xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/xmit.c (revision b6dcefde)
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "ath9k.h"
18 
19 #define BITS_PER_BYTE           8
20 #define OFDM_PLCP_BITS          22
21 #define HT_RC_2_MCS(_rc)        ((_rc) & 0x0f)
22 #define HT_RC_2_STREAMS(_rc)    ((((_rc) & 0x78) >> 3) + 1)
23 #define L_STF                   8
24 #define L_LTF                   8
25 #define L_SIG                   4
26 #define HT_SIG                  8
27 #define HT_STF                  4
28 #define HT_LTF(_ns)             (4 * (_ns))
29 #define SYMBOL_TIME(_ns)        ((_ns) << 2) /* ns * 4 us */
30 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5)  /* ns * 3.6 us */
31 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
32 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
33 
34 #define OFDM_SIFS_TIME    	    16
35 
36 static u32 bits_per_symbol[][2] = {
37 	/* 20MHz 40MHz */
38 	{    26,   54 },     /*  0: BPSK */
39 	{    52,  108 },     /*  1: QPSK 1/2 */
40 	{    78,  162 },     /*  2: QPSK 3/4 */
41 	{   104,  216 },     /*  3: 16-QAM 1/2 */
42 	{   156,  324 },     /*  4: 16-QAM 3/4 */
43 	{   208,  432 },     /*  5: 64-QAM 2/3 */
44 	{   234,  486 },     /*  6: 64-QAM 3/4 */
45 	{   260,  540 },     /*  7: 64-QAM 5/6 */
46 	{    52,  108 },     /*  8: BPSK */
47 	{   104,  216 },     /*  9: QPSK 1/2 */
48 	{   156,  324 },     /* 10: QPSK 3/4 */
49 	{   208,  432 },     /* 11: 16-QAM 1/2 */
50 	{   312,  648 },     /* 12: 16-QAM 3/4 */
51 	{   416,  864 },     /* 13: 64-QAM 2/3 */
52 	{   468,  972 },     /* 14: 64-QAM 3/4 */
53 	{   520, 1080 },     /* 15: 64-QAM 5/6 */
54 };
55 
56 #define IS_HT_RATE(_rate)     ((_rate) & 0x80)
57 
58 static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
59 				  struct ath_atx_tid *tid,
60 				  struct list_head *bf_head);
61 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
62 				struct ath_txq *txq,
63 				struct list_head *bf_q,
64 				int txok, int sendbar);
65 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
66 			     struct list_head *head);
67 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf);
68 static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
69 			      int txok);
70 static void ath_tx_rc_status(struct ath_buf *bf, struct ath_desc *ds,
71 			     int nbad, int txok, bool update_rc);
72 
73 enum {
74 	MCS_DEFAULT,
75 	MCS_HT40,
76 	MCS_HT40_SGI,
77 };
78 
79 static int ath_max_4ms_framelen[3][16] = {
80 	[MCS_DEFAULT] = {
81 		3216,  6434,  9650,  12868, 19304, 25740,  28956,  32180,
82 		6430,  12860, 19300, 25736, 38600, 51472,  57890,  64320,
83 	},
84 	[MCS_HT40] = {
85 		6684,  13368, 20052, 26738, 40104, 53476,  60156,  66840,
86 		13360, 26720, 40080, 53440, 80160, 106880, 120240, 133600,
87 	},
88 	[MCS_HT40_SGI] = {
89 		/* TODO: Only MCS 7 and 15 updated, recalculate the rest */
90 		6684,  13368, 20052, 26738, 40104, 53476,  60156,  74200,
91 		13360, 26720, 40080, 53440, 80160, 106880, 120240, 148400,
92 	}
93 };
94 
95 
96 /*********************/
97 /* Aggregation logic */
98 /*********************/
99 
100 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
101 {
102 	struct ath_atx_ac *ac = tid->ac;
103 
104 	if (tid->paused)
105 		return;
106 
107 	if (tid->sched)
108 		return;
109 
110 	tid->sched = true;
111 	list_add_tail(&tid->list, &ac->tid_q);
112 
113 	if (ac->sched)
114 		return;
115 
116 	ac->sched = true;
117 	list_add_tail(&ac->list, &txq->axq_acq);
118 }
119 
120 static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
121 {
122 	struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
123 
124 	spin_lock_bh(&txq->axq_lock);
125 	tid->paused++;
126 	spin_unlock_bh(&txq->axq_lock);
127 }
128 
129 static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
130 {
131 	struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
132 
133 	BUG_ON(tid->paused <= 0);
134 	spin_lock_bh(&txq->axq_lock);
135 
136 	tid->paused--;
137 
138 	if (tid->paused > 0)
139 		goto unlock;
140 
141 	if (list_empty(&tid->buf_q))
142 		goto unlock;
143 
144 	ath_tx_queue_tid(txq, tid);
145 	ath_txq_schedule(sc, txq);
146 unlock:
147 	spin_unlock_bh(&txq->axq_lock);
148 }
149 
150 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
151 {
152 	struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
153 	struct ath_buf *bf;
154 	struct list_head bf_head;
155 	INIT_LIST_HEAD(&bf_head);
156 
157 	BUG_ON(tid->paused <= 0);
158 	spin_lock_bh(&txq->axq_lock);
159 
160 	tid->paused--;
161 
162 	if (tid->paused > 0) {
163 		spin_unlock_bh(&txq->axq_lock);
164 		return;
165 	}
166 
167 	while (!list_empty(&tid->buf_q)) {
168 		bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
169 		BUG_ON(bf_isretried(bf));
170 		list_move_tail(&bf->list, &bf_head);
171 		ath_tx_send_ht_normal(sc, txq, tid, &bf_head);
172 	}
173 
174 	spin_unlock_bh(&txq->axq_lock);
175 }
176 
177 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
178 			      int seqno)
179 {
180 	int index, cindex;
181 
182 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
183 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
184 
185 	tid->tx_buf[cindex] = NULL;
186 
187 	while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
188 		INCR(tid->seq_start, IEEE80211_SEQ_MAX);
189 		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
190 	}
191 }
192 
193 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
194 			     struct ath_buf *bf)
195 {
196 	int index, cindex;
197 
198 	if (bf_isretried(bf))
199 		return;
200 
201 	index  = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
202 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
203 
204 	BUG_ON(tid->tx_buf[cindex] != NULL);
205 	tid->tx_buf[cindex] = bf;
206 
207 	if (index >= ((tid->baw_tail - tid->baw_head) &
208 		(ATH_TID_MAX_BUFS - 1))) {
209 		tid->baw_tail = cindex;
210 		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
211 	}
212 }
213 
214 /*
215  * TODO: For frame(s) that are in the retry state, we will reuse the
216  * sequence number(s) without setting the retry bit. The
217  * alternative is to give up on these and BAR the receiver's window
218  * forward.
219  */
220 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
221 			  struct ath_atx_tid *tid)
222 
223 {
224 	struct ath_buf *bf;
225 	struct list_head bf_head;
226 	INIT_LIST_HEAD(&bf_head);
227 
228 	for (;;) {
229 		if (list_empty(&tid->buf_q))
230 			break;
231 
232 		bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
233 		list_move_tail(&bf->list, &bf_head);
234 
235 		if (bf_isretried(bf))
236 			ath_tx_update_baw(sc, tid, bf->bf_seqno);
237 
238 		spin_unlock(&txq->axq_lock);
239 		ath_tx_complete_buf(sc, bf, txq, &bf_head, 0, 0);
240 		spin_lock(&txq->axq_lock);
241 	}
242 
243 	tid->seq_next = tid->seq_start;
244 	tid->baw_tail = tid->baw_head;
245 }
246 
247 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
248 			     struct ath_buf *bf)
249 {
250 	struct sk_buff *skb;
251 	struct ieee80211_hdr *hdr;
252 
253 	bf->bf_state.bf_type |= BUF_RETRY;
254 	bf->bf_retries++;
255 	TX_STAT_INC(txq->axq_qnum, a_retries);
256 
257 	skb = bf->bf_mpdu;
258 	hdr = (struct ieee80211_hdr *)skb->data;
259 	hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
260 }
261 
262 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
263 {
264 	struct ath_buf *tbf;
265 
266 	spin_lock_bh(&sc->tx.txbuflock);
267 	if (WARN_ON(list_empty(&sc->tx.txbuf))) {
268 		spin_unlock_bh(&sc->tx.txbuflock);
269 		return NULL;
270 	}
271 	tbf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
272 	list_del(&tbf->list);
273 	spin_unlock_bh(&sc->tx.txbuflock);
274 
275 	ATH_TXBUF_RESET(tbf);
276 
277 	tbf->aphy = bf->aphy;
278 	tbf->bf_mpdu = bf->bf_mpdu;
279 	tbf->bf_buf_addr = bf->bf_buf_addr;
280 	*(tbf->bf_desc) = *(bf->bf_desc);
281 	tbf->bf_state = bf->bf_state;
282 	tbf->bf_dmacontext = bf->bf_dmacontext;
283 
284 	return tbf;
285 }
286 
287 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
288 				 struct ath_buf *bf, struct list_head *bf_q,
289 				 int txok)
290 {
291 	struct ath_node *an = NULL;
292 	struct sk_buff *skb;
293 	struct ieee80211_sta *sta;
294 	struct ieee80211_hw *hw;
295 	struct ieee80211_hdr *hdr;
296 	struct ieee80211_tx_info *tx_info;
297 	struct ath_atx_tid *tid = NULL;
298 	struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
299 	struct ath_desc *ds = bf_last->bf_desc;
300 	struct list_head bf_head, bf_pending;
301 	u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0;
302 	u32 ba[WME_BA_BMP_SIZE >> 5];
303 	int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
304 	bool rc_update = true;
305 
306 	skb = bf->bf_mpdu;
307 	hdr = (struct ieee80211_hdr *)skb->data;
308 
309 	tx_info = IEEE80211_SKB_CB(skb);
310 	hw = bf->aphy->hw;
311 
312 	rcu_read_lock();
313 
314 	/* XXX: use ieee80211_find_sta! */
315 	sta = ieee80211_find_sta_by_hw(hw, hdr->addr1);
316 	if (!sta) {
317 		rcu_read_unlock();
318 		return;
319 	}
320 
321 	an = (struct ath_node *)sta->drv_priv;
322 	tid = ATH_AN_2_TID(an, bf->bf_tidno);
323 
324 	isaggr = bf_isaggr(bf);
325 	memset(ba, 0, WME_BA_BMP_SIZE >> 3);
326 
327 	if (isaggr && txok) {
328 		if (ATH_DS_TX_BA(ds)) {
329 			seq_st = ATH_DS_BA_SEQ(ds);
330 			memcpy(ba, ATH_DS_BA_BITMAP(ds),
331 			       WME_BA_BMP_SIZE >> 3);
332 		} else {
333 			/*
334 			 * AR5416 can become deaf/mute when BA
335 			 * issue happens. Chip needs to be reset.
336 			 * But AP code may have sychronization issues
337 			 * when perform internal reset in this routine.
338 			 * Only enable reset in STA mode for now.
339 			 */
340 			if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
341 				needreset = 1;
342 		}
343 	}
344 
345 	INIT_LIST_HEAD(&bf_pending);
346 	INIT_LIST_HEAD(&bf_head);
347 
348 	nbad = ath_tx_num_badfrms(sc, bf, txok);
349 	while (bf) {
350 		txfail = txpending = 0;
351 		bf_next = bf->bf_next;
352 
353 		if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) {
354 			/* transmit completion, subframe is
355 			 * acked by block ack */
356 			acked_cnt++;
357 		} else if (!isaggr && txok) {
358 			/* transmit completion */
359 			acked_cnt++;
360 		} else {
361 			if (!(tid->state & AGGR_CLEANUP) &&
362 			    ds->ds_txstat.ts_flags != ATH9K_TX_SW_ABORTED) {
363 				if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
364 					ath_tx_set_retry(sc, txq, bf);
365 					txpending = 1;
366 				} else {
367 					bf->bf_state.bf_type |= BUF_XRETRY;
368 					txfail = 1;
369 					sendbar = 1;
370 					txfail_cnt++;
371 				}
372 			} else {
373 				/*
374 				 * cleanup in progress, just fail
375 				 * the un-acked sub-frames
376 				 */
377 				txfail = 1;
378 			}
379 		}
380 
381 		if (bf_next == NULL) {
382 			/*
383 			 * Make sure the last desc is reclaimed if it
384 			 * not a holding desc.
385 			 */
386 			if (!bf_last->bf_stale)
387 				list_move_tail(&bf->list, &bf_head);
388 			else
389 				INIT_LIST_HEAD(&bf_head);
390 		} else {
391 			BUG_ON(list_empty(bf_q));
392 			list_move_tail(&bf->list, &bf_head);
393 		}
394 
395 		if (!txpending) {
396 			/*
397 			 * complete the acked-ones/xretried ones; update
398 			 * block-ack window
399 			 */
400 			spin_lock_bh(&txq->axq_lock);
401 			ath_tx_update_baw(sc, tid, bf->bf_seqno);
402 			spin_unlock_bh(&txq->axq_lock);
403 
404 			if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
405 				ath_tx_rc_status(bf, ds, nbad, txok, true);
406 				rc_update = false;
407 			} else {
408 				ath_tx_rc_status(bf, ds, nbad, txok, false);
409 			}
410 
411 			ath_tx_complete_buf(sc, bf, txq, &bf_head, !txfail, sendbar);
412 		} else {
413 			/* retry the un-acked ones */
414 			if (bf->bf_next == NULL && bf_last->bf_stale) {
415 				struct ath_buf *tbf;
416 
417 				tbf = ath_clone_txbuf(sc, bf_last);
418 				/*
419 				 * Update tx baw and complete the frame with
420 				 * failed status if we run out of tx buf
421 				 */
422 				if (!tbf) {
423 					spin_lock_bh(&txq->axq_lock);
424 					ath_tx_update_baw(sc, tid,
425 							  bf->bf_seqno);
426 					spin_unlock_bh(&txq->axq_lock);
427 
428 					bf->bf_state.bf_type |= BUF_XRETRY;
429 					ath_tx_rc_status(bf, ds, nbad,
430 							 0, false);
431 					ath_tx_complete_buf(sc, bf, txq,
432 							    &bf_head, 0, 0);
433 					break;
434 				}
435 
436 				ath9k_hw_cleartxdesc(sc->sc_ah, tbf->bf_desc);
437 				list_add_tail(&tbf->list, &bf_head);
438 			} else {
439 				/*
440 				 * Clear descriptor status words for
441 				 * software retry
442 				 */
443 				ath9k_hw_cleartxdesc(sc->sc_ah, bf->bf_desc);
444 			}
445 
446 			/*
447 			 * Put this buffer to the temporary pending
448 			 * queue to retain ordering
449 			 */
450 			list_splice_tail_init(&bf_head, &bf_pending);
451 		}
452 
453 		bf = bf_next;
454 	}
455 
456 	if (tid->state & AGGR_CLEANUP) {
457 		if (tid->baw_head == tid->baw_tail) {
458 			tid->state &= ~AGGR_ADDBA_COMPLETE;
459 			tid->state &= ~AGGR_CLEANUP;
460 
461 			/* send buffered frames as singles */
462 			ath_tx_flush_tid(sc, tid);
463 		}
464 		rcu_read_unlock();
465 		return;
466 	}
467 
468 	/* prepend un-acked frames to the beginning of the pending frame queue */
469 	if (!list_empty(&bf_pending)) {
470 		spin_lock_bh(&txq->axq_lock);
471 		list_splice(&bf_pending, &tid->buf_q);
472 		ath_tx_queue_tid(txq, tid);
473 		spin_unlock_bh(&txq->axq_lock);
474 	}
475 
476 	rcu_read_unlock();
477 
478 	if (needreset)
479 		ath_reset(sc, false);
480 }
481 
482 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
483 			   struct ath_atx_tid *tid)
484 {
485 	struct sk_buff *skb;
486 	struct ieee80211_tx_info *tx_info;
487 	struct ieee80211_tx_rate *rates;
488 	u32 max_4ms_framelen, frmlen;
489 	u16 aggr_limit, legacy = 0;
490 	int i;
491 
492 	skb = bf->bf_mpdu;
493 	tx_info = IEEE80211_SKB_CB(skb);
494 	rates = tx_info->control.rates;
495 
496 	/*
497 	 * Find the lowest frame length among the rate series that will have a
498 	 * 4ms transmit duration.
499 	 * TODO - TXOP limit needs to be considered.
500 	 */
501 	max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
502 
503 	for (i = 0; i < 4; i++) {
504 		if (rates[i].count) {
505 			int modeidx;
506 			if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
507 				legacy = 1;
508 				break;
509 			}
510 
511 			if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
512 				modeidx = MCS_HT40_SGI;
513 			else if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
514 				modeidx = MCS_HT40;
515 			else
516 				modeidx = MCS_DEFAULT;
517 
518 			frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx];
519 			max_4ms_framelen = min(max_4ms_framelen, frmlen);
520 		}
521 	}
522 
523 	/*
524 	 * limit aggregate size by the minimum rate if rate selected is
525 	 * not a probe rate, if rate selected is a probe rate then
526 	 * avoid aggregation of this packet.
527 	 */
528 	if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
529 		return 0;
530 
531 	if (sc->sc_flags & SC_OP_BT_PRIORITY_DETECTED)
532 		aggr_limit = min((max_4ms_framelen * 3) / 8,
533 				 (u32)ATH_AMPDU_LIMIT_MAX);
534 	else
535 		aggr_limit = min(max_4ms_framelen,
536 				 (u32)ATH_AMPDU_LIMIT_MAX);
537 
538 	/*
539 	 * h/w can accept aggregates upto 16 bit lengths (65535).
540 	 * The IE, however can hold upto 65536, which shows up here
541 	 * as zero. Ignore 65536 since we  are constrained by hw.
542 	 */
543 	if (tid->an->maxampdu)
544 		aggr_limit = min(aggr_limit, tid->an->maxampdu);
545 
546 	return aggr_limit;
547 }
548 
549 /*
550  * Returns the number of delimiters to be added to
551  * meet the minimum required mpdudensity.
552  */
553 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
554 				  struct ath_buf *bf, u16 frmlen)
555 {
556 	struct sk_buff *skb = bf->bf_mpdu;
557 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
558 	u32 nsymbits, nsymbols;
559 	u16 minlen;
560 	u8 flags, rix;
561 	int width, half_gi, ndelim, mindelim;
562 
563 	/* Select standard number of delimiters based on frame length alone */
564 	ndelim = ATH_AGGR_GET_NDELIM(frmlen);
565 
566 	/*
567 	 * If encryption enabled, hardware requires some more padding between
568 	 * subframes.
569 	 * TODO - this could be improved to be dependent on the rate.
570 	 *      The hardware can keep up at lower rates, but not higher rates
571 	 */
572 	if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
573 		ndelim += ATH_AGGR_ENCRYPTDELIM;
574 
575 	/*
576 	 * Convert desired mpdu density from microeconds to bytes based
577 	 * on highest rate in rate series (i.e. first rate) to determine
578 	 * required minimum length for subframe. Take into account
579 	 * whether high rate is 20 or 40Mhz and half or full GI.
580 	 *
581 	 * If there is no mpdu density restriction, no further calculation
582 	 * is needed.
583 	 */
584 
585 	if (tid->an->mpdudensity == 0)
586 		return ndelim;
587 
588 	rix = tx_info->control.rates[0].idx;
589 	flags = tx_info->control.rates[0].flags;
590 	width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
591 	half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
592 
593 	if (half_gi)
594 		nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
595 	else
596 		nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
597 
598 	if (nsymbols == 0)
599 		nsymbols = 1;
600 
601 	nsymbits = bits_per_symbol[rix][width];
602 	minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
603 
604 	if (frmlen < minlen) {
605 		mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
606 		ndelim = max(mindelim, ndelim);
607 	}
608 
609 	return ndelim;
610 }
611 
612 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
613 					     struct ath_txq *txq,
614 					     struct ath_atx_tid *tid,
615 					     struct list_head *bf_q)
616 {
617 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
618 	struct ath_buf *bf, *bf_first, *bf_prev = NULL;
619 	int rl = 0, nframes = 0, ndelim, prev_al = 0;
620 	u16 aggr_limit = 0, al = 0, bpad = 0,
621 		al_delta, h_baw = tid->baw_size / 2;
622 	enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
623 
624 	bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
625 
626 	do {
627 		bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
628 
629 		/* do not step over block-ack window */
630 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) {
631 			status = ATH_AGGR_BAW_CLOSED;
632 			break;
633 		}
634 
635 		if (!rl) {
636 			aggr_limit = ath_lookup_rate(sc, bf, tid);
637 			rl = 1;
638 		}
639 
640 		/* do not exceed aggregation limit */
641 		al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen;
642 
643 		if (nframes &&
644 		    (aggr_limit < (al + bpad + al_delta + prev_al))) {
645 			status = ATH_AGGR_LIMITED;
646 			break;
647 		}
648 
649 		/* do not exceed subframe limit */
650 		if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
651 			status = ATH_AGGR_LIMITED;
652 			break;
653 		}
654 		nframes++;
655 
656 		/* add padding for previous frame to aggregation length */
657 		al += bpad + al_delta;
658 
659 		/*
660 		 * Get the delimiters needed to meet the MPDU
661 		 * density for this node.
662 		 */
663 		ndelim = ath_compute_num_delims(sc, tid, bf_first, bf->bf_frmlen);
664 		bpad = PADBYTES(al_delta) + (ndelim << 2);
665 
666 		bf->bf_next = NULL;
667 		bf->bf_desc->ds_link = 0;
668 
669 		/* link buffers of this frame to the aggregate */
670 		ath_tx_addto_baw(sc, tid, bf);
671 		ath9k_hw_set11n_aggr_middle(sc->sc_ah, bf->bf_desc, ndelim);
672 		list_move_tail(&bf->list, bf_q);
673 		if (bf_prev) {
674 			bf_prev->bf_next = bf;
675 			bf_prev->bf_desc->ds_link = bf->bf_daddr;
676 		}
677 		bf_prev = bf;
678 
679 	} while (!list_empty(&tid->buf_q));
680 
681 	bf_first->bf_al = al;
682 	bf_first->bf_nframes = nframes;
683 
684 	return status;
685 #undef PADBYTES
686 }
687 
688 static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
689 			      struct ath_atx_tid *tid)
690 {
691 	struct ath_buf *bf;
692 	enum ATH_AGGR_STATUS status;
693 	struct list_head bf_q;
694 
695 	do {
696 		if (list_empty(&tid->buf_q))
697 			return;
698 
699 		INIT_LIST_HEAD(&bf_q);
700 
701 		status = ath_tx_form_aggr(sc, txq, tid, &bf_q);
702 
703 		/*
704 		 * no frames picked up to be aggregated;
705 		 * block-ack window is not open.
706 		 */
707 		if (list_empty(&bf_q))
708 			break;
709 
710 		bf = list_first_entry(&bf_q, struct ath_buf, list);
711 		bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
712 
713 		/* if only one frame, send as non-aggregate */
714 		if (bf->bf_nframes == 1) {
715 			bf->bf_state.bf_type &= ~BUF_AGGR;
716 			ath9k_hw_clr11n_aggr(sc->sc_ah, bf->bf_desc);
717 			ath_buf_set_rate(sc, bf);
718 			ath_tx_txqaddbuf(sc, txq, &bf_q);
719 			continue;
720 		}
721 
722 		/* setup first desc of aggregate */
723 		bf->bf_state.bf_type |= BUF_AGGR;
724 		ath_buf_set_rate(sc, bf);
725 		ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al);
726 
727 		/* anchor last desc of aggregate */
728 		ath9k_hw_set11n_aggr_last(sc->sc_ah, bf->bf_lastbf->bf_desc);
729 
730 		ath_tx_txqaddbuf(sc, txq, &bf_q);
731 		TX_STAT_INC(txq->axq_qnum, a_aggr);
732 
733 	} while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
734 		 status != ATH_AGGR_BAW_CLOSED);
735 }
736 
737 void ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
738 		       u16 tid, u16 *ssn)
739 {
740 	struct ath_atx_tid *txtid;
741 	struct ath_node *an;
742 
743 	an = (struct ath_node *)sta->drv_priv;
744 	txtid = ATH_AN_2_TID(an, tid);
745 	txtid->state |= AGGR_ADDBA_PROGRESS;
746 	ath_tx_pause_tid(sc, txtid);
747 	*ssn = txtid->seq_start;
748 }
749 
750 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
751 {
752 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
753 	struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
754 	struct ath_txq *txq = &sc->tx.txq[txtid->ac->qnum];
755 	struct ath_buf *bf;
756 	struct list_head bf_head;
757 	INIT_LIST_HEAD(&bf_head);
758 
759 	if (txtid->state & AGGR_CLEANUP)
760 		return;
761 
762 	if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
763 		txtid->state &= ~AGGR_ADDBA_PROGRESS;
764 		return;
765 	}
766 
767 	ath_tx_pause_tid(sc, txtid);
768 
769 	/* drop all software retried frames and mark this TID */
770 	spin_lock_bh(&txq->axq_lock);
771 	while (!list_empty(&txtid->buf_q)) {
772 		bf = list_first_entry(&txtid->buf_q, struct ath_buf, list);
773 		if (!bf_isretried(bf)) {
774 			/*
775 			 * NB: it's based on the assumption that
776 			 * software retried frame will always stay
777 			 * at the head of software queue.
778 			 */
779 			break;
780 		}
781 		list_move_tail(&bf->list, &bf_head);
782 		ath_tx_update_baw(sc, txtid, bf->bf_seqno);
783 		ath_tx_complete_buf(sc, bf, txq, &bf_head, 0, 0);
784 	}
785 	spin_unlock_bh(&txq->axq_lock);
786 
787 	if (txtid->baw_head != txtid->baw_tail) {
788 		txtid->state |= AGGR_CLEANUP;
789 	} else {
790 		txtid->state &= ~AGGR_ADDBA_COMPLETE;
791 		ath_tx_flush_tid(sc, txtid);
792 	}
793 }
794 
795 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
796 {
797 	struct ath_atx_tid *txtid;
798 	struct ath_node *an;
799 
800 	an = (struct ath_node *)sta->drv_priv;
801 
802 	if (sc->sc_flags & SC_OP_TXAGGR) {
803 		txtid = ATH_AN_2_TID(an, tid);
804 		txtid->baw_size =
805 			IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
806 		txtid->state |= AGGR_ADDBA_COMPLETE;
807 		txtid->state &= ~AGGR_ADDBA_PROGRESS;
808 		ath_tx_resume_tid(sc, txtid);
809 	}
810 }
811 
812 bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an, u8 tidno)
813 {
814 	struct ath_atx_tid *txtid;
815 
816 	if (!(sc->sc_flags & SC_OP_TXAGGR))
817 		return false;
818 
819 	txtid = ATH_AN_2_TID(an, tidno);
820 
821 	if (!(txtid->state & (AGGR_ADDBA_COMPLETE | AGGR_ADDBA_PROGRESS)))
822 			return true;
823 	return false;
824 }
825 
826 /********************/
827 /* Queue Management */
828 /********************/
829 
830 static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
831 					  struct ath_txq *txq)
832 {
833 	struct ath_atx_ac *ac, *ac_tmp;
834 	struct ath_atx_tid *tid, *tid_tmp;
835 
836 	list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
837 		list_del(&ac->list);
838 		ac->sched = false;
839 		list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
840 			list_del(&tid->list);
841 			tid->sched = false;
842 			ath_tid_drain(sc, txq, tid);
843 		}
844 	}
845 }
846 
847 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
848 {
849 	struct ath_hw *ah = sc->sc_ah;
850 	struct ath_common *common = ath9k_hw_common(ah);
851 	struct ath9k_tx_queue_info qi;
852 	int qnum;
853 
854 	memset(&qi, 0, sizeof(qi));
855 	qi.tqi_subtype = subtype;
856 	qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
857 	qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
858 	qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
859 	qi.tqi_physCompBuf = 0;
860 
861 	/*
862 	 * Enable interrupts only for EOL and DESC conditions.
863 	 * We mark tx descriptors to receive a DESC interrupt
864 	 * when a tx queue gets deep; otherwise waiting for the
865 	 * EOL to reap descriptors.  Note that this is done to
866 	 * reduce interrupt load and this only defers reaping
867 	 * descriptors, never transmitting frames.  Aside from
868 	 * reducing interrupts this also permits more concurrency.
869 	 * The only potential downside is if the tx queue backs
870 	 * up in which case the top half of the kernel may backup
871 	 * due to a lack of tx descriptors.
872 	 *
873 	 * The UAPSD queue is an exception, since we take a desc-
874 	 * based intr on the EOSP frames.
875 	 */
876 	if (qtype == ATH9K_TX_QUEUE_UAPSD)
877 		qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
878 	else
879 		qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
880 			TXQ_FLAG_TXDESCINT_ENABLE;
881 	qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
882 	if (qnum == -1) {
883 		/*
884 		 * NB: don't print a message, this happens
885 		 * normally on parts with too few tx queues
886 		 */
887 		return NULL;
888 	}
889 	if (qnum >= ARRAY_SIZE(sc->tx.txq)) {
890 		ath_print(common, ATH_DBG_FATAL,
891 			  "qnum %u out of range, max %u!\n",
892 			  qnum, (unsigned int)ARRAY_SIZE(sc->tx.txq));
893 		ath9k_hw_releasetxqueue(ah, qnum);
894 		return NULL;
895 	}
896 	if (!ATH_TXQ_SETUP(sc, qnum)) {
897 		struct ath_txq *txq = &sc->tx.txq[qnum];
898 
899 		txq->axq_qnum = qnum;
900 		txq->axq_link = NULL;
901 		INIT_LIST_HEAD(&txq->axq_q);
902 		INIT_LIST_HEAD(&txq->axq_acq);
903 		spin_lock_init(&txq->axq_lock);
904 		txq->axq_depth = 0;
905 		txq->axq_tx_inprogress = false;
906 		sc->tx.txqsetup |= 1<<qnum;
907 	}
908 	return &sc->tx.txq[qnum];
909 }
910 
911 int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype)
912 {
913 	int qnum;
914 
915 	switch (qtype) {
916 	case ATH9K_TX_QUEUE_DATA:
917 		if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
918 			ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
919 				  "HAL AC %u out of range, max %zu!\n",
920 				  haltype, ARRAY_SIZE(sc->tx.hwq_map));
921 			return -1;
922 		}
923 		qnum = sc->tx.hwq_map[haltype];
924 		break;
925 	case ATH9K_TX_QUEUE_BEACON:
926 		qnum = sc->beacon.beaconq;
927 		break;
928 	case ATH9K_TX_QUEUE_CAB:
929 		qnum = sc->beacon.cabq->axq_qnum;
930 		break;
931 	default:
932 		qnum = -1;
933 	}
934 	return qnum;
935 }
936 
937 struct ath_txq *ath_test_get_txq(struct ath_softc *sc, struct sk_buff *skb)
938 {
939 	struct ath_txq *txq = NULL;
940 	u16 skb_queue = skb_get_queue_mapping(skb);
941 	int qnum;
942 
943 	qnum = ath_get_hal_qnum(skb_queue, sc);
944 	txq = &sc->tx.txq[qnum];
945 
946 	spin_lock_bh(&txq->axq_lock);
947 
948 	if (txq->axq_depth >= (ATH_TXBUF - 20)) {
949 		ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_XMIT,
950 			  "TX queue: %d is full, depth: %d\n",
951 			  qnum, txq->axq_depth);
952 		ath_mac80211_stop_queue(sc, skb_queue);
953 		txq->stopped = 1;
954 		spin_unlock_bh(&txq->axq_lock);
955 		return NULL;
956 	}
957 
958 	spin_unlock_bh(&txq->axq_lock);
959 
960 	return txq;
961 }
962 
963 int ath_txq_update(struct ath_softc *sc, int qnum,
964 		   struct ath9k_tx_queue_info *qinfo)
965 {
966 	struct ath_hw *ah = sc->sc_ah;
967 	int error = 0;
968 	struct ath9k_tx_queue_info qi;
969 
970 	if (qnum == sc->beacon.beaconq) {
971 		/*
972 		 * XXX: for beacon queue, we just save the parameter.
973 		 * It will be picked up by ath_beaconq_config when
974 		 * it's necessary.
975 		 */
976 		sc->beacon.beacon_qi = *qinfo;
977 		return 0;
978 	}
979 
980 	BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
981 
982 	ath9k_hw_get_txq_props(ah, qnum, &qi);
983 	qi.tqi_aifs = qinfo->tqi_aifs;
984 	qi.tqi_cwmin = qinfo->tqi_cwmin;
985 	qi.tqi_cwmax = qinfo->tqi_cwmax;
986 	qi.tqi_burstTime = qinfo->tqi_burstTime;
987 	qi.tqi_readyTime = qinfo->tqi_readyTime;
988 
989 	if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
990 		ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
991 			  "Unable to update hardware queue %u!\n", qnum);
992 		error = -EIO;
993 	} else {
994 		ath9k_hw_resettxqueue(ah, qnum);
995 	}
996 
997 	return error;
998 }
999 
1000 int ath_cabq_update(struct ath_softc *sc)
1001 {
1002 	struct ath9k_tx_queue_info qi;
1003 	int qnum = sc->beacon.cabq->axq_qnum;
1004 
1005 	ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1006 	/*
1007 	 * Ensure the readytime % is within the bounds.
1008 	 */
1009 	if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
1010 		sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
1011 	else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
1012 		sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
1013 
1014 	qi.tqi_readyTime = (sc->beacon_interval *
1015 			    sc->config.cabqReadytime) / 100;
1016 	ath_txq_update(sc, qnum, &qi);
1017 
1018 	return 0;
1019 }
1020 
1021 /*
1022  * Drain a given TX queue (could be Beacon or Data)
1023  *
1024  * This assumes output has been stopped and
1025  * we do not need to block ath_tx_tasklet.
1026  */
1027 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
1028 {
1029 	struct ath_buf *bf, *lastbf;
1030 	struct list_head bf_head;
1031 
1032 	INIT_LIST_HEAD(&bf_head);
1033 
1034 	for (;;) {
1035 		spin_lock_bh(&txq->axq_lock);
1036 
1037 		if (list_empty(&txq->axq_q)) {
1038 			txq->axq_link = NULL;
1039 			spin_unlock_bh(&txq->axq_lock);
1040 			break;
1041 		}
1042 
1043 		bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
1044 
1045 		if (bf->bf_stale) {
1046 			list_del(&bf->list);
1047 			spin_unlock_bh(&txq->axq_lock);
1048 
1049 			spin_lock_bh(&sc->tx.txbuflock);
1050 			list_add_tail(&bf->list, &sc->tx.txbuf);
1051 			spin_unlock_bh(&sc->tx.txbuflock);
1052 			continue;
1053 		}
1054 
1055 		lastbf = bf->bf_lastbf;
1056 		if (!retry_tx)
1057 			lastbf->bf_desc->ds_txstat.ts_flags =
1058 				ATH9K_TX_SW_ABORTED;
1059 
1060 		/* remove ath_buf's of the same mpdu from txq */
1061 		list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
1062 		txq->axq_depth--;
1063 
1064 		spin_unlock_bh(&txq->axq_lock);
1065 
1066 		if (bf_isampdu(bf))
1067 			ath_tx_complete_aggr(sc, txq, bf, &bf_head, 0);
1068 		else
1069 			ath_tx_complete_buf(sc, bf, txq, &bf_head, 0, 0);
1070 	}
1071 
1072 	spin_lock_bh(&txq->axq_lock);
1073 	txq->axq_tx_inprogress = false;
1074 	spin_unlock_bh(&txq->axq_lock);
1075 
1076 	/* flush any pending frames if aggregation is enabled */
1077 	if (sc->sc_flags & SC_OP_TXAGGR) {
1078 		if (!retry_tx) {
1079 			spin_lock_bh(&txq->axq_lock);
1080 			ath_txq_drain_pending_buffers(sc, txq);
1081 			spin_unlock_bh(&txq->axq_lock);
1082 		}
1083 	}
1084 }
1085 
1086 void ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
1087 {
1088 	struct ath_hw *ah = sc->sc_ah;
1089 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1090 	struct ath_txq *txq;
1091 	int i, npend = 0;
1092 
1093 	if (sc->sc_flags & SC_OP_INVALID)
1094 		return;
1095 
1096 	/* Stop beacon queue */
1097 	ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
1098 
1099 	/* Stop data queues */
1100 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1101 		if (ATH_TXQ_SETUP(sc, i)) {
1102 			txq = &sc->tx.txq[i];
1103 			ath9k_hw_stoptxdma(ah, txq->axq_qnum);
1104 			npend += ath9k_hw_numtxpending(ah, txq->axq_qnum);
1105 		}
1106 	}
1107 
1108 	if (npend) {
1109 		int r;
1110 
1111 		ath_print(common, ATH_DBG_FATAL,
1112 			  "Unable to stop TxDMA. Reset HAL!\n");
1113 
1114 		spin_lock_bh(&sc->sc_resetlock);
1115 		r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1116 		if (r)
1117 			ath_print(common, ATH_DBG_FATAL,
1118 				  "Unable to reset hardware; reset status %d\n",
1119 				  r);
1120 		spin_unlock_bh(&sc->sc_resetlock);
1121 	}
1122 
1123 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1124 		if (ATH_TXQ_SETUP(sc, i))
1125 			ath_draintxq(sc, &sc->tx.txq[i], retry_tx);
1126 	}
1127 }
1128 
1129 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1130 {
1131 	ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1132 	sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1133 }
1134 
1135 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1136 {
1137 	struct ath_atx_ac *ac;
1138 	struct ath_atx_tid *tid;
1139 
1140 	if (list_empty(&txq->axq_acq))
1141 		return;
1142 
1143 	ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1144 	list_del(&ac->list);
1145 	ac->sched = false;
1146 
1147 	do {
1148 		if (list_empty(&ac->tid_q))
1149 			return;
1150 
1151 		tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
1152 		list_del(&tid->list);
1153 		tid->sched = false;
1154 
1155 		if (tid->paused)
1156 			continue;
1157 
1158 		ath_tx_sched_aggr(sc, txq, tid);
1159 
1160 		/*
1161 		 * add tid to round-robin queue if more frames
1162 		 * are pending for the tid
1163 		 */
1164 		if (!list_empty(&tid->buf_q))
1165 			ath_tx_queue_tid(txq, tid);
1166 
1167 		break;
1168 	} while (!list_empty(&ac->tid_q));
1169 
1170 	if (!list_empty(&ac->tid_q)) {
1171 		if (!ac->sched) {
1172 			ac->sched = true;
1173 			list_add_tail(&ac->list, &txq->axq_acq);
1174 		}
1175 	}
1176 }
1177 
1178 int ath_tx_setup(struct ath_softc *sc, int haltype)
1179 {
1180 	struct ath_txq *txq;
1181 
1182 	if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
1183 		ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1184 			  "HAL AC %u out of range, max %zu!\n",
1185 			 haltype, ARRAY_SIZE(sc->tx.hwq_map));
1186 		return 0;
1187 	}
1188 	txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
1189 	if (txq != NULL) {
1190 		sc->tx.hwq_map[haltype] = txq->axq_qnum;
1191 		return 1;
1192 	} else
1193 		return 0;
1194 }
1195 
1196 /***********/
1197 /* TX, DMA */
1198 /***********/
1199 
1200 /*
1201  * Insert a chain of ath_buf (descriptors) on a txq and
1202  * assume the descriptors are already chained together by caller.
1203  */
1204 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1205 			     struct list_head *head)
1206 {
1207 	struct ath_hw *ah = sc->sc_ah;
1208 	struct ath_common *common = ath9k_hw_common(ah);
1209 	struct ath_buf *bf;
1210 
1211 	/*
1212 	 * Insert the frame on the outbound list and
1213 	 * pass it on to the hardware.
1214 	 */
1215 
1216 	if (list_empty(head))
1217 		return;
1218 
1219 	bf = list_first_entry(head, struct ath_buf, list);
1220 
1221 	list_splice_tail_init(head, &txq->axq_q);
1222 	txq->axq_depth++;
1223 
1224 	ath_print(common, ATH_DBG_QUEUE,
1225 		  "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
1226 
1227 	if (txq->axq_link == NULL) {
1228 		ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1229 		ath_print(common, ATH_DBG_XMIT,
1230 			  "TXDP[%u] = %llx (%p)\n",
1231 			  txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1232 	} else {
1233 		*txq->axq_link = bf->bf_daddr;
1234 		ath_print(common, ATH_DBG_XMIT, "link[%u] (%p)=%llx (%p)\n",
1235 			  txq->axq_qnum, txq->axq_link,
1236 			  ito64(bf->bf_daddr), bf->bf_desc);
1237 	}
1238 	txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link);
1239 	ath9k_hw_txstart(ah, txq->axq_qnum);
1240 }
1241 
1242 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
1243 {
1244 	struct ath_buf *bf = NULL;
1245 
1246 	spin_lock_bh(&sc->tx.txbuflock);
1247 
1248 	if (unlikely(list_empty(&sc->tx.txbuf))) {
1249 		spin_unlock_bh(&sc->tx.txbuflock);
1250 		return NULL;
1251 	}
1252 
1253 	bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
1254 	list_del(&bf->list);
1255 
1256 	spin_unlock_bh(&sc->tx.txbuflock);
1257 
1258 	return bf;
1259 }
1260 
1261 static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
1262 			      struct list_head *bf_head,
1263 			      struct ath_tx_control *txctl)
1264 {
1265 	struct ath_buf *bf;
1266 
1267 	bf = list_first_entry(bf_head, struct ath_buf, list);
1268 	bf->bf_state.bf_type |= BUF_AMPDU;
1269 	TX_STAT_INC(txctl->txq->axq_qnum, a_queued);
1270 
1271 	/*
1272 	 * Do not queue to h/w when any of the following conditions is true:
1273 	 * - there are pending frames in software queue
1274 	 * - the TID is currently paused for ADDBA/BAR request
1275 	 * - seqno is not within block-ack window
1276 	 * - h/w queue depth exceeds low water mark
1277 	 */
1278 	if (!list_empty(&tid->buf_q) || tid->paused ||
1279 	    !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) ||
1280 	    txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
1281 		/*
1282 		 * Add this frame to software queue for scheduling later
1283 		 * for aggregation.
1284 		 */
1285 		list_move_tail(&bf->list, &tid->buf_q);
1286 		ath_tx_queue_tid(txctl->txq, tid);
1287 		return;
1288 	}
1289 
1290 	/* Add sub-frame to BAW */
1291 	ath_tx_addto_baw(sc, tid, bf);
1292 
1293 	/* Queue to h/w without aggregation */
1294 	bf->bf_nframes = 1;
1295 	bf->bf_lastbf = bf;
1296 	ath_buf_set_rate(sc, bf);
1297 	ath_tx_txqaddbuf(sc, txctl->txq, bf_head);
1298 }
1299 
1300 static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
1301 				  struct ath_atx_tid *tid,
1302 				  struct list_head *bf_head)
1303 {
1304 	struct ath_buf *bf;
1305 
1306 	bf = list_first_entry(bf_head, struct ath_buf, list);
1307 	bf->bf_state.bf_type &= ~BUF_AMPDU;
1308 
1309 	/* update starting sequence number for subsequent ADDBA request */
1310 	INCR(tid->seq_start, IEEE80211_SEQ_MAX);
1311 
1312 	bf->bf_nframes = 1;
1313 	bf->bf_lastbf = bf;
1314 	ath_buf_set_rate(sc, bf);
1315 	ath_tx_txqaddbuf(sc, txq, bf_head);
1316 	TX_STAT_INC(txq->axq_qnum, queued);
1317 }
1318 
1319 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1320 			       struct list_head *bf_head)
1321 {
1322 	struct ath_buf *bf;
1323 
1324 	bf = list_first_entry(bf_head, struct ath_buf, list);
1325 
1326 	bf->bf_lastbf = bf;
1327 	bf->bf_nframes = 1;
1328 	ath_buf_set_rate(sc, bf);
1329 	ath_tx_txqaddbuf(sc, txq, bf_head);
1330 	TX_STAT_INC(txq->axq_qnum, queued);
1331 }
1332 
1333 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1334 {
1335 	struct ieee80211_hdr *hdr;
1336 	enum ath9k_pkt_type htype;
1337 	__le16 fc;
1338 
1339 	hdr = (struct ieee80211_hdr *)skb->data;
1340 	fc = hdr->frame_control;
1341 
1342 	if (ieee80211_is_beacon(fc))
1343 		htype = ATH9K_PKT_TYPE_BEACON;
1344 	else if (ieee80211_is_probe_resp(fc))
1345 		htype = ATH9K_PKT_TYPE_PROBE_RESP;
1346 	else if (ieee80211_is_atim(fc))
1347 		htype = ATH9K_PKT_TYPE_ATIM;
1348 	else if (ieee80211_is_pspoll(fc))
1349 		htype = ATH9K_PKT_TYPE_PSPOLL;
1350 	else
1351 		htype = ATH9K_PKT_TYPE_NORMAL;
1352 
1353 	return htype;
1354 }
1355 
1356 static bool is_pae(struct sk_buff *skb)
1357 {
1358 	struct ieee80211_hdr *hdr;
1359 	__le16 fc;
1360 
1361 	hdr = (struct ieee80211_hdr *)skb->data;
1362 	fc = hdr->frame_control;
1363 
1364 	if (ieee80211_is_data(fc)) {
1365 		if (ieee80211_is_nullfunc(fc) ||
1366 		    /* Port Access Entity (IEEE 802.1X) */
1367 		    (skb->protocol == cpu_to_be16(ETH_P_PAE))) {
1368 			return true;
1369 		}
1370 	}
1371 
1372 	return false;
1373 }
1374 
1375 static int get_hw_crypto_keytype(struct sk_buff *skb)
1376 {
1377 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1378 
1379 	if (tx_info->control.hw_key) {
1380 		if (tx_info->control.hw_key->alg == ALG_WEP)
1381 			return ATH9K_KEY_TYPE_WEP;
1382 		else if (tx_info->control.hw_key->alg == ALG_TKIP)
1383 			return ATH9K_KEY_TYPE_TKIP;
1384 		else if (tx_info->control.hw_key->alg == ALG_CCMP)
1385 			return ATH9K_KEY_TYPE_AES;
1386 	}
1387 
1388 	return ATH9K_KEY_TYPE_CLEAR;
1389 }
1390 
1391 static void assign_aggr_tid_seqno(struct sk_buff *skb,
1392 				  struct ath_buf *bf)
1393 {
1394 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1395 	struct ieee80211_hdr *hdr;
1396 	struct ath_node *an;
1397 	struct ath_atx_tid *tid;
1398 	__le16 fc;
1399 	u8 *qc;
1400 
1401 	if (!tx_info->control.sta)
1402 		return;
1403 
1404 	an = (struct ath_node *)tx_info->control.sta->drv_priv;
1405 	hdr = (struct ieee80211_hdr *)skb->data;
1406 	fc = hdr->frame_control;
1407 
1408 	if (ieee80211_is_data_qos(fc)) {
1409 		qc = ieee80211_get_qos_ctl(hdr);
1410 		bf->bf_tidno = qc[0] & 0xf;
1411 	}
1412 
1413 	/*
1414 	 * For HT capable stations, we save tidno for later use.
1415 	 * We also override seqno set by upper layer with the one
1416 	 * in tx aggregation state.
1417 	 */
1418 	tid = ATH_AN_2_TID(an, bf->bf_tidno);
1419 	hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
1420 	bf->bf_seqno = tid->seq_next;
1421 	INCR(tid->seq_next, IEEE80211_SEQ_MAX);
1422 }
1423 
1424 static int setup_tx_flags(struct ath_softc *sc, struct sk_buff *skb,
1425 			  struct ath_txq *txq)
1426 {
1427 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1428 	int flags = 0;
1429 
1430 	flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
1431 	flags |= ATH9K_TXDESC_INTREQ;
1432 
1433 	if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1434 		flags |= ATH9K_TXDESC_NOACK;
1435 
1436 	return flags;
1437 }
1438 
1439 /*
1440  * rix - rate index
1441  * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1442  * width  - 0 for 20 MHz, 1 for 40 MHz
1443  * half_gi - to use 4us v/s 3.6 us for symbol time
1444  */
1445 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, struct ath_buf *bf,
1446 			    int width, int half_gi, bool shortPreamble)
1447 {
1448 	u32 nbits, nsymbits, duration, nsymbols;
1449 	int streams, pktlen;
1450 
1451 	pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
1452 
1453 	/* find number of symbols: PLCP + data */
1454 	nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1455 	nsymbits = bits_per_symbol[rix][width];
1456 	nsymbols = (nbits + nsymbits - 1) / nsymbits;
1457 
1458 	if (!half_gi)
1459 		duration = SYMBOL_TIME(nsymbols);
1460 	else
1461 		duration = SYMBOL_TIME_HALFGI(nsymbols);
1462 
1463 	/* addup duration for legacy/ht training and signal fields */
1464 	streams = HT_RC_2_STREAMS(rix);
1465 	duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1466 
1467 	return duration;
1468 }
1469 
1470 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
1471 {
1472 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1473 	struct ath9k_11n_rate_series series[4];
1474 	struct sk_buff *skb;
1475 	struct ieee80211_tx_info *tx_info;
1476 	struct ieee80211_tx_rate *rates;
1477 	const struct ieee80211_rate *rate;
1478 	struct ieee80211_hdr *hdr;
1479 	int i, flags = 0;
1480 	u8 rix = 0, ctsrate = 0;
1481 	bool is_pspoll;
1482 
1483 	memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
1484 
1485 	skb = bf->bf_mpdu;
1486 	tx_info = IEEE80211_SKB_CB(skb);
1487 	rates = tx_info->control.rates;
1488 	hdr = (struct ieee80211_hdr *)skb->data;
1489 	is_pspoll = ieee80211_is_pspoll(hdr->frame_control);
1490 
1491 	/*
1492 	 * We check if Short Preamble is needed for the CTS rate by
1493 	 * checking the BSS's global flag.
1494 	 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
1495 	 */
1496 	rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info);
1497 	ctsrate = rate->hw_value;
1498 	if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
1499 		ctsrate |= rate->hw_value_short;
1500 
1501 	/*
1502 	 * ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive.
1503 	 * Check the first rate in the series to decide whether RTS/CTS
1504 	 * or CTS-to-self has to be used.
1505 	 */
1506 	if (rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
1507 		flags = ATH9K_TXDESC_CTSENA;
1508 	else if (rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
1509 		flags = ATH9K_TXDESC_RTSENA;
1510 
1511 	/* FIXME: Handle aggregation protection */
1512 	if (sc->config.ath_aggr_prot &&
1513 	    (!bf_isaggr(bf) || (bf_isaggr(bf) && bf->bf_al < 8192))) {
1514 		flags = ATH9K_TXDESC_RTSENA;
1515 	}
1516 
1517 	/* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1518 	if (bf_isaggr(bf) && (bf->bf_al > sc->sc_ah->caps.rts_aggr_limit))
1519 		flags &= ~(ATH9K_TXDESC_RTSENA);
1520 
1521 	for (i = 0; i < 4; i++) {
1522 		bool is_40, is_sgi, is_sp;
1523 		int phy;
1524 
1525 		if (!rates[i].count || (rates[i].idx < 0))
1526 			continue;
1527 
1528 		rix = rates[i].idx;
1529 		series[i].Tries = rates[i].count;
1530 		series[i].ChSel = common->tx_chainmask;
1531 
1532 		if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS)
1533 			series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1534 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1535 			series[i].RateFlags |= ATH9K_RATESERIES_2040;
1536 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1537 			series[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1538 
1539 		is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1540 		is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1541 		is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1542 
1543 		if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1544 			/* MCS rates */
1545 			series[i].Rate = rix | 0x80;
1546 			series[i].PktDuration = ath_pkt_duration(sc, rix, bf,
1547 				 is_40, is_sgi, is_sp);
1548 			continue;
1549 		}
1550 
1551 		/* legcay rates */
1552 		if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1553 		    !(rate->flags & IEEE80211_RATE_ERP_G))
1554 			phy = WLAN_RC_PHY_CCK;
1555 		else
1556 			phy = WLAN_RC_PHY_OFDM;
1557 
1558 		rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
1559 		series[i].Rate = rate->hw_value;
1560 		if (rate->hw_value_short) {
1561 			if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1562 				series[i].Rate |= rate->hw_value_short;
1563 		} else {
1564 			is_sp = false;
1565 		}
1566 
1567 		series[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1568 			phy, rate->bitrate * 100, bf->bf_frmlen, rix, is_sp);
1569 	}
1570 
1571 	/* set dur_update_en for l-sig computation except for PS-Poll frames */
1572 	ath9k_hw_set11n_ratescenario(sc->sc_ah, bf->bf_desc,
1573 				     bf->bf_lastbf->bf_desc,
1574 				     !is_pspoll, ctsrate,
1575 				     0, series, 4, flags);
1576 
1577 	if (sc->config.ath_aggr_prot && flags)
1578 		ath9k_hw_set11n_burstduration(sc->sc_ah, bf->bf_desc, 8192);
1579 }
1580 
1581 static int ath_tx_setup_buffer(struct ieee80211_hw *hw, struct ath_buf *bf,
1582 				struct sk_buff *skb,
1583 				struct ath_tx_control *txctl)
1584 {
1585 	struct ath_wiphy *aphy = hw->priv;
1586 	struct ath_softc *sc = aphy->sc;
1587 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1588 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1589 	int hdrlen;
1590 	__le16 fc;
1591 	int padpos, padsize;
1592 
1593 	tx_info->pad[0] = 0;
1594 	switch (txctl->frame_type) {
1595 	case ATH9K_NOT_INTERNAL:
1596 		break;
1597 	case ATH9K_INT_PAUSE:
1598 		tx_info->pad[0] |= ATH_TX_INFO_FRAME_TYPE_PAUSE;
1599 		/* fall through */
1600 	case ATH9K_INT_UNPAUSE:
1601 		tx_info->pad[0] |= ATH_TX_INFO_FRAME_TYPE_INTERNAL;
1602 		break;
1603 	}
1604 	hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1605 	fc = hdr->frame_control;
1606 
1607 	ATH_TXBUF_RESET(bf);
1608 
1609 	bf->aphy = aphy;
1610 	bf->bf_frmlen = skb->len + FCS_LEN;
1611 	/* Remove the padding size from bf_frmlen, if any */
1612 	padpos = ath9k_cmn_padpos(hdr->frame_control);
1613 	padsize = padpos & 3;
1614 	if (padsize && skb->len>padpos+padsize) {
1615 		bf->bf_frmlen -= padsize;
1616 	}
1617 
1618 	if (conf_is_ht(&hw->conf))
1619 		bf->bf_state.bf_type |= BUF_HT;
1620 
1621 	bf->bf_flags = setup_tx_flags(sc, skb, txctl->txq);
1622 
1623 	bf->bf_keytype = get_hw_crypto_keytype(skb);
1624 	if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) {
1625 		bf->bf_frmlen += tx_info->control.hw_key->icv_len;
1626 		bf->bf_keyix = tx_info->control.hw_key->hw_key_idx;
1627 	} else {
1628 		bf->bf_keyix = ATH9K_TXKEYIX_INVALID;
1629 	}
1630 
1631 	if (ieee80211_is_data_qos(fc) && bf_isht(bf) &&
1632 	    (sc->sc_flags & SC_OP_TXAGGR))
1633 		assign_aggr_tid_seqno(skb, bf);
1634 
1635 	bf->bf_mpdu = skb;
1636 
1637 	bf->bf_dmacontext = dma_map_single(sc->dev, skb->data,
1638 					   skb->len, DMA_TO_DEVICE);
1639 	if (unlikely(dma_mapping_error(sc->dev, bf->bf_dmacontext))) {
1640 		bf->bf_mpdu = NULL;
1641 		ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1642 			  "dma_mapping_error() on TX\n");
1643 		return -ENOMEM;
1644 	}
1645 
1646 	bf->bf_buf_addr = bf->bf_dmacontext;
1647 
1648 	/* tag if this is a nullfunc frame to enable PS when AP acks it */
1649 	if (ieee80211_is_nullfunc(fc) && ieee80211_has_pm(fc)) {
1650 		bf->bf_isnullfunc = true;
1651 		sc->sc_flags &= ~SC_OP_NULLFUNC_COMPLETED;
1652 	} else
1653 		bf->bf_isnullfunc = false;
1654 
1655 	return 0;
1656 }
1657 
1658 /* FIXME: tx power */
1659 static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf,
1660 			     struct ath_tx_control *txctl)
1661 {
1662 	struct sk_buff *skb = bf->bf_mpdu;
1663 	struct ieee80211_tx_info *tx_info =  IEEE80211_SKB_CB(skb);
1664 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1665 	struct ath_node *an = NULL;
1666 	struct list_head bf_head;
1667 	struct ath_desc *ds;
1668 	struct ath_atx_tid *tid;
1669 	struct ath_hw *ah = sc->sc_ah;
1670 	int frm_type;
1671 	__le16 fc;
1672 
1673 	frm_type = get_hw_packet_type(skb);
1674 	fc = hdr->frame_control;
1675 
1676 	INIT_LIST_HEAD(&bf_head);
1677 	list_add_tail(&bf->list, &bf_head);
1678 
1679 	ds = bf->bf_desc;
1680 	ds->ds_link = 0;
1681 	ds->ds_data = bf->bf_buf_addr;
1682 
1683 	ath9k_hw_set11n_txdesc(ah, ds, bf->bf_frmlen, frm_type, MAX_RATE_POWER,
1684 			       bf->bf_keyix, bf->bf_keytype, bf->bf_flags);
1685 
1686 	ath9k_hw_filltxdesc(ah, ds,
1687 			    skb->len,	/* segment length */
1688 			    true,	/* first segment */
1689 			    true,	/* last segment */
1690 			    ds);	/* first descriptor */
1691 
1692 	spin_lock_bh(&txctl->txq->axq_lock);
1693 
1694 	if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR) &&
1695 	    tx_info->control.sta) {
1696 		an = (struct ath_node *)tx_info->control.sta->drv_priv;
1697 		tid = ATH_AN_2_TID(an, bf->bf_tidno);
1698 
1699 		if (!ieee80211_is_data_qos(fc)) {
1700 			ath_tx_send_normal(sc, txctl->txq, &bf_head);
1701 			goto tx_done;
1702 		}
1703 
1704 		if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && !is_pae(skb)) {
1705 			/*
1706 			 * Try aggregation if it's a unicast data frame
1707 			 * and the destination is HT capable.
1708 			 */
1709 			ath_tx_send_ampdu(sc, tid, &bf_head, txctl);
1710 		} else {
1711 			/*
1712 			 * Send this frame as regular when ADDBA
1713 			 * exchange is neither complete nor pending.
1714 			 */
1715 			ath_tx_send_ht_normal(sc, txctl->txq,
1716 					      tid, &bf_head);
1717 		}
1718 	} else {
1719 		ath_tx_send_normal(sc, txctl->txq, &bf_head);
1720 	}
1721 
1722 tx_done:
1723 	spin_unlock_bh(&txctl->txq->axq_lock);
1724 }
1725 
1726 /* Upon failure caller should free skb */
1727 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
1728 		 struct ath_tx_control *txctl)
1729 {
1730 	struct ath_wiphy *aphy = hw->priv;
1731 	struct ath_softc *sc = aphy->sc;
1732 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1733 	struct ath_buf *bf;
1734 	int r;
1735 
1736 	bf = ath_tx_get_buffer(sc);
1737 	if (!bf) {
1738 		ath_print(common, ATH_DBG_XMIT, "TX buffers are full\n");
1739 		return -1;
1740 	}
1741 
1742 	r = ath_tx_setup_buffer(hw, bf, skb, txctl);
1743 	if (unlikely(r)) {
1744 		struct ath_txq *txq = txctl->txq;
1745 
1746 		ath_print(common, ATH_DBG_FATAL, "TX mem alloc failure\n");
1747 
1748 		/* upon ath_tx_processq() this TX queue will be resumed, we
1749 		 * guarantee this will happen by knowing beforehand that
1750 		 * we will at least have to run TX completionon one buffer
1751 		 * on the queue */
1752 		spin_lock_bh(&txq->axq_lock);
1753 		if (sc->tx.txq[txq->axq_qnum].axq_depth > 1) {
1754 			ath_mac80211_stop_queue(sc, skb_get_queue_mapping(skb));
1755 			txq->stopped = 1;
1756 		}
1757 		spin_unlock_bh(&txq->axq_lock);
1758 
1759 		spin_lock_bh(&sc->tx.txbuflock);
1760 		list_add_tail(&bf->list, &sc->tx.txbuf);
1761 		spin_unlock_bh(&sc->tx.txbuflock);
1762 
1763 		return r;
1764 	}
1765 
1766 	ath_tx_start_dma(sc, bf, txctl);
1767 
1768 	return 0;
1769 }
1770 
1771 void ath_tx_cabq(struct ieee80211_hw *hw, struct sk_buff *skb)
1772 {
1773 	struct ath_wiphy *aphy = hw->priv;
1774 	struct ath_softc *sc = aphy->sc;
1775 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1776 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1777 	int padpos, padsize;
1778 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1779 	struct ath_tx_control txctl;
1780 
1781 	memset(&txctl, 0, sizeof(struct ath_tx_control));
1782 
1783 	/*
1784 	 * As a temporary workaround, assign seq# here; this will likely need
1785 	 * to be cleaned up to work better with Beacon transmission and virtual
1786 	 * BSSes.
1787 	 */
1788 	if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1789 		if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1790 			sc->tx.seq_no += 0x10;
1791 		hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1792 		hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1793 	}
1794 
1795 	/* Add the padding after the header if this is not already done */
1796 	padpos = ath9k_cmn_padpos(hdr->frame_control);
1797 	padsize = padpos & 3;
1798 	if (padsize && skb->len>padpos) {
1799 		if (skb_headroom(skb) < padsize) {
1800 			ath_print(common, ATH_DBG_XMIT,
1801 				  "TX CABQ padding failed\n");
1802 			dev_kfree_skb_any(skb);
1803 			return;
1804 		}
1805 		skb_push(skb, padsize);
1806 		memmove(skb->data, skb->data + padsize, padpos);
1807 	}
1808 
1809 	txctl.txq = sc->beacon.cabq;
1810 
1811 	ath_print(common, ATH_DBG_XMIT,
1812 		  "transmitting CABQ packet, skb: %p\n", skb);
1813 
1814 	if (ath_tx_start(hw, skb, &txctl) != 0) {
1815 		ath_print(common, ATH_DBG_XMIT, "CABQ TX failed\n");
1816 		goto exit;
1817 	}
1818 
1819 	return;
1820 exit:
1821 	dev_kfree_skb_any(skb);
1822 }
1823 
1824 /*****************/
1825 /* TX Completion */
1826 /*****************/
1827 
1828 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
1829 			    struct ath_wiphy *aphy, int tx_flags)
1830 {
1831 	struct ieee80211_hw *hw = sc->hw;
1832 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1833 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1834 	struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
1835 	int padpos, padsize;
1836 
1837 	ath_print(common, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
1838 
1839 	if (aphy)
1840 		hw = aphy->hw;
1841 
1842 	if (tx_flags & ATH_TX_BAR)
1843 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
1844 
1845 	if (!(tx_flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) {
1846 		/* Frame was ACKed */
1847 		tx_info->flags |= IEEE80211_TX_STAT_ACK;
1848 	}
1849 
1850 	padpos = ath9k_cmn_padpos(hdr->frame_control);
1851 	padsize = padpos & 3;
1852 	if (padsize && skb->len>padpos+padsize) {
1853 		/*
1854 		 * Remove MAC header padding before giving the frame back to
1855 		 * mac80211.
1856 		 */
1857 		memmove(skb->data + padsize, skb->data, padpos);
1858 		skb_pull(skb, padsize);
1859 	}
1860 
1861 	if (sc->sc_flags & SC_OP_WAIT_FOR_TX_ACK) {
1862 		sc->sc_flags &= ~SC_OP_WAIT_FOR_TX_ACK;
1863 		ath_print(common, ATH_DBG_PS,
1864 			  "Going back to sleep after having "
1865 			  "received TX status (0x%x)\n",
1866 			sc->sc_flags & (SC_OP_WAIT_FOR_BEACON |
1867 					SC_OP_WAIT_FOR_CAB |
1868 					SC_OP_WAIT_FOR_PSPOLL_DATA |
1869 					SC_OP_WAIT_FOR_TX_ACK));
1870 	}
1871 
1872 	if (unlikely(tx_info->pad[0] & ATH_TX_INFO_FRAME_TYPE_INTERNAL))
1873 		ath9k_tx_status(hw, skb);
1874 	else
1875 		ieee80211_tx_status(hw, skb);
1876 }
1877 
1878 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
1879 				struct ath_txq *txq,
1880 				struct list_head *bf_q,
1881 				int txok, int sendbar)
1882 {
1883 	struct sk_buff *skb = bf->bf_mpdu;
1884 	unsigned long flags;
1885 	int tx_flags = 0;
1886 
1887 	if (sendbar)
1888 		tx_flags = ATH_TX_BAR;
1889 
1890 	if (!txok) {
1891 		tx_flags |= ATH_TX_ERROR;
1892 
1893 		if (bf_isxretried(bf))
1894 			tx_flags |= ATH_TX_XRETRY;
1895 	}
1896 
1897 	dma_unmap_single(sc->dev, bf->bf_dmacontext, skb->len, DMA_TO_DEVICE);
1898 	ath_tx_complete(sc, skb, bf->aphy, tx_flags);
1899 	ath_debug_stat_tx(sc, txq, bf);
1900 
1901 	/*
1902 	 * Return the list of ath_buf of this mpdu to free queue
1903 	 */
1904 	spin_lock_irqsave(&sc->tx.txbuflock, flags);
1905 	list_splice_tail_init(bf_q, &sc->tx.txbuf);
1906 	spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
1907 }
1908 
1909 static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
1910 			      int txok)
1911 {
1912 	struct ath_buf *bf_last = bf->bf_lastbf;
1913 	struct ath_desc *ds = bf_last->bf_desc;
1914 	u16 seq_st = 0;
1915 	u32 ba[WME_BA_BMP_SIZE >> 5];
1916 	int ba_index;
1917 	int nbad = 0;
1918 	int isaggr = 0;
1919 
1920 	if (ds->ds_txstat.ts_flags == ATH9K_TX_SW_ABORTED)
1921 		return 0;
1922 
1923 	isaggr = bf_isaggr(bf);
1924 	if (isaggr) {
1925 		seq_st = ATH_DS_BA_SEQ(ds);
1926 		memcpy(ba, ATH_DS_BA_BITMAP(ds), WME_BA_BMP_SIZE >> 3);
1927 	}
1928 
1929 	while (bf) {
1930 		ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
1931 		if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
1932 			nbad++;
1933 
1934 		bf = bf->bf_next;
1935 	}
1936 
1937 	return nbad;
1938 }
1939 
1940 static void ath_tx_rc_status(struct ath_buf *bf, struct ath_desc *ds,
1941 			     int nbad, int txok, bool update_rc)
1942 {
1943 	struct sk_buff *skb = bf->bf_mpdu;
1944 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1945 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1946 	struct ieee80211_hw *hw = bf->aphy->hw;
1947 	u8 i, tx_rateindex;
1948 
1949 	if (txok)
1950 		tx_info->status.ack_signal = ds->ds_txstat.ts_rssi;
1951 
1952 	tx_rateindex = ds->ds_txstat.ts_rateindex;
1953 	WARN_ON(tx_rateindex >= hw->max_rates);
1954 
1955 	if (update_rc)
1956 		tx_info->pad[0] |= ATH_TX_INFO_UPDATE_RC;
1957 	if (ds->ds_txstat.ts_status & ATH9K_TXERR_FILT)
1958 		tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1959 
1960 	if ((ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) == 0 &&
1961 	    (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0 && update_rc) {
1962 		if (ieee80211_is_data(hdr->frame_control)) {
1963 			if (ds->ds_txstat.ts_flags &
1964 			    (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN))
1965 				tx_info->pad[0] |= ATH_TX_INFO_UNDERRUN;
1966 			if ((ds->ds_txstat.ts_status & ATH9K_TXERR_XRETRY) ||
1967 			    (ds->ds_txstat.ts_status & ATH9K_TXERR_FIFO))
1968 				tx_info->pad[0] |= ATH_TX_INFO_XRETRY;
1969 			tx_info->status.ampdu_len = bf->bf_nframes;
1970 			tx_info->status.ampdu_ack_len = bf->bf_nframes - nbad;
1971 		}
1972 	}
1973 
1974 	for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
1975 		tx_info->status.rates[i].count = 0;
1976 		tx_info->status.rates[i].idx = -1;
1977 	}
1978 
1979 	tx_info->status.rates[tx_rateindex].count = bf->bf_retries + 1;
1980 }
1981 
1982 static void ath_wake_mac80211_queue(struct ath_softc *sc, struct ath_txq *txq)
1983 {
1984 	int qnum;
1985 
1986 	spin_lock_bh(&txq->axq_lock);
1987 	if (txq->stopped &&
1988 	    sc->tx.txq[txq->axq_qnum].axq_depth <= (ATH_TXBUF - 20)) {
1989 		qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc);
1990 		if (qnum != -1) {
1991 			ath_mac80211_start_queue(sc, qnum);
1992 			txq->stopped = 0;
1993 		}
1994 	}
1995 	spin_unlock_bh(&txq->axq_lock);
1996 }
1997 
1998 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
1999 {
2000 	struct ath_hw *ah = sc->sc_ah;
2001 	struct ath_common *common = ath9k_hw_common(ah);
2002 	struct ath_buf *bf, *lastbf, *bf_held = NULL;
2003 	struct list_head bf_head;
2004 	struct ath_desc *ds;
2005 	int txok;
2006 	int status;
2007 
2008 	ath_print(common, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
2009 		  txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2010 		  txq->axq_link);
2011 
2012 	for (;;) {
2013 		spin_lock_bh(&txq->axq_lock);
2014 		if (list_empty(&txq->axq_q)) {
2015 			txq->axq_link = NULL;
2016 			spin_unlock_bh(&txq->axq_lock);
2017 			break;
2018 		}
2019 		bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2020 
2021 		/*
2022 		 * There is a race condition that a BH gets scheduled
2023 		 * after sw writes TxE and before hw re-load the last
2024 		 * descriptor to get the newly chained one.
2025 		 * Software must keep the last DONE descriptor as a
2026 		 * holding descriptor - software does so by marking
2027 		 * it with the STALE flag.
2028 		 */
2029 		bf_held = NULL;
2030 		if (bf->bf_stale) {
2031 			bf_held = bf;
2032 			if (list_is_last(&bf_held->list, &txq->axq_q)) {
2033 				spin_unlock_bh(&txq->axq_lock);
2034 				break;
2035 			} else {
2036 				bf = list_entry(bf_held->list.next,
2037 						struct ath_buf, list);
2038 			}
2039 		}
2040 
2041 		lastbf = bf->bf_lastbf;
2042 		ds = lastbf->bf_desc;
2043 
2044 		status = ath9k_hw_txprocdesc(ah, ds);
2045 		if (status == -EINPROGRESS) {
2046 			spin_unlock_bh(&txq->axq_lock);
2047 			break;
2048 		}
2049 
2050 		/*
2051 		 * We now know the nullfunc frame has been ACKed so we
2052 		 * can disable RX.
2053 		 */
2054 		if (bf->bf_isnullfunc &&
2055 		    (ds->ds_txstat.ts_status & ATH9K_TX_ACKED)) {
2056 			if ((sc->sc_flags & SC_OP_PS_ENABLED)) {
2057 				sc->ps_enabled = true;
2058 				ath9k_hw_setrxabort(sc->sc_ah, 1);
2059 			} else
2060 				sc->sc_flags |= SC_OP_NULLFUNC_COMPLETED;
2061 		}
2062 
2063 		/*
2064 		 * Remove ath_buf's of the same transmit unit from txq,
2065 		 * however leave the last descriptor back as the holding
2066 		 * descriptor for hw.
2067 		 */
2068 		lastbf->bf_stale = true;
2069 		INIT_LIST_HEAD(&bf_head);
2070 		if (!list_is_singular(&lastbf->list))
2071 			list_cut_position(&bf_head,
2072 				&txq->axq_q, lastbf->list.prev);
2073 
2074 		txq->axq_depth--;
2075 		txok = !(ds->ds_txstat.ts_status & ATH9K_TXERR_MASK);
2076 		txq->axq_tx_inprogress = false;
2077 		spin_unlock_bh(&txq->axq_lock);
2078 
2079 		if (bf_held) {
2080 			spin_lock_bh(&sc->tx.txbuflock);
2081 			list_move_tail(&bf_held->list, &sc->tx.txbuf);
2082 			spin_unlock_bh(&sc->tx.txbuflock);
2083 		}
2084 
2085 		if (!bf_isampdu(bf)) {
2086 			/*
2087 			 * This frame is sent out as a single frame.
2088 			 * Use hardware retry status for this frame.
2089 			 */
2090 			bf->bf_retries = ds->ds_txstat.ts_longretry;
2091 			if (ds->ds_txstat.ts_status & ATH9K_TXERR_XRETRY)
2092 				bf->bf_state.bf_type |= BUF_XRETRY;
2093 			ath_tx_rc_status(bf, ds, 0, txok, true);
2094 		}
2095 
2096 		if (bf_isampdu(bf))
2097 			ath_tx_complete_aggr(sc, txq, bf, &bf_head, txok);
2098 		else
2099 			ath_tx_complete_buf(sc, bf, txq, &bf_head, txok, 0);
2100 
2101 		ath_wake_mac80211_queue(sc, txq);
2102 
2103 		spin_lock_bh(&txq->axq_lock);
2104 		if (sc->sc_flags & SC_OP_TXAGGR)
2105 			ath_txq_schedule(sc, txq);
2106 		spin_unlock_bh(&txq->axq_lock);
2107 	}
2108 }
2109 
2110 static void ath_tx_complete_poll_work(struct work_struct *work)
2111 {
2112 	struct ath_softc *sc = container_of(work, struct ath_softc,
2113 			tx_complete_work.work);
2114 	struct ath_txq *txq;
2115 	int i;
2116 	bool needreset = false;
2117 
2118 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
2119 		if (ATH_TXQ_SETUP(sc, i)) {
2120 			txq = &sc->tx.txq[i];
2121 			spin_lock_bh(&txq->axq_lock);
2122 			if (txq->axq_depth) {
2123 				if (txq->axq_tx_inprogress) {
2124 					needreset = true;
2125 					spin_unlock_bh(&txq->axq_lock);
2126 					break;
2127 				} else {
2128 					txq->axq_tx_inprogress = true;
2129 				}
2130 			}
2131 			spin_unlock_bh(&txq->axq_lock);
2132 		}
2133 
2134 	if (needreset) {
2135 		ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_RESET,
2136 			  "tx hung, resetting the chip\n");
2137 		ath9k_ps_wakeup(sc);
2138 		ath_reset(sc, false);
2139 		ath9k_ps_restore(sc);
2140 	}
2141 
2142 	ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2143 			msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
2144 }
2145 
2146 
2147 
2148 void ath_tx_tasklet(struct ath_softc *sc)
2149 {
2150 	int i;
2151 	u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
2152 
2153 	ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
2154 
2155 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2156 		if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2157 			ath_tx_processq(sc, &sc->tx.txq[i]);
2158 	}
2159 }
2160 
2161 /*****************/
2162 /* Init, Cleanup */
2163 /*****************/
2164 
2165 int ath_tx_init(struct ath_softc *sc, int nbufs)
2166 {
2167 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2168 	int error = 0;
2169 
2170 	spin_lock_init(&sc->tx.txbuflock);
2171 
2172 	error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2173 				  "tx", nbufs, 1);
2174 	if (error != 0) {
2175 		ath_print(common, ATH_DBG_FATAL,
2176 			  "Failed to allocate tx descriptors: %d\n", error);
2177 		goto err;
2178 	}
2179 
2180 	error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2181 				  "beacon", ATH_BCBUF, 1);
2182 	if (error != 0) {
2183 		ath_print(common, ATH_DBG_FATAL,
2184 			  "Failed to allocate beacon descriptors: %d\n", error);
2185 		goto err;
2186 	}
2187 
2188 	INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2189 
2190 err:
2191 	if (error != 0)
2192 		ath_tx_cleanup(sc);
2193 
2194 	return error;
2195 }
2196 
2197 void ath_tx_cleanup(struct ath_softc *sc)
2198 {
2199 	if (sc->beacon.bdma.dd_desc_len != 0)
2200 		ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
2201 
2202 	if (sc->tx.txdma.dd_desc_len != 0)
2203 		ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
2204 }
2205 
2206 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2207 {
2208 	struct ath_atx_tid *tid;
2209 	struct ath_atx_ac *ac;
2210 	int tidno, acno;
2211 
2212 	for (tidno = 0, tid = &an->tid[tidno];
2213 	     tidno < WME_NUM_TID;
2214 	     tidno++, tid++) {
2215 		tid->an        = an;
2216 		tid->tidno     = tidno;
2217 		tid->seq_start = tid->seq_next = 0;
2218 		tid->baw_size  = WME_MAX_BA;
2219 		tid->baw_head  = tid->baw_tail = 0;
2220 		tid->sched     = false;
2221 		tid->paused    = false;
2222 		tid->state &= ~AGGR_CLEANUP;
2223 		INIT_LIST_HEAD(&tid->buf_q);
2224 		acno = TID_TO_WME_AC(tidno);
2225 		tid->ac = &an->ac[acno];
2226 		tid->state &= ~AGGR_ADDBA_COMPLETE;
2227 		tid->state &= ~AGGR_ADDBA_PROGRESS;
2228 	}
2229 
2230 	for (acno = 0, ac = &an->ac[acno];
2231 	     acno < WME_NUM_AC; acno++, ac++) {
2232 		ac->sched    = false;
2233 		INIT_LIST_HEAD(&ac->tid_q);
2234 
2235 		switch (acno) {
2236 		case WME_AC_BE:
2237 			ac->qnum = ath_tx_get_qnum(sc,
2238 				   ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
2239 			break;
2240 		case WME_AC_BK:
2241 			ac->qnum = ath_tx_get_qnum(sc,
2242 				   ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK);
2243 			break;
2244 		case WME_AC_VI:
2245 			ac->qnum = ath_tx_get_qnum(sc,
2246 				   ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI);
2247 			break;
2248 		case WME_AC_VO:
2249 			ac->qnum = ath_tx_get_qnum(sc,
2250 				   ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO);
2251 			break;
2252 		}
2253 	}
2254 }
2255 
2256 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2257 {
2258 	int i;
2259 	struct ath_atx_ac *ac, *ac_tmp;
2260 	struct ath_atx_tid *tid, *tid_tmp;
2261 	struct ath_txq *txq;
2262 
2263 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2264 		if (ATH_TXQ_SETUP(sc, i)) {
2265 			txq = &sc->tx.txq[i];
2266 
2267 			spin_lock(&txq->axq_lock);
2268 
2269 			list_for_each_entry_safe(ac,
2270 					ac_tmp, &txq->axq_acq, list) {
2271 				tid = list_first_entry(&ac->tid_q,
2272 						struct ath_atx_tid, list);
2273 				if (tid && tid->an != an)
2274 					continue;
2275 				list_del(&ac->list);
2276 				ac->sched = false;
2277 
2278 				list_for_each_entry_safe(tid,
2279 						tid_tmp, &ac->tid_q, list) {
2280 					list_del(&tid->list);
2281 					tid->sched = false;
2282 					ath_tid_drain(sc, txq, tid);
2283 					tid->state &= ~AGGR_ADDBA_COMPLETE;
2284 					tid->state &= ~AGGR_CLEANUP;
2285 				}
2286 			}
2287 
2288 			spin_unlock(&txq->axq_lock);
2289 		}
2290 	}
2291 }
2292