xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/xmit.c (revision c4a54f70)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20 
21 #define BITS_PER_BYTE           8
22 #define OFDM_PLCP_BITS          22
23 #define HT_RC_2_STREAMS(_rc)    ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF                   8
25 #define L_LTF                   8
26 #define L_SIG                   4
27 #define HT_SIG                  8
28 #define HT_STF                  4
29 #define HT_LTF(_ns)             (4 * (_ns))
30 #define SYMBOL_TIME(_ns)        ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5)  /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t)         ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t)  (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36 
37 
38 static u16 bits_per_symbol[][2] = {
39 	/* 20MHz 40MHz */
40 	{    26,   54 },     /*  0: BPSK */
41 	{    52,  108 },     /*  1: QPSK 1/2 */
42 	{    78,  162 },     /*  2: QPSK 3/4 */
43 	{   104,  216 },     /*  3: 16-QAM 1/2 */
44 	{   156,  324 },     /*  4: 16-QAM 3/4 */
45 	{   208,  432 },     /*  5: 64-QAM 2/3 */
46 	{   234,  486 },     /*  6: 64-QAM 3/4 */
47 	{   260,  540 },     /*  7: 64-QAM 5/6 */
48 };
49 
50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
51 			       struct ath_atx_tid *tid, struct sk_buff *skb);
52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
53 			    int tx_flags, struct ath_txq *txq,
54 			    struct ieee80211_sta *sta);
55 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
56 				struct ath_txq *txq, struct list_head *bf_q,
57 				struct ieee80211_sta *sta,
58 				struct ath_tx_status *ts, int txok);
59 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
60 			     struct list_head *head, bool internal);
61 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
62 			     struct ath_tx_status *ts, int nframes, int nbad,
63 			     int txok);
64 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
65 			      struct ath_buf *bf);
66 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
67 					   struct ath_txq *txq,
68 					   struct ath_atx_tid *tid,
69 					   struct sk_buff *skb);
70 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
71 			  struct ath_tx_control *txctl);
72 
73 enum {
74 	MCS_HT20,
75 	MCS_HT20_SGI,
76 	MCS_HT40,
77 	MCS_HT40_SGI,
78 };
79 
80 /*********************/
81 /* Aggregation logic */
82 /*********************/
83 
84 static void ath_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb)
85 {
86 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
87 	struct ieee80211_sta *sta = info->status.status_driver_data[0];
88 
89 	if (info->flags & (IEEE80211_TX_CTL_REQ_TX_STATUS |
90 			   IEEE80211_TX_STATUS_EOSP)) {
91 		ieee80211_tx_status(hw, skb);
92 		return;
93 	}
94 
95 	if (sta)
96 		ieee80211_tx_status_noskb(hw, sta, info);
97 
98 	dev_kfree_skb(skb);
99 }
100 
101 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
102 	__releases(&txq->axq_lock)
103 {
104 	struct ieee80211_hw *hw = sc->hw;
105 	struct sk_buff_head q;
106 	struct sk_buff *skb;
107 
108 	__skb_queue_head_init(&q);
109 	skb_queue_splice_init(&txq->complete_q, &q);
110 	spin_unlock_bh(&txq->axq_lock);
111 
112 	while ((skb = __skb_dequeue(&q)))
113 		ath_tx_status(hw, skb);
114 }
115 
116 void ath_tx_queue_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
117 {
118 	struct ieee80211_txq *queue =
119 		container_of((void *)tid, struct ieee80211_txq, drv_priv);
120 
121 	ieee80211_schedule_txq(sc->hw, queue);
122 }
123 
124 void ath9k_wake_tx_queue(struct ieee80211_hw *hw, struct ieee80211_txq *queue)
125 {
126 	struct ath_softc *sc = hw->priv;
127 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
128 	struct ath_atx_tid *tid = (struct ath_atx_tid *) queue->drv_priv;
129 	struct ath_txq *txq = tid->txq;
130 
131 	ath_dbg(common, QUEUE, "Waking TX queue: %pM (%d)\n",
132 		queue->sta ? queue->sta->addr : queue->vif->addr,
133 		tid->tidno);
134 
135 	ath_txq_lock(sc, txq);
136 	ath_txq_schedule(sc, txq);
137 	ath_txq_unlock(sc, txq);
138 }
139 
140 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
141 {
142 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
143 	BUILD_BUG_ON(sizeof(struct ath_frame_info) >
144 		     sizeof(tx_info->rate_driver_data));
145 	return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
146 }
147 
148 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
149 {
150 	if (!tid->an->sta)
151 		return;
152 
153 	ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
154 			   seqno << IEEE80211_SEQ_SEQ_SHIFT);
155 }
156 
157 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
158 			  struct ath_buf *bf)
159 {
160 	ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
161 			       ARRAY_SIZE(bf->rates));
162 }
163 
164 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
165 			     struct sk_buff *skb)
166 {
167 	struct ath_frame_info *fi = get_frame_info(skb);
168 	int q = fi->txq;
169 
170 	if (q < 0)
171 		return;
172 
173 	txq = sc->tx.txq_map[q];
174 	if (WARN_ON(--txq->pending_frames < 0))
175 		txq->pending_frames = 0;
176 
177 }
178 
179 static struct ath_atx_tid *
180 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
181 {
182 	u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
183 	return ATH_AN_2_TID(an, tidno);
184 }
185 
186 static int
187 ath_tid_pull(struct ath_atx_tid *tid, struct sk_buff **skbuf)
188 {
189 	struct ieee80211_txq *txq = container_of((void*)tid, struct ieee80211_txq, drv_priv);
190 	struct ath_softc *sc = tid->an->sc;
191 	struct ieee80211_hw *hw = sc->hw;
192 	struct ath_tx_control txctl = {
193 		.txq = tid->txq,
194 		.sta = tid->an->sta,
195 	};
196 	struct sk_buff *skb;
197 	struct ath_frame_info *fi;
198 	int q, ret;
199 
200 	skb = ieee80211_tx_dequeue(hw, txq);
201 	if (!skb)
202 		return -ENOENT;
203 
204 	ret = ath_tx_prepare(hw, skb, &txctl);
205 	if (ret) {
206 		ieee80211_free_txskb(hw, skb);
207 		return ret;
208 	}
209 
210 	q = skb_get_queue_mapping(skb);
211 	if (tid->txq == sc->tx.txq_map[q]) {
212 		fi = get_frame_info(skb);
213 		fi->txq = q;
214 		++tid->txq->pending_frames;
215 	}
216 
217 	*skbuf = skb;
218 	return 0;
219 }
220 
221 static int ath_tid_dequeue(struct ath_atx_tid *tid,
222 			   struct sk_buff **skb)
223 {
224 	int ret = 0;
225 	*skb = __skb_dequeue(&tid->retry_q);
226 	if (!*skb)
227 		ret = ath_tid_pull(tid, skb);
228 
229 	return ret;
230 }
231 
232 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
233 {
234 	struct ath_txq *txq = tid->txq;
235 	struct sk_buff *skb;
236 	struct ath_buf *bf;
237 	struct list_head bf_head;
238 	struct ath_tx_status ts;
239 	struct ath_frame_info *fi;
240 	bool sendbar = false;
241 
242 	INIT_LIST_HEAD(&bf_head);
243 
244 	memset(&ts, 0, sizeof(ts));
245 
246 	while ((skb = __skb_dequeue(&tid->retry_q))) {
247 		fi = get_frame_info(skb);
248 		bf = fi->bf;
249 		if (!bf) {
250 			ath_txq_skb_done(sc, txq, skb);
251 			ieee80211_free_txskb(sc->hw, skb);
252 			continue;
253 		}
254 
255 		if (fi->baw_tracked) {
256 			ath_tx_update_baw(sc, tid, bf);
257 			sendbar = true;
258 		}
259 
260 		list_add_tail(&bf->list, &bf_head);
261 		ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
262 	}
263 
264 	if (sendbar) {
265 		ath_txq_unlock(sc, txq);
266 		ath_send_bar(tid, tid->seq_start);
267 		ath_txq_lock(sc, txq);
268 	}
269 }
270 
271 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
272 			      struct ath_buf *bf)
273 {
274 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
275 	u16 seqno = bf->bf_state.seqno;
276 	int index, cindex;
277 
278 	if (!fi->baw_tracked)
279 		return;
280 
281 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
282 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
283 
284 	__clear_bit(cindex, tid->tx_buf);
285 
286 	while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
287 		INCR(tid->seq_start, IEEE80211_SEQ_MAX);
288 		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
289 		if (tid->bar_index >= 0)
290 			tid->bar_index--;
291 	}
292 }
293 
294 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
295 			     struct ath_buf *bf)
296 {
297 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
298 	u16 seqno = bf->bf_state.seqno;
299 	int index, cindex;
300 
301 	if (fi->baw_tracked)
302 		return;
303 
304 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
305 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
306 	__set_bit(cindex, tid->tx_buf);
307 	fi->baw_tracked = 1;
308 
309 	if (index >= ((tid->baw_tail - tid->baw_head) &
310 		(ATH_TID_MAX_BUFS - 1))) {
311 		tid->baw_tail = cindex;
312 		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
313 	}
314 }
315 
316 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
317 			  struct ath_atx_tid *tid)
318 
319 {
320 	struct sk_buff *skb;
321 	struct ath_buf *bf;
322 	struct list_head bf_head;
323 	struct ath_tx_status ts;
324 	struct ath_frame_info *fi;
325 	int ret;
326 
327 	memset(&ts, 0, sizeof(ts));
328 	INIT_LIST_HEAD(&bf_head);
329 
330 	while ((ret = ath_tid_dequeue(tid, &skb)) == 0) {
331 		fi = get_frame_info(skb);
332 		bf = fi->bf;
333 
334 		if (!bf) {
335 			ath_tx_complete(sc, skb, ATH_TX_ERROR, txq, NULL);
336 			continue;
337 		}
338 
339 		list_add_tail(&bf->list, &bf_head);
340 		ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
341 	}
342 }
343 
344 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
345 			     struct sk_buff *skb, int count)
346 {
347 	struct ath_frame_info *fi = get_frame_info(skb);
348 	struct ath_buf *bf = fi->bf;
349 	struct ieee80211_hdr *hdr;
350 	int prev = fi->retries;
351 
352 	TX_STAT_INC(sc, txq->axq_qnum, a_retries);
353 	fi->retries += count;
354 
355 	if (prev > 0)
356 		return;
357 
358 	hdr = (struct ieee80211_hdr *)skb->data;
359 	hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
360 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
361 		sizeof(*hdr), DMA_TO_DEVICE);
362 }
363 
364 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
365 {
366 	struct ath_buf *bf = NULL;
367 
368 	spin_lock_bh(&sc->tx.txbuflock);
369 
370 	if (unlikely(list_empty(&sc->tx.txbuf))) {
371 		spin_unlock_bh(&sc->tx.txbuflock);
372 		return NULL;
373 	}
374 
375 	bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
376 	list_del(&bf->list);
377 
378 	spin_unlock_bh(&sc->tx.txbuflock);
379 
380 	return bf;
381 }
382 
383 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
384 {
385 	spin_lock_bh(&sc->tx.txbuflock);
386 	list_add_tail(&bf->list, &sc->tx.txbuf);
387 	spin_unlock_bh(&sc->tx.txbuflock);
388 }
389 
390 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
391 {
392 	struct ath_buf *tbf;
393 
394 	tbf = ath_tx_get_buffer(sc);
395 	if (WARN_ON(!tbf))
396 		return NULL;
397 
398 	ATH_TXBUF_RESET(tbf);
399 
400 	tbf->bf_mpdu = bf->bf_mpdu;
401 	tbf->bf_buf_addr = bf->bf_buf_addr;
402 	memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
403 	tbf->bf_state = bf->bf_state;
404 	tbf->bf_state.stale = false;
405 
406 	return tbf;
407 }
408 
409 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
410 			        struct ath_tx_status *ts, int txok,
411 			        int *nframes, int *nbad)
412 {
413 	u16 seq_st = 0;
414 	u32 ba[WME_BA_BMP_SIZE >> 5];
415 	int ba_index;
416 	int isaggr = 0;
417 
418 	*nbad = 0;
419 	*nframes = 0;
420 
421 	isaggr = bf_isaggr(bf);
422 	if (isaggr) {
423 		seq_st = ts->ts_seqnum;
424 		memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
425 	}
426 
427 	while (bf) {
428 		ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
429 
430 		(*nframes)++;
431 		if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
432 			(*nbad)++;
433 
434 		bf = bf->bf_next;
435 	}
436 }
437 
438 
439 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
440 				 struct ath_buf *bf, struct list_head *bf_q,
441 				 struct ieee80211_sta *sta,
442 				 struct ath_atx_tid *tid,
443 				 struct ath_tx_status *ts, int txok)
444 {
445 	struct ath_node *an = NULL;
446 	struct sk_buff *skb;
447 	struct ieee80211_tx_info *tx_info;
448 	struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
449 	struct list_head bf_head;
450 	struct sk_buff_head bf_pending;
451 	u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
452 	u32 ba[WME_BA_BMP_SIZE >> 5];
453 	int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
454 	bool rc_update = true, isba;
455 	struct ieee80211_tx_rate rates[4];
456 	struct ath_frame_info *fi;
457 	int nframes;
458 	bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
459 	int i, retries;
460 	int bar_index = -1;
461 
462 	skb = bf->bf_mpdu;
463 	tx_info = IEEE80211_SKB_CB(skb);
464 
465 	memcpy(rates, bf->rates, sizeof(rates));
466 
467 	retries = ts->ts_longretry + 1;
468 	for (i = 0; i < ts->ts_rateindex; i++)
469 		retries += rates[i].count;
470 
471 	if (!sta) {
472 		INIT_LIST_HEAD(&bf_head);
473 		while (bf) {
474 			bf_next = bf->bf_next;
475 
476 			if (!bf->bf_state.stale || bf_next != NULL)
477 				list_move_tail(&bf->list, &bf_head);
478 
479 			ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, ts, 0);
480 
481 			bf = bf_next;
482 		}
483 		return;
484 	}
485 
486 	an = (struct ath_node *)sta->drv_priv;
487 	seq_first = tid->seq_start;
488 	isba = ts->ts_flags & ATH9K_TX_BA;
489 
490 	/*
491 	 * The hardware occasionally sends a tx status for the wrong TID.
492 	 * In this case, the BA status cannot be considered valid and all
493 	 * subframes need to be retransmitted
494 	 *
495 	 * Only BlockAcks have a TID and therefore normal Acks cannot be
496 	 * checked
497 	 */
498 	if (isba && tid->tidno != ts->tid)
499 		txok = false;
500 
501 	isaggr = bf_isaggr(bf);
502 	memset(ba, 0, WME_BA_BMP_SIZE >> 3);
503 
504 	if (isaggr && txok) {
505 		if (ts->ts_flags & ATH9K_TX_BA) {
506 			seq_st = ts->ts_seqnum;
507 			memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
508 		} else {
509 			/*
510 			 * AR5416 can become deaf/mute when BA
511 			 * issue happens. Chip needs to be reset.
512 			 * But AP code may have sychronization issues
513 			 * when perform internal reset in this routine.
514 			 * Only enable reset in STA mode for now.
515 			 */
516 			if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
517 				needreset = 1;
518 		}
519 	}
520 
521 	__skb_queue_head_init(&bf_pending);
522 
523 	ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
524 	while (bf) {
525 		u16 seqno = bf->bf_state.seqno;
526 
527 		txfail = txpending = sendbar = 0;
528 		bf_next = bf->bf_next;
529 
530 		skb = bf->bf_mpdu;
531 		tx_info = IEEE80211_SKB_CB(skb);
532 		fi = get_frame_info(skb);
533 
534 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
535 		    !tid->active) {
536 			/*
537 			 * Outside of the current BlockAck window,
538 			 * maybe part of a previous session
539 			 */
540 			txfail = 1;
541 		} else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
542 			/* transmit completion, subframe is
543 			 * acked by block ack */
544 			acked_cnt++;
545 		} else if (!isaggr && txok) {
546 			/* transmit completion */
547 			acked_cnt++;
548 		} else if (flush) {
549 			txpending = 1;
550 		} else if (fi->retries < ATH_MAX_SW_RETRIES) {
551 			if (txok || !an->sleeping)
552 				ath_tx_set_retry(sc, txq, bf->bf_mpdu,
553 						 retries);
554 
555 			txpending = 1;
556 		} else {
557 			txfail = 1;
558 			txfail_cnt++;
559 			bar_index = max_t(int, bar_index,
560 				ATH_BA_INDEX(seq_first, seqno));
561 		}
562 
563 		/*
564 		 * Make sure the last desc is reclaimed if it
565 		 * not a holding desc.
566 		 */
567 		INIT_LIST_HEAD(&bf_head);
568 		if (bf_next != NULL || !bf_last->bf_state.stale)
569 			list_move_tail(&bf->list, &bf_head);
570 
571 		if (!txpending) {
572 			/*
573 			 * complete the acked-ones/xretried ones; update
574 			 * block-ack window
575 			 */
576 			ath_tx_update_baw(sc, tid, bf);
577 
578 			if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
579 				memcpy(tx_info->control.rates, rates, sizeof(rates));
580 				ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
581 				rc_update = false;
582 				if (bf == bf->bf_lastbf)
583 					ath_dynack_sample_tx_ts(sc->sc_ah,
584 								bf->bf_mpdu,
585 								ts, sta);
586 			}
587 
588 			ath_tx_complete_buf(sc, bf, txq, &bf_head, sta, ts,
589 				!txfail);
590 		} else {
591 			if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
592 				tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
593 				ieee80211_sta_eosp(sta);
594 			}
595 			/* retry the un-acked ones */
596 			if (bf->bf_next == NULL && bf_last->bf_state.stale) {
597 				struct ath_buf *tbf;
598 
599 				tbf = ath_clone_txbuf(sc, bf_last);
600 				/*
601 				 * Update tx baw and complete the
602 				 * frame with failed status if we
603 				 * run out of tx buf.
604 				 */
605 				if (!tbf) {
606 					ath_tx_update_baw(sc, tid, bf);
607 
608 					ath_tx_complete_buf(sc, bf, txq,
609 							    &bf_head, NULL, ts,
610 							    0);
611 					bar_index = max_t(int, bar_index,
612 						ATH_BA_INDEX(seq_first, seqno));
613 					break;
614 				}
615 
616 				fi->bf = tbf;
617 			}
618 
619 			/*
620 			 * Put this buffer to the temporary pending
621 			 * queue to retain ordering
622 			 */
623 			__skb_queue_tail(&bf_pending, skb);
624 		}
625 
626 		bf = bf_next;
627 	}
628 
629 	/* prepend un-acked frames to the beginning of the pending frame queue */
630 	if (!skb_queue_empty(&bf_pending)) {
631 		if (an->sleeping)
632 			ieee80211_sta_set_buffered(sta, tid->tidno, true);
633 
634 		skb_queue_splice_tail(&bf_pending, &tid->retry_q);
635 		if (!an->sleeping) {
636 			ath_tx_queue_tid(sc, tid);
637 			if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
638 				tid->clear_ps_filter = true;
639 		}
640 	}
641 
642 	if (bar_index >= 0) {
643 		u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
644 
645 		if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
646 			tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
647 
648 		ath_txq_unlock(sc, txq);
649 		ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
650 		ath_txq_lock(sc, txq);
651 	}
652 
653 	if (needreset)
654 		ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
655 }
656 
657 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
658 {
659     struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
660     return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
661 }
662 
663 static void ath_tx_count_airtime(struct ath_softc *sc,
664 				 struct ieee80211_sta *sta,
665 				 struct ath_buf *bf,
666 				 struct ath_tx_status *ts,
667 				 u8 tid)
668 {
669 	u32 airtime = 0;
670 	int i;
671 
672 	airtime += ts->duration * (ts->ts_longretry + 1);
673 	for(i = 0; i < ts->ts_rateindex; i++) {
674 		int rate_dur = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc, i);
675 		airtime += rate_dur * bf->rates[i].count;
676 	}
677 
678 	ieee80211_sta_register_airtime(sta, tid, airtime, 0);
679 }
680 
681 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
682 				  struct ath_tx_status *ts, struct ath_buf *bf,
683 				  struct list_head *bf_head)
684 {
685 	struct ieee80211_hw *hw = sc->hw;
686 	struct ieee80211_tx_info *info;
687 	struct ieee80211_sta *sta;
688 	struct ieee80211_hdr *hdr;
689 	struct ath_atx_tid *tid = NULL;
690 	bool txok, flush;
691 
692 	txok = !(ts->ts_status & ATH9K_TXERR_MASK);
693 	flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
694 	txq->axq_tx_inprogress = false;
695 
696 	txq->axq_depth--;
697 	if (bf_is_ampdu_not_probing(bf))
698 		txq->axq_ampdu_depth--;
699 
700 	ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc,
701 					     ts->ts_rateindex);
702 
703 	hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
704 	sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
705 	if (sta) {
706 		struct ath_node *an = (struct ath_node *)sta->drv_priv;
707 		tid = ath_get_skb_tid(sc, an, bf->bf_mpdu);
708 		ath_tx_count_airtime(sc, sta, bf, ts, tid->tidno);
709 		if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
710 			tid->clear_ps_filter = true;
711 	}
712 
713 	if (!bf_isampdu(bf)) {
714 		if (!flush) {
715 			info = IEEE80211_SKB_CB(bf->bf_mpdu);
716 			memcpy(info->control.rates, bf->rates,
717 			       sizeof(info->control.rates));
718 			ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
719 			ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts,
720 						sta);
721 		}
722 		ath_tx_complete_buf(sc, bf, txq, bf_head, sta, ts, txok);
723 	} else
724 		ath_tx_complete_aggr(sc, txq, bf, bf_head, sta, tid, ts, txok);
725 
726 	if (!flush)
727 		ath_txq_schedule(sc, txq);
728 }
729 
730 static bool ath_lookup_legacy(struct ath_buf *bf)
731 {
732 	struct sk_buff *skb;
733 	struct ieee80211_tx_info *tx_info;
734 	struct ieee80211_tx_rate *rates;
735 	int i;
736 
737 	skb = bf->bf_mpdu;
738 	tx_info = IEEE80211_SKB_CB(skb);
739 	rates = tx_info->control.rates;
740 
741 	for (i = 0; i < 4; i++) {
742 		if (!rates[i].count || rates[i].idx < 0)
743 			break;
744 
745 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
746 			return true;
747 	}
748 
749 	return false;
750 }
751 
752 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
753 			   struct ath_atx_tid *tid)
754 {
755 	struct sk_buff *skb;
756 	struct ieee80211_tx_info *tx_info;
757 	struct ieee80211_tx_rate *rates;
758 	u32 max_4ms_framelen, frmlen;
759 	u16 aggr_limit, bt_aggr_limit, legacy = 0;
760 	int q = tid->txq->mac80211_qnum;
761 	int i;
762 
763 	skb = bf->bf_mpdu;
764 	tx_info = IEEE80211_SKB_CB(skb);
765 	rates = bf->rates;
766 
767 	/*
768 	 * Find the lowest frame length among the rate series that will have a
769 	 * 4ms (or TXOP limited) transmit duration.
770 	 */
771 	max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
772 
773 	for (i = 0; i < 4; i++) {
774 		int modeidx;
775 
776 		if (!rates[i].count)
777 			continue;
778 
779 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
780 			legacy = 1;
781 			break;
782 		}
783 
784 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
785 			modeidx = MCS_HT40;
786 		else
787 			modeidx = MCS_HT20;
788 
789 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
790 			modeidx++;
791 
792 		frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
793 		max_4ms_framelen = min(max_4ms_framelen, frmlen);
794 	}
795 
796 	/*
797 	 * limit aggregate size by the minimum rate if rate selected is
798 	 * not a probe rate, if rate selected is a probe rate then
799 	 * avoid aggregation of this packet.
800 	 */
801 	if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
802 		return 0;
803 
804 	aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
805 
806 	/*
807 	 * Override the default aggregation limit for BTCOEX.
808 	 */
809 	bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
810 	if (bt_aggr_limit)
811 		aggr_limit = bt_aggr_limit;
812 
813 	if (tid->an->maxampdu)
814 		aggr_limit = min(aggr_limit, tid->an->maxampdu);
815 
816 	return aggr_limit;
817 }
818 
819 /*
820  * Returns the number of delimiters to be added to
821  * meet the minimum required mpdudensity.
822  */
823 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
824 				  struct ath_buf *bf, u16 frmlen,
825 				  bool first_subfrm)
826 {
827 #define FIRST_DESC_NDELIMS 60
828 	u32 nsymbits, nsymbols;
829 	u16 minlen;
830 	u8 flags, rix;
831 	int width, streams, half_gi, ndelim, mindelim;
832 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
833 
834 	/* Select standard number of delimiters based on frame length alone */
835 	ndelim = ATH_AGGR_GET_NDELIM(frmlen);
836 
837 	/*
838 	 * If encryption enabled, hardware requires some more padding between
839 	 * subframes.
840 	 * TODO - this could be improved to be dependent on the rate.
841 	 *      The hardware can keep up at lower rates, but not higher rates
842 	 */
843 	if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
844 	    !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
845 		ndelim += ATH_AGGR_ENCRYPTDELIM;
846 
847 	/*
848 	 * Add delimiter when using RTS/CTS with aggregation
849 	 * and non enterprise AR9003 card
850 	 */
851 	if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
852 	    (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
853 		ndelim = max(ndelim, FIRST_DESC_NDELIMS);
854 
855 	/*
856 	 * Convert desired mpdu density from microeconds to bytes based
857 	 * on highest rate in rate series (i.e. first rate) to determine
858 	 * required minimum length for subframe. Take into account
859 	 * whether high rate is 20 or 40Mhz and half or full GI.
860 	 *
861 	 * If there is no mpdu density restriction, no further calculation
862 	 * is needed.
863 	 */
864 
865 	if (tid->an->mpdudensity == 0)
866 		return ndelim;
867 
868 	rix = bf->rates[0].idx;
869 	flags = bf->rates[0].flags;
870 	width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
871 	half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
872 
873 	if (half_gi)
874 		nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
875 	else
876 		nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
877 
878 	if (nsymbols == 0)
879 		nsymbols = 1;
880 
881 	streams = HT_RC_2_STREAMS(rix);
882 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
883 	minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
884 
885 	if (frmlen < minlen) {
886 		mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
887 		ndelim = max(mindelim, ndelim);
888 	}
889 
890 	return ndelim;
891 }
892 
893 static int
894 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
895 			struct ath_atx_tid *tid, struct ath_buf **buf)
896 {
897 	struct ieee80211_tx_info *tx_info;
898 	struct ath_frame_info *fi;
899 	struct ath_buf *bf;
900 	struct sk_buff *skb, *first_skb = NULL;
901 	u16 seqno;
902 	int ret;
903 
904 	while (1) {
905 		ret = ath_tid_dequeue(tid, &skb);
906 		if (ret < 0)
907 			return ret;
908 
909 		fi = get_frame_info(skb);
910 		bf = fi->bf;
911 		if (!fi->bf)
912 			bf = ath_tx_setup_buffer(sc, txq, tid, skb);
913 		else
914 			bf->bf_state.stale = false;
915 
916 		if (!bf) {
917 			ath_txq_skb_done(sc, txq, skb);
918 			ieee80211_free_txskb(sc->hw, skb);
919 			continue;
920 		}
921 
922 		bf->bf_next = NULL;
923 		bf->bf_lastbf = bf;
924 
925 		tx_info = IEEE80211_SKB_CB(skb);
926 		tx_info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
927 				    IEEE80211_TX_STATUS_EOSP);
928 
929 		/*
930 		 * No aggregation session is running, but there may be frames
931 		 * from a previous session or a failed attempt in the queue.
932 		 * Send them out as normal data frames
933 		 */
934 		if (!tid->active)
935 			tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
936 
937 		if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
938 			bf->bf_state.bf_type = 0;
939 			break;
940 		}
941 
942 		bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
943 		seqno = bf->bf_state.seqno;
944 
945 		/* do not step over block-ack window */
946 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
947 			__skb_queue_tail(&tid->retry_q, skb);
948 
949 			/* If there are other skbs in the retry q, they are
950 			 * probably within the BAW, so loop immediately to get
951 			 * one of them. Otherwise the queue can get stuck. */
952 			if (!skb_queue_is_first(&tid->retry_q, skb) &&
953 			    !WARN_ON(skb == first_skb)) {
954 				if(!first_skb) /* infinite loop prevention */
955 					first_skb = skb;
956 				continue;
957 			}
958 			return -EINPROGRESS;
959 		}
960 
961 		if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
962 			struct ath_tx_status ts = {};
963 			struct list_head bf_head;
964 
965 			INIT_LIST_HEAD(&bf_head);
966 			list_add(&bf->list, &bf_head);
967 			ath_tx_update_baw(sc, tid, bf);
968 			ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
969 			continue;
970 		}
971 
972 		if (bf_isampdu(bf))
973 			ath_tx_addto_baw(sc, tid, bf);
974 
975 		break;
976 	}
977 
978 	*buf = bf;
979 	return 0;
980 }
981 
982 static int
983 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
984 		 struct ath_atx_tid *tid, struct list_head *bf_q,
985 		 struct ath_buf *bf_first)
986 {
987 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
988 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
989 	int nframes = 0, ndelim, ret;
990 	u16 aggr_limit = 0, al = 0, bpad = 0,
991 	    al_delta, h_baw = tid->baw_size / 2;
992 	struct ieee80211_tx_info *tx_info;
993 	struct ath_frame_info *fi;
994 	struct sk_buff *skb;
995 
996 
997 	bf = bf_first;
998 	aggr_limit = ath_lookup_rate(sc, bf, tid);
999 
1000 	while (bf)
1001 	{
1002 		skb = bf->bf_mpdu;
1003 		fi = get_frame_info(skb);
1004 
1005 		/* do not exceed aggregation limit */
1006 		al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
1007 		if (nframes) {
1008 			if (aggr_limit < al + bpad + al_delta ||
1009 			    ath_lookup_legacy(bf) || nframes >= h_baw)
1010 				goto stop;
1011 
1012 			tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1013 			if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
1014 			    !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
1015 				goto stop;
1016 		}
1017 
1018 		/* add padding for previous frame to aggregation length */
1019 		al += bpad + al_delta;
1020 
1021 		/*
1022 		 * Get the delimiters needed to meet the MPDU
1023 		 * density for this node.
1024 		 */
1025 		ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
1026 						!nframes);
1027 		bpad = PADBYTES(al_delta) + (ndelim << 2);
1028 
1029 		nframes++;
1030 		bf->bf_next = NULL;
1031 
1032 		/* link buffers of this frame to the aggregate */
1033 		bf->bf_state.ndelim = ndelim;
1034 
1035 		list_add_tail(&bf->list, bf_q);
1036 		if (bf_prev)
1037 			bf_prev->bf_next = bf;
1038 
1039 		bf_prev = bf;
1040 
1041 		ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf);
1042 		if (ret < 0)
1043 			break;
1044 	}
1045 	goto finish;
1046 stop:
1047 	__skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1048 finish:
1049 	bf = bf_first;
1050 	bf->bf_lastbf = bf_prev;
1051 
1052 	if (bf == bf_prev) {
1053 		al = get_frame_info(bf->bf_mpdu)->framelen;
1054 		bf->bf_state.bf_type = BUF_AMPDU;
1055 	} else {
1056 		TX_STAT_INC(sc, txq->axq_qnum, a_aggr);
1057 	}
1058 
1059 	return al;
1060 #undef PADBYTES
1061 }
1062 
1063 /*
1064  * rix - rate index
1065  * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1066  * width  - 0 for 20 MHz, 1 for 40 MHz
1067  * half_gi - to use 4us v/s 3.6 us for symbol time
1068  */
1069 u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1070 		     int width, int half_gi, bool shortPreamble)
1071 {
1072 	u32 nbits, nsymbits, duration, nsymbols;
1073 	int streams;
1074 
1075 	/* find number of symbols: PLCP + data */
1076 	streams = HT_RC_2_STREAMS(rix);
1077 	nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1078 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
1079 	nsymbols = (nbits + nsymbits - 1) / nsymbits;
1080 
1081 	if (!half_gi)
1082 		duration = SYMBOL_TIME(nsymbols);
1083 	else
1084 		duration = SYMBOL_TIME_HALFGI(nsymbols);
1085 
1086 	/* addup duration for legacy/ht training and signal fields */
1087 	duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1088 
1089 	return duration;
1090 }
1091 
1092 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1093 {
1094 	int streams = HT_RC_2_STREAMS(mcs);
1095 	int symbols, bits;
1096 	int bytes = 0;
1097 
1098 	usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1099 	symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1100 	bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1101 	bits -= OFDM_PLCP_BITS;
1102 	bytes = bits / 8;
1103 	if (bytes > 65532)
1104 		bytes = 65532;
1105 
1106 	return bytes;
1107 }
1108 
1109 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1110 {
1111 	u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1112 	int mcs;
1113 
1114 	/* 4ms is the default (and maximum) duration */
1115 	if (!txop || txop > 4096)
1116 		txop = 4096;
1117 
1118 	cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1119 	cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1120 	cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1121 	cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1122 	for (mcs = 0; mcs < 32; mcs++) {
1123 		cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1124 		cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1125 		cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1126 		cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1127 	}
1128 }
1129 
1130 static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf,
1131 			       u8 rateidx, bool is_40, bool is_cck)
1132 {
1133 	u8 max_power;
1134 	struct sk_buff *skb;
1135 	struct ath_frame_info *fi;
1136 	struct ieee80211_tx_info *info;
1137 	struct ath_hw *ah = sc->sc_ah;
1138 
1139 	if (sc->tx99_state || !ah->tpc_enabled)
1140 		return MAX_RATE_POWER;
1141 
1142 	skb = bf->bf_mpdu;
1143 	fi = get_frame_info(skb);
1144 	info = IEEE80211_SKB_CB(skb);
1145 
1146 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
1147 		int txpower = fi->tx_power;
1148 
1149 		if (is_40) {
1150 			u8 power_ht40delta;
1151 			struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1152 			u16 eeprom_rev = ah->eep_ops->get_eeprom_rev(ah);
1153 
1154 			if (eeprom_rev >= AR5416_EEP_MINOR_VER_2) {
1155 				bool is_2ghz;
1156 				struct modal_eep_header *pmodal;
1157 
1158 				is_2ghz = info->band == NL80211_BAND_2GHZ;
1159 				pmodal = &eep->modalHeader[is_2ghz];
1160 				power_ht40delta = pmodal->ht40PowerIncForPdadc;
1161 			} else {
1162 				power_ht40delta = 2;
1163 			}
1164 			txpower += power_ht40delta;
1165 		}
1166 
1167 		if (AR_SREV_9287(ah) || AR_SREV_9285(ah) ||
1168 		    AR_SREV_9271(ah)) {
1169 			txpower -= 2 * AR9287_PWR_TABLE_OFFSET_DB;
1170 		} else if (AR_SREV_9280_20_OR_LATER(ah)) {
1171 			s8 power_offset;
1172 
1173 			power_offset = ah->eep_ops->get_eeprom(ah,
1174 							EEP_PWR_TABLE_OFFSET);
1175 			txpower -= 2 * power_offset;
1176 		}
1177 
1178 		if (OLC_FOR_AR9280_20_LATER && is_cck)
1179 			txpower -= 2;
1180 
1181 		txpower = max(txpower, 0);
1182 		max_power = min_t(u8, ah->tx_power[rateidx], txpower);
1183 
1184 		/* XXX: clamp minimum TX power at 1 for AR9160 since if
1185 		 * max_power is set to 0, frames are transmitted at max
1186 		 * TX power
1187 		 */
1188 		if (!max_power && !AR_SREV_9280_20_OR_LATER(ah))
1189 			max_power = 1;
1190 	} else if (!bf->bf_state.bfs_paprd) {
1191 		if (rateidx < 8 && (info->flags & IEEE80211_TX_CTL_STBC))
1192 			max_power = min_t(u8, ah->tx_power_stbc[rateidx],
1193 					  fi->tx_power);
1194 		else
1195 			max_power = min_t(u8, ah->tx_power[rateidx],
1196 					  fi->tx_power);
1197 	} else {
1198 		max_power = ah->paprd_training_power;
1199 	}
1200 
1201 	return max_power;
1202 }
1203 
1204 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1205 			     struct ath_tx_info *info, int len, bool rts)
1206 {
1207 	struct ath_hw *ah = sc->sc_ah;
1208 	struct ath_common *common = ath9k_hw_common(ah);
1209 	struct sk_buff *skb;
1210 	struct ieee80211_tx_info *tx_info;
1211 	struct ieee80211_tx_rate *rates;
1212 	const struct ieee80211_rate *rate;
1213 	struct ieee80211_hdr *hdr;
1214 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1215 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1216 	int i;
1217 	u8 rix = 0;
1218 
1219 	skb = bf->bf_mpdu;
1220 	tx_info = IEEE80211_SKB_CB(skb);
1221 	rates = bf->rates;
1222 	hdr = (struct ieee80211_hdr *)skb->data;
1223 
1224 	/* set dur_update_en for l-sig computation except for PS-Poll frames */
1225 	info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1226 	info->rtscts_rate = fi->rtscts_rate;
1227 
1228 	for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1229 		bool is_40, is_sgi, is_sp, is_cck;
1230 		int phy;
1231 
1232 		if (!rates[i].count || (rates[i].idx < 0))
1233 			continue;
1234 
1235 		rix = rates[i].idx;
1236 		info->rates[i].Tries = rates[i].count;
1237 
1238 		/*
1239 		 * Handle RTS threshold for unaggregated HT frames.
1240 		 */
1241 		if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1242 		    (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1243 		    unlikely(rts_thresh != (u32) -1)) {
1244 			if (!rts_thresh || (len > rts_thresh))
1245 				rts = true;
1246 		}
1247 
1248 		if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1249 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1250 			info->flags |= ATH9K_TXDESC_RTSENA;
1251 		} else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1252 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1253 			info->flags |= ATH9K_TXDESC_CTSENA;
1254 		}
1255 
1256 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1257 			info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1258 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1259 			info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1260 
1261 		is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1262 		is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1263 		is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1264 
1265 		if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1266 			/* MCS rates */
1267 			info->rates[i].Rate = rix | 0x80;
1268 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1269 					ah->txchainmask, info->rates[i].Rate);
1270 			info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1271 				 is_40, is_sgi, is_sp);
1272 			if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1273 				info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1274 
1275 			info->txpower[i] = ath_get_rate_txpower(sc, bf, rix,
1276 								is_40, false);
1277 			continue;
1278 		}
1279 
1280 		/* legacy rates */
1281 		rate = &common->sbands[tx_info->band].bitrates[rates[i].idx];
1282 		if ((tx_info->band == NL80211_BAND_2GHZ) &&
1283 		    !(rate->flags & IEEE80211_RATE_ERP_G))
1284 			phy = WLAN_RC_PHY_CCK;
1285 		else
1286 			phy = WLAN_RC_PHY_OFDM;
1287 
1288 		info->rates[i].Rate = rate->hw_value;
1289 		if (rate->hw_value_short) {
1290 			if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1291 				info->rates[i].Rate |= rate->hw_value_short;
1292 		} else {
1293 			is_sp = false;
1294 		}
1295 
1296 		if (bf->bf_state.bfs_paprd)
1297 			info->rates[i].ChSel = ah->txchainmask;
1298 		else
1299 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1300 					ah->txchainmask, info->rates[i].Rate);
1301 
1302 		info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1303 			phy, rate->bitrate * 100, len, rix, is_sp);
1304 
1305 		is_cck = IS_CCK_RATE(info->rates[i].Rate);
1306 		info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, false,
1307 							is_cck);
1308 	}
1309 
1310 	/* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1311 	if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1312 		info->flags &= ~ATH9K_TXDESC_RTSENA;
1313 
1314 	/* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1315 	if (info->flags & ATH9K_TXDESC_RTSENA)
1316 		info->flags &= ~ATH9K_TXDESC_CTSENA;
1317 }
1318 
1319 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1320 {
1321 	struct ieee80211_hdr *hdr;
1322 	enum ath9k_pkt_type htype;
1323 	__le16 fc;
1324 
1325 	hdr = (struct ieee80211_hdr *)skb->data;
1326 	fc = hdr->frame_control;
1327 
1328 	if (ieee80211_is_beacon(fc))
1329 		htype = ATH9K_PKT_TYPE_BEACON;
1330 	else if (ieee80211_is_probe_resp(fc))
1331 		htype = ATH9K_PKT_TYPE_PROBE_RESP;
1332 	else if (ieee80211_is_atim(fc))
1333 		htype = ATH9K_PKT_TYPE_ATIM;
1334 	else if (ieee80211_is_pspoll(fc))
1335 		htype = ATH9K_PKT_TYPE_PSPOLL;
1336 	else
1337 		htype = ATH9K_PKT_TYPE_NORMAL;
1338 
1339 	return htype;
1340 }
1341 
1342 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1343 			     struct ath_txq *txq, int len)
1344 {
1345 	struct ath_hw *ah = sc->sc_ah;
1346 	struct ath_buf *bf_first = NULL;
1347 	struct ath_tx_info info;
1348 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1349 	bool rts = false;
1350 
1351 	memset(&info, 0, sizeof(info));
1352 	info.is_first = true;
1353 	info.is_last = true;
1354 	info.qcu = txq->axq_qnum;
1355 
1356 	while (bf) {
1357 		struct sk_buff *skb = bf->bf_mpdu;
1358 		struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1359 		struct ath_frame_info *fi = get_frame_info(skb);
1360 		bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1361 
1362 		info.type = get_hw_packet_type(skb);
1363 		if (bf->bf_next)
1364 			info.link = bf->bf_next->bf_daddr;
1365 		else
1366 			info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
1367 
1368 		if (!bf_first) {
1369 			bf_first = bf;
1370 
1371 			if (!sc->tx99_state)
1372 				info.flags = ATH9K_TXDESC_INTREQ;
1373 			if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1374 			    txq == sc->tx.uapsdq)
1375 				info.flags |= ATH9K_TXDESC_CLRDMASK;
1376 
1377 			if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1378 				info.flags |= ATH9K_TXDESC_NOACK;
1379 			if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1380 				info.flags |= ATH9K_TXDESC_LDPC;
1381 
1382 			if (bf->bf_state.bfs_paprd)
1383 				info.flags |= (u32) bf->bf_state.bfs_paprd <<
1384 					      ATH9K_TXDESC_PAPRD_S;
1385 
1386 			/*
1387 			 * mac80211 doesn't handle RTS threshold for HT because
1388 			 * the decision has to be taken based on AMPDU length
1389 			 * and aggregation is done entirely inside ath9k.
1390 			 * Set the RTS/CTS flag for the first subframe based
1391 			 * on the threshold.
1392 			 */
1393 			if (aggr && (bf == bf_first) &&
1394 			    unlikely(rts_thresh != (u32) -1)) {
1395 				/*
1396 				 * "len" is the size of the entire AMPDU.
1397 				 */
1398 				if (!rts_thresh || (len > rts_thresh))
1399 					rts = true;
1400 			}
1401 
1402 			if (!aggr)
1403 				len = fi->framelen;
1404 
1405 			ath_buf_set_rate(sc, bf, &info, len, rts);
1406 		}
1407 
1408 		info.buf_addr[0] = bf->bf_buf_addr;
1409 		info.buf_len[0] = skb->len;
1410 		info.pkt_len = fi->framelen;
1411 		info.keyix = fi->keyix;
1412 		info.keytype = fi->keytype;
1413 
1414 		if (aggr) {
1415 			if (bf == bf_first)
1416 				info.aggr = AGGR_BUF_FIRST;
1417 			else if (bf == bf_first->bf_lastbf)
1418 				info.aggr = AGGR_BUF_LAST;
1419 			else
1420 				info.aggr = AGGR_BUF_MIDDLE;
1421 
1422 			info.ndelim = bf->bf_state.ndelim;
1423 			info.aggr_len = len;
1424 		}
1425 
1426 		if (bf == bf_first->bf_lastbf)
1427 			bf_first = NULL;
1428 
1429 		ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1430 		bf = bf->bf_next;
1431 	}
1432 }
1433 
1434 static void
1435 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1436 		  struct ath_atx_tid *tid, struct list_head *bf_q,
1437 		  struct ath_buf *bf_first)
1438 {
1439 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
1440 	int nframes = 0, ret;
1441 
1442 	do {
1443 		struct ieee80211_tx_info *tx_info;
1444 
1445 		nframes++;
1446 		list_add_tail(&bf->list, bf_q);
1447 		if (bf_prev)
1448 			bf_prev->bf_next = bf;
1449 		bf_prev = bf;
1450 
1451 		if (nframes >= 2)
1452 			break;
1453 
1454 		ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf);
1455 		if (ret < 0)
1456 			break;
1457 
1458 		tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1459 		if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
1460 			__skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1461 			break;
1462 		}
1463 
1464 		ath_set_rates(tid->an->vif, tid->an->sta, bf);
1465 	} while (1);
1466 }
1467 
1468 static int ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1469 			     struct ath_atx_tid *tid)
1470 {
1471 	struct ath_buf *bf = NULL;
1472 	struct ieee80211_tx_info *tx_info;
1473 	struct list_head bf_q;
1474 	int aggr_len = 0, ret;
1475 	bool aggr;
1476 
1477 	INIT_LIST_HEAD(&bf_q);
1478 
1479 	ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf);
1480 	if (ret < 0)
1481 		return ret;
1482 
1483 	tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1484 	aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1485 	if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1486 	    (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1487 		__skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1488 		return -EBUSY;
1489 	}
1490 
1491 	ath_set_rates(tid->an->vif, tid->an->sta, bf);
1492 	if (aggr)
1493 		aggr_len = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf);
1494 	else
1495 		ath_tx_form_burst(sc, txq, tid, &bf_q, bf);
1496 
1497 	if (list_empty(&bf_q))
1498 		return -EAGAIN;
1499 
1500 	if (tid->clear_ps_filter || tid->an->no_ps_filter) {
1501 		tid->clear_ps_filter = false;
1502 		tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1503 	}
1504 
1505 	ath_tx_fill_desc(sc, bf, txq, aggr_len);
1506 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1507 	return 0;
1508 }
1509 
1510 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1511 		      u16 tid, u16 *ssn)
1512 {
1513 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1514 	struct ath_atx_tid *txtid;
1515 	struct ath_txq *txq;
1516 	struct ath_node *an;
1517 	u8 density;
1518 
1519 	ath_dbg(common, XMIT, "%s called\n", __func__);
1520 
1521 	an = (struct ath_node *)sta->drv_priv;
1522 	txtid = ATH_AN_2_TID(an, tid);
1523 	txq = txtid->txq;
1524 
1525 	ath_txq_lock(sc, txq);
1526 
1527 	/* update ampdu factor/density, they may have changed. This may happen
1528 	 * in HT IBSS when a beacon with HT-info is received after the station
1529 	 * has already been added.
1530 	 */
1531 	if (sta->ht_cap.ht_supported) {
1532 		an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1533 				      sta->ht_cap.ampdu_factor)) - 1;
1534 		density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1535 		an->mpdudensity = density;
1536 	}
1537 
1538 	txtid->active = true;
1539 	*ssn = txtid->seq_start = txtid->seq_next;
1540 	txtid->bar_index = -1;
1541 
1542 	memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1543 	txtid->baw_head = txtid->baw_tail = 0;
1544 
1545 	ath_txq_unlock_complete(sc, txq);
1546 
1547 	return 0;
1548 }
1549 
1550 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1551 {
1552 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1553 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1554 	struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1555 	struct ath_txq *txq = txtid->txq;
1556 
1557 	ath_dbg(common, XMIT, "%s called\n", __func__);
1558 
1559 	ath_txq_lock(sc, txq);
1560 	txtid->active = false;
1561 	ath_tx_flush_tid(sc, txtid);
1562 	ath_txq_unlock_complete(sc, txq);
1563 }
1564 
1565 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1566 		       struct ath_node *an)
1567 {
1568 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1569 	struct ath_atx_tid *tid;
1570 	int tidno;
1571 
1572 	ath_dbg(common, XMIT, "%s called\n", __func__);
1573 
1574 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
1575 		tid = ath_node_to_tid(an, tidno);
1576 
1577 		if (!skb_queue_empty(&tid->retry_q))
1578 			ieee80211_sta_set_buffered(sta, tid->tidno, true);
1579 
1580 	}
1581 }
1582 
1583 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1584 {
1585 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1586 	struct ath_atx_tid *tid;
1587 	struct ath_txq *txq;
1588 	int tidno;
1589 
1590 	ath_dbg(common, XMIT, "%s called\n", __func__);
1591 
1592 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
1593 		tid = ath_node_to_tid(an, tidno);
1594 		txq = tid->txq;
1595 
1596 		ath_txq_lock(sc, txq);
1597 		tid->clear_ps_filter = true;
1598 		if (!skb_queue_empty(&tid->retry_q)) {
1599 			ath_tx_queue_tid(sc, tid);
1600 			ath_txq_schedule(sc, txq);
1601 		}
1602 		ath_txq_unlock_complete(sc, txq);
1603 
1604 	}
1605 }
1606 
1607 
1608 static void
1609 ath9k_set_moredata(struct ath_softc *sc, struct ath_buf *bf, bool val)
1610 {
1611 	struct ieee80211_hdr *hdr;
1612 	u16 mask = cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1613 	u16 mask_val = mask * val;
1614 
1615 	hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
1616 	if ((hdr->frame_control & mask) != mask_val) {
1617 		hdr->frame_control = (hdr->frame_control & ~mask) | mask_val;
1618 		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
1619 			sizeof(*hdr), DMA_TO_DEVICE);
1620 	}
1621 }
1622 
1623 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1624 				   struct ieee80211_sta *sta,
1625 				   u16 tids, int nframes,
1626 				   enum ieee80211_frame_release_type reason,
1627 				   bool more_data)
1628 {
1629 	struct ath_softc *sc = hw->priv;
1630 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1631 	struct ath_txq *txq = sc->tx.uapsdq;
1632 	struct ieee80211_tx_info *info;
1633 	struct list_head bf_q;
1634 	struct ath_buf *bf_tail = NULL, *bf = NULL;
1635 	int sent = 0;
1636 	int i, ret;
1637 
1638 	INIT_LIST_HEAD(&bf_q);
1639 	for (i = 0; tids && nframes; i++, tids >>= 1) {
1640 		struct ath_atx_tid *tid;
1641 
1642 		if (!(tids & 1))
1643 			continue;
1644 
1645 		tid = ATH_AN_2_TID(an, i);
1646 
1647 		ath_txq_lock(sc, tid->txq);
1648 		while (nframes > 0) {
1649 			ret = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq,
1650 						      tid, &bf);
1651 			if (ret < 0)
1652 				break;
1653 
1654 			ath9k_set_moredata(sc, bf, true);
1655 			list_add_tail(&bf->list, &bf_q);
1656 			ath_set_rates(tid->an->vif, tid->an->sta, bf);
1657 			if (bf_isampdu(bf))
1658 				bf->bf_state.bf_type &= ~BUF_AGGR;
1659 			if (bf_tail)
1660 				bf_tail->bf_next = bf;
1661 
1662 			bf_tail = bf;
1663 			nframes--;
1664 			sent++;
1665 			TX_STAT_INC(sc, txq->axq_qnum, a_queued_hw);
1666 
1667 			if (an->sta && skb_queue_empty(&tid->retry_q))
1668 				ieee80211_sta_set_buffered(an->sta, i, false);
1669 		}
1670 		ath_txq_unlock_complete(sc, tid->txq);
1671 	}
1672 
1673 	if (list_empty(&bf_q))
1674 		return;
1675 
1676 	if (!more_data)
1677 		ath9k_set_moredata(sc, bf_tail, false);
1678 
1679 	info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1680 	info->flags |= IEEE80211_TX_STATUS_EOSP;
1681 
1682 	bf = list_first_entry(&bf_q, struct ath_buf, list);
1683 	ath_txq_lock(sc, txq);
1684 	ath_tx_fill_desc(sc, bf, txq, 0);
1685 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1686 	ath_txq_unlock(sc, txq);
1687 }
1688 
1689 /********************/
1690 /* Queue Management */
1691 /********************/
1692 
1693 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1694 {
1695 	struct ath_hw *ah = sc->sc_ah;
1696 	struct ath9k_tx_queue_info qi;
1697 	static const int subtype_txq_to_hwq[] = {
1698 		[IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1699 		[IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1700 		[IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1701 		[IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1702 	};
1703 	int axq_qnum, i;
1704 
1705 	memset(&qi, 0, sizeof(qi));
1706 	qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1707 	qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1708 	qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1709 	qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1710 	qi.tqi_physCompBuf = 0;
1711 
1712 	/*
1713 	 * Enable interrupts only for EOL and DESC conditions.
1714 	 * We mark tx descriptors to receive a DESC interrupt
1715 	 * when a tx queue gets deep; otherwise waiting for the
1716 	 * EOL to reap descriptors.  Note that this is done to
1717 	 * reduce interrupt load and this only defers reaping
1718 	 * descriptors, never transmitting frames.  Aside from
1719 	 * reducing interrupts this also permits more concurrency.
1720 	 * The only potential downside is if the tx queue backs
1721 	 * up in which case the top half of the kernel may backup
1722 	 * due to a lack of tx descriptors.
1723 	 *
1724 	 * The UAPSD queue is an exception, since we take a desc-
1725 	 * based intr on the EOSP frames.
1726 	 */
1727 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1728 		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1729 	} else {
1730 		if (qtype == ATH9K_TX_QUEUE_UAPSD)
1731 			qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1732 		else
1733 			qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1734 					TXQ_FLAG_TXDESCINT_ENABLE;
1735 	}
1736 	axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1737 	if (axq_qnum == -1) {
1738 		/*
1739 		 * NB: don't print a message, this happens
1740 		 * normally on parts with too few tx queues
1741 		 */
1742 		return NULL;
1743 	}
1744 	if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1745 		struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1746 
1747 		txq->axq_qnum = axq_qnum;
1748 		txq->mac80211_qnum = -1;
1749 		txq->axq_link = NULL;
1750 		__skb_queue_head_init(&txq->complete_q);
1751 		INIT_LIST_HEAD(&txq->axq_q);
1752 		spin_lock_init(&txq->axq_lock);
1753 		txq->axq_depth = 0;
1754 		txq->axq_ampdu_depth = 0;
1755 		txq->axq_tx_inprogress = false;
1756 		sc->tx.txqsetup |= 1<<axq_qnum;
1757 
1758 		txq->txq_headidx = txq->txq_tailidx = 0;
1759 		for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1760 			INIT_LIST_HEAD(&txq->txq_fifo[i]);
1761 	}
1762 	return &sc->tx.txq[axq_qnum];
1763 }
1764 
1765 int ath_txq_update(struct ath_softc *sc, int qnum,
1766 		   struct ath9k_tx_queue_info *qinfo)
1767 {
1768 	struct ath_hw *ah = sc->sc_ah;
1769 	int error = 0;
1770 	struct ath9k_tx_queue_info qi;
1771 
1772 	BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1773 
1774 	ath9k_hw_get_txq_props(ah, qnum, &qi);
1775 	qi.tqi_aifs = qinfo->tqi_aifs;
1776 	qi.tqi_cwmin = qinfo->tqi_cwmin;
1777 	qi.tqi_cwmax = qinfo->tqi_cwmax;
1778 	qi.tqi_burstTime = qinfo->tqi_burstTime;
1779 	qi.tqi_readyTime = qinfo->tqi_readyTime;
1780 
1781 	if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1782 		ath_err(ath9k_hw_common(sc->sc_ah),
1783 			"Unable to update hardware queue %u!\n", qnum);
1784 		error = -EIO;
1785 	} else {
1786 		ath9k_hw_resettxqueue(ah, qnum);
1787 	}
1788 
1789 	return error;
1790 }
1791 
1792 int ath_cabq_update(struct ath_softc *sc)
1793 {
1794 	struct ath9k_tx_queue_info qi;
1795 	struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon;
1796 	int qnum = sc->beacon.cabq->axq_qnum;
1797 
1798 	ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1799 
1800 	qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) *
1801 			    ATH_CABQ_READY_TIME) / 100;
1802 	ath_txq_update(sc, qnum, &qi);
1803 
1804 	return 0;
1805 }
1806 
1807 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1808 			       struct list_head *list)
1809 {
1810 	struct ath_buf *bf, *lastbf;
1811 	struct list_head bf_head;
1812 	struct ath_tx_status ts;
1813 
1814 	memset(&ts, 0, sizeof(ts));
1815 	ts.ts_status = ATH9K_TX_FLUSH;
1816 	INIT_LIST_HEAD(&bf_head);
1817 
1818 	while (!list_empty(list)) {
1819 		bf = list_first_entry(list, struct ath_buf, list);
1820 
1821 		if (bf->bf_state.stale) {
1822 			list_del(&bf->list);
1823 
1824 			ath_tx_return_buffer(sc, bf);
1825 			continue;
1826 		}
1827 
1828 		lastbf = bf->bf_lastbf;
1829 		list_cut_position(&bf_head, list, &lastbf->list);
1830 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1831 	}
1832 }
1833 
1834 /*
1835  * Drain a given TX queue (could be Beacon or Data)
1836  *
1837  * This assumes output has been stopped and
1838  * we do not need to block ath_tx_tasklet.
1839  */
1840 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1841 {
1842 	rcu_read_lock();
1843 	ath_txq_lock(sc, txq);
1844 
1845 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1846 		int idx = txq->txq_tailidx;
1847 
1848 		while (!list_empty(&txq->txq_fifo[idx])) {
1849 			ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1850 
1851 			INCR(idx, ATH_TXFIFO_DEPTH);
1852 		}
1853 		txq->txq_tailidx = idx;
1854 	}
1855 
1856 	txq->axq_link = NULL;
1857 	txq->axq_tx_inprogress = false;
1858 	ath_drain_txq_list(sc, txq, &txq->axq_q);
1859 
1860 	ath_txq_unlock_complete(sc, txq);
1861 	rcu_read_unlock();
1862 }
1863 
1864 bool ath_drain_all_txq(struct ath_softc *sc)
1865 {
1866 	struct ath_hw *ah = sc->sc_ah;
1867 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1868 	struct ath_txq *txq;
1869 	int i;
1870 	u32 npend = 0;
1871 
1872 	if (test_bit(ATH_OP_INVALID, &common->op_flags))
1873 		return true;
1874 
1875 	ath9k_hw_abort_tx_dma(ah);
1876 
1877 	/* Check if any queue remains active */
1878 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1879 		if (!ATH_TXQ_SETUP(sc, i))
1880 			continue;
1881 
1882 		if (!sc->tx.txq[i].axq_depth)
1883 			continue;
1884 
1885 		if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1886 			npend |= BIT(i);
1887 	}
1888 
1889 	if (npend) {
1890 		RESET_STAT_INC(sc, RESET_TX_DMA_ERROR);
1891 		ath_dbg(common, RESET,
1892 			"Failed to stop TX DMA, queues=0x%03x!\n", npend);
1893 	}
1894 
1895 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1896 		if (!ATH_TXQ_SETUP(sc, i))
1897 			continue;
1898 
1899 		txq = &sc->tx.txq[i];
1900 		ath_draintxq(sc, txq);
1901 	}
1902 
1903 	return !npend;
1904 }
1905 
1906 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1907 {
1908 	ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1909 	sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1910 }
1911 
1912 /* For each acq entry, for each tid, try to schedule packets
1913  * for transmit until ampdu_depth has reached min Q depth.
1914  */
1915 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1916 {
1917 	struct ieee80211_hw *hw = sc->hw;
1918 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1919 	struct ieee80211_txq *queue;
1920 	struct ath_atx_tid *tid;
1921 	int ret;
1922 
1923 	if (txq->mac80211_qnum < 0)
1924 		return;
1925 
1926 	if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
1927 		return;
1928 
1929 	ieee80211_txq_schedule_start(hw, txq->mac80211_qnum);
1930 	spin_lock_bh(&sc->chan_lock);
1931 	rcu_read_lock();
1932 
1933 	if (sc->cur_chan->stopped)
1934 		goto out;
1935 
1936 	while ((queue = ieee80211_next_txq(hw, txq->mac80211_qnum))) {
1937 		bool force;
1938 
1939 		tid = (struct ath_atx_tid *)queue->drv_priv;
1940 
1941 		ret = ath_tx_sched_aggr(sc, txq, tid);
1942 		ath_dbg(common, QUEUE, "ath_tx_sched_aggr returned %d\n", ret);
1943 
1944 		force = !skb_queue_empty(&tid->retry_q);
1945 		ieee80211_return_txq(hw, queue, force);
1946 	}
1947 
1948 out:
1949 	rcu_read_unlock();
1950 	spin_unlock_bh(&sc->chan_lock);
1951 	ieee80211_txq_schedule_end(hw, txq->mac80211_qnum);
1952 }
1953 
1954 void ath_txq_schedule_all(struct ath_softc *sc)
1955 {
1956 	struct ath_txq *txq;
1957 	int i;
1958 
1959 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
1960 		txq = sc->tx.txq_map[i];
1961 
1962 		spin_lock_bh(&txq->axq_lock);
1963 		ath_txq_schedule(sc, txq);
1964 		spin_unlock_bh(&txq->axq_lock);
1965 	}
1966 }
1967 
1968 /***********/
1969 /* TX, DMA */
1970 /***********/
1971 
1972 /*
1973  * Insert a chain of ath_buf (descriptors) on a txq and
1974  * assume the descriptors are already chained together by caller.
1975  */
1976 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1977 			     struct list_head *head, bool internal)
1978 {
1979 	struct ath_hw *ah = sc->sc_ah;
1980 	struct ath_common *common = ath9k_hw_common(ah);
1981 	struct ath_buf *bf, *bf_last;
1982 	bool puttxbuf = false;
1983 	bool edma;
1984 
1985 	/*
1986 	 * Insert the frame on the outbound list and
1987 	 * pass it on to the hardware.
1988 	 */
1989 
1990 	if (list_empty(head))
1991 		return;
1992 
1993 	edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1994 	bf = list_first_entry(head, struct ath_buf, list);
1995 	bf_last = list_entry(head->prev, struct ath_buf, list);
1996 
1997 	ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
1998 		txq->axq_qnum, txq->axq_depth);
1999 
2000 	if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
2001 		list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
2002 		INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
2003 		puttxbuf = true;
2004 	} else {
2005 		list_splice_tail_init(head, &txq->axq_q);
2006 
2007 		if (txq->axq_link) {
2008 			ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
2009 			ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
2010 				txq->axq_qnum, txq->axq_link,
2011 				ito64(bf->bf_daddr), bf->bf_desc);
2012 		} else if (!edma)
2013 			puttxbuf = true;
2014 
2015 		txq->axq_link = bf_last->bf_desc;
2016 	}
2017 
2018 	if (puttxbuf) {
2019 		TX_STAT_INC(sc, txq->axq_qnum, puttxbuf);
2020 		ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
2021 		ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
2022 			txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
2023 	}
2024 
2025 	if (!edma || sc->tx99_state) {
2026 		TX_STAT_INC(sc, txq->axq_qnum, txstart);
2027 		ath9k_hw_txstart(ah, txq->axq_qnum);
2028 	}
2029 
2030 	if (!internal) {
2031 		while (bf) {
2032 			txq->axq_depth++;
2033 			if (bf_is_ampdu_not_probing(bf))
2034 				txq->axq_ampdu_depth++;
2035 
2036 			bf_last = bf->bf_lastbf;
2037 			bf = bf_last->bf_next;
2038 			bf_last->bf_next = NULL;
2039 		}
2040 	}
2041 }
2042 
2043 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
2044 			       struct ath_atx_tid *tid, struct sk_buff *skb)
2045 {
2046 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2047 	struct ath_frame_info *fi = get_frame_info(skb);
2048 	struct list_head bf_head;
2049 	struct ath_buf *bf = fi->bf;
2050 
2051 	INIT_LIST_HEAD(&bf_head);
2052 	list_add_tail(&bf->list, &bf_head);
2053 	bf->bf_state.bf_type = 0;
2054 	if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
2055 		bf->bf_state.bf_type = BUF_AMPDU;
2056 		ath_tx_addto_baw(sc, tid, bf);
2057 	}
2058 
2059 	bf->bf_next = NULL;
2060 	bf->bf_lastbf = bf;
2061 	ath_tx_fill_desc(sc, bf, txq, fi->framelen);
2062 	ath_tx_txqaddbuf(sc, txq, &bf_head, false);
2063 	TX_STAT_INC(sc, txq->axq_qnum, queued);
2064 }
2065 
2066 static void setup_frame_info(struct ieee80211_hw *hw,
2067 			     struct ieee80211_sta *sta,
2068 			     struct sk_buff *skb,
2069 			     int framelen)
2070 {
2071 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2072 	struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
2073 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2074 	const struct ieee80211_rate *rate;
2075 	struct ath_frame_info *fi = get_frame_info(skb);
2076 	struct ath_node *an = NULL;
2077 	enum ath9k_key_type keytype;
2078 	bool short_preamble = false;
2079 	u8 txpower;
2080 
2081 	/*
2082 	 * We check if Short Preamble is needed for the CTS rate by
2083 	 * checking the BSS's global flag.
2084 	 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
2085 	 */
2086 	if (tx_info->control.vif &&
2087 	    tx_info->control.vif->bss_conf.use_short_preamble)
2088 		short_preamble = true;
2089 
2090 	rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2091 	keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2092 
2093 	if (sta)
2094 		an = (struct ath_node *) sta->drv_priv;
2095 
2096 	if (tx_info->control.vif) {
2097 		struct ieee80211_vif *vif = tx_info->control.vif;
2098 		if (vif->bss_conf.txpower == INT_MIN)
2099 			goto nonvifpower;
2100 		txpower = 2 * vif->bss_conf.txpower;
2101 	} else {
2102 		struct ath_softc *sc;
2103 	nonvifpower:
2104 		sc = hw->priv;
2105 
2106 		txpower = sc->cur_chan->cur_txpower;
2107 	}
2108 
2109 	memset(fi, 0, sizeof(*fi));
2110 	fi->txq = -1;
2111 	if (hw_key)
2112 		fi->keyix = hw_key->hw_key_idx;
2113 	else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2114 		fi->keyix = an->ps_key;
2115 	else
2116 		fi->keyix = ATH9K_TXKEYIX_INVALID;
2117 	fi->keytype = keytype;
2118 	fi->framelen = framelen;
2119 	fi->tx_power = txpower;
2120 
2121 	if (!rate)
2122 		return;
2123 	fi->rtscts_rate = rate->hw_value;
2124 	if (short_preamble)
2125 		fi->rtscts_rate |= rate->hw_value_short;
2126 }
2127 
2128 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2129 {
2130 	struct ath_hw *ah = sc->sc_ah;
2131 	struct ath9k_channel *curchan = ah->curchan;
2132 
2133 	if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
2134 	    (chainmask == 0x7) && (rate < 0x90))
2135 		return 0x3;
2136 	else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2137 		 IS_CCK_RATE(rate))
2138 		return 0x2;
2139 	else
2140 		return chainmask;
2141 }
2142 
2143 /*
2144  * Assign a descriptor (and sequence number if necessary,
2145  * and map buffer for DMA. Frees skb on error
2146  */
2147 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2148 					   struct ath_txq *txq,
2149 					   struct ath_atx_tid *tid,
2150 					   struct sk_buff *skb)
2151 {
2152 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2153 	struct ath_frame_info *fi = get_frame_info(skb);
2154 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2155 	struct ath_buf *bf;
2156 	int fragno;
2157 	u16 seqno;
2158 
2159 	bf = ath_tx_get_buffer(sc);
2160 	if (!bf) {
2161 		ath_dbg(common, XMIT, "TX buffers are full\n");
2162 		return NULL;
2163 	}
2164 
2165 	ATH_TXBUF_RESET(bf);
2166 
2167 	if (tid && ieee80211_is_data_present(hdr->frame_control)) {
2168 		fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2169 		seqno = tid->seq_next;
2170 		hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2171 
2172 		if (fragno)
2173 			hdr->seq_ctrl |= cpu_to_le16(fragno);
2174 
2175 		if (!ieee80211_has_morefrags(hdr->frame_control))
2176 			INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2177 
2178 		bf->bf_state.seqno = seqno;
2179 	}
2180 
2181 	bf->bf_mpdu = skb;
2182 
2183 	bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2184 					 skb->len, DMA_TO_DEVICE);
2185 	if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2186 		bf->bf_mpdu = NULL;
2187 		bf->bf_buf_addr = 0;
2188 		ath_err(ath9k_hw_common(sc->sc_ah),
2189 			"dma_mapping_error() on TX\n");
2190 		ath_tx_return_buffer(sc, bf);
2191 		return NULL;
2192 	}
2193 
2194 	fi->bf = bf;
2195 
2196 	return bf;
2197 }
2198 
2199 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb)
2200 {
2201 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2202 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2203 	struct ieee80211_vif *vif = info->control.vif;
2204 	struct ath_vif *avp;
2205 
2206 	if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
2207 		return;
2208 
2209 	if (!vif)
2210 		return;
2211 
2212 	avp = (struct ath_vif *)vif->drv_priv;
2213 
2214 	if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2215 		avp->seq_no += 0x10;
2216 
2217 	hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2218 	hdr->seq_ctrl |= cpu_to_le16(avp->seq_no);
2219 }
2220 
2221 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2222 			  struct ath_tx_control *txctl)
2223 {
2224 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2225 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2226 	struct ieee80211_sta *sta = txctl->sta;
2227 	struct ieee80211_vif *vif = info->control.vif;
2228 	struct ath_vif *avp;
2229 	struct ath_softc *sc = hw->priv;
2230 	int frmlen = skb->len + FCS_LEN;
2231 	int padpos, padsize;
2232 
2233 	/* NOTE:  sta can be NULL according to net/mac80211.h */
2234 	if (sta)
2235 		txctl->an = (struct ath_node *)sta->drv_priv;
2236 	else if (vif && ieee80211_is_data(hdr->frame_control)) {
2237 		avp = (void *)vif->drv_priv;
2238 		txctl->an = &avp->mcast_node;
2239 	}
2240 
2241 	if (info->control.hw_key)
2242 		frmlen += info->control.hw_key->icv_len;
2243 
2244 	ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb);
2245 
2246 	if ((vif && vif->type != NL80211_IFTYPE_AP &&
2247 	            vif->type != NL80211_IFTYPE_AP_VLAN) ||
2248 	    !ieee80211_is_data(hdr->frame_control))
2249 		info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2250 
2251 	/* Add the padding after the header if this is not already done */
2252 	padpos = ieee80211_hdrlen(hdr->frame_control);
2253 	padsize = padpos & 3;
2254 	if (padsize && skb->len > padpos) {
2255 		if (skb_headroom(skb) < padsize)
2256 			return -ENOMEM;
2257 
2258 		skb_push(skb, padsize);
2259 		memmove(skb->data, skb->data + padsize, padpos);
2260 	}
2261 
2262 	setup_frame_info(hw, sta, skb, frmlen);
2263 	return 0;
2264 }
2265 
2266 
2267 /* Upon failure caller should free skb */
2268 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2269 		 struct ath_tx_control *txctl)
2270 {
2271 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2272 	struct ieee80211_sta *sta = txctl->sta;
2273 	struct ieee80211_vif *vif = info->control.vif;
2274 	struct ath_frame_info *fi = get_frame_info(skb);
2275 	struct ath_softc *sc = hw->priv;
2276 	struct ath_txq *txq = txctl->txq;
2277 	struct ath_atx_tid *tid = NULL;
2278 	struct ath_node *an = NULL;
2279 	struct ath_buf *bf;
2280 	bool ps_resp;
2281 	int q, ret;
2282 
2283 	ps_resp = !!(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE);
2284 
2285 	ret = ath_tx_prepare(hw, skb, txctl);
2286 	if (ret)
2287 	    return ret;
2288 
2289 	/*
2290 	 * At this point, the vif, hw_key and sta pointers in the tx control
2291 	 * info are no longer valid (overwritten by the ath_frame_info data.
2292 	 */
2293 
2294 	q = skb_get_queue_mapping(skb);
2295 
2296 	if (ps_resp)
2297 		txq = sc->tx.uapsdq;
2298 
2299 	if (txctl->sta) {
2300 		an = (struct ath_node *) sta->drv_priv;
2301 		tid = ath_get_skb_tid(sc, an, skb);
2302 	}
2303 
2304 	ath_txq_lock(sc, txq);
2305 	if (txq == sc->tx.txq_map[q]) {
2306 		fi->txq = q;
2307 		++txq->pending_frames;
2308 	}
2309 
2310 	bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2311 	if (!bf) {
2312 		ath_txq_skb_done(sc, txq, skb);
2313 		if (txctl->paprd)
2314 			dev_kfree_skb_any(skb);
2315 		else
2316 			ieee80211_free_txskb(sc->hw, skb);
2317 		goto out;
2318 	}
2319 
2320 	bf->bf_state.bfs_paprd = txctl->paprd;
2321 
2322 	if (txctl->paprd)
2323 		bf->bf_state.bfs_paprd_timestamp = jiffies;
2324 
2325 	ath_set_rates(vif, sta, bf);
2326 	ath_tx_send_normal(sc, txq, tid, skb);
2327 
2328 out:
2329 	ath_txq_unlock(sc, txq);
2330 
2331 	return 0;
2332 }
2333 
2334 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2335 		 struct sk_buff *skb)
2336 {
2337 	struct ath_softc *sc = hw->priv;
2338 	struct ath_tx_control txctl = {
2339 		.txq = sc->beacon.cabq
2340 	};
2341 	struct ath_tx_info info = {};
2342 	struct ath_buf *bf_tail = NULL;
2343 	struct ath_buf *bf;
2344 	LIST_HEAD(bf_q);
2345 	int duration = 0;
2346 	int max_duration;
2347 
2348 	max_duration =
2349 		sc->cur_chan->beacon.beacon_interval * 1000 *
2350 		sc->cur_chan->beacon.dtim_period / ATH_BCBUF;
2351 
2352 	do {
2353 		struct ath_frame_info *fi = get_frame_info(skb);
2354 
2355 		if (ath_tx_prepare(hw, skb, &txctl))
2356 			break;
2357 
2358 		bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2359 		if (!bf)
2360 			break;
2361 
2362 		bf->bf_lastbf = bf;
2363 		ath_set_rates(vif, NULL, bf);
2364 		ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2365 		duration += info.rates[0].PktDuration;
2366 		if (bf_tail)
2367 			bf_tail->bf_next = bf;
2368 
2369 		list_add_tail(&bf->list, &bf_q);
2370 		bf_tail = bf;
2371 		skb = NULL;
2372 
2373 		if (duration > max_duration)
2374 			break;
2375 
2376 		skb = ieee80211_get_buffered_bc(hw, vif);
2377 	} while(skb);
2378 
2379 	if (skb)
2380 		ieee80211_free_txskb(hw, skb);
2381 
2382 	if (list_empty(&bf_q))
2383 		return;
2384 
2385 	bf = list_last_entry(&bf_q, struct ath_buf, list);
2386 	ath9k_set_moredata(sc, bf, false);
2387 
2388 	bf = list_first_entry(&bf_q, struct ath_buf, list);
2389 	ath_txq_lock(sc, txctl.txq);
2390 	ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2391 	ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2392 	TX_STAT_INC(sc, txctl.txq->axq_qnum, queued);
2393 	ath_txq_unlock(sc, txctl.txq);
2394 }
2395 
2396 /*****************/
2397 /* TX Completion */
2398 /*****************/
2399 
2400 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2401 			    int tx_flags, struct ath_txq *txq,
2402 			    struct ieee80211_sta *sta)
2403 {
2404 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2405 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2406 	struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2407 	int padpos, padsize;
2408 	unsigned long flags;
2409 
2410 	ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2411 
2412 	if (sc->sc_ah->caldata)
2413 		set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
2414 
2415 	if (!(tx_flags & ATH_TX_ERROR)) {
2416 		if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
2417 			tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
2418 		else
2419 			tx_info->flags |= IEEE80211_TX_STAT_ACK;
2420 	}
2421 
2422 	if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
2423 		padpos = ieee80211_hdrlen(hdr->frame_control);
2424 		padsize = padpos & 3;
2425 		if (padsize && skb->len>padpos+padsize) {
2426 			/*
2427 			 * Remove MAC header padding before giving the frame back to
2428 			 * mac80211.
2429 			 */
2430 			memmove(skb->data + padsize, skb->data, padpos);
2431 			skb_pull(skb, padsize);
2432 		}
2433 	}
2434 
2435 	spin_lock_irqsave(&sc->sc_pm_lock, flags);
2436 	if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2437 		sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2438 		ath_dbg(common, PS,
2439 			"Going back to sleep after having received TX status (0x%lx)\n",
2440 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
2441 					PS_WAIT_FOR_CAB |
2442 					PS_WAIT_FOR_PSPOLL_DATA |
2443 					PS_WAIT_FOR_TX_ACK));
2444 	}
2445 	spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2446 
2447 	ath_txq_skb_done(sc, txq, skb);
2448 	tx_info->status.status_driver_data[0] = sta;
2449 	__skb_queue_tail(&txq->complete_q, skb);
2450 }
2451 
2452 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2453 				struct ath_txq *txq, struct list_head *bf_q,
2454 				struct ieee80211_sta *sta,
2455 				struct ath_tx_status *ts, int txok)
2456 {
2457 	struct sk_buff *skb = bf->bf_mpdu;
2458 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2459 	unsigned long flags;
2460 	int tx_flags = 0;
2461 
2462 	if (!txok)
2463 		tx_flags |= ATH_TX_ERROR;
2464 
2465 	if (ts->ts_status & ATH9K_TXERR_FILT)
2466 		tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2467 
2468 	dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2469 	bf->bf_buf_addr = 0;
2470 	if (sc->tx99_state)
2471 		goto skip_tx_complete;
2472 
2473 	if (bf->bf_state.bfs_paprd) {
2474 		if (time_after(jiffies,
2475 				bf->bf_state.bfs_paprd_timestamp +
2476 				msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2477 			dev_kfree_skb_any(skb);
2478 		else
2479 			complete(&sc->paprd_complete);
2480 	} else {
2481 		ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2482 		ath_tx_complete(sc, skb, tx_flags, txq, sta);
2483 	}
2484 skip_tx_complete:
2485 	/* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2486 	 * accidentally reference it later.
2487 	 */
2488 	bf->bf_mpdu = NULL;
2489 
2490 	/*
2491 	 * Return the list of ath_buf of this mpdu to free queue
2492 	 */
2493 	spin_lock_irqsave(&sc->tx.txbuflock, flags);
2494 	list_splice_tail_init(bf_q, &sc->tx.txbuf);
2495 	spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2496 }
2497 
2498 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2499 			     struct ath_tx_status *ts, int nframes, int nbad,
2500 			     int txok)
2501 {
2502 	struct sk_buff *skb = bf->bf_mpdu;
2503 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2504 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2505 	struct ieee80211_hw *hw = sc->hw;
2506 	struct ath_hw *ah = sc->sc_ah;
2507 	u8 i, tx_rateindex;
2508 
2509 	if (txok)
2510 		tx_info->status.ack_signal = ts->ts_rssi;
2511 
2512 	tx_rateindex = ts->ts_rateindex;
2513 	WARN_ON(tx_rateindex >= hw->max_rates);
2514 
2515 	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2516 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2517 
2518 		BUG_ON(nbad > nframes);
2519 	}
2520 	tx_info->status.ampdu_len = nframes;
2521 	tx_info->status.ampdu_ack_len = nframes - nbad;
2522 
2523 	if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2524 	    (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2525 		/*
2526 		 * If an underrun error is seen assume it as an excessive
2527 		 * retry only if max frame trigger level has been reached
2528 		 * (2 KB for single stream, and 4 KB for dual stream).
2529 		 * Adjust the long retry as if the frame was tried
2530 		 * hw->max_rate_tries times to affect how rate control updates
2531 		 * PER for the failed rate.
2532 		 * In case of congestion on the bus penalizing this type of
2533 		 * underruns should help hardware actually transmit new frames
2534 		 * successfully by eventually preferring slower rates.
2535 		 * This itself should also alleviate congestion on the bus.
2536 		 */
2537 		if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2538 		                             ATH9K_TX_DELIM_UNDERRUN)) &&
2539 		    ieee80211_is_data(hdr->frame_control) &&
2540 		    ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2541 			tx_info->status.rates[tx_rateindex].count =
2542 				hw->max_rate_tries;
2543 	}
2544 
2545 	for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2546 		tx_info->status.rates[i].count = 0;
2547 		tx_info->status.rates[i].idx = -1;
2548 	}
2549 
2550 	tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2551 
2552 	/* we report airtime in ath_tx_count_airtime(), don't report twice */
2553 	tx_info->status.tx_time = 0;
2554 }
2555 
2556 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2557 {
2558 	struct ath_hw *ah = sc->sc_ah;
2559 	struct ath_common *common = ath9k_hw_common(ah);
2560 	struct ath_buf *bf, *lastbf, *bf_held = NULL;
2561 	struct list_head bf_head;
2562 	struct ath_desc *ds;
2563 	struct ath_tx_status ts;
2564 	int status;
2565 
2566 	ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2567 		txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2568 		txq->axq_link);
2569 
2570 	ath_txq_lock(sc, txq);
2571 	for (;;) {
2572 		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2573 			break;
2574 
2575 		if (list_empty(&txq->axq_q)) {
2576 			txq->axq_link = NULL;
2577 			ath_txq_schedule(sc, txq);
2578 			break;
2579 		}
2580 		bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2581 
2582 		/*
2583 		 * There is a race condition that a BH gets scheduled
2584 		 * after sw writes TxE and before hw re-load the last
2585 		 * descriptor to get the newly chained one.
2586 		 * Software must keep the last DONE descriptor as a
2587 		 * holding descriptor - software does so by marking
2588 		 * it with the STALE flag.
2589 		 */
2590 		bf_held = NULL;
2591 		if (bf->bf_state.stale) {
2592 			bf_held = bf;
2593 			if (list_is_last(&bf_held->list, &txq->axq_q))
2594 				break;
2595 
2596 			bf = list_entry(bf_held->list.next, struct ath_buf,
2597 					list);
2598 		}
2599 
2600 		lastbf = bf->bf_lastbf;
2601 		ds = lastbf->bf_desc;
2602 
2603 		memset(&ts, 0, sizeof(ts));
2604 		status = ath9k_hw_txprocdesc(ah, ds, &ts);
2605 		if (status == -EINPROGRESS)
2606 			break;
2607 
2608 		TX_STAT_INC(sc, txq->axq_qnum, txprocdesc);
2609 
2610 		/*
2611 		 * Remove ath_buf's of the same transmit unit from txq,
2612 		 * however leave the last descriptor back as the holding
2613 		 * descriptor for hw.
2614 		 */
2615 		lastbf->bf_state.stale = true;
2616 		INIT_LIST_HEAD(&bf_head);
2617 		if (!list_is_singular(&lastbf->list))
2618 			list_cut_position(&bf_head,
2619 				&txq->axq_q, lastbf->list.prev);
2620 
2621 		if (bf_held) {
2622 			list_del(&bf_held->list);
2623 			ath_tx_return_buffer(sc, bf_held);
2624 		}
2625 
2626 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2627 	}
2628 	ath_txq_unlock_complete(sc, txq);
2629 }
2630 
2631 void ath_tx_tasklet(struct ath_softc *sc)
2632 {
2633 	struct ath_hw *ah = sc->sc_ah;
2634 	u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2635 	int i;
2636 
2637 	rcu_read_lock();
2638 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2639 		if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2640 			ath_tx_processq(sc, &sc->tx.txq[i]);
2641 	}
2642 	rcu_read_unlock();
2643 }
2644 
2645 void ath_tx_edma_tasklet(struct ath_softc *sc)
2646 {
2647 	struct ath_tx_status ts;
2648 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2649 	struct ath_hw *ah = sc->sc_ah;
2650 	struct ath_txq *txq;
2651 	struct ath_buf *bf, *lastbf;
2652 	struct list_head bf_head;
2653 	struct list_head *fifo_list;
2654 	int status;
2655 
2656 	rcu_read_lock();
2657 	for (;;) {
2658 		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2659 			break;
2660 
2661 		status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2662 		if (status == -EINPROGRESS)
2663 			break;
2664 		if (status == -EIO) {
2665 			ath_dbg(common, XMIT, "Error processing tx status\n");
2666 			break;
2667 		}
2668 
2669 		/* Process beacon completions separately */
2670 		if (ts.qid == sc->beacon.beaconq) {
2671 			sc->beacon.tx_processed = true;
2672 			sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2673 
2674 			if (ath9k_is_chanctx_enabled()) {
2675 				ath_chanctx_event(sc, NULL,
2676 						  ATH_CHANCTX_EVENT_BEACON_SENT);
2677 			}
2678 
2679 			ath9k_csa_update(sc);
2680 			continue;
2681 		}
2682 
2683 		txq = &sc->tx.txq[ts.qid];
2684 
2685 		ath_txq_lock(sc, txq);
2686 
2687 		TX_STAT_INC(sc, txq->axq_qnum, txprocdesc);
2688 
2689 		fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2690 		if (list_empty(fifo_list)) {
2691 			ath_txq_unlock(sc, txq);
2692 			break;
2693 		}
2694 
2695 		bf = list_first_entry(fifo_list, struct ath_buf, list);
2696 		if (bf->bf_state.stale) {
2697 			list_del(&bf->list);
2698 			ath_tx_return_buffer(sc, bf);
2699 			bf = list_first_entry(fifo_list, struct ath_buf, list);
2700 		}
2701 
2702 		lastbf = bf->bf_lastbf;
2703 
2704 		INIT_LIST_HEAD(&bf_head);
2705 		if (list_is_last(&lastbf->list, fifo_list)) {
2706 			list_splice_tail_init(fifo_list, &bf_head);
2707 			INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2708 
2709 			if (!list_empty(&txq->axq_q)) {
2710 				struct list_head bf_q;
2711 
2712 				INIT_LIST_HEAD(&bf_q);
2713 				txq->axq_link = NULL;
2714 				list_splice_tail_init(&txq->axq_q, &bf_q);
2715 				ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2716 			}
2717 		} else {
2718 			lastbf->bf_state.stale = true;
2719 			if (bf != lastbf)
2720 				list_cut_position(&bf_head, fifo_list,
2721 						  lastbf->list.prev);
2722 		}
2723 
2724 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2725 		ath_txq_unlock_complete(sc, txq);
2726 	}
2727 	rcu_read_unlock();
2728 }
2729 
2730 /*****************/
2731 /* Init, Cleanup */
2732 /*****************/
2733 
2734 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2735 {
2736 	struct ath_descdma *dd = &sc->txsdma;
2737 	u8 txs_len = sc->sc_ah->caps.txs_len;
2738 
2739 	dd->dd_desc_len = size * txs_len;
2740 	dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2741 					  &dd->dd_desc_paddr, GFP_KERNEL);
2742 	if (!dd->dd_desc)
2743 		return -ENOMEM;
2744 
2745 	return 0;
2746 }
2747 
2748 static int ath_tx_edma_init(struct ath_softc *sc)
2749 {
2750 	int err;
2751 
2752 	err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2753 	if (!err)
2754 		ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2755 					  sc->txsdma.dd_desc_paddr,
2756 					  ATH_TXSTATUS_RING_SIZE);
2757 
2758 	return err;
2759 }
2760 
2761 int ath_tx_init(struct ath_softc *sc, int nbufs)
2762 {
2763 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2764 	int error = 0;
2765 
2766 	spin_lock_init(&sc->tx.txbuflock);
2767 
2768 	error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2769 				  "tx", nbufs, 1, 1);
2770 	if (error != 0) {
2771 		ath_err(common,
2772 			"Failed to allocate tx descriptors: %d\n", error);
2773 		return error;
2774 	}
2775 
2776 	error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2777 				  "beacon", ATH_BCBUF, 1, 1);
2778 	if (error != 0) {
2779 		ath_err(common,
2780 			"Failed to allocate beacon descriptors: %d\n", error);
2781 		return error;
2782 	}
2783 
2784 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2785 		error = ath_tx_edma_init(sc);
2786 
2787 	return error;
2788 }
2789 
2790 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2791 {
2792 	struct ath_atx_tid *tid;
2793 	int tidno, acno;
2794 
2795 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
2796 		tid = ath_node_to_tid(an, tidno);
2797 		tid->an        = an;
2798 		tid->tidno     = tidno;
2799 		tid->seq_start = tid->seq_next = 0;
2800 		tid->baw_size  = WME_MAX_BA;
2801 		tid->baw_head  = tid->baw_tail = 0;
2802 		tid->active	   = false;
2803 		tid->clear_ps_filter = true;
2804 		__skb_queue_head_init(&tid->retry_q);
2805 		INIT_LIST_HEAD(&tid->list);
2806 		acno = TID_TO_WME_AC(tidno);
2807 		tid->txq = sc->tx.txq_map[acno];
2808 
2809 		if (!an->sta)
2810 			break; /* just one multicast ath_atx_tid */
2811 	}
2812 }
2813 
2814 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2815 {
2816 	struct ath_atx_tid *tid;
2817 	struct ath_txq *txq;
2818 	int tidno;
2819 
2820 	rcu_read_lock();
2821 
2822 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
2823 		tid = ath_node_to_tid(an, tidno);
2824 		txq = tid->txq;
2825 
2826 		ath_txq_lock(sc, txq);
2827 
2828 		if (!list_empty(&tid->list))
2829 			list_del_init(&tid->list);
2830 
2831 		ath_tid_drain(sc, txq, tid);
2832 		tid->active = false;
2833 
2834 		ath_txq_unlock(sc, txq);
2835 
2836 		if (!an->sta)
2837 			break; /* just one multicast ath_atx_tid */
2838 	}
2839 
2840 	rcu_read_unlock();
2841 }
2842 
2843 #ifdef CONFIG_ATH9K_TX99
2844 
2845 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
2846 		    struct ath_tx_control *txctl)
2847 {
2848 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2849 	struct ath_frame_info *fi = get_frame_info(skb);
2850 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2851 	struct ath_buf *bf;
2852 	int padpos, padsize;
2853 
2854 	padpos = ieee80211_hdrlen(hdr->frame_control);
2855 	padsize = padpos & 3;
2856 
2857 	if (padsize && skb->len > padpos) {
2858 		if (skb_headroom(skb) < padsize) {
2859 			ath_dbg(common, XMIT,
2860 				"tx99 padding failed\n");
2861 			return -EINVAL;
2862 		}
2863 
2864 		skb_push(skb, padsize);
2865 		memmove(skb->data, skb->data + padsize, padpos);
2866 	}
2867 
2868 	fi->keyix = ATH9K_TXKEYIX_INVALID;
2869 	fi->framelen = skb->len + FCS_LEN;
2870 	fi->keytype = ATH9K_KEY_TYPE_CLEAR;
2871 
2872 	bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
2873 	if (!bf) {
2874 		ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
2875 		return -EINVAL;
2876 	}
2877 
2878 	ath_set_rates(sc->tx99_vif, NULL, bf);
2879 
2880 	ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
2881 	ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
2882 
2883 	ath_tx_send_normal(sc, txctl->txq, NULL, skb);
2884 
2885 	return 0;
2886 }
2887 
2888 #endif /* CONFIG_ATH9K_TX99 */
2889