xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/xmit.c (revision 96de2506)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20 
21 #define BITS_PER_BYTE           8
22 #define OFDM_PLCP_BITS          22
23 #define HT_RC_2_STREAMS(_rc)    ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF                   8
25 #define L_LTF                   8
26 #define L_SIG                   4
27 #define HT_SIG                  8
28 #define HT_STF                  4
29 #define HT_LTF(_ns)             (4 * (_ns))
30 #define SYMBOL_TIME(_ns)        ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5)  /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t)         ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t)  (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36 
37 
38 static u16 bits_per_symbol[][2] = {
39 	/* 20MHz 40MHz */
40 	{    26,   54 },     /*  0: BPSK */
41 	{    52,  108 },     /*  1: QPSK 1/2 */
42 	{    78,  162 },     /*  2: QPSK 3/4 */
43 	{   104,  216 },     /*  3: 16-QAM 1/2 */
44 	{   156,  324 },     /*  4: 16-QAM 3/4 */
45 	{   208,  432 },     /*  5: 64-QAM 2/3 */
46 	{   234,  486 },     /*  6: 64-QAM 3/4 */
47 	{   260,  540 },     /*  7: 64-QAM 5/6 */
48 };
49 
50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
51 			       struct ath_atx_tid *tid, struct sk_buff *skb);
52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
53 			    int tx_flags, struct ath_txq *txq,
54 			    struct ieee80211_sta *sta);
55 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
56 				struct ath_txq *txq, struct list_head *bf_q,
57 				struct ieee80211_sta *sta,
58 				struct ath_tx_status *ts, int txok);
59 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
60 			     struct list_head *head, bool internal);
61 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
62 			     struct ath_tx_status *ts, int nframes, int nbad,
63 			     int txok);
64 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
65 			      struct ath_buf *bf);
66 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
67 					   struct ath_txq *txq,
68 					   struct ath_atx_tid *tid,
69 					   struct sk_buff *skb);
70 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
71 			  struct ath_tx_control *txctl);
72 
73 enum {
74 	MCS_HT20,
75 	MCS_HT20_SGI,
76 	MCS_HT40,
77 	MCS_HT40_SGI,
78 };
79 
80 /*********************/
81 /* Aggregation logic */
82 /*********************/
83 
84 static void ath_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb)
85 {
86 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
87 	struct ieee80211_sta *sta = info->status.status_driver_data[0];
88 
89 	if (info->flags & (IEEE80211_TX_CTL_REQ_TX_STATUS |
90 			   IEEE80211_TX_STATUS_EOSP)) {
91 		ieee80211_tx_status(hw, skb);
92 		return;
93 	}
94 
95 	if (sta)
96 		ieee80211_tx_status_noskb(hw, sta, info);
97 
98 	dev_kfree_skb(skb);
99 }
100 
101 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
102 	__releases(&txq->axq_lock)
103 {
104 	struct ieee80211_hw *hw = sc->hw;
105 	struct sk_buff_head q;
106 	struct sk_buff *skb;
107 
108 	__skb_queue_head_init(&q);
109 	skb_queue_splice_init(&txq->complete_q, &q);
110 	spin_unlock_bh(&txq->axq_lock);
111 
112 	while ((skb = __skb_dequeue(&q)))
113 		ath_tx_status(hw, skb);
114 }
115 
116 void __ath_tx_queue_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
117 {
118 	struct ath_vif *avp = (struct ath_vif *) tid->an->vif->drv_priv;
119 	struct ath_chanctx *ctx = avp->chanctx;
120 	struct ath_acq *acq;
121 	struct list_head *tid_list;
122 	u8 acno = TID_TO_WME_AC(tid->tidno);
123 
124 	if (!ctx || !list_empty(&tid->list))
125 		return;
126 
127 
128 	acq = &ctx->acq[acno];
129 	if ((sc->airtime_flags & AIRTIME_USE_NEW_QUEUES) &&
130 	    tid->an->airtime_deficit[acno] > 0)
131 		tid_list = &acq->acq_new;
132 	else
133 		tid_list = &acq->acq_old;
134 
135 	list_add_tail(&tid->list, tid_list);
136 }
137 
138 void ath_tx_queue_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
139 {
140 	struct ath_vif *avp = (struct ath_vif *) tid->an->vif->drv_priv;
141 	struct ath_chanctx *ctx = avp->chanctx;
142 	struct ath_acq *acq;
143 
144 	if (!ctx || !list_empty(&tid->list))
145 		return;
146 
147 	acq = &ctx->acq[TID_TO_WME_AC(tid->tidno)];
148 	spin_lock_bh(&acq->lock);
149 	__ath_tx_queue_tid(sc, tid);
150 	spin_unlock_bh(&acq->lock);
151 }
152 
153 
154 void ath9k_wake_tx_queue(struct ieee80211_hw *hw, struct ieee80211_txq *queue)
155 {
156 	struct ath_softc *sc = hw->priv;
157 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
158 	struct ath_atx_tid *tid = (struct ath_atx_tid *) queue->drv_priv;
159 	struct ath_txq *txq = tid->txq;
160 
161 	ath_dbg(common, QUEUE, "Waking TX queue: %pM (%d)\n",
162 		queue->sta ? queue->sta->addr : queue->vif->addr,
163 		tid->tidno);
164 
165 	ath_txq_lock(sc, txq);
166 
167 	tid->has_queued = true;
168 	ath_tx_queue_tid(sc, tid);
169 	ath_txq_schedule(sc, txq);
170 
171 	ath_txq_unlock(sc, txq);
172 }
173 
174 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
175 {
176 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
177 	BUILD_BUG_ON(sizeof(struct ath_frame_info) >
178 		     sizeof(tx_info->rate_driver_data));
179 	return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
180 }
181 
182 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
183 {
184 	if (!tid->an->sta)
185 		return;
186 
187 	ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
188 			   seqno << IEEE80211_SEQ_SEQ_SHIFT);
189 }
190 
191 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
192 			  struct ath_buf *bf)
193 {
194 	ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
195 			       ARRAY_SIZE(bf->rates));
196 }
197 
198 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
199 			     struct sk_buff *skb)
200 {
201 	struct ath_frame_info *fi = get_frame_info(skb);
202 	int q = fi->txq;
203 
204 	if (q < 0)
205 		return;
206 
207 	txq = sc->tx.txq_map[q];
208 	if (WARN_ON(--txq->pending_frames < 0))
209 		txq->pending_frames = 0;
210 
211 }
212 
213 static struct ath_atx_tid *
214 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
215 {
216 	u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
217 	return ATH_AN_2_TID(an, tidno);
218 }
219 
220 static struct sk_buff *
221 ath_tid_pull(struct ath_atx_tid *tid)
222 {
223 	struct ieee80211_txq *txq = container_of((void*)tid, struct ieee80211_txq, drv_priv);
224 	struct ath_softc *sc = tid->an->sc;
225 	struct ieee80211_hw *hw = sc->hw;
226 	struct ath_tx_control txctl = {
227 		.txq = tid->txq,
228 		.sta = tid->an->sta,
229 	};
230 	struct sk_buff *skb;
231 	struct ath_frame_info *fi;
232 	int q;
233 
234 	if (!tid->has_queued)
235 		return NULL;
236 
237 	skb = ieee80211_tx_dequeue(hw, txq);
238 	if (!skb) {
239 		tid->has_queued = false;
240 		return NULL;
241 	}
242 
243 	if (ath_tx_prepare(hw, skb, &txctl)) {
244 		ieee80211_free_txskb(hw, skb);
245 		return NULL;
246 	}
247 
248 	q = skb_get_queue_mapping(skb);
249 	if (tid->txq == sc->tx.txq_map[q]) {
250 		fi = get_frame_info(skb);
251 		fi->txq = q;
252 		++tid->txq->pending_frames;
253 	}
254 
255 	return skb;
256 }
257 
258 
259 static bool ath_tid_has_buffered(struct ath_atx_tid *tid)
260 {
261 	return !skb_queue_empty(&tid->retry_q) || tid->has_queued;
262 }
263 
264 static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid)
265 {
266 	struct sk_buff *skb;
267 
268 	skb = __skb_dequeue(&tid->retry_q);
269 	if (!skb)
270 		skb = ath_tid_pull(tid);
271 
272 	return skb;
273 }
274 
275 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
276 {
277 	struct ath_txq *txq = tid->txq;
278 	struct sk_buff *skb;
279 	struct ath_buf *bf;
280 	struct list_head bf_head;
281 	struct ath_tx_status ts;
282 	struct ath_frame_info *fi;
283 	bool sendbar = false;
284 
285 	INIT_LIST_HEAD(&bf_head);
286 
287 	memset(&ts, 0, sizeof(ts));
288 
289 	while ((skb = __skb_dequeue(&tid->retry_q))) {
290 		fi = get_frame_info(skb);
291 		bf = fi->bf;
292 		if (!bf) {
293 			ath_txq_skb_done(sc, txq, skb);
294 			ieee80211_free_txskb(sc->hw, skb);
295 			continue;
296 		}
297 
298 		if (fi->baw_tracked) {
299 			ath_tx_update_baw(sc, tid, bf);
300 			sendbar = true;
301 		}
302 
303 		list_add_tail(&bf->list, &bf_head);
304 		ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
305 	}
306 
307 	if (sendbar) {
308 		ath_txq_unlock(sc, txq);
309 		ath_send_bar(tid, tid->seq_start);
310 		ath_txq_lock(sc, txq);
311 	}
312 }
313 
314 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
315 			      struct ath_buf *bf)
316 {
317 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
318 	u16 seqno = bf->bf_state.seqno;
319 	int index, cindex;
320 
321 	if (!fi->baw_tracked)
322 		return;
323 
324 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
325 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
326 
327 	__clear_bit(cindex, tid->tx_buf);
328 
329 	while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
330 		INCR(tid->seq_start, IEEE80211_SEQ_MAX);
331 		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
332 		if (tid->bar_index >= 0)
333 			tid->bar_index--;
334 	}
335 }
336 
337 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
338 			     struct ath_buf *bf)
339 {
340 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
341 	u16 seqno = bf->bf_state.seqno;
342 	int index, cindex;
343 
344 	if (fi->baw_tracked)
345 		return;
346 
347 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
348 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
349 	__set_bit(cindex, tid->tx_buf);
350 	fi->baw_tracked = 1;
351 
352 	if (index >= ((tid->baw_tail - tid->baw_head) &
353 		(ATH_TID_MAX_BUFS - 1))) {
354 		tid->baw_tail = cindex;
355 		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
356 	}
357 }
358 
359 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
360 			  struct ath_atx_tid *tid)
361 
362 {
363 	struct sk_buff *skb;
364 	struct ath_buf *bf;
365 	struct list_head bf_head;
366 	struct ath_tx_status ts;
367 	struct ath_frame_info *fi;
368 
369 	memset(&ts, 0, sizeof(ts));
370 	INIT_LIST_HEAD(&bf_head);
371 
372 	while ((skb = ath_tid_dequeue(tid))) {
373 		fi = get_frame_info(skb);
374 		bf = fi->bf;
375 
376 		if (!bf) {
377 			ath_tx_complete(sc, skb, ATH_TX_ERROR, txq, NULL);
378 			continue;
379 		}
380 
381 		list_add_tail(&bf->list, &bf_head);
382 		ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
383 	}
384 }
385 
386 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
387 			     struct sk_buff *skb, int count)
388 {
389 	struct ath_frame_info *fi = get_frame_info(skb);
390 	struct ath_buf *bf = fi->bf;
391 	struct ieee80211_hdr *hdr;
392 	int prev = fi->retries;
393 
394 	TX_STAT_INC(txq->axq_qnum, a_retries);
395 	fi->retries += count;
396 
397 	if (prev > 0)
398 		return;
399 
400 	hdr = (struct ieee80211_hdr *)skb->data;
401 	hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
402 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
403 		sizeof(*hdr), DMA_TO_DEVICE);
404 }
405 
406 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
407 {
408 	struct ath_buf *bf = NULL;
409 
410 	spin_lock_bh(&sc->tx.txbuflock);
411 
412 	if (unlikely(list_empty(&sc->tx.txbuf))) {
413 		spin_unlock_bh(&sc->tx.txbuflock);
414 		return NULL;
415 	}
416 
417 	bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
418 	list_del(&bf->list);
419 
420 	spin_unlock_bh(&sc->tx.txbuflock);
421 
422 	return bf;
423 }
424 
425 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
426 {
427 	spin_lock_bh(&sc->tx.txbuflock);
428 	list_add_tail(&bf->list, &sc->tx.txbuf);
429 	spin_unlock_bh(&sc->tx.txbuflock);
430 }
431 
432 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
433 {
434 	struct ath_buf *tbf;
435 
436 	tbf = ath_tx_get_buffer(sc);
437 	if (WARN_ON(!tbf))
438 		return NULL;
439 
440 	ATH_TXBUF_RESET(tbf);
441 
442 	tbf->bf_mpdu = bf->bf_mpdu;
443 	tbf->bf_buf_addr = bf->bf_buf_addr;
444 	memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
445 	tbf->bf_state = bf->bf_state;
446 	tbf->bf_state.stale = false;
447 
448 	return tbf;
449 }
450 
451 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
452 			        struct ath_tx_status *ts, int txok,
453 			        int *nframes, int *nbad)
454 {
455 	struct ath_frame_info *fi;
456 	u16 seq_st = 0;
457 	u32 ba[WME_BA_BMP_SIZE >> 5];
458 	int ba_index;
459 	int isaggr = 0;
460 
461 	*nbad = 0;
462 	*nframes = 0;
463 
464 	isaggr = bf_isaggr(bf);
465 	if (isaggr) {
466 		seq_st = ts->ts_seqnum;
467 		memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
468 	}
469 
470 	while (bf) {
471 		fi = get_frame_info(bf->bf_mpdu);
472 		ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
473 
474 		(*nframes)++;
475 		if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
476 			(*nbad)++;
477 
478 		bf = bf->bf_next;
479 	}
480 }
481 
482 
483 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
484 				 struct ath_buf *bf, struct list_head *bf_q,
485 				 struct ieee80211_sta *sta,
486 				 struct ath_atx_tid *tid,
487 				 struct ath_tx_status *ts, int txok)
488 {
489 	struct ath_node *an = NULL;
490 	struct sk_buff *skb;
491 	struct ieee80211_hdr *hdr;
492 	struct ieee80211_tx_info *tx_info;
493 	struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
494 	struct list_head bf_head;
495 	struct sk_buff_head bf_pending;
496 	u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
497 	u32 ba[WME_BA_BMP_SIZE >> 5];
498 	int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
499 	bool rc_update = true, isba;
500 	struct ieee80211_tx_rate rates[4];
501 	struct ath_frame_info *fi;
502 	int nframes;
503 	bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
504 	int i, retries;
505 	int bar_index = -1;
506 
507 	skb = bf->bf_mpdu;
508 	hdr = (struct ieee80211_hdr *)skb->data;
509 
510 	tx_info = IEEE80211_SKB_CB(skb);
511 
512 	memcpy(rates, bf->rates, sizeof(rates));
513 
514 	retries = ts->ts_longretry + 1;
515 	for (i = 0; i < ts->ts_rateindex; i++)
516 		retries += rates[i].count;
517 
518 	if (!sta) {
519 		INIT_LIST_HEAD(&bf_head);
520 		while (bf) {
521 			bf_next = bf->bf_next;
522 
523 			if (!bf->bf_state.stale || bf_next != NULL)
524 				list_move_tail(&bf->list, &bf_head);
525 
526 			ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, ts, 0);
527 
528 			bf = bf_next;
529 		}
530 		return;
531 	}
532 
533 	an = (struct ath_node *)sta->drv_priv;
534 	seq_first = tid->seq_start;
535 	isba = ts->ts_flags & ATH9K_TX_BA;
536 
537 	/*
538 	 * The hardware occasionally sends a tx status for the wrong TID.
539 	 * In this case, the BA status cannot be considered valid and all
540 	 * subframes need to be retransmitted
541 	 *
542 	 * Only BlockAcks have a TID and therefore normal Acks cannot be
543 	 * checked
544 	 */
545 	if (isba && tid->tidno != ts->tid)
546 		txok = false;
547 
548 	isaggr = bf_isaggr(bf);
549 	memset(ba, 0, WME_BA_BMP_SIZE >> 3);
550 
551 	if (isaggr && txok) {
552 		if (ts->ts_flags & ATH9K_TX_BA) {
553 			seq_st = ts->ts_seqnum;
554 			memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
555 		} else {
556 			/*
557 			 * AR5416 can become deaf/mute when BA
558 			 * issue happens. Chip needs to be reset.
559 			 * But AP code may have sychronization issues
560 			 * when perform internal reset in this routine.
561 			 * Only enable reset in STA mode for now.
562 			 */
563 			if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
564 				needreset = 1;
565 		}
566 	}
567 
568 	__skb_queue_head_init(&bf_pending);
569 
570 	ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
571 	while (bf) {
572 		u16 seqno = bf->bf_state.seqno;
573 
574 		txfail = txpending = sendbar = 0;
575 		bf_next = bf->bf_next;
576 
577 		skb = bf->bf_mpdu;
578 		tx_info = IEEE80211_SKB_CB(skb);
579 		fi = get_frame_info(skb);
580 
581 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
582 		    !tid->active) {
583 			/*
584 			 * Outside of the current BlockAck window,
585 			 * maybe part of a previous session
586 			 */
587 			txfail = 1;
588 		} else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
589 			/* transmit completion, subframe is
590 			 * acked by block ack */
591 			acked_cnt++;
592 		} else if (!isaggr && txok) {
593 			/* transmit completion */
594 			acked_cnt++;
595 		} else if (flush) {
596 			txpending = 1;
597 		} else if (fi->retries < ATH_MAX_SW_RETRIES) {
598 			if (txok || !an->sleeping)
599 				ath_tx_set_retry(sc, txq, bf->bf_mpdu,
600 						 retries);
601 
602 			txpending = 1;
603 		} else {
604 			txfail = 1;
605 			txfail_cnt++;
606 			bar_index = max_t(int, bar_index,
607 				ATH_BA_INDEX(seq_first, seqno));
608 		}
609 
610 		/*
611 		 * Make sure the last desc is reclaimed if it
612 		 * not a holding desc.
613 		 */
614 		INIT_LIST_HEAD(&bf_head);
615 		if (bf_next != NULL || !bf_last->bf_state.stale)
616 			list_move_tail(&bf->list, &bf_head);
617 
618 		if (!txpending) {
619 			/*
620 			 * complete the acked-ones/xretried ones; update
621 			 * block-ack window
622 			 */
623 			ath_tx_update_baw(sc, tid, bf);
624 
625 			if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
626 				memcpy(tx_info->control.rates, rates, sizeof(rates));
627 				ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
628 				rc_update = false;
629 				if (bf == bf->bf_lastbf)
630 					ath_dynack_sample_tx_ts(sc->sc_ah,
631 								bf->bf_mpdu,
632 								ts);
633 			}
634 
635 			ath_tx_complete_buf(sc, bf, txq, &bf_head, sta, ts,
636 				!txfail);
637 		} else {
638 			if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
639 				tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
640 				ieee80211_sta_eosp(sta);
641 			}
642 			/* retry the un-acked ones */
643 			if (bf->bf_next == NULL && bf_last->bf_state.stale) {
644 				struct ath_buf *tbf;
645 
646 				tbf = ath_clone_txbuf(sc, bf_last);
647 				/*
648 				 * Update tx baw and complete the
649 				 * frame with failed status if we
650 				 * run out of tx buf.
651 				 */
652 				if (!tbf) {
653 					ath_tx_update_baw(sc, tid, bf);
654 
655 					ath_tx_complete_buf(sc, bf, txq,
656 							    &bf_head, NULL, ts,
657 							    0);
658 					bar_index = max_t(int, bar_index,
659 						ATH_BA_INDEX(seq_first, seqno));
660 					break;
661 				}
662 
663 				fi->bf = tbf;
664 			}
665 
666 			/*
667 			 * Put this buffer to the temporary pending
668 			 * queue to retain ordering
669 			 */
670 			__skb_queue_tail(&bf_pending, skb);
671 		}
672 
673 		bf = bf_next;
674 	}
675 
676 	/* prepend un-acked frames to the beginning of the pending frame queue */
677 	if (!skb_queue_empty(&bf_pending)) {
678 		if (an->sleeping)
679 			ieee80211_sta_set_buffered(sta, tid->tidno, true);
680 
681 		skb_queue_splice_tail(&bf_pending, &tid->retry_q);
682 		if (!an->sleeping) {
683 			ath_tx_queue_tid(sc, tid);
684 
685 			if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
686 				tid->clear_ps_filter = true;
687 		}
688 	}
689 
690 	if (bar_index >= 0) {
691 		u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
692 
693 		if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
694 			tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
695 
696 		ath_txq_unlock(sc, txq);
697 		ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
698 		ath_txq_lock(sc, txq);
699 	}
700 
701 	if (needreset)
702 		ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
703 }
704 
705 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
706 {
707     struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
708     return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
709 }
710 
711 static void ath_tx_count_airtime(struct ath_softc *sc, struct ath_node *an,
712 				 struct ath_atx_tid *tid, struct ath_buf *bf,
713 				 struct ath_tx_status *ts)
714 {
715 	struct ath_txq *txq = tid->txq;
716 	u32 airtime = 0;
717 	int i;
718 
719 	airtime += ts->duration * (ts->ts_longretry + 1);
720 	for(i = 0; i < ts->ts_rateindex; i++) {
721 		int rate_dur = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc, i);
722 		airtime += rate_dur * bf->rates[i].count;
723 	}
724 
725 	if (sc->airtime_flags & AIRTIME_USE_TX) {
726 		int q = txq->mac80211_qnum;
727 		struct ath_acq *acq = &sc->cur_chan->acq[q];
728 
729 		spin_lock_bh(&acq->lock);
730 		an->airtime_deficit[q] -= airtime;
731 		if (an->airtime_deficit[q] <= 0)
732 			__ath_tx_queue_tid(sc, tid);
733 		spin_unlock_bh(&acq->lock);
734 	}
735 	ath_debug_airtime(sc, an, 0, airtime);
736 }
737 
738 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
739 				  struct ath_tx_status *ts, struct ath_buf *bf,
740 				  struct list_head *bf_head)
741 {
742 	struct ieee80211_hw *hw = sc->hw;
743 	struct ieee80211_tx_info *info;
744 	struct ieee80211_sta *sta;
745 	struct ieee80211_hdr *hdr;
746 	struct ath_atx_tid *tid = NULL;
747 	bool txok, flush;
748 
749 	txok = !(ts->ts_status & ATH9K_TXERR_MASK);
750 	flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
751 	txq->axq_tx_inprogress = false;
752 
753 	txq->axq_depth--;
754 	if (bf_is_ampdu_not_probing(bf))
755 		txq->axq_ampdu_depth--;
756 
757 	ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc,
758 					     ts->ts_rateindex);
759 
760 	hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
761 	sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
762 	if (sta) {
763 		struct ath_node *an = (struct ath_node *)sta->drv_priv;
764 		tid = ath_get_skb_tid(sc, an, bf->bf_mpdu);
765 		ath_tx_count_airtime(sc, an, tid, bf, ts);
766 		if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
767 			tid->clear_ps_filter = true;
768 	}
769 
770 	if (!bf_isampdu(bf)) {
771 		if (!flush) {
772 			info = IEEE80211_SKB_CB(bf->bf_mpdu);
773 			memcpy(info->control.rates, bf->rates,
774 			       sizeof(info->control.rates));
775 			ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
776 			ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts);
777 		}
778 		ath_tx_complete_buf(sc, bf, txq, bf_head, sta, ts, txok);
779 	} else
780 		ath_tx_complete_aggr(sc, txq, bf, bf_head, sta, tid, ts, txok);
781 
782 	if (!flush)
783 		ath_txq_schedule(sc, txq);
784 }
785 
786 static bool ath_lookup_legacy(struct ath_buf *bf)
787 {
788 	struct sk_buff *skb;
789 	struct ieee80211_tx_info *tx_info;
790 	struct ieee80211_tx_rate *rates;
791 	int i;
792 
793 	skb = bf->bf_mpdu;
794 	tx_info = IEEE80211_SKB_CB(skb);
795 	rates = tx_info->control.rates;
796 
797 	for (i = 0; i < 4; i++) {
798 		if (!rates[i].count || rates[i].idx < 0)
799 			break;
800 
801 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
802 			return true;
803 	}
804 
805 	return false;
806 }
807 
808 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
809 			   struct ath_atx_tid *tid)
810 {
811 	struct sk_buff *skb;
812 	struct ieee80211_tx_info *tx_info;
813 	struct ieee80211_tx_rate *rates;
814 	u32 max_4ms_framelen, frmlen;
815 	u16 aggr_limit, bt_aggr_limit, legacy = 0;
816 	int q = tid->txq->mac80211_qnum;
817 	int i;
818 
819 	skb = bf->bf_mpdu;
820 	tx_info = IEEE80211_SKB_CB(skb);
821 	rates = bf->rates;
822 
823 	/*
824 	 * Find the lowest frame length among the rate series that will have a
825 	 * 4ms (or TXOP limited) transmit duration.
826 	 */
827 	max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
828 
829 	for (i = 0; i < 4; i++) {
830 		int modeidx;
831 
832 		if (!rates[i].count)
833 			continue;
834 
835 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
836 			legacy = 1;
837 			break;
838 		}
839 
840 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
841 			modeidx = MCS_HT40;
842 		else
843 			modeidx = MCS_HT20;
844 
845 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
846 			modeidx++;
847 
848 		frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
849 		max_4ms_framelen = min(max_4ms_framelen, frmlen);
850 	}
851 
852 	/*
853 	 * limit aggregate size by the minimum rate if rate selected is
854 	 * not a probe rate, if rate selected is a probe rate then
855 	 * avoid aggregation of this packet.
856 	 */
857 	if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
858 		return 0;
859 
860 	aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
861 
862 	/*
863 	 * Override the default aggregation limit for BTCOEX.
864 	 */
865 	bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
866 	if (bt_aggr_limit)
867 		aggr_limit = bt_aggr_limit;
868 
869 	if (tid->an->maxampdu)
870 		aggr_limit = min(aggr_limit, tid->an->maxampdu);
871 
872 	return aggr_limit;
873 }
874 
875 /*
876  * Returns the number of delimiters to be added to
877  * meet the minimum required mpdudensity.
878  */
879 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
880 				  struct ath_buf *bf, u16 frmlen,
881 				  bool first_subfrm)
882 {
883 #define FIRST_DESC_NDELIMS 60
884 	u32 nsymbits, nsymbols;
885 	u16 minlen;
886 	u8 flags, rix;
887 	int width, streams, half_gi, ndelim, mindelim;
888 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
889 
890 	/* Select standard number of delimiters based on frame length alone */
891 	ndelim = ATH_AGGR_GET_NDELIM(frmlen);
892 
893 	/*
894 	 * If encryption enabled, hardware requires some more padding between
895 	 * subframes.
896 	 * TODO - this could be improved to be dependent on the rate.
897 	 *      The hardware can keep up at lower rates, but not higher rates
898 	 */
899 	if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
900 	    !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
901 		ndelim += ATH_AGGR_ENCRYPTDELIM;
902 
903 	/*
904 	 * Add delimiter when using RTS/CTS with aggregation
905 	 * and non enterprise AR9003 card
906 	 */
907 	if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
908 	    (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
909 		ndelim = max(ndelim, FIRST_DESC_NDELIMS);
910 
911 	/*
912 	 * Convert desired mpdu density from microeconds to bytes based
913 	 * on highest rate in rate series (i.e. first rate) to determine
914 	 * required minimum length for subframe. Take into account
915 	 * whether high rate is 20 or 40Mhz and half or full GI.
916 	 *
917 	 * If there is no mpdu density restriction, no further calculation
918 	 * is needed.
919 	 */
920 
921 	if (tid->an->mpdudensity == 0)
922 		return ndelim;
923 
924 	rix = bf->rates[0].idx;
925 	flags = bf->rates[0].flags;
926 	width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
927 	half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
928 
929 	if (half_gi)
930 		nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
931 	else
932 		nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
933 
934 	if (nsymbols == 0)
935 		nsymbols = 1;
936 
937 	streams = HT_RC_2_STREAMS(rix);
938 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
939 	minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
940 
941 	if (frmlen < minlen) {
942 		mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
943 		ndelim = max(mindelim, ndelim);
944 	}
945 
946 	return ndelim;
947 }
948 
949 static struct ath_buf *
950 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
951 			struct ath_atx_tid *tid)
952 {
953 	struct ieee80211_tx_info *tx_info;
954 	struct ath_frame_info *fi;
955 	struct sk_buff *skb, *first_skb = NULL;
956 	struct ath_buf *bf;
957 	u16 seqno;
958 
959 	while (1) {
960 		skb = ath_tid_dequeue(tid);
961 		if (!skb)
962 			break;
963 
964 		fi = get_frame_info(skb);
965 		bf = fi->bf;
966 		if (!fi->bf)
967 			bf = ath_tx_setup_buffer(sc, txq, tid, skb);
968 		else
969 			bf->bf_state.stale = false;
970 
971 		if (!bf) {
972 			ath_txq_skb_done(sc, txq, skb);
973 			ieee80211_free_txskb(sc->hw, skb);
974 			continue;
975 		}
976 
977 		bf->bf_next = NULL;
978 		bf->bf_lastbf = bf;
979 
980 		tx_info = IEEE80211_SKB_CB(skb);
981 		tx_info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
982 				    IEEE80211_TX_STATUS_EOSP);
983 
984 		/*
985 		 * No aggregation session is running, but there may be frames
986 		 * from a previous session or a failed attempt in the queue.
987 		 * Send them out as normal data frames
988 		 */
989 		if (!tid->active)
990 			tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
991 
992 		if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
993 			bf->bf_state.bf_type = 0;
994 			return bf;
995 		}
996 
997 		bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
998 		seqno = bf->bf_state.seqno;
999 
1000 		/* do not step over block-ack window */
1001 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
1002 			__skb_queue_tail(&tid->retry_q, skb);
1003 
1004 			/* If there are other skbs in the retry q, they are
1005 			 * probably within the BAW, so loop immediately to get
1006 			 * one of them. Otherwise the queue can get stuck. */
1007 			if (!skb_queue_is_first(&tid->retry_q, skb) &&
1008 			    !WARN_ON(skb == first_skb)) {
1009 				if(!first_skb) /* infinite loop prevention */
1010 					first_skb = skb;
1011 				continue;
1012 			}
1013 			break;
1014 		}
1015 
1016 		if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
1017 			struct ath_tx_status ts = {};
1018 			struct list_head bf_head;
1019 
1020 			INIT_LIST_HEAD(&bf_head);
1021 			list_add(&bf->list, &bf_head);
1022 			ath_tx_update_baw(sc, tid, bf);
1023 			ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
1024 			continue;
1025 		}
1026 
1027 		if (bf_isampdu(bf))
1028 			ath_tx_addto_baw(sc, tid, bf);
1029 
1030 		return bf;
1031 	}
1032 
1033 	return NULL;
1034 }
1035 
1036 static int
1037 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
1038 		 struct ath_atx_tid *tid, struct list_head *bf_q,
1039 		 struct ath_buf *bf_first)
1040 {
1041 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
1042 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
1043 	int nframes = 0, ndelim;
1044 	u16 aggr_limit = 0, al = 0, bpad = 0,
1045 	    al_delta, h_baw = tid->baw_size / 2;
1046 	struct ieee80211_tx_info *tx_info;
1047 	struct ath_frame_info *fi;
1048 	struct sk_buff *skb;
1049 
1050 
1051 	bf = bf_first;
1052 	aggr_limit = ath_lookup_rate(sc, bf, tid);
1053 
1054 	while (bf)
1055 	{
1056 		skb = bf->bf_mpdu;
1057 		fi = get_frame_info(skb);
1058 
1059 		/* do not exceed aggregation limit */
1060 		al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
1061 		if (nframes) {
1062 			if (aggr_limit < al + bpad + al_delta ||
1063 			    ath_lookup_legacy(bf) || nframes >= h_baw)
1064 				goto stop;
1065 
1066 			tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1067 			if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
1068 			    !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
1069 				goto stop;
1070 		}
1071 
1072 		/* add padding for previous frame to aggregation length */
1073 		al += bpad + al_delta;
1074 
1075 		/*
1076 		 * Get the delimiters needed to meet the MPDU
1077 		 * density for this node.
1078 		 */
1079 		ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
1080 						!nframes);
1081 		bpad = PADBYTES(al_delta) + (ndelim << 2);
1082 
1083 		nframes++;
1084 		bf->bf_next = NULL;
1085 
1086 		/* link buffers of this frame to the aggregate */
1087 		bf->bf_state.ndelim = ndelim;
1088 
1089 		list_add_tail(&bf->list, bf_q);
1090 		if (bf_prev)
1091 			bf_prev->bf_next = bf;
1092 
1093 		bf_prev = bf;
1094 
1095 		bf = ath_tx_get_tid_subframe(sc, txq, tid);
1096 	}
1097 	goto finish;
1098 stop:
1099 	__skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1100 finish:
1101 	bf = bf_first;
1102 	bf->bf_lastbf = bf_prev;
1103 
1104 	if (bf == bf_prev) {
1105 		al = get_frame_info(bf->bf_mpdu)->framelen;
1106 		bf->bf_state.bf_type = BUF_AMPDU;
1107 	} else {
1108 		TX_STAT_INC(txq->axq_qnum, a_aggr);
1109 	}
1110 
1111 	return al;
1112 #undef PADBYTES
1113 }
1114 
1115 /*
1116  * rix - rate index
1117  * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1118  * width  - 0 for 20 MHz, 1 for 40 MHz
1119  * half_gi - to use 4us v/s 3.6 us for symbol time
1120  */
1121 u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1122 		     int width, int half_gi, bool shortPreamble)
1123 {
1124 	u32 nbits, nsymbits, duration, nsymbols;
1125 	int streams;
1126 
1127 	/* find number of symbols: PLCP + data */
1128 	streams = HT_RC_2_STREAMS(rix);
1129 	nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1130 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
1131 	nsymbols = (nbits + nsymbits - 1) / nsymbits;
1132 
1133 	if (!half_gi)
1134 		duration = SYMBOL_TIME(nsymbols);
1135 	else
1136 		duration = SYMBOL_TIME_HALFGI(nsymbols);
1137 
1138 	/* addup duration for legacy/ht training and signal fields */
1139 	duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1140 
1141 	return duration;
1142 }
1143 
1144 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1145 {
1146 	int streams = HT_RC_2_STREAMS(mcs);
1147 	int symbols, bits;
1148 	int bytes = 0;
1149 
1150 	usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1151 	symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1152 	bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1153 	bits -= OFDM_PLCP_BITS;
1154 	bytes = bits / 8;
1155 	if (bytes > 65532)
1156 		bytes = 65532;
1157 
1158 	return bytes;
1159 }
1160 
1161 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1162 {
1163 	u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1164 	int mcs;
1165 
1166 	/* 4ms is the default (and maximum) duration */
1167 	if (!txop || txop > 4096)
1168 		txop = 4096;
1169 
1170 	cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1171 	cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1172 	cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1173 	cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1174 	for (mcs = 0; mcs < 32; mcs++) {
1175 		cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1176 		cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1177 		cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1178 		cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1179 	}
1180 }
1181 
1182 static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf,
1183 			       u8 rateidx, bool is_40, bool is_cck)
1184 {
1185 	u8 max_power;
1186 	struct sk_buff *skb;
1187 	struct ath_frame_info *fi;
1188 	struct ieee80211_tx_info *info;
1189 	struct ath_hw *ah = sc->sc_ah;
1190 
1191 	if (sc->tx99_state || !ah->tpc_enabled)
1192 		return MAX_RATE_POWER;
1193 
1194 	skb = bf->bf_mpdu;
1195 	fi = get_frame_info(skb);
1196 	info = IEEE80211_SKB_CB(skb);
1197 
1198 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
1199 		int txpower = fi->tx_power;
1200 
1201 		if (is_40) {
1202 			u8 power_ht40delta;
1203 			struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1204 			u16 eeprom_rev = ah->eep_ops->get_eeprom_rev(ah);
1205 
1206 			if (eeprom_rev >= AR5416_EEP_MINOR_VER_2) {
1207 				bool is_2ghz;
1208 				struct modal_eep_header *pmodal;
1209 
1210 				is_2ghz = info->band == NL80211_BAND_2GHZ;
1211 				pmodal = &eep->modalHeader[is_2ghz];
1212 				power_ht40delta = pmodal->ht40PowerIncForPdadc;
1213 			} else {
1214 				power_ht40delta = 2;
1215 			}
1216 			txpower += power_ht40delta;
1217 		}
1218 
1219 		if (AR_SREV_9287(ah) || AR_SREV_9285(ah) ||
1220 		    AR_SREV_9271(ah)) {
1221 			txpower -= 2 * AR9287_PWR_TABLE_OFFSET_DB;
1222 		} else if (AR_SREV_9280_20_OR_LATER(ah)) {
1223 			s8 power_offset;
1224 
1225 			power_offset = ah->eep_ops->get_eeprom(ah,
1226 							EEP_PWR_TABLE_OFFSET);
1227 			txpower -= 2 * power_offset;
1228 		}
1229 
1230 		if (OLC_FOR_AR9280_20_LATER && is_cck)
1231 			txpower -= 2;
1232 
1233 		txpower = max(txpower, 0);
1234 		max_power = min_t(u8, ah->tx_power[rateidx], txpower);
1235 
1236 		/* XXX: clamp minimum TX power at 1 for AR9160 since if
1237 		 * max_power is set to 0, frames are transmitted at max
1238 		 * TX power
1239 		 */
1240 		if (!max_power && !AR_SREV_9280_20_OR_LATER(ah))
1241 			max_power = 1;
1242 	} else if (!bf->bf_state.bfs_paprd) {
1243 		if (rateidx < 8 && (info->flags & IEEE80211_TX_CTL_STBC))
1244 			max_power = min_t(u8, ah->tx_power_stbc[rateidx],
1245 					  fi->tx_power);
1246 		else
1247 			max_power = min_t(u8, ah->tx_power[rateidx],
1248 					  fi->tx_power);
1249 	} else {
1250 		max_power = ah->paprd_training_power;
1251 	}
1252 
1253 	return max_power;
1254 }
1255 
1256 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1257 			     struct ath_tx_info *info, int len, bool rts)
1258 {
1259 	struct ath_hw *ah = sc->sc_ah;
1260 	struct ath_common *common = ath9k_hw_common(ah);
1261 	struct sk_buff *skb;
1262 	struct ieee80211_tx_info *tx_info;
1263 	struct ieee80211_tx_rate *rates;
1264 	const struct ieee80211_rate *rate;
1265 	struct ieee80211_hdr *hdr;
1266 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1267 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1268 	int i;
1269 	u8 rix = 0;
1270 
1271 	skb = bf->bf_mpdu;
1272 	tx_info = IEEE80211_SKB_CB(skb);
1273 	rates = bf->rates;
1274 	hdr = (struct ieee80211_hdr *)skb->data;
1275 
1276 	/* set dur_update_en for l-sig computation except for PS-Poll frames */
1277 	info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1278 	info->rtscts_rate = fi->rtscts_rate;
1279 
1280 	for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1281 		bool is_40, is_sgi, is_sp, is_cck;
1282 		int phy;
1283 
1284 		if (!rates[i].count || (rates[i].idx < 0))
1285 			continue;
1286 
1287 		rix = rates[i].idx;
1288 		info->rates[i].Tries = rates[i].count;
1289 
1290 		/*
1291 		 * Handle RTS threshold for unaggregated HT frames.
1292 		 */
1293 		if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1294 		    (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1295 		    unlikely(rts_thresh != (u32) -1)) {
1296 			if (!rts_thresh || (len > rts_thresh))
1297 				rts = true;
1298 		}
1299 
1300 		if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1301 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1302 			info->flags |= ATH9K_TXDESC_RTSENA;
1303 		} else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1304 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1305 			info->flags |= ATH9K_TXDESC_CTSENA;
1306 		}
1307 
1308 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1309 			info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1310 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1311 			info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1312 
1313 		is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1314 		is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1315 		is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1316 
1317 		if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1318 			/* MCS rates */
1319 			info->rates[i].Rate = rix | 0x80;
1320 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1321 					ah->txchainmask, info->rates[i].Rate);
1322 			info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1323 				 is_40, is_sgi, is_sp);
1324 			if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1325 				info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1326 
1327 			info->txpower[i] = ath_get_rate_txpower(sc, bf, rix,
1328 								is_40, false);
1329 			continue;
1330 		}
1331 
1332 		/* legacy rates */
1333 		rate = &common->sbands[tx_info->band].bitrates[rates[i].idx];
1334 		if ((tx_info->band == NL80211_BAND_2GHZ) &&
1335 		    !(rate->flags & IEEE80211_RATE_ERP_G))
1336 			phy = WLAN_RC_PHY_CCK;
1337 		else
1338 			phy = WLAN_RC_PHY_OFDM;
1339 
1340 		info->rates[i].Rate = rate->hw_value;
1341 		if (rate->hw_value_short) {
1342 			if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1343 				info->rates[i].Rate |= rate->hw_value_short;
1344 		} else {
1345 			is_sp = false;
1346 		}
1347 
1348 		if (bf->bf_state.bfs_paprd)
1349 			info->rates[i].ChSel = ah->txchainmask;
1350 		else
1351 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1352 					ah->txchainmask, info->rates[i].Rate);
1353 
1354 		info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1355 			phy, rate->bitrate * 100, len, rix, is_sp);
1356 
1357 		is_cck = IS_CCK_RATE(info->rates[i].Rate);
1358 		info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, false,
1359 							is_cck);
1360 	}
1361 
1362 	/* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1363 	if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1364 		info->flags &= ~ATH9K_TXDESC_RTSENA;
1365 
1366 	/* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1367 	if (info->flags & ATH9K_TXDESC_RTSENA)
1368 		info->flags &= ~ATH9K_TXDESC_CTSENA;
1369 }
1370 
1371 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1372 {
1373 	struct ieee80211_hdr *hdr;
1374 	enum ath9k_pkt_type htype;
1375 	__le16 fc;
1376 
1377 	hdr = (struct ieee80211_hdr *)skb->data;
1378 	fc = hdr->frame_control;
1379 
1380 	if (ieee80211_is_beacon(fc))
1381 		htype = ATH9K_PKT_TYPE_BEACON;
1382 	else if (ieee80211_is_probe_resp(fc))
1383 		htype = ATH9K_PKT_TYPE_PROBE_RESP;
1384 	else if (ieee80211_is_atim(fc))
1385 		htype = ATH9K_PKT_TYPE_ATIM;
1386 	else if (ieee80211_is_pspoll(fc))
1387 		htype = ATH9K_PKT_TYPE_PSPOLL;
1388 	else
1389 		htype = ATH9K_PKT_TYPE_NORMAL;
1390 
1391 	return htype;
1392 }
1393 
1394 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1395 			     struct ath_txq *txq, int len)
1396 {
1397 	struct ath_hw *ah = sc->sc_ah;
1398 	struct ath_buf *bf_first = NULL;
1399 	struct ath_tx_info info;
1400 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1401 	bool rts = false;
1402 
1403 	memset(&info, 0, sizeof(info));
1404 	info.is_first = true;
1405 	info.is_last = true;
1406 	info.qcu = txq->axq_qnum;
1407 
1408 	while (bf) {
1409 		struct sk_buff *skb = bf->bf_mpdu;
1410 		struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1411 		struct ath_frame_info *fi = get_frame_info(skb);
1412 		bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1413 
1414 		info.type = get_hw_packet_type(skb);
1415 		if (bf->bf_next)
1416 			info.link = bf->bf_next->bf_daddr;
1417 		else
1418 			info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
1419 
1420 		if (!bf_first) {
1421 			bf_first = bf;
1422 
1423 			if (!sc->tx99_state)
1424 				info.flags = ATH9K_TXDESC_INTREQ;
1425 			if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1426 			    txq == sc->tx.uapsdq)
1427 				info.flags |= ATH9K_TXDESC_CLRDMASK;
1428 
1429 			if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1430 				info.flags |= ATH9K_TXDESC_NOACK;
1431 			if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1432 				info.flags |= ATH9K_TXDESC_LDPC;
1433 
1434 			if (bf->bf_state.bfs_paprd)
1435 				info.flags |= (u32) bf->bf_state.bfs_paprd <<
1436 					      ATH9K_TXDESC_PAPRD_S;
1437 
1438 			/*
1439 			 * mac80211 doesn't handle RTS threshold for HT because
1440 			 * the decision has to be taken based on AMPDU length
1441 			 * and aggregation is done entirely inside ath9k.
1442 			 * Set the RTS/CTS flag for the first subframe based
1443 			 * on the threshold.
1444 			 */
1445 			if (aggr && (bf == bf_first) &&
1446 			    unlikely(rts_thresh != (u32) -1)) {
1447 				/*
1448 				 * "len" is the size of the entire AMPDU.
1449 				 */
1450 				if (!rts_thresh || (len > rts_thresh))
1451 					rts = true;
1452 			}
1453 
1454 			if (!aggr)
1455 				len = fi->framelen;
1456 
1457 			ath_buf_set_rate(sc, bf, &info, len, rts);
1458 		}
1459 
1460 		info.buf_addr[0] = bf->bf_buf_addr;
1461 		info.buf_len[0] = skb->len;
1462 		info.pkt_len = fi->framelen;
1463 		info.keyix = fi->keyix;
1464 		info.keytype = fi->keytype;
1465 
1466 		if (aggr) {
1467 			if (bf == bf_first)
1468 				info.aggr = AGGR_BUF_FIRST;
1469 			else if (bf == bf_first->bf_lastbf)
1470 				info.aggr = AGGR_BUF_LAST;
1471 			else
1472 				info.aggr = AGGR_BUF_MIDDLE;
1473 
1474 			info.ndelim = bf->bf_state.ndelim;
1475 			info.aggr_len = len;
1476 		}
1477 
1478 		if (bf == bf_first->bf_lastbf)
1479 			bf_first = NULL;
1480 
1481 		ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1482 		bf = bf->bf_next;
1483 	}
1484 }
1485 
1486 static void
1487 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1488 		  struct ath_atx_tid *tid, struct list_head *bf_q,
1489 		  struct ath_buf *bf_first)
1490 {
1491 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
1492 	int nframes = 0;
1493 
1494 	do {
1495 		struct ieee80211_tx_info *tx_info;
1496 
1497 		nframes++;
1498 		list_add_tail(&bf->list, bf_q);
1499 		if (bf_prev)
1500 			bf_prev->bf_next = bf;
1501 		bf_prev = bf;
1502 
1503 		if (nframes >= 2)
1504 			break;
1505 
1506 		bf = ath_tx_get_tid_subframe(sc, txq, tid);
1507 		if (!bf)
1508 			break;
1509 
1510 		tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1511 		if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
1512 			__skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1513 			break;
1514 		}
1515 
1516 		ath_set_rates(tid->an->vif, tid->an->sta, bf);
1517 	} while (1);
1518 }
1519 
1520 static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1521 			      struct ath_atx_tid *tid)
1522 {
1523 	struct ath_buf *bf;
1524 	struct ieee80211_tx_info *tx_info;
1525 	struct list_head bf_q;
1526 	int aggr_len = 0;
1527 	bool aggr;
1528 
1529 	if (!ath_tid_has_buffered(tid))
1530 		return false;
1531 
1532 	INIT_LIST_HEAD(&bf_q);
1533 
1534 	bf = ath_tx_get_tid_subframe(sc, txq, tid);
1535 	if (!bf)
1536 		return false;
1537 
1538 	tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1539 	aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1540 	if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1541 	    (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1542 		__skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1543 		return false;
1544 	}
1545 
1546 	ath_set_rates(tid->an->vif, tid->an->sta, bf);
1547 	if (aggr)
1548 		aggr_len = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf);
1549 	else
1550 		ath_tx_form_burst(sc, txq, tid, &bf_q, bf);
1551 
1552 	if (list_empty(&bf_q))
1553 		return false;
1554 
1555 	if (tid->clear_ps_filter || tid->an->no_ps_filter) {
1556 		tid->clear_ps_filter = false;
1557 		tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1558 	}
1559 
1560 	ath_tx_fill_desc(sc, bf, txq, aggr_len);
1561 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1562 	return true;
1563 }
1564 
1565 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1566 		      u16 tid, u16 *ssn)
1567 {
1568 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1569 	struct ath_atx_tid *txtid;
1570 	struct ath_txq *txq;
1571 	struct ath_node *an;
1572 	u8 density;
1573 
1574 	ath_dbg(common, XMIT, "%s called\n", __func__);
1575 
1576 	an = (struct ath_node *)sta->drv_priv;
1577 	txtid = ATH_AN_2_TID(an, tid);
1578 	txq = txtid->txq;
1579 
1580 	ath_txq_lock(sc, txq);
1581 
1582 	/* update ampdu factor/density, they may have changed. This may happen
1583 	 * in HT IBSS when a beacon with HT-info is received after the station
1584 	 * has already been added.
1585 	 */
1586 	if (sta->ht_cap.ht_supported) {
1587 		an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1588 				      sta->ht_cap.ampdu_factor)) - 1;
1589 		density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1590 		an->mpdudensity = density;
1591 	}
1592 
1593 	txtid->active = true;
1594 	*ssn = txtid->seq_start = txtid->seq_next;
1595 	txtid->bar_index = -1;
1596 
1597 	memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1598 	txtid->baw_head = txtid->baw_tail = 0;
1599 
1600 	ath_txq_unlock_complete(sc, txq);
1601 
1602 	return 0;
1603 }
1604 
1605 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1606 {
1607 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1608 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1609 	struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1610 	struct ath_txq *txq = txtid->txq;
1611 
1612 	ath_dbg(common, XMIT, "%s called\n", __func__);
1613 
1614 	ath_txq_lock(sc, txq);
1615 	txtid->active = false;
1616 	ath_tx_flush_tid(sc, txtid);
1617 	ath_txq_unlock_complete(sc, txq);
1618 }
1619 
1620 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1621 		       struct ath_node *an)
1622 {
1623 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1624 	struct ath_atx_tid *tid;
1625 	struct ath_txq *txq;
1626 	int tidno;
1627 
1628 	ath_dbg(common, XMIT, "%s called\n", __func__);
1629 
1630 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
1631 		tid = ath_node_to_tid(an, tidno);
1632 		txq = tid->txq;
1633 
1634 		ath_txq_lock(sc, txq);
1635 
1636 		if (list_empty(&tid->list)) {
1637 			ath_txq_unlock(sc, txq);
1638 			continue;
1639 		}
1640 
1641 		if (!skb_queue_empty(&tid->retry_q))
1642 			ieee80211_sta_set_buffered(sta, tid->tidno, true);
1643 
1644 		list_del_init(&tid->list);
1645 
1646 		ath_txq_unlock(sc, txq);
1647 	}
1648 }
1649 
1650 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1651 {
1652 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1653 	struct ath_atx_tid *tid;
1654 	struct ath_txq *txq;
1655 	int tidno;
1656 
1657 	ath_dbg(common, XMIT, "%s called\n", __func__);
1658 
1659 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
1660 		tid = ath_node_to_tid(an, tidno);
1661 		txq = tid->txq;
1662 
1663 		ath_txq_lock(sc, txq);
1664 		tid->clear_ps_filter = true;
1665 		if (ath_tid_has_buffered(tid)) {
1666 			ath_tx_queue_tid(sc, tid);
1667 			ath_txq_schedule(sc, txq);
1668 		}
1669 		ath_txq_unlock_complete(sc, txq);
1670 	}
1671 }
1672 
1673 
1674 static void
1675 ath9k_set_moredata(struct ath_softc *sc, struct ath_buf *bf, bool val)
1676 {
1677 	struct ieee80211_hdr *hdr;
1678 	u16 mask = cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1679 	u16 mask_val = mask * val;
1680 
1681 	hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
1682 	if ((hdr->frame_control & mask) != mask_val) {
1683 		hdr->frame_control = (hdr->frame_control & ~mask) | mask_val;
1684 		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
1685 			sizeof(*hdr), DMA_TO_DEVICE);
1686 	}
1687 }
1688 
1689 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1690 				   struct ieee80211_sta *sta,
1691 				   u16 tids, int nframes,
1692 				   enum ieee80211_frame_release_type reason,
1693 				   bool more_data)
1694 {
1695 	struct ath_softc *sc = hw->priv;
1696 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1697 	struct ath_txq *txq = sc->tx.uapsdq;
1698 	struct ieee80211_tx_info *info;
1699 	struct list_head bf_q;
1700 	struct ath_buf *bf_tail = NULL, *bf;
1701 	int sent = 0;
1702 	int i;
1703 
1704 	INIT_LIST_HEAD(&bf_q);
1705 	for (i = 0; tids && nframes; i++, tids >>= 1) {
1706 		struct ath_atx_tid *tid;
1707 
1708 		if (!(tids & 1))
1709 			continue;
1710 
1711 		tid = ATH_AN_2_TID(an, i);
1712 
1713 		ath_txq_lock(sc, tid->txq);
1714 		while (nframes > 0) {
1715 			bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid);
1716 			if (!bf)
1717 				break;
1718 
1719 			ath9k_set_moredata(sc, bf, true);
1720 			list_add_tail(&bf->list, &bf_q);
1721 			ath_set_rates(tid->an->vif, tid->an->sta, bf);
1722 			if (bf_isampdu(bf))
1723 				bf->bf_state.bf_type &= ~BUF_AGGR;
1724 			if (bf_tail)
1725 				bf_tail->bf_next = bf;
1726 
1727 			bf_tail = bf;
1728 			nframes--;
1729 			sent++;
1730 			TX_STAT_INC(txq->axq_qnum, a_queued_hw);
1731 
1732 			if (an->sta && skb_queue_empty(&tid->retry_q))
1733 				ieee80211_sta_set_buffered(an->sta, i, false);
1734 		}
1735 		ath_txq_unlock_complete(sc, tid->txq);
1736 	}
1737 
1738 	if (list_empty(&bf_q))
1739 		return;
1740 
1741 	if (!more_data)
1742 		ath9k_set_moredata(sc, bf_tail, false);
1743 
1744 	info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1745 	info->flags |= IEEE80211_TX_STATUS_EOSP;
1746 
1747 	bf = list_first_entry(&bf_q, struct ath_buf, list);
1748 	ath_txq_lock(sc, txq);
1749 	ath_tx_fill_desc(sc, bf, txq, 0);
1750 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1751 	ath_txq_unlock(sc, txq);
1752 }
1753 
1754 /********************/
1755 /* Queue Management */
1756 /********************/
1757 
1758 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1759 {
1760 	struct ath_hw *ah = sc->sc_ah;
1761 	struct ath9k_tx_queue_info qi;
1762 	static const int subtype_txq_to_hwq[] = {
1763 		[IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1764 		[IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1765 		[IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1766 		[IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1767 	};
1768 	int axq_qnum, i;
1769 
1770 	memset(&qi, 0, sizeof(qi));
1771 	qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1772 	qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1773 	qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1774 	qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1775 	qi.tqi_physCompBuf = 0;
1776 
1777 	/*
1778 	 * Enable interrupts only for EOL and DESC conditions.
1779 	 * We mark tx descriptors to receive a DESC interrupt
1780 	 * when a tx queue gets deep; otherwise waiting for the
1781 	 * EOL to reap descriptors.  Note that this is done to
1782 	 * reduce interrupt load and this only defers reaping
1783 	 * descriptors, never transmitting frames.  Aside from
1784 	 * reducing interrupts this also permits more concurrency.
1785 	 * The only potential downside is if the tx queue backs
1786 	 * up in which case the top half of the kernel may backup
1787 	 * due to a lack of tx descriptors.
1788 	 *
1789 	 * The UAPSD queue is an exception, since we take a desc-
1790 	 * based intr on the EOSP frames.
1791 	 */
1792 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1793 		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1794 	} else {
1795 		if (qtype == ATH9K_TX_QUEUE_UAPSD)
1796 			qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1797 		else
1798 			qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1799 					TXQ_FLAG_TXDESCINT_ENABLE;
1800 	}
1801 	axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1802 	if (axq_qnum == -1) {
1803 		/*
1804 		 * NB: don't print a message, this happens
1805 		 * normally on parts with too few tx queues
1806 		 */
1807 		return NULL;
1808 	}
1809 	if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1810 		struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1811 
1812 		txq->axq_qnum = axq_qnum;
1813 		txq->mac80211_qnum = -1;
1814 		txq->axq_link = NULL;
1815 		__skb_queue_head_init(&txq->complete_q);
1816 		INIT_LIST_HEAD(&txq->axq_q);
1817 		spin_lock_init(&txq->axq_lock);
1818 		txq->axq_depth = 0;
1819 		txq->axq_ampdu_depth = 0;
1820 		txq->axq_tx_inprogress = false;
1821 		sc->tx.txqsetup |= 1<<axq_qnum;
1822 
1823 		txq->txq_headidx = txq->txq_tailidx = 0;
1824 		for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1825 			INIT_LIST_HEAD(&txq->txq_fifo[i]);
1826 	}
1827 	return &sc->tx.txq[axq_qnum];
1828 }
1829 
1830 int ath_txq_update(struct ath_softc *sc, int qnum,
1831 		   struct ath9k_tx_queue_info *qinfo)
1832 {
1833 	struct ath_hw *ah = sc->sc_ah;
1834 	int error = 0;
1835 	struct ath9k_tx_queue_info qi;
1836 
1837 	BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1838 
1839 	ath9k_hw_get_txq_props(ah, qnum, &qi);
1840 	qi.tqi_aifs = qinfo->tqi_aifs;
1841 	qi.tqi_cwmin = qinfo->tqi_cwmin;
1842 	qi.tqi_cwmax = qinfo->tqi_cwmax;
1843 	qi.tqi_burstTime = qinfo->tqi_burstTime;
1844 	qi.tqi_readyTime = qinfo->tqi_readyTime;
1845 
1846 	if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1847 		ath_err(ath9k_hw_common(sc->sc_ah),
1848 			"Unable to update hardware queue %u!\n", qnum);
1849 		error = -EIO;
1850 	} else {
1851 		ath9k_hw_resettxqueue(ah, qnum);
1852 	}
1853 
1854 	return error;
1855 }
1856 
1857 int ath_cabq_update(struct ath_softc *sc)
1858 {
1859 	struct ath9k_tx_queue_info qi;
1860 	struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon;
1861 	int qnum = sc->beacon.cabq->axq_qnum;
1862 
1863 	ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1864 
1865 	qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) *
1866 			    ATH_CABQ_READY_TIME) / 100;
1867 	ath_txq_update(sc, qnum, &qi);
1868 
1869 	return 0;
1870 }
1871 
1872 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1873 			       struct list_head *list)
1874 {
1875 	struct ath_buf *bf, *lastbf;
1876 	struct list_head bf_head;
1877 	struct ath_tx_status ts;
1878 
1879 	memset(&ts, 0, sizeof(ts));
1880 	ts.ts_status = ATH9K_TX_FLUSH;
1881 	INIT_LIST_HEAD(&bf_head);
1882 
1883 	while (!list_empty(list)) {
1884 		bf = list_first_entry(list, struct ath_buf, list);
1885 
1886 		if (bf->bf_state.stale) {
1887 			list_del(&bf->list);
1888 
1889 			ath_tx_return_buffer(sc, bf);
1890 			continue;
1891 		}
1892 
1893 		lastbf = bf->bf_lastbf;
1894 		list_cut_position(&bf_head, list, &lastbf->list);
1895 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1896 	}
1897 }
1898 
1899 /*
1900  * Drain a given TX queue (could be Beacon or Data)
1901  *
1902  * This assumes output has been stopped and
1903  * we do not need to block ath_tx_tasklet.
1904  */
1905 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1906 {
1907 	rcu_read_lock();
1908 	ath_txq_lock(sc, txq);
1909 
1910 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1911 		int idx = txq->txq_tailidx;
1912 
1913 		while (!list_empty(&txq->txq_fifo[idx])) {
1914 			ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1915 
1916 			INCR(idx, ATH_TXFIFO_DEPTH);
1917 		}
1918 		txq->txq_tailidx = idx;
1919 	}
1920 
1921 	txq->axq_link = NULL;
1922 	txq->axq_tx_inprogress = false;
1923 	ath_drain_txq_list(sc, txq, &txq->axq_q);
1924 
1925 	ath_txq_unlock_complete(sc, txq);
1926 	rcu_read_unlock();
1927 }
1928 
1929 bool ath_drain_all_txq(struct ath_softc *sc)
1930 {
1931 	struct ath_hw *ah = sc->sc_ah;
1932 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1933 	struct ath_txq *txq;
1934 	int i;
1935 	u32 npend = 0;
1936 
1937 	if (test_bit(ATH_OP_INVALID, &common->op_flags))
1938 		return true;
1939 
1940 	ath9k_hw_abort_tx_dma(ah);
1941 
1942 	/* Check if any queue remains active */
1943 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1944 		if (!ATH_TXQ_SETUP(sc, i))
1945 			continue;
1946 
1947 		if (!sc->tx.txq[i].axq_depth)
1948 			continue;
1949 
1950 		if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1951 			npend |= BIT(i);
1952 	}
1953 
1954 	if (npend) {
1955 		RESET_STAT_INC(sc, RESET_TX_DMA_ERROR);
1956 		ath_dbg(common, RESET,
1957 			"Failed to stop TX DMA, queues=0x%03x!\n", npend);
1958 	}
1959 
1960 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1961 		if (!ATH_TXQ_SETUP(sc, i))
1962 			continue;
1963 
1964 		txq = &sc->tx.txq[i];
1965 		ath_draintxq(sc, txq);
1966 	}
1967 
1968 	return !npend;
1969 }
1970 
1971 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1972 {
1973 	ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1974 	sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1975 }
1976 
1977 /* For each acq entry, for each tid, try to schedule packets
1978  * for transmit until ampdu_depth has reached min Q depth.
1979  */
1980 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1981 {
1982 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1983 	struct ath_atx_tid *tid;
1984 	struct list_head *tid_list;
1985 	struct ath_acq *acq;
1986 	bool active = AIRTIME_ACTIVE(sc->airtime_flags);
1987 
1988 	if (txq->mac80211_qnum < 0)
1989 		return;
1990 
1991 	if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
1992 		return;
1993 
1994 	spin_lock_bh(&sc->chan_lock);
1995 	rcu_read_lock();
1996 	acq = &sc->cur_chan->acq[txq->mac80211_qnum];
1997 
1998 	if (sc->cur_chan->stopped)
1999 		goto out;
2000 
2001 begin:
2002 	tid_list = &acq->acq_new;
2003 	if (list_empty(tid_list)) {
2004 		tid_list = &acq->acq_old;
2005 		if (list_empty(tid_list))
2006 			goto out;
2007 	}
2008 	tid = list_first_entry(tid_list, struct ath_atx_tid, list);
2009 
2010 	if (active && tid->an->airtime_deficit[txq->mac80211_qnum] <= 0) {
2011 		spin_lock_bh(&acq->lock);
2012 		tid->an->airtime_deficit[txq->mac80211_qnum] += ATH_AIRTIME_QUANTUM;
2013 		list_move_tail(&tid->list, &acq->acq_old);
2014 		spin_unlock_bh(&acq->lock);
2015 		goto begin;
2016 	}
2017 
2018 	if (!ath_tid_has_buffered(tid)) {
2019 		spin_lock_bh(&acq->lock);
2020 		if ((tid_list == &acq->acq_new) && !list_empty(&acq->acq_old))
2021 			list_move_tail(&tid->list, &acq->acq_old);
2022 		else {
2023 			list_del_init(&tid->list);
2024 		}
2025 		spin_unlock_bh(&acq->lock);
2026 		goto begin;
2027 	}
2028 
2029 
2030 	/*
2031 	 * If we succeed in scheduling something, immediately restart to make
2032 	 * sure we keep the HW busy.
2033 	 */
2034 	if(ath_tx_sched_aggr(sc, txq, tid)) {
2035 		if (!active) {
2036 			spin_lock_bh(&acq->lock);
2037 			list_move_tail(&tid->list, &acq->acq_old);
2038 			spin_unlock_bh(&acq->lock);
2039 		}
2040 		goto begin;
2041 	}
2042 
2043 out:
2044 	rcu_read_unlock();
2045 	spin_unlock_bh(&sc->chan_lock);
2046 }
2047 
2048 void ath_txq_schedule_all(struct ath_softc *sc)
2049 {
2050 	struct ath_txq *txq;
2051 	int i;
2052 
2053 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
2054 		txq = sc->tx.txq_map[i];
2055 
2056 		spin_lock_bh(&txq->axq_lock);
2057 		ath_txq_schedule(sc, txq);
2058 		spin_unlock_bh(&txq->axq_lock);
2059 	}
2060 }
2061 
2062 /***********/
2063 /* TX, DMA */
2064 /***********/
2065 
2066 /*
2067  * Insert a chain of ath_buf (descriptors) on a txq and
2068  * assume the descriptors are already chained together by caller.
2069  */
2070 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
2071 			     struct list_head *head, bool internal)
2072 {
2073 	struct ath_hw *ah = sc->sc_ah;
2074 	struct ath_common *common = ath9k_hw_common(ah);
2075 	struct ath_buf *bf, *bf_last;
2076 	bool puttxbuf = false;
2077 	bool edma;
2078 
2079 	/*
2080 	 * Insert the frame on the outbound list and
2081 	 * pass it on to the hardware.
2082 	 */
2083 
2084 	if (list_empty(head))
2085 		return;
2086 
2087 	edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
2088 	bf = list_first_entry(head, struct ath_buf, list);
2089 	bf_last = list_entry(head->prev, struct ath_buf, list);
2090 
2091 	ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
2092 		txq->axq_qnum, txq->axq_depth);
2093 
2094 	if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
2095 		list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
2096 		INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
2097 		puttxbuf = true;
2098 	} else {
2099 		list_splice_tail_init(head, &txq->axq_q);
2100 
2101 		if (txq->axq_link) {
2102 			ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
2103 			ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
2104 				txq->axq_qnum, txq->axq_link,
2105 				ito64(bf->bf_daddr), bf->bf_desc);
2106 		} else if (!edma)
2107 			puttxbuf = true;
2108 
2109 		txq->axq_link = bf_last->bf_desc;
2110 	}
2111 
2112 	if (puttxbuf) {
2113 		TX_STAT_INC(txq->axq_qnum, puttxbuf);
2114 		ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
2115 		ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
2116 			txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
2117 	}
2118 
2119 	if (!edma || sc->tx99_state) {
2120 		TX_STAT_INC(txq->axq_qnum, txstart);
2121 		ath9k_hw_txstart(ah, txq->axq_qnum);
2122 	}
2123 
2124 	if (!internal) {
2125 		while (bf) {
2126 			txq->axq_depth++;
2127 			if (bf_is_ampdu_not_probing(bf))
2128 				txq->axq_ampdu_depth++;
2129 
2130 			bf_last = bf->bf_lastbf;
2131 			bf = bf_last->bf_next;
2132 			bf_last->bf_next = NULL;
2133 		}
2134 	}
2135 }
2136 
2137 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
2138 			       struct ath_atx_tid *tid, struct sk_buff *skb)
2139 {
2140 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2141 	struct ath_frame_info *fi = get_frame_info(skb);
2142 	struct list_head bf_head;
2143 	struct ath_buf *bf = fi->bf;
2144 
2145 	INIT_LIST_HEAD(&bf_head);
2146 	list_add_tail(&bf->list, &bf_head);
2147 	bf->bf_state.bf_type = 0;
2148 	if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
2149 		bf->bf_state.bf_type = BUF_AMPDU;
2150 		ath_tx_addto_baw(sc, tid, bf);
2151 	}
2152 
2153 	bf->bf_next = NULL;
2154 	bf->bf_lastbf = bf;
2155 	ath_tx_fill_desc(sc, bf, txq, fi->framelen);
2156 	ath_tx_txqaddbuf(sc, txq, &bf_head, false);
2157 	TX_STAT_INC(txq->axq_qnum, queued);
2158 }
2159 
2160 static void setup_frame_info(struct ieee80211_hw *hw,
2161 			     struct ieee80211_sta *sta,
2162 			     struct sk_buff *skb,
2163 			     int framelen)
2164 {
2165 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2166 	struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
2167 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2168 	const struct ieee80211_rate *rate;
2169 	struct ath_frame_info *fi = get_frame_info(skb);
2170 	struct ath_node *an = NULL;
2171 	enum ath9k_key_type keytype;
2172 	bool short_preamble = false;
2173 	u8 txpower;
2174 
2175 	/*
2176 	 * We check if Short Preamble is needed for the CTS rate by
2177 	 * checking the BSS's global flag.
2178 	 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
2179 	 */
2180 	if (tx_info->control.vif &&
2181 	    tx_info->control.vif->bss_conf.use_short_preamble)
2182 		short_preamble = true;
2183 
2184 	rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2185 	keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2186 
2187 	if (sta)
2188 		an = (struct ath_node *) sta->drv_priv;
2189 
2190 	if (tx_info->control.vif) {
2191 		struct ieee80211_vif *vif = tx_info->control.vif;
2192 
2193 		txpower = 2 * vif->bss_conf.txpower;
2194 	} else {
2195 		struct ath_softc *sc = hw->priv;
2196 
2197 		txpower = sc->cur_chan->cur_txpower;
2198 	}
2199 
2200 	memset(fi, 0, sizeof(*fi));
2201 	fi->txq = -1;
2202 	if (hw_key)
2203 		fi->keyix = hw_key->hw_key_idx;
2204 	else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2205 		fi->keyix = an->ps_key;
2206 	else
2207 		fi->keyix = ATH9K_TXKEYIX_INVALID;
2208 	fi->keytype = keytype;
2209 	fi->framelen = framelen;
2210 	fi->tx_power = txpower;
2211 
2212 	if (!rate)
2213 		return;
2214 	fi->rtscts_rate = rate->hw_value;
2215 	if (short_preamble)
2216 		fi->rtscts_rate |= rate->hw_value_short;
2217 }
2218 
2219 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2220 {
2221 	struct ath_hw *ah = sc->sc_ah;
2222 	struct ath9k_channel *curchan = ah->curchan;
2223 
2224 	if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
2225 	    (chainmask == 0x7) && (rate < 0x90))
2226 		return 0x3;
2227 	else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2228 		 IS_CCK_RATE(rate))
2229 		return 0x2;
2230 	else
2231 		return chainmask;
2232 }
2233 
2234 /*
2235  * Assign a descriptor (and sequence number if necessary,
2236  * and map buffer for DMA. Frees skb on error
2237  */
2238 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2239 					   struct ath_txq *txq,
2240 					   struct ath_atx_tid *tid,
2241 					   struct sk_buff *skb)
2242 {
2243 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2244 	struct ath_frame_info *fi = get_frame_info(skb);
2245 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2246 	struct ath_buf *bf;
2247 	int fragno;
2248 	u16 seqno;
2249 
2250 	bf = ath_tx_get_buffer(sc);
2251 	if (!bf) {
2252 		ath_dbg(common, XMIT, "TX buffers are full\n");
2253 		return NULL;
2254 	}
2255 
2256 	ATH_TXBUF_RESET(bf);
2257 
2258 	if (tid && ieee80211_is_data_present(hdr->frame_control)) {
2259 		fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2260 		seqno = tid->seq_next;
2261 		hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2262 
2263 		if (fragno)
2264 			hdr->seq_ctrl |= cpu_to_le16(fragno);
2265 
2266 		if (!ieee80211_has_morefrags(hdr->frame_control))
2267 			INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2268 
2269 		bf->bf_state.seqno = seqno;
2270 	}
2271 
2272 	bf->bf_mpdu = skb;
2273 
2274 	bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2275 					 skb->len, DMA_TO_DEVICE);
2276 	if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2277 		bf->bf_mpdu = NULL;
2278 		bf->bf_buf_addr = 0;
2279 		ath_err(ath9k_hw_common(sc->sc_ah),
2280 			"dma_mapping_error() on TX\n");
2281 		ath_tx_return_buffer(sc, bf);
2282 		return NULL;
2283 	}
2284 
2285 	fi->bf = bf;
2286 
2287 	return bf;
2288 }
2289 
2290 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb)
2291 {
2292 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2293 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2294 	struct ieee80211_vif *vif = info->control.vif;
2295 	struct ath_vif *avp;
2296 
2297 	if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
2298 		return;
2299 
2300 	if (!vif)
2301 		return;
2302 
2303 	avp = (struct ath_vif *)vif->drv_priv;
2304 
2305 	if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2306 		avp->seq_no += 0x10;
2307 
2308 	hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2309 	hdr->seq_ctrl |= cpu_to_le16(avp->seq_no);
2310 }
2311 
2312 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2313 			  struct ath_tx_control *txctl)
2314 {
2315 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2316 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2317 	struct ieee80211_sta *sta = txctl->sta;
2318 	struct ieee80211_vif *vif = info->control.vif;
2319 	struct ath_vif *avp;
2320 	struct ath_softc *sc = hw->priv;
2321 	int frmlen = skb->len + FCS_LEN;
2322 	int padpos, padsize;
2323 
2324 	/* NOTE:  sta can be NULL according to net/mac80211.h */
2325 	if (sta)
2326 		txctl->an = (struct ath_node *)sta->drv_priv;
2327 	else if (vif && ieee80211_is_data(hdr->frame_control)) {
2328 		avp = (void *)vif->drv_priv;
2329 		txctl->an = &avp->mcast_node;
2330 	}
2331 
2332 	if (info->control.hw_key)
2333 		frmlen += info->control.hw_key->icv_len;
2334 
2335 	ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb);
2336 
2337 	if ((vif && vif->type != NL80211_IFTYPE_AP &&
2338 	            vif->type != NL80211_IFTYPE_AP_VLAN) ||
2339 	    !ieee80211_is_data(hdr->frame_control))
2340 		info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2341 
2342 	/* Add the padding after the header if this is not already done */
2343 	padpos = ieee80211_hdrlen(hdr->frame_control);
2344 	padsize = padpos & 3;
2345 	if (padsize && skb->len > padpos) {
2346 		if (skb_headroom(skb) < padsize)
2347 			return -ENOMEM;
2348 
2349 		skb_push(skb, padsize);
2350 		memmove(skb->data, skb->data + padsize, padpos);
2351 	}
2352 
2353 	setup_frame_info(hw, sta, skb, frmlen);
2354 	return 0;
2355 }
2356 
2357 
2358 /* Upon failure caller should free skb */
2359 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2360 		 struct ath_tx_control *txctl)
2361 {
2362 	struct ieee80211_hdr *hdr;
2363 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2364 	struct ieee80211_sta *sta = txctl->sta;
2365 	struct ieee80211_vif *vif = info->control.vif;
2366 	struct ath_frame_info *fi = get_frame_info(skb);
2367 	struct ath_vif *avp = NULL;
2368 	struct ath_softc *sc = hw->priv;
2369 	struct ath_txq *txq = txctl->txq;
2370 	struct ath_atx_tid *tid = NULL;
2371 	struct ath_node *an = NULL;
2372 	struct ath_buf *bf;
2373 	bool ps_resp;
2374 	int q, ret;
2375 
2376 	if (vif)
2377 		avp = (void *)vif->drv_priv;
2378 
2379 	ps_resp = !!(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE);
2380 
2381 	ret = ath_tx_prepare(hw, skb, txctl);
2382 	if (ret)
2383 	    return ret;
2384 
2385 	hdr = (struct ieee80211_hdr *) skb->data;
2386 	/*
2387 	 * At this point, the vif, hw_key and sta pointers in the tx control
2388 	 * info are no longer valid (overwritten by the ath_frame_info data.
2389 	 */
2390 
2391 	q = skb_get_queue_mapping(skb);
2392 
2393 	if (ps_resp)
2394 		txq = sc->tx.uapsdq;
2395 
2396 	if (txctl->sta) {
2397 		an = (struct ath_node *) sta->drv_priv;
2398 		tid = ath_get_skb_tid(sc, an, skb);
2399 	}
2400 
2401 	ath_txq_lock(sc, txq);
2402 	if (txq == sc->tx.txq_map[q]) {
2403 		fi->txq = q;
2404 		++txq->pending_frames;
2405 	}
2406 
2407 	bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2408 	if (!bf) {
2409 		ath_txq_skb_done(sc, txq, skb);
2410 		if (txctl->paprd)
2411 			dev_kfree_skb_any(skb);
2412 		else
2413 			ieee80211_free_txskb(sc->hw, skb);
2414 		goto out;
2415 	}
2416 
2417 	bf->bf_state.bfs_paprd = txctl->paprd;
2418 
2419 	if (txctl->paprd)
2420 		bf->bf_state.bfs_paprd_timestamp = jiffies;
2421 
2422 	ath_set_rates(vif, sta, bf);
2423 	ath_tx_send_normal(sc, txq, tid, skb);
2424 
2425 out:
2426 	ath_txq_unlock(sc, txq);
2427 
2428 	return 0;
2429 }
2430 
2431 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2432 		 struct sk_buff *skb)
2433 {
2434 	struct ath_softc *sc = hw->priv;
2435 	struct ath_tx_control txctl = {
2436 		.txq = sc->beacon.cabq
2437 	};
2438 	struct ath_tx_info info = {};
2439 	struct ath_buf *bf_tail = NULL;
2440 	struct ath_buf *bf;
2441 	LIST_HEAD(bf_q);
2442 	int duration = 0;
2443 	int max_duration;
2444 
2445 	max_duration =
2446 		sc->cur_chan->beacon.beacon_interval * 1000 *
2447 		sc->cur_chan->beacon.dtim_period / ATH_BCBUF;
2448 
2449 	do {
2450 		struct ath_frame_info *fi = get_frame_info(skb);
2451 
2452 		if (ath_tx_prepare(hw, skb, &txctl))
2453 			break;
2454 
2455 		bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2456 		if (!bf)
2457 			break;
2458 
2459 		bf->bf_lastbf = bf;
2460 		ath_set_rates(vif, NULL, bf);
2461 		ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2462 		duration += info.rates[0].PktDuration;
2463 		if (bf_tail)
2464 			bf_tail->bf_next = bf;
2465 
2466 		list_add_tail(&bf->list, &bf_q);
2467 		bf_tail = bf;
2468 		skb = NULL;
2469 
2470 		if (duration > max_duration)
2471 			break;
2472 
2473 		skb = ieee80211_get_buffered_bc(hw, vif);
2474 	} while(skb);
2475 
2476 	if (skb)
2477 		ieee80211_free_txskb(hw, skb);
2478 
2479 	if (list_empty(&bf_q))
2480 		return;
2481 
2482 	bf = list_last_entry(&bf_q, struct ath_buf, list);
2483 	ath9k_set_moredata(sc, bf, false);
2484 
2485 	bf = list_first_entry(&bf_q, struct ath_buf, list);
2486 	ath_txq_lock(sc, txctl.txq);
2487 	ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2488 	ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2489 	TX_STAT_INC(txctl.txq->axq_qnum, queued);
2490 	ath_txq_unlock(sc, txctl.txq);
2491 }
2492 
2493 /*****************/
2494 /* TX Completion */
2495 /*****************/
2496 
2497 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2498 			    int tx_flags, struct ath_txq *txq,
2499 			    struct ieee80211_sta *sta)
2500 {
2501 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2502 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2503 	struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2504 	int padpos, padsize;
2505 	unsigned long flags;
2506 
2507 	ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2508 
2509 	if (sc->sc_ah->caldata)
2510 		set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
2511 
2512 	if (!(tx_flags & ATH_TX_ERROR)) {
2513 		if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
2514 			tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
2515 		else
2516 			tx_info->flags |= IEEE80211_TX_STAT_ACK;
2517 	}
2518 
2519 	if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
2520 		padpos = ieee80211_hdrlen(hdr->frame_control);
2521 		padsize = padpos & 3;
2522 		if (padsize && skb->len>padpos+padsize) {
2523 			/*
2524 			 * Remove MAC header padding before giving the frame back to
2525 			 * mac80211.
2526 			 */
2527 			memmove(skb->data + padsize, skb->data, padpos);
2528 			skb_pull(skb, padsize);
2529 		}
2530 	}
2531 
2532 	spin_lock_irqsave(&sc->sc_pm_lock, flags);
2533 	if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2534 		sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2535 		ath_dbg(common, PS,
2536 			"Going back to sleep after having received TX status (0x%lx)\n",
2537 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
2538 					PS_WAIT_FOR_CAB |
2539 					PS_WAIT_FOR_PSPOLL_DATA |
2540 					PS_WAIT_FOR_TX_ACK));
2541 	}
2542 	spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2543 
2544 	ath_txq_skb_done(sc, txq, skb);
2545 	tx_info->status.status_driver_data[0] = sta;
2546 	__skb_queue_tail(&txq->complete_q, skb);
2547 }
2548 
2549 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2550 				struct ath_txq *txq, struct list_head *bf_q,
2551 				struct ieee80211_sta *sta,
2552 				struct ath_tx_status *ts, int txok)
2553 {
2554 	struct sk_buff *skb = bf->bf_mpdu;
2555 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2556 	unsigned long flags;
2557 	int tx_flags = 0;
2558 
2559 	if (!txok)
2560 		tx_flags |= ATH_TX_ERROR;
2561 
2562 	if (ts->ts_status & ATH9K_TXERR_FILT)
2563 		tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2564 
2565 	dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2566 	bf->bf_buf_addr = 0;
2567 	if (sc->tx99_state)
2568 		goto skip_tx_complete;
2569 
2570 	if (bf->bf_state.bfs_paprd) {
2571 		if (time_after(jiffies,
2572 				bf->bf_state.bfs_paprd_timestamp +
2573 				msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2574 			dev_kfree_skb_any(skb);
2575 		else
2576 			complete(&sc->paprd_complete);
2577 	} else {
2578 		ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2579 		ath_tx_complete(sc, skb, tx_flags, txq, sta);
2580 	}
2581 skip_tx_complete:
2582 	/* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2583 	 * accidentally reference it later.
2584 	 */
2585 	bf->bf_mpdu = NULL;
2586 
2587 	/*
2588 	 * Return the list of ath_buf of this mpdu to free queue
2589 	 */
2590 	spin_lock_irqsave(&sc->tx.txbuflock, flags);
2591 	list_splice_tail_init(bf_q, &sc->tx.txbuf);
2592 	spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2593 }
2594 
2595 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2596 			     struct ath_tx_status *ts, int nframes, int nbad,
2597 			     int txok)
2598 {
2599 	struct sk_buff *skb = bf->bf_mpdu;
2600 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2601 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2602 	struct ieee80211_hw *hw = sc->hw;
2603 	struct ath_hw *ah = sc->sc_ah;
2604 	u8 i, tx_rateindex;
2605 
2606 	if (txok)
2607 		tx_info->status.ack_signal = ts->ts_rssi;
2608 
2609 	tx_rateindex = ts->ts_rateindex;
2610 	WARN_ON(tx_rateindex >= hw->max_rates);
2611 
2612 	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2613 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2614 
2615 		BUG_ON(nbad > nframes);
2616 	}
2617 	tx_info->status.ampdu_len = nframes;
2618 	tx_info->status.ampdu_ack_len = nframes - nbad;
2619 
2620 	if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2621 	    (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2622 		/*
2623 		 * If an underrun error is seen assume it as an excessive
2624 		 * retry only if max frame trigger level has been reached
2625 		 * (2 KB for single stream, and 4 KB for dual stream).
2626 		 * Adjust the long retry as if the frame was tried
2627 		 * hw->max_rate_tries times to affect how rate control updates
2628 		 * PER for the failed rate.
2629 		 * In case of congestion on the bus penalizing this type of
2630 		 * underruns should help hardware actually transmit new frames
2631 		 * successfully by eventually preferring slower rates.
2632 		 * This itself should also alleviate congestion on the bus.
2633 		 */
2634 		if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2635 		                             ATH9K_TX_DELIM_UNDERRUN)) &&
2636 		    ieee80211_is_data(hdr->frame_control) &&
2637 		    ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2638 			tx_info->status.rates[tx_rateindex].count =
2639 				hw->max_rate_tries;
2640 	}
2641 
2642 	for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2643 		tx_info->status.rates[i].count = 0;
2644 		tx_info->status.rates[i].idx = -1;
2645 	}
2646 
2647 	tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2648 }
2649 
2650 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2651 {
2652 	struct ath_hw *ah = sc->sc_ah;
2653 	struct ath_common *common = ath9k_hw_common(ah);
2654 	struct ath_buf *bf, *lastbf, *bf_held = NULL;
2655 	struct list_head bf_head;
2656 	struct ath_desc *ds;
2657 	struct ath_tx_status ts;
2658 	int status;
2659 
2660 	ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2661 		txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2662 		txq->axq_link);
2663 
2664 	ath_txq_lock(sc, txq);
2665 	for (;;) {
2666 		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2667 			break;
2668 
2669 		if (list_empty(&txq->axq_q)) {
2670 			txq->axq_link = NULL;
2671 			ath_txq_schedule(sc, txq);
2672 			break;
2673 		}
2674 		bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2675 
2676 		/*
2677 		 * There is a race condition that a BH gets scheduled
2678 		 * after sw writes TxE and before hw re-load the last
2679 		 * descriptor to get the newly chained one.
2680 		 * Software must keep the last DONE descriptor as a
2681 		 * holding descriptor - software does so by marking
2682 		 * it with the STALE flag.
2683 		 */
2684 		bf_held = NULL;
2685 		if (bf->bf_state.stale) {
2686 			bf_held = bf;
2687 			if (list_is_last(&bf_held->list, &txq->axq_q))
2688 				break;
2689 
2690 			bf = list_entry(bf_held->list.next, struct ath_buf,
2691 					list);
2692 		}
2693 
2694 		lastbf = bf->bf_lastbf;
2695 		ds = lastbf->bf_desc;
2696 
2697 		memset(&ts, 0, sizeof(ts));
2698 		status = ath9k_hw_txprocdesc(ah, ds, &ts);
2699 		if (status == -EINPROGRESS)
2700 			break;
2701 
2702 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2703 
2704 		/*
2705 		 * Remove ath_buf's of the same transmit unit from txq,
2706 		 * however leave the last descriptor back as the holding
2707 		 * descriptor for hw.
2708 		 */
2709 		lastbf->bf_state.stale = true;
2710 		INIT_LIST_HEAD(&bf_head);
2711 		if (!list_is_singular(&lastbf->list))
2712 			list_cut_position(&bf_head,
2713 				&txq->axq_q, lastbf->list.prev);
2714 
2715 		if (bf_held) {
2716 			list_del(&bf_held->list);
2717 			ath_tx_return_buffer(sc, bf_held);
2718 		}
2719 
2720 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2721 	}
2722 	ath_txq_unlock_complete(sc, txq);
2723 }
2724 
2725 void ath_tx_tasklet(struct ath_softc *sc)
2726 {
2727 	struct ath_hw *ah = sc->sc_ah;
2728 	u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2729 	int i;
2730 
2731 	rcu_read_lock();
2732 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2733 		if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2734 			ath_tx_processq(sc, &sc->tx.txq[i]);
2735 	}
2736 	rcu_read_unlock();
2737 }
2738 
2739 void ath_tx_edma_tasklet(struct ath_softc *sc)
2740 {
2741 	struct ath_tx_status ts;
2742 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2743 	struct ath_hw *ah = sc->sc_ah;
2744 	struct ath_txq *txq;
2745 	struct ath_buf *bf, *lastbf;
2746 	struct list_head bf_head;
2747 	struct list_head *fifo_list;
2748 	int status;
2749 
2750 	rcu_read_lock();
2751 	for (;;) {
2752 		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2753 			break;
2754 
2755 		status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2756 		if (status == -EINPROGRESS)
2757 			break;
2758 		if (status == -EIO) {
2759 			ath_dbg(common, XMIT, "Error processing tx status\n");
2760 			break;
2761 		}
2762 
2763 		/* Process beacon completions separately */
2764 		if (ts.qid == sc->beacon.beaconq) {
2765 			sc->beacon.tx_processed = true;
2766 			sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2767 
2768 			if (ath9k_is_chanctx_enabled()) {
2769 				ath_chanctx_event(sc, NULL,
2770 						  ATH_CHANCTX_EVENT_BEACON_SENT);
2771 			}
2772 
2773 			ath9k_csa_update(sc);
2774 			continue;
2775 		}
2776 
2777 		txq = &sc->tx.txq[ts.qid];
2778 
2779 		ath_txq_lock(sc, txq);
2780 
2781 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2782 
2783 		fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2784 		if (list_empty(fifo_list)) {
2785 			ath_txq_unlock(sc, txq);
2786 			break;
2787 		}
2788 
2789 		bf = list_first_entry(fifo_list, struct ath_buf, list);
2790 		if (bf->bf_state.stale) {
2791 			list_del(&bf->list);
2792 			ath_tx_return_buffer(sc, bf);
2793 			bf = list_first_entry(fifo_list, struct ath_buf, list);
2794 		}
2795 
2796 		lastbf = bf->bf_lastbf;
2797 
2798 		INIT_LIST_HEAD(&bf_head);
2799 		if (list_is_last(&lastbf->list, fifo_list)) {
2800 			list_splice_tail_init(fifo_list, &bf_head);
2801 			INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2802 
2803 			if (!list_empty(&txq->axq_q)) {
2804 				struct list_head bf_q;
2805 
2806 				INIT_LIST_HEAD(&bf_q);
2807 				txq->axq_link = NULL;
2808 				list_splice_tail_init(&txq->axq_q, &bf_q);
2809 				ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2810 			}
2811 		} else {
2812 			lastbf->bf_state.stale = true;
2813 			if (bf != lastbf)
2814 				list_cut_position(&bf_head, fifo_list,
2815 						  lastbf->list.prev);
2816 		}
2817 
2818 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2819 		ath_txq_unlock_complete(sc, txq);
2820 	}
2821 	rcu_read_unlock();
2822 }
2823 
2824 /*****************/
2825 /* Init, Cleanup */
2826 /*****************/
2827 
2828 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2829 {
2830 	struct ath_descdma *dd = &sc->txsdma;
2831 	u8 txs_len = sc->sc_ah->caps.txs_len;
2832 
2833 	dd->dd_desc_len = size * txs_len;
2834 	dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2835 					  &dd->dd_desc_paddr, GFP_KERNEL);
2836 	if (!dd->dd_desc)
2837 		return -ENOMEM;
2838 
2839 	return 0;
2840 }
2841 
2842 static int ath_tx_edma_init(struct ath_softc *sc)
2843 {
2844 	int err;
2845 
2846 	err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2847 	if (!err)
2848 		ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2849 					  sc->txsdma.dd_desc_paddr,
2850 					  ATH_TXSTATUS_RING_SIZE);
2851 
2852 	return err;
2853 }
2854 
2855 int ath_tx_init(struct ath_softc *sc, int nbufs)
2856 {
2857 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2858 	int error = 0;
2859 
2860 	spin_lock_init(&sc->tx.txbuflock);
2861 
2862 	error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2863 				  "tx", nbufs, 1, 1);
2864 	if (error != 0) {
2865 		ath_err(common,
2866 			"Failed to allocate tx descriptors: %d\n", error);
2867 		return error;
2868 	}
2869 
2870 	error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2871 				  "beacon", ATH_BCBUF, 1, 1);
2872 	if (error != 0) {
2873 		ath_err(common,
2874 			"Failed to allocate beacon descriptors: %d\n", error);
2875 		return error;
2876 	}
2877 
2878 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2879 		error = ath_tx_edma_init(sc);
2880 
2881 	return error;
2882 }
2883 
2884 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2885 {
2886 	struct ath_atx_tid *tid;
2887 	int tidno, acno;
2888 
2889 	for (acno = 0; acno < IEEE80211_NUM_ACS; acno++)
2890 		an->airtime_deficit[acno] = ATH_AIRTIME_QUANTUM;
2891 
2892 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
2893 		tid = ath_node_to_tid(an, tidno);
2894 		tid->an        = an;
2895 		tid->tidno     = tidno;
2896 		tid->seq_start = tid->seq_next = 0;
2897 		tid->baw_size  = WME_MAX_BA;
2898 		tid->baw_head  = tid->baw_tail = 0;
2899 		tid->active	   = false;
2900 		tid->clear_ps_filter = true;
2901 		tid->has_queued  = false;
2902 		__skb_queue_head_init(&tid->retry_q);
2903 		INIT_LIST_HEAD(&tid->list);
2904 		acno = TID_TO_WME_AC(tidno);
2905 		tid->txq = sc->tx.txq_map[acno];
2906 
2907 		if (!an->sta)
2908 			break; /* just one multicast ath_atx_tid */
2909 	}
2910 }
2911 
2912 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2913 {
2914 	struct ath_atx_tid *tid;
2915 	struct ath_txq *txq;
2916 	int tidno;
2917 
2918 	rcu_read_lock();
2919 
2920 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
2921 		tid = ath_node_to_tid(an, tidno);
2922 		txq = tid->txq;
2923 
2924 		ath_txq_lock(sc, txq);
2925 
2926 		if (!list_empty(&tid->list))
2927 			list_del_init(&tid->list);
2928 
2929 		ath_tid_drain(sc, txq, tid);
2930 		tid->active = false;
2931 
2932 		ath_txq_unlock(sc, txq);
2933 
2934 		if (!an->sta)
2935 			break; /* just one multicast ath_atx_tid */
2936 	}
2937 
2938 	rcu_read_unlock();
2939 }
2940 
2941 #ifdef CONFIG_ATH9K_TX99
2942 
2943 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
2944 		    struct ath_tx_control *txctl)
2945 {
2946 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2947 	struct ath_frame_info *fi = get_frame_info(skb);
2948 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2949 	struct ath_buf *bf;
2950 	int padpos, padsize;
2951 
2952 	padpos = ieee80211_hdrlen(hdr->frame_control);
2953 	padsize = padpos & 3;
2954 
2955 	if (padsize && skb->len > padpos) {
2956 		if (skb_headroom(skb) < padsize) {
2957 			ath_dbg(common, XMIT,
2958 				"tx99 padding failed\n");
2959 			return -EINVAL;
2960 		}
2961 
2962 		skb_push(skb, padsize);
2963 		memmove(skb->data, skb->data + padsize, padpos);
2964 	}
2965 
2966 	fi->keyix = ATH9K_TXKEYIX_INVALID;
2967 	fi->framelen = skb->len + FCS_LEN;
2968 	fi->keytype = ATH9K_KEY_TYPE_CLEAR;
2969 
2970 	bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
2971 	if (!bf) {
2972 		ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
2973 		return -EINVAL;
2974 	}
2975 
2976 	ath_set_rates(sc->tx99_vif, NULL, bf);
2977 
2978 	ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
2979 	ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
2980 
2981 	ath_tx_send_normal(sc, txctl->txq, NULL, skb);
2982 
2983 	return 0;
2984 }
2985 
2986 #endif /* CONFIG_ATH9K_TX99 */
2987