xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/xmit.c (revision 9d749629)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20 
21 #define BITS_PER_BYTE           8
22 #define OFDM_PLCP_BITS          22
23 #define HT_RC_2_STREAMS(_rc)    ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF                   8
25 #define L_LTF                   8
26 #define L_SIG                   4
27 #define HT_SIG                  8
28 #define HT_STF                  4
29 #define HT_LTF(_ns)             (4 * (_ns))
30 #define SYMBOL_TIME(_ns)        ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5)  /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t)         ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t)  (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36 
37 
38 static u16 bits_per_symbol[][2] = {
39 	/* 20MHz 40MHz */
40 	{    26,   54 },     /*  0: BPSK */
41 	{    52,  108 },     /*  1: QPSK 1/2 */
42 	{    78,  162 },     /*  2: QPSK 3/4 */
43 	{   104,  216 },     /*  3: 16-QAM 1/2 */
44 	{   156,  324 },     /*  4: 16-QAM 3/4 */
45 	{   208,  432 },     /*  5: 64-QAM 2/3 */
46 	{   234,  486 },     /*  6: 64-QAM 3/4 */
47 	{   260,  540 },     /*  7: 64-QAM 5/6 */
48 };
49 
50 #define IS_HT_RATE(_rate)     ((_rate) & 0x80)
51 
52 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
53 			       struct ath_atx_tid *tid, struct sk_buff *skb);
54 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
55 			    int tx_flags, struct ath_txq *txq);
56 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
57 				struct ath_txq *txq, struct list_head *bf_q,
58 				struct ath_tx_status *ts, int txok);
59 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
60 			     struct list_head *head, bool internal);
61 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
62 			     struct ath_tx_status *ts, int nframes, int nbad,
63 			     int txok);
64 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
65 			      int seqno);
66 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
67 					   struct ath_txq *txq,
68 					   struct ath_atx_tid *tid,
69 					   struct sk_buff *skb);
70 
71 enum {
72 	MCS_HT20,
73 	MCS_HT20_SGI,
74 	MCS_HT40,
75 	MCS_HT40_SGI,
76 };
77 
78 /*********************/
79 /* Aggregation logic */
80 /*********************/
81 
82 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
83 	__acquires(&txq->axq_lock)
84 {
85 	spin_lock_bh(&txq->axq_lock);
86 }
87 
88 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
89 	__releases(&txq->axq_lock)
90 {
91 	spin_unlock_bh(&txq->axq_lock);
92 }
93 
94 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
95 	__releases(&txq->axq_lock)
96 {
97 	struct sk_buff_head q;
98 	struct sk_buff *skb;
99 
100 	__skb_queue_head_init(&q);
101 	skb_queue_splice_init(&txq->complete_q, &q);
102 	spin_unlock_bh(&txq->axq_lock);
103 
104 	while ((skb = __skb_dequeue(&q)))
105 		ieee80211_tx_status(sc->hw, skb);
106 }
107 
108 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
109 {
110 	struct ath_atx_ac *ac = tid->ac;
111 
112 	if (tid->paused)
113 		return;
114 
115 	if (tid->sched)
116 		return;
117 
118 	tid->sched = true;
119 	list_add_tail(&tid->list, &ac->tid_q);
120 
121 	if (ac->sched)
122 		return;
123 
124 	ac->sched = true;
125 	list_add_tail(&ac->list, &txq->axq_acq);
126 }
127 
128 static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
129 {
130 	struct ath_txq *txq = tid->ac->txq;
131 
132 	WARN_ON(!tid->paused);
133 
134 	ath_txq_lock(sc, txq);
135 	tid->paused = false;
136 
137 	if (skb_queue_empty(&tid->buf_q))
138 		goto unlock;
139 
140 	ath_tx_queue_tid(txq, tid);
141 	ath_txq_schedule(sc, txq);
142 unlock:
143 	ath_txq_unlock_complete(sc, txq);
144 }
145 
146 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
147 {
148 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
149 	BUILD_BUG_ON(sizeof(struct ath_frame_info) >
150 		     sizeof(tx_info->rate_driver_data));
151 	return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
152 }
153 
154 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
155 {
156 	ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
157 			   seqno << IEEE80211_SEQ_SEQ_SHIFT);
158 }
159 
160 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
161 {
162 	struct ath_txq *txq = tid->ac->txq;
163 	struct sk_buff *skb;
164 	struct ath_buf *bf;
165 	struct list_head bf_head;
166 	struct ath_tx_status ts;
167 	struct ath_frame_info *fi;
168 	bool sendbar = false;
169 
170 	INIT_LIST_HEAD(&bf_head);
171 
172 	memset(&ts, 0, sizeof(ts));
173 
174 	while ((skb = __skb_dequeue(&tid->buf_q))) {
175 		fi = get_frame_info(skb);
176 		bf = fi->bf;
177 
178 		if (!bf) {
179 			bf = ath_tx_setup_buffer(sc, txq, tid, skb);
180 			if (!bf) {
181 				ieee80211_free_txskb(sc->hw, skb);
182 				continue;
183 			}
184 		}
185 
186 		if (fi->retries) {
187 			list_add_tail(&bf->list, &bf_head);
188 			ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
189 			ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
190 			sendbar = true;
191 		} else {
192 			ath_tx_send_normal(sc, txq, NULL, skb);
193 		}
194 	}
195 
196 	if (tid->baw_head == tid->baw_tail) {
197 		tid->state &= ~AGGR_ADDBA_COMPLETE;
198 		tid->state &= ~AGGR_CLEANUP;
199 	}
200 
201 	if (sendbar) {
202 		ath_txq_unlock(sc, txq);
203 		ath_send_bar(tid, tid->seq_start);
204 		ath_txq_lock(sc, txq);
205 	}
206 }
207 
208 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
209 			      int seqno)
210 {
211 	int index, cindex;
212 
213 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
214 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
215 
216 	__clear_bit(cindex, tid->tx_buf);
217 
218 	while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
219 		INCR(tid->seq_start, IEEE80211_SEQ_MAX);
220 		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
221 		if (tid->bar_index >= 0)
222 			tid->bar_index--;
223 	}
224 }
225 
226 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
227 			     u16 seqno)
228 {
229 	int index, cindex;
230 
231 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
232 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
233 	__set_bit(cindex, tid->tx_buf);
234 
235 	if (index >= ((tid->baw_tail - tid->baw_head) &
236 		(ATH_TID_MAX_BUFS - 1))) {
237 		tid->baw_tail = cindex;
238 		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
239 	}
240 }
241 
242 /*
243  * TODO: For frame(s) that are in the retry state, we will reuse the
244  * sequence number(s) without setting the retry bit. The
245  * alternative is to give up on these and BAR the receiver's window
246  * forward.
247  */
248 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
249 			  struct ath_atx_tid *tid)
250 
251 {
252 	struct sk_buff *skb;
253 	struct ath_buf *bf;
254 	struct list_head bf_head;
255 	struct ath_tx_status ts;
256 	struct ath_frame_info *fi;
257 
258 	memset(&ts, 0, sizeof(ts));
259 	INIT_LIST_HEAD(&bf_head);
260 
261 	while ((skb = __skb_dequeue(&tid->buf_q))) {
262 		fi = get_frame_info(skb);
263 		bf = fi->bf;
264 
265 		if (!bf) {
266 			ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
267 			continue;
268 		}
269 
270 		list_add_tail(&bf->list, &bf_head);
271 
272 		if (fi->retries)
273 			ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
274 
275 		ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
276 	}
277 
278 	tid->seq_next = tid->seq_start;
279 	tid->baw_tail = tid->baw_head;
280 	tid->bar_index = -1;
281 }
282 
283 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
284 			     struct sk_buff *skb, int count)
285 {
286 	struct ath_frame_info *fi = get_frame_info(skb);
287 	struct ath_buf *bf = fi->bf;
288 	struct ieee80211_hdr *hdr;
289 	int prev = fi->retries;
290 
291 	TX_STAT_INC(txq->axq_qnum, a_retries);
292 	fi->retries += count;
293 
294 	if (prev > 0)
295 		return;
296 
297 	hdr = (struct ieee80211_hdr *)skb->data;
298 	hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
299 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
300 		sizeof(*hdr), DMA_TO_DEVICE);
301 }
302 
303 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
304 {
305 	struct ath_buf *bf = NULL;
306 
307 	spin_lock_bh(&sc->tx.txbuflock);
308 
309 	if (unlikely(list_empty(&sc->tx.txbuf))) {
310 		spin_unlock_bh(&sc->tx.txbuflock);
311 		return NULL;
312 	}
313 
314 	bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
315 	list_del(&bf->list);
316 
317 	spin_unlock_bh(&sc->tx.txbuflock);
318 
319 	return bf;
320 }
321 
322 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
323 {
324 	spin_lock_bh(&sc->tx.txbuflock);
325 	list_add_tail(&bf->list, &sc->tx.txbuf);
326 	spin_unlock_bh(&sc->tx.txbuflock);
327 }
328 
329 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
330 {
331 	struct ath_buf *tbf;
332 
333 	tbf = ath_tx_get_buffer(sc);
334 	if (WARN_ON(!tbf))
335 		return NULL;
336 
337 	ATH_TXBUF_RESET(tbf);
338 
339 	tbf->bf_mpdu = bf->bf_mpdu;
340 	tbf->bf_buf_addr = bf->bf_buf_addr;
341 	memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
342 	tbf->bf_state = bf->bf_state;
343 
344 	return tbf;
345 }
346 
347 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
348 			        struct ath_tx_status *ts, int txok,
349 			        int *nframes, int *nbad)
350 {
351 	struct ath_frame_info *fi;
352 	u16 seq_st = 0;
353 	u32 ba[WME_BA_BMP_SIZE >> 5];
354 	int ba_index;
355 	int isaggr = 0;
356 
357 	*nbad = 0;
358 	*nframes = 0;
359 
360 	isaggr = bf_isaggr(bf);
361 	if (isaggr) {
362 		seq_st = ts->ts_seqnum;
363 		memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
364 	}
365 
366 	while (bf) {
367 		fi = get_frame_info(bf->bf_mpdu);
368 		ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
369 
370 		(*nframes)++;
371 		if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
372 			(*nbad)++;
373 
374 		bf = bf->bf_next;
375 	}
376 }
377 
378 
379 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
380 				 struct ath_buf *bf, struct list_head *bf_q,
381 				 struct ath_tx_status *ts, int txok)
382 {
383 	struct ath_node *an = NULL;
384 	struct sk_buff *skb;
385 	struct ieee80211_sta *sta;
386 	struct ieee80211_hw *hw = sc->hw;
387 	struct ieee80211_hdr *hdr;
388 	struct ieee80211_tx_info *tx_info;
389 	struct ath_atx_tid *tid = NULL;
390 	struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
391 	struct list_head bf_head;
392 	struct sk_buff_head bf_pending;
393 	u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
394 	u32 ba[WME_BA_BMP_SIZE >> 5];
395 	int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
396 	bool rc_update = true, isba;
397 	struct ieee80211_tx_rate rates[4];
398 	struct ath_frame_info *fi;
399 	int nframes;
400 	u8 tidno;
401 	bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
402 	int i, retries;
403 	int bar_index = -1;
404 
405 	skb = bf->bf_mpdu;
406 	hdr = (struct ieee80211_hdr *)skb->data;
407 
408 	tx_info = IEEE80211_SKB_CB(skb);
409 
410 	memcpy(rates, tx_info->control.rates, sizeof(rates));
411 
412 	retries = ts->ts_longretry + 1;
413 	for (i = 0; i < ts->ts_rateindex; i++)
414 		retries += rates[i].count;
415 
416 	rcu_read_lock();
417 
418 	sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
419 	if (!sta) {
420 		rcu_read_unlock();
421 
422 		INIT_LIST_HEAD(&bf_head);
423 		while (bf) {
424 			bf_next = bf->bf_next;
425 
426 			if (!bf->bf_stale || bf_next != NULL)
427 				list_move_tail(&bf->list, &bf_head);
428 
429 			ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
430 
431 			bf = bf_next;
432 		}
433 		return;
434 	}
435 
436 	an = (struct ath_node *)sta->drv_priv;
437 	tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
438 	tid = ATH_AN_2_TID(an, tidno);
439 	seq_first = tid->seq_start;
440 	isba = ts->ts_flags & ATH9K_TX_BA;
441 
442 	/*
443 	 * The hardware occasionally sends a tx status for the wrong TID.
444 	 * In this case, the BA status cannot be considered valid and all
445 	 * subframes need to be retransmitted
446 	 *
447 	 * Only BlockAcks have a TID and therefore normal Acks cannot be
448 	 * checked
449 	 */
450 	if (isba && tidno != ts->tid)
451 		txok = false;
452 
453 	isaggr = bf_isaggr(bf);
454 	memset(ba, 0, WME_BA_BMP_SIZE >> 3);
455 
456 	if (isaggr && txok) {
457 		if (ts->ts_flags & ATH9K_TX_BA) {
458 			seq_st = ts->ts_seqnum;
459 			memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
460 		} else {
461 			/*
462 			 * AR5416 can become deaf/mute when BA
463 			 * issue happens. Chip needs to be reset.
464 			 * But AP code may have sychronization issues
465 			 * when perform internal reset in this routine.
466 			 * Only enable reset in STA mode for now.
467 			 */
468 			if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
469 				needreset = 1;
470 		}
471 	}
472 
473 	__skb_queue_head_init(&bf_pending);
474 
475 	ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
476 	while (bf) {
477 		u16 seqno = bf->bf_state.seqno;
478 
479 		txfail = txpending = sendbar = 0;
480 		bf_next = bf->bf_next;
481 
482 		skb = bf->bf_mpdu;
483 		tx_info = IEEE80211_SKB_CB(skb);
484 		fi = get_frame_info(skb);
485 
486 		if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
487 			/* transmit completion, subframe is
488 			 * acked by block ack */
489 			acked_cnt++;
490 		} else if (!isaggr && txok) {
491 			/* transmit completion */
492 			acked_cnt++;
493 		} else if (tid->state & AGGR_CLEANUP) {
494 			/*
495 			 * cleanup in progress, just fail
496 			 * the un-acked sub-frames
497 			 */
498 			txfail = 1;
499 		} else if (flush) {
500 			txpending = 1;
501 		} else if (fi->retries < ATH_MAX_SW_RETRIES) {
502 			if (txok || !an->sleeping)
503 				ath_tx_set_retry(sc, txq, bf->bf_mpdu,
504 						 retries);
505 
506 			txpending = 1;
507 		} else {
508 			txfail = 1;
509 			txfail_cnt++;
510 			bar_index = max_t(int, bar_index,
511 				ATH_BA_INDEX(seq_first, seqno));
512 		}
513 
514 		/*
515 		 * Make sure the last desc is reclaimed if it
516 		 * not a holding desc.
517 		 */
518 		INIT_LIST_HEAD(&bf_head);
519 		if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) ||
520 		    bf_next != NULL || !bf_last->bf_stale)
521 			list_move_tail(&bf->list, &bf_head);
522 
523 		if (!txpending || (tid->state & AGGR_CLEANUP)) {
524 			/*
525 			 * complete the acked-ones/xretried ones; update
526 			 * block-ack window
527 			 */
528 			ath_tx_update_baw(sc, tid, seqno);
529 
530 			if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
531 				memcpy(tx_info->control.rates, rates, sizeof(rates));
532 				ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
533 				rc_update = false;
534 			}
535 
536 			ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
537 				!txfail);
538 		} else {
539 			/* retry the un-acked ones */
540 			if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
541 			    bf->bf_next == NULL && bf_last->bf_stale) {
542 				struct ath_buf *tbf;
543 
544 				tbf = ath_clone_txbuf(sc, bf_last);
545 				/*
546 				 * Update tx baw and complete the
547 				 * frame with failed status if we
548 				 * run out of tx buf.
549 				 */
550 				if (!tbf) {
551 					ath_tx_update_baw(sc, tid, seqno);
552 
553 					ath_tx_complete_buf(sc, bf, txq,
554 							    &bf_head, ts, 0);
555 					bar_index = max_t(int, bar_index,
556 						ATH_BA_INDEX(seq_first, seqno));
557 					break;
558 				}
559 
560 				fi->bf = tbf;
561 			}
562 
563 			/*
564 			 * Put this buffer to the temporary pending
565 			 * queue to retain ordering
566 			 */
567 			__skb_queue_tail(&bf_pending, skb);
568 		}
569 
570 		bf = bf_next;
571 	}
572 
573 	/* prepend un-acked frames to the beginning of the pending frame queue */
574 	if (!skb_queue_empty(&bf_pending)) {
575 		if (an->sleeping)
576 			ieee80211_sta_set_buffered(sta, tid->tidno, true);
577 
578 		skb_queue_splice(&bf_pending, &tid->buf_q);
579 		if (!an->sleeping) {
580 			ath_tx_queue_tid(txq, tid);
581 
582 			if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
583 				tid->ac->clear_ps_filter = true;
584 		}
585 	}
586 
587 	if (bar_index >= 0) {
588 		u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
589 
590 		if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
591 			tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
592 
593 		ath_txq_unlock(sc, txq);
594 		ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
595 		ath_txq_lock(sc, txq);
596 	}
597 
598 	if (tid->state & AGGR_CLEANUP)
599 		ath_tx_flush_tid(sc, tid);
600 
601 	rcu_read_unlock();
602 
603 	if (needreset)
604 		ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
605 }
606 
607 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
608 {
609     struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
610     return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
611 }
612 
613 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
614 				  struct ath_tx_status *ts, struct ath_buf *bf,
615 				  struct list_head *bf_head)
616 {
617 	bool txok, flush;
618 
619 	txok = !(ts->ts_status & ATH9K_TXERR_MASK);
620 	flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
621 	txq->axq_tx_inprogress = false;
622 
623 	txq->axq_depth--;
624 	if (bf_is_ampdu_not_probing(bf))
625 		txq->axq_ampdu_depth--;
626 
627 	if (!bf_isampdu(bf)) {
628 		if (!flush)
629 			ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
630 		ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
631 	} else
632 		ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
633 
634 	if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && !flush)
635 		ath_txq_schedule(sc, txq);
636 }
637 
638 static bool ath_lookup_legacy(struct ath_buf *bf)
639 {
640 	struct sk_buff *skb;
641 	struct ieee80211_tx_info *tx_info;
642 	struct ieee80211_tx_rate *rates;
643 	int i;
644 
645 	skb = bf->bf_mpdu;
646 	tx_info = IEEE80211_SKB_CB(skb);
647 	rates = tx_info->control.rates;
648 
649 	for (i = 0; i < 4; i++) {
650 		if (!rates[i].count || rates[i].idx < 0)
651 			break;
652 
653 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
654 			return true;
655 	}
656 
657 	return false;
658 }
659 
660 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
661 			   struct ath_atx_tid *tid)
662 {
663 	struct sk_buff *skb;
664 	struct ieee80211_tx_info *tx_info;
665 	struct ieee80211_tx_rate *rates;
666 	u32 max_4ms_framelen, frmlen;
667 	u16 aggr_limit, bt_aggr_limit, legacy = 0;
668 	int q = tid->ac->txq->mac80211_qnum;
669 	int i;
670 
671 	skb = bf->bf_mpdu;
672 	tx_info = IEEE80211_SKB_CB(skb);
673 	rates = tx_info->control.rates;
674 
675 	/*
676 	 * Find the lowest frame length among the rate series that will have a
677 	 * 4ms (or TXOP limited) transmit duration.
678 	 */
679 	max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
680 
681 	for (i = 0; i < 4; i++) {
682 		int modeidx;
683 
684 		if (!rates[i].count)
685 			continue;
686 
687 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
688 			legacy = 1;
689 			break;
690 		}
691 
692 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
693 			modeidx = MCS_HT40;
694 		else
695 			modeidx = MCS_HT20;
696 
697 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
698 			modeidx++;
699 
700 		frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
701 		max_4ms_framelen = min(max_4ms_framelen, frmlen);
702 	}
703 
704 	/*
705 	 * limit aggregate size by the minimum rate if rate selected is
706 	 * not a probe rate, if rate selected is a probe rate then
707 	 * avoid aggregation of this packet.
708 	 */
709 	if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
710 		return 0;
711 
712 	aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
713 
714 	/*
715 	 * Override the default aggregation limit for BTCOEX.
716 	 */
717 	bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
718 	if (bt_aggr_limit)
719 		aggr_limit = bt_aggr_limit;
720 
721 	/*
722 	 * h/w can accept aggregates up to 16 bit lengths (65535).
723 	 * The IE, however can hold up to 65536, which shows up here
724 	 * as zero. Ignore 65536 since we  are constrained by hw.
725 	 */
726 	if (tid->an->maxampdu)
727 		aggr_limit = min(aggr_limit, tid->an->maxampdu);
728 
729 	return aggr_limit;
730 }
731 
732 /*
733  * Returns the number of delimiters to be added to
734  * meet the minimum required mpdudensity.
735  */
736 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
737 				  struct ath_buf *bf, u16 frmlen,
738 				  bool first_subfrm)
739 {
740 #define FIRST_DESC_NDELIMS 60
741 	struct sk_buff *skb = bf->bf_mpdu;
742 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
743 	u32 nsymbits, nsymbols;
744 	u16 minlen;
745 	u8 flags, rix;
746 	int width, streams, half_gi, ndelim, mindelim;
747 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
748 
749 	/* Select standard number of delimiters based on frame length alone */
750 	ndelim = ATH_AGGR_GET_NDELIM(frmlen);
751 
752 	/*
753 	 * If encryption enabled, hardware requires some more padding between
754 	 * subframes.
755 	 * TODO - this could be improved to be dependent on the rate.
756 	 *      The hardware can keep up at lower rates, but not higher rates
757 	 */
758 	if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
759 	    !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
760 		ndelim += ATH_AGGR_ENCRYPTDELIM;
761 
762 	/*
763 	 * Add delimiter when using RTS/CTS with aggregation
764 	 * and non enterprise AR9003 card
765 	 */
766 	if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
767 	    (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
768 		ndelim = max(ndelim, FIRST_DESC_NDELIMS);
769 
770 	/*
771 	 * Convert desired mpdu density from microeconds to bytes based
772 	 * on highest rate in rate series (i.e. first rate) to determine
773 	 * required minimum length for subframe. Take into account
774 	 * whether high rate is 20 or 40Mhz and half or full GI.
775 	 *
776 	 * If there is no mpdu density restriction, no further calculation
777 	 * is needed.
778 	 */
779 
780 	if (tid->an->mpdudensity == 0)
781 		return ndelim;
782 
783 	rix = tx_info->control.rates[0].idx;
784 	flags = tx_info->control.rates[0].flags;
785 	width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
786 	half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
787 
788 	if (half_gi)
789 		nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
790 	else
791 		nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
792 
793 	if (nsymbols == 0)
794 		nsymbols = 1;
795 
796 	streams = HT_RC_2_STREAMS(rix);
797 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
798 	minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
799 
800 	if (frmlen < minlen) {
801 		mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
802 		ndelim = max(mindelim, ndelim);
803 	}
804 
805 	return ndelim;
806 }
807 
808 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
809 					     struct ath_txq *txq,
810 					     struct ath_atx_tid *tid,
811 					     struct list_head *bf_q,
812 					     int *aggr_len)
813 {
814 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
815 	struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
816 	int rl = 0, nframes = 0, ndelim, prev_al = 0;
817 	u16 aggr_limit = 0, al = 0, bpad = 0,
818 		al_delta, h_baw = tid->baw_size / 2;
819 	enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
820 	struct ieee80211_tx_info *tx_info;
821 	struct ath_frame_info *fi;
822 	struct sk_buff *skb;
823 	u16 seqno;
824 
825 	do {
826 		skb = skb_peek(&tid->buf_q);
827 		fi = get_frame_info(skb);
828 		bf = fi->bf;
829 		if (!fi->bf)
830 			bf = ath_tx_setup_buffer(sc, txq, tid, skb);
831 
832 		if (!bf) {
833 			__skb_unlink(skb, &tid->buf_q);
834 			ieee80211_free_txskb(sc->hw, skb);
835 			continue;
836 		}
837 
838 		bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
839 		seqno = bf->bf_state.seqno;
840 
841 		/* do not step over block-ack window */
842 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
843 			status = ATH_AGGR_BAW_CLOSED;
844 			break;
845 		}
846 
847 		if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
848 			struct ath_tx_status ts = {};
849 			struct list_head bf_head;
850 
851 			INIT_LIST_HEAD(&bf_head);
852 			list_add(&bf->list, &bf_head);
853 			__skb_unlink(skb, &tid->buf_q);
854 			ath_tx_update_baw(sc, tid, seqno);
855 			ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
856 			continue;
857 		}
858 
859 		if (!bf_first)
860 			bf_first = bf;
861 
862 		if (!rl) {
863 			aggr_limit = ath_lookup_rate(sc, bf, tid);
864 			rl = 1;
865 		}
866 
867 		/* do not exceed aggregation limit */
868 		al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
869 
870 		if (nframes &&
871 		    ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
872 		     ath_lookup_legacy(bf))) {
873 			status = ATH_AGGR_LIMITED;
874 			break;
875 		}
876 
877 		tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
878 		if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
879 			break;
880 
881 		/* do not exceed subframe limit */
882 		if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
883 			status = ATH_AGGR_LIMITED;
884 			break;
885 		}
886 
887 		/* add padding for previous frame to aggregation length */
888 		al += bpad + al_delta;
889 
890 		/*
891 		 * Get the delimiters needed to meet the MPDU
892 		 * density for this node.
893 		 */
894 		ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
895 						!nframes);
896 		bpad = PADBYTES(al_delta) + (ndelim << 2);
897 
898 		nframes++;
899 		bf->bf_next = NULL;
900 
901 		/* link buffers of this frame to the aggregate */
902 		if (!fi->retries)
903 			ath_tx_addto_baw(sc, tid, seqno);
904 		bf->bf_state.ndelim = ndelim;
905 
906 		__skb_unlink(skb, &tid->buf_q);
907 		list_add_tail(&bf->list, bf_q);
908 		if (bf_prev)
909 			bf_prev->bf_next = bf;
910 
911 		bf_prev = bf;
912 
913 	} while (!skb_queue_empty(&tid->buf_q));
914 
915 	*aggr_len = al;
916 
917 	return status;
918 #undef PADBYTES
919 }
920 
921 /*
922  * rix - rate index
923  * pktlen - total bytes (delims + data + fcs + pads + pad delims)
924  * width  - 0 for 20 MHz, 1 for 40 MHz
925  * half_gi - to use 4us v/s 3.6 us for symbol time
926  */
927 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
928 			    int width, int half_gi, bool shortPreamble)
929 {
930 	u32 nbits, nsymbits, duration, nsymbols;
931 	int streams;
932 
933 	/* find number of symbols: PLCP + data */
934 	streams = HT_RC_2_STREAMS(rix);
935 	nbits = (pktlen << 3) + OFDM_PLCP_BITS;
936 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
937 	nsymbols = (nbits + nsymbits - 1) / nsymbits;
938 
939 	if (!half_gi)
940 		duration = SYMBOL_TIME(nsymbols);
941 	else
942 		duration = SYMBOL_TIME_HALFGI(nsymbols);
943 
944 	/* addup duration for legacy/ht training and signal fields */
945 	duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
946 
947 	return duration;
948 }
949 
950 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
951 {
952 	int streams = HT_RC_2_STREAMS(mcs);
953 	int symbols, bits;
954 	int bytes = 0;
955 
956 	symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
957 	bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
958 	bits -= OFDM_PLCP_BITS;
959 	bytes = bits / 8;
960 	bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
961 	if (bytes > 65532)
962 		bytes = 65532;
963 
964 	return bytes;
965 }
966 
967 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
968 {
969 	u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
970 	int mcs;
971 
972 	/* 4ms is the default (and maximum) duration */
973 	if (!txop || txop > 4096)
974 		txop = 4096;
975 
976 	cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
977 	cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
978 	cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
979 	cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
980 	for (mcs = 0; mcs < 32; mcs++) {
981 		cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
982 		cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
983 		cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
984 		cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
985 	}
986 }
987 
988 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
989 			     struct ath_tx_info *info, int len)
990 {
991 	struct ath_hw *ah = sc->sc_ah;
992 	struct sk_buff *skb;
993 	struct ieee80211_tx_info *tx_info;
994 	struct ieee80211_tx_rate *rates;
995 	const struct ieee80211_rate *rate;
996 	struct ieee80211_hdr *hdr;
997 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
998 	int i;
999 	u8 rix = 0;
1000 
1001 	skb = bf->bf_mpdu;
1002 	tx_info = IEEE80211_SKB_CB(skb);
1003 	rates = tx_info->control.rates;
1004 	hdr = (struct ieee80211_hdr *)skb->data;
1005 
1006 	/* set dur_update_en for l-sig computation except for PS-Poll frames */
1007 	info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1008 	info->rtscts_rate = fi->rtscts_rate;
1009 
1010 	for (i = 0; i < 4; i++) {
1011 		bool is_40, is_sgi, is_sp;
1012 		int phy;
1013 
1014 		if (!rates[i].count || (rates[i].idx < 0))
1015 			continue;
1016 
1017 		rix = rates[i].idx;
1018 		info->rates[i].Tries = rates[i].count;
1019 
1020 		    if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1021 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1022 			info->flags |= ATH9K_TXDESC_RTSENA;
1023 		} else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1024 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1025 			info->flags |= ATH9K_TXDESC_CTSENA;
1026 		}
1027 
1028 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1029 			info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1030 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1031 			info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1032 
1033 		is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1034 		is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1035 		is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1036 
1037 		if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1038 			/* MCS rates */
1039 			info->rates[i].Rate = rix | 0x80;
1040 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1041 					ah->txchainmask, info->rates[i].Rate);
1042 			info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1043 				 is_40, is_sgi, is_sp);
1044 			if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1045 				info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1046 			continue;
1047 		}
1048 
1049 		/* legacy rates */
1050 		rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
1051 		if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1052 		    !(rate->flags & IEEE80211_RATE_ERP_G))
1053 			phy = WLAN_RC_PHY_CCK;
1054 		else
1055 			phy = WLAN_RC_PHY_OFDM;
1056 
1057 		info->rates[i].Rate = rate->hw_value;
1058 		if (rate->hw_value_short) {
1059 			if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1060 				info->rates[i].Rate |= rate->hw_value_short;
1061 		} else {
1062 			is_sp = false;
1063 		}
1064 
1065 		if (bf->bf_state.bfs_paprd)
1066 			info->rates[i].ChSel = ah->txchainmask;
1067 		else
1068 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1069 					ah->txchainmask, info->rates[i].Rate);
1070 
1071 		info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1072 			phy, rate->bitrate * 100, len, rix, is_sp);
1073 	}
1074 
1075 	/* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1076 	if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1077 		info->flags &= ~ATH9K_TXDESC_RTSENA;
1078 
1079 	/* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1080 	if (info->flags & ATH9K_TXDESC_RTSENA)
1081 		info->flags &= ~ATH9K_TXDESC_CTSENA;
1082 }
1083 
1084 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1085 {
1086 	struct ieee80211_hdr *hdr;
1087 	enum ath9k_pkt_type htype;
1088 	__le16 fc;
1089 
1090 	hdr = (struct ieee80211_hdr *)skb->data;
1091 	fc = hdr->frame_control;
1092 
1093 	if (ieee80211_is_beacon(fc))
1094 		htype = ATH9K_PKT_TYPE_BEACON;
1095 	else if (ieee80211_is_probe_resp(fc))
1096 		htype = ATH9K_PKT_TYPE_PROBE_RESP;
1097 	else if (ieee80211_is_atim(fc))
1098 		htype = ATH9K_PKT_TYPE_ATIM;
1099 	else if (ieee80211_is_pspoll(fc))
1100 		htype = ATH9K_PKT_TYPE_PSPOLL;
1101 	else
1102 		htype = ATH9K_PKT_TYPE_NORMAL;
1103 
1104 	return htype;
1105 }
1106 
1107 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1108 			     struct ath_txq *txq, int len)
1109 {
1110 	struct ath_hw *ah = sc->sc_ah;
1111 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1112 	struct ath_buf *bf_first = bf;
1113 	struct ath_tx_info info;
1114 	bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1115 
1116 	memset(&info, 0, sizeof(info));
1117 	info.is_first = true;
1118 	info.is_last = true;
1119 	info.txpower = MAX_RATE_POWER;
1120 	info.qcu = txq->axq_qnum;
1121 
1122 	info.flags = ATH9K_TXDESC_INTREQ;
1123 	if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1124 		info.flags |= ATH9K_TXDESC_NOACK;
1125 	if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1126 		info.flags |= ATH9K_TXDESC_LDPC;
1127 
1128 	ath_buf_set_rate(sc, bf, &info, len);
1129 
1130 	if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
1131 		info.flags |= ATH9K_TXDESC_CLRDMASK;
1132 
1133 	if (bf->bf_state.bfs_paprd)
1134 		info.flags |= (u32) bf->bf_state.bfs_paprd << ATH9K_TXDESC_PAPRD_S;
1135 
1136 
1137 	while (bf) {
1138 		struct sk_buff *skb = bf->bf_mpdu;
1139 		struct ath_frame_info *fi = get_frame_info(skb);
1140 
1141 		info.type = get_hw_packet_type(skb);
1142 		if (bf->bf_next)
1143 			info.link = bf->bf_next->bf_daddr;
1144 		else
1145 			info.link = 0;
1146 
1147 		info.buf_addr[0] = bf->bf_buf_addr;
1148 		info.buf_len[0] = skb->len;
1149 		info.pkt_len = fi->framelen;
1150 		info.keyix = fi->keyix;
1151 		info.keytype = fi->keytype;
1152 
1153 		if (aggr) {
1154 			if (bf == bf_first)
1155 				info.aggr = AGGR_BUF_FIRST;
1156 			else if (!bf->bf_next)
1157 				info.aggr = AGGR_BUF_LAST;
1158 			else
1159 				info.aggr = AGGR_BUF_MIDDLE;
1160 
1161 			info.ndelim = bf->bf_state.ndelim;
1162 			info.aggr_len = len;
1163 		}
1164 
1165 		ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1166 		bf = bf->bf_next;
1167 	}
1168 }
1169 
1170 static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1171 			      struct ath_atx_tid *tid)
1172 {
1173 	struct ath_buf *bf;
1174 	enum ATH_AGGR_STATUS status;
1175 	struct ieee80211_tx_info *tx_info;
1176 	struct list_head bf_q;
1177 	int aggr_len;
1178 
1179 	do {
1180 		if (skb_queue_empty(&tid->buf_q))
1181 			return;
1182 
1183 		INIT_LIST_HEAD(&bf_q);
1184 
1185 		status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
1186 
1187 		/*
1188 		 * no frames picked up to be aggregated;
1189 		 * block-ack window is not open.
1190 		 */
1191 		if (list_empty(&bf_q))
1192 			break;
1193 
1194 		bf = list_first_entry(&bf_q, struct ath_buf, list);
1195 		bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
1196 		tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1197 
1198 		if (tid->ac->clear_ps_filter) {
1199 			tid->ac->clear_ps_filter = false;
1200 			tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1201 		} else {
1202 			tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
1203 		}
1204 
1205 		/* if only one frame, send as non-aggregate */
1206 		if (bf == bf->bf_lastbf) {
1207 			aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
1208 			bf->bf_state.bf_type = BUF_AMPDU;
1209 		} else {
1210 			TX_STAT_INC(txq->axq_qnum, a_aggr);
1211 		}
1212 
1213 		ath_tx_fill_desc(sc, bf, txq, aggr_len);
1214 		ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1215 	} while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
1216 		 status != ATH_AGGR_BAW_CLOSED);
1217 }
1218 
1219 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1220 		      u16 tid, u16 *ssn)
1221 {
1222 	struct ath_atx_tid *txtid;
1223 	struct ath_node *an;
1224 	u8 density;
1225 
1226 	an = (struct ath_node *)sta->drv_priv;
1227 	txtid = ATH_AN_2_TID(an, tid);
1228 
1229 	if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
1230 		return -EAGAIN;
1231 
1232 	/* update ampdu factor/density, they may have changed. This may happen
1233 	 * in HT IBSS when a beacon with HT-info is received after the station
1234 	 * has already been added.
1235 	 */
1236 	if (sta->ht_cap.ht_supported) {
1237 		an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1238 				     sta->ht_cap.ampdu_factor);
1239 		density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1240 		an->mpdudensity = density;
1241 	}
1242 
1243 	txtid->state |= AGGR_ADDBA_PROGRESS;
1244 	txtid->paused = true;
1245 	*ssn = txtid->seq_start = txtid->seq_next;
1246 	txtid->bar_index = -1;
1247 
1248 	memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1249 	txtid->baw_head = txtid->baw_tail = 0;
1250 
1251 	return 0;
1252 }
1253 
1254 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1255 {
1256 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1257 	struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1258 	struct ath_txq *txq = txtid->ac->txq;
1259 
1260 	if (txtid->state & AGGR_CLEANUP)
1261 		return;
1262 
1263 	if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
1264 		txtid->state &= ~AGGR_ADDBA_PROGRESS;
1265 		return;
1266 	}
1267 
1268 	ath_txq_lock(sc, txq);
1269 	txtid->paused = true;
1270 
1271 	/*
1272 	 * If frames are still being transmitted for this TID, they will be
1273 	 * cleaned up during tx completion. To prevent race conditions, this
1274 	 * TID can only be reused after all in-progress subframes have been
1275 	 * completed.
1276 	 */
1277 	if (txtid->baw_head != txtid->baw_tail)
1278 		txtid->state |= AGGR_CLEANUP;
1279 	else
1280 		txtid->state &= ~AGGR_ADDBA_COMPLETE;
1281 
1282 	ath_tx_flush_tid(sc, txtid);
1283 	ath_txq_unlock_complete(sc, txq);
1284 }
1285 
1286 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1287 		       struct ath_node *an)
1288 {
1289 	struct ath_atx_tid *tid;
1290 	struct ath_atx_ac *ac;
1291 	struct ath_txq *txq;
1292 	bool buffered;
1293 	int tidno;
1294 
1295 	for (tidno = 0, tid = &an->tid[tidno];
1296 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1297 
1298 		if (!tid->sched)
1299 			continue;
1300 
1301 		ac = tid->ac;
1302 		txq = ac->txq;
1303 
1304 		ath_txq_lock(sc, txq);
1305 
1306 		buffered = !skb_queue_empty(&tid->buf_q);
1307 
1308 		tid->sched = false;
1309 		list_del(&tid->list);
1310 
1311 		if (ac->sched) {
1312 			ac->sched = false;
1313 			list_del(&ac->list);
1314 		}
1315 
1316 		ath_txq_unlock(sc, txq);
1317 
1318 		ieee80211_sta_set_buffered(sta, tidno, buffered);
1319 	}
1320 }
1321 
1322 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1323 {
1324 	struct ath_atx_tid *tid;
1325 	struct ath_atx_ac *ac;
1326 	struct ath_txq *txq;
1327 	int tidno;
1328 
1329 	for (tidno = 0, tid = &an->tid[tidno];
1330 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1331 
1332 		ac = tid->ac;
1333 		txq = ac->txq;
1334 
1335 		ath_txq_lock(sc, txq);
1336 		ac->clear_ps_filter = true;
1337 
1338 		if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
1339 			ath_tx_queue_tid(txq, tid);
1340 			ath_txq_schedule(sc, txq);
1341 		}
1342 
1343 		ath_txq_unlock_complete(sc, txq);
1344 	}
1345 }
1346 
1347 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1348 {
1349 	struct ath_atx_tid *txtid;
1350 	struct ath_node *an;
1351 
1352 	an = (struct ath_node *)sta->drv_priv;
1353 
1354 	txtid = ATH_AN_2_TID(an, tid);
1355 	txtid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1356 	txtid->state |= AGGR_ADDBA_COMPLETE;
1357 	txtid->state &= ~AGGR_ADDBA_PROGRESS;
1358 	ath_tx_resume_tid(sc, txtid);
1359 }
1360 
1361 /********************/
1362 /* Queue Management */
1363 /********************/
1364 
1365 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1366 {
1367 	struct ath_hw *ah = sc->sc_ah;
1368 	struct ath9k_tx_queue_info qi;
1369 	static const int subtype_txq_to_hwq[] = {
1370 		[IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1371 		[IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1372 		[IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1373 		[IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1374 	};
1375 	int axq_qnum, i;
1376 
1377 	memset(&qi, 0, sizeof(qi));
1378 	qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1379 	qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1380 	qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1381 	qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1382 	qi.tqi_physCompBuf = 0;
1383 
1384 	/*
1385 	 * Enable interrupts only for EOL and DESC conditions.
1386 	 * We mark tx descriptors to receive a DESC interrupt
1387 	 * when a tx queue gets deep; otherwise waiting for the
1388 	 * EOL to reap descriptors.  Note that this is done to
1389 	 * reduce interrupt load and this only defers reaping
1390 	 * descriptors, never transmitting frames.  Aside from
1391 	 * reducing interrupts this also permits more concurrency.
1392 	 * The only potential downside is if the tx queue backs
1393 	 * up in which case the top half of the kernel may backup
1394 	 * due to a lack of tx descriptors.
1395 	 *
1396 	 * The UAPSD queue is an exception, since we take a desc-
1397 	 * based intr on the EOSP frames.
1398 	 */
1399 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1400 		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1401 	} else {
1402 		if (qtype == ATH9K_TX_QUEUE_UAPSD)
1403 			qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1404 		else
1405 			qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1406 					TXQ_FLAG_TXDESCINT_ENABLE;
1407 	}
1408 	axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1409 	if (axq_qnum == -1) {
1410 		/*
1411 		 * NB: don't print a message, this happens
1412 		 * normally on parts with too few tx queues
1413 		 */
1414 		return NULL;
1415 	}
1416 	if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1417 		struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1418 
1419 		txq->axq_qnum = axq_qnum;
1420 		txq->mac80211_qnum = -1;
1421 		txq->axq_link = NULL;
1422 		__skb_queue_head_init(&txq->complete_q);
1423 		INIT_LIST_HEAD(&txq->axq_q);
1424 		INIT_LIST_HEAD(&txq->axq_acq);
1425 		spin_lock_init(&txq->axq_lock);
1426 		txq->axq_depth = 0;
1427 		txq->axq_ampdu_depth = 0;
1428 		txq->axq_tx_inprogress = false;
1429 		sc->tx.txqsetup |= 1<<axq_qnum;
1430 
1431 		txq->txq_headidx = txq->txq_tailidx = 0;
1432 		for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1433 			INIT_LIST_HEAD(&txq->txq_fifo[i]);
1434 	}
1435 	return &sc->tx.txq[axq_qnum];
1436 }
1437 
1438 int ath_txq_update(struct ath_softc *sc, int qnum,
1439 		   struct ath9k_tx_queue_info *qinfo)
1440 {
1441 	struct ath_hw *ah = sc->sc_ah;
1442 	int error = 0;
1443 	struct ath9k_tx_queue_info qi;
1444 
1445 	BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1446 
1447 	ath9k_hw_get_txq_props(ah, qnum, &qi);
1448 	qi.tqi_aifs = qinfo->tqi_aifs;
1449 	qi.tqi_cwmin = qinfo->tqi_cwmin;
1450 	qi.tqi_cwmax = qinfo->tqi_cwmax;
1451 	qi.tqi_burstTime = qinfo->tqi_burstTime;
1452 	qi.tqi_readyTime = qinfo->tqi_readyTime;
1453 
1454 	if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1455 		ath_err(ath9k_hw_common(sc->sc_ah),
1456 			"Unable to update hardware queue %u!\n", qnum);
1457 		error = -EIO;
1458 	} else {
1459 		ath9k_hw_resettxqueue(ah, qnum);
1460 	}
1461 
1462 	return error;
1463 }
1464 
1465 int ath_cabq_update(struct ath_softc *sc)
1466 {
1467 	struct ath9k_tx_queue_info qi;
1468 	struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
1469 	int qnum = sc->beacon.cabq->axq_qnum;
1470 
1471 	ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1472 	/*
1473 	 * Ensure the readytime % is within the bounds.
1474 	 */
1475 	if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
1476 		sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
1477 	else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
1478 		sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
1479 
1480 	qi.tqi_readyTime = (cur_conf->beacon_interval *
1481 			    sc->config.cabqReadytime) / 100;
1482 	ath_txq_update(sc, qnum, &qi);
1483 
1484 	return 0;
1485 }
1486 
1487 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1488 			       struct list_head *list)
1489 {
1490 	struct ath_buf *bf, *lastbf;
1491 	struct list_head bf_head;
1492 	struct ath_tx_status ts;
1493 
1494 	memset(&ts, 0, sizeof(ts));
1495 	ts.ts_status = ATH9K_TX_FLUSH;
1496 	INIT_LIST_HEAD(&bf_head);
1497 
1498 	while (!list_empty(list)) {
1499 		bf = list_first_entry(list, struct ath_buf, list);
1500 
1501 		if (bf->bf_stale) {
1502 			list_del(&bf->list);
1503 
1504 			ath_tx_return_buffer(sc, bf);
1505 			continue;
1506 		}
1507 
1508 		lastbf = bf->bf_lastbf;
1509 		list_cut_position(&bf_head, list, &lastbf->list);
1510 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1511 	}
1512 }
1513 
1514 /*
1515  * Drain a given TX queue (could be Beacon or Data)
1516  *
1517  * This assumes output has been stopped and
1518  * we do not need to block ath_tx_tasklet.
1519  */
1520 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1521 {
1522 	ath_txq_lock(sc, txq);
1523 
1524 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1525 		int idx = txq->txq_tailidx;
1526 
1527 		while (!list_empty(&txq->txq_fifo[idx])) {
1528 			ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1529 
1530 			INCR(idx, ATH_TXFIFO_DEPTH);
1531 		}
1532 		txq->txq_tailidx = idx;
1533 	}
1534 
1535 	txq->axq_link = NULL;
1536 	txq->axq_tx_inprogress = false;
1537 	ath_drain_txq_list(sc, txq, &txq->axq_q);
1538 
1539 	ath_txq_unlock_complete(sc, txq);
1540 }
1541 
1542 bool ath_drain_all_txq(struct ath_softc *sc)
1543 {
1544 	struct ath_hw *ah = sc->sc_ah;
1545 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1546 	struct ath_txq *txq;
1547 	int i;
1548 	u32 npend = 0;
1549 
1550 	if (test_bit(SC_OP_INVALID, &sc->sc_flags))
1551 		return true;
1552 
1553 	ath9k_hw_abort_tx_dma(ah);
1554 
1555 	/* Check if any queue remains active */
1556 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1557 		if (!ATH_TXQ_SETUP(sc, i))
1558 			continue;
1559 
1560 		if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1561 			npend |= BIT(i);
1562 	}
1563 
1564 	if (npend)
1565 		ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1566 
1567 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1568 		if (!ATH_TXQ_SETUP(sc, i))
1569 			continue;
1570 
1571 		/*
1572 		 * The caller will resume queues with ieee80211_wake_queues.
1573 		 * Mark the queue as not stopped to prevent ath_tx_complete
1574 		 * from waking the queue too early.
1575 		 */
1576 		txq = &sc->tx.txq[i];
1577 		txq->stopped = false;
1578 		ath_draintxq(sc, txq);
1579 	}
1580 
1581 	return !npend;
1582 }
1583 
1584 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1585 {
1586 	ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1587 	sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1588 }
1589 
1590 /* For each axq_acq entry, for each tid, try to schedule packets
1591  * for transmit until ampdu_depth has reached min Q depth.
1592  */
1593 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1594 {
1595 	struct ath_atx_ac *ac, *ac_tmp, *last_ac;
1596 	struct ath_atx_tid *tid, *last_tid;
1597 
1598 	if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) ||
1599 	    list_empty(&txq->axq_acq) ||
1600 	    txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1601 		return;
1602 
1603 	ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1604 	last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
1605 
1606 	list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
1607 		last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
1608 		list_del(&ac->list);
1609 		ac->sched = false;
1610 
1611 		while (!list_empty(&ac->tid_q)) {
1612 			tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
1613 					       list);
1614 			list_del(&tid->list);
1615 			tid->sched = false;
1616 
1617 			if (tid->paused)
1618 				continue;
1619 
1620 			ath_tx_sched_aggr(sc, txq, tid);
1621 
1622 			/*
1623 			 * add tid to round-robin queue if more frames
1624 			 * are pending for the tid
1625 			 */
1626 			if (!skb_queue_empty(&tid->buf_q))
1627 				ath_tx_queue_tid(txq, tid);
1628 
1629 			if (tid == last_tid ||
1630 			    txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1631 				break;
1632 		}
1633 
1634 		if (!list_empty(&ac->tid_q) && !ac->sched) {
1635 			ac->sched = true;
1636 			list_add_tail(&ac->list, &txq->axq_acq);
1637 		}
1638 
1639 		if (ac == last_ac ||
1640 		    txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1641 			return;
1642 	}
1643 }
1644 
1645 /***********/
1646 /* TX, DMA */
1647 /***********/
1648 
1649 /*
1650  * Insert a chain of ath_buf (descriptors) on a txq and
1651  * assume the descriptors are already chained together by caller.
1652  */
1653 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1654 			     struct list_head *head, bool internal)
1655 {
1656 	struct ath_hw *ah = sc->sc_ah;
1657 	struct ath_common *common = ath9k_hw_common(ah);
1658 	struct ath_buf *bf, *bf_last;
1659 	bool puttxbuf = false;
1660 	bool edma;
1661 
1662 	/*
1663 	 * Insert the frame on the outbound list and
1664 	 * pass it on to the hardware.
1665 	 */
1666 
1667 	if (list_empty(head))
1668 		return;
1669 
1670 	edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1671 	bf = list_first_entry(head, struct ath_buf, list);
1672 	bf_last = list_entry(head->prev, struct ath_buf, list);
1673 
1674 	ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
1675 		txq->axq_qnum, txq->axq_depth);
1676 
1677 	if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
1678 		list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
1679 		INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
1680 		puttxbuf = true;
1681 	} else {
1682 		list_splice_tail_init(head, &txq->axq_q);
1683 
1684 		if (txq->axq_link) {
1685 			ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
1686 			ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
1687 				txq->axq_qnum, txq->axq_link,
1688 				ito64(bf->bf_daddr), bf->bf_desc);
1689 		} else if (!edma)
1690 			puttxbuf = true;
1691 
1692 		txq->axq_link = bf_last->bf_desc;
1693 	}
1694 
1695 	if (puttxbuf) {
1696 		TX_STAT_INC(txq->axq_qnum, puttxbuf);
1697 		ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1698 		ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
1699 			txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1700 	}
1701 
1702 	if (!edma) {
1703 		TX_STAT_INC(txq->axq_qnum, txstart);
1704 		ath9k_hw_txstart(ah, txq->axq_qnum);
1705 	}
1706 
1707 	if (!internal) {
1708 		txq->axq_depth++;
1709 		if (bf_is_ampdu_not_probing(bf))
1710 			txq->axq_ampdu_depth++;
1711 	}
1712 }
1713 
1714 static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
1715 			      struct sk_buff *skb, struct ath_tx_control *txctl)
1716 {
1717 	struct ath_frame_info *fi = get_frame_info(skb);
1718 	struct list_head bf_head;
1719 	struct ath_buf *bf;
1720 
1721 	/*
1722 	 * Do not queue to h/w when any of the following conditions is true:
1723 	 * - there are pending frames in software queue
1724 	 * - the TID is currently paused for ADDBA/BAR request
1725 	 * - seqno is not within block-ack window
1726 	 * - h/w queue depth exceeds low water mark
1727 	 */
1728 	if (!skb_queue_empty(&tid->buf_q) || tid->paused ||
1729 	    !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
1730 	    txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) {
1731 		/*
1732 		 * Add this frame to software queue for scheduling later
1733 		 * for aggregation.
1734 		 */
1735 		TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw);
1736 		__skb_queue_tail(&tid->buf_q, skb);
1737 		if (!txctl->an || !txctl->an->sleeping)
1738 			ath_tx_queue_tid(txctl->txq, tid);
1739 		return;
1740 	}
1741 
1742 	bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
1743 	if (!bf) {
1744 		ieee80211_free_txskb(sc->hw, skb);
1745 		return;
1746 	}
1747 
1748 	bf->bf_state.bf_type = BUF_AMPDU;
1749 	INIT_LIST_HEAD(&bf_head);
1750 	list_add(&bf->list, &bf_head);
1751 
1752 	/* Add sub-frame to BAW */
1753 	ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
1754 
1755 	/* Queue to h/w without aggregation */
1756 	TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw);
1757 	bf->bf_lastbf = bf;
1758 	ath_tx_fill_desc(sc, bf, txctl->txq, fi->framelen);
1759 	ath_tx_txqaddbuf(sc, txctl->txq, &bf_head, false);
1760 }
1761 
1762 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1763 			       struct ath_atx_tid *tid, struct sk_buff *skb)
1764 {
1765 	struct ath_frame_info *fi = get_frame_info(skb);
1766 	struct list_head bf_head;
1767 	struct ath_buf *bf;
1768 
1769 	bf = fi->bf;
1770 
1771 	INIT_LIST_HEAD(&bf_head);
1772 	list_add_tail(&bf->list, &bf_head);
1773 	bf->bf_state.bf_type = 0;
1774 
1775 	bf->bf_next = NULL;
1776 	bf->bf_lastbf = bf;
1777 	ath_tx_fill_desc(sc, bf, txq, fi->framelen);
1778 	ath_tx_txqaddbuf(sc, txq, &bf_head, false);
1779 	TX_STAT_INC(txq->axq_qnum, queued);
1780 }
1781 
1782 static void setup_frame_info(struct ieee80211_hw *hw,
1783 			     struct ieee80211_sta *sta,
1784 			     struct sk_buff *skb,
1785 			     int framelen)
1786 {
1787 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1788 	struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
1789 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1790 	const struct ieee80211_rate *rate;
1791 	struct ath_frame_info *fi = get_frame_info(skb);
1792 	struct ath_node *an = NULL;
1793 	enum ath9k_key_type keytype;
1794 	bool short_preamble = false;
1795 
1796 	/*
1797 	 * We check if Short Preamble is needed for the CTS rate by
1798 	 * checking the BSS's global flag.
1799 	 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
1800 	 */
1801 	if (tx_info->control.vif &&
1802 	    tx_info->control.vif->bss_conf.use_short_preamble)
1803 		short_preamble = true;
1804 
1805 	rate = ieee80211_get_rts_cts_rate(hw, tx_info);
1806 	keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
1807 
1808 	if (sta)
1809 		an = (struct ath_node *) sta->drv_priv;
1810 
1811 	memset(fi, 0, sizeof(*fi));
1812 	if (hw_key)
1813 		fi->keyix = hw_key->hw_key_idx;
1814 	else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
1815 		fi->keyix = an->ps_key;
1816 	else
1817 		fi->keyix = ATH9K_TXKEYIX_INVALID;
1818 	fi->keytype = keytype;
1819 	fi->framelen = framelen;
1820 	fi->rtscts_rate = rate->hw_value;
1821 	if (short_preamble)
1822 		fi->rtscts_rate |= rate->hw_value_short;
1823 }
1824 
1825 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
1826 {
1827 	struct ath_hw *ah = sc->sc_ah;
1828 	struct ath9k_channel *curchan = ah->curchan;
1829 
1830 	if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
1831 	    (curchan->channelFlags & CHANNEL_5GHZ) &&
1832 	    (chainmask == 0x7) && (rate < 0x90))
1833 		return 0x3;
1834 	else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
1835 		 IS_CCK_RATE(rate))
1836 		return 0x2;
1837 	else
1838 		return chainmask;
1839 }
1840 
1841 /*
1842  * Assign a descriptor (and sequence number if necessary,
1843  * and map buffer for DMA. Frees skb on error
1844  */
1845 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
1846 					   struct ath_txq *txq,
1847 					   struct ath_atx_tid *tid,
1848 					   struct sk_buff *skb)
1849 {
1850 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1851 	struct ath_frame_info *fi = get_frame_info(skb);
1852 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1853 	struct ath_buf *bf;
1854 	int fragno;
1855 	u16 seqno;
1856 
1857 	bf = ath_tx_get_buffer(sc);
1858 	if (!bf) {
1859 		ath_dbg(common, XMIT, "TX buffers are full\n");
1860 		return NULL;
1861 	}
1862 
1863 	ATH_TXBUF_RESET(bf);
1864 
1865 	if (tid) {
1866 		fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
1867 		seqno = tid->seq_next;
1868 		hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
1869 
1870 		if (fragno)
1871 			hdr->seq_ctrl |= cpu_to_le16(fragno);
1872 
1873 		if (!ieee80211_has_morefrags(hdr->frame_control))
1874 			INCR(tid->seq_next, IEEE80211_SEQ_MAX);
1875 
1876 		bf->bf_state.seqno = seqno;
1877 	}
1878 
1879 	bf->bf_mpdu = skb;
1880 
1881 	bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
1882 					 skb->len, DMA_TO_DEVICE);
1883 	if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
1884 		bf->bf_mpdu = NULL;
1885 		bf->bf_buf_addr = 0;
1886 		ath_err(ath9k_hw_common(sc->sc_ah),
1887 			"dma_mapping_error() on TX\n");
1888 		ath_tx_return_buffer(sc, bf);
1889 		return NULL;
1890 	}
1891 
1892 	fi->bf = bf;
1893 
1894 	return bf;
1895 }
1896 
1897 /* FIXME: tx power */
1898 static void ath_tx_start_dma(struct ath_softc *sc, struct sk_buff *skb,
1899 			     struct ath_tx_control *txctl)
1900 {
1901 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1902 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1903 	struct ath_atx_tid *tid = NULL;
1904 	struct ath_buf *bf;
1905 	u8 tidno;
1906 
1907 	if (txctl->an && ieee80211_is_data_qos(hdr->frame_control)) {
1908 		tidno = ieee80211_get_qos_ctl(hdr)[0] &
1909 			IEEE80211_QOS_CTL_TID_MASK;
1910 		tid = ATH_AN_2_TID(txctl->an, tidno);
1911 
1912 		WARN_ON(tid->ac->txq != txctl->txq);
1913 	}
1914 
1915 	if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
1916 		/*
1917 		 * Try aggregation if it's a unicast data frame
1918 		 * and the destination is HT capable.
1919 		 */
1920 		ath_tx_send_ampdu(sc, tid, skb, txctl);
1921 	} else {
1922 		bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
1923 		if (!bf) {
1924 			if (txctl->paprd)
1925 				dev_kfree_skb_any(skb);
1926 			else
1927 				ieee80211_free_txskb(sc->hw, skb);
1928 			return;
1929 		}
1930 
1931 		bf->bf_state.bfs_paprd = txctl->paprd;
1932 
1933 		if (txctl->paprd)
1934 			bf->bf_state.bfs_paprd_timestamp = jiffies;
1935 
1936 		ath_tx_send_normal(sc, txctl->txq, tid, skb);
1937 	}
1938 }
1939 
1940 /* Upon failure caller should free skb */
1941 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
1942 		 struct ath_tx_control *txctl)
1943 {
1944 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1945 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1946 	struct ieee80211_sta *sta = txctl->sta;
1947 	struct ieee80211_vif *vif = info->control.vif;
1948 	struct ath_softc *sc = hw->priv;
1949 	struct ath_txq *txq = txctl->txq;
1950 	int padpos, padsize;
1951 	int frmlen = skb->len + FCS_LEN;
1952 	int q;
1953 
1954 	/* NOTE:  sta can be NULL according to net/mac80211.h */
1955 	if (sta)
1956 		txctl->an = (struct ath_node *)sta->drv_priv;
1957 
1958 	if (info->control.hw_key)
1959 		frmlen += info->control.hw_key->icv_len;
1960 
1961 	/*
1962 	 * As a temporary workaround, assign seq# here; this will likely need
1963 	 * to be cleaned up to work better with Beacon transmission and virtual
1964 	 * BSSes.
1965 	 */
1966 	if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1967 		if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1968 			sc->tx.seq_no += 0x10;
1969 		hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1970 		hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1971 	}
1972 
1973 	/* Add the padding after the header if this is not already done */
1974 	padpos = ath9k_cmn_padpos(hdr->frame_control);
1975 	padsize = padpos & 3;
1976 	if (padsize && skb->len > padpos) {
1977 		if (skb_headroom(skb) < padsize)
1978 			return -ENOMEM;
1979 
1980 		skb_push(skb, padsize);
1981 		memmove(skb->data, skb->data + padsize, padpos);
1982 		hdr = (struct ieee80211_hdr *) skb->data;
1983 	}
1984 
1985 	if ((vif && vif->type != NL80211_IFTYPE_AP &&
1986 	            vif->type != NL80211_IFTYPE_AP_VLAN) ||
1987 	    !ieee80211_is_data(hdr->frame_control))
1988 		info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1989 
1990 	setup_frame_info(hw, sta, skb, frmlen);
1991 
1992 	/*
1993 	 * At this point, the vif, hw_key and sta pointers in the tx control
1994 	 * info are no longer valid (overwritten by the ath_frame_info data.
1995 	 */
1996 
1997 	q = skb_get_queue_mapping(skb);
1998 
1999 	ath_txq_lock(sc, txq);
2000 	if (txq == sc->tx.txq_map[q] &&
2001 	    ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
2002 	    !txq->stopped) {
2003 		ieee80211_stop_queue(sc->hw, q);
2004 		txq->stopped = true;
2005 	}
2006 
2007 	ath_tx_start_dma(sc, skb, txctl);
2008 
2009 	ath_txq_unlock(sc, txq);
2010 
2011 	return 0;
2012 }
2013 
2014 /*****************/
2015 /* TX Completion */
2016 /*****************/
2017 
2018 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2019 			    int tx_flags, struct ath_txq *txq)
2020 {
2021 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2022 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2023 	struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2024 	int q, padpos, padsize;
2025 	unsigned long flags;
2026 
2027 	ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2028 
2029 	if (sc->sc_ah->caldata)
2030 		sc->sc_ah->caldata->paprd_packet_sent = true;
2031 
2032 	if (!(tx_flags & ATH_TX_ERROR))
2033 		/* Frame was ACKed */
2034 		tx_info->flags |= IEEE80211_TX_STAT_ACK;
2035 
2036 	padpos = ath9k_cmn_padpos(hdr->frame_control);
2037 	padsize = padpos & 3;
2038 	if (padsize && skb->len>padpos+padsize) {
2039 		/*
2040 		 * Remove MAC header padding before giving the frame back to
2041 		 * mac80211.
2042 		 */
2043 		memmove(skb->data + padsize, skb->data, padpos);
2044 		skb_pull(skb, padsize);
2045 	}
2046 
2047 	spin_lock_irqsave(&sc->sc_pm_lock, flags);
2048 	if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2049 		sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2050 		ath_dbg(common, PS,
2051 			"Going back to sleep after having received TX status (0x%lx)\n",
2052 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
2053 					PS_WAIT_FOR_CAB |
2054 					PS_WAIT_FOR_PSPOLL_DATA |
2055 					PS_WAIT_FOR_TX_ACK));
2056 	}
2057 	spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2058 
2059 	q = skb_get_queue_mapping(skb);
2060 	if (txq == sc->tx.txq_map[q]) {
2061 		if (WARN_ON(--txq->pending_frames < 0))
2062 			txq->pending_frames = 0;
2063 
2064 		if (txq->stopped &&
2065 		    txq->pending_frames < sc->tx.txq_max_pending[q]) {
2066 			ieee80211_wake_queue(sc->hw, q);
2067 			txq->stopped = false;
2068 		}
2069 	}
2070 
2071 	__skb_queue_tail(&txq->complete_q, skb);
2072 }
2073 
2074 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2075 				struct ath_txq *txq, struct list_head *bf_q,
2076 				struct ath_tx_status *ts, int txok)
2077 {
2078 	struct sk_buff *skb = bf->bf_mpdu;
2079 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2080 	unsigned long flags;
2081 	int tx_flags = 0;
2082 
2083 	if (!txok)
2084 		tx_flags |= ATH_TX_ERROR;
2085 
2086 	if (ts->ts_status & ATH9K_TXERR_FILT)
2087 		tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2088 
2089 	dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2090 	bf->bf_buf_addr = 0;
2091 
2092 	if (bf->bf_state.bfs_paprd) {
2093 		if (time_after(jiffies,
2094 				bf->bf_state.bfs_paprd_timestamp +
2095 				msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2096 			dev_kfree_skb_any(skb);
2097 		else
2098 			complete(&sc->paprd_complete);
2099 	} else {
2100 		ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2101 		ath_tx_complete(sc, skb, tx_flags, txq);
2102 	}
2103 	/* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2104 	 * accidentally reference it later.
2105 	 */
2106 	bf->bf_mpdu = NULL;
2107 
2108 	/*
2109 	 * Return the list of ath_buf of this mpdu to free queue
2110 	 */
2111 	spin_lock_irqsave(&sc->tx.txbuflock, flags);
2112 	list_splice_tail_init(bf_q, &sc->tx.txbuf);
2113 	spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2114 }
2115 
2116 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2117 			     struct ath_tx_status *ts, int nframes, int nbad,
2118 			     int txok)
2119 {
2120 	struct sk_buff *skb = bf->bf_mpdu;
2121 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2122 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2123 	struct ieee80211_hw *hw = sc->hw;
2124 	struct ath_hw *ah = sc->sc_ah;
2125 	u8 i, tx_rateindex;
2126 
2127 	if (txok)
2128 		tx_info->status.ack_signal = ts->ts_rssi;
2129 
2130 	tx_rateindex = ts->ts_rateindex;
2131 	WARN_ON(tx_rateindex >= hw->max_rates);
2132 
2133 	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2134 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2135 
2136 		BUG_ON(nbad > nframes);
2137 	}
2138 	tx_info->status.ampdu_len = nframes;
2139 	tx_info->status.ampdu_ack_len = nframes - nbad;
2140 
2141 	if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2142 	    (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2143 		/*
2144 		 * If an underrun error is seen assume it as an excessive
2145 		 * retry only if max frame trigger level has been reached
2146 		 * (2 KB for single stream, and 4 KB for dual stream).
2147 		 * Adjust the long retry as if the frame was tried
2148 		 * hw->max_rate_tries times to affect how rate control updates
2149 		 * PER for the failed rate.
2150 		 * In case of congestion on the bus penalizing this type of
2151 		 * underruns should help hardware actually transmit new frames
2152 		 * successfully by eventually preferring slower rates.
2153 		 * This itself should also alleviate congestion on the bus.
2154 		 */
2155 		if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2156 		                             ATH9K_TX_DELIM_UNDERRUN)) &&
2157 		    ieee80211_is_data(hdr->frame_control) &&
2158 		    ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2159 			tx_info->status.rates[tx_rateindex].count =
2160 				hw->max_rate_tries;
2161 	}
2162 
2163 	for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2164 		tx_info->status.rates[i].count = 0;
2165 		tx_info->status.rates[i].idx = -1;
2166 	}
2167 
2168 	tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2169 }
2170 
2171 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2172 {
2173 	struct ath_hw *ah = sc->sc_ah;
2174 	struct ath_common *common = ath9k_hw_common(ah);
2175 	struct ath_buf *bf, *lastbf, *bf_held = NULL;
2176 	struct list_head bf_head;
2177 	struct ath_desc *ds;
2178 	struct ath_tx_status ts;
2179 	int status;
2180 
2181 	ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2182 		txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2183 		txq->axq_link);
2184 
2185 	ath_txq_lock(sc, txq);
2186 	for (;;) {
2187 		if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
2188 			break;
2189 
2190 		if (list_empty(&txq->axq_q)) {
2191 			txq->axq_link = NULL;
2192 			if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2193 				ath_txq_schedule(sc, txq);
2194 			break;
2195 		}
2196 		bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2197 
2198 		/*
2199 		 * There is a race condition that a BH gets scheduled
2200 		 * after sw writes TxE and before hw re-load the last
2201 		 * descriptor to get the newly chained one.
2202 		 * Software must keep the last DONE descriptor as a
2203 		 * holding descriptor - software does so by marking
2204 		 * it with the STALE flag.
2205 		 */
2206 		bf_held = NULL;
2207 		if (bf->bf_stale) {
2208 			bf_held = bf;
2209 			if (list_is_last(&bf_held->list, &txq->axq_q))
2210 				break;
2211 
2212 			bf = list_entry(bf_held->list.next, struct ath_buf,
2213 					list);
2214 		}
2215 
2216 		lastbf = bf->bf_lastbf;
2217 		ds = lastbf->bf_desc;
2218 
2219 		memset(&ts, 0, sizeof(ts));
2220 		status = ath9k_hw_txprocdesc(ah, ds, &ts);
2221 		if (status == -EINPROGRESS)
2222 			break;
2223 
2224 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2225 
2226 		/*
2227 		 * Remove ath_buf's of the same transmit unit from txq,
2228 		 * however leave the last descriptor back as the holding
2229 		 * descriptor for hw.
2230 		 */
2231 		lastbf->bf_stale = true;
2232 		INIT_LIST_HEAD(&bf_head);
2233 		if (!list_is_singular(&lastbf->list))
2234 			list_cut_position(&bf_head,
2235 				&txq->axq_q, lastbf->list.prev);
2236 
2237 		if (bf_held) {
2238 			list_del(&bf_held->list);
2239 			ath_tx_return_buffer(sc, bf_held);
2240 		}
2241 
2242 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2243 	}
2244 	ath_txq_unlock_complete(sc, txq);
2245 }
2246 
2247 void ath_tx_tasklet(struct ath_softc *sc)
2248 {
2249 	struct ath_hw *ah = sc->sc_ah;
2250 	u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2251 	int i;
2252 
2253 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2254 		if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2255 			ath_tx_processq(sc, &sc->tx.txq[i]);
2256 	}
2257 }
2258 
2259 void ath_tx_edma_tasklet(struct ath_softc *sc)
2260 {
2261 	struct ath_tx_status ts;
2262 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2263 	struct ath_hw *ah = sc->sc_ah;
2264 	struct ath_txq *txq;
2265 	struct ath_buf *bf, *lastbf;
2266 	struct list_head bf_head;
2267 	int status;
2268 
2269 	for (;;) {
2270 		if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
2271 			break;
2272 
2273 		status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2274 		if (status == -EINPROGRESS)
2275 			break;
2276 		if (status == -EIO) {
2277 			ath_dbg(common, XMIT, "Error processing tx status\n");
2278 			break;
2279 		}
2280 
2281 		/* Process beacon completions separately */
2282 		if (ts.qid == sc->beacon.beaconq) {
2283 			sc->beacon.tx_processed = true;
2284 			sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2285 			continue;
2286 		}
2287 
2288 		txq = &sc->tx.txq[ts.qid];
2289 
2290 		ath_txq_lock(sc, txq);
2291 
2292 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2293 
2294 		if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
2295 			ath_txq_unlock(sc, txq);
2296 			return;
2297 		}
2298 
2299 		bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
2300 				      struct ath_buf, list);
2301 		lastbf = bf->bf_lastbf;
2302 
2303 		INIT_LIST_HEAD(&bf_head);
2304 		list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
2305 				  &lastbf->list);
2306 
2307 		if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
2308 			INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2309 
2310 			if (!list_empty(&txq->axq_q)) {
2311 				struct list_head bf_q;
2312 
2313 				INIT_LIST_HEAD(&bf_q);
2314 				txq->axq_link = NULL;
2315 				list_splice_tail_init(&txq->axq_q, &bf_q);
2316 				ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2317 			}
2318 		}
2319 
2320 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2321 		ath_txq_unlock_complete(sc, txq);
2322 	}
2323 }
2324 
2325 /*****************/
2326 /* Init, Cleanup */
2327 /*****************/
2328 
2329 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2330 {
2331 	struct ath_descdma *dd = &sc->txsdma;
2332 	u8 txs_len = sc->sc_ah->caps.txs_len;
2333 
2334 	dd->dd_desc_len = size * txs_len;
2335 	dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2336 					  &dd->dd_desc_paddr, GFP_KERNEL);
2337 	if (!dd->dd_desc)
2338 		return -ENOMEM;
2339 
2340 	return 0;
2341 }
2342 
2343 static int ath_tx_edma_init(struct ath_softc *sc)
2344 {
2345 	int err;
2346 
2347 	err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2348 	if (!err)
2349 		ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2350 					  sc->txsdma.dd_desc_paddr,
2351 					  ATH_TXSTATUS_RING_SIZE);
2352 
2353 	return err;
2354 }
2355 
2356 int ath_tx_init(struct ath_softc *sc, int nbufs)
2357 {
2358 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2359 	int error = 0;
2360 
2361 	spin_lock_init(&sc->tx.txbuflock);
2362 
2363 	error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2364 				  "tx", nbufs, 1, 1);
2365 	if (error != 0) {
2366 		ath_err(common,
2367 			"Failed to allocate tx descriptors: %d\n", error);
2368 		return error;
2369 	}
2370 
2371 	error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2372 				  "beacon", ATH_BCBUF, 1, 1);
2373 	if (error != 0) {
2374 		ath_err(common,
2375 			"Failed to allocate beacon descriptors: %d\n", error);
2376 		return error;
2377 	}
2378 
2379 	INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2380 
2381 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2382 		error = ath_tx_edma_init(sc);
2383 
2384 	return error;
2385 }
2386 
2387 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2388 {
2389 	struct ath_atx_tid *tid;
2390 	struct ath_atx_ac *ac;
2391 	int tidno, acno;
2392 
2393 	for (tidno = 0, tid = &an->tid[tidno];
2394 	     tidno < IEEE80211_NUM_TIDS;
2395 	     tidno++, tid++) {
2396 		tid->an        = an;
2397 		tid->tidno     = tidno;
2398 		tid->seq_start = tid->seq_next = 0;
2399 		tid->baw_size  = WME_MAX_BA;
2400 		tid->baw_head  = tid->baw_tail = 0;
2401 		tid->sched     = false;
2402 		tid->paused    = false;
2403 		tid->state &= ~AGGR_CLEANUP;
2404 		__skb_queue_head_init(&tid->buf_q);
2405 		acno = TID_TO_WME_AC(tidno);
2406 		tid->ac = &an->ac[acno];
2407 		tid->state &= ~AGGR_ADDBA_COMPLETE;
2408 		tid->state &= ~AGGR_ADDBA_PROGRESS;
2409 	}
2410 
2411 	for (acno = 0, ac = &an->ac[acno];
2412 	     acno < IEEE80211_NUM_ACS; acno++, ac++) {
2413 		ac->sched    = false;
2414 		ac->txq = sc->tx.txq_map[acno];
2415 		INIT_LIST_HEAD(&ac->tid_q);
2416 	}
2417 }
2418 
2419 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2420 {
2421 	struct ath_atx_ac *ac;
2422 	struct ath_atx_tid *tid;
2423 	struct ath_txq *txq;
2424 	int tidno;
2425 
2426 	for (tidno = 0, tid = &an->tid[tidno];
2427 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
2428 
2429 		ac = tid->ac;
2430 		txq = ac->txq;
2431 
2432 		ath_txq_lock(sc, txq);
2433 
2434 		if (tid->sched) {
2435 			list_del(&tid->list);
2436 			tid->sched = false;
2437 		}
2438 
2439 		if (ac->sched) {
2440 			list_del(&ac->list);
2441 			tid->ac->sched = false;
2442 		}
2443 
2444 		ath_tid_drain(sc, txq, tid);
2445 		tid->state &= ~AGGR_ADDBA_COMPLETE;
2446 		tid->state &= ~AGGR_CLEANUP;
2447 
2448 		ath_txq_unlock(sc, txq);
2449 	}
2450 }
2451