1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/dma-mapping.h> 18 #include "ath9k.h" 19 #include "ar9003_mac.h" 20 21 #define BITS_PER_BYTE 8 22 #define OFDM_PLCP_BITS 22 23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1) 24 #define L_STF 8 25 #define L_LTF 8 26 #define L_SIG 4 27 #define HT_SIG 8 28 #define HT_STF 4 29 #define HT_LTF(_ns) (4 * (_ns)) 30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */ 31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */ 32 #define TIME_SYMBOLS(t) ((t) >> 2) 33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18) 34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2) 35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18) 36 37 38 static u16 bits_per_symbol[][2] = { 39 /* 20MHz 40MHz */ 40 { 26, 54 }, /* 0: BPSK */ 41 { 52, 108 }, /* 1: QPSK 1/2 */ 42 { 78, 162 }, /* 2: QPSK 3/4 */ 43 { 104, 216 }, /* 3: 16-QAM 1/2 */ 44 { 156, 324 }, /* 4: 16-QAM 3/4 */ 45 { 208, 432 }, /* 5: 64-QAM 2/3 */ 46 { 234, 486 }, /* 6: 64-QAM 3/4 */ 47 { 260, 540 }, /* 7: 64-QAM 5/6 */ 48 }; 49 50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 51 struct ath_atx_tid *tid, struct sk_buff *skb); 52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, 53 int tx_flags, struct ath_txq *txq); 54 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 55 struct ath_txq *txq, struct list_head *bf_q, 56 struct ath_tx_status *ts, int txok); 57 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 58 struct list_head *head, bool internal); 59 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 60 struct ath_tx_status *ts, int nframes, int nbad, 61 int txok); 62 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 63 int seqno); 64 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, 65 struct ath_txq *txq, 66 struct ath_atx_tid *tid, 67 struct sk_buff *skb); 68 69 enum { 70 MCS_HT20, 71 MCS_HT20_SGI, 72 MCS_HT40, 73 MCS_HT40_SGI, 74 }; 75 76 /*********************/ 77 /* Aggregation logic */ 78 /*********************/ 79 80 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq) 81 __acquires(&txq->axq_lock) 82 { 83 spin_lock_bh(&txq->axq_lock); 84 } 85 86 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq) 87 __releases(&txq->axq_lock) 88 { 89 spin_unlock_bh(&txq->axq_lock); 90 } 91 92 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq) 93 __releases(&txq->axq_lock) 94 { 95 struct sk_buff_head q; 96 struct sk_buff *skb; 97 98 __skb_queue_head_init(&q); 99 skb_queue_splice_init(&txq->complete_q, &q); 100 spin_unlock_bh(&txq->axq_lock); 101 102 while ((skb = __skb_dequeue(&q))) 103 ieee80211_tx_status(sc->hw, skb); 104 } 105 106 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid) 107 { 108 struct ath_atx_ac *ac = tid->ac; 109 110 if (tid->paused) 111 return; 112 113 if (tid->sched) 114 return; 115 116 tid->sched = true; 117 list_add_tail(&tid->list, &ac->tid_q); 118 119 if (ac->sched) 120 return; 121 122 ac->sched = true; 123 list_add_tail(&ac->list, &txq->axq_acq); 124 } 125 126 static struct ath_frame_info *get_frame_info(struct sk_buff *skb) 127 { 128 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 129 BUILD_BUG_ON(sizeof(struct ath_frame_info) > 130 sizeof(tx_info->rate_driver_data)); 131 return (struct ath_frame_info *) &tx_info->rate_driver_data[0]; 132 } 133 134 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno) 135 { 136 if (!tid->an->sta) 137 return; 138 139 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno, 140 seqno << IEEE80211_SEQ_SEQ_SHIFT); 141 } 142 143 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta, 144 struct ath_buf *bf) 145 { 146 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates, 147 ARRAY_SIZE(bf->rates)); 148 } 149 150 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq, 151 struct sk_buff *skb) 152 { 153 int q; 154 155 q = skb_get_queue_mapping(skb); 156 if (txq == sc->tx.uapsdq) 157 txq = sc->tx.txq_map[q]; 158 159 if (txq != sc->tx.txq_map[q]) 160 return; 161 162 if (WARN_ON(--txq->pending_frames < 0)) 163 txq->pending_frames = 0; 164 165 if (txq->stopped && 166 txq->pending_frames < sc->tx.txq_max_pending[q]) { 167 ieee80211_wake_queue(sc->hw, q); 168 txq->stopped = false; 169 } 170 } 171 172 static struct ath_atx_tid * 173 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb) 174 { 175 u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK; 176 return ATH_AN_2_TID(an, tidno); 177 } 178 179 static bool ath_tid_has_buffered(struct ath_atx_tid *tid) 180 { 181 return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q); 182 } 183 184 static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid) 185 { 186 struct sk_buff *skb; 187 188 skb = __skb_dequeue(&tid->retry_q); 189 if (!skb) 190 skb = __skb_dequeue(&tid->buf_q); 191 192 return skb; 193 } 194 195 /* 196 * ath_tx_tid_change_state: 197 * - clears a-mpdu flag of previous session 198 * - force sequence number allocation to fix next BlockAck Window 199 */ 200 static void 201 ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid) 202 { 203 struct ath_txq *txq = tid->ac->txq; 204 struct ieee80211_tx_info *tx_info; 205 struct sk_buff *skb, *tskb; 206 struct ath_buf *bf; 207 struct ath_frame_info *fi; 208 209 skb_queue_walk_safe(&tid->buf_q, skb, tskb) { 210 fi = get_frame_info(skb); 211 bf = fi->bf; 212 213 tx_info = IEEE80211_SKB_CB(skb); 214 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU; 215 216 if (bf) 217 continue; 218 219 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 220 if (!bf) { 221 __skb_unlink(skb, &tid->buf_q); 222 ath_txq_skb_done(sc, txq, skb); 223 ieee80211_free_txskb(sc->hw, skb); 224 continue; 225 } 226 } 227 228 } 229 230 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid) 231 { 232 struct ath_txq *txq = tid->ac->txq; 233 struct sk_buff *skb; 234 struct ath_buf *bf; 235 struct list_head bf_head; 236 struct ath_tx_status ts; 237 struct ath_frame_info *fi; 238 bool sendbar = false; 239 240 INIT_LIST_HEAD(&bf_head); 241 242 memset(&ts, 0, sizeof(ts)); 243 244 while ((skb = __skb_dequeue(&tid->retry_q))) { 245 fi = get_frame_info(skb); 246 bf = fi->bf; 247 if (!bf) { 248 ath_txq_skb_done(sc, txq, skb); 249 ieee80211_free_txskb(sc->hw, skb); 250 continue; 251 } 252 253 if (fi->baw_tracked) { 254 ath_tx_update_baw(sc, tid, bf->bf_state.seqno); 255 sendbar = true; 256 } 257 258 list_add_tail(&bf->list, &bf_head); 259 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0); 260 } 261 262 if (sendbar) { 263 ath_txq_unlock(sc, txq); 264 ath_send_bar(tid, tid->seq_start); 265 ath_txq_lock(sc, txq); 266 } 267 } 268 269 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 270 int seqno) 271 { 272 int index, cindex; 273 274 index = ATH_BA_INDEX(tid->seq_start, seqno); 275 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 276 277 __clear_bit(cindex, tid->tx_buf); 278 279 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) { 280 INCR(tid->seq_start, IEEE80211_SEQ_MAX); 281 INCR(tid->baw_head, ATH_TID_MAX_BUFS); 282 if (tid->bar_index >= 0) 283 tid->bar_index--; 284 } 285 } 286 287 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 288 struct ath_buf *bf) 289 { 290 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 291 u16 seqno = bf->bf_state.seqno; 292 int index, cindex; 293 294 index = ATH_BA_INDEX(tid->seq_start, seqno); 295 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 296 __set_bit(cindex, tid->tx_buf); 297 fi->baw_tracked = 1; 298 299 if (index >= ((tid->baw_tail - tid->baw_head) & 300 (ATH_TID_MAX_BUFS - 1))) { 301 tid->baw_tail = cindex; 302 INCR(tid->baw_tail, ATH_TID_MAX_BUFS); 303 } 304 } 305 306 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq, 307 struct ath_atx_tid *tid) 308 309 { 310 struct sk_buff *skb; 311 struct ath_buf *bf; 312 struct list_head bf_head; 313 struct ath_tx_status ts; 314 struct ath_frame_info *fi; 315 316 memset(&ts, 0, sizeof(ts)); 317 INIT_LIST_HEAD(&bf_head); 318 319 while ((skb = ath_tid_dequeue(tid))) { 320 fi = get_frame_info(skb); 321 bf = fi->bf; 322 323 if (!bf) { 324 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq); 325 continue; 326 } 327 328 list_add_tail(&bf->list, &bf_head); 329 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0); 330 } 331 } 332 333 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq, 334 struct sk_buff *skb, int count) 335 { 336 struct ath_frame_info *fi = get_frame_info(skb); 337 struct ath_buf *bf = fi->bf; 338 struct ieee80211_hdr *hdr; 339 int prev = fi->retries; 340 341 TX_STAT_INC(txq->axq_qnum, a_retries); 342 fi->retries += count; 343 344 if (prev > 0) 345 return; 346 347 hdr = (struct ieee80211_hdr *)skb->data; 348 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY); 349 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 350 sizeof(*hdr), DMA_TO_DEVICE); 351 } 352 353 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc) 354 { 355 struct ath_buf *bf = NULL; 356 357 spin_lock_bh(&sc->tx.txbuflock); 358 359 if (unlikely(list_empty(&sc->tx.txbuf))) { 360 spin_unlock_bh(&sc->tx.txbuflock); 361 return NULL; 362 } 363 364 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list); 365 list_del(&bf->list); 366 367 spin_unlock_bh(&sc->tx.txbuflock); 368 369 return bf; 370 } 371 372 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf) 373 { 374 spin_lock_bh(&sc->tx.txbuflock); 375 list_add_tail(&bf->list, &sc->tx.txbuf); 376 spin_unlock_bh(&sc->tx.txbuflock); 377 } 378 379 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf) 380 { 381 struct ath_buf *tbf; 382 383 tbf = ath_tx_get_buffer(sc); 384 if (WARN_ON(!tbf)) 385 return NULL; 386 387 ATH_TXBUF_RESET(tbf); 388 389 tbf->bf_mpdu = bf->bf_mpdu; 390 tbf->bf_buf_addr = bf->bf_buf_addr; 391 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len); 392 tbf->bf_state = bf->bf_state; 393 tbf->bf_state.stale = false; 394 395 return tbf; 396 } 397 398 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf, 399 struct ath_tx_status *ts, int txok, 400 int *nframes, int *nbad) 401 { 402 struct ath_frame_info *fi; 403 u16 seq_st = 0; 404 u32 ba[WME_BA_BMP_SIZE >> 5]; 405 int ba_index; 406 int isaggr = 0; 407 408 *nbad = 0; 409 *nframes = 0; 410 411 isaggr = bf_isaggr(bf); 412 if (isaggr) { 413 seq_st = ts->ts_seqnum; 414 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); 415 } 416 417 while (bf) { 418 fi = get_frame_info(bf->bf_mpdu); 419 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno); 420 421 (*nframes)++; 422 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index))) 423 (*nbad)++; 424 425 bf = bf->bf_next; 426 } 427 } 428 429 430 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq, 431 struct ath_buf *bf, struct list_head *bf_q, 432 struct ath_tx_status *ts, int txok) 433 { 434 struct ath_node *an = NULL; 435 struct sk_buff *skb; 436 struct ieee80211_sta *sta; 437 struct ieee80211_hw *hw = sc->hw; 438 struct ieee80211_hdr *hdr; 439 struct ieee80211_tx_info *tx_info; 440 struct ath_atx_tid *tid = NULL; 441 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf; 442 struct list_head bf_head; 443 struct sk_buff_head bf_pending; 444 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first; 445 u32 ba[WME_BA_BMP_SIZE >> 5]; 446 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0; 447 bool rc_update = true, isba; 448 struct ieee80211_tx_rate rates[4]; 449 struct ath_frame_info *fi; 450 int nframes; 451 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH); 452 int i, retries; 453 int bar_index = -1; 454 455 skb = bf->bf_mpdu; 456 hdr = (struct ieee80211_hdr *)skb->data; 457 458 tx_info = IEEE80211_SKB_CB(skb); 459 460 memcpy(rates, bf->rates, sizeof(rates)); 461 462 retries = ts->ts_longretry + 1; 463 for (i = 0; i < ts->ts_rateindex; i++) 464 retries += rates[i].count; 465 466 rcu_read_lock(); 467 468 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2); 469 if (!sta) { 470 rcu_read_unlock(); 471 472 INIT_LIST_HEAD(&bf_head); 473 while (bf) { 474 bf_next = bf->bf_next; 475 476 if (!bf->bf_state.stale || bf_next != NULL) 477 list_move_tail(&bf->list, &bf_head); 478 479 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0); 480 481 bf = bf_next; 482 } 483 return; 484 } 485 486 an = (struct ath_node *)sta->drv_priv; 487 tid = ath_get_skb_tid(sc, an, skb); 488 seq_first = tid->seq_start; 489 isba = ts->ts_flags & ATH9K_TX_BA; 490 491 /* 492 * The hardware occasionally sends a tx status for the wrong TID. 493 * In this case, the BA status cannot be considered valid and all 494 * subframes need to be retransmitted 495 * 496 * Only BlockAcks have a TID and therefore normal Acks cannot be 497 * checked 498 */ 499 if (isba && tid->tidno != ts->tid) 500 txok = false; 501 502 isaggr = bf_isaggr(bf); 503 memset(ba, 0, WME_BA_BMP_SIZE >> 3); 504 505 if (isaggr && txok) { 506 if (ts->ts_flags & ATH9K_TX_BA) { 507 seq_st = ts->ts_seqnum; 508 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); 509 } else { 510 /* 511 * AR5416 can become deaf/mute when BA 512 * issue happens. Chip needs to be reset. 513 * But AP code may have sychronization issues 514 * when perform internal reset in this routine. 515 * Only enable reset in STA mode for now. 516 */ 517 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION) 518 needreset = 1; 519 } 520 } 521 522 __skb_queue_head_init(&bf_pending); 523 524 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad); 525 while (bf) { 526 u16 seqno = bf->bf_state.seqno; 527 528 txfail = txpending = sendbar = 0; 529 bf_next = bf->bf_next; 530 531 skb = bf->bf_mpdu; 532 tx_info = IEEE80211_SKB_CB(skb); 533 fi = get_frame_info(skb); 534 535 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) || 536 !tid->active) { 537 /* 538 * Outside of the current BlockAck window, 539 * maybe part of a previous session 540 */ 541 txfail = 1; 542 } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) { 543 /* transmit completion, subframe is 544 * acked by block ack */ 545 acked_cnt++; 546 } else if (!isaggr && txok) { 547 /* transmit completion */ 548 acked_cnt++; 549 } else if (flush) { 550 txpending = 1; 551 } else if (fi->retries < ATH_MAX_SW_RETRIES) { 552 if (txok || !an->sleeping) 553 ath_tx_set_retry(sc, txq, bf->bf_mpdu, 554 retries); 555 556 txpending = 1; 557 } else { 558 txfail = 1; 559 txfail_cnt++; 560 bar_index = max_t(int, bar_index, 561 ATH_BA_INDEX(seq_first, seqno)); 562 } 563 564 /* 565 * Make sure the last desc is reclaimed if it 566 * not a holding desc. 567 */ 568 INIT_LIST_HEAD(&bf_head); 569 if (bf_next != NULL || !bf_last->bf_state.stale) 570 list_move_tail(&bf->list, &bf_head); 571 572 if (!txpending) { 573 /* 574 * complete the acked-ones/xretried ones; update 575 * block-ack window 576 */ 577 ath_tx_update_baw(sc, tid, seqno); 578 579 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) { 580 memcpy(tx_info->control.rates, rates, sizeof(rates)); 581 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok); 582 rc_update = false; 583 } 584 585 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 586 !txfail); 587 } else { 588 if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) { 589 tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP; 590 ieee80211_sta_eosp(sta); 591 } 592 /* retry the un-acked ones */ 593 if (bf->bf_next == NULL && bf_last->bf_state.stale) { 594 struct ath_buf *tbf; 595 596 tbf = ath_clone_txbuf(sc, bf_last); 597 /* 598 * Update tx baw and complete the 599 * frame with failed status if we 600 * run out of tx buf. 601 */ 602 if (!tbf) { 603 ath_tx_update_baw(sc, tid, seqno); 604 605 ath_tx_complete_buf(sc, bf, txq, 606 &bf_head, ts, 0); 607 bar_index = max_t(int, bar_index, 608 ATH_BA_INDEX(seq_first, seqno)); 609 break; 610 } 611 612 fi->bf = tbf; 613 } 614 615 /* 616 * Put this buffer to the temporary pending 617 * queue to retain ordering 618 */ 619 __skb_queue_tail(&bf_pending, skb); 620 } 621 622 bf = bf_next; 623 } 624 625 /* prepend un-acked frames to the beginning of the pending frame queue */ 626 if (!skb_queue_empty(&bf_pending)) { 627 if (an->sleeping) 628 ieee80211_sta_set_buffered(sta, tid->tidno, true); 629 630 skb_queue_splice_tail(&bf_pending, &tid->retry_q); 631 if (!an->sleeping) { 632 ath_tx_queue_tid(txq, tid); 633 634 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY)) 635 tid->ac->clear_ps_filter = true; 636 } 637 } 638 639 if (bar_index >= 0) { 640 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index); 641 642 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq)) 643 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq); 644 645 ath_txq_unlock(sc, txq); 646 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1)); 647 ath_txq_lock(sc, txq); 648 } 649 650 rcu_read_unlock(); 651 652 if (needreset) 653 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR); 654 } 655 656 static bool bf_is_ampdu_not_probing(struct ath_buf *bf) 657 { 658 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu); 659 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE); 660 } 661 662 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq, 663 struct ath_tx_status *ts, struct ath_buf *bf, 664 struct list_head *bf_head) 665 { 666 struct ieee80211_tx_info *info; 667 bool txok, flush; 668 669 txok = !(ts->ts_status & ATH9K_TXERR_MASK); 670 flush = !!(ts->ts_status & ATH9K_TX_FLUSH); 671 txq->axq_tx_inprogress = false; 672 673 txq->axq_depth--; 674 if (bf_is_ampdu_not_probing(bf)) 675 txq->axq_ampdu_depth--; 676 677 if (!bf_isampdu(bf)) { 678 if (!flush) { 679 info = IEEE80211_SKB_CB(bf->bf_mpdu); 680 memcpy(info->control.rates, bf->rates, 681 sizeof(info->control.rates)); 682 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok); 683 } 684 ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok); 685 } else 686 ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok); 687 688 if (!flush) 689 ath_txq_schedule(sc, txq); 690 } 691 692 static bool ath_lookup_legacy(struct ath_buf *bf) 693 { 694 struct sk_buff *skb; 695 struct ieee80211_tx_info *tx_info; 696 struct ieee80211_tx_rate *rates; 697 int i; 698 699 skb = bf->bf_mpdu; 700 tx_info = IEEE80211_SKB_CB(skb); 701 rates = tx_info->control.rates; 702 703 for (i = 0; i < 4; i++) { 704 if (!rates[i].count || rates[i].idx < 0) 705 break; 706 707 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) 708 return true; 709 } 710 711 return false; 712 } 713 714 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf, 715 struct ath_atx_tid *tid) 716 { 717 struct sk_buff *skb; 718 struct ieee80211_tx_info *tx_info; 719 struct ieee80211_tx_rate *rates; 720 u32 max_4ms_framelen, frmlen; 721 u16 aggr_limit, bt_aggr_limit, legacy = 0; 722 int q = tid->ac->txq->mac80211_qnum; 723 int i; 724 725 skb = bf->bf_mpdu; 726 tx_info = IEEE80211_SKB_CB(skb); 727 rates = bf->rates; 728 729 /* 730 * Find the lowest frame length among the rate series that will have a 731 * 4ms (or TXOP limited) transmit duration. 732 */ 733 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX; 734 735 for (i = 0; i < 4; i++) { 736 int modeidx; 737 738 if (!rates[i].count) 739 continue; 740 741 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) { 742 legacy = 1; 743 break; 744 } 745 746 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 747 modeidx = MCS_HT40; 748 else 749 modeidx = MCS_HT20; 750 751 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 752 modeidx++; 753 754 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx]; 755 max_4ms_framelen = min(max_4ms_framelen, frmlen); 756 } 757 758 /* 759 * limit aggregate size by the minimum rate if rate selected is 760 * not a probe rate, if rate selected is a probe rate then 761 * avoid aggregation of this packet. 762 */ 763 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy) 764 return 0; 765 766 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX); 767 768 /* 769 * Override the default aggregation limit for BTCOEX. 770 */ 771 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen); 772 if (bt_aggr_limit) 773 aggr_limit = bt_aggr_limit; 774 775 if (tid->an->maxampdu) 776 aggr_limit = min(aggr_limit, tid->an->maxampdu); 777 778 return aggr_limit; 779 } 780 781 /* 782 * Returns the number of delimiters to be added to 783 * meet the minimum required mpdudensity. 784 */ 785 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid, 786 struct ath_buf *bf, u16 frmlen, 787 bool first_subfrm) 788 { 789 #define FIRST_DESC_NDELIMS 60 790 u32 nsymbits, nsymbols; 791 u16 minlen; 792 u8 flags, rix; 793 int width, streams, half_gi, ndelim, mindelim; 794 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 795 796 /* Select standard number of delimiters based on frame length alone */ 797 ndelim = ATH_AGGR_GET_NDELIM(frmlen); 798 799 /* 800 * If encryption enabled, hardware requires some more padding between 801 * subframes. 802 * TODO - this could be improved to be dependent on the rate. 803 * The hardware can keep up at lower rates, but not higher rates 804 */ 805 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) && 806 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) 807 ndelim += ATH_AGGR_ENCRYPTDELIM; 808 809 /* 810 * Add delimiter when using RTS/CTS with aggregation 811 * and non enterprise AR9003 card 812 */ 813 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) && 814 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE)) 815 ndelim = max(ndelim, FIRST_DESC_NDELIMS); 816 817 /* 818 * Convert desired mpdu density from microeconds to bytes based 819 * on highest rate in rate series (i.e. first rate) to determine 820 * required minimum length for subframe. Take into account 821 * whether high rate is 20 or 40Mhz and half or full GI. 822 * 823 * If there is no mpdu density restriction, no further calculation 824 * is needed. 825 */ 826 827 if (tid->an->mpdudensity == 0) 828 return ndelim; 829 830 rix = bf->rates[0].idx; 831 flags = bf->rates[0].flags; 832 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0; 833 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0; 834 835 if (half_gi) 836 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity); 837 else 838 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity); 839 840 if (nsymbols == 0) 841 nsymbols = 1; 842 843 streams = HT_RC_2_STREAMS(rix); 844 nsymbits = bits_per_symbol[rix % 8][width] * streams; 845 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE; 846 847 if (frmlen < minlen) { 848 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ; 849 ndelim = max(mindelim, ndelim); 850 } 851 852 return ndelim; 853 } 854 855 static struct ath_buf * 856 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq, 857 struct ath_atx_tid *tid, struct sk_buff_head **q) 858 { 859 struct ieee80211_tx_info *tx_info; 860 struct ath_frame_info *fi; 861 struct sk_buff *skb; 862 struct ath_buf *bf; 863 u16 seqno; 864 865 while (1) { 866 *q = &tid->retry_q; 867 if (skb_queue_empty(*q)) 868 *q = &tid->buf_q; 869 870 skb = skb_peek(*q); 871 if (!skb) 872 break; 873 874 fi = get_frame_info(skb); 875 bf = fi->bf; 876 if (!fi->bf) 877 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 878 else 879 bf->bf_state.stale = false; 880 881 if (!bf) { 882 __skb_unlink(skb, *q); 883 ath_txq_skb_done(sc, txq, skb); 884 ieee80211_free_txskb(sc->hw, skb); 885 continue; 886 } 887 888 bf->bf_next = NULL; 889 bf->bf_lastbf = bf; 890 891 tx_info = IEEE80211_SKB_CB(skb); 892 tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT; 893 if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) { 894 bf->bf_state.bf_type = 0; 895 return bf; 896 } 897 898 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR; 899 seqno = bf->bf_state.seqno; 900 901 /* do not step over block-ack window */ 902 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) 903 break; 904 905 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) { 906 struct ath_tx_status ts = {}; 907 struct list_head bf_head; 908 909 INIT_LIST_HEAD(&bf_head); 910 list_add(&bf->list, &bf_head); 911 __skb_unlink(skb, *q); 912 ath_tx_update_baw(sc, tid, seqno); 913 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0); 914 continue; 915 } 916 917 return bf; 918 } 919 920 return NULL; 921 } 922 923 static bool 924 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq, 925 struct ath_atx_tid *tid, struct list_head *bf_q, 926 struct ath_buf *bf_first, struct sk_buff_head *tid_q, 927 int *aggr_len) 928 { 929 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4) 930 struct ath_buf *bf = bf_first, *bf_prev = NULL; 931 int nframes = 0, ndelim; 932 u16 aggr_limit = 0, al = 0, bpad = 0, 933 al_delta, h_baw = tid->baw_size / 2; 934 struct ieee80211_tx_info *tx_info; 935 struct ath_frame_info *fi; 936 struct sk_buff *skb; 937 bool closed = false; 938 939 bf = bf_first; 940 aggr_limit = ath_lookup_rate(sc, bf, tid); 941 942 do { 943 skb = bf->bf_mpdu; 944 fi = get_frame_info(skb); 945 946 /* do not exceed aggregation limit */ 947 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen; 948 if (nframes) { 949 if (aggr_limit < al + bpad + al_delta || 950 ath_lookup_legacy(bf) || nframes >= h_baw) 951 break; 952 953 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 954 if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) || 955 !(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) 956 break; 957 } 958 959 /* add padding for previous frame to aggregation length */ 960 al += bpad + al_delta; 961 962 /* 963 * Get the delimiters needed to meet the MPDU 964 * density for this node. 965 */ 966 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen, 967 !nframes); 968 bpad = PADBYTES(al_delta) + (ndelim << 2); 969 970 nframes++; 971 bf->bf_next = NULL; 972 973 /* link buffers of this frame to the aggregate */ 974 if (!fi->baw_tracked) 975 ath_tx_addto_baw(sc, tid, bf); 976 bf->bf_state.ndelim = ndelim; 977 978 __skb_unlink(skb, tid_q); 979 list_add_tail(&bf->list, bf_q); 980 if (bf_prev) 981 bf_prev->bf_next = bf; 982 983 bf_prev = bf; 984 985 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q); 986 if (!bf) { 987 closed = true; 988 break; 989 } 990 } while (ath_tid_has_buffered(tid)); 991 992 bf = bf_first; 993 bf->bf_lastbf = bf_prev; 994 995 if (bf == bf_prev) { 996 al = get_frame_info(bf->bf_mpdu)->framelen; 997 bf->bf_state.bf_type = BUF_AMPDU; 998 } else { 999 TX_STAT_INC(txq->axq_qnum, a_aggr); 1000 } 1001 1002 *aggr_len = al; 1003 1004 return closed; 1005 #undef PADBYTES 1006 } 1007 1008 /* 1009 * rix - rate index 1010 * pktlen - total bytes (delims + data + fcs + pads + pad delims) 1011 * width - 0 for 20 MHz, 1 for 40 MHz 1012 * half_gi - to use 4us v/s 3.6 us for symbol time 1013 */ 1014 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen, 1015 int width, int half_gi, bool shortPreamble) 1016 { 1017 u32 nbits, nsymbits, duration, nsymbols; 1018 int streams; 1019 1020 /* find number of symbols: PLCP + data */ 1021 streams = HT_RC_2_STREAMS(rix); 1022 nbits = (pktlen << 3) + OFDM_PLCP_BITS; 1023 nsymbits = bits_per_symbol[rix % 8][width] * streams; 1024 nsymbols = (nbits + nsymbits - 1) / nsymbits; 1025 1026 if (!half_gi) 1027 duration = SYMBOL_TIME(nsymbols); 1028 else 1029 duration = SYMBOL_TIME_HALFGI(nsymbols); 1030 1031 /* addup duration for legacy/ht training and signal fields */ 1032 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 1033 1034 return duration; 1035 } 1036 1037 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi) 1038 { 1039 int streams = HT_RC_2_STREAMS(mcs); 1040 int symbols, bits; 1041 int bytes = 0; 1042 1043 usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 1044 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec); 1045 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams; 1046 bits -= OFDM_PLCP_BITS; 1047 bytes = bits / 8; 1048 if (bytes > 65532) 1049 bytes = 65532; 1050 1051 return bytes; 1052 } 1053 1054 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop) 1055 { 1056 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi; 1057 int mcs; 1058 1059 /* 4ms is the default (and maximum) duration */ 1060 if (!txop || txop > 4096) 1061 txop = 4096; 1062 1063 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20]; 1064 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI]; 1065 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40]; 1066 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI]; 1067 for (mcs = 0; mcs < 32; mcs++) { 1068 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false); 1069 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true); 1070 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false); 1071 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true); 1072 } 1073 } 1074 1075 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, 1076 struct ath_tx_info *info, int len, bool rts) 1077 { 1078 struct ath_hw *ah = sc->sc_ah; 1079 struct ath_common *common = ath9k_hw_common(ah); 1080 struct sk_buff *skb; 1081 struct ieee80211_tx_info *tx_info; 1082 struct ieee80211_tx_rate *rates; 1083 const struct ieee80211_rate *rate; 1084 struct ieee80211_hdr *hdr; 1085 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 1086 u32 rts_thresh = sc->hw->wiphy->rts_threshold; 1087 int i; 1088 u8 rix = 0; 1089 1090 skb = bf->bf_mpdu; 1091 tx_info = IEEE80211_SKB_CB(skb); 1092 rates = bf->rates; 1093 hdr = (struct ieee80211_hdr *)skb->data; 1094 1095 /* set dur_update_en for l-sig computation except for PS-Poll frames */ 1096 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control); 1097 info->rtscts_rate = fi->rtscts_rate; 1098 1099 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) { 1100 bool is_40, is_sgi, is_sp; 1101 int phy; 1102 1103 if (!rates[i].count || (rates[i].idx < 0)) 1104 continue; 1105 1106 rix = rates[i].idx; 1107 info->rates[i].Tries = rates[i].count; 1108 1109 /* 1110 * Handle RTS threshold for unaggregated HT frames. 1111 */ 1112 if (bf_isampdu(bf) && !bf_isaggr(bf) && 1113 (rates[i].flags & IEEE80211_TX_RC_MCS) && 1114 unlikely(rts_thresh != (u32) -1)) { 1115 if (!rts_thresh || (len > rts_thresh)) 1116 rts = true; 1117 } 1118 1119 if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) { 1120 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1121 info->flags |= ATH9K_TXDESC_RTSENA; 1122 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { 1123 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1124 info->flags |= ATH9K_TXDESC_CTSENA; 1125 } 1126 1127 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 1128 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040; 1129 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 1130 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI; 1131 1132 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI); 1133 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH); 1134 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE); 1135 1136 if (rates[i].flags & IEEE80211_TX_RC_MCS) { 1137 /* MCS rates */ 1138 info->rates[i].Rate = rix | 0x80; 1139 info->rates[i].ChSel = ath_txchainmask_reduction(sc, 1140 ah->txchainmask, info->rates[i].Rate); 1141 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len, 1142 is_40, is_sgi, is_sp); 1143 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC)) 1144 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC; 1145 continue; 1146 } 1147 1148 /* legacy rates */ 1149 rate = &common->sbands[tx_info->band].bitrates[rates[i].idx]; 1150 if ((tx_info->band == IEEE80211_BAND_2GHZ) && 1151 !(rate->flags & IEEE80211_RATE_ERP_G)) 1152 phy = WLAN_RC_PHY_CCK; 1153 else 1154 phy = WLAN_RC_PHY_OFDM; 1155 1156 info->rates[i].Rate = rate->hw_value; 1157 if (rate->hw_value_short) { 1158 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 1159 info->rates[i].Rate |= rate->hw_value_short; 1160 } else { 1161 is_sp = false; 1162 } 1163 1164 if (bf->bf_state.bfs_paprd) 1165 info->rates[i].ChSel = ah->txchainmask; 1166 else 1167 info->rates[i].ChSel = ath_txchainmask_reduction(sc, 1168 ah->txchainmask, info->rates[i].Rate); 1169 1170 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah, 1171 phy, rate->bitrate * 100, len, rix, is_sp); 1172 } 1173 1174 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */ 1175 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit)) 1176 info->flags &= ~ATH9K_TXDESC_RTSENA; 1177 1178 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */ 1179 if (info->flags & ATH9K_TXDESC_RTSENA) 1180 info->flags &= ~ATH9K_TXDESC_CTSENA; 1181 } 1182 1183 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb) 1184 { 1185 struct ieee80211_hdr *hdr; 1186 enum ath9k_pkt_type htype; 1187 __le16 fc; 1188 1189 hdr = (struct ieee80211_hdr *)skb->data; 1190 fc = hdr->frame_control; 1191 1192 if (ieee80211_is_beacon(fc)) 1193 htype = ATH9K_PKT_TYPE_BEACON; 1194 else if (ieee80211_is_probe_resp(fc)) 1195 htype = ATH9K_PKT_TYPE_PROBE_RESP; 1196 else if (ieee80211_is_atim(fc)) 1197 htype = ATH9K_PKT_TYPE_ATIM; 1198 else if (ieee80211_is_pspoll(fc)) 1199 htype = ATH9K_PKT_TYPE_PSPOLL; 1200 else 1201 htype = ATH9K_PKT_TYPE_NORMAL; 1202 1203 return htype; 1204 } 1205 1206 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf, 1207 struct ath_txq *txq, int len) 1208 { 1209 struct ath_hw *ah = sc->sc_ah; 1210 struct ath_buf *bf_first = NULL; 1211 struct ath_tx_info info; 1212 u32 rts_thresh = sc->hw->wiphy->rts_threshold; 1213 bool rts = false; 1214 1215 memset(&info, 0, sizeof(info)); 1216 info.is_first = true; 1217 info.is_last = true; 1218 info.txpower = MAX_RATE_POWER; 1219 info.qcu = txq->axq_qnum; 1220 1221 while (bf) { 1222 struct sk_buff *skb = bf->bf_mpdu; 1223 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1224 struct ath_frame_info *fi = get_frame_info(skb); 1225 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR); 1226 1227 info.type = get_hw_packet_type(skb); 1228 if (bf->bf_next) 1229 info.link = bf->bf_next->bf_daddr; 1230 else 1231 info.link = (sc->tx99_state) ? bf->bf_daddr : 0; 1232 1233 if (!bf_first) { 1234 bf_first = bf; 1235 1236 if (!sc->tx99_state) 1237 info.flags = ATH9K_TXDESC_INTREQ; 1238 if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) || 1239 txq == sc->tx.uapsdq) 1240 info.flags |= ATH9K_TXDESC_CLRDMASK; 1241 1242 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) 1243 info.flags |= ATH9K_TXDESC_NOACK; 1244 if (tx_info->flags & IEEE80211_TX_CTL_LDPC) 1245 info.flags |= ATH9K_TXDESC_LDPC; 1246 1247 if (bf->bf_state.bfs_paprd) 1248 info.flags |= (u32) bf->bf_state.bfs_paprd << 1249 ATH9K_TXDESC_PAPRD_S; 1250 1251 /* 1252 * mac80211 doesn't handle RTS threshold for HT because 1253 * the decision has to be taken based on AMPDU length 1254 * and aggregation is done entirely inside ath9k. 1255 * Set the RTS/CTS flag for the first subframe based 1256 * on the threshold. 1257 */ 1258 if (aggr && (bf == bf_first) && 1259 unlikely(rts_thresh != (u32) -1)) { 1260 /* 1261 * "len" is the size of the entire AMPDU. 1262 */ 1263 if (!rts_thresh || (len > rts_thresh)) 1264 rts = true; 1265 } 1266 1267 if (!aggr) 1268 len = fi->framelen; 1269 1270 ath_buf_set_rate(sc, bf, &info, len, rts); 1271 } 1272 1273 info.buf_addr[0] = bf->bf_buf_addr; 1274 info.buf_len[0] = skb->len; 1275 info.pkt_len = fi->framelen; 1276 info.keyix = fi->keyix; 1277 info.keytype = fi->keytype; 1278 1279 if (aggr) { 1280 if (bf == bf_first) 1281 info.aggr = AGGR_BUF_FIRST; 1282 else if (bf == bf_first->bf_lastbf) 1283 info.aggr = AGGR_BUF_LAST; 1284 else 1285 info.aggr = AGGR_BUF_MIDDLE; 1286 1287 info.ndelim = bf->bf_state.ndelim; 1288 info.aggr_len = len; 1289 } 1290 1291 if (bf == bf_first->bf_lastbf) 1292 bf_first = NULL; 1293 1294 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info); 1295 bf = bf->bf_next; 1296 } 1297 } 1298 1299 static void 1300 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq, 1301 struct ath_atx_tid *tid, struct list_head *bf_q, 1302 struct ath_buf *bf_first, struct sk_buff_head *tid_q) 1303 { 1304 struct ath_buf *bf = bf_first, *bf_prev = NULL; 1305 struct sk_buff *skb; 1306 int nframes = 0; 1307 1308 do { 1309 struct ieee80211_tx_info *tx_info; 1310 skb = bf->bf_mpdu; 1311 1312 nframes++; 1313 __skb_unlink(skb, tid_q); 1314 list_add_tail(&bf->list, bf_q); 1315 if (bf_prev) 1316 bf_prev->bf_next = bf; 1317 bf_prev = bf; 1318 1319 if (nframes >= 2) 1320 break; 1321 1322 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q); 1323 if (!bf) 1324 break; 1325 1326 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1327 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) 1328 break; 1329 1330 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1331 } while (1); 1332 } 1333 1334 static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq, 1335 struct ath_atx_tid *tid, bool *stop) 1336 { 1337 struct ath_buf *bf; 1338 struct ieee80211_tx_info *tx_info; 1339 struct sk_buff_head *tid_q; 1340 struct list_head bf_q; 1341 int aggr_len = 0; 1342 bool aggr, last = true; 1343 1344 if (!ath_tid_has_buffered(tid)) 1345 return false; 1346 1347 INIT_LIST_HEAD(&bf_q); 1348 1349 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q); 1350 if (!bf) 1351 return false; 1352 1353 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1354 aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU); 1355 if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) || 1356 (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) { 1357 *stop = true; 1358 return false; 1359 } 1360 1361 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1362 if (aggr) 1363 last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf, 1364 tid_q, &aggr_len); 1365 else 1366 ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q); 1367 1368 if (list_empty(&bf_q)) 1369 return false; 1370 1371 if (tid->ac->clear_ps_filter || tid->an->no_ps_filter) { 1372 tid->ac->clear_ps_filter = false; 1373 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1374 } 1375 1376 ath_tx_fill_desc(sc, bf, txq, aggr_len); 1377 ath_tx_txqaddbuf(sc, txq, &bf_q, false); 1378 return true; 1379 } 1380 1381 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta, 1382 u16 tid, u16 *ssn) 1383 { 1384 struct ath_atx_tid *txtid; 1385 struct ath_txq *txq; 1386 struct ath_node *an; 1387 u8 density; 1388 1389 an = (struct ath_node *)sta->drv_priv; 1390 txtid = ATH_AN_2_TID(an, tid); 1391 txq = txtid->ac->txq; 1392 1393 ath_txq_lock(sc, txq); 1394 1395 /* update ampdu factor/density, they may have changed. This may happen 1396 * in HT IBSS when a beacon with HT-info is received after the station 1397 * has already been added. 1398 */ 1399 if (sta->ht_cap.ht_supported) { 1400 an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + 1401 sta->ht_cap.ampdu_factor)) - 1; 1402 density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density); 1403 an->mpdudensity = density; 1404 } 1405 1406 /* force sequence number allocation for pending frames */ 1407 ath_tx_tid_change_state(sc, txtid); 1408 1409 txtid->active = true; 1410 txtid->paused = true; 1411 *ssn = txtid->seq_start = txtid->seq_next; 1412 txtid->bar_index = -1; 1413 1414 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf)); 1415 txtid->baw_head = txtid->baw_tail = 0; 1416 1417 ath_txq_unlock_complete(sc, txq); 1418 1419 return 0; 1420 } 1421 1422 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid) 1423 { 1424 struct ath_node *an = (struct ath_node *)sta->drv_priv; 1425 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid); 1426 struct ath_txq *txq = txtid->ac->txq; 1427 1428 ath_txq_lock(sc, txq); 1429 txtid->active = false; 1430 txtid->paused = false; 1431 ath_tx_flush_tid(sc, txtid); 1432 ath_tx_tid_change_state(sc, txtid); 1433 ath_txq_unlock_complete(sc, txq); 1434 } 1435 1436 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc, 1437 struct ath_node *an) 1438 { 1439 struct ath_atx_tid *tid; 1440 struct ath_atx_ac *ac; 1441 struct ath_txq *txq; 1442 bool buffered; 1443 int tidno; 1444 1445 for (tidno = 0, tid = &an->tid[tidno]; 1446 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) { 1447 1448 ac = tid->ac; 1449 txq = ac->txq; 1450 1451 ath_txq_lock(sc, txq); 1452 1453 if (!tid->sched) { 1454 ath_txq_unlock(sc, txq); 1455 continue; 1456 } 1457 1458 buffered = ath_tid_has_buffered(tid); 1459 1460 tid->sched = false; 1461 list_del(&tid->list); 1462 1463 if (ac->sched) { 1464 ac->sched = false; 1465 list_del(&ac->list); 1466 } 1467 1468 ath_txq_unlock(sc, txq); 1469 1470 ieee80211_sta_set_buffered(sta, tidno, buffered); 1471 } 1472 } 1473 1474 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an) 1475 { 1476 struct ath_atx_tid *tid; 1477 struct ath_atx_ac *ac; 1478 struct ath_txq *txq; 1479 int tidno; 1480 1481 for (tidno = 0, tid = &an->tid[tidno]; 1482 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) { 1483 1484 ac = tid->ac; 1485 txq = ac->txq; 1486 1487 ath_txq_lock(sc, txq); 1488 ac->clear_ps_filter = true; 1489 1490 if (!tid->paused && ath_tid_has_buffered(tid)) { 1491 ath_tx_queue_tid(txq, tid); 1492 ath_txq_schedule(sc, txq); 1493 } 1494 1495 ath_txq_unlock_complete(sc, txq); 1496 } 1497 } 1498 1499 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, 1500 u16 tidno) 1501 { 1502 struct ath_atx_tid *tid; 1503 struct ath_node *an; 1504 struct ath_txq *txq; 1505 1506 an = (struct ath_node *)sta->drv_priv; 1507 tid = ATH_AN_2_TID(an, tidno); 1508 txq = tid->ac->txq; 1509 1510 ath_txq_lock(sc, txq); 1511 1512 tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor; 1513 tid->paused = false; 1514 1515 if (ath_tid_has_buffered(tid)) { 1516 ath_tx_queue_tid(txq, tid); 1517 ath_txq_schedule(sc, txq); 1518 } 1519 1520 ath_txq_unlock_complete(sc, txq); 1521 } 1522 1523 void ath9k_release_buffered_frames(struct ieee80211_hw *hw, 1524 struct ieee80211_sta *sta, 1525 u16 tids, int nframes, 1526 enum ieee80211_frame_release_type reason, 1527 bool more_data) 1528 { 1529 struct ath_softc *sc = hw->priv; 1530 struct ath_node *an = (struct ath_node *)sta->drv_priv; 1531 struct ath_txq *txq = sc->tx.uapsdq; 1532 struct ieee80211_tx_info *info; 1533 struct list_head bf_q; 1534 struct ath_buf *bf_tail = NULL, *bf; 1535 struct sk_buff_head *tid_q; 1536 int sent = 0; 1537 int i; 1538 1539 INIT_LIST_HEAD(&bf_q); 1540 for (i = 0; tids && nframes; i++, tids >>= 1) { 1541 struct ath_atx_tid *tid; 1542 1543 if (!(tids & 1)) 1544 continue; 1545 1546 tid = ATH_AN_2_TID(an, i); 1547 if (tid->paused) 1548 continue; 1549 1550 ath_txq_lock(sc, tid->ac->txq); 1551 while (nframes > 0) { 1552 bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q); 1553 if (!bf) 1554 break; 1555 1556 __skb_unlink(bf->bf_mpdu, tid_q); 1557 list_add_tail(&bf->list, &bf_q); 1558 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1559 if (bf_isampdu(bf)) { 1560 ath_tx_addto_baw(sc, tid, bf); 1561 bf->bf_state.bf_type &= ~BUF_AGGR; 1562 } 1563 if (bf_tail) 1564 bf_tail->bf_next = bf; 1565 1566 bf_tail = bf; 1567 nframes--; 1568 sent++; 1569 TX_STAT_INC(txq->axq_qnum, a_queued_hw); 1570 1571 if (an->sta && !ath_tid_has_buffered(tid)) 1572 ieee80211_sta_set_buffered(an->sta, i, false); 1573 } 1574 ath_txq_unlock_complete(sc, tid->ac->txq); 1575 } 1576 1577 if (list_empty(&bf_q)) 1578 return; 1579 1580 info = IEEE80211_SKB_CB(bf_tail->bf_mpdu); 1581 info->flags |= IEEE80211_TX_STATUS_EOSP; 1582 1583 bf = list_first_entry(&bf_q, struct ath_buf, list); 1584 ath_txq_lock(sc, txq); 1585 ath_tx_fill_desc(sc, bf, txq, 0); 1586 ath_tx_txqaddbuf(sc, txq, &bf_q, false); 1587 ath_txq_unlock(sc, txq); 1588 } 1589 1590 /********************/ 1591 /* Queue Management */ 1592 /********************/ 1593 1594 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 1595 { 1596 struct ath_hw *ah = sc->sc_ah; 1597 struct ath9k_tx_queue_info qi; 1598 static const int subtype_txq_to_hwq[] = { 1599 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE, 1600 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK, 1601 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI, 1602 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO, 1603 }; 1604 int axq_qnum, i; 1605 1606 memset(&qi, 0, sizeof(qi)); 1607 qi.tqi_subtype = subtype_txq_to_hwq[subtype]; 1608 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT; 1609 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT; 1610 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT; 1611 qi.tqi_physCompBuf = 0; 1612 1613 /* 1614 * Enable interrupts only for EOL and DESC conditions. 1615 * We mark tx descriptors to receive a DESC interrupt 1616 * when a tx queue gets deep; otherwise waiting for the 1617 * EOL to reap descriptors. Note that this is done to 1618 * reduce interrupt load and this only defers reaping 1619 * descriptors, never transmitting frames. Aside from 1620 * reducing interrupts this also permits more concurrency. 1621 * The only potential downside is if the tx queue backs 1622 * up in which case the top half of the kernel may backup 1623 * due to a lack of tx descriptors. 1624 * 1625 * The UAPSD queue is an exception, since we take a desc- 1626 * based intr on the EOSP frames. 1627 */ 1628 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1629 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE; 1630 } else { 1631 if (qtype == ATH9K_TX_QUEUE_UAPSD) 1632 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE; 1633 else 1634 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | 1635 TXQ_FLAG_TXDESCINT_ENABLE; 1636 } 1637 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi); 1638 if (axq_qnum == -1) { 1639 /* 1640 * NB: don't print a message, this happens 1641 * normally on parts with too few tx queues 1642 */ 1643 return NULL; 1644 } 1645 if (!ATH_TXQ_SETUP(sc, axq_qnum)) { 1646 struct ath_txq *txq = &sc->tx.txq[axq_qnum]; 1647 1648 txq->axq_qnum = axq_qnum; 1649 txq->mac80211_qnum = -1; 1650 txq->axq_link = NULL; 1651 __skb_queue_head_init(&txq->complete_q); 1652 INIT_LIST_HEAD(&txq->axq_q); 1653 INIT_LIST_HEAD(&txq->axq_acq); 1654 spin_lock_init(&txq->axq_lock); 1655 txq->axq_depth = 0; 1656 txq->axq_ampdu_depth = 0; 1657 txq->axq_tx_inprogress = false; 1658 sc->tx.txqsetup |= 1<<axq_qnum; 1659 1660 txq->txq_headidx = txq->txq_tailidx = 0; 1661 for (i = 0; i < ATH_TXFIFO_DEPTH; i++) 1662 INIT_LIST_HEAD(&txq->txq_fifo[i]); 1663 } 1664 return &sc->tx.txq[axq_qnum]; 1665 } 1666 1667 int ath_txq_update(struct ath_softc *sc, int qnum, 1668 struct ath9k_tx_queue_info *qinfo) 1669 { 1670 struct ath_hw *ah = sc->sc_ah; 1671 int error = 0; 1672 struct ath9k_tx_queue_info qi; 1673 1674 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum); 1675 1676 ath9k_hw_get_txq_props(ah, qnum, &qi); 1677 qi.tqi_aifs = qinfo->tqi_aifs; 1678 qi.tqi_cwmin = qinfo->tqi_cwmin; 1679 qi.tqi_cwmax = qinfo->tqi_cwmax; 1680 qi.tqi_burstTime = qinfo->tqi_burstTime; 1681 qi.tqi_readyTime = qinfo->tqi_readyTime; 1682 1683 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) { 1684 ath_err(ath9k_hw_common(sc->sc_ah), 1685 "Unable to update hardware queue %u!\n", qnum); 1686 error = -EIO; 1687 } else { 1688 ath9k_hw_resettxqueue(ah, qnum); 1689 } 1690 1691 return error; 1692 } 1693 1694 int ath_cabq_update(struct ath_softc *sc) 1695 { 1696 struct ath9k_tx_queue_info qi; 1697 struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf; 1698 int qnum = sc->beacon.cabq->axq_qnum; 1699 1700 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi); 1701 1702 qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) * 1703 ATH_CABQ_READY_TIME) / 100; 1704 ath_txq_update(sc, qnum, &qi); 1705 1706 return 0; 1707 } 1708 1709 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq, 1710 struct list_head *list) 1711 { 1712 struct ath_buf *bf, *lastbf; 1713 struct list_head bf_head; 1714 struct ath_tx_status ts; 1715 1716 memset(&ts, 0, sizeof(ts)); 1717 ts.ts_status = ATH9K_TX_FLUSH; 1718 INIT_LIST_HEAD(&bf_head); 1719 1720 while (!list_empty(list)) { 1721 bf = list_first_entry(list, struct ath_buf, list); 1722 1723 if (bf->bf_state.stale) { 1724 list_del(&bf->list); 1725 1726 ath_tx_return_buffer(sc, bf); 1727 continue; 1728 } 1729 1730 lastbf = bf->bf_lastbf; 1731 list_cut_position(&bf_head, list, &lastbf->list); 1732 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 1733 } 1734 } 1735 1736 /* 1737 * Drain a given TX queue (could be Beacon or Data) 1738 * 1739 * This assumes output has been stopped and 1740 * we do not need to block ath_tx_tasklet. 1741 */ 1742 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq) 1743 { 1744 ath_txq_lock(sc, txq); 1745 1746 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1747 int idx = txq->txq_tailidx; 1748 1749 while (!list_empty(&txq->txq_fifo[idx])) { 1750 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]); 1751 1752 INCR(idx, ATH_TXFIFO_DEPTH); 1753 } 1754 txq->txq_tailidx = idx; 1755 } 1756 1757 txq->axq_link = NULL; 1758 txq->axq_tx_inprogress = false; 1759 ath_drain_txq_list(sc, txq, &txq->axq_q); 1760 1761 ath_txq_unlock_complete(sc, txq); 1762 } 1763 1764 bool ath_drain_all_txq(struct ath_softc *sc) 1765 { 1766 struct ath_hw *ah = sc->sc_ah; 1767 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1768 struct ath_txq *txq; 1769 int i; 1770 u32 npend = 0; 1771 1772 if (test_bit(ATH_OP_INVALID, &common->op_flags)) 1773 return true; 1774 1775 ath9k_hw_abort_tx_dma(ah); 1776 1777 /* Check if any queue remains active */ 1778 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1779 if (!ATH_TXQ_SETUP(sc, i)) 1780 continue; 1781 1782 if (!sc->tx.txq[i].axq_depth) 1783 continue; 1784 1785 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum)) 1786 npend |= BIT(i); 1787 } 1788 1789 if (npend) 1790 ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend); 1791 1792 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1793 if (!ATH_TXQ_SETUP(sc, i)) 1794 continue; 1795 1796 /* 1797 * The caller will resume queues with ieee80211_wake_queues. 1798 * Mark the queue as not stopped to prevent ath_tx_complete 1799 * from waking the queue too early. 1800 */ 1801 txq = &sc->tx.txq[i]; 1802 txq->stopped = false; 1803 ath_draintxq(sc, txq); 1804 } 1805 1806 return !npend; 1807 } 1808 1809 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 1810 { 1811 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum); 1812 sc->tx.txqsetup &= ~(1<<txq->axq_qnum); 1813 } 1814 1815 /* For each axq_acq entry, for each tid, try to schedule packets 1816 * for transmit until ampdu_depth has reached min Q depth. 1817 */ 1818 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq) 1819 { 1820 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1821 struct ath_atx_ac *ac, *last_ac; 1822 struct ath_atx_tid *tid, *last_tid; 1823 bool sent = false; 1824 1825 if (test_bit(ATH_OP_HW_RESET, &common->op_flags) || 1826 list_empty(&txq->axq_acq)) 1827 return; 1828 1829 rcu_read_lock(); 1830 1831 last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list); 1832 while (!list_empty(&txq->axq_acq)) { 1833 bool stop = false; 1834 1835 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list); 1836 last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list); 1837 list_del(&ac->list); 1838 ac->sched = false; 1839 1840 while (!list_empty(&ac->tid_q)) { 1841 1842 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, 1843 list); 1844 list_del(&tid->list); 1845 tid->sched = false; 1846 1847 if (tid->paused) 1848 continue; 1849 1850 if (ath_tx_sched_aggr(sc, txq, tid, &stop)) 1851 sent = true; 1852 1853 /* 1854 * add tid to round-robin queue if more frames 1855 * are pending for the tid 1856 */ 1857 if (ath_tid_has_buffered(tid)) 1858 ath_tx_queue_tid(txq, tid); 1859 1860 if (stop || tid == last_tid) 1861 break; 1862 } 1863 1864 if (!list_empty(&ac->tid_q) && !ac->sched) { 1865 ac->sched = true; 1866 list_add_tail(&ac->list, &txq->axq_acq); 1867 } 1868 1869 if (stop) 1870 break; 1871 1872 if (ac == last_ac) { 1873 if (!sent) 1874 break; 1875 1876 sent = false; 1877 last_ac = list_entry(txq->axq_acq.prev, 1878 struct ath_atx_ac, list); 1879 } 1880 } 1881 1882 rcu_read_unlock(); 1883 } 1884 1885 /***********/ 1886 /* TX, DMA */ 1887 /***********/ 1888 1889 /* 1890 * Insert a chain of ath_buf (descriptors) on a txq and 1891 * assume the descriptors are already chained together by caller. 1892 */ 1893 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 1894 struct list_head *head, bool internal) 1895 { 1896 struct ath_hw *ah = sc->sc_ah; 1897 struct ath_common *common = ath9k_hw_common(ah); 1898 struct ath_buf *bf, *bf_last; 1899 bool puttxbuf = false; 1900 bool edma; 1901 1902 /* 1903 * Insert the frame on the outbound list and 1904 * pass it on to the hardware. 1905 */ 1906 1907 if (list_empty(head)) 1908 return; 1909 1910 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA); 1911 bf = list_first_entry(head, struct ath_buf, list); 1912 bf_last = list_entry(head->prev, struct ath_buf, list); 1913 1914 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n", 1915 txq->axq_qnum, txq->axq_depth); 1916 1917 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) { 1918 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]); 1919 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH); 1920 puttxbuf = true; 1921 } else { 1922 list_splice_tail_init(head, &txq->axq_q); 1923 1924 if (txq->axq_link) { 1925 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr); 1926 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n", 1927 txq->axq_qnum, txq->axq_link, 1928 ito64(bf->bf_daddr), bf->bf_desc); 1929 } else if (!edma) 1930 puttxbuf = true; 1931 1932 txq->axq_link = bf_last->bf_desc; 1933 } 1934 1935 if (puttxbuf) { 1936 TX_STAT_INC(txq->axq_qnum, puttxbuf); 1937 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 1938 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n", 1939 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc); 1940 } 1941 1942 if (!edma || sc->tx99_state) { 1943 TX_STAT_INC(txq->axq_qnum, txstart); 1944 ath9k_hw_txstart(ah, txq->axq_qnum); 1945 } 1946 1947 if (!internal) { 1948 while (bf) { 1949 txq->axq_depth++; 1950 if (bf_is_ampdu_not_probing(bf)) 1951 txq->axq_ampdu_depth++; 1952 1953 bf_last = bf->bf_lastbf; 1954 bf = bf_last->bf_next; 1955 bf_last->bf_next = NULL; 1956 } 1957 } 1958 } 1959 1960 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 1961 struct ath_atx_tid *tid, struct sk_buff *skb) 1962 { 1963 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1964 struct ath_frame_info *fi = get_frame_info(skb); 1965 struct list_head bf_head; 1966 struct ath_buf *bf = fi->bf; 1967 1968 INIT_LIST_HEAD(&bf_head); 1969 list_add_tail(&bf->list, &bf_head); 1970 bf->bf_state.bf_type = 0; 1971 if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) { 1972 bf->bf_state.bf_type = BUF_AMPDU; 1973 ath_tx_addto_baw(sc, tid, bf); 1974 } 1975 1976 bf->bf_next = NULL; 1977 bf->bf_lastbf = bf; 1978 ath_tx_fill_desc(sc, bf, txq, fi->framelen); 1979 ath_tx_txqaddbuf(sc, txq, &bf_head, false); 1980 TX_STAT_INC(txq->axq_qnum, queued); 1981 } 1982 1983 static void setup_frame_info(struct ieee80211_hw *hw, 1984 struct ieee80211_sta *sta, 1985 struct sk_buff *skb, 1986 int framelen) 1987 { 1988 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1989 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key; 1990 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1991 const struct ieee80211_rate *rate; 1992 struct ath_frame_info *fi = get_frame_info(skb); 1993 struct ath_node *an = NULL; 1994 enum ath9k_key_type keytype; 1995 bool short_preamble = false; 1996 1997 /* 1998 * We check if Short Preamble is needed for the CTS rate by 1999 * checking the BSS's global flag. 2000 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used. 2001 */ 2002 if (tx_info->control.vif && 2003 tx_info->control.vif->bss_conf.use_short_preamble) 2004 short_preamble = true; 2005 2006 rate = ieee80211_get_rts_cts_rate(hw, tx_info); 2007 keytype = ath9k_cmn_get_hw_crypto_keytype(skb); 2008 2009 if (sta) 2010 an = (struct ath_node *) sta->drv_priv; 2011 2012 memset(fi, 0, sizeof(*fi)); 2013 if (hw_key) 2014 fi->keyix = hw_key->hw_key_idx; 2015 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0) 2016 fi->keyix = an->ps_key; 2017 else 2018 fi->keyix = ATH9K_TXKEYIX_INVALID; 2019 fi->keytype = keytype; 2020 fi->framelen = framelen; 2021 2022 if (!rate) 2023 return; 2024 fi->rtscts_rate = rate->hw_value; 2025 if (short_preamble) 2026 fi->rtscts_rate |= rate->hw_value_short; 2027 } 2028 2029 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate) 2030 { 2031 struct ath_hw *ah = sc->sc_ah; 2032 struct ath9k_channel *curchan = ah->curchan; 2033 2034 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) && 2035 (chainmask == 0x7) && (rate < 0x90)) 2036 return 0x3; 2037 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) && 2038 IS_CCK_RATE(rate)) 2039 return 0x2; 2040 else 2041 return chainmask; 2042 } 2043 2044 /* 2045 * Assign a descriptor (and sequence number if necessary, 2046 * and map buffer for DMA. Frees skb on error 2047 */ 2048 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, 2049 struct ath_txq *txq, 2050 struct ath_atx_tid *tid, 2051 struct sk_buff *skb) 2052 { 2053 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2054 struct ath_frame_info *fi = get_frame_info(skb); 2055 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2056 struct ath_buf *bf; 2057 int fragno; 2058 u16 seqno; 2059 2060 bf = ath_tx_get_buffer(sc); 2061 if (!bf) { 2062 ath_dbg(common, XMIT, "TX buffers are full\n"); 2063 return NULL; 2064 } 2065 2066 ATH_TXBUF_RESET(bf); 2067 2068 if (tid && ieee80211_is_data_present(hdr->frame_control)) { 2069 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG; 2070 seqno = tid->seq_next; 2071 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT); 2072 2073 if (fragno) 2074 hdr->seq_ctrl |= cpu_to_le16(fragno); 2075 2076 if (!ieee80211_has_morefrags(hdr->frame_control)) 2077 INCR(tid->seq_next, IEEE80211_SEQ_MAX); 2078 2079 bf->bf_state.seqno = seqno; 2080 } 2081 2082 bf->bf_mpdu = skb; 2083 2084 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 2085 skb->len, DMA_TO_DEVICE); 2086 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) { 2087 bf->bf_mpdu = NULL; 2088 bf->bf_buf_addr = 0; 2089 ath_err(ath9k_hw_common(sc->sc_ah), 2090 "dma_mapping_error() on TX\n"); 2091 ath_tx_return_buffer(sc, bf); 2092 return NULL; 2093 } 2094 2095 fi->bf = bf; 2096 2097 return bf; 2098 } 2099 2100 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb, 2101 struct ath_tx_control *txctl) 2102 { 2103 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2104 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2105 struct ieee80211_sta *sta = txctl->sta; 2106 struct ieee80211_vif *vif = info->control.vif; 2107 struct ath_vif *avp; 2108 struct ath_softc *sc = hw->priv; 2109 int frmlen = skb->len + FCS_LEN; 2110 int padpos, padsize; 2111 2112 /* NOTE: sta can be NULL according to net/mac80211.h */ 2113 if (sta) 2114 txctl->an = (struct ath_node *)sta->drv_priv; 2115 else if (vif && ieee80211_is_data(hdr->frame_control)) { 2116 avp = (void *)vif->drv_priv; 2117 txctl->an = &avp->mcast_node; 2118 } 2119 2120 if (info->control.hw_key) 2121 frmlen += info->control.hw_key->icv_len; 2122 2123 /* 2124 * As a temporary workaround, assign seq# here; this will likely need 2125 * to be cleaned up to work better with Beacon transmission and virtual 2126 * BSSes. 2127 */ 2128 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { 2129 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) 2130 sc->tx.seq_no += 0x10; 2131 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); 2132 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no); 2133 } 2134 2135 if ((vif && vif->type != NL80211_IFTYPE_AP && 2136 vif->type != NL80211_IFTYPE_AP_VLAN) || 2137 !ieee80211_is_data(hdr->frame_control)) 2138 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 2139 2140 /* Add the padding after the header if this is not already done */ 2141 padpos = ieee80211_hdrlen(hdr->frame_control); 2142 padsize = padpos & 3; 2143 if (padsize && skb->len > padpos) { 2144 if (skb_headroom(skb) < padsize) 2145 return -ENOMEM; 2146 2147 skb_push(skb, padsize); 2148 memmove(skb->data, skb->data + padsize, padpos); 2149 } 2150 2151 setup_frame_info(hw, sta, skb, frmlen); 2152 return 0; 2153 } 2154 2155 2156 /* Upon failure caller should free skb */ 2157 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb, 2158 struct ath_tx_control *txctl) 2159 { 2160 struct ieee80211_hdr *hdr; 2161 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2162 struct ieee80211_sta *sta = txctl->sta; 2163 struct ieee80211_vif *vif = info->control.vif; 2164 struct ath_softc *sc = hw->priv; 2165 struct ath_txq *txq = txctl->txq; 2166 struct ath_atx_tid *tid = NULL; 2167 struct ath_buf *bf; 2168 int q; 2169 int ret; 2170 2171 ret = ath_tx_prepare(hw, skb, txctl); 2172 if (ret) 2173 return ret; 2174 2175 hdr = (struct ieee80211_hdr *) skb->data; 2176 /* 2177 * At this point, the vif, hw_key and sta pointers in the tx control 2178 * info are no longer valid (overwritten by the ath_frame_info data. 2179 */ 2180 2181 q = skb_get_queue_mapping(skb); 2182 2183 ath_txq_lock(sc, txq); 2184 if (txq == sc->tx.txq_map[q] && 2185 ++txq->pending_frames > sc->tx.txq_max_pending[q] && 2186 !txq->stopped) { 2187 ieee80211_stop_queue(sc->hw, q); 2188 txq->stopped = true; 2189 } 2190 2191 if (txctl->an && ieee80211_is_data_present(hdr->frame_control)) 2192 tid = ath_get_skb_tid(sc, txctl->an, skb); 2193 2194 if (info->flags & IEEE80211_TX_CTL_PS_RESPONSE) { 2195 ath_txq_unlock(sc, txq); 2196 txq = sc->tx.uapsdq; 2197 ath_txq_lock(sc, txq); 2198 } else if (txctl->an && 2199 ieee80211_is_data_present(hdr->frame_control)) { 2200 WARN_ON(tid->ac->txq != txctl->txq); 2201 2202 if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) 2203 tid->ac->clear_ps_filter = true; 2204 2205 /* 2206 * Add this frame to software queue for scheduling later 2207 * for aggregation. 2208 */ 2209 TX_STAT_INC(txq->axq_qnum, a_queued_sw); 2210 __skb_queue_tail(&tid->buf_q, skb); 2211 if (!txctl->an->sleeping) 2212 ath_tx_queue_tid(txq, tid); 2213 2214 ath_txq_schedule(sc, txq); 2215 goto out; 2216 } 2217 2218 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 2219 if (!bf) { 2220 ath_txq_skb_done(sc, txq, skb); 2221 if (txctl->paprd) 2222 dev_kfree_skb_any(skb); 2223 else 2224 ieee80211_free_txskb(sc->hw, skb); 2225 goto out; 2226 } 2227 2228 bf->bf_state.bfs_paprd = txctl->paprd; 2229 2230 if (txctl->paprd) 2231 bf->bf_state.bfs_paprd_timestamp = jiffies; 2232 2233 ath_set_rates(vif, sta, bf); 2234 ath_tx_send_normal(sc, txq, tid, skb); 2235 2236 out: 2237 ath_txq_unlock(sc, txq); 2238 2239 return 0; 2240 } 2241 2242 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2243 struct sk_buff *skb) 2244 { 2245 struct ath_softc *sc = hw->priv; 2246 struct ath_tx_control txctl = { 2247 .txq = sc->beacon.cabq 2248 }; 2249 struct ath_tx_info info = {}; 2250 struct ieee80211_hdr *hdr; 2251 struct ath_buf *bf_tail = NULL; 2252 struct ath_buf *bf; 2253 LIST_HEAD(bf_q); 2254 int duration = 0; 2255 int max_duration; 2256 2257 max_duration = 2258 sc->cur_beacon_conf.beacon_interval * 1000 * 2259 sc->cur_beacon_conf.dtim_period / ATH_BCBUF; 2260 2261 do { 2262 struct ath_frame_info *fi = get_frame_info(skb); 2263 2264 if (ath_tx_prepare(hw, skb, &txctl)) 2265 break; 2266 2267 bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb); 2268 if (!bf) 2269 break; 2270 2271 bf->bf_lastbf = bf; 2272 ath_set_rates(vif, NULL, bf); 2273 ath_buf_set_rate(sc, bf, &info, fi->framelen, false); 2274 duration += info.rates[0].PktDuration; 2275 if (bf_tail) 2276 bf_tail->bf_next = bf; 2277 2278 list_add_tail(&bf->list, &bf_q); 2279 bf_tail = bf; 2280 skb = NULL; 2281 2282 if (duration > max_duration) 2283 break; 2284 2285 skb = ieee80211_get_buffered_bc(hw, vif); 2286 } while(skb); 2287 2288 if (skb) 2289 ieee80211_free_txskb(hw, skb); 2290 2291 if (list_empty(&bf_q)) 2292 return; 2293 2294 bf = list_first_entry(&bf_q, struct ath_buf, list); 2295 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data; 2296 2297 if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) { 2298 hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA; 2299 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 2300 sizeof(*hdr), DMA_TO_DEVICE); 2301 } 2302 2303 ath_txq_lock(sc, txctl.txq); 2304 ath_tx_fill_desc(sc, bf, txctl.txq, 0); 2305 ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false); 2306 TX_STAT_INC(txctl.txq->axq_qnum, queued); 2307 ath_txq_unlock(sc, txctl.txq); 2308 } 2309 2310 /*****************/ 2311 /* TX Completion */ 2312 /*****************/ 2313 2314 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, 2315 int tx_flags, struct ath_txq *txq) 2316 { 2317 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2318 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2319 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data; 2320 int padpos, padsize; 2321 unsigned long flags; 2322 2323 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb); 2324 2325 if (sc->sc_ah->caldata) 2326 set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags); 2327 2328 if (!(tx_flags & ATH_TX_ERROR)) 2329 /* Frame was ACKed */ 2330 tx_info->flags |= IEEE80211_TX_STAT_ACK; 2331 2332 padpos = ieee80211_hdrlen(hdr->frame_control); 2333 padsize = padpos & 3; 2334 if (padsize && skb->len>padpos+padsize) { 2335 /* 2336 * Remove MAC header padding before giving the frame back to 2337 * mac80211. 2338 */ 2339 memmove(skb->data + padsize, skb->data, padpos); 2340 skb_pull(skb, padsize); 2341 } 2342 2343 spin_lock_irqsave(&sc->sc_pm_lock, flags); 2344 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) { 2345 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK; 2346 ath_dbg(common, PS, 2347 "Going back to sleep after having received TX status (0x%lx)\n", 2348 sc->ps_flags & (PS_WAIT_FOR_BEACON | 2349 PS_WAIT_FOR_CAB | 2350 PS_WAIT_FOR_PSPOLL_DATA | 2351 PS_WAIT_FOR_TX_ACK)); 2352 } 2353 spin_unlock_irqrestore(&sc->sc_pm_lock, flags); 2354 2355 __skb_queue_tail(&txq->complete_q, skb); 2356 ath_txq_skb_done(sc, txq, skb); 2357 } 2358 2359 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 2360 struct ath_txq *txq, struct list_head *bf_q, 2361 struct ath_tx_status *ts, int txok) 2362 { 2363 struct sk_buff *skb = bf->bf_mpdu; 2364 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2365 unsigned long flags; 2366 int tx_flags = 0; 2367 2368 if (!txok) 2369 tx_flags |= ATH_TX_ERROR; 2370 2371 if (ts->ts_status & ATH9K_TXERR_FILT) 2372 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; 2373 2374 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE); 2375 bf->bf_buf_addr = 0; 2376 if (sc->tx99_state) 2377 goto skip_tx_complete; 2378 2379 if (bf->bf_state.bfs_paprd) { 2380 if (time_after(jiffies, 2381 bf->bf_state.bfs_paprd_timestamp + 2382 msecs_to_jiffies(ATH_PAPRD_TIMEOUT))) 2383 dev_kfree_skb_any(skb); 2384 else 2385 complete(&sc->paprd_complete); 2386 } else { 2387 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags); 2388 ath_tx_complete(sc, skb, tx_flags, txq); 2389 } 2390 skip_tx_complete: 2391 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't 2392 * accidentally reference it later. 2393 */ 2394 bf->bf_mpdu = NULL; 2395 2396 /* 2397 * Return the list of ath_buf of this mpdu to free queue 2398 */ 2399 spin_lock_irqsave(&sc->tx.txbuflock, flags); 2400 list_splice_tail_init(bf_q, &sc->tx.txbuf); 2401 spin_unlock_irqrestore(&sc->tx.txbuflock, flags); 2402 } 2403 2404 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 2405 struct ath_tx_status *ts, int nframes, int nbad, 2406 int txok) 2407 { 2408 struct sk_buff *skb = bf->bf_mpdu; 2409 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2410 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2411 struct ieee80211_hw *hw = sc->hw; 2412 struct ath_hw *ah = sc->sc_ah; 2413 u8 i, tx_rateindex; 2414 2415 if (txok) 2416 tx_info->status.ack_signal = ts->ts_rssi; 2417 2418 tx_rateindex = ts->ts_rateindex; 2419 WARN_ON(tx_rateindex >= hw->max_rates); 2420 2421 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 2422 tx_info->flags |= IEEE80211_TX_STAT_AMPDU; 2423 2424 BUG_ON(nbad > nframes); 2425 } 2426 tx_info->status.ampdu_len = nframes; 2427 tx_info->status.ampdu_ack_len = nframes - nbad; 2428 2429 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 && 2430 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) { 2431 /* 2432 * If an underrun error is seen assume it as an excessive 2433 * retry only if max frame trigger level has been reached 2434 * (2 KB for single stream, and 4 KB for dual stream). 2435 * Adjust the long retry as if the frame was tried 2436 * hw->max_rate_tries times to affect how rate control updates 2437 * PER for the failed rate. 2438 * In case of congestion on the bus penalizing this type of 2439 * underruns should help hardware actually transmit new frames 2440 * successfully by eventually preferring slower rates. 2441 * This itself should also alleviate congestion on the bus. 2442 */ 2443 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN | 2444 ATH9K_TX_DELIM_UNDERRUN)) && 2445 ieee80211_is_data(hdr->frame_control) && 2446 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level) 2447 tx_info->status.rates[tx_rateindex].count = 2448 hw->max_rate_tries; 2449 } 2450 2451 for (i = tx_rateindex + 1; i < hw->max_rates; i++) { 2452 tx_info->status.rates[i].count = 0; 2453 tx_info->status.rates[i].idx = -1; 2454 } 2455 2456 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1; 2457 } 2458 2459 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 2460 { 2461 struct ath_hw *ah = sc->sc_ah; 2462 struct ath_common *common = ath9k_hw_common(ah); 2463 struct ath_buf *bf, *lastbf, *bf_held = NULL; 2464 struct list_head bf_head; 2465 struct ath_desc *ds; 2466 struct ath_tx_status ts; 2467 int status; 2468 2469 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n", 2470 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum), 2471 txq->axq_link); 2472 2473 ath_txq_lock(sc, txq); 2474 for (;;) { 2475 if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) 2476 break; 2477 2478 if (list_empty(&txq->axq_q)) { 2479 txq->axq_link = NULL; 2480 ath_txq_schedule(sc, txq); 2481 break; 2482 } 2483 bf = list_first_entry(&txq->axq_q, struct ath_buf, list); 2484 2485 /* 2486 * There is a race condition that a BH gets scheduled 2487 * after sw writes TxE and before hw re-load the last 2488 * descriptor to get the newly chained one. 2489 * Software must keep the last DONE descriptor as a 2490 * holding descriptor - software does so by marking 2491 * it with the STALE flag. 2492 */ 2493 bf_held = NULL; 2494 if (bf->bf_state.stale) { 2495 bf_held = bf; 2496 if (list_is_last(&bf_held->list, &txq->axq_q)) 2497 break; 2498 2499 bf = list_entry(bf_held->list.next, struct ath_buf, 2500 list); 2501 } 2502 2503 lastbf = bf->bf_lastbf; 2504 ds = lastbf->bf_desc; 2505 2506 memset(&ts, 0, sizeof(ts)); 2507 status = ath9k_hw_txprocdesc(ah, ds, &ts); 2508 if (status == -EINPROGRESS) 2509 break; 2510 2511 TX_STAT_INC(txq->axq_qnum, txprocdesc); 2512 2513 /* 2514 * Remove ath_buf's of the same transmit unit from txq, 2515 * however leave the last descriptor back as the holding 2516 * descriptor for hw. 2517 */ 2518 lastbf->bf_state.stale = true; 2519 INIT_LIST_HEAD(&bf_head); 2520 if (!list_is_singular(&lastbf->list)) 2521 list_cut_position(&bf_head, 2522 &txq->axq_q, lastbf->list.prev); 2523 2524 if (bf_held) { 2525 list_del(&bf_held->list); 2526 ath_tx_return_buffer(sc, bf_held); 2527 } 2528 2529 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2530 } 2531 ath_txq_unlock_complete(sc, txq); 2532 } 2533 2534 void ath_tx_tasklet(struct ath_softc *sc) 2535 { 2536 struct ath_hw *ah = sc->sc_ah; 2537 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs; 2538 int i; 2539 2540 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 2541 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i))) 2542 ath_tx_processq(sc, &sc->tx.txq[i]); 2543 } 2544 } 2545 2546 void ath_tx_edma_tasklet(struct ath_softc *sc) 2547 { 2548 struct ath_tx_status ts; 2549 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2550 struct ath_hw *ah = sc->sc_ah; 2551 struct ath_txq *txq; 2552 struct ath_buf *bf, *lastbf; 2553 struct list_head bf_head; 2554 struct list_head *fifo_list; 2555 int status; 2556 2557 for (;;) { 2558 if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) 2559 break; 2560 2561 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts); 2562 if (status == -EINPROGRESS) 2563 break; 2564 if (status == -EIO) { 2565 ath_dbg(common, XMIT, "Error processing tx status\n"); 2566 break; 2567 } 2568 2569 /* Process beacon completions separately */ 2570 if (ts.qid == sc->beacon.beaconq) { 2571 sc->beacon.tx_processed = true; 2572 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK); 2573 2574 ath9k_csa_update(sc); 2575 continue; 2576 } 2577 2578 txq = &sc->tx.txq[ts.qid]; 2579 2580 ath_txq_lock(sc, txq); 2581 2582 TX_STAT_INC(txq->axq_qnum, txprocdesc); 2583 2584 fifo_list = &txq->txq_fifo[txq->txq_tailidx]; 2585 if (list_empty(fifo_list)) { 2586 ath_txq_unlock(sc, txq); 2587 return; 2588 } 2589 2590 bf = list_first_entry(fifo_list, struct ath_buf, list); 2591 if (bf->bf_state.stale) { 2592 list_del(&bf->list); 2593 ath_tx_return_buffer(sc, bf); 2594 bf = list_first_entry(fifo_list, struct ath_buf, list); 2595 } 2596 2597 lastbf = bf->bf_lastbf; 2598 2599 INIT_LIST_HEAD(&bf_head); 2600 if (list_is_last(&lastbf->list, fifo_list)) { 2601 list_splice_tail_init(fifo_list, &bf_head); 2602 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH); 2603 2604 if (!list_empty(&txq->axq_q)) { 2605 struct list_head bf_q; 2606 2607 INIT_LIST_HEAD(&bf_q); 2608 txq->axq_link = NULL; 2609 list_splice_tail_init(&txq->axq_q, &bf_q); 2610 ath_tx_txqaddbuf(sc, txq, &bf_q, true); 2611 } 2612 } else { 2613 lastbf->bf_state.stale = true; 2614 if (bf != lastbf) 2615 list_cut_position(&bf_head, fifo_list, 2616 lastbf->list.prev); 2617 } 2618 2619 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2620 ath_txq_unlock_complete(sc, txq); 2621 } 2622 } 2623 2624 /*****************/ 2625 /* Init, Cleanup */ 2626 /*****************/ 2627 2628 static int ath_txstatus_setup(struct ath_softc *sc, int size) 2629 { 2630 struct ath_descdma *dd = &sc->txsdma; 2631 u8 txs_len = sc->sc_ah->caps.txs_len; 2632 2633 dd->dd_desc_len = size * txs_len; 2634 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len, 2635 &dd->dd_desc_paddr, GFP_KERNEL); 2636 if (!dd->dd_desc) 2637 return -ENOMEM; 2638 2639 return 0; 2640 } 2641 2642 static int ath_tx_edma_init(struct ath_softc *sc) 2643 { 2644 int err; 2645 2646 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE); 2647 if (!err) 2648 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc, 2649 sc->txsdma.dd_desc_paddr, 2650 ATH_TXSTATUS_RING_SIZE); 2651 2652 return err; 2653 } 2654 2655 int ath_tx_init(struct ath_softc *sc, int nbufs) 2656 { 2657 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2658 int error = 0; 2659 2660 spin_lock_init(&sc->tx.txbuflock); 2661 2662 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf, 2663 "tx", nbufs, 1, 1); 2664 if (error != 0) { 2665 ath_err(common, 2666 "Failed to allocate tx descriptors: %d\n", error); 2667 return error; 2668 } 2669 2670 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf, 2671 "beacon", ATH_BCBUF, 1, 1); 2672 if (error != 0) { 2673 ath_err(common, 2674 "Failed to allocate beacon descriptors: %d\n", error); 2675 return error; 2676 } 2677 2678 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work); 2679 2680 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 2681 error = ath_tx_edma_init(sc); 2682 2683 return error; 2684 } 2685 2686 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an) 2687 { 2688 struct ath_atx_tid *tid; 2689 struct ath_atx_ac *ac; 2690 int tidno, acno; 2691 2692 for (tidno = 0, tid = &an->tid[tidno]; 2693 tidno < IEEE80211_NUM_TIDS; 2694 tidno++, tid++) { 2695 tid->an = an; 2696 tid->tidno = tidno; 2697 tid->seq_start = tid->seq_next = 0; 2698 tid->baw_size = WME_MAX_BA; 2699 tid->baw_head = tid->baw_tail = 0; 2700 tid->sched = false; 2701 tid->paused = false; 2702 tid->active = false; 2703 __skb_queue_head_init(&tid->buf_q); 2704 __skb_queue_head_init(&tid->retry_q); 2705 acno = TID_TO_WME_AC(tidno); 2706 tid->ac = &an->ac[acno]; 2707 } 2708 2709 for (acno = 0, ac = &an->ac[acno]; 2710 acno < IEEE80211_NUM_ACS; acno++, ac++) { 2711 ac->sched = false; 2712 ac->clear_ps_filter = true; 2713 ac->txq = sc->tx.txq_map[acno]; 2714 INIT_LIST_HEAD(&ac->tid_q); 2715 } 2716 } 2717 2718 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an) 2719 { 2720 struct ath_atx_ac *ac; 2721 struct ath_atx_tid *tid; 2722 struct ath_txq *txq; 2723 int tidno; 2724 2725 for (tidno = 0, tid = &an->tid[tidno]; 2726 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) { 2727 2728 ac = tid->ac; 2729 txq = ac->txq; 2730 2731 ath_txq_lock(sc, txq); 2732 2733 if (tid->sched) { 2734 list_del(&tid->list); 2735 tid->sched = false; 2736 } 2737 2738 if (ac->sched) { 2739 list_del(&ac->list); 2740 tid->ac->sched = false; 2741 } 2742 2743 ath_tid_drain(sc, txq, tid); 2744 tid->active = false; 2745 2746 ath_txq_unlock(sc, txq); 2747 } 2748 } 2749 2750 #ifdef CONFIG_ATH9K_TX99 2751 2752 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb, 2753 struct ath_tx_control *txctl) 2754 { 2755 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2756 struct ath_frame_info *fi = get_frame_info(skb); 2757 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2758 struct ath_buf *bf; 2759 int padpos, padsize; 2760 2761 padpos = ieee80211_hdrlen(hdr->frame_control); 2762 padsize = padpos & 3; 2763 2764 if (padsize && skb->len > padpos) { 2765 if (skb_headroom(skb) < padsize) { 2766 ath_dbg(common, XMIT, 2767 "tx99 padding failed\n"); 2768 return -EINVAL; 2769 } 2770 2771 skb_push(skb, padsize); 2772 memmove(skb->data, skb->data + padsize, padpos); 2773 } 2774 2775 fi->keyix = ATH9K_TXKEYIX_INVALID; 2776 fi->framelen = skb->len + FCS_LEN; 2777 fi->keytype = ATH9K_KEY_TYPE_CLEAR; 2778 2779 bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb); 2780 if (!bf) { 2781 ath_dbg(common, XMIT, "tx99 buffer setup failed\n"); 2782 return -EINVAL; 2783 } 2784 2785 ath_set_rates(sc->tx99_vif, NULL, bf); 2786 2787 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr); 2788 ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum); 2789 2790 ath_tx_send_normal(sc, txctl->txq, NULL, skb); 2791 2792 return 0; 2793 } 2794 2795 #endif /* CONFIG_ATH9K_TX99 */ 2796