xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/xmit.c (revision cd5d5810)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20 
21 #define BITS_PER_BYTE           8
22 #define OFDM_PLCP_BITS          22
23 #define HT_RC_2_STREAMS(_rc)    ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF                   8
25 #define L_LTF                   8
26 #define L_SIG                   4
27 #define HT_SIG                  8
28 #define HT_STF                  4
29 #define HT_LTF(_ns)             (4 * (_ns))
30 #define SYMBOL_TIME(_ns)        ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5)  /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t)         ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t)  (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36 
37 
38 static u16 bits_per_symbol[][2] = {
39 	/* 20MHz 40MHz */
40 	{    26,   54 },     /*  0: BPSK */
41 	{    52,  108 },     /*  1: QPSK 1/2 */
42 	{    78,  162 },     /*  2: QPSK 3/4 */
43 	{   104,  216 },     /*  3: 16-QAM 1/2 */
44 	{   156,  324 },     /*  4: 16-QAM 3/4 */
45 	{   208,  432 },     /*  5: 64-QAM 2/3 */
46 	{   234,  486 },     /*  6: 64-QAM 3/4 */
47 	{   260,  540 },     /*  7: 64-QAM 5/6 */
48 };
49 
50 #define IS_HT_RATE(_rate)     ((_rate) & 0x80)
51 
52 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
53 			       struct ath_atx_tid *tid, struct sk_buff *skb);
54 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
55 			    int tx_flags, struct ath_txq *txq);
56 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
57 				struct ath_txq *txq, struct list_head *bf_q,
58 				struct ath_tx_status *ts, int txok);
59 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
60 			     struct list_head *head, bool internal);
61 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
62 			     struct ath_tx_status *ts, int nframes, int nbad,
63 			     int txok);
64 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
65 			      int seqno);
66 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
67 					   struct ath_txq *txq,
68 					   struct ath_atx_tid *tid,
69 					   struct sk_buff *skb);
70 
71 enum {
72 	MCS_HT20,
73 	MCS_HT20_SGI,
74 	MCS_HT40,
75 	MCS_HT40_SGI,
76 };
77 
78 /*********************/
79 /* Aggregation logic */
80 /*********************/
81 
82 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
83 	__acquires(&txq->axq_lock)
84 {
85 	spin_lock_bh(&txq->axq_lock);
86 }
87 
88 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
89 	__releases(&txq->axq_lock)
90 {
91 	spin_unlock_bh(&txq->axq_lock);
92 }
93 
94 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
95 	__releases(&txq->axq_lock)
96 {
97 	struct sk_buff_head q;
98 	struct sk_buff *skb;
99 
100 	__skb_queue_head_init(&q);
101 	skb_queue_splice_init(&txq->complete_q, &q);
102 	spin_unlock_bh(&txq->axq_lock);
103 
104 	while ((skb = __skb_dequeue(&q)))
105 		ieee80211_tx_status(sc->hw, skb);
106 }
107 
108 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
109 {
110 	struct ath_atx_ac *ac = tid->ac;
111 
112 	if (tid->paused)
113 		return;
114 
115 	if (tid->sched)
116 		return;
117 
118 	tid->sched = true;
119 	list_add_tail(&tid->list, &ac->tid_q);
120 
121 	if (ac->sched)
122 		return;
123 
124 	ac->sched = true;
125 	list_add_tail(&ac->list, &txq->axq_acq);
126 }
127 
128 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
129 {
130 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
131 	BUILD_BUG_ON(sizeof(struct ath_frame_info) >
132 		     sizeof(tx_info->rate_driver_data));
133 	return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
134 }
135 
136 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
137 {
138 	if (!tid->an->sta)
139 		return;
140 
141 	ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
142 			   seqno << IEEE80211_SEQ_SEQ_SHIFT);
143 }
144 
145 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
146 			  struct ath_buf *bf)
147 {
148 	ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
149 			       ARRAY_SIZE(bf->rates));
150 }
151 
152 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
153 			     struct sk_buff *skb)
154 {
155 	int q;
156 
157 	q = skb_get_queue_mapping(skb);
158 	if (txq == sc->tx.uapsdq)
159 		txq = sc->tx.txq_map[q];
160 
161 	if (txq != sc->tx.txq_map[q])
162 		return;
163 
164 	if (WARN_ON(--txq->pending_frames < 0))
165 		txq->pending_frames = 0;
166 
167 	if (txq->stopped &&
168 	    txq->pending_frames < sc->tx.txq_max_pending[q]) {
169 		ieee80211_wake_queue(sc->hw, q);
170 		txq->stopped = false;
171 	}
172 }
173 
174 static struct ath_atx_tid *
175 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
176 {
177 	struct ieee80211_hdr *hdr;
178 	u8 tidno = 0;
179 
180 	hdr = (struct ieee80211_hdr *) skb->data;
181 	if (ieee80211_is_data_qos(hdr->frame_control))
182 		tidno = ieee80211_get_qos_ctl(hdr)[0];
183 
184 	tidno &= IEEE80211_QOS_CTL_TID_MASK;
185 	return ATH_AN_2_TID(an, tidno);
186 }
187 
188 static bool ath_tid_has_buffered(struct ath_atx_tid *tid)
189 {
190 	return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q);
191 }
192 
193 static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid)
194 {
195 	struct sk_buff *skb;
196 
197 	skb = __skb_dequeue(&tid->retry_q);
198 	if (!skb)
199 		skb = __skb_dequeue(&tid->buf_q);
200 
201 	return skb;
202 }
203 
204 /*
205  * ath_tx_tid_change_state:
206  * - clears a-mpdu flag of previous session
207  * - force sequence number allocation to fix next BlockAck Window
208  */
209 static void
210 ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid)
211 {
212 	struct ath_txq *txq = tid->ac->txq;
213 	struct ieee80211_tx_info *tx_info;
214 	struct sk_buff *skb, *tskb;
215 	struct ath_buf *bf;
216 	struct ath_frame_info *fi;
217 
218 	skb_queue_walk_safe(&tid->buf_q, skb, tskb) {
219 		fi = get_frame_info(skb);
220 		bf = fi->bf;
221 
222 		tx_info = IEEE80211_SKB_CB(skb);
223 		tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
224 
225 		if (bf)
226 			continue;
227 
228 		bf = ath_tx_setup_buffer(sc, txq, tid, skb);
229 		if (!bf) {
230 			__skb_unlink(skb, &tid->buf_q);
231 			ath_txq_skb_done(sc, txq, skb);
232 			ieee80211_free_txskb(sc->hw, skb);
233 			continue;
234 		}
235 	}
236 
237 }
238 
239 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
240 {
241 	struct ath_txq *txq = tid->ac->txq;
242 	struct sk_buff *skb;
243 	struct ath_buf *bf;
244 	struct list_head bf_head;
245 	struct ath_tx_status ts;
246 	struct ath_frame_info *fi;
247 	bool sendbar = false;
248 
249 	INIT_LIST_HEAD(&bf_head);
250 
251 	memset(&ts, 0, sizeof(ts));
252 
253 	while ((skb = __skb_dequeue(&tid->retry_q))) {
254 		fi = get_frame_info(skb);
255 		bf = fi->bf;
256 		if (!bf) {
257 			ath_txq_skb_done(sc, txq, skb);
258 			ieee80211_free_txskb(sc->hw, skb);
259 			continue;
260 		}
261 
262 		if (fi->baw_tracked) {
263 			ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
264 			sendbar = true;
265 		}
266 
267 		list_add_tail(&bf->list, &bf_head);
268 		ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
269 	}
270 
271 	if (sendbar) {
272 		ath_txq_unlock(sc, txq);
273 		ath_send_bar(tid, tid->seq_start);
274 		ath_txq_lock(sc, txq);
275 	}
276 }
277 
278 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
279 			      int seqno)
280 {
281 	int index, cindex;
282 
283 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
284 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
285 
286 	__clear_bit(cindex, tid->tx_buf);
287 
288 	while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
289 		INCR(tid->seq_start, IEEE80211_SEQ_MAX);
290 		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
291 		if (tid->bar_index >= 0)
292 			tid->bar_index--;
293 	}
294 }
295 
296 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
297 			     struct ath_buf *bf)
298 {
299 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
300 	u16 seqno = bf->bf_state.seqno;
301 	int index, cindex;
302 
303 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
304 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
305 	__set_bit(cindex, tid->tx_buf);
306 	fi->baw_tracked = 1;
307 
308 	if (index >= ((tid->baw_tail - tid->baw_head) &
309 		(ATH_TID_MAX_BUFS - 1))) {
310 		tid->baw_tail = cindex;
311 		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
312 	}
313 }
314 
315 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
316 			  struct ath_atx_tid *tid)
317 
318 {
319 	struct sk_buff *skb;
320 	struct ath_buf *bf;
321 	struct list_head bf_head;
322 	struct ath_tx_status ts;
323 	struct ath_frame_info *fi;
324 
325 	memset(&ts, 0, sizeof(ts));
326 	INIT_LIST_HEAD(&bf_head);
327 
328 	while ((skb = ath_tid_dequeue(tid))) {
329 		fi = get_frame_info(skb);
330 		bf = fi->bf;
331 
332 		if (!bf) {
333 			ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
334 			continue;
335 		}
336 
337 		list_add_tail(&bf->list, &bf_head);
338 		ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
339 	}
340 }
341 
342 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
343 			     struct sk_buff *skb, int count)
344 {
345 	struct ath_frame_info *fi = get_frame_info(skb);
346 	struct ath_buf *bf = fi->bf;
347 	struct ieee80211_hdr *hdr;
348 	int prev = fi->retries;
349 
350 	TX_STAT_INC(txq->axq_qnum, a_retries);
351 	fi->retries += count;
352 
353 	if (prev > 0)
354 		return;
355 
356 	hdr = (struct ieee80211_hdr *)skb->data;
357 	hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
358 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
359 		sizeof(*hdr), DMA_TO_DEVICE);
360 }
361 
362 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
363 {
364 	struct ath_buf *bf = NULL;
365 
366 	spin_lock_bh(&sc->tx.txbuflock);
367 
368 	if (unlikely(list_empty(&sc->tx.txbuf))) {
369 		spin_unlock_bh(&sc->tx.txbuflock);
370 		return NULL;
371 	}
372 
373 	bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
374 	list_del(&bf->list);
375 
376 	spin_unlock_bh(&sc->tx.txbuflock);
377 
378 	return bf;
379 }
380 
381 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
382 {
383 	spin_lock_bh(&sc->tx.txbuflock);
384 	list_add_tail(&bf->list, &sc->tx.txbuf);
385 	spin_unlock_bh(&sc->tx.txbuflock);
386 }
387 
388 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
389 {
390 	struct ath_buf *tbf;
391 
392 	tbf = ath_tx_get_buffer(sc);
393 	if (WARN_ON(!tbf))
394 		return NULL;
395 
396 	ATH_TXBUF_RESET(tbf);
397 
398 	tbf->bf_mpdu = bf->bf_mpdu;
399 	tbf->bf_buf_addr = bf->bf_buf_addr;
400 	memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
401 	tbf->bf_state = bf->bf_state;
402 	tbf->bf_state.stale = false;
403 
404 	return tbf;
405 }
406 
407 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
408 			        struct ath_tx_status *ts, int txok,
409 			        int *nframes, int *nbad)
410 {
411 	struct ath_frame_info *fi;
412 	u16 seq_st = 0;
413 	u32 ba[WME_BA_BMP_SIZE >> 5];
414 	int ba_index;
415 	int isaggr = 0;
416 
417 	*nbad = 0;
418 	*nframes = 0;
419 
420 	isaggr = bf_isaggr(bf);
421 	if (isaggr) {
422 		seq_st = ts->ts_seqnum;
423 		memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
424 	}
425 
426 	while (bf) {
427 		fi = get_frame_info(bf->bf_mpdu);
428 		ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
429 
430 		(*nframes)++;
431 		if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
432 			(*nbad)++;
433 
434 		bf = bf->bf_next;
435 	}
436 }
437 
438 
439 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
440 				 struct ath_buf *bf, struct list_head *bf_q,
441 				 struct ath_tx_status *ts, int txok)
442 {
443 	struct ath_node *an = NULL;
444 	struct sk_buff *skb;
445 	struct ieee80211_sta *sta;
446 	struct ieee80211_hw *hw = sc->hw;
447 	struct ieee80211_hdr *hdr;
448 	struct ieee80211_tx_info *tx_info;
449 	struct ath_atx_tid *tid = NULL;
450 	struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
451 	struct list_head bf_head;
452 	struct sk_buff_head bf_pending;
453 	u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
454 	u32 ba[WME_BA_BMP_SIZE >> 5];
455 	int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
456 	bool rc_update = true, isba;
457 	struct ieee80211_tx_rate rates[4];
458 	struct ath_frame_info *fi;
459 	int nframes;
460 	bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
461 	int i, retries;
462 	int bar_index = -1;
463 
464 	skb = bf->bf_mpdu;
465 	hdr = (struct ieee80211_hdr *)skb->data;
466 
467 	tx_info = IEEE80211_SKB_CB(skb);
468 
469 	memcpy(rates, bf->rates, sizeof(rates));
470 
471 	retries = ts->ts_longretry + 1;
472 	for (i = 0; i < ts->ts_rateindex; i++)
473 		retries += rates[i].count;
474 
475 	rcu_read_lock();
476 
477 	sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
478 	if (!sta) {
479 		rcu_read_unlock();
480 
481 		INIT_LIST_HEAD(&bf_head);
482 		while (bf) {
483 			bf_next = bf->bf_next;
484 
485 			if (!bf->bf_state.stale || bf_next != NULL)
486 				list_move_tail(&bf->list, &bf_head);
487 
488 			ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
489 
490 			bf = bf_next;
491 		}
492 		return;
493 	}
494 
495 	an = (struct ath_node *)sta->drv_priv;
496 	tid = ath_get_skb_tid(sc, an, skb);
497 	seq_first = tid->seq_start;
498 	isba = ts->ts_flags & ATH9K_TX_BA;
499 
500 	/*
501 	 * The hardware occasionally sends a tx status for the wrong TID.
502 	 * In this case, the BA status cannot be considered valid and all
503 	 * subframes need to be retransmitted
504 	 *
505 	 * Only BlockAcks have a TID and therefore normal Acks cannot be
506 	 * checked
507 	 */
508 	if (isba && tid->tidno != ts->tid)
509 		txok = false;
510 
511 	isaggr = bf_isaggr(bf);
512 	memset(ba, 0, WME_BA_BMP_SIZE >> 3);
513 
514 	if (isaggr && txok) {
515 		if (ts->ts_flags & ATH9K_TX_BA) {
516 			seq_st = ts->ts_seqnum;
517 			memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
518 		} else {
519 			/*
520 			 * AR5416 can become deaf/mute when BA
521 			 * issue happens. Chip needs to be reset.
522 			 * But AP code may have sychronization issues
523 			 * when perform internal reset in this routine.
524 			 * Only enable reset in STA mode for now.
525 			 */
526 			if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
527 				needreset = 1;
528 		}
529 	}
530 
531 	__skb_queue_head_init(&bf_pending);
532 
533 	ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
534 	while (bf) {
535 		u16 seqno = bf->bf_state.seqno;
536 
537 		txfail = txpending = sendbar = 0;
538 		bf_next = bf->bf_next;
539 
540 		skb = bf->bf_mpdu;
541 		tx_info = IEEE80211_SKB_CB(skb);
542 		fi = get_frame_info(skb);
543 
544 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
545 		    !tid->active) {
546 			/*
547 			 * Outside of the current BlockAck window,
548 			 * maybe part of a previous session
549 			 */
550 			txfail = 1;
551 		} else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
552 			/* transmit completion, subframe is
553 			 * acked by block ack */
554 			acked_cnt++;
555 		} else if (!isaggr && txok) {
556 			/* transmit completion */
557 			acked_cnt++;
558 		} else if (flush) {
559 			txpending = 1;
560 		} else if (fi->retries < ATH_MAX_SW_RETRIES) {
561 			if (txok || !an->sleeping)
562 				ath_tx_set_retry(sc, txq, bf->bf_mpdu,
563 						 retries);
564 
565 			txpending = 1;
566 		} else {
567 			txfail = 1;
568 			txfail_cnt++;
569 			bar_index = max_t(int, bar_index,
570 				ATH_BA_INDEX(seq_first, seqno));
571 		}
572 
573 		/*
574 		 * Make sure the last desc is reclaimed if it
575 		 * not a holding desc.
576 		 */
577 		INIT_LIST_HEAD(&bf_head);
578 		if (bf_next != NULL || !bf_last->bf_state.stale)
579 			list_move_tail(&bf->list, &bf_head);
580 
581 		if (!txpending) {
582 			/*
583 			 * complete the acked-ones/xretried ones; update
584 			 * block-ack window
585 			 */
586 			ath_tx_update_baw(sc, tid, seqno);
587 
588 			if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
589 				memcpy(tx_info->control.rates, rates, sizeof(rates));
590 				ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
591 				rc_update = false;
592 			}
593 
594 			ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
595 				!txfail);
596 		} else {
597 			if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
598 				tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
599 				ieee80211_sta_eosp(sta);
600 			}
601 			/* retry the un-acked ones */
602 			if (bf->bf_next == NULL && bf_last->bf_state.stale) {
603 				struct ath_buf *tbf;
604 
605 				tbf = ath_clone_txbuf(sc, bf_last);
606 				/*
607 				 * Update tx baw and complete the
608 				 * frame with failed status if we
609 				 * run out of tx buf.
610 				 */
611 				if (!tbf) {
612 					ath_tx_update_baw(sc, tid, seqno);
613 
614 					ath_tx_complete_buf(sc, bf, txq,
615 							    &bf_head, ts, 0);
616 					bar_index = max_t(int, bar_index,
617 						ATH_BA_INDEX(seq_first, seqno));
618 					break;
619 				}
620 
621 				fi->bf = tbf;
622 			}
623 
624 			/*
625 			 * Put this buffer to the temporary pending
626 			 * queue to retain ordering
627 			 */
628 			__skb_queue_tail(&bf_pending, skb);
629 		}
630 
631 		bf = bf_next;
632 	}
633 
634 	/* prepend un-acked frames to the beginning of the pending frame queue */
635 	if (!skb_queue_empty(&bf_pending)) {
636 		if (an->sleeping)
637 			ieee80211_sta_set_buffered(sta, tid->tidno, true);
638 
639 		skb_queue_splice_tail(&bf_pending, &tid->retry_q);
640 		if (!an->sleeping) {
641 			ath_tx_queue_tid(txq, tid);
642 
643 			if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
644 				tid->ac->clear_ps_filter = true;
645 		}
646 	}
647 
648 	if (bar_index >= 0) {
649 		u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
650 
651 		if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
652 			tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
653 
654 		ath_txq_unlock(sc, txq);
655 		ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
656 		ath_txq_lock(sc, txq);
657 	}
658 
659 	rcu_read_unlock();
660 
661 	if (needreset)
662 		ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
663 }
664 
665 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
666 {
667     struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
668     return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
669 }
670 
671 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
672 				  struct ath_tx_status *ts, struct ath_buf *bf,
673 				  struct list_head *bf_head)
674 {
675 	struct ieee80211_tx_info *info;
676 	bool txok, flush;
677 
678 	txok = !(ts->ts_status & ATH9K_TXERR_MASK);
679 	flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
680 	txq->axq_tx_inprogress = false;
681 
682 	txq->axq_depth--;
683 	if (bf_is_ampdu_not_probing(bf))
684 		txq->axq_ampdu_depth--;
685 
686 	if (!bf_isampdu(bf)) {
687 		if (!flush) {
688 			info = IEEE80211_SKB_CB(bf->bf_mpdu);
689 			memcpy(info->control.rates, bf->rates,
690 			       sizeof(info->control.rates));
691 			ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
692 		}
693 		ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
694 	} else
695 		ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
696 
697 	if (!flush)
698 		ath_txq_schedule(sc, txq);
699 }
700 
701 static bool ath_lookup_legacy(struct ath_buf *bf)
702 {
703 	struct sk_buff *skb;
704 	struct ieee80211_tx_info *tx_info;
705 	struct ieee80211_tx_rate *rates;
706 	int i;
707 
708 	skb = bf->bf_mpdu;
709 	tx_info = IEEE80211_SKB_CB(skb);
710 	rates = tx_info->control.rates;
711 
712 	for (i = 0; i < 4; i++) {
713 		if (!rates[i].count || rates[i].idx < 0)
714 			break;
715 
716 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
717 			return true;
718 	}
719 
720 	return false;
721 }
722 
723 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
724 			   struct ath_atx_tid *tid)
725 {
726 	struct sk_buff *skb;
727 	struct ieee80211_tx_info *tx_info;
728 	struct ieee80211_tx_rate *rates;
729 	u32 max_4ms_framelen, frmlen;
730 	u16 aggr_limit, bt_aggr_limit, legacy = 0;
731 	int q = tid->ac->txq->mac80211_qnum;
732 	int i;
733 
734 	skb = bf->bf_mpdu;
735 	tx_info = IEEE80211_SKB_CB(skb);
736 	rates = bf->rates;
737 
738 	/*
739 	 * Find the lowest frame length among the rate series that will have a
740 	 * 4ms (or TXOP limited) transmit duration.
741 	 */
742 	max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
743 
744 	for (i = 0; i < 4; i++) {
745 		int modeidx;
746 
747 		if (!rates[i].count)
748 			continue;
749 
750 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
751 			legacy = 1;
752 			break;
753 		}
754 
755 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
756 			modeidx = MCS_HT40;
757 		else
758 			modeidx = MCS_HT20;
759 
760 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
761 			modeidx++;
762 
763 		frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
764 		max_4ms_framelen = min(max_4ms_framelen, frmlen);
765 	}
766 
767 	/*
768 	 * limit aggregate size by the minimum rate if rate selected is
769 	 * not a probe rate, if rate selected is a probe rate then
770 	 * avoid aggregation of this packet.
771 	 */
772 	if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
773 		return 0;
774 
775 	aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
776 
777 	/*
778 	 * Override the default aggregation limit for BTCOEX.
779 	 */
780 	bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
781 	if (bt_aggr_limit)
782 		aggr_limit = bt_aggr_limit;
783 
784 	/*
785 	 * h/w can accept aggregates up to 16 bit lengths (65535).
786 	 * The IE, however can hold up to 65536, which shows up here
787 	 * as zero. Ignore 65536 since we  are constrained by hw.
788 	 */
789 	if (tid->an->maxampdu)
790 		aggr_limit = min(aggr_limit, tid->an->maxampdu);
791 
792 	return aggr_limit;
793 }
794 
795 /*
796  * Returns the number of delimiters to be added to
797  * meet the minimum required mpdudensity.
798  */
799 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
800 				  struct ath_buf *bf, u16 frmlen,
801 				  bool first_subfrm)
802 {
803 #define FIRST_DESC_NDELIMS 60
804 	u32 nsymbits, nsymbols;
805 	u16 minlen;
806 	u8 flags, rix;
807 	int width, streams, half_gi, ndelim, mindelim;
808 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
809 
810 	/* Select standard number of delimiters based on frame length alone */
811 	ndelim = ATH_AGGR_GET_NDELIM(frmlen);
812 
813 	/*
814 	 * If encryption enabled, hardware requires some more padding between
815 	 * subframes.
816 	 * TODO - this could be improved to be dependent on the rate.
817 	 *      The hardware can keep up at lower rates, but not higher rates
818 	 */
819 	if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
820 	    !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
821 		ndelim += ATH_AGGR_ENCRYPTDELIM;
822 
823 	/*
824 	 * Add delimiter when using RTS/CTS with aggregation
825 	 * and non enterprise AR9003 card
826 	 */
827 	if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
828 	    (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
829 		ndelim = max(ndelim, FIRST_DESC_NDELIMS);
830 
831 	/*
832 	 * Convert desired mpdu density from microeconds to bytes based
833 	 * on highest rate in rate series (i.e. first rate) to determine
834 	 * required minimum length for subframe. Take into account
835 	 * whether high rate is 20 or 40Mhz and half or full GI.
836 	 *
837 	 * If there is no mpdu density restriction, no further calculation
838 	 * is needed.
839 	 */
840 
841 	if (tid->an->mpdudensity == 0)
842 		return ndelim;
843 
844 	rix = bf->rates[0].idx;
845 	flags = bf->rates[0].flags;
846 	width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
847 	half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
848 
849 	if (half_gi)
850 		nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
851 	else
852 		nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
853 
854 	if (nsymbols == 0)
855 		nsymbols = 1;
856 
857 	streams = HT_RC_2_STREAMS(rix);
858 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
859 	minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
860 
861 	if (frmlen < minlen) {
862 		mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
863 		ndelim = max(mindelim, ndelim);
864 	}
865 
866 	return ndelim;
867 }
868 
869 static struct ath_buf *
870 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
871 			struct ath_atx_tid *tid, struct sk_buff_head **q)
872 {
873 	struct ieee80211_tx_info *tx_info;
874 	struct ath_frame_info *fi;
875 	struct sk_buff *skb;
876 	struct ath_buf *bf;
877 	u16 seqno;
878 
879 	while (1) {
880 		*q = &tid->retry_q;
881 		if (skb_queue_empty(*q))
882 			*q = &tid->buf_q;
883 
884 		skb = skb_peek(*q);
885 		if (!skb)
886 			break;
887 
888 		fi = get_frame_info(skb);
889 		bf = fi->bf;
890 		if (!fi->bf)
891 			bf = ath_tx_setup_buffer(sc, txq, tid, skb);
892 		else
893 			bf->bf_state.stale = false;
894 
895 		if (!bf) {
896 			__skb_unlink(skb, *q);
897 			ath_txq_skb_done(sc, txq, skb);
898 			ieee80211_free_txskb(sc->hw, skb);
899 			continue;
900 		}
901 
902 		bf->bf_next = NULL;
903 		bf->bf_lastbf = bf;
904 
905 		tx_info = IEEE80211_SKB_CB(skb);
906 		tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
907 		if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
908 			bf->bf_state.bf_type = 0;
909 			return bf;
910 		}
911 
912 		bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
913 		seqno = bf->bf_state.seqno;
914 
915 		/* do not step over block-ack window */
916 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno))
917 			break;
918 
919 		if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
920 			struct ath_tx_status ts = {};
921 			struct list_head bf_head;
922 
923 			INIT_LIST_HEAD(&bf_head);
924 			list_add(&bf->list, &bf_head);
925 			__skb_unlink(skb, *q);
926 			ath_tx_update_baw(sc, tid, seqno);
927 			ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
928 			continue;
929 		}
930 
931 		return bf;
932 	}
933 
934 	return NULL;
935 }
936 
937 static bool
938 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
939 		 struct ath_atx_tid *tid, struct list_head *bf_q,
940 		 struct ath_buf *bf_first, struct sk_buff_head *tid_q,
941 		 int *aggr_len)
942 {
943 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
944 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
945 	int nframes = 0, ndelim;
946 	u16 aggr_limit = 0, al = 0, bpad = 0,
947 	    al_delta, h_baw = tid->baw_size / 2;
948 	struct ieee80211_tx_info *tx_info;
949 	struct ath_frame_info *fi;
950 	struct sk_buff *skb;
951 	bool closed = false;
952 
953 	bf = bf_first;
954 	aggr_limit = ath_lookup_rate(sc, bf, tid);
955 
956 	do {
957 		skb = bf->bf_mpdu;
958 		fi = get_frame_info(skb);
959 
960 		/* do not exceed aggregation limit */
961 		al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
962 		if (nframes) {
963 			if (aggr_limit < al + bpad + al_delta ||
964 			    ath_lookup_legacy(bf) || nframes >= h_baw)
965 				break;
966 
967 			tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
968 			if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
969 			    !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
970 				break;
971 		}
972 
973 		/* add padding for previous frame to aggregation length */
974 		al += bpad + al_delta;
975 
976 		/*
977 		 * Get the delimiters needed to meet the MPDU
978 		 * density for this node.
979 		 */
980 		ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
981 						!nframes);
982 		bpad = PADBYTES(al_delta) + (ndelim << 2);
983 
984 		nframes++;
985 		bf->bf_next = NULL;
986 
987 		/* link buffers of this frame to the aggregate */
988 		if (!fi->baw_tracked)
989 			ath_tx_addto_baw(sc, tid, bf);
990 		bf->bf_state.ndelim = ndelim;
991 
992 		__skb_unlink(skb, tid_q);
993 		list_add_tail(&bf->list, bf_q);
994 		if (bf_prev)
995 			bf_prev->bf_next = bf;
996 
997 		bf_prev = bf;
998 
999 		bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1000 		if (!bf) {
1001 			closed = true;
1002 			break;
1003 		}
1004 	} while (ath_tid_has_buffered(tid));
1005 
1006 	bf = bf_first;
1007 	bf->bf_lastbf = bf_prev;
1008 
1009 	if (bf == bf_prev) {
1010 		al = get_frame_info(bf->bf_mpdu)->framelen;
1011 		bf->bf_state.bf_type = BUF_AMPDU;
1012 	} else {
1013 		TX_STAT_INC(txq->axq_qnum, a_aggr);
1014 	}
1015 
1016 	*aggr_len = al;
1017 
1018 	return closed;
1019 #undef PADBYTES
1020 }
1021 
1022 /*
1023  * rix - rate index
1024  * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1025  * width  - 0 for 20 MHz, 1 for 40 MHz
1026  * half_gi - to use 4us v/s 3.6 us for symbol time
1027  */
1028 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1029 			    int width, int half_gi, bool shortPreamble)
1030 {
1031 	u32 nbits, nsymbits, duration, nsymbols;
1032 	int streams;
1033 
1034 	/* find number of symbols: PLCP + data */
1035 	streams = HT_RC_2_STREAMS(rix);
1036 	nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1037 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
1038 	nsymbols = (nbits + nsymbits - 1) / nsymbits;
1039 
1040 	if (!half_gi)
1041 		duration = SYMBOL_TIME(nsymbols);
1042 	else
1043 		duration = SYMBOL_TIME_HALFGI(nsymbols);
1044 
1045 	/* addup duration for legacy/ht training and signal fields */
1046 	duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1047 
1048 	return duration;
1049 }
1050 
1051 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1052 {
1053 	int streams = HT_RC_2_STREAMS(mcs);
1054 	int symbols, bits;
1055 	int bytes = 0;
1056 
1057 	symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1058 	bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1059 	bits -= OFDM_PLCP_BITS;
1060 	bytes = bits / 8;
1061 	bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1062 	if (bytes > 65532)
1063 		bytes = 65532;
1064 
1065 	return bytes;
1066 }
1067 
1068 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1069 {
1070 	u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1071 	int mcs;
1072 
1073 	/* 4ms is the default (and maximum) duration */
1074 	if (!txop || txop > 4096)
1075 		txop = 4096;
1076 
1077 	cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1078 	cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1079 	cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1080 	cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1081 	for (mcs = 0; mcs < 32; mcs++) {
1082 		cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1083 		cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1084 		cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1085 		cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1086 	}
1087 }
1088 
1089 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1090 			     struct ath_tx_info *info, int len, bool rts)
1091 {
1092 	struct ath_hw *ah = sc->sc_ah;
1093 	struct sk_buff *skb;
1094 	struct ieee80211_tx_info *tx_info;
1095 	struct ieee80211_tx_rate *rates;
1096 	const struct ieee80211_rate *rate;
1097 	struct ieee80211_hdr *hdr;
1098 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1099 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1100 	int i;
1101 	u8 rix = 0;
1102 
1103 	skb = bf->bf_mpdu;
1104 	tx_info = IEEE80211_SKB_CB(skb);
1105 	rates = bf->rates;
1106 	hdr = (struct ieee80211_hdr *)skb->data;
1107 
1108 	/* set dur_update_en for l-sig computation except for PS-Poll frames */
1109 	info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1110 	info->rtscts_rate = fi->rtscts_rate;
1111 
1112 	for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1113 		bool is_40, is_sgi, is_sp;
1114 		int phy;
1115 
1116 		if (!rates[i].count || (rates[i].idx < 0))
1117 			continue;
1118 
1119 		rix = rates[i].idx;
1120 		info->rates[i].Tries = rates[i].count;
1121 
1122 		/*
1123 		 * Handle RTS threshold for unaggregated HT frames.
1124 		 */
1125 		if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1126 		    (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1127 		    unlikely(rts_thresh != (u32) -1)) {
1128 			if (!rts_thresh || (len > rts_thresh))
1129 				rts = true;
1130 		}
1131 
1132 		if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1133 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1134 			info->flags |= ATH9K_TXDESC_RTSENA;
1135 		} else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1136 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1137 			info->flags |= ATH9K_TXDESC_CTSENA;
1138 		}
1139 
1140 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1141 			info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1142 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1143 			info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1144 
1145 		is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1146 		is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1147 		is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1148 
1149 		if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1150 			/* MCS rates */
1151 			info->rates[i].Rate = rix | 0x80;
1152 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1153 					ah->txchainmask, info->rates[i].Rate);
1154 			info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1155 				 is_40, is_sgi, is_sp);
1156 			if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1157 				info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1158 			continue;
1159 		}
1160 
1161 		/* legacy rates */
1162 		rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
1163 		if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1164 		    !(rate->flags & IEEE80211_RATE_ERP_G))
1165 			phy = WLAN_RC_PHY_CCK;
1166 		else
1167 			phy = WLAN_RC_PHY_OFDM;
1168 
1169 		info->rates[i].Rate = rate->hw_value;
1170 		if (rate->hw_value_short) {
1171 			if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1172 				info->rates[i].Rate |= rate->hw_value_short;
1173 		} else {
1174 			is_sp = false;
1175 		}
1176 
1177 		if (bf->bf_state.bfs_paprd)
1178 			info->rates[i].ChSel = ah->txchainmask;
1179 		else
1180 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1181 					ah->txchainmask, info->rates[i].Rate);
1182 
1183 		info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1184 			phy, rate->bitrate * 100, len, rix, is_sp);
1185 	}
1186 
1187 	/* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1188 	if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1189 		info->flags &= ~ATH9K_TXDESC_RTSENA;
1190 
1191 	/* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1192 	if (info->flags & ATH9K_TXDESC_RTSENA)
1193 		info->flags &= ~ATH9K_TXDESC_CTSENA;
1194 }
1195 
1196 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1197 {
1198 	struct ieee80211_hdr *hdr;
1199 	enum ath9k_pkt_type htype;
1200 	__le16 fc;
1201 
1202 	hdr = (struct ieee80211_hdr *)skb->data;
1203 	fc = hdr->frame_control;
1204 
1205 	if (ieee80211_is_beacon(fc))
1206 		htype = ATH9K_PKT_TYPE_BEACON;
1207 	else if (ieee80211_is_probe_resp(fc))
1208 		htype = ATH9K_PKT_TYPE_PROBE_RESP;
1209 	else if (ieee80211_is_atim(fc))
1210 		htype = ATH9K_PKT_TYPE_ATIM;
1211 	else if (ieee80211_is_pspoll(fc))
1212 		htype = ATH9K_PKT_TYPE_PSPOLL;
1213 	else
1214 		htype = ATH9K_PKT_TYPE_NORMAL;
1215 
1216 	return htype;
1217 }
1218 
1219 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1220 			     struct ath_txq *txq, int len)
1221 {
1222 	struct ath_hw *ah = sc->sc_ah;
1223 	struct ath_buf *bf_first = NULL;
1224 	struct ath_tx_info info;
1225 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1226 	bool rts = false;
1227 
1228 	memset(&info, 0, sizeof(info));
1229 	info.is_first = true;
1230 	info.is_last = true;
1231 	info.txpower = MAX_RATE_POWER;
1232 	info.qcu = txq->axq_qnum;
1233 
1234 	while (bf) {
1235 		struct sk_buff *skb = bf->bf_mpdu;
1236 		struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1237 		struct ath_frame_info *fi = get_frame_info(skb);
1238 		bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1239 
1240 		info.type = get_hw_packet_type(skb);
1241 		if (bf->bf_next)
1242 			info.link = bf->bf_next->bf_daddr;
1243 		else
1244 			info.link = 0;
1245 
1246 		if (!bf_first) {
1247 			bf_first = bf;
1248 
1249 			info.flags = ATH9K_TXDESC_INTREQ;
1250 			if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1251 			    txq == sc->tx.uapsdq)
1252 				info.flags |= ATH9K_TXDESC_CLRDMASK;
1253 
1254 			if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1255 				info.flags |= ATH9K_TXDESC_NOACK;
1256 			if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1257 				info.flags |= ATH9K_TXDESC_LDPC;
1258 
1259 			if (bf->bf_state.bfs_paprd)
1260 				info.flags |= (u32) bf->bf_state.bfs_paprd <<
1261 					      ATH9K_TXDESC_PAPRD_S;
1262 
1263 			/*
1264 			 * mac80211 doesn't handle RTS threshold for HT because
1265 			 * the decision has to be taken based on AMPDU length
1266 			 * and aggregation is done entirely inside ath9k.
1267 			 * Set the RTS/CTS flag for the first subframe based
1268 			 * on the threshold.
1269 			 */
1270 			if (aggr && (bf == bf_first) &&
1271 			    unlikely(rts_thresh != (u32) -1)) {
1272 				/*
1273 				 * "len" is the size of the entire AMPDU.
1274 				 */
1275 				if (!rts_thresh || (len > rts_thresh))
1276 					rts = true;
1277 			}
1278 			ath_buf_set_rate(sc, bf, &info, len, rts);
1279 		}
1280 
1281 		info.buf_addr[0] = bf->bf_buf_addr;
1282 		info.buf_len[0] = skb->len;
1283 		info.pkt_len = fi->framelen;
1284 		info.keyix = fi->keyix;
1285 		info.keytype = fi->keytype;
1286 
1287 		if (aggr) {
1288 			if (bf == bf_first)
1289 				info.aggr = AGGR_BUF_FIRST;
1290 			else if (bf == bf_first->bf_lastbf)
1291 				info.aggr = AGGR_BUF_LAST;
1292 			else
1293 				info.aggr = AGGR_BUF_MIDDLE;
1294 
1295 			info.ndelim = bf->bf_state.ndelim;
1296 			info.aggr_len = len;
1297 		}
1298 
1299 		if (bf == bf_first->bf_lastbf)
1300 			bf_first = NULL;
1301 
1302 		ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1303 		bf = bf->bf_next;
1304 	}
1305 }
1306 
1307 static void
1308 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1309 		  struct ath_atx_tid *tid, struct list_head *bf_q,
1310 		  struct ath_buf *bf_first, struct sk_buff_head *tid_q)
1311 {
1312 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
1313 	struct sk_buff *skb;
1314 	int nframes = 0;
1315 
1316 	do {
1317 		struct ieee80211_tx_info *tx_info;
1318 		skb = bf->bf_mpdu;
1319 
1320 		nframes++;
1321 		__skb_unlink(skb, tid_q);
1322 		list_add_tail(&bf->list, bf_q);
1323 		if (bf_prev)
1324 			bf_prev->bf_next = bf;
1325 		bf_prev = bf;
1326 
1327 		if (nframes >= 2)
1328 			break;
1329 
1330 		bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1331 		if (!bf)
1332 			break;
1333 
1334 		tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1335 		if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
1336 			break;
1337 
1338 		ath_set_rates(tid->an->vif, tid->an->sta, bf);
1339 	} while (1);
1340 }
1341 
1342 static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1343 			      struct ath_atx_tid *tid, bool *stop)
1344 {
1345 	struct ath_buf *bf;
1346 	struct ieee80211_tx_info *tx_info;
1347 	struct sk_buff_head *tid_q;
1348 	struct list_head bf_q;
1349 	int aggr_len = 0;
1350 	bool aggr, last = true;
1351 
1352 	if (!ath_tid_has_buffered(tid))
1353 		return false;
1354 
1355 	INIT_LIST_HEAD(&bf_q);
1356 
1357 	bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1358 	if (!bf)
1359 		return false;
1360 
1361 	tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1362 	aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1363 	if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1364 		(!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1365 		*stop = true;
1366 		return false;
1367 	}
1368 
1369 	ath_set_rates(tid->an->vif, tid->an->sta, bf);
1370 	if (aggr)
1371 		last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf,
1372 					tid_q, &aggr_len);
1373 	else
1374 		ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q);
1375 
1376 	if (list_empty(&bf_q))
1377 		return false;
1378 
1379 	if (tid->ac->clear_ps_filter || tid->an->no_ps_filter) {
1380 		tid->ac->clear_ps_filter = false;
1381 		tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1382 	}
1383 
1384 	ath_tx_fill_desc(sc, bf, txq, aggr_len);
1385 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1386 	return true;
1387 }
1388 
1389 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1390 		      u16 tid, u16 *ssn)
1391 {
1392 	struct ath_atx_tid *txtid;
1393 	struct ath_txq *txq;
1394 	struct ath_node *an;
1395 	u8 density;
1396 
1397 	an = (struct ath_node *)sta->drv_priv;
1398 	txtid = ATH_AN_2_TID(an, tid);
1399 	txq = txtid->ac->txq;
1400 
1401 	ath_txq_lock(sc, txq);
1402 
1403 	/* update ampdu factor/density, they may have changed. This may happen
1404 	 * in HT IBSS when a beacon with HT-info is received after the station
1405 	 * has already been added.
1406 	 */
1407 	if (sta->ht_cap.ht_supported) {
1408 		an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1409 				     sta->ht_cap.ampdu_factor);
1410 		density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1411 		an->mpdudensity = density;
1412 	}
1413 
1414 	/* force sequence number allocation for pending frames */
1415 	ath_tx_tid_change_state(sc, txtid);
1416 
1417 	txtid->active = true;
1418 	txtid->paused = true;
1419 	*ssn = txtid->seq_start = txtid->seq_next;
1420 	txtid->bar_index = -1;
1421 
1422 	memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1423 	txtid->baw_head = txtid->baw_tail = 0;
1424 
1425 	ath_txq_unlock_complete(sc, txq);
1426 
1427 	return 0;
1428 }
1429 
1430 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1431 {
1432 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1433 	struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1434 	struct ath_txq *txq = txtid->ac->txq;
1435 
1436 	ath_txq_lock(sc, txq);
1437 	txtid->active = false;
1438 	txtid->paused = false;
1439 	ath_tx_flush_tid(sc, txtid);
1440 	ath_tx_tid_change_state(sc, txtid);
1441 	ath_txq_unlock_complete(sc, txq);
1442 }
1443 
1444 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1445 		       struct ath_node *an)
1446 {
1447 	struct ath_atx_tid *tid;
1448 	struct ath_atx_ac *ac;
1449 	struct ath_txq *txq;
1450 	bool buffered;
1451 	int tidno;
1452 
1453 	for (tidno = 0, tid = &an->tid[tidno];
1454 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1455 
1456 		if (!tid->sched)
1457 			continue;
1458 
1459 		ac = tid->ac;
1460 		txq = ac->txq;
1461 
1462 		ath_txq_lock(sc, txq);
1463 
1464 		buffered = ath_tid_has_buffered(tid);
1465 
1466 		tid->sched = false;
1467 		list_del(&tid->list);
1468 
1469 		if (ac->sched) {
1470 			ac->sched = false;
1471 			list_del(&ac->list);
1472 		}
1473 
1474 		ath_txq_unlock(sc, txq);
1475 
1476 		ieee80211_sta_set_buffered(sta, tidno, buffered);
1477 	}
1478 }
1479 
1480 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1481 {
1482 	struct ath_atx_tid *tid;
1483 	struct ath_atx_ac *ac;
1484 	struct ath_txq *txq;
1485 	int tidno;
1486 
1487 	for (tidno = 0, tid = &an->tid[tidno];
1488 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1489 
1490 		ac = tid->ac;
1491 		txq = ac->txq;
1492 
1493 		ath_txq_lock(sc, txq);
1494 		ac->clear_ps_filter = true;
1495 
1496 		if (!tid->paused && ath_tid_has_buffered(tid)) {
1497 			ath_tx_queue_tid(txq, tid);
1498 			ath_txq_schedule(sc, txq);
1499 		}
1500 
1501 		ath_txq_unlock_complete(sc, txq);
1502 	}
1503 }
1504 
1505 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
1506 			u16 tidno)
1507 {
1508 	struct ath_atx_tid *tid;
1509 	struct ath_node *an;
1510 	struct ath_txq *txq;
1511 
1512 	an = (struct ath_node *)sta->drv_priv;
1513 	tid = ATH_AN_2_TID(an, tidno);
1514 	txq = tid->ac->txq;
1515 
1516 	ath_txq_lock(sc, txq);
1517 
1518 	tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1519 	tid->paused = false;
1520 
1521 	if (ath_tid_has_buffered(tid)) {
1522 		ath_tx_queue_tid(txq, tid);
1523 		ath_txq_schedule(sc, txq);
1524 	}
1525 
1526 	ath_txq_unlock_complete(sc, txq);
1527 }
1528 
1529 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1530 				   struct ieee80211_sta *sta,
1531 				   u16 tids, int nframes,
1532 				   enum ieee80211_frame_release_type reason,
1533 				   bool more_data)
1534 {
1535 	struct ath_softc *sc = hw->priv;
1536 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1537 	struct ath_txq *txq = sc->tx.uapsdq;
1538 	struct ieee80211_tx_info *info;
1539 	struct list_head bf_q;
1540 	struct ath_buf *bf_tail = NULL, *bf;
1541 	struct sk_buff_head *tid_q;
1542 	int sent = 0;
1543 	int i;
1544 
1545 	INIT_LIST_HEAD(&bf_q);
1546 	for (i = 0; tids && nframes; i++, tids >>= 1) {
1547 		struct ath_atx_tid *tid;
1548 
1549 		if (!(tids & 1))
1550 			continue;
1551 
1552 		tid = ATH_AN_2_TID(an, i);
1553 		if (tid->paused)
1554 			continue;
1555 
1556 		ath_txq_lock(sc, tid->ac->txq);
1557 		while (nframes > 0) {
1558 			bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q);
1559 			if (!bf)
1560 				break;
1561 
1562 			__skb_unlink(bf->bf_mpdu, tid_q);
1563 			list_add_tail(&bf->list, &bf_q);
1564 			ath_set_rates(tid->an->vif, tid->an->sta, bf);
1565 			if (bf_isampdu(bf)) {
1566 				ath_tx_addto_baw(sc, tid, bf);
1567 				bf->bf_state.bf_type &= ~BUF_AGGR;
1568 			}
1569 			if (bf_tail)
1570 				bf_tail->bf_next = bf;
1571 
1572 			bf_tail = bf;
1573 			nframes--;
1574 			sent++;
1575 			TX_STAT_INC(txq->axq_qnum, a_queued_hw);
1576 
1577 			if (an->sta && !ath_tid_has_buffered(tid))
1578 				ieee80211_sta_set_buffered(an->sta, i, false);
1579 		}
1580 		ath_txq_unlock_complete(sc, tid->ac->txq);
1581 	}
1582 
1583 	if (list_empty(&bf_q))
1584 		return;
1585 
1586 	info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1587 	info->flags |= IEEE80211_TX_STATUS_EOSP;
1588 
1589 	bf = list_first_entry(&bf_q, struct ath_buf, list);
1590 	ath_txq_lock(sc, txq);
1591 	ath_tx_fill_desc(sc, bf, txq, 0);
1592 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1593 	ath_txq_unlock(sc, txq);
1594 }
1595 
1596 /********************/
1597 /* Queue Management */
1598 /********************/
1599 
1600 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1601 {
1602 	struct ath_hw *ah = sc->sc_ah;
1603 	struct ath9k_tx_queue_info qi;
1604 	static const int subtype_txq_to_hwq[] = {
1605 		[IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1606 		[IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1607 		[IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1608 		[IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1609 	};
1610 	int axq_qnum, i;
1611 
1612 	memset(&qi, 0, sizeof(qi));
1613 	qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1614 	qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1615 	qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1616 	qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1617 	qi.tqi_physCompBuf = 0;
1618 
1619 	/*
1620 	 * Enable interrupts only for EOL and DESC conditions.
1621 	 * We mark tx descriptors to receive a DESC interrupt
1622 	 * when a tx queue gets deep; otherwise waiting for the
1623 	 * EOL to reap descriptors.  Note that this is done to
1624 	 * reduce interrupt load and this only defers reaping
1625 	 * descriptors, never transmitting frames.  Aside from
1626 	 * reducing interrupts this also permits more concurrency.
1627 	 * The only potential downside is if the tx queue backs
1628 	 * up in which case the top half of the kernel may backup
1629 	 * due to a lack of tx descriptors.
1630 	 *
1631 	 * The UAPSD queue is an exception, since we take a desc-
1632 	 * based intr on the EOSP frames.
1633 	 */
1634 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1635 		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1636 	} else {
1637 		if (qtype == ATH9K_TX_QUEUE_UAPSD)
1638 			qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1639 		else
1640 			qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1641 					TXQ_FLAG_TXDESCINT_ENABLE;
1642 	}
1643 	axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1644 	if (axq_qnum == -1) {
1645 		/*
1646 		 * NB: don't print a message, this happens
1647 		 * normally on parts with too few tx queues
1648 		 */
1649 		return NULL;
1650 	}
1651 	if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1652 		struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1653 
1654 		txq->axq_qnum = axq_qnum;
1655 		txq->mac80211_qnum = -1;
1656 		txq->axq_link = NULL;
1657 		__skb_queue_head_init(&txq->complete_q);
1658 		INIT_LIST_HEAD(&txq->axq_q);
1659 		INIT_LIST_HEAD(&txq->axq_acq);
1660 		spin_lock_init(&txq->axq_lock);
1661 		txq->axq_depth = 0;
1662 		txq->axq_ampdu_depth = 0;
1663 		txq->axq_tx_inprogress = false;
1664 		sc->tx.txqsetup |= 1<<axq_qnum;
1665 
1666 		txq->txq_headidx = txq->txq_tailidx = 0;
1667 		for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1668 			INIT_LIST_HEAD(&txq->txq_fifo[i]);
1669 	}
1670 	return &sc->tx.txq[axq_qnum];
1671 }
1672 
1673 int ath_txq_update(struct ath_softc *sc, int qnum,
1674 		   struct ath9k_tx_queue_info *qinfo)
1675 {
1676 	struct ath_hw *ah = sc->sc_ah;
1677 	int error = 0;
1678 	struct ath9k_tx_queue_info qi;
1679 
1680 	BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1681 
1682 	ath9k_hw_get_txq_props(ah, qnum, &qi);
1683 	qi.tqi_aifs = qinfo->tqi_aifs;
1684 	qi.tqi_cwmin = qinfo->tqi_cwmin;
1685 	qi.tqi_cwmax = qinfo->tqi_cwmax;
1686 	qi.tqi_burstTime = qinfo->tqi_burstTime;
1687 	qi.tqi_readyTime = qinfo->tqi_readyTime;
1688 
1689 	if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1690 		ath_err(ath9k_hw_common(sc->sc_ah),
1691 			"Unable to update hardware queue %u!\n", qnum);
1692 		error = -EIO;
1693 	} else {
1694 		ath9k_hw_resettxqueue(ah, qnum);
1695 	}
1696 
1697 	return error;
1698 }
1699 
1700 int ath_cabq_update(struct ath_softc *sc)
1701 {
1702 	struct ath9k_tx_queue_info qi;
1703 	struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
1704 	int qnum = sc->beacon.cabq->axq_qnum;
1705 
1706 	ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1707 	/*
1708 	 * Ensure the readytime % is within the bounds.
1709 	 */
1710 	if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
1711 		sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
1712 	else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
1713 		sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
1714 
1715 	qi.tqi_readyTime = (cur_conf->beacon_interval *
1716 			    sc->config.cabqReadytime) / 100;
1717 	ath_txq_update(sc, qnum, &qi);
1718 
1719 	return 0;
1720 }
1721 
1722 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1723 			       struct list_head *list)
1724 {
1725 	struct ath_buf *bf, *lastbf;
1726 	struct list_head bf_head;
1727 	struct ath_tx_status ts;
1728 
1729 	memset(&ts, 0, sizeof(ts));
1730 	ts.ts_status = ATH9K_TX_FLUSH;
1731 	INIT_LIST_HEAD(&bf_head);
1732 
1733 	while (!list_empty(list)) {
1734 		bf = list_first_entry(list, struct ath_buf, list);
1735 
1736 		if (bf->bf_state.stale) {
1737 			list_del(&bf->list);
1738 
1739 			ath_tx_return_buffer(sc, bf);
1740 			continue;
1741 		}
1742 
1743 		lastbf = bf->bf_lastbf;
1744 		list_cut_position(&bf_head, list, &lastbf->list);
1745 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1746 	}
1747 }
1748 
1749 /*
1750  * Drain a given TX queue (could be Beacon or Data)
1751  *
1752  * This assumes output has been stopped and
1753  * we do not need to block ath_tx_tasklet.
1754  */
1755 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1756 {
1757 	ath_txq_lock(sc, txq);
1758 
1759 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1760 		int idx = txq->txq_tailidx;
1761 
1762 		while (!list_empty(&txq->txq_fifo[idx])) {
1763 			ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1764 
1765 			INCR(idx, ATH_TXFIFO_DEPTH);
1766 		}
1767 		txq->txq_tailidx = idx;
1768 	}
1769 
1770 	txq->axq_link = NULL;
1771 	txq->axq_tx_inprogress = false;
1772 	ath_drain_txq_list(sc, txq, &txq->axq_q);
1773 
1774 	ath_txq_unlock_complete(sc, txq);
1775 }
1776 
1777 bool ath_drain_all_txq(struct ath_softc *sc)
1778 {
1779 	struct ath_hw *ah = sc->sc_ah;
1780 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1781 	struct ath_txq *txq;
1782 	int i;
1783 	u32 npend = 0;
1784 
1785 	if (test_bit(SC_OP_INVALID, &sc->sc_flags))
1786 		return true;
1787 
1788 	ath9k_hw_abort_tx_dma(ah);
1789 
1790 	/* Check if any queue remains active */
1791 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1792 		if (!ATH_TXQ_SETUP(sc, i))
1793 			continue;
1794 
1795 		if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1796 			npend |= BIT(i);
1797 	}
1798 
1799 	if (npend)
1800 		ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1801 
1802 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1803 		if (!ATH_TXQ_SETUP(sc, i))
1804 			continue;
1805 
1806 		/*
1807 		 * The caller will resume queues with ieee80211_wake_queues.
1808 		 * Mark the queue as not stopped to prevent ath_tx_complete
1809 		 * from waking the queue too early.
1810 		 */
1811 		txq = &sc->tx.txq[i];
1812 		txq->stopped = false;
1813 		ath_draintxq(sc, txq);
1814 	}
1815 
1816 	return !npend;
1817 }
1818 
1819 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1820 {
1821 	ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1822 	sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1823 }
1824 
1825 /* For each axq_acq entry, for each tid, try to schedule packets
1826  * for transmit until ampdu_depth has reached min Q depth.
1827  */
1828 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1829 {
1830 	struct ath_atx_ac *ac, *last_ac;
1831 	struct ath_atx_tid *tid, *last_tid;
1832 	bool sent = false;
1833 
1834 	if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) ||
1835 	    list_empty(&txq->axq_acq))
1836 		return;
1837 
1838 	rcu_read_lock();
1839 
1840 	last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
1841 	while (!list_empty(&txq->axq_acq)) {
1842 		bool stop = false;
1843 
1844 		ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1845 		last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
1846 		list_del(&ac->list);
1847 		ac->sched = false;
1848 
1849 		while (!list_empty(&ac->tid_q)) {
1850 
1851 			tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
1852 					       list);
1853 			list_del(&tid->list);
1854 			tid->sched = false;
1855 
1856 			if (tid->paused)
1857 				continue;
1858 
1859 			if (ath_tx_sched_aggr(sc, txq, tid, &stop))
1860 				sent = true;
1861 
1862 			/*
1863 			 * add tid to round-robin queue if more frames
1864 			 * are pending for the tid
1865 			 */
1866 			if (ath_tid_has_buffered(tid))
1867 				ath_tx_queue_tid(txq, tid);
1868 
1869 			if (stop || tid == last_tid)
1870 				break;
1871 		}
1872 
1873 		if (!list_empty(&ac->tid_q) && !ac->sched) {
1874 			ac->sched = true;
1875 			list_add_tail(&ac->list, &txq->axq_acq);
1876 		}
1877 
1878 		if (stop)
1879 			break;
1880 
1881 		if (ac == last_ac) {
1882 			if (!sent)
1883 				break;
1884 
1885 			sent = false;
1886 			last_ac = list_entry(txq->axq_acq.prev,
1887 					     struct ath_atx_ac, list);
1888 		}
1889 	}
1890 
1891 	rcu_read_unlock();
1892 }
1893 
1894 /***********/
1895 /* TX, DMA */
1896 /***********/
1897 
1898 /*
1899  * Insert a chain of ath_buf (descriptors) on a txq and
1900  * assume the descriptors are already chained together by caller.
1901  */
1902 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1903 			     struct list_head *head, bool internal)
1904 {
1905 	struct ath_hw *ah = sc->sc_ah;
1906 	struct ath_common *common = ath9k_hw_common(ah);
1907 	struct ath_buf *bf, *bf_last;
1908 	bool puttxbuf = false;
1909 	bool edma;
1910 
1911 	/*
1912 	 * Insert the frame on the outbound list and
1913 	 * pass it on to the hardware.
1914 	 */
1915 
1916 	if (list_empty(head))
1917 		return;
1918 
1919 	edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1920 	bf = list_first_entry(head, struct ath_buf, list);
1921 	bf_last = list_entry(head->prev, struct ath_buf, list);
1922 
1923 	ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
1924 		txq->axq_qnum, txq->axq_depth);
1925 
1926 	if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
1927 		list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
1928 		INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
1929 		puttxbuf = true;
1930 	} else {
1931 		list_splice_tail_init(head, &txq->axq_q);
1932 
1933 		if (txq->axq_link) {
1934 			ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
1935 			ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
1936 				txq->axq_qnum, txq->axq_link,
1937 				ito64(bf->bf_daddr), bf->bf_desc);
1938 		} else if (!edma)
1939 			puttxbuf = true;
1940 
1941 		txq->axq_link = bf_last->bf_desc;
1942 	}
1943 
1944 	if (puttxbuf) {
1945 		TX_STAT_INC(txq->axq_qnum, puttxbuf);
1946 		ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1947 		ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
1948 			txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1949 	}
1950 
1951 	if (!edma) {
1952 		TX_STAT_INC(txq->axq_qnum, txstart);
1953 		ath9k_hw_txstart(ah, txq->axq_qnum);
1954 	}
1955 
1956 	if (!internal) {
1957 		while (bf) {
1958 			txq->axq_depth++;
1959 			if (bf_is_ampdu_not_probing(bf))
1960 				txq->axq_ampdu_depth++;
1961 
1962 			bf_last = bf->bf_lastbf;
1963 			bf = bf_last->bf_next;
1964 			bf_last->bf_next = NULL;
1965 		}
1966 	}
1967 }
1968 
1969 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1970 			       struct ath_atx_tid *tid, struct sk_buff *skb)
1971 {
1972 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1973 	struct ath_frame_info *fi = get_frame_info(skb);
1974 	struct list_head bf_head;
1975 	struct ath_buf *bf = fi->bf;
1976 
1977 	INIT_LIST_HEAD(&bf_head);
1978 	list_add_tail(&bf->list, &bf_head);
1979 	bf->bf_state.bf_type = 0;
1980 	if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
1981 		bf->bf_state.bf_type = BUF_AMPDU;
1982 		ath_tx_addto_baw(sc, tid, bf);
1983 	}
1984 
1985 	bf->bf_next = NULL;
1986 	bf->bf_lastbf = bf;
1987 	ath_tx_fill_desc(sc, bf, txq, fi->framelen);
1988 	ath_tx_txqaddbuf(sc, txq, &bf_head, false);
1989 	TX_STAT_INC(txq->axq_qnum, queued);
1990 }
1991 
1992 static void setup_frame_info(struct ieee80211_hw *hw,
1993 			     struct ieee80211_sta *sta,
1994 			     struct sk_buff *skb,
1995 			     int framelen)
1996 {
1997 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1998 	struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
1999 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2000 	const struct ieee80211_rate *rate;
2001 	struct ath_frame_info *fi = get_frame_info(skb);
2002 	struct ath_node *an = NULL;
2003 	enum ath9k_key_type keytype;
2004 	bool short_preamble = false;
2005 
2006 	/*
2007 	 * We check if Short Preamble is needed for the CTS rate by
2008 	 * checking the BSS's global flag.
2009 	 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
2010 	 */
2011 	if (tx_info->control.vif &&
2012 	    tx_info->control.vif->bss_conf.use_short_preamble)
2013 		short_preamble = true;
2014 
2015 	rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2016 	keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2017 
2018 	if (sta)
2019 		an = (struct ath_node *) sta->drv_priv;
2020 
2021 	memset(fi, 0, sizeof(*fi));
2022 	if (hw_key)
2023 		fi->keyix = hw_key->hw_key_idx;
2024 	else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2025 		fi->keyix = an->ps_key;
2026 	else
2027 		fi->keyix = ATH9K_TXKEYIX_INVALID;
2028 	fi->keytype = keytype;
2029 	fi->framelen = framelen;
2030 	fi->rtscts_rate = rate->hw_value;
2031 	if (short_preamble)
2032 		fi->rtscts_rate |= rate->hw_value_short;
2033 }
2034 
2035 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2036 {
2037 	struct ath_hw *ah = sc->sc_ah;
2038 	struct ath9k_channel *curchan = ah->curchan;
2039 
2040 	if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
2041 	    (curchan->channelFlags & CHANNEL_5GHZ) &&
2042 	    (chainmask == 0x7) && (rate < 0x90))
2043 		return 0x3;
2044 	else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2045 		 IS_CCK_RATE(rate))
2046 		return 0x2;
2047 	else
2048 		return chainmask;
2049 }
2050 
2051 /*
2052  * Assign a descriptor (and sequence number if necessary,
2053  * and map buffer for DMA. Frees skb on error
2054  */
2055 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2056 					   struct ath_txq *txq,
2057 					   struct ath_atx_tid *tid,
2058 					   struct sk_buff *skb)
2059 {
2060 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2061 	struct ath_frame_info *fi = get_frame_info(skb);
2062 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2063 	struct ath_buf *bf;
2064 	int fragno;
2065 	u16 seqno;
2066 
2067 	bf = ath_tx_get_buffer(sc);
2068 	if (!bf) {
2069 		ath_dbg(common, XMIT, "TX buffers are full\n");
2070 		return NULL;
2071 	}
2072 
2073 	ATH_TXBUF_RESET(bf);
2074 
2075 	if (tid) {
2076 		fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2077 		seqno = tid->seq_next;
2078 		hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2079 
2080 		if (fragno)
2081 			hdr->seq_ctrl |= cpu_to_le16(fragno);
2082 
2083 		if (!ieee80211_has_morefrags(hdr->frame_control))
2084 			INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2085 
2086 		bf->bf_state.seqno = seqno;
2087 	}
2088 
2089 	bf->bf_mpdu = skb;
2090 
2091 	bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2092 					 skb->len, DMA_TO_DEVICE);
2093 	if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2094 		bf->bf_mpdu = NULL;
2095 		bf->bf_buf_addr = 0;
2096 		ath_err(ath9k_hw_common(sc->sc_ah),
2097 			"dma_mapping_error() on TX\n");
2098 		ath_tx_return_buffer(sc, bf);
2099 		return NULL;
2100 	}
2101 
2102 	fi->bf = bf;
2103 
2104 	return bf;
2105 }
2106 
2107 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2108 			  struct ath_tx_control *txctl)
2109 {
2110 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2111 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2112 	struct ieee80211_sta *sta = txctl->sta;
2113 	struct ieee80211_vif *vif = info->control.vif;
2114 	struct ath_vif *avp;
2115 	struct ath_softc *sc = hw->priv;
2116 	int frmlen = skb->len + FCS_LEN;
2117 	int padpos, padsize;
2118 
2119 	/* NOTE:  sta can be NULL according to net/mac80211.h */
2120 	if (sta)
2121 		txctl->an = (struct ath_node *)sta->drv_priv;
2122 	else if (vif && ieee80211_is_data(hdr->frame_control)) {
2123 		avp = (void *)vif->drv_priv;
2124 		txctl->an = &avp->mcast_node;
2125 	}
2126 
2127 	if (info->control.hw_key)
2128 		frmlen += info->control.hw_key->icv_len;
2129 
2130 	/*
2131 	 * As a temporary workaround, assign seq# here; this will likely need
2132 	 * to be cleaned up to work better with Beacon transmission and virtual
2133 	 * BSSes.
2134 	 */
2135 	if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2136 		if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2137 			sc->tx.seq_no += 0x10;
2138 		hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2139 		hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2140 	}
2141 
2142 	if ((vif && vif->type != NL80211_IFTYPE_AP &&
2143 	            vif->type != NL80211_IFTYPE_AP_VLAN) ||
2144 	    !ieee80211_is_data(hdr->frame_control))
2145 		info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2146 
2147 	/* Add the padding after the header if this is not already done */
2148 	padpos = ieee80211_hdrlen(hdr->frame_control);
2149 	padsize = padpos & 3;
2150 	if (padsize && skb->len > padpos) {
2151 		if (skb_headroom(skb) < padsize)
2152 			return -ENOMEM;
2153 
2154 		skb_push(skb, padsize);
2155 		memmove(skb->data, skb->data + padsize, padpos);
2156 	}
2157 
2158 	setup_frame_info(hw, sta, skb, frmlen);
2159 	return 0;
2160 }
2161 
2162 
2163 /* Upon failure caller should free skb */
2164 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2165 		 struct ath_tx_control *txctl)
2166 {
2167 	struct ieee80211_hdr *hdr;
2168 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2169 	struct ieee80211_sta *sta = txctl->sta;
2170 	struct ieee80211_vif *vif = info->control.vif;
2171 	struct ath_softc *sc = hw->priv;
2172 	struct ath_txq *txq = txctl->txq;
2173 	struct ath_atx_tid *tid = NULL;
2174 	struct ath_buf *bf;
2175 	int q;
2176 	int ret;
2177 
2178 	ret = ath_tx_prepare(hw, skb, txctl);
2179 	if (ret)
2180 	    return ret;
2181 
2182 	hdr = (struct ieee80211_hdr *) skb->data;
2183 	/*
2184 	 * At this point, the vif, hw_key and sta pointers in the tx control
2185 	 * info are no longer valid (overwritten by the ath_frame_info data.
2186 	 */
2187 
2188 	q = skb_get_queue_mapping(skb);
2189 
2190 	ath_txq_lock(sc, txq);
2191 	if (txq == sc->tx.txq_map[q] &&
2192 	    ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
2193 	    !txq->stopped) {
2194 		ieee80211_stop_queue(sc->hw, q);
2195 		txq->stopped = true;
2196 	}
2197 
2198 	if (info->flags & IEEE80211_TX_CTL_PS_RESPONSE) {
2199 		ath_txq_unlock(sc, txq);
2200 		txq = sc->tx.uapsdq;
2201 		ath_txq_lock(sc, txq);
2202 	} else if (txctl->an &&
2203 		   ieee80211_is_data_present(hdr->frame_control)) {
2204 		tid = ath_get_skb_tid(sc, txctl->an, skb);
2205 
2206 		WARN_ON(tid->ac->txq != txctl->txq);
2207 
2208 		if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
2209 			tid->ac->clear_ps_filter = true;
2210 
2211 		/*
2212 		 * Add this frame to software queue for scheduling later
2213 		 * for aggregation.
2214 		 */
2215 		TX_STAT_INC(txq->axq_qnum, a_queued_sw);
2216 		__skb_queue_tail(&tid->buf_q, skb);
2217 		if (!txctl->an->sleeping)
2218 			ath_tx_queue_tid(txq, tid);
2219 
2220 		ath_txq_schedule(sc, txq);
2221 		goto out;
2222 	}
2223 
2224 	bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2225 	if (!bf) {
2226 		ath_txq_skb_done(sc, txq, skb);
2227 		if (txctl->paprd)
2228 			dev_kfree_skb_any(skb);
2229 		else
2230 			ieee80211_free_txskb(sc->hw, skb);
2231 		goto out;
2232 	}
2233 
2234 	bf->bf_state.bfs_paprd = txctl->paprd;
2235 
2236 	if (txctl->paprd)
2237 		bf->bf_state.bfs_paprd_timestamp = jiffies;
2238 
2239 	ath_set_rates(vif, sta, bf);
2240 	ath_tx_send_normal(sc, txq, tid, skb);
2241 
2242 out:
2243 	ath_txq_unlock(sc, txq);
2244 
2245 	return 0;
2246 }
2247 
2248 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2249 		 struct sk_buff *skb)
2250 {
2251 	struct ath_softc *sc = hw->priv;
2252 	struct ath_tx_control txctl = {
2253 		.txq = sc->beacon.cabq
2254 	};
2255 	struct ath_tx_info info = {};
2256 	struct ieee80211_hdr *hdr;
2257 	struct ath_buf *bf_tail = NULL;
2258 	struct ath_buf *bf;
2259 	LIST_HEAD(bf_q);
2260 	int duration = 0;
2261 	int max_duration;
2262 
2263 	max_duration =
2264 		sc->cur_beacon_conf.beacon_interval * 1000 *
2265 		sc->cur_beacon_conf.dtim_period / ATH_BCBUF;
2266 
2267 	do {
2268 		struct ath_frame_info *fi = get_frame_info(skb);
2269 
2270 		if (ath_tx_prepare(hw, skb, &txctl))
2271 			break;
2272 
2273 		bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2274 		if (!bf)
2275 			break;
2276 
2277 		bf->bf_lastbf = bf;
2278 		ath_set_rates(vif, NULL, bf);
2279 		ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2280 		duration += info.rates[0].PktDuration;
2281 		if (bf_tail)
2282 			bf_tail->bf_next = bf;
2283 
2284 		list_add_tail(&bf->list, &bf_q);
2285 		bf_tail = bf;
2286 		skb = NULL;
2287 
2288 		if (duration > max_duration)
2289 			break;
2290 
2291 		skb = ieee80211_get_buffered_bc(hw, vif);
2292 	} while(skb);
2293 
2294 	if (skb)
2295 		ieee80211_free_txskb(hw, skb);
2296 
2297 	if (list_empty(&bf_q))
2298 		return;
2299 
2300 	bf = list_first_entry(&bf_q, struct ath_buf, list);
2301 	hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
2302 
2303 	if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) {
2304 		hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA;
2305 		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
2306 			sizeof(*hdr), DMA_TO_DEVICE);
2307 	}
2308 
2309 	ath_txq_lock(sc, txctl.txq);
2310 	ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2311 	ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2312 	TX_STAT_INC(txctl.txq->axq_qnum, queued);
2313 	ath_txq_unlock(sc, txctl.txq);
2314 }
2315 
2316 /*****************/
2317 /* TX Completion */
2318 /*****************/
2319 
2320 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2321 			    int tx_flags, struct ath_txq *txq)
2322 {
2323 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2324 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2325 	struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2326 	int padpos, padsize;
2327 	unsigned long flags;
2328 
2329 	ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2330 
2331 	if (sc->sc_ah->caldata)
2332 		sc->sc_ah->caldata->paprd_packet_sent = true;
2333 
2334 	if (!(tx_flags & ATH_TX_ERROR))
2335 		/* Frame was ACKed */
2336 		tx_info->flags |= IEEE80211_TX_STAT_ACK;
2337 
2338 	padpos = ieee80211_hdrlen(hdr->frame_control);
2339 	padsize = padpos & 3;
2340 	if (padsize && skb->len>padpos+padsize) {
2341 		/*
2342 		 * Remove MAC header padding before giving the frame back to
2343 		 * mac80211.
2344 		 */
2345 		memmove(skb->data + padsize, skb->data, padpos);
2346 		skb_pull(skb, padsize);
2347 	}
2348 
2349 	spin_lock_irqsave(&sc->sc_pm_lock, flags);
2350 	if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2351 		sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2352 		ath_dbg(common, PS,
2353 			"Going back to sleep after having received TX status (0x%lx)\n",
2354 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
2355 					PS_WAIT_FOR_CAB |
2356 					PS_WAIT_FOR_PSPOLL_DATA |
2357 					PS_WAIT_FOR_TX_ACK));
2358 	}
2359 	spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2360 
2361 	__skb_queue_tail(&txq->complete_q, skb);
2362 	ath_txq_skb_done(sc, txq, skb);
2363 }
2364 
2365 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2366 				struct ath_txq *txq, struct list_head *bf_q,
2367 				struct ath_tx_status *ts, int txok)
2368 {
2369 	struct sk_buff *skb = bf->bf_mpdu;
2370 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2371 	unsigned long flags;
2372 	int tx_flags = 0;
2373 
2374 	if (!txok)
2375 		tx_flags |= ATH_TX_ERROR;
2376 
2377 	if (ts->ts_status & ATH9K_TXERR_FILT)
2378 		tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2379 
2380 	dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2381 	bf->bf_buf_addr = 0;
2382 
2383 	if (bf->bf_state.bfs_paprd) {
2384 		if (time_after(jiffies,
2385 				bf->bf_state.bfs_paprd_timestamp +
2386 				msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2387 			dev_kfree_skb_any(skb);
2388 		else
2389 			complete(&sc->paprd_complete);
2390 	} else {
2391 		ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2392 		ath_tx_complete(sc, skb, tx_flags, txq);
2393 	}
2394 	/* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2395 	 * accidentally reference it later.
2396 	 */
2397 	bf->bf_mpdu = NULL;
2398 
2399 	/*
2400 	 * Return the list of ath_buf of this mpdu to free queue
2401 	 */
2402 	spin_lock_irqsave(&sc->tx.txbuflock, flags);
2403 	list_splice_tail_init(bf_q, &sc->tx.txbuf);
2404 	spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2405 }
2406 
2407 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2408 			     struct ath_tx_status *ts, int nframes, int nbad,
2409 			     int txok)
2410 {
2411 	struct sk_buff *skb = bf->bf_mpdu;
2412 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2413 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2414 	struct ieee80211_hw *hw = sc->hw;
2415 	struct ath_hw *ah = sc->sc_ah;
2416 	u8 i, tx_rateindex;
2417 
2418 	if (txok)
2419 		tx_info->status.ack_signal = ts->ts_rssi;
2420 
2421 	tx_rateindex = ts->ts_rateindex;
2422 	WARN_ON(tx_rateindex >= hw->max_rates);
2423 
2424 	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2425 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2426 
2427 		BUG_ON(nbad > nframes);
2428 	}
2429 	tx_info->status.ampdu_len = nframes;
2430 	tx_info->status.ampdu_ack_len = nframes - nbad;
2431 
2432 	if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2433 	    (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2434 		/*
2435 		 * If an underrun error is seen assume it as an excessive
2436 		 * retry only if max frame trigger level has been reached
2437 		 * (2 KB for single stream, and 4 KB for dual stream).
2438 		 * Adjust the long retry as if the frame was tried
2439 		 * hw->max_rate_tries times to affect how rate control updates
2440 		 * PER for the failed rate.
2441 		 * In case of congestion on the bus penalizing this type of
2442 		 * underruns should help hardware actually transmit new frames
2443 		 * successfully by eventually preferring slower rates.
2444 		 * This itself should also alleviate congestion on the bus.
2445 		 */
2446 		if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2447 		                             ATH9K_TX_DELIM_UNDERRUN)) &&
2448 		    ieee80211_is_data(hdr->frame_control) &&
2449 		    ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2450 			tx_info->status.rates[tx_rateindex].count =
2451 				hw->max_rate_tries;
2452 	}
2453 
2454 	for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2455 		tx_info->status.rates[i].count = 0;
2456 		tx_info->status.rates[i].idx = -1;
2457 	}
2458 
2459 	tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2460 }
2461 
2462 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2463 {
2464 	struct ath_hw *ah = sc->sc_ah;
2465 	struct ath_common *common = ath9k_hw_common(ah);
2466 	struct ath_buf *bf, *lastbf, *bf_held = NULL;
2467 	struct list_head bf_head;
2468 	struct ath_desc *ds;
2469 	struct ath_tx_status ts;
2470 	int status;
2471 
2472 	ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2473 		txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2474 		txq->axq_link);
2475 
2476 	ath_txq_lock(sc, txq);
2477 	for (;;) {
2478 		if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
2479 			break;
2480 
2481 		if (list_empty(&txq->axq_q)) {
2482 			txq->axq_link = NULL;
2483 			ath_txq_schedule(sc, txq);
2484 			break;
2485 		}
2486 		bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2487 
2488 		/*
2489 		 * There is a race condition that a BH gets scheduled
2490 		 * after sw writes TxE and before hw re-load the last
2491 		 * descriptor to get the newly chained one.
2492 		 * Software must keep the last DONE descriptor as a
2493 		 * holding descriptor - software does so by marking
2494 		 * it with the STALE flag.
2495 		 */
2496 		bf_held = NULL;
2497 		if (bf->bf_state.stale) {
2498 			bf_held = bf;
2499 			if (list_is_last(&bf_held->list, &txq->axq_q))
2500 				break;
2501 
2502 			bf = list_entry(bf_held->list.next, struct ath_buf,
2503 					list);
2504 		}
2505 
2506 		lastbf = bf->bf_lastbf;
2507 		ds = lastbf->bf_desc;
2508 
2509 		memset(&ts, 0, sizeof(ts));
2510 		status = ath9k_hw_txprocdesc(ah, ds, &ts);
2511 		if (status == -EINPROGRESS)
2512 			break;
2513 
2514 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2515 
2516 		/*
2517 		 * Remove ath_buf's of the same transmit unit from txq,
2518 		 * however leave the last descriptor back as the holding
2519 		 * descriptor for hw.
2520 		 */
2521 		lastbf->bf_state.stale = true;
2522 		INIT_LIST_HEAD(&bf_head);
2523 		if (!list_is_singular(&lastbf->list))
2524 			list_cut_position(&bf_head,
2525 				&txq->axq_q, lastbf->list.prev);
2526 
2527 		if (bf_held) {
2528 			list_del(&bf_held->list);
2529 			ath_tx_return_buffer(sc, bf_held);
2530 		}
2531 
2532 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2533 	}
2534 	ath_txq_unlock_complete(sc, txq);
2535 }
2536 
2537 void ath_tx_tasklet(struct ath_softc *sc)
2538 {
2539 	struct ath_hw *ah = sc->sc_ah;
2540 	u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2541 	int i;
2542 
2543 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2544 		if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2545 			ath_tx_processq(sc, &sc->tx.txq[i]);
2546 	}
2547 }
2548 
2549 void ath_tx_edma_tasklet(struct ath_softc *sc)
2550 {
2551 	struct ath_tx_status ts;
2552 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2553 	struct ath_hw *ah = sc->sc_ah;
2554 	struct ath_txq *txq;
2555 	struct ath_buf *bf, *lastbf;
2556 	struct list_head bf_head;
2557 	struct list_head *fifo_list;
2558 	int status;
2559 
2560 	for (;;) {
2561 		if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
2562 			break;
2563 
2564 		status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2565 		if (status == -EINPROGRESS)
2566 			break;
2567 		if (status == -EIO) {
2568 			ath_dbg(common, XMIT, "Error processing tx status\n");
2569 			break;
2570 		}
2571 
2572 		/* Process beacon completions separately */
2573 		if (ts.qid == sc->beacon.beaconq) {
2574 			sc->beacon.tx_processed = true;
2575 			sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2576 
2577 			ath9k_csa_is_finished(sc);
2578 			continue;
2579 		}
2580 
2581 		txq = &sc->tx.txq[ts.qid];
2582 
2583 		ath_txq_lock(sc, txq);
2584 
2585 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2586 
2587 		fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2588 		if (list_empty(fifo_list)) {
2589 			ath_txq_unlock(sc, txq);
2590 			return;
2591 		}
2592 
2593 		bf = list_first_entry(fifo_list, struct ath_buf, list);
2594 		if (bf->bf_state.stale) {
2595 			list_del(&bf->list);
2596 			ath_tx_return_buffer(sc, bf);
2597 			bf = list_first_entry(fifo_list, struct ath_buf, list);
2598 		}
2599 
2600 		lastbf = bf->bf_lastbf;
2601 
2602 		INIT_LIST_HEAD(&bf_head);
2603 		if (list_is_last(&lastbf->list, fifo_list)) {
2604 			list_splice_tail_init(fifo_list, &bf_head);
2605 			INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2606 
2607 			if (!list_empty(&txq->axq_q)) {
2608 				struct list_head bf_q;
2609 
2610 				INIT_LIST_HEAD(&bf_q);
2611 				txq->axq_link = NULL;
2612 				list_splice_tail_init(&txq->axq_q, &bf_q);
2613 				ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2614 			}
2615 		} else {
2616 			lastbf->bf_state.stale = true;
2617 			if (bf != lastbf)
2618 				list_cut_position(&bf_head, fifo_list,
2619 						  lastbf->list.prev);
2620 		}
2621 
2622 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2623 		ath_txq_unlock_complete(sc, txq);
2624 	}
2625 }
2626 
2627 /*****************/
2628 /* Init, Cleanup */
2629 /*****************/
2630 
2631 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2632 {
2633 	struct ath_descdma *dd = &sc->txsdma;
2634 	u8 txs_len = sc->sc_ah->caps.txs_len;
2635 
2636 	dd->dd_desc_len = size * txs_len;
2637 	dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2638 					  &dd->dd_desc_paddr, GFP_KERNEL);
2639 	if (!dd->dd_desc)
2640 		return -ENOMEM;
2641 
2642 	return 0;
2643 }
2644 
2645 static int ath_tx_edma_init(struct ath_softc *sc)
2646 {
2647 	int err;
2648 
2649 	err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2650 	if (!err)
2651 		ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2652 					  sc->txsdma.dd_desc_paddr,
2653 					  ATH_TXSTATUS_RING_SIZE);
2654 
2655 	return err;
2656 }
2657 
2658 int ath_tx_init(struct ath_softc *sc, int nbufs)
2659 {
2660 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2661 	int error = 0;
2662 
2663 	spin_lock_init(&sc->tx.txbuflock);
2664 
2665 	error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2666 				  "tx", nbufs, 1, 1);
2667 	if (error != 0) {
2668 		ath_err(common,
2669 			"Failed to allocate tx descriptors: %d\n", error);
2670 		return error;
2671 	}
2672 
2673 	error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2674 				  "beacon", ATH_BCBUF, 1, 1);
2675 	if (error != 0) {
2676 		ath_err(common,
2677 			"Failed to allocate beacon descriptors: %d\n", error);
2678 		return error;
2679 	}
2680 
2681 	INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2682 
2683 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2684 		error = ath_tx_edma_init(sc);
2685 
2686 	return error;
2687 }
2688 
2689 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2690 {
2691 	struct ath_atx_tid *tid;
2692 	struct ath_atx_ac *ac;
2693 	int tidno, acno;
2694 
2695 	for (tidno = 0, tid = &an->tid[tidno];
2696 	     tidno < IEEE80211_NUM_TIDS;
2697 	     tidno++, tid++) {
2698 		tid->an        = an;
2699 		tid->tidno     = tidno;
2700 		tid->seq_start = tid->seq_next = 0;
2701 		tid->baw_size  = WME_MAX_BA;
2702 		tid->baw_head  = tid->baw_tail = 0;
2703 		tid->sched     = false;
2704 		tid->paused    = false;
2705 		tid->active	   = false;
2706 		__skb_queue_head_init(&tid->buf_q);
2707 		__skb_queue_head_init(&tid->retry_q);
2708 		acno = TID_TO_WME_AC(tidno);
2709 		tid->ac = &an->ac[acno];
2710 	}
2711 
2712 	for (acno = 0, ac = &an->ac[acno];
2713 	     acno < IEEE80211_NUM_ACS; acno++, ac++) {
2714 		ac->sched    = false;
2715 		ac->clear_ps_filter = true;
2716 		ac->txq = sc->tx.txq_map[acno];
2717 		INIT_LIST_HEAD(&ac->tid_q);
2718 	}
2719 }
2720 
2721 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2722 {
2723 	struct ath_atx_ac *ac;
2724 	struct ath_atx_tid *tid;
2725 	struct ath_txq *txq;
2726 	int tidno;
2727 
2728 	for (tidno = 0, tid = &an->tid[tidno];
2729 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
2730 
2731 		ac = tid->ac;
2732 		txq = ac->txq;
2733 
2734 		ath_txq_lock(sc, txq);
2735 
2736 		if (tid->sched) {
2737 			list_del(&tid->list);
2738 			tid->sched = false;
2739 		}
2740 
2741 		if (ac->sched) {
2742 			list_del(&ac->list);
2743 			tid->ac->sched = false;
2744 		}
2745 
2746 		ath_tid_drain(sc, txq, tid);
2747 		tid->active = false;
2748 
2749 		ath_txq_unlock(sc, txq);
2750 	}
2751 }
2752