 		struct ath_atx_tid *tid;
1642 
1643 		if (!(tids & 1))
1644 			continue;
1645 
1646 		tid = ATH_AN_2_TID(an, i);
1647 
1648 		ath_txq_lock(sc, tid->ac->txq);
1649 		while (nframes > 0) {
1650 			bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q);
1651 			if (!bf)
1652 				break;
1653 
1654 			__skb_unlink(bf->bf_mpdu, tid_q);
1655 			list_add_tail(&bf->list, &bf_q);
1656 			ath_set_rates(tid->an->vif, tid->an->sta, bf);
1657 			if (bf_isampdu(bf)) {
1658 				ath_tx_addto_baw(sc, tid, bf);
1659 				bf->bf_state.bf_type &= ~BUF_AGGR;
1660 			}
1661 			if (bf_tail)
1662 				bf_tail->bf_next = bf;
1663 
1664 			bf_tail = bf;
1665 			nframes--;
1666 			sent++;
1667 			TX_STAT_INC(txq->axq_qnum, a_queued_hw);
1668 
1669 			if (an->sta && !ath_tid_has_buffered(tid))
1670 				ieee80211_sta_set_buffered(an->sta, i, false);
1671 		}
1672 		ath_txq_unlock_complete(sc, tid->ac->txq);
1673 	}
1674 
1675 	if (list_empty(&bf_q))
1676 		return;
1677 
1678 	info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1679 	info->flags |= IEEE80211_TX_STATUS_EOSP;
1680 
1681 	bf = list_first_entry(&bf_q, struct ath_buf, list);
1682 	ath_txq_lock(sc, txq);
1683 	ath_tx_fill_desc(sc, bf, txq, 0);
1684 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1685 	ath_txq_unlock(sc, txq);
1686 }
1687 
1688 /********************/
1689 /* Queue Management */
1690 /********************/
1691 
1692 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1693 {
1694 	struct ath_hw *ah = sc->sc_ah;
1695 	struct ath9k_tx_queue_info qi;
1696 	static const int subtype_txq_to_hwq[] = {
1697 		[IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1698 		[IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1699 		[IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1700 		[IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1701 	};
1702 	int axq_qnum, i;
1703 
1704 	memset(&qi, 0, sizeof(qi));
1705 	qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1706 	qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1707 	qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1708 	qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1709 	qi.tqi_physCompBuf = 0;
1710 
1711 	/*
1712 	 * Enable interrupts only for EOL and DESC conditions.
1713 	 * We mark tx descriptors to receive a DESC interrupt
1714 	 * when a tx queue gets deep; otherwise waiting for the
1715 	 * EOL to reap descriptors.  Note that this is done to
1716 	 * reduce interrupt load and this only defers reaping
1717 	 * descriptors, never transmitting frames.  Aside from
1718 	 * reducing interrupts this also permits more concurrency.
1719 	 * The only potential downside is if the tx queue backs
1720 	 * up in which case the top half of the kernel may backup
1721 	 * due to a lack of tx descriptors.
1722 	 *
1723 	 * The UAPSD queue is an exception, since we take a desc-
1724 	 * based intr on the EOSP frames.
1725 	 */
1726 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1727 		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1728 	} else {
1729 		if (qtype == ATH9K_TX_QUEUE_UAPSD)
1730 			qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1731 		else
1732 			qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1733 					TXQ_FLAG_TXDESCINT_ENABLE;
1734 	}
1735 	axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1736 	if (axq_qnum == -1) {
1737 		/*
1738 		 * NB: don't print a message, this happens
1739 		 * normally on parts with too few tx queues
1740 		 */
1741 		return NULL;
1742 	}
1743 	if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1744 		struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1745 
1746 		txq->axq_qnum = axq_qnum;
1747 		txq->mac80211_qnum = -1;
1748 		txq->axq_link = NULL;
1749 		__skb_queue_head_init(&txq->complete_q);
1750 		INIT_LIST_HEAD(&txq->axq_q);
1751 		spin_lock_init(&txq->axq_lock);
1752 		txq->axq_depth = 0;
1753 		txq->axq_ampdu_depth = 0;
1754 		txq->axq_tx_inprogress = false;
1755 		sc->tx.txqsetup |= 1<<axq_qnum;
1756 
1757 		txq->txq_headidx = txq->txq_tailidx = 0;
1758 		for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1759 			INIT_LIST_HEAD(&txq->txq_fifo[i]);
1760 	}
1761 	return &sc->tx.txq[axq_qnum];
1762 }
1763 
1764 int ath_txq_update(struct ath_softc *sc, int qnum,
1765 		   struct ath9k_tx_queue_info *qinfo)
1766 {
1767 	struct ath_hw *ah = sc->sc_ah;
1768 	int error = 0;
1769 	struct ath9k_tx_queue_info qi;
1770 
1771 	BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1772 
1773 	ath9k_hw_get_txq_props(ah, qnum, &qi);
1774 	qi.tqi_aifs = qinfo->tqi_aifs;
1775 	qi.tqi_cwmin = qinfo->tqi_cwmin;
1776 	qi.tqi_cwmax = qinfo->tqi_cwmax;
1777 	qi.tqi_burstTime = qinfo->tqi_burstTime;
1778 	qi.tqi_readyTime = qinfo->tqi_readyTime;
1779 
1780 	if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1781 		ath_err(ath9k_hw_common(sc->sc_ah),
1782 			"Unable to update hardware queue %u!\n", qnum);
1783 		error = -EIO;
1784 	} else {
1785 		ath9k_hw_resettxqueue(ah, qnum);
1786 	}
1787 
1788 	return error;
1789 }
1790 
1791 int ath_cabq_update(struct ath_softc *sc)
1792 {
1793 	struct ath9k_tx_queue_info qi;
1794 	struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon;
1795 	int qnum = sc->beacon.cabq->axq_qnum;
1796 
1797 	ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1798 
1799 	qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) *
1800 			    ATH_CABQ_READY_TIME) / 100;
1801 	ath_txq_update(sc, qnum, &qi);
1802 
1803 	return 0;
1804 }
1805 
1806 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1807 			       struct list_head *list)
1808 {
1809 	struct ath_buf *bf, *lastbf;
1810 	struct list_head bf_head;
1811 	struct ath_tx_status ts;
1812 
1813 	memset(&ts, 0, sizeof(ts));
1814 	ts.ts_status = ATH9K_TX_FLUSH;
1815 	INIT_LIST_HEAD(&bf_head);
1816 
1817 	while (!list_empty(list)) {
1818 		bf = list_first_entry(list, struct ath_buf, list);
1819 
1820 		if (bf->bf_state.stale) {
1821 			list_del(&bf->list);
1822 
1823 			ath_tx_return_buffer(sc, bf);
1824 			continue;
1825 		}
1826 
1827 		lastbf = bf->bf_lastbf;
1828 		list_cut_position(&bf_head, list, &lastbf->list);
1829 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1830 	}
1831 }
1832 
1833 /*
1834  * Drain a given TX queue (could be Beacon or Data)
1835  *
1836  * This assumes output has been stopped and
1837  * we do not need to block ath_tx_tasklet.
1838  */
1839 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1840 {
1841 	ath_txq_lock(sc, txq);
1842 
1843 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1844 		int idx = txq->txq_tailidx;
1845 
1846 		while (!list_empty(&txq->txq_fifo[idx])) {
1847 			ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1848 
1849 			INCR(idx, ATH_TXFIFO_DEPTH);
1850 		}
1851 		txq->txq_tailidx = idx;
1852 	}
1853 
1854 	txq->axq_link = NULL;
1855 	txq->axq_tx_inprogress = false;
1856 	ath_drain_txq_list(sc, txq, &txq->axq_q);
1857 
1858 	ath_txq_unlock_complete(sc, txq);
1859 }
1860 
1861 bool ath_drain_all_txq(struct ath_softc *sc)
1862 {
1863 	struct ath_hw *ah = sc->sc_ah;
1864 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1865 	struct ath_txq *txq;
1866 	int i;
1867 	u32 npend = 0;
1868 
1869 	if (test_bit(ATH_OP_INVALID, &common->op_flags))
1870 		return true;
1871 
1872 	ath9k_hw_abort_tx_dma(ah);
1873 
1874 	/* Check if any queue remains active */
1875 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1876 		if (!ATH_TXQ_SETUP(sc, i))
1877 			continue;
1878 
1879 		if (!sc->tx.txq[i].axq_depth)
1880 			continue;
1881 
1882 		if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1883 			npend |= BIT(i);
1884 	}
1885 
1886 	if (npend)
1887 		ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1888 
1889 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1890 		if (!ATH_TXQ_SETUP(sc, i))
1891 			continue;
1892 
1893 		/*
1894 		 * The caller will resume queues with ieee80211_wake_queues.
1895 		 * Mark the queue as not stopped to prevent ath_tx_complete
1896 		 * from waking the queue too early.
1897 		 */
1898 		txq = &sc->tx.txq[i];
1899 		txq->stopped = false;
1900 		ath_draintxq(sc, txq);
1901 	}
1902 
1903 	return !npend;
1904 }
1905 
1906 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1907 {
1908 	ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1909 	sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1910 }
1911 
1912 /* For each acq entry, for each tid, try to schedule packets
1913  * for transmit until ampdu_depth has reached min Q depth.
1914  */
1915 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1916 {
1917 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1918 	struct ath_atx_ac *ac, *last_ac;
1919 	struct ath_atx_tid *tid, *last_tid;
1920 	struct list_head *ac_list;
1921 	bool sent = false;
1922 
1923 	if (txq->mac80211_qnum < 0)
1924 		return;
1925 
1926 	if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
1927 		return;
1928 
1929 	spin_lock_bh(&sc->chan_lock);
1930 	ac_list = &sc->cur_chan->acq[txq->mac80211_qnum];
1931 
1932 	if (list_empty(ac_list)) {
1933 		spin_unlock_bh(&sc->chan_lock);
1934 		return;
1935 	}
1936 
1937 	rcu_read_lock();
1938 
1939 	last_ac = list_entry(ac_list->prev, struct ath_atx_ac, list);
1940 	while (!list_empty(ac_list)) {
1941 		bool stop = false;
1942 
1943 		if (sc->cur_chan->stopped)
1944 			break;
1945 
1946 		ac = list_first_entry(ac_list, struct ath_atx_ac, list);
1947 		last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
1948 		list_del(&ac->list);
1949 		ac->sched = false;
1950 
1951 		while (!list_empty(&ac->tid_q)) {
1952 
1953 			tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
1954 					       list);
1955 			list_del(&tid->list);
1956 			tid->sched = false;
1957 
1958 			if (ath_tx_sched_aggr(sc, txq, tid, &stop))
1959 				sent = true;
1960 
1961 			/*
1962 			 * add tid to round-robin queue if more frames
1963 			 * are pending for the tid
1964 			 */
1965 			if (ath_tid_has_buffered(tid))
1966 				ath_tx_queue_tid(sc, txq, tid);
1967 
1968 			if (stop || tid == last_tid)
1969 				break;
1970 		}
1971 
1972 		if (!list_empty(&ac->tid_q) && !ac->sched) {
1973 			ac->sched = true;
1974 			list_add_tail(&ac->list, ac_list);
1975 		}
1976 
1977 		if (stop)
1978 			break;
1979 
1980 		if (ac == last_ac) {
1981 			if (!sent)
1982 				break;
1983 
1984 			sent = false;
1985 			last_ac = list_entry(ac_list->prev,
1986 					     struct ath_atx_ac, list);
1987 		}
1988 	}
1989 
1990 	rcu_read_unlock();
1991 	spin_unlock_bh(&sc->chan_lock);
1992 }
1993 
1994 void ath_txq_schedule_all(struct ath_softc *sc)
1995 {
1996 	struct ath_txq *txq;
1997 	int i;
1998 
1999 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
2000 		txq = sc->tx.txq_map[i];
2001 
2002 		spin_lock_bh(&txq->axq_lock);
2003 		ath_txq_schedule(sc, txq);
2004 		spin_unlock_bh(&txq->axq_lock);
2005 	}
2006 }
2007 
2008 /***********/
2009 /* TX, DMA */
2010 /***********/
2011 
2012 /*
2013  * Insert a chain of ath_buf (descriptors) on a txq and
2014  * assume the descriptors are already chained together by caller.
2015  */
2016 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
2017 			     struct list_head *head, bool internal)
2018 {
2019 	struct ath_hw *ah = sc->sc_ah;
2020 	struct ath_common *common = ath9k_hw_common(ah);
2021 	struct ath_buf *bf, *bf_last;
2022 	bool puttxbuf = false;
2023 	bool edma;
2024 
2025 	/*
2026 	 * Insert the frame on the outbound list and
2027 	 * pass it on to the hardware.
2028 	 */
2029 
2030 	if (list_empty(head))
2031 		return;
2032 
2033 	edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
2034 	bf = list_first_entry(head, struct ath_buf, list);
2035 	bf_last = list_entry(head->prev, struct ath_buf, list);
2036 
2037 	ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
2038 		txq->axq_qnum, txq->axq_depth);
2039 
2040 	if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
2041 		list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
2042 		INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
2043 		puttxbuf = true;
2044 	} else {
2045 		list_splice_tail_init(head, &txq->axq_q);
2046 
2047 		if (txq->axq_link) {
2048 			ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
2049 			ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
2050 				txq->axq_qnum, txq->axq_link,
2051 				ito64(bf->bf_daddr), bf->bf_desc);
2052 		} else if (!edma)
2053 			puttxbuf = true;
2054 
2055 		txq->axq_link = bf_last->bf_desc;
2056 	}
2057 
2058 	if (puttxbuf) {
2059 		TX_STAT_INC(txq->axq_qnum, puttxbuf);
2060 		ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
2061 		ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
2062 			txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
2063 	}
2064 
2065 	if (!edma || sc->tx99_state) {
2066 		TX_STAT_INC(txq->axq_qnum, txstart);
2067 		ath9k_hw_txstart(ah, txq->axq_qnum);
2068 	}
2069 
2070 	if (!internal) {
2071 		while (bf) {
2072 			txq->axq_depth++;
2073 			if (bf_is_ampdu_not_probing(bf))
2074 				txq->axq_ampdu_depth++;
2075 
2076 			bf_last = bf->bf_lastbf;
2077 			bf = bf_last->bf_next;
2078 			bf_last->bf_next = NULL;
2079 		}
2080 	}
2081 }
2082 
2083 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
2084 			       struct ath_atx_tid *tid, struct sk_buff *skb)
2085 {
2086 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2087 	struct ath_frame_info *fi = get_frame_info(skb);
2088 	struct list_head bf_head;
2089 	struct ath_buf *bf = fi->bf;
2090 
2091 	INIT_LIST_HEAD(&bf_head);
2092 	list_add_tail(&bf->list, &bf_head);
2093 	bf->bf_state.bf_type = 0;
2094 	if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
2095 		bf->bf_state.bf_type = BUF_AMPDU;
2096 		ath_tx_addto_baw(sc, tid, bf);
2097 	}
2098 
2099 	bf->bf_next = NULL;
2100 	bf->bf_lastbf = bf;
2101 	ath_tx_fill_desc(sc, bf, txq, fi->framelen);
2102 	ath_tx_txqaddbuf(sc, txq, &bf_head, false);
2103 	TX_STAT_INC(txq->axq_qnum, queued);
2104 }
2105 
2106 static void setup_frame_info(struct ieee80211_hw *hw,
2107 			     struct ieee80211_sta *sta,
2108 			     struct sk_buff *skb,
2109 			     int framelen)
2110 {
2111 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2112 	struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
2113 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2114 	const struct ieee80211_rate *rate;
2115 	struct ath_frame_info *fi = get_frame_info(skb);
2116 	struct ath_node *an = NULL;
2117 	enum ath9k_key_type keytype;
2118 	bool short_preamble = false;
2119 	u8 txpower;
2120 
2121 	/*
2122 	 * We check if Short Preamble is needed for the CTS rate by
2123 	 * checking the BSS's global flag.
2124 	 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
2125 	 */
2126 	if (tx_info->control.vif &&
2127 	    tx_info->control.vif->bss_conf.use_short_preamble)
2128 		short_preamble = true;
2129 
2130 	rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2131 	keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2132 
2133 	if (sta)
2134 		an = (struct ath_node *) sta->drv_priv;
2135 
2136 	if (tx_info->control.vif) {
2137 		struct ieee80211_vif *vif = tx_info->control.vif;
2138 
2139 		txpower = 2 * vif->bss_conf.txpower;
2140 	} else {
2141 		struct ath_softc *sc = hw->priv;
2142 
2143 		txpower = sc->cur_chan->cur_txpower;
2144 	}
2145 
2146 	memset(fi, 0, sizeof(*fi));
2147 	fi->txq = -1;
2148 	if (hw_key)
2149 		fi->keyix = hw_key->hw_key_idx;
2150 	else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2151 		fi->keyix = an->ps_key;
2152 	else
2153 		fi->keyix = ATH9K_TXKEYIX_INVALID;
2154 	fi->keytype = keytype;
2155 	fi->framelen = framelen;
2156 	fi->tx_power = txpower;
2157 
2158 	if (!rate)
2159 		return;
2160 	fi->rtscts_rate = rate->hw_value;
2161 	if (short_preamble)
2162 		fi->rtscts_rate |= rate->hw_value_short;
2163 }
2164 
2165 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2166 {
2167 	struct ath_hw *ah = sc->sc_ah;
2168 	struct ath9k_channel *curchan = ah->curchan;
2169 
2170 	if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
2171 	    (chainmask == 0x7) && (rate < 0x90))
2172 		return 0x3;
2173 	else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2174 		 IS_CCK_RATE(rate))
2175 		return 0x2;
2176 	else
2177 		return chainmask;
2178 }
2179 
2180 /*
2181  * Assign a descriptor (and sequence number if necessary,
2182  * and map buffer for DMA. Frees skb on error
2183  */
2184 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2185 					   struct ath_txq *txq,
2186 					   struct ath_atx_tid *tid,
2187 					   struct sk_buff *skb)
2188 {
2189 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2190 	struct ath_frame_info *fi = get_frame_info(skb);
2191 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2192 	struct ath_buf *bf;
2193 	int fragno;
2194 	u16 seqno;
2195 
2196 	bf = ath_tx_get_buffer(sc);
2197 	if (!bf) {
2198 		ath_dbg(common, XMIT, "TX buffers are full\n");
2199 		return NULL;
2200 	}
2201 
2202 	ATH_TXBUF_RESET(bf);
2203 
2204 	if (tid && ieee80211_is_data_present(hdr->frame_control)) {
2205 		fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2206 		seqno = tid->seq_next;
2207 		hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2208 
2209 		if (fragno)
2210 			hdr->seq_ctrl |= cpu_to_le16(fragno);
2211 
2212 		if (!ieee80211_has_morefrags(hdr->frame_control))
2213 			INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2214 
2215 		bf->bf_state.seqno = seqno;
2216 	}
2217 
2218 	bf->bf_mpdu = skb;
2219 
2220 	bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2221 					 skb->len, DMA_TO_DEVICE);
2222 	if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2223 		bf->bf_mpdu = NULL;
2224 		bf->bf_buf_addr = 0;
2225 		ath_err(ath9k_hw_common(sc->sc_ah),
2226 			"dma_mapping_error() on TX\n");
2227 		ath_tx_return_buffer(sc, bf);
2228 		return NULL;
2229 	}
2230 
2231 	fi->bf = bf;
2232 
2233 	return bf;
2234 }
2235 
2236 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb)
2237 {
2238 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2239 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2240 	struct ieee80211_vif *vif = info->control.vif;
2241 	struct ath_vif *avp;
2242 
2243 	if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
2244 		return;
2245 
2246 	if (!vif)
2247 		return;
2248 
2249 	avp = (struct ath_vif *)vif->drv_priv;
2250 
2251 	if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2252 		avp->seq_no += 0x10;
2253 
2254 	hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2255 	hdr->seq_ctrl |= cpu_to_le16(avp->seq_no);
2256 }
2257 
2258 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2259 			  struct ath_tx_control *txctl)
2260 {
2261 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2262 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2263 	struct ieee80211_sta *sta = txctl->sta;
2264 	struct ieee80211_vif *vif = info->control.vif;
2265 	struct ath_vif *avp;
2266 	struct ath_softc *sc = hw->priv;
2267 	int frmlen = skb->len + FCS_LEN;
2268 	int padpos, padsize;
2269 
2270 	/* NOTE:  sta can be NULL according to net/mac80211.h */
2271 	if (sta)
2272 		txctl->an = (struct ath_node *)sta->drv_priv;
2273 	else if (vif && ieee80211_is_data(hdr->frame_control)) {
2274 		avp = (void *)vif->drv_priv;
2275 		txctl->an = &avp->mcast_node;
2276 	}
2277 
2278 	if (info->control.hw_key)
2279 		frmlen += info->control.hw_key->icv_len;
2280 
2281 	ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb);
2282 
2283 	if ((vif && vif->type != NL80211_IFTYPE_AP &&
2284 	            vif->type != NL80211_IFTYPE_AP_VLAN) ||
2285 	    !ieee80211_is_data(hdr->frame_control))
2286 		info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2287 
2288 	/* Add the padding after the header if this is not already done */
2289 	padpos = ieee80211_hdrlen(hdr->frame_control);
2290 	padsize = padpos & 3;
2291 	if (padsize && skb->len > padpos) {
2292 		if (skb_headroom(skb) < padsize)
2293 			return -ENOMEM;
2294 
2295 		skb_push(skb, padsize);
2296 		memmove(skb->data, skb->data + padsize, padpos);
2297 	}
2298 
2299 	setup_frame_info(hw, sta, skb, frmlen);
2300 	return 0;
2301 }
2302 
2303 
2304 /* Upon failure caller should free skb */
2305 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2306 		 struct ath_tx_control *txctl)
2307 {
2308 	struct ieee80211_hdr *hdr;
2309 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2310 	struct ieee80211_sta *sta = txctl->sta;
2311 	struct ieee80211_vif *vif = info->control.vif;
2312 	struct ath_frame_info *fi = get_frame_info(skb);
2313 	struct ath_vif *avp = NULL;
2314 	struct ath_softc *sc = hw->priv;
2315 	struct ath_txq *txq = txctl->txq;
2316 	struct ath_atx_tid *tid = NULL;
2317 	struct ath_buf *bf;
2318 	bool queue, skip_uapsd = false, ps_resp;
2319 	int q, ret;
2320 
2321 	if (vif)
2322 		avp = (void *)vif->drv_priv;
2323 
2324 	if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN)
2325 		txctl->force_channel = true;
2326 
2327 	ps_resp = !!(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE);
2328 
2329 	ret = ath_tx_prepare(hw, skb, txctl);
2330 	if (ret)
2331 	    return ret;
2332 
2333 	hdr = (struct ieee80211_hdr *) skb->data;
2334 	/*
2335 	 * At this point, the vif, hw_key and sta pointers in the tx control
2336 	 * info are no longer valid (overwritten by the ath_frame_info data.
2337 	 */
2338 
2339 	q = skb_get_queue_mapping(skb);
2340 
2341 	ath_txq_lock(sc, txq);
2342 	if (txq == sc->tx.txq_map[q]) {
2343 		fi->txq = q;
2344 		if (++txq->pending_frames > sc->tx.txq_max_pending[q] &&
2345 		    !txq->stopped) {
2346 			if (ath9k_is_chanctx_enabled())
2347 				ieee80211_stop_queue(sc->hw, info->hw_queue);
2348 			else
2349 				ieee80211_stop_queue(sc->hw, q);
2350 			txq->stopped = true;
2351 		}
2352 	}
2353 
2354 	queue = ieee80211_is_data_present(hdr->frame_control);
2355 
2356 	/* Force queueing of all frames that belong to a virtual interface on
2357 	 * a different channel context, to ensure that they are sent on the
2358 	 * correct channel.
2359 	 */
2360 	if (((avp && avp->chanctx != sc->cur_chan) ||
2361 	     sc->cur_chan->stopped) && !txctl->force_channel) {
2362 		if (!txctl->an)
2363 			txctl->an = &avp->mcast_node;
2364 		queue = true;
2365 		skip_uapsd = true;
2366 	}
2367 
2368 	if (txctl->an && queue)
2369 		tid = ath_get_skb_tid(sc, txctl->an, skb);
2370 
2371 	if (!skip_uapsd && ps_resp) {
2372 		ath_txq_unlock(sc, txq);
2373 		txq = sc->tx.uapsdq;
2374 		ath_txq_lock(sc, txq);
2375 	} else if (txctl->an && queue) {
2376 		WARN_ON(tid->ac->txq != txctl->txq);
2377 
2378 		if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
2379 			tid->ac->clear_ps_filter = true;
2380 
2381 		/*
2382 		 * Add this frame to software queue for scheduling later
2383 		 * for aggregation.
2384 		 */
2385 		TX_STAT_INC(txq->axq_qnum, a_queued_sw);
2386 		__skb_queue_tail(&tid->buf_q, skb);
2387 		if (!txctl->an->sleeping)
2388 			ath_tx_queue_tid(sc, txq, tid);
2389 
2390 		ath_txq_schedule(sc, txq);
2391 		goto out;
2392 	}
2393 
2394 	bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2395 	if (!bf) {
2396 		ath_txq_skb_done(sc, txq, skb);
2397 		if (txctl->paprd)
2398 			dev_kfree_skb_any(skb);
2399 		else
2400 			ieee80211_free_txskb(sc->hw, skb);
2401 		goto out;
2402 	}
2403 
2404 	bf->bf_state.bfs_paprd = txctl->paprd;
2405 
2406 	if (txctl->paprd)
2407 		bf->bf_state.bfs_paprd_timestamp = jiffies;
2408 
2409 	ath_set_rates(vif, sta, bf);
2410 	ath_tx_send_normal(sc, txq, tid, skb);
2411 
2412 out:
2413 	ath_txq_unlock(sc, txq);
2414 
2415 	return 0;
2416 }
2417 
2418 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2419 		 struct sk_buff *skb)
2420 {
2421 	struct ath_softc *sc = hw->priv;
2422 	struct ath_tx_control txctl = {
2423 		.txq = sc->beacon.cabq
2424 	};
2425 	struct ath_tx_info info = {};
2426 	struct ieee80211_hdr *hdr;
2427 	struct ath_buf *bf_tail = NULL;
2428 	struct ath_buf *bf;
2429 	LIST_HEAD(bf_q);
2430 	int duration = 0;
2431 	int max_duration;
2432 
2433 	max_duration =
2434 		sc->cur_chan->beacon.beacon_interval * 1000 *
2435 		sc->cur_chan->beacon.dtim_period / ATH_BCBUF;
2436 
2437 	do {
2438 		struct ath_frame_info *fi = get_frame_info(skb);
2439 
2440 		if (ath_tx_prepare(hw, skb, &txctl))
2441 			break;
2442 
2443 		bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2444 		if (!bf)
2445 			break;
2446 
2447 		bf->bf_lastbf = bf;
2448 		ath_set_rates(vif, NULL, bf);
2449 		ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2450 		duration += info.rates[0].PktDuration;
2451 		if (bf_tail)
2452 			bf_tail->bf_next = bf;
2453 
2454 		list_add_tail(&bf->list, &bf_q);
2455 		bf_tail = bf;
2456 		skb = NULL;
2457 
2458 		if (duration > max_duration)
2459 			break;
2460 
2461 		skb = ieee80211_get_buffered_bc(hw, vif);
2462 	} while(skb);
2463 
2464 	if (skb)
2465 		ieee80211_free_txskb(hw, skb);
2466 
2467 	if (list_empty(&bf_q))
2468 		return;
2469 
2470 	bf = list_first_entry(&bf_q, struct ath_buf, list);
2471 	hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
2472 
2473 	if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) {
2474 		hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA;
2475 		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
2476 			sizeof(*hdr), DMA_TO_DEVICE);
2477 	}
2478 
2479 	ath_txq_lock(sc, txctl.txq);
2480 	ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2481 	ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2482 	TX_STAT_INC(txctl.txq->axq_qnum, queued);
2483 	ath_txq_unlock(sc, txctl.txq);
2484 }
2485 
2486 /*****************/
2487 /* TX Completion */
2488 /*****************/
2489 
2490 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2491 			    int tx_flags, struct ath_txq *txq)
2492 {
2493 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2494 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2495 	struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2496 	int padpos, padsize;
2497 	unsigned long flags;
2498 
2499 	ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2500 
2501 	if (sc->sc_ah->caldata)
2502 		set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
2503 
2504 	if (!(tx_flags & ATH_TX_ERROR)) {
2505 		if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
2506 			tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
2507 		else
2508 			tx_info->flags |= IEEE80211_TX_STAT_ACK;
2509 	}
2510 
2511 	padpos = ieee80211_hdrlen(hdr->frame_control);
2512 	padsize = padpos & 3;
2513 	if (padsize && skb->len>padpos+padsize) {
2514 		/*
2515 		 * Remove MAC header padding before giving the frame back to
2516 		 * mac80211.
2517 		 */
2518 		memmove(skb->data + padsize, skb->data, padpos);
2519 		skb_pull(skb, padsize);
2520 	}
2521 
2522 	spin_lock_irqsave(&sc->sc_pm_lock, flags);
2523 	if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2524 		sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2525 		ath_dbg(common, PS,
2526 			"Going back to sleep after having received TX status (0x%lx)\n",
2527 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
2528 					PS_WAIT_FOR_CAB |
2529 					PS_WAIT_FOR_PSPOLL_DATA |
2530 					PS_WAIT_FOR_TX_ACK));
2531 	}
2532 	spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2533 
2534 	__skb_queue_tail(&txq->complete_q, skb);
2535 	ath_txq_skb_done(sc, txq, skb);
2536 }
2537 
2538 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2539 				struct ath_txq *txq, struct list_head *bf_q,
2540 				struct ath_tx_status *ts, int txok)
2541 {
2542 	struct sk_buff *skb = bf->bf_mpdu;
2543 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2544 	unsigned long flags;
2545 	int tx_flags = 0;
2546 
2547 	if (!txok)
2548 		tx_flags |= ATH_TX_ERROR;
2549 
2550 	if (ts->ts_status & ATH9K_TXERR_FILT)
2551 		tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2552 
2553 	dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2554 	bf->bf_buf_addr = 0;
2555 	if (sc->tx99_state)
2556 		goto skip_tx_complete;
2557 
2558 	if (bf->bf_state.bfs_paprd) {
2559 		if (time_after(jiffies,
2560 				bf->bf_state.bfs_paprd_timestamp +
2561 				msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2562 			dev_kfree_skb_any(skb);
2563 		else
2564 			complete(&sc->paprd_complete);
2565 	} else {
2566 		ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2567 		ath_tx_complete(sc, skb, tx_flags, txq);
2568 	}
2569 skip_tx_complete:
2570 	/* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2571 	 * accidentally reference it later.
2572 	 */
2573 	bf->bf_mpdu = NULL;
2574 
2575 	/*
2576 	 * Return the list of ath_buf of this mpdu to free queue
2577 	 */
2578 	spin_lock_irqsave(&sc->tx.txbuflock, flags);
2579 	list_splice_tail_init(bf_q, &sc->tx.txbuf);
2580 	spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2581 }
2582 
2583 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2584 			     struct ath_tx_status *ts, int nframes, int nbad,
2585 			     int txok)
2586 {
2587 	struct sk_buff *skb = bf->bf_mpdu;
2588 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2589 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2590 	struct ieee80211_hw *hw = sc->hw;
2591 	struct ath_hw *ah = sc->sc_ah;
2592 	u8 i, tx_rateindex;
2593 
2594 	if (txok)
2595 		tx_info->status.ack_signal = ts->ts_rssi;
2596 
2597 	tx_rateindex = ts->ts_rateindex;
2598 	WARN_ON(tx_rateindex >= hw->max_rates);
2599 
2600 	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2601 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2602 
2603 		BUG_ON(nbad > nframes);
2604 	}
2605 	tx_info->status.ampdu_len = nframes;
2606 	tx_info->status.ampdu_ack_len = nframes - nbad;
2607 
2608 	if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2609 	    (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2610 		/*
2611 		 * If an underrun error is seen assume it as an excessive
2612 		 * retry only if max frame trigger level has been reached
2613 		 * (2 KB for single stream, and 4 KB for dual stream).
2614 		 * Adjust the long retry as if the frame was tried
2615 		 * hw->max_rate_tries times to affect how rate control updates
2616 		 * PER for the failed rate.
2617 		 * In case of congestion on the bus penalizing this type of
2618 		 * underruns should help hardware actually transmit new frames
2619 		 * successfully by eventually preferring slower rates.
2620 		 * This itself should also alleviate congestion on the bus.
2621 		 */
2622 		if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2623 		                             ATH9K_TX_DELIM_UNDERRUN)) &&
2624 		    ieee80211_is_data(hdr->frame_control) &&
2625 		    ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2626 			tx_info->status.rates[tx_rateindex].count =
2627 				hw->max_rate_tries;
2628 	}
2629 
2630 	for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2631 		tx_info->status.rates[i].count = 0;
2632 		tx_info->status.rates[i].idx = -1;
2633 	}
2634 
2635 	tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2636 }
2637 
2638 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2639 {
2640 	struct ath_hw *ah = sc->sc_ah;
2641 	struct ath_common *common = ath9k_hw_common(ah);
2642 	struct ath_buf *bf, *lastbf, *bf_held = NULL;
2643 	struct list_head bf_head;
2644 	struct ath_desc *ds;
2645 	struct ath_tx_status ts;
2646 	int status;
2647 
2648 	ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2649 		txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2650 		txq->axq_link);
2651 
2652 	ath_txq_lock(sc, txq);
2653 	for (;;) {
2654 		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2655 			break;
2656 
2657 		if (list_empty(&txq->axq_q)) {
2658 			txq->axq_link = NULL;
2659 			ath_txq_schedule(sc, txq);
2660 			break;
2661 		}
2662 		bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2663 
2664 		/*
2665 		 * There is a race condition that a BH gets scheduled
2666 		 * after sw writes TxE and before hw re-load the last
2667 		 * descriptor to get the newly chained one.
2668 		 * Software must keep the last DONE descriptor as a
2669 		 * holding descriptor - software does so by marking
2670 		 * it with the STALE flag.
2671 		 */
2672 		bf_held = NULL;
2673 		if (bf->bf_state.stale) {
2674 			bf_held = bf;
2675 			if (list_is_last(&bf_held->list, &txq->axq_q))
2676 				break;
2677 
2678 			bf = list_entry(bf_held->list.next, struct ath_buf,
2679 					list);
2680 		}
2681 
2682 		lastbf = bf->bf_lastbf;
2683 		ds = lastbf->bf_desc;
2684 
2685 		memset(&ts, 0, sizeof(ts));
2686 		status = ath9k_hw_txprocdesc(ah, ds, &ts);
2687 		if (status == -EINPROGRESS)
2688 			break;
2689 
2690 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2691 
2692 		/*
2693 		 * Remove ath_buf's of the same transmit unit from txq,
2694 		 * however leave the last descriptor back as the holding
2695 		 * descriptor for hw.
2696 		 */
2697 		lastbf->bf_state.stale = true;
2698 		INIT_LIST_HEAD(&bf_head);
2699 		if (!list_is_singular(&lastbf->list))
2700 			list_cut_position(&bf_head,
2701 				&txq->axq_q, lastbf->list.prev);
2702 
2703 		if (bf_held) {
2704 			list_del(&bf_held->list);
2705 			ath_tx_return_buffer(sc, bf_held);
2706 		}
2707 
2708 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2709 	}
2710 	ath_txq_unlock_complete(sc, txq);
2711 }
2712 
2713 void ath_tx_tasklet(struct ath_softc *sc)
2714 {
2715 	struct ath_hw *ah = sc->sc_ah;
2716 	u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2717 	int i;
2718 
2719 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2720 		if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2721 			ath_tx_processq(sc, &sc->tx.txq[i]);
2722 	}
2723 }
2724 
2725 void ath_tx_edma_tasklet(struct ath_softc *sc)
2726 {
2727 	struct ath_tx_status ts;
2728 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2729 	struct ath_hw *ah = sc->sc_ah;
2730 	struct ath_txq *txq;
2731 	struct ath_buf *bf, *lastbf;
2732 	struct list_head bf_head;
2733 	struct list_head *fifo_list;
2734 	int status;
2735 
2736 	for (;;) {
2737 		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2738 			break;
2739 
2740 		status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2741 		if (status == -EINPROGRESS)
2742 			break;
2743 		if (status == -EIO) {
2744 			ath_dbg(common, XMIT, "Error processing tx status\n");
2745 			break;
2746 		}
2747 
2748 		/* Process beacon completions separately */
2749 		if (ts.qid == sc->beacon.beaconq) {
2750 			sc->beacon.tx_processed = true;
2751 			sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2752 
2753 			if (ath9k_is_chanctx_enabled()) {
2754 				ath_chanctx_event(sc, NULL,
2755 						  ATH_CHANCTX_EVENT_BEACON_SENT);
2756 			}
2757 
2758 			ath9k_csa_update(sc);
2759 			continue;
2760 		}
2761 
2762 		txq = &sc->tx.txq[ts.qid];
2763 
2764 		ath_txq_lock(sc, txq);
2765 
2766 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2767 
2768 		fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2769 		if (list_empty(fifo_list)) {
2770 			ath_txq_unlock(sc, txq);
2771 			return;
2772 		}
2773 
2774 		bf = list_first_entry(fifo_list, struct ath_buf, list);
2775 		if (bf->bf_state.stale) {
2776 			list_del(&bf->list);
2777 			ath_tx_return_buffer(sc, bf);
2778 			bf = list_first_entry(fifo_list, struct ath_buf, list);
2779 		}
2780 
2781 		lastbf = bf->bf_lastbf;
2782 
2783 		INIT_LIST_HEAD(&bf_head);
2784 		if (list_is_last(&lastbf->list, fifo_list)) {
2785 			list_splice_tail_init(fifo_list, &bf_head);
2786 			INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2787 
2788 			if (!list_empty(&txq->axq_q)) {
2789 				struct list_head bf_q;
2790 
2791 				INIT_LIST_HEAD(&bf_q);
2792 				txq->axq_link = NULL;
2793 				list_splice_tail_init(&txq->axq_q, &bf_q);
2794 				ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2795 			}
2796 		} else {
2797 			lastbf->bf_state.stale = true;
2798 			if (bf != lastbf)
2799 				list_cut_position(&bf_head, fifo_list,
2800 						  lastbf->list.prev);
2801 		}
2802 
2803 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2804 		ath_txq_unlock_complete(sc, txq);
2805 	}
2806 }
2807 
2808 /*****************/
2809 /* Init, Cleanup */
2810 /*****************/
2811 
2812 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2813 {
2814 	struct ath_descdma *dd = &sc->txsdma;
2815 	u8 txs_len = sc->sc_ah->caps.txs_len;
2816 
2817 	dd->dd_desc_len = size * txs_len;
2818 	dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2819 					  &dd->dd_desc_paddr, GFP_KERNEL);
2820 	if (!dd->dd_desc)
2821 		return -ENOMEM;
2822 
2823 	return 0;
2824 }
2825 
2826 static int ath_tx_edma_init(struct ath_softc *sc)
2827 {
2828 	int err;
2829 
2830 	err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2831 	if (!err)
2832 		ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2833 					  sc->txsdma.dd_desc_paddr,
2834 					  ATH_TXSTATUS_RING_SIZE);
2835 
2836 	return err;
2837 }
2838 
2839 int ath_tx_init(struct ath_softc *sc, int nbufs)
2840 {
2841 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2842 	int error = 0;
2843 
2844 	spin_lock_init(&sc->tx.txbuflock);
2845 
2846 	error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2847 				  "tx", nbufs, 1, 1);
2848 	if (error != 0) {
2849 		ath_err(common,
2850 			"Failed to allocate tx descriptors: %d\n", error);
2851 		return error;
2852 	}
2853 
2854 	error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2855 				  "beacon", ATH_BCBUF, 1, 1);
2856 	if (error != 0) {
2857 		ath_err(common,
2858 			"Failed to allocate beacon descriptors: %d\n", error);
2859 		return error;
2860 	}
2861 
2862 	INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2863 
2864 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2865 		error = ath_tx_edma_init(sc);
2866 
2867 	return error;
2868 }
2869 
2870 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2871 {
2872 	struct ath_atx_tid *tid;
2873 	struct ath_atx_ac *ac;
2874 	int tidno, acno;
2875 
2876 	for (tidno = 0, tid = &an->tid[tidno];
2877 	     tidno < IEEE80211_NUM_TIDS;
2878 	     tidno++, tid++) {
2879 		tid->an        = an;
2880 		tid->tidno     = tidno;
2881 		tid->seq_start = tid->seq_next = 0;
2882 		tid->baw_size  = WME_MAX_BA;
2883 		tid->baw_head  = tid->baw_tail = 0;
2884 		tid->sched     = false;
2885 		tid->active	   = false;
2886 		__skb_queue_head_init(&tid->buf_q);
2887 		__skb_queue_head_init(&tid->retry_q);
2888 		acno = TID_TO_WME_AC(tidno);
2889 		tid->ac = &an->ac[acno];
2890 	}
2891 
2892 	for (acno = 0, ac = &an->ac[acno];
2893 	     acno < IEEE80211_NUM_ACS; acno++, ac++) {
2894 		ac->sched    = false;
2895 		ac->clear_ps_filter = true;
2896 		ac->txq = sc->tx.txq_map[acno];
2897 		INIT_LIST_HEAD(&ac->tid_q);
2898 	}
2899 }
2900 
2901 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2902 {
2903 	struct ath_atx_ac *ac;
2904 	struct ath_atx_tid *tid;
2905 	struct ath_txq *txq;
2906 	int tidno;
2907 
2908 	for (tidno = 0, tid = &an->tid[tidno];
2909 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
2910 
2911 		ac = tid->ac;
2912 		txq = ac->txq;
2913 
2914 		ath_txq_lock(sc, txq);
2915 
2916 		if (tid->sched) {
2917 			list_del(&tid->list);
2918 			tid->sched = false;
2919 		}
2920 
2921 		if (ac->sched) {
2922 			list_del(&ac->list);
2923 			tid->ac->sched = false;
2924 		}
2925 
2926 		ath_tid_drain(sc, txq, tid);
2927 		tid->active = false;
2928 
2929 		ath_txq_unlock(sc, txq);
2930 	}
2931 }
2932 
2933 #ifdef CONFIG_ATH9K_TX99
2934 
2935 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
2936 		    struct ath_tx_control *txctl)
2937 {
2938 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2939 	struct ath_frame_info *fi = get_frame_info(skb);
2940 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2941 	struct ath_buf *bf;
2942 	int padpos, padsize;
2943 
2944 	padpos = ieee80211_hdrlen(hdr->frame_control);
2945 	padsize = padpos & 3;
2946 
2947 	if (padsize && skb->len > padpos) {
2948 		if (skb_headroom(skb) < padsize) {
2949 			ath_dbg(common, XMIT,
2950 				"tx99 padding failed\n");
2951 		return -EINVAL;
2952 		}
2953 
2954 		skb_push(skb, padsize);
2955 		memmove(skb->data, skb->data + padsize, padpos);
2956 	}
2957 
2958 	fi->keyix = ATH9K_TXKEYIX_INVALID;
2959 	fi->framelen = skb->len + FCS_LEN;
2960 	fi->keytype = ATH9K_KEY_TYPE_CLEAR;
2961 
2962 	bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
2963 	if (!bf) {
2964 		ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
2965 		return -EINVAL;
2966 	}
2967 
2968 	ath_set_rates(sc->tx99_vif, NULL, bf);
2969 
2970 	ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
2971 	ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
2972 
2973 	ath_tx_send_normal(sc, txctl->txq, NULL, skb);
2974 
2975 	return 0;
2976 }
2977 
2978 #endif /* CONFIG_ATH9K_TX99 */
2979