xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/xmit.c (revision ce932d0c5589e9766e089c22c66890dfc48fbd94)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20 
21 #define BITS_PER_BYTE           8
22 #define OFDM_PLCP_BITS          22
23 #define HT_RC_2_STREAMS(_rc)    ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF                   8
25 #define L_LTF                   8
26 #define L_SIG                   4
27 #define HT_SIG                  8
28 #define HT_STF                  4
29 #define HT_LTF(_ns)             (4 * (_ns))
30 #define SYMBOL_TIME(_ns)        ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5)  /* ns * 3.6 us */
32 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
33 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
34 
35 
36 static u16 bits_per_symbol[][2] = {
37 	/* 20MHz 40MHz */
38 	{    26,   54 },     /*  0: BPSK */
39 	{    52,  108 },     /*  1: QPSK 1/2 */
40 	{    78,  162 },     /*  2: QPSK 3/4 */
41 	{   104,  216 },     /*  3: 16-QAM 1/2 */
42 	{   156,  324 },     /*  4: 16-QAM 3/4 */
43 	{   208,  432 },     /*  5: 64-QAM 2/3 */
44 	{   234,  486 },     /*  6: 64-QAM 3/4 */
45 	{   260,  540 },     /*  7: 64-QAM 5/6 */
46 };
47 
48 #define IS_HT_RATE(_rate)     ((_rate) & 0x80)
49 
50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
51 			       struct ath_atx_tid *tid, struct sk_buff *skb);
52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
53 			    int tx_flags, struct ath_txq *txq);
54 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
55 				struct ath_txq *txq, struct list_head *bf_q,
56 				struct ath_tx_status *ts, int txok);
57 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
58 			     struct list_head *head, bool internal);
59 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
60 			     struct ath_tx_status *ts, int nframes, int nbad,
61 			     int txok);
62 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
63 			      int seqno);
64 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
65 					   struct ath_txq *txq,
66 					   struct ath_atx_tid *tid,
67 					   struct sk_buff *skb);
68 
69 enum {
70 	MCS_HT20,
71 	MCS_HT20_SGI,
72 	MCS_HT40,
73 	MCS_HT40_SGI,
74 };
75 
76 static int ath_max_4ms_framelen[4][32] = {
77 	[MCS_HT20] = {
78 		3212,  6432,  9648,  12864,  19300,  25736,  28952,  32172,
79 		6424,  12852, 19280, 25708,  38568,  51424,  57852,  64280,
80 		9628,  19260, 28896, 38528,  57792,  65532,  65532,  65532,
81 		12828, 25656, 38488, 51320,  65532,  65532,  65532,  65532,
82 	},
83 	[MCS_HT20_SGI] = {
84 		3572,  7144,  10720,  14296,  21444,  28596,  32172,  35744,
85 		7140,  14284, 21428,  28568,  42856,  57144,  64288,  65532,
86 		10700, 21408, 32112,  42816,  64228,  65532,  65532,  65532,
87 		14256, 28516, 42780,  57040,  65532,  65532,  65532,  65532,
88 	},
89 	[MCS_HT40] = {
90 		6680,  13360,  20044,  26724,  40092,  53456,  60140,  65532,
91 		13348, 26700,  40052,  53400,  65532,  65532,  65532,  65532,
92 		20004, 40008,  60016,  65532,  65532,  65532,  65532,  65532,
93 		26644, 53292,  65532,  65532,  65532,  65532,  65532,  65532,
94 	},
95 	[MCS_HT40_SGI] = {
96 		7420,  14844,  22272,  29696,  44544,  59396,  65532,  65532,
97 		14832, 29668,  44504,  59340,  65532,  65532,  65532,  65532,
98 		22232, 44464,  65532,  65532,  65532,  65532,  65532,  65532,
99 		29616, 59232,  65532,  65532,  65532,  65532,  65532,  65532,
100 	}
101 };
102 
103 /*********************/
104 /* Aggregation logic */
105 /*********************/
106 
107 static void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
108 	__acquires(&txq->axq_lock)
109 {
110 	spin_lock_bh(&txq->axq_lock);
111 }
112 
113 static void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
114 	__releases(&txq->axq_lock)
115 {
116 	spin_unlock_bh(&txq->axq_lock);
117 }
118 
119 static void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
120 	__releases(&txq->axq_lock)
121 {
122 	struct sk_buff_head q;
123 	struct sk_buff *skb;
124 
125 	__skb_queue_head_init(&q);
126 	skb_queue_splice_init(&txq->complete_q, &q);
127 	spin_unlock_bh(&txq->axq_lock);
128 
129 	while ((skb = __skb_dequeue(&q)))
130 		ieee80211_tx_status(sc->hw, skb);
131 }
132 
133 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
134 {
135 	struct ath_atx_ac *ac = tid->ac;
136 
137 	if (tid->paused)
138 		return;
139 
140 	if (tid->sched)
141 		return;
142 
143 	tid->sched = true;
144 	list_add_tail(&tid->list, &ac->tid_q);
145 
146 	if (ac->sched)
147 		return;
148 
149 	ac->sched = true;
150 	list_add_tail(&ac->list, &txq->axq_acq);
151 }
152 
153 static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
154 {
155 	struct ath_txq *txq = tid->ac->txq;
156 
157 	WARN_ON(!tid->paused);
158 
159 	ath_txq_lock(sc, txq);
160 	tid->paused = false;
161 
162 	if (skb_queue_empty(&tid->buf_q))
163 		goto unlock;
164 
165 	ath_tx_queue_tid(txq, tid);
166 	ath_txq_schedule(sc, txq);
167 unlock:
168 	ath_txq_unlock_complete(sc, txq);
169 }
170 
171 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
172 {
173 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
174 	BUILD_BUG_ON(sizeof(struct ath_frame_info) >
175 		     sizeof(tx_info->rate_driver_data));
176 	return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
177 }
178 
179 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
180 {
181 	ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
182 			   seqno << IEEE80211_SEQ_SEQ_SHIFT);
183 }
184 
185 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
186 {
187 	struct ath_txq *txq = tid->ac->txq;
188 	struct sk_buff *skb;
189 	struct ath_buf *bf;
190 	struct list_head bf_head;
191 	struct ath_tx_status ts;
192 	struct ath_frame_info *fi;
193 	bool sendbar = false;
194 
195 	INIT_LIST_HEAD(&bf_head);
196 
197 	memset(&ts, 0, sizeof(ts));
198 
199 	while ((skb = __skb_dequeue(&tid->buf_q))) {
200 		fi = get_frame_info(skb);
201 		bf = fi->bf;
202 
203 		if (bf && fi->retries) {
204 			list_add_tail(&bf->list, &bf_head);
205 			ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
206 			ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
207 			sendbar = true;
208 		} else {
209 			ath_tx_send_normal(sc, txq, NULL, skb);
210 		}
211 	}
212 
213 	if (tid->baw_head == tid->baw_tail) {
214 		tid->state &= ~AGGR_ADDBA_COMPLETE;
215 		tid->state &= ~AGGR_CLEANUP;
216 	}
217 
218 	if (sendbar) {
219 		ath_txq_unlock(sc, txq);
220 		ath_send_bar(tid, tid->seq_start);
221 		ath_txq_lock(sc, txq);
222 	}
223 }
224 
225 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
226 			      int seqno)
227 {
228 	int index, cindex;
229 
230 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
231 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
232 
233 	__clear_bit(cindex, tid->tx_buf);
234 
235 	while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
236 		INCR(tid->seq_start, IEEE80211_SEQ_MAX);
237 		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
238 		if (tid->bar_index >= 0)
239 			tid->bar_index--;
240 	}
241 }
242 
243 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
244 			     u16 seqno)
245 {
246 	int index, cindex;
247 
248 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
249 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
250 	__set_bit(cindex, tid->tx_buf);
251 
252 	if (index >= ((tid->baw_tail - tid->baw_head) &
253 		(ATH_TID_MAX_BUFS - 1))) {
254 		tid->baw_tail = cindex;
255 		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
256 	}
257 }
258 
259 /*
260  * TODO: For frame(s) that are in the retry state, we will reuse the
261  * sequence number(s) without setting the retry bit. The
262  * alternative is to give up on these and BAR the receiver's window
263  * forward.
264  */
265 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
266 			  struct ath_atx_tid *tid)
267 
268 {
269 	struct sk_buff *skb;
270 	struct ath_buf *bf;
271 	struct list_head bf_head;
272 	struct ath_tx_status ts;
273 	struct ath_frame_info *fi;
274 
275 	memset(&ts, 0, sizeof(ts));
276 	INIT_LIST_HEAD(&bf_head);
277 
278 	while ((skb = __skb_dequeue(&tid->buf_q))) {
279 		fi = get_frame_info(skb);
280 		bf = fi->bf;
281 
282 		if (!bf) {
283 			ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
284 			continue;
285 		}
286 
287 		list_add_tail(&bf->list, &bf_head);
288 
289 		if (fi->retries)
290 			ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
291 
292 		ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
293 	}
294 
295 	tid->seq_next = tid->seq_start;
296 	tid->baw_tail = tid->baw_head;
297 	tid->bar_index = -1;
298 }
299 
300 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
301 			     struct sk_buff *skb, int count)
302 {
303 	struct ath_frame_info *fi = get_frame_info(skb);
304 	struct ath_buf *bf = fi->bf;
305 	struct ieee80211_hdr *hdr;
306 	int prev = fi->retries;
307 
308 	TX_STAT_INC(txq->axq_qnum, a_retries);
309 	fi->retries += count;
310 
311 	if (prev > 0)
312 		return;
313 
314 	hdr = (struct ieee80211_hdr *)skb->data;
315 	hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
316 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
317 		sizeof(*hdr), DMA_TO_DEVICE);
318 }
319 
320 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
321 {
322 	struct ath_buf *bf = NULL;
323 
324 	spin_lock_bh(&sc->tx.txbuflock);
325 
326 	if (unlikely(list_empty(&sc->tx.txbuf))) {
327 		spin_unlock_bh(&sc->tx.txbuflock);
328 		return NULL;
329 	}
330 
331 	bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
332 	list_del(&bf->list);
333 
334 	spin_unlock_bh(&sc->tx.txbuflock);
335 
336 	return bf;
337 }
338 
339 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
340 {
341 	spin_lock_bh(&sc->tx.txbuflock);
342 	list_add_tail(&bf->list, &sc->tx.txbuf);
343 	spin_unlock_bh(&sc->tx.txbuflock);
344 }
345 
346 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
347 {
348 	struct ath_buf *tbf;
349 
350 	tbf = ath_tx_get_buffer(sc);
351 	if (WARN_ON(!tbf))
352 		return NULL;
353 
354 	ATH_TXBUF_RESET(tbf);
355 
356 	tbf->bf_mpdu = bf->bf_mpdu;
357 	tbf->bf_buf_addr = bf->bf_buf_addr;
358 	memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
359 	tbf->bf_state = bf->bf_state;
360 
361 	return tbf;
362 }
363 
364 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
365 			        struct ath_tx_status *ts, int txok,
366 			        int *nframes, int *nbad)
367 {
368 	struct ath_frame_info *fi;
369 	u16 seq_st = 0;
370 	u32 ba[WME_BA_BMP_SIZE >> 5];
371 	int ba_index;
372 	int isaggr = 0;
373 
374 	*nbad = 0;
375 	*nframes = 0;
376 
377 	isaggr = bf_isaggr(bf);
378 	if (isaggr) {
379 		seq_st = ts->ts_seqnum;
380 		memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
381 	}
382 
383 	while (bf) {
384 		fi = get_frame_info(bf->bf_mpdu);
385 		ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
386 
387 		(*nframes)++;
388 		if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
389 			(*nbad)++;
390 
391 		bf = bf->bf_next;
392 	}
393 }
394 
395 
396 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
397 				 struct ath_buf *bf, struct list_head *bf_q,
398 				 struct ath_tx_status *ts, int txok, bool retry)
399 {
400 	struct ath_node *an = NULL;
401 	struct sk_buff *skb;
402 	struct ieee80211_sta *sta;
403 	struct ieee80211_hw *hw = sc->hw;
404 	struct ieee80211_hdr *hdr;
405 	struct ieee80211_tx_info *tx_info;
406 	struct ath_atx_tid *tid = NULL;
407 	struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
408 	struct list_head bf_head;
409 	struct sk_buff_head bf_pending;
410 	u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
411 	u32 ba[WME_BA_BMP_SIZE >> 5];
412 	int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
413 	bool rc_update = true;
414 	struct ieee80211_tx_rate rates[4];
415 	struct ath_frame_info *fi;
416 	int nframes;
417 	u8 tidno;
418 	bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
419 	int i, retries;
420 	int bar_index = -1;
421 
422 	skb = bf->bf_mpdu;
423 	hdr = (struct ieee80211_hdr *)skb->data;
424 
425 	tx_info = IEEE80211_SKB_CB(skb);
426 
427 	memcpy(rates, tx_info->control.rates, sizeof(rates));
428 
429 	retries = ts->ts_longretry + 1;
430 	for (i = 0; i < ts->ts_rateindex; i++)
431 		retries += rates[i].count;
432 
433 	rcu_read_lock();
434 
435 	sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
436 	if (!sta) {
437 		rcu_read_unlock();
438 
439 		INIT_LIST_HEAD(&bf_head);
440 		while (bf) {
441 			bf_next = bf->bf_next;
442 
443 			if (!bf->bf_stale || bf_next != NULL)
444 				list_move_tail(&bf->list, &bf_head);
445 
446 			ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
447 
448 			bf = bf_next;
449 		}
450 		return;
451 	}
452 
453 	an = (struct ath_node *)sta->drv_priv;
454 	tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
455 	tid = ATH_AN_2_TID(an, tidno);
456 	seq_first = tid->seq_start;
457 
458 	/*
459 	 * The hardware occasionally sends a tx status for the wrong TID.
460 	 * In this case, the BA status cannot be considered valid and all
461 	 * subframes need to be retransmitted
462 	 */
463 	if (tidno != ts->tid)
464 		txok = false;
465 
466 	isaggr = bf_isaggr(bf);
467 	memset(ba, 0, WME_BA_BMP_SIZE >> 3);
468 
469 	if (isaggr && txok) {
470 		if (ts->ts_flags & ATH9K_TX_BA) {
471 			seq_st = ts->ts_seqnum;
472 			memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
473 		} else {
474 			/*
475 			 * AR5416 can become deaf/mute when BA
476 			 * issue happens. Chip needs to be reset.
477 			 * But AP code may have sychronization issues
478 			 * when perform internal reset in this routine.
479 			 * Only enable reset in STA mode for now.
480 			 */
481 			if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
482 				needreset = 1;
483 		}
484 	}
485 
486 	__skb_queue_head_init(&bf_pending);
487 
488 	ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
489 	while (bf) {
490 		u16 seqno = bf->bf_state.seqno;
491 
492 		txfail = txpending = sendbar = 0;
493 		bf_next = bf->bf_next;
494 
495 		skb = bf->bf_mpdu;
496 		tx_info = IEEE80211_SKB_CB(skb);
497 		fi = get_frame_info(skb);
498 
499 		if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
500 			/* transmit completion, subframe is
501 			 * acked by block ack */
502 			acked_cnt++;
503 		} else if (!isaggr && txok) {
504 			/* transmit completion */
505 			acked_cnt++;
506 		} else if ((tid->state & AGGR_CLEANUP) || !retry) {
507 			/*
508 			 * cleanup in progress, just fail
509 			 * the un-acked sub-frames
510 			 */
511 			txfail = 1;
512 		} else if (flush) {
513 			txpending = 1;
514 		} else if (fi->retries < ATH_MAX_SW_RETRIES) {
515 			if (txok || !an->sleeping)
516 				ath_tx_set_retry(sc, txq, bf->bf_mpdu,
517 						 retries);
518 
519 			txpending = 1;
520 		} else {
521 			txfail = 1;
522 			txfail_cnt++;
523 			bar_index = max_t(int, bar_index,
524 				ATH_BA_INDEX(seq_first, seqno));
525 		}
526 
527 		/*
528 		 * Make sure the last desc is reclaimed if it
529 		 * not a holding desc.
530 		 */
531 		INIT_LIST_HEAD(&bf_head);
532 		if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) ||
533 		    bf_next != NULL || !bf_last->bf_stale)
534 			list_move_tail(&bf->list, &bf_head);
535 
536 		if (!txpending || (tid->state & AGGR_CLEANUP)) {
537 			/*
538 			 * complete the acked-ones/xretried ones; update
539 			 * block-ack window
540 			 */
541 			ath_tx_update_baw(sc, tid, seqno);
542 
543 			if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
544 				memcpy(tx_info->control.rates, rates, sizeof(rates));
545 				ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
546 				rc_update = false;
547 			}
548 
549 			ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
550 				!txfail);
551 		} else {
552 			/* retry the un-acked ones */
553 			if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
554 			    bf->bf_next == NULL && bf_last->bf_stale) {
555 				struct ath_buf *tbf;
556 
557 				tbf = ath_clone_txbuf(sc, bf_last);
558 				/*
559 				 * Update tx baw and complete the
560 				 * frame with failed status if we
561 				 * run out of tx buf.
562 				 */
563 				if (!tbf) {
564 					ath_tx_update_baw(sc, tid, seqno);
565 
566 					ath_tx_complete_buf(sc, bf, txq,
567 							    &bf_head, ts, 0);
568 					bar_index = max_t(int, bar_index,
569 						ATH_BA_INDEX(seq_first, seqno));
570 					break;
571 				}
572 
573 				fi->bf = tbf;
574 			}
575 
576 			/*
577 			 * Put this buffer to the temporary pending
578 			 * queue to retain ordering
579 			 */
580 			__skb_queue_tail(&bf_pending, skb);
581 		}
582 
583 		bf = bf_next;
584 	}
585 
586 	/* prepend un-acked frames to the beginning of the pending frame queue */
587 	if (!skb_queue_empty(&bf_pending)) {
588 		if (an->sleeping)
589 			ieee80211_sta_set_buffered(sta, tid->tidno, true);
590 
591 		skb_queue_splice(&bf_pending, &tid->buf_q);
592 		if (!an->sleeping) {
593 			ath_tx_queue_tid(txq, tid);
594 
595 			if (ts->ts_status & ATH9K_TXERR_FILT)
596 				tid->ac->clear_ps_filter = true;
597 		}
598 	}
599 
600 	if (bar_index >= 0) {
601 		u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
602 
603 		if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
604 			tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
605 
606 		ath_txq_unlock(sc, txq);
607 		ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
608 		ath_txq_lock(sc, txq);
609 	}
610 
611 	if (tid->state & AGGR_CLEANUP)
612 		ath_tx_flush_tid(sc, tid);
613 
614 	rcu_read_unlock();
615 
616 	if (needreset) {
617 		RESET_STAT_INC(sc, RESET_TYPE_TX_ERROR);
618 		ieee80211_queue_work(sc->hw, &sc->hw_reset_work);
619 	}
620 }
621 
622 static bool ath_lookup_legacy(struct ath_buf *bf)
623 {
624 	struct sk_buff *skb;
625 	struct ieee80211_tx_info *tx_info;
626 	struct ieee80211_tx_rate *rates;
627 	int i;
628 
629 	skb = bf->bf_mpdu;
630 	tx_info = IEEE80211_SKB_CB(skb);
631 	rates = tx_info->control.rates;
632 
633 	for (i = 0; i < 4; i++) {
634 		if (!rates[i].count || rates[i].idx < 0)
635 			break;
636 
637 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
638 			return true;
639 	}
640 
641 	return false;
642 }
643 
644 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
645 			   struct ath_atx_tid *tid)
646 {
647 	struct sk_buff *skb;
648 	struct ieee80211_tx_info *tx_info;
649 	struct ieee80211_tx_rate *rates;
650 	u32 max_4ms_framelen, frmlen;
651 	u16 aggr_limit, bt_aggr_limit, legacy = 0;
652 	int i;
653 
654 	skb = bf->bf_mpdu;
655 	tx_info = IEEE80211_SKB_CB(skb);
656 	rates = tx_info->control.rates;
657 
658 	/*
659 	 * Find the lowest frame length among the rate series that will have a
660 	 * 4ms transmit duration.
661 	 * TODO - TXOP limit needs to be considered.
662 	 */
663 	max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
664 
665 	for (i = 0; i < 4; i++) {
666 		int modeidx;
667 
668 		if (!rates[i].count)
669 			continue;
670 
671 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
672 			legacy = 1;
673 			break;
674 		}
675 
676 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
677 			modeidx = MCS_HT40;
678 		else
679 			modeidx = MCS_HT20;
680 
681 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
682 			modeidx++;
683 
684 		frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx];
685 		max_4ms_framelen = min(max_4ms_framelen, frmlen);
686 	}
687 
688 	/*
689 	 * limit aggregate size by the minimum rate if rate selected is
690 	 * not a probe rate, if rate selected is a probe rate then
691 	 * avoid aggregation of this packet.
692 	 */
693 	if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
694 		return 0;
695 
696 	aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
697 
698 	/*
699 	 * Override the default aggregation limit for BTCOEX.
700 	 */
701 	bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
702 	if (bt_aggr_limit)
703 		aggr_limit = bt_aggr_limit;
704 
705 	/*
706 	 * h/w can accept aggregates up to 16 bit lengths (65535).
707 	 * The IE, however can hold up to 65536, which shows up here
708 	 * as zero. Ignore 65536 since we  are constrained by hw.
709 	 */
710 	if (tid->an->maxampdu)
711 		aggr_limit = min(aggr_limit, tid->an->maxampdu);
712 
713 	return aggr_limit;
714 }
715 
716 /*
717  * Returns the number of delimiters to be added to
718  * meet the minimum required mpdudensity.
719  */
720 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
721 				  struct ath_buf *bf, u16 frmlen,
722 				  bool first_subfrm)
723 {
724 #define FIRST_DESC_NDELIMS 60
725 	struct sk_buff *skb = bf->bf_mpdu;
726 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
727 	u32 nsymbits, nsymbols;
728 	u16 minlen;
729 	u8 flags, rix;
730 	int width, streams, half_gi, ndelim, mindelim;
731 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
732 
733 	/* Select standard number of delimiters based on frame length alone */
734 	ndelim = ATH_AGGR_GET_NDELIM(frmlen);
735 
736 	/*
737 	 * If encryption enabled, hardware requires some more padding between
738 	 * subframes.
739 	 * TODO - this could be improved to be dependent on the rate.
740 	 *      The hardware can keep up at lower rates, but not higher rates
741 	 */
742 	if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
743 	    !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
744 		ndelim += ATH_AGGR_ENCRYPTDELIM;
745 
746 	/*
747 	 * Add delimiter when using RTS/CTS with aggregation
748 	 * and non enterprise AR9003 card
749 	 */
750 	if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
751 	    (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
752 		ndelim = max(ndelim, FIRST_DESC_NDELIMS);
753 
754 	/*
755 	 * Convert desired mpdu density from microeconds to bytes based
756 	 * on highest rate in rate series (i.e. first rate) to determine
757 	 * required minimum length for subframe. Take into account
758 	 * whether high rate is 20 or 40Mhz and half or full GI.
759 	 *
760 	 * If there is no mpdu density restriction, no further calculation
761 	 * is needed.
762 	 */
763 
764 	if (tid->an->mpdudensity == 0)
765 		return ndelim;
766 
767 	rix = tx_info->control.rates[0].idx;
768 	flags = tx_info->control.rates[0].flags;
769 	width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
770 	half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
771 
772 	if (half_gi)
773 		nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
774 	else
775 		nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
776 
777 	if (nsymbols == 0)
778 		nsymbols = 1;
779 
780 	streams = HT_RC_2_STREAMS(rix);
781 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
782 	minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
783 
784 	if (frmlen < minlen) {
785 		mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
786 		ndelim = max(mindelim, ndelim);
787 	}
788 
789 	return ndelim;
790 }
791 
792 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
793 					     struct ath_txq *txq,
794 					     struct ath_atx_tid *tid,
795 					     struct list_head *bf_q,
796 					     int *aggr_len)
797 {
798 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
799 	struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
800 	int rl = 0, nframes = 0, ndelim, prev_al = 0;
801 	u16 aggr_limit = 0, al = 0, bpad = 0,
802 		al_delta, h_baw = tid->baw_size / 2;
803 	enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
804 	struct ieee80211_tx_info *tx_info;
805 	struct ath_frame_info *fi;
806 	struct sk_buff *skb;
807 	u16 seqno;
808 
809 	do {
810 		skb = skb_peek(&tid->buf_q);
811 		fi = get_frame_info(skb);
812 		bf = fi->bf;
813 		if (!fi->bf)
814 			bf = ath_tx_setup_buffer(sc, txq, tid, skb);
815 
816 		if (!bf)
817 			continue;
818 
819 		bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
820 		seqno = bf->bf_state.seqno;
821 
822 		/* do not step over block-ack window */
823 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
824 			status = ATH_AGGR_BAW_CLOSED;
825 			break;
826 		}
827 
828 		if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
829 			struct ath_tx_status ts = {};
830 			struct list_head bf_head;
831 
832 			INIT_LIST_HEAD(&bf_head);
833 			list_add(&bf->list, &bf_head);
834 			__skb_unlink(skb, &tid->buf_q);
835 			ath_tx_update_baw(sc, tid, seqno);
836 			ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
837 			continue;
838 		}
839 
840 		if (!bf_first)
841 			bf_first = bf;
842 
843 		if (!rl) {
844 			aggr_limit = ath_lookup_rate(sc, bf, tid);
845 			rl = 1;
846 		}
847 
848 		/* do not exceed aggregation limit */
849 		al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
850 
851 		if (nframes &&
852 		    ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
853 		     ath_lookup_legacy(bf))) {
854 			status = ATH_AGGR_LIMITED;
855 			break;
856 		}
857 
858 		tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
859 		if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
860 			break;
861 
862 		/* do not exceed subframe limit */
863 		if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
864 			status = ATH_AGGR_LIMITED;
865 			break;
866 		}
867 
868 		/* add padding for previous frame to aggregation length */
869 		al += bpad + al_delta;
870 
871 		/*
872 		 * Get the delimiters needed to meet the MPDU
873 		 * density for this node.
874 		 */
875 		ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
876 						!nframes);
877 		bpad = PADBYTES(al_delta) + (ndelim << 2);
878 
879 		nframes++;
880 		bf->bf_next = NULL;
881 
882 		/* link buffers of this frame to the aggregate */
883 		if (!fi->retries)
884 			ath_tx_addto_baw(sc, tid, seqno);
885 		bf->bf_state.ndelim = ndelim;
886 
887 		__skb_unlink(skb, &tid->buf_q);
888 		list_add_tail(&bf->list, bf_q);
889 		if (bf_prev)
890 			bf_prev->bf_next = bf;
891 
892 		bf_prev = bf;
893 
894 	} while (!skb_queue_empty(&tid->buf_q));
895 
896 	*aggr_len = al;
897 
898 	return status;
899 #undef PADBYTES
900 }
901 
902 /*
903  * rix - rate index
904  * pktlen - total bytes (delims + data + fcs + pads + pad delims)
905  * width  - 0 for 20 MHz, 1 for 40 MHz
906  * half_gi - to use 4us v/s 3.6 us for symbol time
907  */
908 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
909 			    int width, int half_gi, bool shortPreamble)
910 {
911 	u32 nbits, nsymbits, duration, nsymbols;
912 	int streams;
913 
914 	/* find number of symbols: PLCP + data */
915 	streams = HT_RC_2_STREAMS(rix);
916 	nbits = (pktlen << 3) + OFDM_PLCP_BITS;
917 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
918 	nsymbols = (nbits + nsymbits - 1) / nsymbits;
919 
920 	if (!half_gi)
921 		duration = SYMBOL_TIME(nsymbols);
922 	else
923 		duration = SYMBOL_TIME_HALFGI(nsymbols);
924 
925 	/* addup duration for legacy/ht training and signal fields */
926 	duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
927 
928 	return duration;
929 }
930 
931 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
932 			     struct ath_tx_info *info, int len)
933 {
934 	struct ath_hw *ah = sc->sc_ah;
935 	struct sk_buff *skb;
936 	struct ieee80211_tx_info *tx_info;
937 	struct ieee80211_tx_rate *rates;
938 	const struct ieee80211_rate *rate;
939 	struct ieee80211_hdr *hdr;
940 	int i;
941 	u8 rix = 0;
942 
943 	skb = bf->bf_mpdu;
944 	tx_info = IEEE80211_SKB_CB(skb);
945 	rates = tx_info->control.rates;
946 	hdr = (struct ieee80211_hdr *)skb->data;
947 
948 	/* set dur_update_en for l-sig computation except for PS-Poll frames */
949 	info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
950 
951 	/*
952 	 * We check if Short Preamble is needed for the CTS rate by
953 	 * checking the BSS's global flag.
954 	 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
955 	 */
956 	rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info);
957 	info->rtscts_rate = rate->hw_value;
958 
959 	if (tx_info->control.vif &&
960 	    tx_info->control.vif->bss_conf.use_short_preamble)
961 		info->rtscts_rate |= rate->hw_value_short;
962 
963 	for (i = 0; i < 4; i++) {
964 		bool is_40, is_sgi, is_sp;
965 		int phy;
966 
967 		if (!rates[i].count || (rates[i].idx < 0))
968 			continue;
969 
970 		rix = rates[i].idx;
971 		info->rates[i].Tries = rates[i].count;
972 
973 		    if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
974 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
975 			info->flags |= ATH9K_TXDESC_RTSENA;
976 		} else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
977 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
978 			info->flags |= ATH9K_TXDESC_CTSENA;
979 		}
980 
981 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
982 			info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
983 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
984 			info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
985 
986 		is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
987 		is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
988 		is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
989 
990 		if (rates[i].flags & IEEE80211_TX_RC_MCS) {
991 			/* MCS rates */
992 			info->rates[i].Rate = rix | 0x80;
993 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
994 					ah->txchainmask, info->rates[i].Rate);
995 			info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
996 				 is_40, is_sgi, is_sp);
997 			if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
998 				info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
999 			continue;
1000 		}
1001 
1002 		/* legacy rates */
1003 		if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1004 		    !(rate->flags & IEEE80211_RATE_ERP_G))
1005 			phy = WLAN_RC_PHY_CCK;
1006 		else
1007 			phy = WLAN_RC_PHY_OFDM;
1008 
1009 		rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
1010 		info->rates[i].Rate = rate->hw_value;
1011 		if (rate->hw_value_short) {
1012 			if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1013 				info->rates[i].Rate |= rate->hw_value_short;
1014 		} else {
1015 			is_sp = false;
1016 		}
1017 
1018 		if (bf->bf_state.bfs_paprd)
1019 			info->rates[i].ChSel = ah->txchainmask;
1020 		else
1021 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1022 					ah->txchainmask, info->rates[i].Rate);
1023 
1024 		info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1025 			phy, rate->bitrate * 100, len, rix, is_sp);
1026 	}
1027 
1028 	/* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1029 	if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1030 		info->flags &= ~ATH9K_TXDESC_RTSENA;
1031 
1032 	/* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1033 	if (info->flags & ATH9K_TXDESC_RTSENA)
1034 		info->flags &= ~ATH9K_TXDESC_CTSENA;
1035 }
1036 
1037 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1038 {
1039 	struct ieee80211_hdr *hdr;
1040 	enum ath9k_pkt_type htype;
1041 	__le16 fc;
1042 
1043 	hdr = (struct ieee80211_hdr *)skb->data;
1044 	fc = hdr->frame_control;
1045 
1046 	if (ieee80211_is_beacon(fc))
1047 		htype = ATH9K_PKT_TYPE_BEACON;
1048 	else if (ieee80211_is_probe_resp(fc))
1049 		htype = ATH9K_PKT_TYPE_PROBE_RESP;
1050 	else if (ieee80211_is_atim(fc))
1051 		htype = ATH9K_PKT_TYPE_ATIM;
1052 	else if (ieee80211_is_pspoll(fc))
1053 		htype = ATH9K_PKT_TYPE_PSPOLL;
1054 	else
1055 		htype = ATH9K_PKT_TYPE_NORMAL;
1056 
1057 	return htype;
1058 }
1059 
1060 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1061 			     struct ath_txq *txq, int len)
1062 {
1063 	struct ath_hw *ah = sc->sc_ah;
1064 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1065 	struct ath_buf *bf_first = bf;
1066 	struct ath_tx_info info;
1067 	bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1068 
1069 	memset(&info, 0, sizeof(info));
1070 	info.is_first = true;
1071 	info.is_last = true;
1072 	info.txpower = MAX_RATE_POWER;
1073 	info.qcu = txq->axq_qnum;
1074 
1075 	info.flags = ATH9K_TXDESC_INTREQ;
1076 	if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1077 		info.flags |= ATH9K_TXDESC_NOACK;
1078 	if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1079 		info.flags |= ATH9K_TXDESC_LDPC;
1080 
1081 	ath_buf_set_rate(sc, bf, &info, len);
1082 
1083 	if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
1084 		info.flags |= ATH9K_TXDESC_CLRDMASK;
1085 
1086 	if (bf->bf_state.bfs_paprd)
1087 		info.flags |= (u32) bf->bf_state.bfs_paprd << ATH9K_TXDESC_PAPRD_S;
1088 
1089 
1090 	while (bf) {
1091 		struct sk_buff *skb = bf->bf_mpdu;
1092 		struct ath_frame_info *fi = get_frame_info(skb);
1093 
1094 		info.type = get_hw_packet_type(skb);
1095 		if (bf->bf_next)
1096 			info.link = bf->bf_next->bf_daddr;
1097 		else
1098 			info.link = 0;
1099 
1100 		info.buf_addr[0] = bf->bf_buf_addr;
1101 		info.buf_len[0] = skb->len;
1102 		info.pkt_len = fi->framelen;
1103 		info.keyix = fi->keyix;
1104 		info.keytype = fi->keytype;
1105 
1106 		if (aggr) {
1107 			if (bf == bf_first)
1108 				info.aggr = AGGR_BUF_FIRST;
1109 			else if (!bf->bf_next)
1110 				info.aggr = AGGR_BUF_LAST;
1111 			else
1112 				info.aggr = AGGR_BUF_MIDDLE;
1113 
1114 			info.ndelim = bf->bf_state.ndelim;
1115 			info.aggr_len = len;
1116 		}
1117 
1118 		ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1119 		bf = bf->bf_next;
1120 	}
1121 }
1122 
1123 static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1124 			      struct ath_atx_tid *tid)
1125 {
1126 	struct ath_buf *bf;
1127 	enum ATH_AGGR_STATUS status;
1128 	struct ieee80211_tx_info *tx_info;
1129 	struct list_head bf_q;
1130 	int aggr_len;
1131 
1132 	do {
1133 		if (skb_queue_empty(&tid->buf_q))
1134 			return;
1135 
1136 		INIT_LIST_HEAD(&bf_q);
1137 
1138 		status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
1139 
1140 		/*
1141 		 * no frames picked up to be aggregated;
1142 		 * block-ack window is not open.
1143 		 */
1144 		if (list_empty(&bf_q))
1145 			break;
1146 
1147 		bf = list_first_entry(&bf_q, struct ath_buf, list);
1148 		bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
1149 		tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1150 
1151 		if (tid->ac->clear_ps_filter) {
1152 			tid->ac->clear_ps_filter = false;
1153 			tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1154 		} else {
1155 			tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
1156 		}
1157 
1158 		/* if only one frame, send as non-aggregate */
1159 		if (bf == bf->bf_lastbf) {
1160 			aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
1161 			bf->bf_state.bf_type = BUF_AMPDU;
1162 		} else {
1163 			TX_STAT_INC(txq->axq_qnum, a_aggr);
1164 		}
1165 
1166 		ath_tx_fill_desc(sc, bf, txq, aggr_len);
1167 		ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1168 	} while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
1169 		 status != ATH_AGGR_BAW_CLOSED);
1170 }
1171 
1172 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1173 		      u16 tid, u16 *ssn)
1174 {
1175 	struct ath_atx_tid *txtid;
1176 	struct ath_node *an;
1177 
1178 	an = (struct ath_node *)sta->drv_priv;
1179 	txtid = ATH_AN_2_TID(an, tid);
1180 
1181 	if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
1182 		return -EAGAIN;
1183 
1184 	txtid->state |= AGGR_ADDBA_PROGRESS;
1185 	txtid->paused = true;
1186 	*ssn = txtid->seq_start = txtid->seq_next;
1187 	txtid->bar_index = -1;
1188 
1189 	memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1190 	txtid->baw_head = txtid->baw_tail = 0;
1191 
1192 	return 0;
1193 }
1194 
1195 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1196 {
1197 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1198 	struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1199 	struct ath_txq *txq = txtid->ac->txq;
1200 
1201 	if (txtid->state & AGGR_CLEANUP)
1202 		return;
1203 
1204 	if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
1205 		txtid->state &= ~AGGR_ADDBA_PROGRESS;
1206 		return;
1207 	}
1208 
1209 	ath_txq_lock(sc, txq);
1210 	txtid->paused = true;
1211 
1212 	/*
1213 	 * If frames are still being transmitted for this TID, they will be
1214 	 * cleaned up during tx completion. To prevent race conditions, this
1215 	 * TID can only be reused after all in-progress subframes have been
1216 	 * completed.
1217 	 */
1218 	if (txtid->baw_head != txtid->baw_tail)
1219 		txtid->state |= AGGR_CLEANUP;
1220 	else
1221 		txtid->state &= ~AGGR_ADDBA_COMPLETE;
1222 
1223 	ath_tx_flush_tid(sc, txtid);
1224 	ath_txq_unlock_complete(sc, txq);
1225 }
1226 
1227 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1228 		       struct ath_node *an)
1229 {
1230 	struct ath_atx_tid *tid;
1231 	struct ath_atx_ac *ac;
1232 	struct ath_txq *txq;
1233 	bool buffered;
1234 	int tidno;
1235 
1236 	for (tidno = 0, tid = &an->tid[tidno];
1237 	     tidno < WME_NUM_TID; tidno++, tid++) {
1238 
1239 		if (!tid->sched)
1240 			continue;
1241 
1242 		ac = tid->ac;
1243 		txq = ac->txq;
1244 
1245 		ath_txq_lock(sc, txq);
1246 
1247 		buffered = !skb_queue_empty(&tid->buf_q);
1248 
1249 		tid->sched = false;
1250 		list_del(&tid->list);
1251 
1252 		if (ac->sched) {
1253 			ac->sched = false;
1254 			list_del(&ac->list);
1255 		}
1256 
1257 		ath_txq_unlock(sc, txq);
1258 
1259 		ieee80211_sta_set_buffered(sta, tidno, buffered);
1260 	}
1261 }
1262 
1263 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1264 {
1265 	struct ath_atx_tid *tid;
1266 	struct ath_atx_ac *ac;
1267 	struct ath_txq *txq;
1268 	int tidno;
1269 
1270 	for (tidno = 0, tid = &an->tid[tidno];
1271 	     tidno < WME_NUM_TID; tidno++, tid++) {
1272 
1273 		ac = tid->ac;
1274 		txq = ac->txq;
1275 
1276 		ath_txq_lock(sc, txq);
1277 		ac->clear_ps_filter = true;
1278 
1279 		if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
1280 			ath_tx_queue_tid(txq, tid);
1281 			ath_txq_schedule(sc, txq);
1282 		}
1283 
1284 		ath_txq_unlock_complete(sc, txq);
1285 	}
1286 }
1287 
1288 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1289 {
1290 	struct ath_atx_tid *txtid;
1291 	struct ath_node *an;
1292 
1293 	an = (struct ath_node *)sta->drv_priv;
1294 
1295 	txtid = ATH_AN_2_TID(an, tid);
1296 	txtid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1297 	txtid->state |= AGGR_ADDBA_COMPLETE;
1298 	txtid->state &= ~AGGR_ADDBA_PROGRESS;
1299 	ath_tx_resume_tid(sc, txtid);
1300 }
1301 
1302 /********************/
1303 /* Queue Management */
1304 /********************/
1305 
1306 static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
1307 					  struct ath_txq *txq)
1308 {
1309 	struct ath_atx_ac *ac, *ac_tmp;
1310 	struct ath_atx_tid *tid, *tid_tmp;
1311 
1312 	list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
1313 		list_del(&ac->list);
1314 		ac->sched = false;
1315 		list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
1316 			list_del(&tid->list);
1317 			tid->sched = false;
1318 			ath_tid_drain(sc, txq, tid);
1319 		}
1320 	}
1321 }
1322 
1323 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1324 {
1325 	struct ath_hw *ah = sc->sc_ah;
1326 	struct ath9k_tx_queue_info qi;
1327 	static const int subtype_txq_to_hwq[] = {
1328 		[WME_AC_BE] = ATH_TXQ_AC_BE,
1329 		[WME_AC_BK] = ATH_TXQ_AC_BK,
1330 		[WME_AC_VI] = ATH_TXQ_AC_VI,
1331 		[WME_AC_VO] = ATH_TXQ_AC_VO,
1332 	};
1333 	int axq_qnum, i;
1334 
1335 	memset(&qi, 0, sizeof(qi));
1336 	qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1337 	qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1338 	qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1339 	qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1340 	qi.tqi_physCompBuf = 0;
1341 
1342 	/*
1343 	 * Enable interrupts only for EOL and DESC conditions.
1344 	 * We mark tx descriptors to receive a DESC interrupt
1345 	 * when a tx queue gets deep; otherwise waiting for the
1346 	 * EOL to reap descriptors.  Note that this is done to
1347 	 * reduce interrupt load and this only defers reaping
1348 	 * descriptors, never transmitting frames.  Aside from
1349 	 * reducing interrupts this also permits more concurrency.
1350 	 * The only potential downside is if the tx queue backs
1351 	 * up in which case the top half of the kernel may backup
1352 	 * due to a lack of tx descriptors.
1353 	 *
1354 	 * The UAPSD queue is an exception, since we take a desc-
1355 	 * based intr on the EOSP frames.
1356 	 */
1357 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1358 		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1359 	} else {
1360 		if (qtype == ATH9K_TX_QUEUE_UAPSD)
1361 			qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1362 		else
1363 			qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1364 					TXQ_FLAG_TXDESCINT_ENABLE;
1365 	}
1366 	axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1367 	if (axq_qnum == -1) {
1368 		/*
1369 		 * NB: don't print a message, this happens
1370 		 * normally on parts with too few tx queues
1371 		 */
1372 		return NULL;
1373 	}
1374 	if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1375 		struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1376 
1377 		txq->axq_qnum = axq_qnum;
1378 		txq->mac80211_qnum = -1;
1379 		txq->axq_link = NULL;
1380 		__skb_queue_head_init(&txq->complete_q);
1381 		INIT_LIST_HEAD(&txq->axq_q);
1382 		INIT_LIST_HEAD(&txq->axq_acq);
1383 		spin_lock_init(&txq->axq_lock);
1384 		txq->axq_depth = 0;
1385 		txq->axq_ampdu_depth = 0;
1386 		txq->axq_tx_inprogress = false;
1387 		sc->tx.txqsetup |= 1<<axq_qnum;
1388 
1389 		txq->txq_headidx = txq->txq_tailidx = 0;
1390 		for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1391 			INIT_LIST_HEAD(&txq->txq_fifo[i]);
1392 	}
1393 	return &sc->tx.txq[axq_qnum];
1394 }
1395 
1396 int ath_txq_update(struct ath_softc *sc, int qnum,
1397 		   struct ath9k_tx_queue_info *qinfo)
1398 {
1399 	struct ath_hw *ah = sc->sc_ah;
1400 	int error = 0;
1401 	struct ath9k_tx_queue_info qi;
1402 
1403 	if (qnum == sc->beacon.beaconq) {
1404 		/*
1405 		 * XXX: for beacon queue, we just save the parameter.
1406 		 * It will be picked up by ath_beaconq_config when
1407 		 * it's necessary.
1408 		 */
1409 		sc->beacon.beacon_qi = *qinfo;
1410 		return 0;
1411 	}
1412 
1413 	BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1414 
1415 	ath9k_hw_get_txq_props(ah, qnum, &qi);
1416 	qi.tqi_aifs = qinfo->tqi_aifs;
1417 	qi.tqi_cwmin = qinfo->tqi_cwmin;
1418 	qi.tqi_cwmax = qinfo->tqi_cwmax;
1419 	qi.tqi_burstTime = qinfo->tqi_burstTime;
1420 	qi.tqi_readyTime = qinfo->tqi_readyTime;
1421 
1422 	if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1423 		ath_err(ath9k_hw_common(sc->sc_ah),
1424 			"Unable to update hardware queue %u!\n", qnum);
1425 		error = -EIO;
1426 	} else {
1427 		ath9k_hw_resettxqueue(ah, qnum);
1428 	}
1429 
1430 	return error;
1431 }
1432 
1433 int ath_cabq_update(struct ath_softc *sc)
1434 {
1435 	struct ath9k_tx_queue_info qi;
1436 	struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
1437 	int qnum = sc->beacon.cabq->axq_qnum;
1438 
1439 	ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1440 	/*
1441 	 * Ensure the readytime % is within the bounds.
1442 	 */
1443 	if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
1444 		sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
1445 	else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
1446 		sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
1447 
1448 	qi.tqi_readyTime = (cur_conf->beacon_interval *
1449 			    sc->config.cabqReadytime) / 100;
1450 	ath_txq_update(sc, qnum, &qi);
1451 
1452 	return 0;
1453 }
1454 
1455 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
1456 {
1457     struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
1458     return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
1459 }
1460 
1461 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1462 			       struct list_head *list, bool retry_tx)
1463 {
1464 	struct ath_buf *bf, *lastbf;
1465 	struct list_head bf_head;
1466 	struct ath_tx_status ts;
1467 
1468 	memset(&ts, 0, sizeof(ts));
1469 	ts.ts_status = ATH9K_TX_FLUSH;
1470 	INIT_LIST_HEAD(&bf_head);
1471 
1472 	while (!list_empty(list)) {
1473 		bf = list_first_entry(list, struct ath_buf, list);
1474 
1475 		if (bf->bf_stale) {
1476 			list_del(&bf->list);
1477 
1478 			ath_tx_return_buffer(sc, bf);
1479 			continue;
1480 		}
1481 
1482 		lastbf = bf->bf_lastbf;
1483 		list_cut_position(&bf_head, list, &lastbf->list);
1484 
1485 		txq->axq_depth--;
1486 		if (bf_is_ampdu_not_probing(bf))
1487 			txq->axq_ampdu_depth--;
1488 
1489 		if (bf_isampdu(bf))
1490 			ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0,
1491 					     retry_tx);
1492 		else
1493 			ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
1494 	}
1495 }
1496 
1497 /*
1498  * Drain a given TX queue (could be Beacon or Data)
1499  *
1500  * This assumes output has been stopped and
1501  * we do not need to block ath_tx_tasklet.
1502  */
1503 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
1504 {
1505 	ath_txq_lock(sc, txq);
1506 
1507 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1508 		int idx = txq->txq_tailidx;
1509 
1510 		while (!list_empty(&txq->txq_fifo[idx])) {
1511 			ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx],
1512 					   retry_tx);
1513 
1514 			INCR(idx, ATH_TXFIFO_DEPTH);
1515 		}
1516 		txq->txq_tailidx = idx;
1517 	}
1518 
1519 	txq->axq_link = NULL;
1520 	txq->axq_tx_inprogress = false;
1521 	ath_drain_txq_list(sc, txq, &txq->axq_q, retry_tx);
1522 
1523 	/* flush any pending frames if aggregation is enabled */
1524 	if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && !retry_tx)
1525 		ath_txq_drain_pending_buffers(sc, txq);
1526 
1527 	ath_txq_unlock_complete(sc, txq);
1528 }
1529 
1530 bool ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
1531 {
1532 	struct ath_hw *ah = sc->sc_ah;
1533 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1534 	struct ath_txq *txq;
1535 	int i;
1536 	u32 npend = 0;
1537 
1538 	if (sc->sc_flags & SC_OP_INVALID)
1539 		return true;
1540 
1541 	ath9k_hw_abort_tx_dma(ah);
1542 
1543 	/* Check if any queue remains active */
1544 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1545 		if (!ATH_TXQ_SETUP(sc, i))
1546 			continue;
1547 
1548 		if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1549 			npend |= BIT(i);
1550 	}
1551 
1552 	if (npend)
1553 		ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1554 
1555 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1556 		if (!ATH_TXQ_SETUP(sc, i))
1557 			continue;
1558 
1559 		/*
1560 		 * The caller will resume queues with ieee80211_wake_queues.
1561 		 * Mark the queue as not stopped to prevent ath_tx_complete
1562 		 * from waking the queue too early.
1563 		 */
1564 		txq = &sc->tx.txq[i];
1565 		txq->stopped = false;
1566 		ath_draintxq(sc, txq, retry_tx);
1567 	}
1568 
1569 	return !npend;
1570 }
1571 
1572 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1573 {
1574 	ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1575 	sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1576 }
1577 
1578 /* For each axq_acq entry, for each tid, try to schedule packets
1579  * for transmit until ampdu_depth has reached min Q depth.
1580  */
1581 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1582 {
1583 	struct ath_atx_ac *ac, *ac_tmp, *last_ac;
1584 	struct ath_atx_tid *tid, *last_tid;
1585 
1586 	if (work_pending(&sc->hw_reset_work) || list_empty(&txq->axq_acq) ||
1587 	    txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1588 		return;
1589 
1590 	ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1591 	last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
1592 
1593 	list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
1594 		last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
1595 		list_del(&ac->list);
1596 		ac->sched = false;
1597 
1598 		while (!list_empty(&ac->tid_q)) {
1599 			tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
1600 					       list);
1601 			list_del(&tid->list);
1602 			tid->sched = false;
1603 
1604 			if (tid->paused)
1605 				continue;
1606 
1607 			ath_tx_sched_aggr(sc, txq, tid);
1608 
1609 			/*
1610 			 * add tid to round-robin queue if more frames
1611 			 * are pending for the tid
1612 			 */
1613 			if (!skb_queue_empty(&tid->buf_q))
1614 				ath_tx_queue_tid(txq, tid);
1615 
1616 			if (tid == last_tid ||
1617 			    txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1618 				break;
1619 		}
1620 
1621 		if (!list_empty(&ac->tid_q) && !ac->sched) {
1622 			ac->sched = true;
1623 			list_add_tail(&ac->list, &txq->axq_acq);
1624 		}
1625 
1626 		if (ac == last_ac ||
1627 		    txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1628 			return;
1629 	}
1630 }
1631 
1632 /***********/
1633 /* TX, DMA */
1634 /***********/
1635 
1636 /*
1637  * Insert a chain of ath_buf (descriptors) on a txq and
1638  * assume the descriptors are already chained together by caller.
1639  */
1640 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1641 			     struct list_head *head, bool internal)
1642 {
1643 	struct ath_hw *ah = sc->sc_ah;
1644 	struct ath_common *common = ath9k_hw_common(ah);
1645 	struct ath_buf *bf, *bf_last;
1646 	bool puttxbuf = false;
1647 	bool edma;
1648 
1649 	/*
1650 	 * Insert the frame on the outbound list and
1651 	 * pass it on to the hardware.
1652 	 */
1653 
1654 	if (list_empty(head))
1655 		return;
1656 
1657 	edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1658 	bf = list_first_entry(head, struct ath_buf, list);
1659 	bf_last = list_entry(head->prev, struct ath_buf, list);
1660 
1661 	ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
1662 		txq->axq_qnum, txq->axq_depth);
1663 
1664 	if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
1665 		list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
1666 		INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
1667 		puttxbuf = true;
1668 	} else {
1669 		list_splice_tail_init(head, &txq->axq_q);
1670 
1671 		if (txq->axq_link) {
1672 			ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
1673 			ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
1674 				txq->axq_qnum, txq->axq_link,
1675 				ito64(bf->bf_daddr), bf->bf_desc);
1676 		} else if (!edma)
1677 			puttxbuf = true;
1678 
1679 		txq->axq_link = bf_last->bf_desc;
1680 	}
1681 
1682 	if (puttxbuf) {
1683 		TX_STAT_INC(txq->axq_qnum, puttxbuf);
1684 		ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1685 		ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
1686 			txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1687 	}
1688 
1689 	if (!edma) {
1690 		TX_STAT_INC(txq->axq_qnum, txstart);
1691 		ath9k_hw_txstart(ah, txq->axq_qnum);
1692 	}
1693 
1694 	if (!internal) {
1695 		txq->axq_depth++;
1696 		if (bf_is_ampdu_not_probing(bf))
1697 			txq->axq_ampdu_depth++;
1698 	}
1699 }
1700 
1701 static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
1702 			      struct sk_buff *skb, struct ath_tx_control *txctl)
1703 {
1704 	struct ath_frame_info *fi = get_frame_info(skb);
1705 	struct list_head bf_head;
1706 	struct ath_buf *bf;
1707 
1708 	/*
1709 	 * Do not queue to h/w when any of the following conditions is true:
1710 	 * - there are pending frames in software queue
1711 	 * - the TID is currently paused for ADDBA/BAR request
1712 	 * - seqno is not within block-ack window
1713 	 * - h/w queue depth exceeds low water mark
1714 	 */
1715 	if (!skb_queue_empty(&tid->buf_q) || tid->paused ||
1716 	    !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
1717 	    txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) {
1718 		/*
1719 		 * Add this frame to software queue for scheduling later
1720 		 * for aggregation.
1721 		 */
1722 		TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw);
1723 		__skb_queue_tail(&tid->buf_q, skb);
1724 		if (!txctl->an || !txctl->an->sleeping)
1725 			ath_tx_queue_tid(txctl->txq, tid);
1726 		return;
1727 	}
1728 
1729 	bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
1730 	if (!bf)
1731 		return;
1732 
1733 	bf->bf_state.bf_type = BUF_AMPDU;
1734 	INIT_LIST_HEAD(&bf_head);
1735 	list_add(&bf->list, &bf_head);
1736 
1737 	/* Add sub-frame to BAW */
1738 	ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
1739 
1740 	/* Queue to h/w without aggregation */
1741 	TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw);
1742 	bf->bf_lastbf = bf;
1743 	ath_tx_fill_desc(sc, bf, txctl->txq, fi->framelen);
1744 	ath_tx_txqaddbuf(sc, txctl->txq, &bf_head, false);
1745 }
1746 
1747 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1748 			       struct ath_atx_tid *tid, struct sk_buff *skb)
1749 {
1750 	struct ath_frame_info *fi = get_frame_info(skb);
1751 	struct list_head bf_head;
1752 	struct ath_buf *bf;
1753 
1754 	bf = fi->bf;
1755 	if (!bf)
1756 		bf = ath_tx_setup_buffer(sc, txq, tid, skb);
1757 
1758 	if (!bf)
1759 		return;
1760 
1761 	INIT_LIST_HEAD(&bf_head);
1762 	list_add_tail(&bf->list, &bf_head);
1763 	bf->bf_state.bf_type = 0;
1764 
1765 	bf->bf_lastbf = bf;
1766 	ath_tx_fill_desc(sc, bf, txq, fi->framelen);
1767 	ath_tx_txqaddbuf(sc, txq, &bf_head, false);
1768 	TX_STAT_INC(txq->axq_qnum, queued);
1769 }
1770 
1771 static void setup_frame_info(struct ieee80211_hw *hw, struct sk_buff *skb,
1772 			     int framelen)
1773 {
1774 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1775 	struct ieee80211_sta *sta = tx_info->control.sta;
1776 	struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
1777 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1778 	struct ath_frame_info *fi = get_frame_info(skb);
1779 	struct ath_node *an = NULL;
1780 	enum ath9k_key_type keytype;
1781 
1782 	keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
1783 
1784 	if (sta)
1785 		an = (struct ath_node *) sta->drv_priv;
1786 
1787 	memset(fi, 0, sizeof(*fi));
1788 	if (hw_key)
1789 		fi->keyix = hw_key->hw_key_idx;
1790 	else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
1791 		fi->keyix = an->ps_key;
1792 	else
1793 		fi->keyix = ATH9K_TXKEYIX_INVALID;
1794 	fi->keytype = keytype;
1795 	fi->framelen = framelen;
1796 }
1797 
1798 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
1799 {
1800 	struct ath_hw *ah = sc->sc_ah;
1801 	struct ath9k_channel *curchan = ah->curchan;
1802 	if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
1803 	    (curchan->channelFlags & CHANNEL_5GHZ) &&
1804 	    (chainmask == 0x7) && (rate < 0x90))
1805 		return 0x3;
1806 	else
1807 		return chainmask;
1808 }
1809 
1810 /*
1811  * Assign a descriptor (and sequence number if necessary,
1812  * and map buffer for DMA. Frees skb on error
1813  */
1814 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
1815 					   struct ath_txq *txq,
1816 					   struct ath_atx_tid *tid,
1817 					   struct sk_buff *skb)
1818 {
1819 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1820 	struct ath_frame_info *fi = get_frame_info(skb);
1821 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1822 	struct ath_buf *bf;
1823 	int fragno;
1824 	u16 seqno;
1825 
1826 	bf = ath_tx_get_buffer(sc);
1827 	if (!bf) {
1828 		ath_dbg(common, XMIT, "TX buffers are full\n");
1829 		goto error;
1830 	}
1831 
1832 	ATH_TXBUF_RESET(bf);
1833 
1834 	if (tid) {
1835 		fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
1836 		seqno = tid->seq_next;
1837 		hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
1838 
1839 		if (fragno)
1840 			hdr->seq_ctrl |= cpu_to_le16(fragno);
1841 
1842 		if (!ieee80211_has_morefrags(hdr->frame_control))
1843 			INCR(tid->seq_next, IEEE80211_SEQ_MAX);
1844 
1845 		bf->bf_state.seqno = seqno;
1846 	}
1847 
1848 	bf->bf_mpdu = skb;
1849 
1850 	bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
1851 					 skb->len, DMA_TO_DEVICE);
1852 	if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
1853 		bf->bf_mpdu = NULL;
1854 		bf->bf_buf_addr = 0;
1855 		ath_err(ath9k_hw_common(sc->sc_ah),
1856 			"dma_mapping_error() on TX\n");
1857 		ath_tx_return_buffer(sc, bf);
1858 		goto error;
1859 	}
1860 
1861 	fi->bf = bf;
1862 
1863 	return bf;
1864 
1865 error:
1866 	dev_kfree_skb_any(skb);
1867 	return NULL;
1868 }
1869 
1870 /* FIXME: tx power */
1871 static void ath_tx_start_dma(struct ath_softc *sc, struct sk_buff *skb,
1872 			     struct ath_tx_control *txctl)
1873 {
1874 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1875 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1876 	struct ath_atx_tid *tid = NULL;
1877 	struct ath_buf *bf;
1878 	u8 tidno;
1879 
1880 	if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && txctl->an &&
1881 		ieee80211_is_data_qos(hdr->frame_control)) {
1882 		tidno = ieee80211_get_qos_ctl(hdr)[0] &
1883 			IEEE80211_QOS_CTL_TID_MASK;
1884 		tid = ATH_AN_2_TID(txctl->an, tidno);
1885 
1886 		WARN_ON(tid->ac->txq != txctl->txq);
1887 	}
1888 
1889 	if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
1890 		/*
1891 		 * Try aggregation if it's a unicast data frame
1892 		 * and the destination is HT capable.
1893 		 */
1894 		ath_tx_send_ampdu(sc, tid, skb, txctl);
1895 	} else {
1896 		bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
1897 		if (!bf)
1898 			return;
1899 
1900 		bf->bf_state.bfs_paprd = txctl->paprd;
1901 
1902 		if (txctl->paprd)
1903 			bf->bf_state.bfs_paprd_timestamp = jiffies;
1904 
1905 		ath_tx_send_normal(sc, txctl->txq, tid, skb);
1906 	}
1907 }
1908 
1909 /* Upon failure caller should free skb */
1910 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
1911 		 struct ath_tx_control *txctl)
1912 {
1913 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1914 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1915 	struct ieee80211_sta *sta = info->control.sta;
1916 	struct ieee80211_vif *vif = info->control.vif;
1917 	struct ath_softc *sc = hw->priv;
1918 	struct ath_txq *txq = txctl->txq;
1919 	int padpos, padsize;
1920 	int frmlen = skb->len + FCS_LEN;
1921 	int q;
1922 
1923 	/* NOTE:  sta can be NULL according to net/mac80211.h */
1924 	if (sta)
1925 		txctl->an = (struct ath_node *)sta->drv_priv;
1926 
1927 	if (info->control.hw_key)
1928 		frmlen += info->control.hw_key->icv_len;
1929 
1930 	/*
1931 	 * As a temporary workaround, assign seq# here; this will likely need
1932 	 * to be cleaned up to work better with Beacon transmission and virtual
1933 	 * BSSes.
1934 	 */
1935 	if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1936 		if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1937 			sc->tx.seq_no += 0x10;
1938 		hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1939 		hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1940 	}
1941 
1942 	/* Add the padding after the header if this is not already done */
1943 	padpos = ath9k_cmn_padpos(hdr->frame_control);
1944 	padsize = padpos & 3;
1945 	if (padsize && skb->len > padpos) {
1946 		if (skb_headroom(skb) < padsize)
1947 			return -ENOMEM;
1948 
1949 		skb_push(skb, padsize);
1950 		memmove(skb->data, skb->data + padsize, padpos);
1951 		hdr = (struct ieee80211_hdr *) skb->data;
1952 	}
1953 
1954 	if ((vif && vif->type != NL80211_IFTYPE_AP &&
1955 	            vif->type != NL80211_IFTYPE_AP_VLAN) ||
1956 	    !ieee80211_is_data(hdr->frame_control))
1957 		info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1958 
1959 	setup_frame_info(hw, skb, frmlen);
1960 
1961 	/*
1962 	 * At this point, the vif, hw_key and sta pointers in the tx control
1963 	 * info are no longer valid (overwritten by the ath_frame_info data.
1964 	 */
1965 
1966 	q = skb_get_queue_mapping(skb);
1967 
1968 	ath_txq_lock(sc, txq);
1969 	if (txq == sc->tx.txq_map[q] &&
1970 	    ++txq->pending_frames > ATH_MAX_QDEPTH && !txq->stopped) {
1971 		ieee80211_stop_queue(sc->hw, q);
1972 		txq->stopped = true;
1973 	}
1974 
1975 	ath_tx_start_dma(sc, skb, txctl);
1976 
1977 	ath_txq_unlock(sc, txq);
1978 
1979 	return 0;
1980 }
1981 
1982 /*****************/
1983 /* TX Completion */
1984 /*****************/
1985 
1986 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
1987 			    int tx_flags, struct ath_txq *txq)
1988 {
1989 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1990 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1991 	struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
1992 	int q, padpos, padsize;
1993 
1994 	ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
1995 
1996 	if (!(tx_flags & ATH_TX_ERROR))
1997 		/* Frame was ACKed */
1998 		tx_info->flags |= IEEE80211_TX_STAT_ACK;
1999 
2000 	padpos = ath9k_cmn_padpos(hdr->frame_control);
2001 	padsize = padpos & 3;
2002 	if (padsize && skb->len>padpos+padsize) {
2003 		/*
2004 		 * Remove MAC header padding before giving the frame back to
2005 		 * mac80211.
2006 		 */
2007 		memmove(skb->data + padsize, skb->data, padpos);
2008 		skb_pull(skb, padsize);
2009 	}
2010 
2011 	if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2012 		sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2013 		ath_dbg(common, PS,
2014 			"Going back to sleep after having received TX status (0x%lx)\n",
2015 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
2016 					PS_WAIT_FOR_CAB |
2017 					PS_WAIT_FOR_PSPOLL_DATA |
2018 					PS_WAIT_FOR_TX_ACK));
2019 	}
2020 
2021 	q = skb_get_queue_mapping(skb);
2022 	if (txq == sc->tx.txq_map[q]) {
2023 		if (WARN_ON(--txq->pending_frames < 0))
2024 			txq->pending_frames = 0;
2025 
2026 		if (txq->stopped && txq->pending_frames < ATH_MAX_QDEPTH) {
2027 			ieee80211_wake_queue(sc->hw, q);
2028 			txq->stopped = false;
2029 		}
2030 	}
2031 
2032 	__skb_queue_tail(&txq->complete_q, skb);
2033 }
2034 
2035 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2036 				struct ath_txq *txq, struct list_head *bf_q,
2037 				struct ath_tx_status *ts, int txok)
2038 {
2039 	struct sk_buff *skb = bf->bf_mpdu;
2040 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2041 	unsigned long flags;
2042 	int tx_flags = 0;
2043 
2044 	if (!txok)
2045 		tx_flags |= ATH_TX_ERROR;
2046 
2047 	if (ts->ts_status & ATH9K_TXERR_FILT)
2048 		tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2049 
2050 	dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2051 	bf->bf_buf_addr = 0;
2052 
2053 	if (bf->bf_state.bfs_paprd) {
2054 		if (time_after(jiffies,
2055 				bf->bf_state.bfs_paprd_timestamp +
2056 				msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2057 			dev_kfree_skb_any(skb);
2058 		else
2059 			complete(&sc->paprd_complete);
2060 	} else {
2061 		ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2062 		ath_tx_complete(sc, skb, tx_flags, txq);
2063 	}
2064 	/* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2065 	 * accidentally reference it later.
2066 	 */
2067 	bf->bf_mpdu = NULL;
2068 
2069 	/*
2070 	 * Return the list of ath_buf of this mpdu to free queue
2071 	 */
2072 	spin_lock_irqsave(&sc->tx.txbuflock, flags);
2073 	list_splice_tail_init(bf_q, &sc->tx.txbuf);
2074 	spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2075 }
2076 
2077 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2078 			     struct ath_tx_status *ts, int nframes, int nbad,
2079 			     int txok)
2080 {
2081 	struct sk_buff *skb = bf->bf_mpdu;
2082 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2083 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2084 	struct ieee80211_hw *hw = sc->hw;
2085 	struct ath_hw *ah = sc->sc_ah;
2086 	u8 i, tx_rateindex;
2087 
2088 	if (txok)
2089 		tx_info->status.ack_signal = ts->ts_rssi;
2090 
2091 	tx_rateindex = ts->ts_rateindex;
2092 	WARN_ON(tx_rateindex >= hw->max_rates);
2093 
2094 	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2095 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2096 
2097 		BUG_ON(nbad > nframes);
2098 	}
2099 	tx_info->status.ampdu_len = nframes;
2100 	tx_info->status.ampdu_ack_len = nframes - nbad;
2101 
2102 	if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2103 	    (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2104 		/*
2105 		 * If an underrun error is seen assume it as an excessive
2106 		 * retry only if max frame trigger level has been reached
2107 		 * (2 KB for single stream, and 4 KB for dual stream).
2108 		 * Adjust the long retry as if the frame was tried
2109 		 * hw->max_rate_tries times to affect how rate control updates
2110 		 * PER for the failed rate.
2111 		 * In case of congestion on the bus penalizing this type of
2112 		 * underruns should help hardware actually transmit new frames
2113 		 * successfully by eventually preferring slower rates.
2114 		 * This itself should also alleviate congestion on the bus.
2115 		 */
2116 		if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2117 		                             ATH9K_TX_DELIM_UNDERRUN)) &&
2118 		    ieee80211_is_data(hdr->frame_control) &&
2119 		    ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2120 			tx_info->status.rates[tx_rateindex].count =
2121 				hw->max_rate_tries;
2122 	}
2123 
2124 	for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2125 		tx_info->status.rates[i].count = 0;
2126 		tx_info->status.rates[i].idx = -1;
2127 	}
2128 
2129 	tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2130 }
2131 
2132 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
2133 				  struct ath_tx_status *ts, struct ath_buf *bf,
2134 				  struct list_head *bf_head)
2135 {
2136 	int txok;
2137 
2138 	txq->axq_depth--;
2139 	txok = !(ts->ts_status & ATH9K_TXERR_MASK);
2140 	txq->axq_tx_inprogress = false;
2141 	if (bf_is_ampdu_not_probing(bf))
2142 		txq->axq_ampdu_depth--;
2143 
2144 	if (!bf_isampdu(bf)) {
2145 		ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
2146 		ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
2147 	} else
2148 		ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok, true);
2149 
2150 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2151 		ath_txq_schedule(sc, txq);
2152 }
2153 
2154 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2155 {
2156 	struct ath_hw *ah = sc->sc_ah;
2157 	struct ath_common *common = ath9k_hw_common(ah);
2158 	struct ath_buf *bf, *lastbf, *bf_held = NULL;
2159 	struct list_head bf_head;
2160 	struct ath_desc *ds;
2161 	struct ath_tx_status ts;
2162 	int status;
2163 
2164 	ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2165 		txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2166 		txq->axq_link);
2167 
2168 	ath_txq_lock(sc, txq);
2169 	for (;;) {
2170 		if (work_pending(&sc->hw_reset_work))
2171 			break;
2172 
2173 		if (list_empty(&txq->axq_q)) {
2174 			txq->axq_link = NULL;
2175 			if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2176 				ath_txq_schedule(sc, txq);
2177 			break;
2178 		}
2179 		bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2180 
2181 		/*
2182 		 * There is a race condition that a BH gets scheduled
2183 		 * after sw writes TxE and before hw re-load the last
2184 		 * descriptor to get the newly chained one.
2185 		 * Software must keep the last DONE descriptor as a
2186 		 * holding descriptor - software does so by marking
2187 		 * it with the STALE flag.
2188 		 */
2189 		bf_held = NULL;
2190 		if (bf->bf_stale) {
2191 			bf_held = bf;
2192 			if (list_is_last(&bf_held->list, &txq->axq_q))
2193 				break;
2194 
2195 			bf = list_entry(bf_held->list.next, struct ath_buf,
2196 					list);
2197 		}
2198 
2199 		lastbf = bf->bf_lastbf;
2200 		ds = lastbf->bf_desc;
2201 
2202 		memset(&ts, 0, sizeof(ts));
2203 		status = ath9k_hw_txprocdesc(ah, ds, &ts);
2204 		if (status == -EINPROGRESS)
2205 			break;
2206 
2207 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2208 
2209 		/*
2210 		 * Remove ath_buf's of the same transmit unit from txq,
2211 		 * however leave the last descriptor back as the holding
2212 		 * descriptor for hw.
2213 		 */
2214 		lastbf->bf_stale = true;
2215 		INIT_LIST_HEAD(&bf_head);
2216 		if (!list_is_singular(&lastbf->list))
2217 			list_cut_position(&bf_head,
2218 				&txq->axq_q, lastbf->list.prev);
2219 
2220 		if (bf_held) {
2221 			list_del(&bf_held->list);
2222 			ath_tx_return_buffer(sc, bf_held);
2223 		}
2224 
2225 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2226 	}
2227 	ath_txq_unlock_complete(sc, txq);
2228 }
2229 
2230 static void ath_tx_complete_poll_work(struct work_struct *work)
2231 {
2232 	struct ath_softc *sc = container_of(work, struct ath_softc,
2233 			tx_complete_work.work);
2234 	struct ath_txq *txq;
2235 	int i;
2236 	bool needreset = false;
2237 #ifdef CONFIG_ATH9K_DEBUGFS
2238 	sc->tx_complete_poll_work_seen++;
2239 #endif
2240 
2241 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
2242 		if (ATH_TXQ_SETUP(sc, i)) {
2243 			txq = &sc->tx.txq[i];
2244 			ath_txq_lock(sc, txq);
2245 			if (txq->axq_depth) {
2246 				if (txq->axq_tx_inprogress) {
2247 					needreset = true;
2248 					ath_txq_unlock(sc, txq);
2249 					break;
2250 				} else {
2251 					txq->axq_tx_inprogress = true;
2252 				}
2253 			}
2254 			ath_txq_unlock_complete(sc, txq);
2255 		}
2256 
2257 	if (needreset) {
2258 		ath_dbg(ath9k_hw_common(sc->sc_ah), RESET,
2259 			"tx hung, resetting the chip\n");
2260 		RESET_STAT_INC(sc, RESET_TYPE_TX_HANG);
2261 		ieee80211_queue_work(sc->hw, &sc->hw_reset_work);
2262 	}
2263 
2264 	ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2265 			msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
2266 }
2267 
2268 
2269 
2270 void ath_tx_tasklet(struct ath_softc *sc)
2271 {
2272 	struct ath_hw *ah = sc->sc_ah;
2273 	u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2274 	int i;
2275 
2276 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2277 		if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2278 			ath_tx_processq(sc, &sc->tx.txq[i]);
2279 	}
2280 }
2281 
2282 void ath_tx_edma_tasklet(struct ath_softc *sc)
2283 {
2284 	struct ath_tx_status ts;
2285 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2286 	struct ath_hw *ah = sc->sc_ah;
2287 	struct ath_txq *txq;
2288 	struct ath_buf *bf, *lastbf;
2289 	struct list_head bf_head;
2290 	int status;
2291 
2292 	for (;;) {
2293 		if (work_pending(&sc->hw_reset_work))
2294 			break;
2295 
2296 		status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2297 		if (status == -EINPROGRESS)
2298 			break;
2299 		if (status == -EIO) {
2300 			ath_dbg(common, XMIT, "Error processing tx status\n");
2301 			break;
2302 		}
2303 
2304 		/* Process beacon completions separately */
2305 		if (ts.qid == sc->beacon.beaconq) {
2306 			sc->beacon.tx_processed = true;
2307 			sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2308 			continue;
2309 		}
2310 
2311 		txq = &sc->tx.txq[ts.qid];
2312 
2313 		ath_txq_lock(sc, txq);
2314 
2315 		if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
2316 			ath_txq_unlock(sc, txq);
2317 			return;
2318 		}
2319 
2320 		bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
2321 				      struct ath_buf, list);
2322 		lastbf = bf->bf_lastbf;
2323 
2324 		INIT_LIST_HEAD(&bf_head);
2325 		list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
2326 				  &lastbf->list);
2327 
2328 		if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
2329 			INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2330 
2331 			if (!list_empty(&txq->axq_q)) {
2332 				struct list_head bf_q;
2333 
2334 				INIT_LIST_HEAD(&bf_q);
2335 				txq->axq_link = NULL;
2336 				list_splice_tail_init(&txq->axq_q, &bf_q);
2337 				ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2338 			}
2339 		}
2340 
2341 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2342 		ath_txq_unlock_complete(sc, txq);
2343 	}
2344 }
2345 
2346 /*****************/
2347 /* Init, Cleanup */
2348 /*****************/
2349 
2350 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2351 {
2352 	struct ath_descdma *dd = &sc->txsdma;
2353 	u8 txs_len = sc->sc_ah->caps.txs_len;
2354 
2355 	dd->dd_desc_len = size * txs_len;
2356 	dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
2357 					 &dd->dd_desc_paddr, GFP_KERNEL);
2358 	if (!dd->dd_desc)
2359 		return -ENOMEM;
2360 
2361 	return 0;
2362 }
2363 
2364 static int ath_tx_edma_init(struct ath_softc *sc)
2365 {
2366 	int err;
2367 
2368 	err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2369 	if (!err)
2370 		ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2371 					  sc->txsdma.dd_desc_paddr,
2372 					  ATH_TXSTATUS_RING_SIZE);
2373 
2374 	return err;
2375 }
2376 
2377 static void ath_tx_edma_cleanup(struct ath_softc *sc)
2378 {
2379 	struct ath_descdma *dd = &sc->txsdma;
2380 
2381 	dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
2382 			  dd->dd_desc_paddr);
2383 }
2384 
2385 int ath_tx_init(struct ath_softc *sc, int nbufs)
2386 {
2387 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2388 	int error = 0;
2389 
2390 	spin_lock_init(&sc->tx.txbuflock);
2391 
2392 	error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2393 				  "tx", nbufs, 1, 1);
2394 	if (error != 0) {
2395 		ath_err(common,
2396 			"Failed to allocate tx descriptors: %d\n", error);
2397 		goto err;
2398 	}
2399 
2400 	error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2401 				  "beacon", ATH_BCBUF, 1, 1);
2402 	if (error != 0) {
2403 		ath_err(common,
2404 			"Failed to allocate beacon descriptors: %d\n", error);
2405 		goto err;
2406 	}
2407 
2408 	INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2409 
2410 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
2411 		error = ath_tx_edma_init(sc);
2412 		if (error)
2413 			goto err;
2414 	}
2415 
2416 err:
2417 	if (error != 0)
2418 		ath_tx_cleanup(sc);
2419 
2420 	return error;
2421 }
2422 
2423 void ath_tx_cleanup(struct ath_softc *sc)
2424 {
2425 	if (sc->beacon.bdma.dd_desc_len != 0)
2426 		ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
2427 
2428 	if (sc->tx.txdma.dd_desc_len != 0)
2429 		ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
2430 
2431 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2432 		ath_tx_edma_cleanup(sc);
2433 }
2434 
2435 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2436 {
2437 	struct ath_atx_tid *tid;
2438 	struct ath_atx_ac *ac;
2439 	int tidno, acno;
2440 
2441 	for (tidno = 0, tid = &an->tid[tidno];
2442 	     tidno < WME_NUM_TID;
2443 	     tidno++, tid++) {
2444 		tid->an        = an;
2445 		tid->tidno     = tidno;
2446 		tid->seq_start = tid->seq_next = 0;
2447 		tid->baw_size  = WME_MAX_BA;
2448 		tid->baw_head  = tid->baw_tail = 0;
2449 		tid->sched     = false;
2450 		tid->paused    = false;
2451 		tid->state &= ~AGGR_CLEANUP;
2452 		__skb_queue_head_init(&tid->buf_q);
2453 		acno = TID_TO_WME_AC(tidno);
2454 		tid->ac = &an->ac[acno];
2455 		tid->state &= ~AGGR_ADDBA_COMPLETE;
2456 		tid->state &= ~AGGR_ADDBA_PROGRESS;
2457 	}
2458 
2459 	for (acno = 0, ac = &an->ac[acno];
2460 	     acno < WME_NUM_AC; acno++, ac++) {
2461 		ac->sched    = false;
2462 		ac->txq = sc->tx.txq_map[acno];
2463 		INIT_LIST_HEAD(&ac->tid_q);
2464 	}
2465 }
2466 
2467 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2468 {
2469 	struct ath_atx_ac *ac;
2470 	struct ath_atx_tid *tid;
2471 	struct ath_txq *txq;
2472 	int tidno;
2473 
2474 	for (tidno = 0, tid = &an->tid[tidno];
2475 	     tidno < WME_NUM_TID; tidno++, tid++) {
2476 
2477 		ac = tid->ac;
2478 		txq = ac->txq;
2479 
2480 		ath_txq_lock(sc, txq);
2481 
2482 		if (tid->sched) {
2483 			list_del(&tid->list);
2484 			tid->sched = false;
2485 		}
2486 
2487 		if (ac->sched) {
2488 			list_del(&ac->list);
2489 			tid->ac->sched = false;
2490 		}
2491 
2492 		ath_tid_drain(sc, txq, tid);
2493 		tid->state &= ~AGGR_ADDBA_COMPLETE;
2494 		tid->state &= ~AGGR_CLEANUP;
2495 
2496 		ath_txq_unlock(sc, txq);
2497 	}
2498 }
2499