xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/xmit.c (revision afb46f79)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20 
21 #define BITS_PER_BYTE           8
22 #define OFDM_PLCP_BITS          22
23 #define HT_RC_2_STREAMS(_rc)    ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF                   8
25 #define L_LTF                   8
26 #define L_SIG                   4
27 #define HT_SIG                  8
28 #define HT_STF                  4
29 #define HT_LTF(_ns)             (4 * (_ns))
30 #define SYMBOL_TIME(_ns)        ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5)  /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t)         ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t)  (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36 
37 
38 static u16 bits_per_symbol[][2] = {
39 	/* 20MHz 40MHz */
40 	{    26,   54 },     /*  0: BPSK */
41 	{    52,  108 },     /*  1: QPSK 1/2 */
42 	{    78,  162 },     /*  2: QPSK 3/4 */
43 	{   104,  216 },     /*  3: 16-QAM 1/2 */
44 	{   156,  324 },     /*  4: 16-QAM 3/4 */
45 	{   208,  432 },     /*  5: 64-QAM 2/3 */
46 	{   234,  486 },     /*  6: 64-QAM 3/4 */
47 	{   260,  540 },     /*  7: 64-QAM 5/6 */
48 };
49 
50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
51 			       struct ath_atx_tid *tid, struct sk_buff *skb);
52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
53 			    int tx_flags, struct ath_txq *txq);
54 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
55 				struct ath_txq *txq, struct list_head *bf_q,
56 				struct ath_tx_status *ts, int txok);
57 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
58 			     struct list_head *head, bool internal);
59 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
60 			     struct ath_tx_status *ts, int nframes, int nbad,
61 			     int txok);
62 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
63 			      int seqno);
64 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
65 					   struct ath_txq *txq,
66 					   struct ath_atx_tid *tid,
67 					   struct sk_buff *skb);
68 
69 enum {
70 	MCS_HT20,
71 	MCS_HT20_SGI,
72 	MCS_HT40,
73 	MCS_HT40_SGI,
74 };
75 
76 /*********************/
77 /* Aggregation logic */
78 /*********************/
79 
80 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
81 	__acquires(&txq->axq_lock)
82 {
83 	spin_lock_bh(&txq->axq_lock);
84 }
85 
86 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
87 	__releases(&txq->axq_lock)
88 {
89 	spin_unlock_bh(&txq->axq_lock);
90 }
91 
92 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
93 	__releases(&txq->axq_lock)
94 {
95 	struct sk_buff_head q;
96 	struct sk_buff *skb;
97 
98 	__skb_queue_head_init(&q);
99 	skb_queue_splice_init(&txq->complete_q, &q);
100 	spin_unlock_bh(&txq->axq_lock);
101 
102 	while ((skb = __skb_dequeue(&q)))
103 		ieee80211_tx_status(sc->hw, skb);
104 }
105 
106 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
107 {
108 	struct ath_atx_ac *ac = tid->ac;
109 
110 	if (tid->paused)
111 		return;
112 
113 	if (tid->sched)
114 		return;
115 
116 	tid->sched = true;
117 	list_add_tail(&tid->list, &ac->tid_q);
118 
119 	if (ac->sched)
120 		return;
121 
122 	ac->sched = true;
123 	list_add_tail(&ac->list, &txq->axq_acq);
124 }
125 
126 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
127 {
128 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
129 	BUILD_BUG_ON(sizeof(struct ath_frame_info) >
130 		     sizeof(tx_info->rate_driver_data));
131 	return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
132 }
133 
134 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
135 {
136 	if (!tid->an->sta)
137 		return;
138 
139 	ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
140 			   seqno << IEEE80211_SEQ_SEQ_SHIFT);
141 }
142 
143 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
144 			  struct ath_buf *bf)
145 {
146 	ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
147 			       ARRAY_SIZE(bf->rates));
148 }
149 
150 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
151 			     struct sk_buff *skb)
152 {
153 	int q;
154 
155 	q = skb_get_queue_mapping(skb);
156 	if (txq == sc->tx.uapsdq)
157 		txq = sc->tx.txq_map[q];
158 
159 	if (txq != sc->tx.txq_map[q])
160 		return;
161 
162 	if (WARN_ON(--txq->pending_frames < 0))
163 		txq->pending_frames = 0;
164 
165 	if (txq->stopped &&
166 	    txq->pending_frames < sc->tx.txq_max_pending[q]) {
167 		ieee80211_wake_queue(sc->hw, q);
168 		txq->stopped = false;
169 	}
170 }
171 
172 static struct ath_atx_tid *
173 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
174 {
175 	u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
176 	return ATH_AN_2_TID(an, tidno);
177 }
178 
179 static bool ath_tid_has_buffered(struct ath_atx_tid *tid)
180 {
181 	return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q);
182 }
183 
184 static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid)
185 {
186 	struct sk_buff *skb;
187 
188 	skb = __skb_dequeue(&tid->retry_q);
189 	if (!skb)
190 		skb = __skb_dequeue(&tid->buf_q);
191 
192 	return skb;
193 }
194 
195 /*
196  * ath_tx_tid_change_state:
197  * - clears a-mpdu flag of previous session
198  * - force sequence number allocation to fix next BlockAck Window
199  */
200 static void
201 ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid)
202 {
203 	struct ath_txq *txq = tid->ac->txq;
204 	struct ieee80211_tx_info *tx_info;
205 	struct sk_buff *skb, *tskb;
206 	struct ath_buf *bf;
207 	struct ath_frame_info *fi;
208 
209 	skb_queue_walk_safe(&tid->buf_q, skb, tskb) {
210 		fi = get_frame_info(skb);
211 		bf = fi->bf;
212 
213 		tx_info = IEEE80211_SKB_CB(skb);
214 		tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
215 
216 		if (bf)
217 			continue;
218 
219 		bf = ath_tx_setup_buffer(sc, txq, tid, skb);
220 		if (!bf) {
221 			__skb_unlink(skb, &tid->buf_q);
222 			ath_txq_skb_done(sc, txq, skb);
223 			ieee80211_free_txskb(sc->hw, skb);
224 			continue;
225 		}
226 	}
227 
228 }
229 
230 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
231 {
232 	struct ath_txq *txq = tid->ac->txq;
233 	struct sk_buff *skb;
234 	struct ath_buf *bf;
235 	struct list_head bf_head;
236 	struct ath_tx_status ts;
237 	struct ath_frame_info *fi;
238 	bool sendbar = false;
239 
240 	INIT_LIST_HEAD(&bf_head);
241 
242 	memset(&ts, 0, sizeof(ts));
243 
244 	while ((skb = __skb_dequeue(&tid->retry_q))) {
245 		fi = get_frame_info(skb);
246 		bf = fi->bf;
247 		if (!bf) {
248 			ath_txq_skb_done(sc, txq, skb);
249 			ieee80211_free_txskb(sc->hw, skb);
250 			continue;
251 		}
252 
253 		if (fi->baw_tracked) {
254 			ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
255 			sendbar = true;
256 		}
257 
258 		list_add_tail(&bf->list, &bf_head);
259 		ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
260 	}
261 
262 	if (sendbar) {
263 		ath_txq_unlock(sc, txq);
264 		ath_send_bar(tid, tid->seq_start);
265 		ath_txq_lock(sc, txq);
266 	}
267 }
268 
269 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
270 			      int seqno)
271 {
272 	int index, cindex;
273 
274 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
275 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
276 
277 	__clear_bit(cindex, tid->tx_buf);
278 
279 	while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
280 		INCR(tid->seq_start, IEEE80211_SEQ_MAX);
281 		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
282 		if (tid->bar_index >= 0)
283 			tid->bar_index--;
284 	}
285 }
286 
287 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
288 			     struct ath_buf *bf)
289 {
290 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
291 	u16 seqno = bf->bf_state.seqno;
292 	int index, cindex;
293 
294 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
295 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
296 	__set_bit(cindex, tid->tx_buf);
297 	fi->baw_tracked = 1;
298 
299 	if (index >= ((tid->baw_tail - tid->baw_head) &
300 		(ATH_TID_MAX_BUFS - 1))) {
301 		tid->baw_tail = cindex;
302 		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
303 	}
304 }
305 
306 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
307 			  struct ath_atx_tid *tid)
308 
309 {
310 	struct sk_buff *skb;
311 	struct ath_buf *bf;
312 	struct list_head bf_head;
313 	struct ath_tx_status ts;
314 	struct ath_frame_info *fi;
315 
316 	memset(&ts, 0, sizeof(ts));
317 	INIT_LIST_HEAD(&bf_head);
318 
319 	while ((skb = ath_tid_dequeue(tid))) {
320 		fi = get_frame_info(skb);
321 		bf = fi->bf;
322 
323 		if (!bf) {
324 			ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
325 			continue;
326 		}
327 
328 		list_add_tail(&bf->list, &bf_head);
329 		ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
330 	}
331 }
332 
333 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
334 			     struct sk_buff *skb, int count)
335 {
336 	struct ath_frame_info *fi = get_frame_info(skb);
337 	struct ath_buf *bf = fi->bf;
338 	struct ieee80211_hdr *hdr;
339 	int prev = fi->retries;
340 
341 	TX_STAT_INC(txq->axq_qnum, a_retries);
342 	fi->retries += count;
343 
344 	if (prev > 0)
345 		return;
346 
347 	hdr = (struct ieee80211_hdr *)skb->data;
348 	hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
349 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
350 		sizeof(*hdr), DMA_TO_DEVICE);
351 }
352 
353 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
354 {
355 	struct ath_buf *bf = NULL;
356 
357 	spin_lock_bh(&sc->tx.txbuflock);
358 
359 	if (unlikely(list_empty(&sc->tx.txbuf))) {
360 		spin_unlock_bh(&sc->tx.txbuflock);
361 		return NULL;
362 	}
363 
364 	bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
365 	list_del(&bf->list);
366 
367 	spin_unlock_bh(&sc->tx.txbuflock);
368 
369 	return bf;
370 }
371 
372 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
373 {
374 	spin_lock_bh(&sc->tx.txbuflock);
375 	list_add_tail(&bf->list, &sc->tx.txbuf);
376 	spin_unlock_bh(&sc->tx.txbuflock);
377 }
378 
379 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
380 {
381 	struct ath_buf *tbf;
382 
383 	tbf = ath_tx_get_buffer(sc);
384 	if (WARN_ON(!tbf))
385 		return NULL;
386 
387 	ATH_TXBUF_RESET(tbf);
388 
389 	tbf->bf_mpdu = bf->bf_mpdu;
390 	tbf->bf_buf_addr = bf->bf_buf_addr;
391 	memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
392 	tbf->bf_state = bf->bf_state;
393 	tbf->bf_state.stale = false;
394 
395 	return tbf;
396 }
397 
398 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
399 			        struct ath_tx_status *ts, int txok,
400 			        int *nframes, int *nbad)
401 {
402 	struct ath_frame_info *fi;
403 	u16 seq_st = 0;
404 	u32 ba[WME_BA_BMP_SIZE >> 5];
405 	int ba_index;
406 	int isaggr = 0;
407 
408 	*nbad = 0;
409 	*nframes = 0;
410 
411 	isaggr = bf_isaggr(bf);
412 	if (isaggr) {
413 		seq_st = ts->ts_seqnum;
414 		memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
415 	}
416 
417 	while (bf) {
418 		fi = get_frame_info(bf->bf_mpdu);
419 		ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
420 
421 		(*nframes)++;
422 		if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
423 			(*nbad)++;
424 
425 		bf = bf->bf_next;
426 	}
427 }
428 
429 
430 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
431 				 struct ath_buf *bf, struct list_head *bf_q,
432 				 struct ath_tx_status *ts, int txok)
433 {
434 	struct ath_node *an = NULL;
435 	struct sk_buff *skb;
436 	struct ieee80211_sta *sta;
437 	struct ieee80211_hw *hw = sc->hw;
438 	struct ieee80211_hdr *hdr;
439 	struct ieee80211_tx_info *tx_info;
440 	struct ath_atx_tid *tid = NULL;
441 	struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
442 	struct list_head bf_head;
443 	struct sk_buff_head bf_pending;
444 	u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
445 	u32 ba[WME_BA_BMP_SIZE >> 5];
446 	int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
447 	bool rc_update = true, isba;
448 	struct ieee80211_tx_rate rates[4];
449 	struct ath_frame_info *fi;
450 	int nframes;
451 	bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
452 	int i, retries;
453 	int bar_index = -1;
454 
455 	skb = bf->bf_mpdu;
456 	hdr = (struct ieee80211_hdr *)skb->data;
457 
458 	tx_info = IEEE80211_SKB_CB(skb);
459 
460 	memcpy(rates, bf->rates, sizeof(rates));
461 
462 	retries = ts->ts_longretry + 1;
463 	for (i = 0; i < ts->ts_rateindex; i++)
464 		retries += rates[i].count;
465 
466 	rcu_read_lock();
467 
468 	sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
469 	if (!sta) {
470 		rcu_read_unlock();
471 
472 		INIT_LIST_HEAD(&bf_head);
473 		while (bf) {
474 			bf_next = bf->bf_next;
475 
476 			if (!bf->bf_state.stale || bf_next != NULL)
477 				list_move_tail(&bf->list, &bf_head);
478 
479 			ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
480 
481 			bf = bf_next;
482 		}
483 		return;
484 	}
485 
486 	an = (struct ath_node *)sta->drv_priv;
487 	tid = ath_get_skb_tid(sc, an, skb);
488 	seq_first = tid->seq_start;
489 	isba = ts->ts_flags & ATH9K_TX_BA;
490 
491 	/*
492 	 * The hardware occasionally sends a tx status for the wrong TID.
493 	 * In this case, the BA status cannot be considered valid and all
494 	 * subframes need to be retransmitted
495 	 *
496 	 * Only BlockAcks have a TID and therefore normal Acks cannot be
497 	 * checked
498 	 */
499 	if (isba && tid->tidno != ts->tid)
500 		txok = false;
501 
502 	isaggr = bf_isaggr(bf);
503 	memset(ba, 0, WME_BA_BMP_SIZE >> 3);
504 
505 	if (isaggr && txok) {
506 		if (ts->ts_flags & ATH9K_TX_BA) {
507 			seq_st = ts->ts_seqnum;
508 			memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
509 		} else {
510 			/*
511 			 * AR5416 can become deaf/mute when BA
512 			 * issue happens. Chip needs to be reset.
513 			 * But AP code may have sychronization issues
514 			 * when perform internal reset in this routine.
515 			 * Only enable reset in STA mode for now.
516 			 */
517 			if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
518 				needreset = 1;
519 		}
520 	}
521 
522 	__skb_queue_head_init(&bf_pending);
523 
524 	ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
525 	while (bf) {
526 		u16 seqno = bf->bf_state.seqno;
527 
528 		txfail = txpending = sendbar = 0;
529 		bf_next = bf->bf_next;
530 
531 		skb = bf->bf_mpdu;
532 		tx_info = IEEE80211_SKB_CB(skb);
533 		fi = get_frame_info(skb);
534 
535 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
536 		    !tid->active) {
537 			/*
538 			 * Outside of the current BlockAck window,
539 			 * maybe part of a previous session
540 			 */
541 			txfail = 1;
542 		} else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
543 			/* transmit completion, subframe is
544 			 * acked by block ack */
545 			acked_cnt++;
546 		} else if (!isaggr && txok) {
547 			/* transmit completion */
548 			acked_cnt++;
549 		} else if (flush) {
550 			txpending = 1;
551 		} else if (fi->retries < ATH_MAX_SW_RETRIES) {
552 			if (txok || !an->sleeping)
553 				ath_tx_set_retry(sc, txq, bf->bf_mpdu,
554 						 retries);
555 
556 			txpending = 1;
557 		} else {
558 			txfail = 1;
559 			txfail_cnt++;
560 			bar_index = max_t(int, bar_index,
561 				ATH_BA_INDEX(seq_first, seqno));
562 		}
563 
564 		/*
565 		 * Make sure the last desc is reclaimed if it
566 		 * not a holding desc.
567 		 */
568 		INIT_LIST_HEAD(&bf_head);
569 		if (bf_next != NULL || !bf_last->bf_state.stale)
570 			list_move_tail(&bf->list, &bf_head);
571 
572 		if (!txpending) {
573 			/*
574 			 * complete the acked-ones/xretried ones; update
575 			 * block-ack window
576 			 */
577 			ath_tx_update_baw(sc, tid, seqno);
578 
579 			if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
580 				memcpy(tx_info->control.rates, rates, sizeof(rates));
581 				ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
582 				rc_update = false;
583 			}
584 
585 			ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
586 				!txfail);
587 		} else {
588 			if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
589 				tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
590 				ieee80211_sta_eosp(sta);
591 			}
592 			/* retry the un-acked ones */
593 			if (bf->bf_next == NULL && bf_last->bf_state.stale) {
594 				struct ath_buf *tbf;
595 
596 				tbf = ath_clone_txbuf(sc, bf_last);
597 				/*
598 				 * Update tx baw and complete the
599 				 * frame with failed status if we
600 				 * run out of tx buf.
601 				 */
602 				if (!tbf) {
603 					ath_tx_update_baw(sc, tid, seqno);
604 
605 					ath_tx_complete_buf(sc, bf, txq,
606 							    &bf_head, ts, 0);
607 					bar_index = max_t(int, bar_index,
608 						ATH_BA_INDEX(seq_first, seqno));
609 					break;
610 				}
611 
612 				fi->bf = tbf;
613 			}
614 
615 			/*
616 			 * Put this buffer to the temporary pending
617 			 * queue to retain ordering
618 			 */
619 			__skb_queue_tail(&bf_pending, skb);
620 		}
621 
622 		bf = bf_next;
623 	}
624 
625 	/* prepend un-acked frames to the beginning of the pending frame queue */
626 	if (!skb_queue_empty(&bf_pending)) {
627 		if (an->sleeping)
628 			ieee80211_sta_set_buffered(sta, tid->tidno, true);
629 
630 		skb_queue_splice_tail(&bf_pending, &tid->retry_q);
631 		if (!an->sleeping) {
632 			ath_tx_queue_tid(txq, tid);
633 
634 			if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
635 				tid->ac->clear_ps_filter = true;
636 		}
637 	}
638 
639 	if (bar_index >= 0) {
640 		u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
641 
642 		if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
643 			tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
644 
645 		ath_txq_unlock(sc, txq);
646 		ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
647 		ath_txq_lock(sc, txq);
648 	}
649 
650 	rcu_read_unlock();
651 
652 	if (needreset)
653 		ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
654 }
655 
656 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
657 {
658     struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
659     return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
660 }
661 
662 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
663 				  struct ath_tx_status *ts, struct ath_buf *bf,
664 				  struct list_head *bf_head)
665 {
666 	struct ieee80211_tx_info *info;
667 	bool txok, flush;
668 
669 	txok = !(ts->ts_status & ATH9K_TXERR_MASK);
670 	flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
671 	txq->axq_tx_inprogress = false;
672 
673 	txq->axq_depth--;
674 	if (bf_is_ampdu_not_probing(bf))
675 		txq->axq_ampdu_depth--;
676 
677 	if (!bf_isampdu(bf)) {
678 		if (!flush) {
679 			info = IEEE80211_SKB_CB(bf->bf_mpdu);
680 			memcpy(info->control.rates, bf->rates,
681 			       sizeof(info->control.rates));
682 			ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
683 		}
684 		ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
685 	} else
686 		ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
687 
688 	if (!flush)
689 		ath_txq_schedule(sc, txq);
690 }
691 
692 static bool ath_lookup_legacy(struct ath_buf *bf)
693 {
694 	struct sk_buff *skb;
695 	struct ieee80211_tx_info *tx_info;
696 	struct ieee80211_tx_rate *rates;
697 	int i;
698 
699 	skb = bf->bf_mpdu;
700 	tx_info = IEEE80211_SKB_CB(skb);
701 	rates = tx_info->control.rates;
702 
703 	for (i = 0; i < 4; i++) {
704 		if (!rates[i].count || rates[i].idx < 0)
705 			break;
706 
707 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
708 			return true;
709 	}
710 
711 	return false;
712 }
713 
714 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
715 			   struct ath_atx_tid *tid)
716 {
717 	struct sk_buff *skb;
718 	struct ieee80211_tx_info *tx_info;
719 	struct ieee80211_tx_rate *rates;
720 	u32 max_4ms_framelen, frmlen;
721 	u16 aggr_limit, bt_aggr_limit, legacy = 0;
722 	int q = tid->ac->txq->mac80211_qnum;
723 	int i;
724 
725 	skb = bf->bf_mpdu;
726 	tx_info = IEEE80211_SKB_CB(skb);
727 	rates = bf->rates;
728 
729 	/*
730 	 * Find the lowest frame length among the rate series that will have a
731 	 * 4ms (or TXOP limited) transmit duration.
732 	 */
733 	max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
734 
735 	for (i = 0; i < 4; i++) {
736 		int modeidx;
737 
738 		if (!rates[i].count)
739 			continue;
740 
741 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
742 			legacy = 1;
743 			break;
744 		}
745 
746 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
747 			modeidx = MCS_HT40;
748 		else
749 			modeidx = MCS_HT20;
750 
751 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
752 			modeidx++;
753 
754 		frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
755 		max_4ms_framelen = min(max_4ms_framelen, frmlen);
756 	}
757 
758 	/*
759 	 * limit aggregate size by the minimum rate if rate selected is
760 	 * not a probe rate, if rate selected is a probe rate then
761 	 * avoid aggregation of this packet.
762 	 */
763 	if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
764 		return 0;
765 
766 	aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
767 
768 	/*
769 	 * Override the default aggregation limit for BTCOEX.
770 	 */
771 	bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
772 	if (bt_aggr_limit)
773 		aggr_limit = bt_aggr_limit;
774 
775 	if (tid->an->maxampdu)
776 		aggr_limit = min(aggr_limit, tid->an->maxampdu);
777 
778 	return aggr_limit;
779 }
780 
781 /*
782  * Returns the number of delimiters to be added to
783  * meet the minimum required mpdudensity.
784  */
785 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
786 				  struct ath_buf *bf, u16 frmlen,
787 				  bool first_subfrm)
788 {
789 #define FIRST_DESC_NDELIMS 60
790 	u32 nsymbits, nsymbols;
791 	u16 minlen;
792 	u8 flags, rix;
793 	int width, streams, half_gi, ndelim, mindelim;
794 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
795 
796 	/* Select standard number of delimiters based on frame length alone */
797 	ndelim = ATH_AGGR_GET_NDELIM(frmlen);
798 
799 	/*
800 	 * If encryption enabled, hardware requires some more padding between
801 	 * subframes.
802 	 * TODO - this could be improved to be dependent on the rate.
803 	 *      The hardware can keep up at lower rates, but not higher rates
804 	 */
805 	if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
806 	    !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
807 		ndelim += ATH_AGGR_ENCRYPTDELIM;
808 
809 	/*
810 	 * Add delimiter when using RTS/CTS with aggregation
811 	 * and non enterprise AR9003 card
812 	 */
813 	if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
814 	    (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
815 		ndelim = max(ndelim, FIRST_DESC_NDELIMS);
816 
817 	/*
818 	 * Convert desired mpdu density from microeconds to bytes based
819 	 * on highest rate in rate series (i.e. first rate) to determine
820 	 * required minimum length for subframe. Take into account
821 	 * whether high rate is 20 or 40Mhz and half or full GI.
822 	 *
823 	 * If there is no mpdu density restriction, no further calculation
824 	 * is needed.
825 	 */
826 
827 	if (tid->an->mpdudensity == 0)
828 		return ndelim;
829 
830 	rix = bf->rates[0].idx;
831 	flags = bf->rates[0].flags;
832 	width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
833 	half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
834 
835 	if (half_gi)
836 		nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
837 	else
838 		nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
839 
840 	if (nsymbols == 0)
841 		nsymbols = 1;
842 
843 	streams = HT_RC_2_STREAMS(rix);
844 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
845 	minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
846 
847 	if (frmlen < minlen) {
848 		mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
849 		ndelim = max(mindelim, ndelim);
850 	}
851 
852 	return ndelim;
853 }
854 
855 static struct ath_buf *
856 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
857 			struct ath_atx_tid *tid, struct sk_buff_head **q)
858 {
859 	struct ieee80211_tx_info *tx_info;
860 	struct ath_frame_info *fi;
861 	struct sk_buff *skb;
862 	struct ath_buf *bf;
863 	u16 seqno;
864 
865 	while (1) {
866 		*q = &tid->retry_q;
867 		if (skb_queue_empty(*q))
868 			*q = &tid->buf_q;
869 
870 		skb = skb_peek(*q);
871 		if (!skb)
872 			break;
873 
874 		fi = get_frame_info(skb);
875 		bf = fi->bf;
876 		if (!fi->bf)
877 			bf = ath_tx_setup_buffer(sc, txq, tid, skb);
878 		else
879 			bf->bf_state.stale = false;
880 
881 		if (!bf) {
882 			__skb_unlink(skb, *q);
883 			ath_txq_skb_done(sc, txq, skb);
884 			ieee80211_free_txskb(sc->hw, skb);
885 			continue;
886 		}
887 
888 		bf->bf_next = NULL;
889 		bf->bf_lastbf = bf;
890 
891 		tx_info = IEEE80211_SKB_CB(skb);
892 		tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
893 		if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
894 			bf->bf_state.bf_type = 0;
895 			return bf;
896 		}
897 
898 		bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
899 		seqno = bf->bf_state.seqno;
900 
901 		/* do not step over block-ack window */
902 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno))
903 			break;
904 
905 		if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
906 			struct ath_tx_status ts = {};
907 			struct list_head bf_head;
908 
909 			INIT_LIST_HEAD(&bf_head);
910 			list_add(&bf->list, &bf_head);
911 			__skb_unlink(skb, *q);
912 			ath_tx_update_baw(sc, tid, seqno);
913 			ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
914 			continue;
915 		}
916 
917 		return bf;
918 	}
919 
920 	return NULL;
921 }
922 
923 static bool
924 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
925 		 struct ath_atx_tid *tid, struct list_head *bf_q,
926 		 struct ath_buf *bf_first, struct sk_buff_head *tid_q,
927 		 int *aggr_len)
928 {
929 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
930 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
931 	int nframes = 0, ndelim;
932 	u16 aggr_limit = 0, al = 0, bpad = 0,
933 	    al_delta, h_baw = tid->baw_size / 2;
934 	struct ieee80211_tx_info *tx_info;
935 	struct ath_frame_info *fi;
936 	struct sk_buff *skb;
937 	bool closed = false;
938 
939 	bf = bf_first;
940 	aggr_limit = ath_lookup_rate(sc, bf, tid);
941 
942 	do {
943 		skb = bf->bf_mpdu;
944 		fi = get_frame_info(skb);
945 
946 		/* do not exceed aggregation limit */
947 		al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
948 		if (nframes) {
949 			if (aggr_limit < al + bpad + al_delta ||
950 			    ath_lookup_legacy(bf) || nframes >= h_baw)
951 				break;
952 
953 			tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
954 			if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
955 			    !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
956 				break;
957 		}
958 
959 		/* add padding for previous frame to aggregation length */
960 		al += bpad + al_delta;
961 
962 		/*
963 		 * Get the delimiters needed to meet the MPDU
964 		 * density for this node.
965 		 */
966 		ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
967 						!nframes);
968 		bpad = PADBYTES(al_delta) + (ndelim << 2);
969 
970 		nframes++;
971 		bf->bf_next = NULL;
972 
973 		/* link buffers of this frame to the aggregate */
974 		if (!fi->baw_tracked)
975 			ath_tx_addto_baw(sc, tid, bf);
976 		bf->bf_state.ndelim = ndelim;
977 
978 		__skb_unlink(skb, tid_q);
979 		list_add_tail(&bf->list, bf_q);
980 		if (bf_prev)
981 			bf_prev->bf_next = bf;
982 
983 		bf_prev = bf;
984 
985 		bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
986 		if (!bf) {
987 			closed = true;
988 			break;
989 		}
990 	} while (ath_tid_has_buffered(tid));
991 
992 	bf = bf_first;
993 	bf->bf_lastbf = bf_prev;
994 
995 	if (bf == bf_prev) {
996 		al = get_frame_info(bf->bf_mpdu)->framelen;
997 		bf->bf_state.bf_type = BUF_AMPDU;
998 	} else {
999 		TX_STAT_INC(txq->axq_qnum, a_aggr);
1000 	}
1001 
1002 	*aggr_len = al;
1003 
1004 	return closed;
1005 #undef PADBYTES
1006 }
1007 
1008 /*
1009  * rix - rate index
1010  * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1011  * width  - 0 for 20 MHz, 1 for 40 MHz
1012  * half_gi - to use 4us v/s 3.6 us for symbol time
1013  */
1014 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1015 			    int width, int half_gi, bool shortPreamble)
1016 {
1017 	u32 nbits, nsymbits, duration, nsymbols;
1018 	int streams;
1019 
1020 	/* find number of symbols: PLCP + data */
1021 	streams = HT_RC_2_STREAMS(rix);
1022 	nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1023 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
1024 	nsymbols = (nbits + nsymbits - 1) / nsymbits;
1025 
1026 	if (!half_gi)
1027 		duration = SYMBOL_TIME(nsymbols);
1028 	else
1029 		duration = SYMBOL_TIME_HALFGI(nsymbols);
1030 
1031 	/* addup duration for legacy/ht training and signal fields */
1032 	duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1033 
1034 	return duration;
1035 }
1036 
1037 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1038 {
1039 	int streams = HT_RC_2_STREAMS(mcs);
1040 	int symbols, bits;
1041 	int bytes = 0;
1042 
1043 	usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1044 	symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1045 	bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1046 	bits -= OFDM_PLCP_BITS;
1047 	bytes = bits / 8;
1048 	if (bytes > 65532)
1049 		bytes = 65532;
1050 
1051 	return bytes;
1052 }
1053 
1054 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1055 {
1056 	u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1057 	int mcs;
1058 
1059 	/* 4ms is the default (and maximum) duration */
1060 	if (!txop || txop > 4096)
1061 		txop = 4096;
1062 
1063 	cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1064 	cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1065 	cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1066 	cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1067 	for (mcs = 0; mcs < 32; mcs++) {
1068 		cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1069 		cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1070 		cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1071 		cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1072 	}
1073 }
1074 
1075 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1076 			     struct ath_tx_info *info, int len, bool rts)
1077 {
1078 	struct ath_hw *ah = sc->sc_ah;
1079 	struct ath_common *common = ath9k_hw_common(ah);
1080 	struct sk_buff *skb;
1081 	struct ieee80211_tx_info *tx_info;
1082 	struct ieee80211_tx_rate *rates;
1083 	const struct ieee80211_rate *rate;
1084 	struct ieee80211_hdr *hdr;
1085 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1086 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1087 	int i;
1088 	u8 rix = 0;
1089 
1090 	skb = bf->bf_mpdu;
1091 	tx_info = IEEE80211_SKB_CB(skb);
1092 	rates = bf->rates;
1093 	hdr = (struct ieee80211_hdr *)skb->data;
1094 
1095 	/* set dur_update_en for l-sig computation except for PS-Poll frames */
1096 	info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1097 	info->rtscts_rate = fi->rtscts_rate;
1098 
1099 	for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1100 		bool is_40, is_sgi, is_sp;
1101 		int phy;
1102 
1103 		if (!rates[i].count || (rates[i].idx < 0))
1104 			continue;
1105 
1106 		rix = rates[i].idx;
1107 		info->rates[i].Tries = rates[i].count;
1108 
1109 		/*
1110 		 * Handle RTS threshold for unaggregated HT frames.
1111 		 */
1112 		if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1113 		    (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1114 		    unlikely(rts_thresh != (u32) -1)) {
1115 			if (!rts_thresh || (len > rts_thresh))
1116 				rts = true;
1117 		}
1118 
1119 		if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1120 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1121 			info->flags |= ATH9K_TXDESC_RTSENA;
1122 		} else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1123 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1124 			info->flags |= ATH9K_TXDESC_CTSENA;
1125 		}
1126 
1127 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1128 			info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1129 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1130 			info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1131 
1132 		is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1133 		is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1134 		is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1135 
1136 		if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1137 			/* MCS rates */
1138 			info->rates[i].Rate = rix | 0x80;
1139 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1140 					ah->txchainmask, info->rates[i].Rate);
1141 			info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1142 				 is_40, is_sgi, is_sp);
1143 			if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1144 				info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1145 			continue;
1146 		}
1147 
1148 		/* legacy rates */
1149 		rate = &common->sbands[tx_info->band].bitrates[rates[i].idx];
1150 		if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1151 		    !(rate->flags & IEEE80211_RATE_ERP_G))
1152 			phy = WLAN_RC_PHY_CCK;
1153 		else
1154 			phy = WLAN_RC_PHY_OFDM;
1155 
1156 		info->rates[i].Rate = rate->hw_value;
1157 		if (rate->hw_value_short) {
1158 			if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1159 				info->rates[i].Rate |= rate->hw_value_short;
1160 		} else {
1161 			is_sp = false;
1162 		}
1163 
1164 		if (bf->bf_state.bfs_paprd)
1165 			info->rates[i].ChSel = ah->txchainmask;
1166 		else
1167 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1168 					ah->txchainmask, info->rates[i].Rate);
1169 
1170 		info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1171 			phy, rate->bitrate * 100, len, rix, is_sp);
1172 	}
1173 
1174 	/* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1175 	if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1176 		info->flags &= ~ATH9K_TXDESC_RTSENA;
1177 
1178 	/* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1179 	if (info->flags & ATH9K_TXDESC_RTSENA)
1180 		info->flags &= ~ATH9K_TXDESC_CTSENA;
1181 }
1182 
1183 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1184 {
1185 	struct ieee80211_hdr *hdr;
1186 	enum ath9k_pkt_type htype;
1187 	__le16 fc;
1188 
1189 	hdr = (struct ieee80211_hdr *)skb->data;
1190 	fc = hdr->frame_control;
1191 
1192 	if (ieee80211_is_beacon(fc))
1193 		htype = ATH9K_PKT_TYPE_BEACON;
1194 	else if (ieee80211_is_probe_resp(fc))
1195 		htype = ATH9K_PKT_TYPE_PROBE_RESP;
1196 	else if (ieee80211_is_atim(fc))
1197 		htype = ATH9K_PKT_TYPE_ATIM;
1198 	else if (ieee80211_is_pspoll(fc))
1199 		htype = ATH9K_PKT_TYPE_PSPOLL;
1200 	else
1201 		htype = ATH9K_PKT_TYPE_NORMAL;
1202 
1203 	return htype;
1204 }
1205 
1206 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1207 			     struct ath_txq *txq, int len)
1208 {
1209 	struct ath_hw *ah = sc->sc_ah;
1210 	struct ath_buf *bf_first = NULL;
1211 	struct ath_tx_info info;
1212 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1213 	bool rts = false;
1214 
1215 	memset(&info, 0, sizeof(info));
1216 	info.is_first = true;
1217 	info.is_last = true;
1218 	info.txpower = MAX_RATE_POWER;
1219 	info.qcu = txq->axq_qnum;
1220 
1221 	while (bf) {
1222 		struct sk_buff *skb = bf->bf_mpdu;
1223 		struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1224 		struct ath_frame_info *fi = get_frame_info(skb);
1225 		bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1226 
1227 		info.type = get_hw_packet_type(skb);
1228 		if (bf->bf_next)
1229 			info.link = bf->bf_next->bf_daddr;
1230 		else
1231 			info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
1232 
1233 		if (!bf_first) {
1234 			bf_first = bf;
1235 
1236 			if (!sc->tx99_state)
1237 				info.flags = ATH9K_TXDESC_INTREQ;
1238 			if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1239 			    txq == sc->tx.uapsdq)
1240 				info.flags |= ATH9K_TXDESC_CLRDMASK;
1241 
1242 			if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1243 				info.flags |= ATH9K_TXDESC_NOACK;
1244 			if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1245 				info.flags |= ATH9K_TXDESC_LDPC;
1246 
1247 			if (bf->bf_state.bfs_paprd)
1248 				info.flags |= (u32) bf->bf_state.bfs_paprd <<
1249 					      ATH9K_TXDESC_PAPRD_S;
1250 
1251 			/*
1252 			 * mac80211 doesn't handle RTS threshold for HT because
1253 			 * the decision has to be taken based on AMPDU length
1254 			 * and aggregation is done entirely inside ath9k.
1255 			 * Set the RTS/CTS flag for the first subframe based
1256 			 * on the threshold.
1257 			 */
1258 			if (aggr && (bf == bf_first) &&
1259 			    unlikely(rts_thresh != (u32) -1)) {
1260 				/*
1261 				 * "len" is the size of the entire AMPDU.
1262 				 */
1263 				if (!rts_thresh || (len > rts_thresh))
1264 					rts = true;
1265 			}
1266 
1267 			if (!aggr)
1268 				len = fi->framelen;
1269 
1270 			ath_buf_set_rate(sc, bf, &info, len, rts);
1271 		}
1272 
1273 		info.buf_addr[0] = bf->bf_buf_addr;
1274 		info.buf_len[0] = skb->len;
1275 		info.pkt_len = fi->framelen;
1276 		info.keyix = fi->keyix;
1277 		info.keytype = fi->keytype;
1278 
1279 		if (aggr) {
1280 			if (bf == bf_first)
1281 				info.aggr = AGGR_BUF_FIRST;
1282 			else if (bf == bf_first->bf_lastbf)
1283 				info.aggr = AGGR_BUF_LAST;
1284 			else
1285 				info.aggr = AGGR_BUF_MIDDLE;
1286 
1287 			info.ndelim = bf->bf_state.ndelim;
1288 			info.aggr_len = len;
1289 		}
1290 
1291 		if (bf == bf_first->bf_lastbf)
1292 			bf_first = NULL;
1293 
1294 		ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1295 		bf = bf->bf_next;
1296 	}
1297 }
1298 
1299 static void
1300 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1301 		  struct ath_atx_tid *tid, struct list_head *bf_q,
1302 		  struct ath_buf *bf_first, struct sk_buff_head *tid_q)
1303 {
1304 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
1305 	struct sk_buff *skb;
1306 	int nframes = 0;
1307 
1308 	do {
1309 		struct ieee80211_tx_info *tx_info;
1310 		skb = bf->bf_mpdu;
1311 
1312 		nframes++;
1313 		__skb_unlink(skb, tid_q);
1314 		list_add_tail(&bf->list, bf_q);
1315 		if (bf_prev)
1316 			bf_prev->bf_next = bf;
1317 		bf_prev = bf;
1318 
1319 		if (nframes >= 2)
1320 			break;
1321 
1322 		bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1323 		if (!bf)
1324 			break;
1325 
1326 		tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1327 		if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
1328 			break;
1329 
1330 		ath_set_rates(tid->an->vif, tid->an->sta, bf);
1331 	} while (1);
1332 }
1333 
1334 static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1335 			      struct ath_atx_tid *tid, bool *stop)
1336 {
1337 	struct ath_buf *bf;
1338 	struct ieee80211_tx_info *tx_info;
1339 	struct sk_buff_head *tid_q;
1340 	struct list_head bf_q;
1341 	int aggr_len = 0;
1342 	bool aggr, last = true;
1343 
1344 	if (!ath_tid_has_buffered(tid))
1345 		return false;
1346 
1347 	INIT_LIST_HEAD(&bf_q);
1348 
1349 	bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1350 	if (!bf)
1351 		return false;
1352 
1353 	tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1354 	aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1355 	if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1356 		(!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1357 		*stop = true;
1358 		return false;
1359 	}
1360 
1361 	ath_set_rates(tid->an->vif, tid->an->sta, bf);
1362 	if (aggr)
1363 		last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf,
1364 					tid_q, &aggr_len);
1365 	else
1366 		ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q);
1367 
1368 	if (list_empty(&bf_q))
1369 		return false;
1370 
1371 	if (tid->ac->clear_ps_filter || tid->an->no_ps_filter) {
1372 		tid->ac->clear_ps_filter = false;
1373 		tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1374 	}
1375 
1376 	ath_tx_fill_desc(sc, bf, txq, aggr_len);
1377 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1378 	return true;
1379 }
1380 
1381 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1382 		      u16 tid, u16 *ssn)
1383 {
1384 	struct ath_atx_tid *txtid;
1385 	struct ath_txq *txq;
1386 	struct ath_node *an;
1387 	u8 density;
1388 
1389 	an = (struct ath_node *)sta->drv_priv;
1390 	txtid = ATH_AN_2_TID(an, tid);
1391 	txq = txtid->ac->txq;
1392 
1393 	ath_txq_lock(sc, txq);
1394 
1395 	/* update ampdu factor/density, they may have changed. This may happen
1396 	 * in HT IBSS when a beacon with HT-info is received after the station
1397 	 * has already been added.
1398 	 */
1399 	if (sta->ht_cap.ht_supported) {
1400 		an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1401 				      sta->ht_cap.ampdu_factor)) - 1;
1402 		density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1403 		an->mpdudensity = density;
1404 	}
1405 
1406 	/* force sequence number allocation for pending frames */
1407 	ath_tx_tid_change_state(sc, txtid);
1408 
1409 	txtid->active = true;
1410 	txtid->paused = true;
1411 	*ssn = txtid->seq_start = txtid->seq_next;
1412 	txtid->bar_index = -1;
1413 
1414 	memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1415 	txtid->baw_head = txtid->baw_tail = 0;
1416 
1417 	ath_txq_unlock_complete(sc, txq);
1418 
1419 	return 0;
1420 }
1421 
1422 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1423 {
1424 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1425 	struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1426 	struct ath_txq *txq = txtid->ac->txq;
1427 
1428 	ath_txq_lock(sc, txq);
1429 	txtid->active = false;
1430 	txtid->paused = false;
1431 	ath_tx_flush_tid(sc, txtid);
1432 	ath_tx_tid_change_state(sc, txtid);
1433 	ath_txq_unlock_complete(sc, txq);
1434 }
1435 
1436 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1437 		       struct ath_node *an)
1438 {
1439 	struct ath_atx_tid *tid;
1440 	struct ath_atx_ac *ac;
1441 	struct ath_txq *txq;
1442 	bool buffered;
1443 	int tidno;
1444 
1445 	for (tidno = 0, tid = &an->tid[tidno];
1446 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1447 
1448 		ac = tid->ac;
1449 		txq = ac->txq;
1450 
1451 		ath_txq_lock(sc, txq);
1452 
1453 		if (!tid->sched) {
1454 			ath_txq_unlock(sc, txq);
1455 			continue;
1456 		}
1457 
1458 		buffered = ath_tid_has_buffered(tid);
1459 
1460 		tid->sched = false;
1461 		list_del(&tid->list);
1462 
1463 		if (ac->sched) {
1464 			ac->sched = false;
1465 			list_del(&ac->list);
1466 		}
1467 
1468 		ath_txq_unlock(sc, txq);
1469 
1470 		ieee80211_sta_set_buffered(sta, tidno, buffered);
1471 	}
1472 }
1473 
1474 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1475 {
1476 	struct ath_atx_tid *tid;
1477 	struct ath_atx_ac *ac;
1478 	struct ath_txq *txq;
1479 	int tidno;
1480 
1481 	for (tidno = 0, tid = &an->tid[tidno];
1482 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1483 
1484 		ac = tid->ac;
1485 		txq = ac->txq;
1486 
1487 		ath_txq_lock(sc, txq);
1488 		ac->clear_ps_filter = true;
1489 
1490 		if (!tid->paused && ath_tid_has_buffered(tid)) {
1491 			ath_tx_queue_tid(txq, tid);
1492 			ath_txq_schedule(sc, txq);
1493 		}
1494 
1495 		ath_txq_unlock_complete(sc, txq);
1496 	}
1497 }
1498 
1499 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
1500 			u16 tidno)
1501 {
1502 	struct ath_atx_tid *tid;
1503 	struct ath_node *an;
1504 	struct ath_txq *txq;
1505 
1506 	an = (struct ath_node *)sta->drv_priv;
1507 	tid = ATH_AN_2_TID(an, tidno);
1508 	txq = tid->ac->txq;
1509 
1510 	ath_txq_lock(sc, txq);
1511 
1512 	tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1513 	tid->paused = false;
1514 
1515 	if (ath_tid_has_buffered(tid)) {
1516 		ath_tx_queue_tid(txq, tid);
1517 		ath_txq_schedule(sc, txq);
1518 	}
1519 
1520 	ath_txq_unlock_complete(sc, txq);
1521 }
1522 
1523 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1524 				   struct ieee80211_sta *sta,
1525 				   u16 tids, int nframes,
1526 				   enum ieee80211_frame_release_type reason,
1527 				   bool more_data)
1528 {
1529 	struct ath_softc *sc = hw->priv;
1530 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1531 	struct ath_txq *txq = sc->tx.uapsdq;
1532 	struct ieee80211_tx_info *info;
1533 	struct list_head bf_q;
1534 	struct ath_buf *bf_tail = NULL, *bf;
1535 	struct sk_buff_head *tid_q;
1536 	int sent = 0;
1537 	int i;
1538 
1539 	INIT_LIST_HEAD(&bf_q);
1540 	for (i = 0; tids && nframes; i++, tids >>= 1) {
1541 		struct ath_atx_tid *tid;
1542 
1543 		if (!(tids & 1))
1544 			continue;
1545 
1546 		tid = ATH_AN_2_TID(an, i);
1547 		if (tid->paused)
1548 			continue;
1549 
1550 		ath_txq_lock(sc, tid->ac->txq);
1551 		while (nframes > 0) {
1552 			bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q);
1553 			if (!bf)
1554 				break;
1555 
1556 			__skb_unlink(bf->bf_mpdu, tid_q);
1557 			list_add_tail(&bf->list, &bf_q);
1558 			ath_set_rates(tid->an->vif, tid->an->sta, bf);
1559 			if (bf_isampdu(bf)) {
1560 				ath_tx_addto_baw(sc, tid, bf);
1561 				bf->bf_state.bf_type &= ~BUF_AGGR;
1562 			}
1563 			if (bf_tail)
1564 				bf_tail->bf_next = bf;
1565 
1566 			bf_tail = bf;
1567 			nframes--;
1568 			sent++;
1569 			TX_STAT_INC(txq->axq_qnum, a_queued_hw);
1570 
1571 			if (an->sta && !ath_tid_has_buffered(tid))
1572 				ieee80211_sta_set_buffered(an->sta, i, false);
1573 		}
1574 		ath_txq_unlock_complete(sc, tid->ac->txq);
1575 	}
1576 
1577 	if (list_empty(&bf_q))
1578 		return;
1579 
1580 	info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1581 	info->flags |= IEEE80211_TX_STATUS_EOSP;
1582 
1583 	bf = list_first_entry(&bf_q, struct ath_buf, list);
1584 	ath_txq_lock(sc, txq);
1585 	ath_tx_fill_desc(sc, bf, txq, 0);
1586 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1587 	ath_txq_unlock(sc, txq);
1588 }
1589 
1590 /********************/
1591 /* Queue Management */
1592 /********************/
1593 
1594 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1595 {
1596 	struct ath_hw *ah = sc->sc_ah;
1597 	struct ath9k_tx_queue_info qi;
1598 	static const int subtype_txq_to_hwq[] = {
1599 		[IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1600 		[IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1601 		[IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1602 		[IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1603 	};
1604 	int axq_qnum, i;
1605 
1606 	memset(&qi, 0, sizeof(qi));
1607 	qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1608 	qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1609 	qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1610 	qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1611 	qi.tqi_physCompBuf = 0;
1612 
1613 	/*
1614 	 * Enable interrupts only for EOL and DESC conditions.
1615 	 * We mark tx descriptors to receive a DESC interrupt
1616 	 * when a tx queue gets deep; otherwise waiting for the
1617 	 * EOL to reap descriptors.  Note that this is done to
1618 	 * reduce interrupt load and this only defers reaping
1619 	 * descriptors, never transmitting frames.  Aside from
1620 	 * reducing interrupts this also permits more concurrency.
1621 	 * The only potential downside is if the tx queue backs
1622 	 * up in which case the top half of the kernel may backup
1623 	 * due to a lack of tx descriptors.
1624 	 *
1625 	 * The UAPSD queue is an exception, since we take a desc-
1626 	 * based intr on the EOSP frames.
1627 	 */
1628 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1629 		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1630 	} else {
1631 		if (qtype == ATH9K_TX_QUEUE_UAPSD)
1632 			qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1633 		else
1634 			qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1635 					TXQ_FLAG_TXDESCINT_ENABLE;
1636 	}
1637 	axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1638 	if (axq_qnum == -1) {
1639 		/*
1640 		 * NB: don't print a message, this happens
1641 		 * normally on parts with too few tx queues
1642 		 */
1643 		return NULL;
1644 	}
1645 	if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1646 		struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1647 
1648 		txq->axq_qnum = axq_qnum;
1649 		txq->mac80211_qnum = -1;
1650 		txq->axq_link = NULL;
1651 		__skb_queue_head_init(&txq->complete_q);
1652 		INIT_LIST_HEAD(&txq->axq_q);
1653 		INIT_LIST_HEAD(&txq->axq_acq);
1654 		spin_lock_init(&txq->axq_lock);
1655 		txq->axq_depth = 0;
1656 		txq->axq_ampdu_depth = 0;
1657 		txq->axq_tx_inprogress = false;
1658 		sc->tx.txqsetup |= 1<<axq_qnum;
1659 
1660 		txq->txq_headidx = txq->txq_tailidx = 0;
1661 		for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1662 			INIT_LIST_HEAD(&txq->txq_fifo[i]);
1663 	}
1664 	return &sc->tx.txq[axq_qnum];
1665 }
1666 
1667 int ath_txq_update(struct ath_softc *sc, int qnum,
1668 		   struct ath9k_tx_queue_info *qinfo)
1669 {
1670 	struct ath_hw *ah = sc->sc_ah;
1671 	int error = 0;
1672 	struct ath9k_tx_queue_info qi;
1673 
1674 	BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1675 
1676 	ath9k_hw_get_txq_props(ah, qnum, &qi);
1677 	qi.tqi_aifs = qinfo->tqi_aifs;
1678 	qi.tqi_cwmin = qinfo->tqi_cwmin;
1679 	qi.tqi_cwmax = qinfo->tqi_cwmax;
1680 	qi.tqi_burstTime = qinfo->tqi_burstTime;
1681 	qi.tqi_readyTime = qinfo->tqi_readyTime;
1682 
1683 	if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1684 		ath_err(ath9k_hw_common(sc->sc_ah),
1685 			"Unable to update hardware queue %u!\n", qnum);
1686 		error = -EIO;
1687 	} else {
1688 		ath9k_hw_resettxqueue(ah, qnum);
1689 	}
1690 
1691 	return error;
1692 }
1693 
1694 int ath_cabq_update(struct ath_softc *sc)
1695 {
1696 	struct ath9k_tx_queue_info qi;
1697 	struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
1698 	int qnum = sc->beacon.cabq->axq_qnum;
1699 
1700 	ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1701 
1702 	qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) *
1703 			    ATH_CABQ_READY_TIME) / 100;
1704 	ath_txq_update(sc, qnum, &qi);
1705 
1706 	return 0;
1707 }
1708 
1709 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1710 			       struct list_head *list)
1711 {
1712 	struct ath_buf *bf, *lastbf;
1713 	struct list_head bf_head;
1714 	struct ath_tx_status ts;
1715 
1716 	memset(&ts, 0, sizeof(ts));
1717 	ts.ts_status = ATH9K_TX_FLUSH;
1718 	INIT_LIST_HEAD(&bf_head);
1719 
1720 	while (!list_empty(list)) {
1721 		bf = list_first_entry(list, struct ath_buf, list);
1722 
1723 		if (bf->bf_state.stale) {
1724 			list_del(&bf->list);
1725 
1726 			ath_tx_return_buffer(sc, bf);
1727 			continue;
1728 		}
1729 
1730 		lastbf = bf->bf_lastbf;
1731 		list_cut_position(&bf_head, list, &lastbf->list);
1732 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1733 	}
1734 }
1735 
1736 /*
1737  * Drain a given TX queue (could be Beacon or Data)
1738  *
1739  * This assumes output has been stopped and
1740  * we do not need to block ath_tx_tasklet.
1741  */
1742 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1743 {
1744 	ath_txq_lock(sc, txq);
1745 
1746 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1747 		int idx = txq->txq_tailidx;
1748 
1749 		while (!list_empty(&txq->txq_fifo[idx])) {
1750 			ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1751 
1752 			INCR(idx, ATH_TXFIFO_DEPTH);
1753 		}
1754 		txq->txq_tailidx = idx;
1755 	}
1756 
1757 	txq->axq_link = NULL;
1758 	txq->axq_tx_inprogress = false;
1759 	ath_drain_txq_list(sc, txq, &txq->axq_q);
1760 
1761 	ath_txq_unlock_complete(sc, txq);
1762 }
1763 
1764 bool ath_drain_all_txq(struct ath_softc *sc)
1765 {
1766 	struct ath_hw *ah = sc->sc_ah;
1767 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1768 	struct ath_txq *txq;
1769 	int i;
1770 	u32 npend = 0;
1771 
1772 	if (test_bit(ATH_OP_INVALID, &common->op_flags))
1773 		return true;
1774 
1775 	ath9k_hw_abort_tx_dma(ah);
1776 
1777 	/* Check if any queue remains active */
1778 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1779 		if (!ATH_TXQ_SETUP(sc, i))
1780 			continue;
1781 
1782 		if (!sc->tx.txq[i].axq_depth)
1783 			continue;
1784 
1785 		if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1786 			npend |= BIT(i);
1787 	}
1788 
1789 	if (npend)
1790 		ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1791 
1792 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1793 		if (!ATH_TXQ_SETUP(sc, i))
1794 			continue;
1795 
1796 		/*
1797 		 * The caller will resume queues with ieee80211_wake_queues.
1798 		 * Mark the queue as not stopped to prevent ath_tx_complete
1799 		 * from waking the queue too early.
1800 		 */
1801 		txq = &sc->tx.txq[i];
1802 		txq->stopped = false;
1803 		ath_draintxq(sc, txq);
1804 	}
1805 
1806 	return !npend;
1807 }
1808 
1809 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1810 {
1811 	ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1812 	sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1813 }
1814 
1815 /* For each axq_acq entry, for each tid, try to schedule packets
1816  * for transmit until ampdu_depth has reached min Q depth.
1817  */
1818 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1819 {
1820 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1821 	struct ath_atx_ac *ac, *last_ac;
1822 	struct ath_atx_tid *tid, *last_tid;
1823 	bool sent = false;
1824 
1825 	if (test_bit(ATH_OP_HW_RESET, &common->op_flags) ||
1826 	    list_empty(&txq->axq_acq))
1827 		return;
1828 
1829 	rcu_read_lock();
1830 
1831 	last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
1832 	while (!list_empty(&txq->axq_acq)) {
1833 		bool stop = false;
1834 
1835 		ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1836 		last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
1837 		list_del(&ac->list);
1838 		ac->sched = false;
1839 
1840 		while (!list_empty(&ac->tid_q)) {
1841 
1842 			tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
1843 					       list);
1844 			list_del(&tid->list);
1845 			tid->sched = false;
1846 
1847 			if (tid->paused)
1848 				continue;
1849 
1850 			if (ath_tx_sched_aggr(sc, txq, tid, &stop))
1851 				sent = true;
1852 
1853 			/*
1854 			 * add tid to round-robin queue if more frames
1855 			 * are pending for the tid
1856 			 */
1857 			if (ath_tid_has_buffered(tid))
1858 				ath_tx_queue_tid(txq, tid);
1859 
1860 			if (stop || tid == last_tid)
1861 				break;
1862 		}
1863 
1864 		if (!list_empty(&ac->tid_q) && !ac->sched) {
1865 			ac->sched = true;
1866 			list_add_tail(&ac->list, &txq->axq_acq);
1867 		}
1868 
1869 		if (stop)
1870 			break;
1871 
1872 		if (ac == last_ac) {
1873 			if (!sent)
1874 				break;
1875 
1876 			sent = false;
1877 			last_ac = list_entry(txq->axq_acq.prev,
1878 					     struct ath_atx_ac, list);
1879 		}
1880 	}
1881 
1882 	rcu_read_unlock();
1883 }
1884 
1885 /***********/
1886 /* TX, DMA */
1887 /***********/
1888 
1889 /*
1890  * Insert a chain of ath_buf (descriptors) on a txq and
1891  * assume the descriptors are already chained together by caller.
1892  */
1893 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1894 			     struct list_head *head, bool internal)
1895 {
1896 	struct ath_hw *ah = sc->sc_ah;
1897 	struct ath_common *common = ath9k_hw_common(ah);
1898 	struct ath_buf *bf, *bf_last;
1899 	bool puttxbuf = false;
1900 	bool edma;
1901 
1902 	/*
1903 	 * Insert the frame on the outbound list and
1904 	 * pass it on to the hardware.
1905 	 */
1906 
1907 	if (list_empty(head))
1908 		return;
1909 
1910 	edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1911 	bf = list_first_entry(head, struct ath_buf, list);
1912 	bf_last = list_entry(head->prev, struct ath_buf, list);
1913 
1914 	ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
1915 		txq->axq_qnum, txq->axq_depth);
1916 
1917 	if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
1918 		list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
1919 		INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
1920 		puttxbuf = true;
1921 	} else {
1922 		list_splice_tail_init(head, &txq->axq_q);
1923 
1924 		if (txq->axq_link) {
1925 			ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
1926 			ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
1927 				txq->axq_qnum, txq->axq_link,
1928 				ito64(bf->bf_daddr), bf->bf_desc);
1929 		} else if (!edma)
1930 			puttxbuf = true;
1931 
1932 		txq->axq_link = bf_last->bf_desc;
1933 	}
1934 
1935 	if (puttxbuf) {
1936 		TX_STAT_INC(txq->axq_qnum, puttxbuf);
1937 		ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1938 		ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
1939 			txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1940 	}
1941 
1942 	if (!edma || sc->tx99_state) {
1943 		TX_STAT_INC(txq->axq_qnum, txstart);
1944 		ath9k_hw_txstart(ah, txq->axq_qnum);
1945 	}
1946 
1947 	if (!internal) {
1948 		while (bf) {
1949 			txq->axq_depth++;
1950 			if (bf_is_ampdu_not_probing(bf))
1951 				txq->axq_ampdu_depth++;
1952 
1953 			bf_last = bf->bf_lastbf;
1954 			bf = bf_last->bf_next;
1955 			bf_last->bf_next = NULL;
1956 		}
1957 	}
1958 }
1959 
1960 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1961 			       struct ath_atx_tid *tid, struct sk_buff *skb)
1962 {
1963 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1964 	struct ath_frame_info *fi = get_frame_info(skb);
1965 	struct list_head bf_head;
1966 	struct ath_buf *bf = fi->bf;
1967 
1968 	INIT_LIST_HEAD(&bf_head);
1969 	list_add_tail(&bf->list, &bf_head);
1970 	bf->bf_state.bf_type = 0;
1971 	if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
1972 		bf->bf_state.bf_type = BUF_AMPDU;
1973 		ath_tx_addto_baw(sc, tid, bf);
1974 	}
1975 
1976 	bf->bf_next = NULL;
1977 	bf->bf_lastbf = bf;
1978 	ath_tx_fill_desc(sc, bf, txq, fi->framelen);
1979 	ath_tx_txqaddbuf(sc, txq, &bf_head, false);
1980 	TX_STAT_INC(txq->axq_qnum, queued);
1981 }
1982 
1983 static void setup_frame_info(struct ieee80211_hw *hw,
1984 			     struct ieee80211_sta *sta,
1985 			     struct sk_buff *skb,
1986 			     int framelen)
1987 {
1988 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1989 	struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
1990 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1991 	const struct ieee80211_rate *rate;
1992 	struct ath_frame_info *fi = get_frame_info(skb);
1993 	struct ath_node *an = NULL;
1994 	enum ath9k_key_type keytype;
1995 	bool short_preamble = false;
1996 
1997 	/*
1998 	 * We check if Short Preamble is needed for the CTS rate by
1999 	 * checking the BSS's global flag.
2000 	 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
2001 	 */
2002 	if (tx_info->control.vif &&
2003 	    tx_info->control.vif->bss_conf.use_short_preamble)
2004 		short_preamble = true;
2005 
2006 	rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2007 	keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2008 
2009 	if (sta)
2010 		an = (struct ath_node *) sta->drv_priv;
2011 
2012 	memset(fi, 0, sizeof(*fi));
2013 	if (hw_key)
2014 		fi->keyix = hw_key->hw_key_idx;
2015 	else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2016 		fi->keyix = an->ps_key;
2017 	else
2018 		fi->keyix = ATH9K_TXKEYIX_INVALID;
2019 	fi->keytype = keytype;
2020 	fi->framelen = framelen;
2021 
2022 	if (!rate)
2023 		return;
2024 	fi->rtscts_rate = rate->hw_value;
2025 	if (short_preamble)
2026 		fi->rtscts_rate |= rate->hw_value_short;
2027 }
2028 
2029 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2030 {
2031 	struct ath_hw *ah = sc->sc_ah;
2032 	struct ath9k_channel *curchan = ah->curchan;
2033 
2034 	if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
2035 	    (chainmask == 0x7) && (rate < 0x90))
2036 		return 0x3;
2037 	else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2038 		 IS_CCK_RATE(rate))
2039 		return 0x2;
2040 	else
2041 		return chainmask;
2042 }
2043 
2044 /*
2045  * Assign a descriptor (and sequence number if necessary,
2046  * and map buffer for DMA. Frees skb on error
2047  */
2048 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2049 					   struct ath_txq *txq,
2050 					   struct ath_atx_tid *tid,
2051 					   struct sk_buff *skb)
2052 {
2053 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2054 	struct ath_frame_info *fi = get_frame_info(skb);
2055 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2056 	struct ath_buf *bf;
2057 	int fragno;
2058 	u16 seqno;
2059 
2060 	bf = ath_tx_get_buffer(sc);
2061 	if (!bf) {
2062 		ath_dbg(common, XMIT, "TX buffers are full\n");
2063 		return NULL;
2064 	}
2065 
2066 	ATH_TXBUF_RESET(bf);
2067 
2068 	if (tid && ieee80211_is_data_present(hdr->frame_control)) {
2069 		fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2070 		seqno = tid->seq_next;
2071 		hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2072 
2073 		if (fragno)
2074 			hdr->seq_ctrl |= cpu_to_le16(fragno);
2075 
2076 		if (!ieee80211_has_morefrags(hdr->frame_control))
2077 			INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2078 
2079 		bf->bf_state.seqno = seqno;
2080 	}
2081 
2082 	bf->bf_mpdu = skb;
2083 
2084 	bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2085 					 skb->len, DMA_TO_DEVICE);
2086 	if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2087 		bf->bf_mpdu = NULL;
2088 		bf->bf_buf_addr = 0;
2089 		ath_err(ath9k_hw_common(sc->sc_ah),
2090 			"dma_mapping_error() on TX\n");
2091 		ath_tx_return_buffer(sc, bf);
2092 		return NULL;
2093 	}
2094 
2095 	fi->bf = bf;
2096 
2097 	return bf;
2098 }
2099 
2100 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2101 			  struct ath_tx_control *txctl)
2102 {
2103 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2104 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2105 	struct ieee80211_sta *sta = txctl->sta;
2106 	struct ieee80211_vif *vif = info->control.vif;
2107 	struct ath_vif *avp;
2108 	struct ath_softc *sc = hw->priv;
2109 	int frmlen = skb->len + FCS_LEN;
2110 	int padpos, padsize;
2111 
2112 	/* NOTE:  sta can be NULL according to net/mac80211.h */
2113 	if (sta)
2114 		txctl->an = (struct ath_node *)sta->drv_priv;
2115 	else if (vif && ieee80211_is_data(hdr->frame_control)) {
2116 		avp = (void *)vif->drv_priv;
2117 		txctl->an = &avp->mcast_node;
2118 	}
2119 
2120 	if (info->control.hw_key)
2121 		frmlen += info->control.hw_key->icv_len;
2122 
2123 	/*
2124 	 * As a temporary workaround, assign seq# here; this will likely need
2125 	 * to be cleaned up to work better with Beacon transmission and virtual
2126 	 * BSSes.
2127 	 */
2128 	if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2129 		if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2130 			sc->tx.seq_no += 0x10;
2131 		hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2132 		hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2133 	}
2134 
2135 	if ((vif && vif->type != NL80211_IFTYPE_AP &&
2136 	            vif->type != NL80211_IFTYPE_AP_VLAN) ||
2137 	    !ieee80211_is_data(hdr->frame_control))
2138 		info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2139 
2140 	/* Add the padding after the header if this is not already done */
2141 	padpos = ieee80211_hdrlen(hdr->frame_control);
2142 	padsize = padpos & 3;
2143 	if (padsize && skb->len > padpos) {
2144 		if (skb_headroom(skb) < padsize)
2145 			return -ENOMEM;
2146 
2147 		skb_push(skb, padsize);
2148 		memmove(skb->data, skb->data + padsize, padpos);
2149 	}
2150 
2151 	setup_frame_info(hw, sta, skb, frmlen);
2152 	return 0;
2153 }
2154 
2155 
2156 /* Upon failure caller should free skb */
2157 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2158 		 struct ath_tx_control *txctl)
2159 {
2160 	struct ieee80211_hdr *hdr;
2161 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2162 	struct ieee80211_sta *sta = txctl->sta;
2163 	struct ieee80211_vif *vif = info->control.vif;
2164 	struct ath_softc *sc = hw->priv;
2165 	struct ath_txq *txq = txctl->txq;
2166 	struct ath_atx_tid *tid = NULL;
2167 	struct ath_buf *bf;
2168 	int q;
2169 	int ret;
2170 
2171 	ret = ath_tx_prepare(hw, skb, txctl);
2172 	if (ret)
2173 	    return ret;
2174 
2175 	hdr = (struct ieee80211_hdr *) skb->data;
2176 	/*
2177 	 * At this point, the vif, hw_key and sta pointers in the tx control
2178 	 * info are no longer valid (overwritten by the ath_frame_info data.
2179 	 */
2180 
2181 	q = skb_get_queue_mapping(skb);
2182 
2183 	ath_txq_lock(sc, txq);
2184 	if (txq == sc->tx.txq_map[q] &&
2185 	    ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
2186 	    !txq->stopped) {
2187 		ieee80211_stop_queue(sc->hw, q);
2188 		txq->stopped = true;
2189 	}
2190 
2191 	if (txctl->an && ieee80211_is_data_present(hdr->frame_control))
2192 		tid = ath_get_skb_tid(sc, txctl->an, skb);
2193 
2194 	if (info->flags & IEEE80211_TX_CTL_PS_RESPONSE) {
2195 		ath_txq_unlock(sc, txq);
2196 		txq = sc->tx.uapsdq;
2197 		ath_txq_lock(sc, txq);
2198 	} else if (txctl->an &&
2199 		   ieee80211_is_data_present(hdr->frame_control)) {
2200 		WARN_ON(tid->ac->txq != txctl->txq);
2201 
2202 		if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
2203 			tid->ac->clear_ps_filter = true;
2204 
2205 		/*
2206 		 * Add this frame to software queue for scheduling later
2207 		 * for aggregation.
2208 		 */
2209 		TX_STAT_INC(txq->axq_qnum, a_queued_sw);
2210 		__skb_queue_tail(&tid->buf_q, skb);
2211 		if (!txctl->an->sleeping)
2212 			ath_tx_queue_tid(txq, tid);
2213 
2214 		ath_txq_schedule(sc, txq);
2215 		goto out;
2216 	}
2217 
2218 	bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2219 	if (!bf) {
2220 		ath_txq_skb_done(sc, txq, skb);
2221 		if (txctl->paprd)
2222 			dev_kfree_skb_any(skb);
2223 		else
2224 			ieee80211_free_txskb(sc->hw, skb);
2225 		goto out;
2226 	}
2227 
2228 	bf->bf_state.bfs_paprd = txctl->paprd;
2229 
2230 	if (txctl->paprd)
2231 		bf->bf_state.bfs_paprd_timestamp = jiffies;
2232 
2233 	ath_set_rates(vif, sta, bf);
2234 	ath_tx_send_normal(sc, txq, tid, skb);
2235 
2236 out:
2237 	ath_txq_unlock(sc, txq);
2238 
2239 	return 0;
2240 }
2241 
2242 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2243 		 struct sk_buff *skb)
2244 {
2245 	struct ath_softc *sc = hw->priv;
2246 	struct ath_tx_control txctl = {
2247 		.txq = sc->beacon.cabq
2248 	};
2249 	struct ath_tx_info info = {};
2250 	struct ieee80211_hdr *hdr;
2251 	struct ath_buf *bf_tail = NULL;
2252 	struct ath_buf *bf;
2253 	LIST_HEAD(bf_q);
2254 	int duration = 0;
2255 	int max_duration;
2256 
2257 	max_duration =
2258 		sc->cur_beacon_conf.beacon_interval * 1000 *
2259 		sc->cur_beacon_conf.dtim_period / ATH_BCBUF;
2260 
2261 	do {
2262 		struct ath_frame_info *fi = get_frame_info(skb);
2263 
2264 		if (ath_tx_prepare(hw, skb, &txctl))
2265 			break;
2266 
2267 		bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2268 		if (!bf)
2269 			break;
2270 
2271 		bf->bf_lastbf = bf;
2272 		ath_set_rates(vif, NULL, bf);
2273 		ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2274 		duration += info.rates[0].PktDuration;
2275 		if (bf_tail)
2276 			bf_tail->bf_next = bf;
2277 
2278 		list_add_tail(&bf->list, &bf_q);
2279 		bf_tail = bf;
2280 		skb = NULL;
2281 
2282 		if (duration > max_duration)
2283 			break;
2284 
2285 		skb = ieee80211_get_buffered_bc(hw, vif);
2286 	} while(skb);
2287 
2288 	if (skb)
2289 		ieee80211_free_txskb(hw, skb);
2290 
2291 	if (list_empty(&bf_q))
2292 		return;
2293 
2294 	bf = list_first_entry(&bf_q, struct ath_buf, list);
2295 	hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
2296 
2297 	if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) {
2298 		hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA;
2299 		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
2300 			sizeof(*hdr), DMA_TO_DEVICE);
2301 	}
2302 
2303 	ath_txq_lock(sc, txctl.txq);
2304 	ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2305 	ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2306 	TX_STAT_INC(txctl.txq->axq_qnum, queued);
2307 	ath_txq_unlock(sc, txctl.txq);
2308 }
2309 
2310 /*****************/
2311 /* TX Completion */
2312 /*****************/
2313 
2314 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2315 			    int tx_flags, struct ath_txq *txq)
2316 {
2317 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2318 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2319 	struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2320 	int padpos, padsize;
2321 	unsigned long flags;
2322 
2323 	ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2324 
2325 	if (sc->sc_ah->caldata)
2326 		set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
2327 
2328 	if (!(tx_flags & ATH_TX_ERROR))
2329 		/* Frame was ACKed */
2330 		tx_info->flags |= IEEE80211_TX_STAT_ACK;
2331 
2332 	padpos = ieee80211_hdrlen(hdr->frame_control);
2333 	padsize = padpos & 3;
2334 	if (padsize && skb->len>padpos+padsize) {
2335 		/*
2336 		 * Remove MAC header padding before giving the frame back to
2337 		 * mac80211.
2338 		 */
2339 		memmove(skb->data + padsize, skb->data, padpos);
2340 		skb_pull(skb, padsize);
2341 	}
2342 
2343 	spin_lock_irqsave(&sc->sc_pm_lock, flags);
2344 	if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2345 		sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2346 		ath_dbg(common, PS,
2347 			"Going back to sleep after having received TX status (0x%lx)\n",
2348 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
2349 					PS_WAIT_FOR_CAB |
2350 					PS_WAIT_FOR_PSPOLL_DATA |
2351 					PS_WAIT_FOR_TX_ACK));
2352 	}
2353 	spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2354 
2355 	__skb_queue_tail(&txq->complete_q, skb);
2356 	ath_txq_skb_done(sc, txq, skb);
2357 }
2358 
2359 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2360 				struct ath_txq *txq, struct list_head *bf_q,
2361 				struct ath_tx_status *ts, int txok)
2362 {
2363 	struct sk_buff *skb = bf->bf_mpdu;
2364 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2365 	unsigned long flags;
2366 	int tx_flags = 0;
2367 
2368 	if (!txok)
2369 		tx_flags |= ATH_TX_ERROR;
2370 
2371 	if (ts->ts_status & ATH9K_TXERR_FILT)
2372 		tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2373 
2374 	dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2375 	bf->bf_buf_addr = 0;
2376 	if (sc->tx99_state)
2377 		goto skip_tx_complete;
2378 
2379 	if (bf->bf_state.bfs_paprd) {
2380 		if (time_after(jiffies,
2381 				bf->bf_state.bfs_paprd_timestamp +
2382 				msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2383 			dev_kfree_skb_any(skb);
2384 		else
2385 			complete(&sc->paprd_complete);
2386 	} else {
2387 		ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2388 		ath_tx_complete(sc, skb, tx_flags, txq);
2389 	}
2390 skip_tx_complete:
2391 	/* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2392 	 * accidentally reference it later.
2393 	 */
2394 	bf->bf_mpdu = NULL;
2395 
2396 	/*
2397 	 * Return the list of ath_buf of this mpdu to free queue
2398 	 */
2399 	spin_lock_irqsave(&sc->tx.txbuflock, flags);
2400 	list_splice_tail_init(bf_q, &sc->tx.txbuf);
2401 	spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2402 }
2403 
2404 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2405 			     struct ath_tx_status *ts, int nframes, int nbad,
2406 			     int txok)
2407 {
2408 	struct sk_buff *skb = bf->bf_mpdu;
2409 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2410 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2411 	struct ieee80211_hw *hw = sc->hw;
2412 	struct ath_hw *ah = sc->sc_ah;
2413 	u8 i, tx_rateindex;
2414 
2415 	if (txok)
2416 		tx_info->status.ack_signal = ts->ts_rssi;
2417 
2418 	tx_rateindex = ts->ts_rateindex;
2419 	WARN_ON(tx_rateindex >= hw->max_rates);
2420 
2421 	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2422 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2423 
2424 		BUG_ON(nbad > nframes);
2425 	}
2426 	tx_info->status.ampdu_len = nframes;
2427 	tx_info->status.ampdu_ack_len = nframes - nbad;
2428 
2429 	if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2430 	    (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2431 		/*
2432 		 * If an underrun error is seen assume it as an excessive
2433 		 * retry only if max frame trigger level has been reached
2434 		 * (2 KB for single stream, and 4 KB for dual stream).
2435 		 * Adjust the long retry as if the frame was tried
2436 		 * hw->max_rate_tries times to affect how rate control updates
2437 		 * PER for the failed rate.
2438 		 * In case of congestion on the bus penalizing this type of
2439 		 * underruns should help hardware actually transmit new frames
2440 		 * successfully by eventually preferring slower rates.
2441 		 * This itself should also alleviate congestion on the bus.
2442 		 */
2443 		if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2444 		                             ATH9K_TX_DELIM_UNDERRUN)) &&
2445 		    ieee80211_is_data(hdr->frame_control) &&
2446 		    ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2447 			tx_info->status.rates[tx_rateindex].count =
2448 				hw->max_rate_tries;
2449 	}
2450 
2451 	for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2452 		tx_info->status.rates[i].count = 0;
2453 		tx_info->status.rates[i].idx = -1;
2454 	}
2455 
2456 	tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2457 }
2458 
2459 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2460 {
2461 	struct ath_hw *ah = sc->sc_ah;
2462 	struct ath_common *common = ath9k_hw_common(ah);
2463 	struct ath_buf *bf, *lastbf, *bf_held = NULL;
2464 	struct list_head bf_head;
2465 	struct ath_desc *ds;
2466 	struct ath_tx_status ts;
2467 	int status;
2468 
2469 	ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2470 		txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2471 		txq->axq_link);
2472 
2473 	ath_txq_lock(sc, txq);
2474 	for (;;) {
2475 		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2476 			break;
2477 
2478 		if (list_empty(&txq->axq_q)) {
2479 			txq->axq_link = NULL;
2480 			ath_txq_schedule(sc, txq);
2481 			break;
2482 		}
2483 		bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2484 
2485 		/*
2486 		 * There is a race condition that a BH gets scheduled
2487 		 * after sw writes TxE and before hw re-load the last
2488 		 * descriptor to get the newly chained one.
2489 		 * Software must keep the last DONE descriptor as a
2490 		 * holding descriptor - software does so by marking
2491 		 * it with the STALE flag.
2492 		 */
2493 		bf_held = NULL;
2494 		if (bf->bf_state.stale) {
2495 			bf_held = bf;
2496 			if (list_is_last(&bf_held->list, &txq->axq_q))
2497 				break;
2498 
2499 			bf = list_entry(bf_held->list.next, struct ath_buf,
2500 					list);
2501 		}
2502 
2503 		lastbf = bf->bf_lastbf;
2504 		ds = lastbf->bf_desc;
2505 
2506 		memset(&ts, 0, sizeof(ts));
2507 		status = ath9k_hw_txprocdesc(ah, ds, &ts);
2508 		if (status == -EINPROGRESS)
2509 			break;
2510 
2511 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2512 
2513 		/*
2514 		 * Remove ath_buf's of the same transmit unit from txq,
2515 		 * however leave the last descriptor back as the holding
2516 		 * descriptor for hw.
2517 		 */
2518 		lastbf->bf_state.stale = true;
2519 		INIT_LIST_HEAD(&bf_head);
2520 		if (!list_is_singular(&lastbf->list))
2521 			list_cut_position(&bf_head,
2522 				&txq->axq_q, lastbf->list.prev);
2523 
2524 		if (bf_held) {
2525 			list_del(&bf_held->list);
2526 			ath_tx_return_buffer(sc, bf_held);
2527 		}
2528 
2529 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2530 	}
2531 	ath_txq_unlock_complete(sc, txq);
2532 }
2533 
2534 void ath_tx_tasklet(struct ath_softc *sc)
2535 {
2536 	struct ath_hw *ah = sc->sc_ah;
2537 	u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2538 	int i;
2539 
2540 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2541 		if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2542 			ath_tx_processq(sc, &sc->tx.txq[i]);
2543 	}
2544 }
2545 
2546 void ath_tx_edma_tasklet(struct ath_softc *sc)
2547 {
2548 	struct ath_tx_status ts;
2549 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2550 	struct ath_hw *ah = sc->sc_ah;
2551 	struct ath_txq *txq;
2552 	struct ath_buf *bf, *lastbf;
2553 	struct list_head bf_head;
2554 	struct list_head *fifo_list;
2555 	int status;
2556 
2557 	for (;;) {
2558 		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2559 			break;
2560 
2561 		status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2562 		if (status == -EINPROGRESS)
2563 			break;
2564 		if (status == -EIO) {
2565 			ath_dbg(common, XMIT, "Error processing tx status\n");
2566 			break;
2567 		}
2568 
2569 		/* Process beacon completions separately */
2570 		if (ts.qid == sc->beacon.beaconq) {
2571 			sc->beacon.tx_processed = true;
2572 			sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2573 
2574 			ath9k_csa_update(sc);
2575 			continue;
2576 		}
2577 
2578 		txq = &sc->tx.txq[ts.qid];
2579 
2580 		ath_txq_lock(sc, txq);
2581 
2582 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2583 
2584 		fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2585 		if (list_empty(fifo_list)) {
2586 			ath_txq_unlock(sc, txq);
2587 			return;
2588 		}
2589 
2590 		bf = list_first_entry(fifo_list, struct ath_buf, list);
2591 		if (bf->bf_state.stale) {
2592 			list_del(&bf->list);
2593 			ath_tx_return_buffer(sc, bf);
2594 			bf = list_first_entry(fifo_list, struct ath_buf, list);
2595 		}
2596 
2597 		lastbf = bf->bf_lastbf;
2598 
2599 		INIT_LIST_HEAD(&bf_head);
2600 		if (list_is_last(&lastbf->list, fifo_list)) {
2601 			list_splice_tail_init(fifo_list, &bf_head);
2602 			INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2603 
2604 			if (!list_empty(&txq->axq_q)) {
2605 				struct list_head bf_q;
2606 
2607 				INIT_LIST_HEAD(&bf_q);
2608 				txq->axq_link = NULL;
2609 				list_splice_tail_init(&txq->axq_q, &bf_q);
2610 				ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2611 			}
2612 		} else {
2613 			lastbf->bf_state.stale = true;
2614 			if (bf != lastbf)
2615 				list_cut_position(&bf_head, fifo_list,
2616 						  lastbf->list.prev);
2617 		}
2618 
2619 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2620 		ath_txq_unlock_complete(sc, txq);
2621 	}
2622 }
2623 
2624 /*****************/
2625 /* Init, Cleanup */
2626 /*****************/
2627 
2628 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2629 {
2630 	struct ath_descdma *dd = &sc->txsdma;
2631 	u8 txs_len = sc->sc_ah->caps.txs_len;
2632 
2633 	dd->dd_desc_len = size * txs_len;
2634 	dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2635 					  &dd->dd_desc_paddr, GFP_KERNEL);
2636 	if (!dd->dd_desc)
2637 		return -ENOMEM;
2638 
2639 	return 0;
2640 }
2641 
2642 static int ath_tx_edma_init(struct ath_softc *sc)
2643 {
2644 	int err;
2645 
2646 	err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2647 	if (!err)
2648 		ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2649 					  sc->txsdma.dd_desc_paddr,
2650 					  ATH_TXSTATUS_RING_SIZE);
2651 
2652 	return err;
2653 }
2654 
2655 int ath_tx_init(struct ath_softc *sc, int nbufs)
2656 {
2657 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2658 	int error = 0;
2659 
2660 	spin_lock_init(&sc->tx.txbuflock);
2661 
2662 	error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2663 				  "tx", nbufs, 1, 1);
2664 	if (error != 0) {
2665 		ath_err(common,
2666 			"Failed to allocate tx descriptors: %d\n", error);
2667 		return error;
2668 	}
2669 
2670 	error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2671 				  "beacon", ATH_BCBUF, 1, 1);
2672 	if (error != 0) {
2673 		ath_err(common,
2674 			"Failed to allocate beacon descriptors: %d\n", error);
2675 		return error;
2676 	}
2677 
2678 	INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2679 
2680 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2681 		error = ath_tx_edma_init(sc);
2682 
2683 	return error;
2684 }
2685 
2686 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2687 {
2688 	struct ath_atx_tid *tid;
2689 	struct ath_atx_ac *ac;
2690 	int tidno, acno;
2691 
2692 	for (tidno = 0, tid = &an->tid[tidno];
2693 	     tidno < IEEE80211_NUM_TIDS;
2694 	     tidno++, tid++) {
2695 		tid->an        = an;
2696 		tid->tidno     = tidno;
2697 		tid->seq_start = tid->seq_next = 0;
2698 		tid->baw_size  = WME_MAX_BA;
2699 		tid->baw_head  = tid->baw_tail = 0;
2700 		tid->sched     = false;
2701 		tid->paused    = false;
2702 		tid->active	   = false;
2703 		__skb_queue_head_init(&tid->buf_q);
2704 		__skb_queue_head_init(&tid->retry_q);
2705 		acno = TID_TO_WME_AC(tidno);
2706 		tid->ac = &an->ac[acno];
2707 	}
2708 
2709 	for (acno = 0, ac = &an->ac[acno];
2710 	     acno < IEEE80211_NUM_ACS; acno++, ac++) {
2711 		ac->sched    = false;
2712 		ac->clear_ps_filter = true;
2713 		ac->txq = sc->tx.txq_map[acno];
2714 		INIT_LIST_HEAD(&ac->tid_q);
2715 	}
2716 }
2717 
2718 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2719 {
2720 	struct ath_atx_ac *ac;
2721 	struct ath_atx_tid *tid;
2722 	struct ath_txq *txq;
2723 	int tidno;
2724 
2725 	for (tidno = 0, tid = &an->tid[tidno];
2726 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
2727 
2728 		ac = tid->ac;
2729 		txq = ac->txq;
2730 
2731 		ath_txq_lock(sc, txq);
2732 
2733 		if (tid->sched) {
2734 			list_del(&tid->list);
2735 			tid->sched = false;
2736 		}
2737 
2738 		if (ac->sched) {
2739 			list_del(&ac->list);
2740 			tid->ac->sched = false;
2741 		}
2742 
2743 		ath_tid_drain(sc, txq, tid);
2744 		tid->active = false;
2745 
2746 		ath_txq_unlock(sc, txq);
2747 	}
2748 }
2749 
2750 #ifdef CONFIG_ATH9K_TX99
2751 
2752 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
2753 		    struct ath_tx_control *txctl)
2754 {
2755 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2756 	struct ath_frame_info *fi = get_frame_info(skb);
2757 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2758 	struct ath_buf *bf;
2759 	int padpos, padsize;
2760 
2761 	padpos = ieee80211_hdrlen(hdr->frame_control);
2762 	padsize = padpos & 3;
2763 
2764 	if (padsize && skb->len > padpos) {
2765 		if (skb_headroom(skb) < padsize) {
2766 			ath_dbg(common, XMIT,
2767 				"tx99 padding failed\n");
2768 		return -EINVAL;
2769 		}
2770 
2771 		skb_push(skb, padsize);
2772 		memmove(skb->data, skb->data + padsize, padpos);
2773 	}
2774 
2775 	fi->keyix = ATH9K_TXKEYIX_INVALID;
2776 	fi->framelen = skb->len + FCS_LEN;
2777 	fi->keytype = ATH9K_KEY_TYPE_CLEAR;
2778 
2779 	bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
2780 	if (!bf) {
2781 		ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
2782 		return -EINVAL;
2783 	}
2784 
2785 	ath_set_rates(sc->tx99_vif, NULL, bf);
2786 
2787 	ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
2788 	ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
2789 
2790 	ath_tx_send_normal(sc, txctl->txq, NULL, skb);
2791 
2792 	return 0;
2793 }
2794 
2795 #endif /* CONFIG_ATH9K_TX99 */
2796