xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/xmit.c (revision 95e9fd10)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20 
21 #define BITS_PER_BYTE           8
22 #define OFDM_PLCP_BITS          22
23 #define HT_RC_2_STREAMS(_rc)    ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF                   8
25 #define L_LTF                   8
26 #define L_SIG                   4
27 #define HT_SIG                  8
28 #define HT_STF                  4
29 #define HT_LTF(_ns)             (4 * (_ns))
30 #define SYMBOL_TIME(_ns)        ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5)  /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t)         ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t)  (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36 
37 
38 static u16 bits_per_symbol[][2] = {
39 	/* 20MHz 40MHz */
40 	{    26,   54 },     /*  0: BPSK */
41 	{    52,  108 },     /*  1: QPSK 1/2 */
42 	{    78,  162 },     /*  2: QPSK 3/4 */
43 	{   104,  216 },     /*  3: 16-QAM 1/2 */
44 	{   156,  324 },     /*  4: 16-QAM 3/4 */
45 	{   208,  432 },     /*  5: 64-QAM 2/3 */
46 	{   234,  486 },     /*  6: 64-QAM 3/4 */
47 	{   260,  540 },     /*  7: 64-QAM 5/6 */
48 };
49 
50 #define IS_HT_RATE(_rate)     ((_rate) & 0x80)
51 
52 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
53 			       struct ath_atx_tid *tid, struct sk_buff *skb);
54 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
55 			    int tx_flags, struct ath_txq *txq);
56 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
57 				struct ath_txq *txq, struct list_head *bf_q,
58 				struct ath_tx_status *ts, int txok);
59 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
60 			     struct list_head *head, bool internal);
61 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
62 			     struct ath_tx_status *ts, int nframes, int nbad,
63 			     int txok);
64 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
65 			      int seqno);
66 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
67 					   struct ath_txq *txq,
68 					   struct ath_atx_tid *tid,
69 					   struct sk_buff *skb,
70 					   bool dequeue);
71 
72 enum {
73 	MCS_HT20,
74 	MCS_HT20_SGI,
75 	MCS_HT40,
76 	MCS_HT40_SGI,
77 };
78 
79 /*********************/
80 /* Aggregation logic */
81 /*********************/
82 
83 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
84 	__acquires(&txq->axq_lock)
85 {
86 	spin_lock_bh(&txq->axq_lock);
87 }
88 
89 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
90 	__releases(&txq->axq_lock)
91 {
92 	spin_unlock_bh(&txq->axq_lock);
93 }
94 
95 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
96 	__releases(&txq->axq_lock)
97 {
98 	struct sk_buff_head q;
99 	struct sk_buff *skb;
100 
101 	__skb_queue_head_init(&q);
102 	skb_queue_splice_init(&txq->complete_q, &q);
103 	spin_unlock_bh(&txq->axq_lock);
104 
105 	while ((skb = __skb_dequeue(&q)))
106 		ieee80211_tx_status(sc->hw, skb);
107 }
108 
109 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
110 {
111 	struct ath_atx_ac *ac = tid->ac;
112 
113 	if (tid->paused)
114 		return;
115 
116 	if (tid->sched)
117 		return;
118 
119 	tid->sched = true;
120 	list_add_tail(&tid->list, &ac->tid_q);
121 
122 	if (ac->sched)
123 		return;
124 
125 	ac->sched = true;
126 	list_add_tail(&ac->list, &txq->axq_acq);
127 }
128 
129 static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
130 {
131 	struct ath_txq *txq = tid->ac->txq;
132 
133 	WARN_ON(!tid->paused);
134 
135 	ath_txq_lock(sc, txq);
136 	tid->paused = false;
137 
138 	if (skb_queue_empty(&tid->buf_q))
139 		goto unlock;
140 
141 	ath_tx_queue_tid(txq, tid);
142 	ath_txq_schedule(sc, txq);
143 unlock:
144 	ath_txq_unlock_complete(sc, txq);
145 }
146 
147 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
148 {
149 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
150 	BUILD_BUG_ON(sizeof(struct ath_frame_info) >
151 		     sizeof(tx_info->rate_driver_data));
152 	return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
153 }
154 
155 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
156 {
157 	ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
158 			   seqno << IEEE80211_SEQ_SEQ_SHIFT);
159 }
160 
161 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
162 {
163 	struct ath_txq *txq = tid->ac->txq;
164 	struct sk_buff *skb;
165 	struct ath_buf *bf;
166 	struct list_head bf_head;
167 	struct ath_tx_status ts;
168 	struct ath_frame_info *fi;
169 	bool sendbar = false;
170 
171 	INIT_LIST_HEAD(&bf_head);
172 
173 	memset(&ts, 0, sizeof(ts));
174 
175 	while ((skb = __skb_dequeue(&tid->buf_q))) {
176 		fi = get_frame_info(skb);
177 		bf = fi->bf;
178 
179 		if (bf && fi->retries) {
180 			list_add_tail(&bf->list, &bf_head);
181 			ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
182 			ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
183 			sendbar = true;
184 		} else {
185 			ath_tx_send_normal(sc, txq, NULL, skb);
186 		}
187 	}
188 
189 	if (tid->baw_head == tid->baw_tail) {
190 		tid->state &= ~AGGR_ADDBA_COMPLETE;
191 		tid->state &= ~AGGR_CLEANUP;
192 	}
193 
194 	if (sendbar) {
195 		ath_txq_unlock(sc, txq);
196 		ath_send_bar(tid, tid->seq_start);
197 		ath_txq_lock(sc, txq);
198 	}
199 }
200 
201 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
202 			      int seqno)
203 {
204 	int index, cindex;
205 
206 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
207 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
208 
209 	__clear_bit(cindex, tid->tx_buf);
210 
211 	while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
212 		INCR(tid->seq_start, IEEE80211_SEQ_MAX);
213 		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
214 		if (tid->bar_index >= 0)
215 			tid->bar_index--;
216 	}
217 }
218 
219 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
220 			     u16 seqno)
221 {
222 	int index, cindex;
223 
224 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
225 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
226 	__set_bit(cindex, tid->tx_buf);
227 
228 	if (index >= ((tid->baw_tail - tid->baw_head) &
229 		(ATH_TID_MAX_BUFS - 1))) {
230 		tid->baw_tail = cindex;
231 		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
232 	}
233 }
234 
235 /*
236  * TODO: For frame(s) that are in the retry state, we will reuse the
237  * sequence number(s) without setting the retry bit. The
238  * alternative is to give up on these and BAR the receiver's window
239  * forward.
240  */
241 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
242 			  struct ath_atx_tid *tid)
243 
244 {
245 	struct sk_buff *skb;
246 	struct ath_buf *bf;
247 	struct list_head bf_head;
248 	struct ath_tx_status ts;
249 	struct ath_frame_info *fi;
250 
251 	memset(&ts, 0, sizeof(ts));
252 	INIT_LIST_HEAD(&bf_head);
253 
254 	while ((skb = __skb_dequeue(&tid->buf_q))) {
255 		fi = get_frame_info(skb);
256 		bf = fi->bf;
257 
258 		if (!bf) {
259 			ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
260 			continue;
261 		}
262 
263 		list_add_tail(&bf->list, &bf_head);
264 
265 		if (fi->retries)
266 			ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
267 
268 		ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
269 	}
270 
271 	tid->seq_next = tid->seq_start;
272 	tid->baw_tail = tid->baw_head;
273 	tid->bar_index = -1;
274 }
275 
276 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
277 			     struct sk_buff *skb, int count)
278 {
279 	struct ath_frame_info *fi = get_frame_info(skb);
280 	struct ath_buf *bf = fi->bf;
281 	struct ieee80211_hdr *hdr;
282 	int prev = fi->retries;
283 
284 	TX_STAT_INC(txq->axq_qnum, a_retries);
285 	fi->retries += count;
286 
287 	if (prev > 0)
288 		return;
289 
290 	hdr = (struct ieee80211_hdr *)skb->data;
291 	hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
292 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
293 		sizeof(*hdr), DMA_TO_DEVICE);
294 }
295 
296 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
297 {
298 	struct ath_buf *bf = NULL;
299 
300 	spin_lock_bh(&sc->tx.txbuflock);
301 
302 	if (unlikely(list_empty(&sc->tx.txbuf))) {
303 		spin_unlock_bh(&sc->tx.txbuflock);
304 		return NULL;
305 	}
306 
307 	bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
308 	list_del(&bf->list);
309 
310 	spin_unlock_bh(&sc->tx.txbuflock);
311 
312 	return bf;
313 }
314 
315 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
316 {
317 	spin_lock_bh(&sc->tx.txbuflock);
318 	list_add_tail(&bf->list, &sc->tx.txbuf);
319 	spin_unlock_bh(&sc->tx.txbuflock);
320 }
321 
322 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
323 {
324 	struct ath_buf *tbf;
325 
326 	tbf = ath_tx_get_buffer(sc);
327 	if (WARN_ON(!tbf))
328 		return NULL;
329 
330 	ATH_TXBUF_RESET(tbf);
331 
332 	tbf->bf_mpdu = bf->bf_mpdu;
333 	tbf->bf_buf_addr = bf->bf_buf_addr;
334 	memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
335 	tbf->bf_state = bf->bf_state;
336 
337 	return tbf;
338 }
339 
340 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
341 			        struct ath_tx_status *ts, int txok,
342 			        int *nframes, int *nbad)
343 {
344 	struct ath_frame_info *fi;
345 	u16 seq_st = 0;
346 	u32 ba[WME_BA_BMP_SIZE >> 5];
347 	int ba_index;
348 	int isaggr = 0;
349 
350 	*nbad = 0;
351 	*nframes = 0;
352 
353 	isaggr = bf_isaggr(bf);
354 	if (isaggr) {
355 		seq_st = ts->ts_seqnum;
356 		memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
357 	}
358 
359 	while (bf) {
360 		fi = get_frame_info(bf->bf_mpdu);
361 		ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
362 
363 		(*nframes)++;
364 		if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
365 			(*nbad)++;
366 
367 		bf = bf->bf_next;
368 	}
369 }
370 
371 
372 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
373 				 struct ath_buf *bf, struct list_head *bf_q,
374 				 struct ath_tx_status *ts, int txok, bool retry)
375 {
376 	struct ath_node *an = NULL;
377 	struct sk_buff *skb;
378 	struct ieee80211_sta *sta;
379 	struct ieee80211_hw *hw = sc->hw;
380 	struct ieee80211_hdr *hdr;
381 	struct ieee80211_tx_info *tx_info;
382 	struct ath_atx_tid *tid = NULL;
383 	struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
384 	struct list_head bf_head;
385 	struct sk_buff_head bf_pending;
386 	u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
387 	u32 ba[WME_BA_BMP_SIZE >> 5];
388 	int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
389 	bool rc_update = true;
390 	struct ieee80211_tx_rate rates[4];
391 	struct ath_frame_info *fi;
392 	int nframes;
393 	u8 tidno;
394 	bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
395 	int i, retries;
396 	int bar_index = -1;
397 
398 	skb = bf->bf_mpdu;
399 	hdr = (struct ieee80211_hdr *)skb->data;
400 
401 	tx_info = IEEE80211_SKB_CB(skb);
402 
403 	memcpy(rates, tx_info->control.rates, sizeof(rates));
404 
405 	retries = ts->ts_longretry + 1;
406 	for (i = 0; i < ts->ts_rateindex; i++)
407 		retries += rates[i].count;
408 
409 	rcu_read_lock();
410 
411 	sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
412 	if (!sta) {
413 		rcu_read_unlock();
414 
415 		INIT_LIST_HEAD(&bf_head);
416 		while (bf) {
417 			bf_next = bf->bf_next;
418 
419 			if (!bf->bf_stale || bf_next != NULL)
420 				list_move_tail(&bf->list, &bf_head);
421 
422 			ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
423 
424 			bf = bf_next;
425 		}
426 		return;
427 	}
428 
429 	an = (struct ath_node *)sta->drv_priv;
430 	tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
431 	tid = ATH_AN_2_TID(an, tidno);
432 	seq_first = tid->seq_start;
433 
434 	/*
435 	 * The hardware occasionally sends a tx status for the wrong TID.
436 	 * In this case, the BA status cannot be considered valid and all
437 	 * subframes need to be retransmitted
438 	 */
439 	if (tidno != ts->tid)
440 		txok = false;
441 
442 	isaggr = bf_isaggr(bf);
443 	memset(ba, 0, WME_BA_BMP_SIZE >> 3);
444 
445 	if (isaggr && txok) {
446 		if (ts->ts_flags & ATH9K_TX_BA) {
447 			seq_st = ts->ts_seqnum;
448 			memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
449 		} else {
450 			/*
451 			 * AR5416 can become deaf/mute when BA
452 			 * issue happens. Chip needs to be reset.
453 			 * But AP code may have sychronization issues
454 			 * when perform internal reset in this routine.
455 			 * Only enable reset in STA mode for now.
456 			 */
457 			if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
458 				needreset = 1;
459 		}
460 	}
461 
462 	__skb_queue_head_init(&bf_pending);
463 
464 	ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
465 	while (bf) {
466 		u16 seqno = bf->bf_state.seqno;
467 
468 		txfail = txpending = sendbar = 0;
469 		bf_next = bf->bf_next;
470 
471 		skb = bf->bf_mpdu;
472 		tx_info = IEEE80211_SKB_CB(skb);
473 		fi = get_frame_info(skb);
474 
475 		if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
476 			/* transmit completion, subframe is
477 			 * acked by block ack */
478 			acked_cnt++;
479 		} else if (!isaggr && txok) {
480 			/* transmit completion */
481 			acked_cnt++;
482 		} else if ((tid->state & AGGR_CLEANUP) || !retry) {
483 			/*
484 			 * cleanup in progress, just fail
485 			 * the un-acked sub-frames
486 			 */
487 			txfail = 1;
488 		} else if (flush) {
489 			txpending = 1;
490 		} else if (fi->retries < ATH_MAX_SW_RETRIES) {
491 			if (txok || !an->sleeping)
492 				ath_tx_set_retry(sc, txq, bf->bf_mpdu,
493 						 retries);
494 
495 			txpending = 1;
496 		} else {
497 			txfail = 1;
498 			txfail_cnt++;
499 			bar_index = max_t(int, bar_index,
500 				ATH_BA_INDEX(seq_first, seqno));
501 		}
502 
503 		/*
504 		 * Make sure the last desc is reclaimed if it
505 		 * not a holding desc.
506 		 */
507 		INIT_LIST_HEAD(&bf_head);
508 		if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) ||
509 		    bf_next != NULL || !bf_last->bf_stale)
510 			list_move_tail(&bf->list, &bf_head);
511 
512 		if (!txpending || (tid->state & AGGR_CLEANUP)) {
513 			/*
514 			 * complete the acked-ones/xretried ones; update
515 			 * block-ack window
516 			 */
517 			ath_tx_update_baw(sc, tid, seqno);
518 
519 			if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
520 				memcpy(tx_info->control.rates, rates, sizeof(rates));
521 				ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
522 				rc_update = false;
523 			}
524 
525 			ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
526 				!txfail);
527 		} else {
528 			/* retry the un-acked ones */
529 			if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
530 			    bf->bf_next == NULL && bf_last->bf_stale) {
531 				struct ath_buf *tbf;
532 
533 				tbf = ath_clone_txbuf(sc, bf_last);
534 				/*
535 				 * Update tx baw and complete the
536 				 * frame with failed status if we
537 				 * run out of tx buf.
538 				 */
539 				if (!tbf) {
540 					ath_tx_update_baw(sc, tid, seqno);
541 
542 					ath_tx_complete_buf(sc, bf, txq,
543 							    &bf_head, ts, 0);
544 					bar_index = max_t(int, bar_index,
545 						ATH_BA_INDEX(seq_first, seqno));
546 					break;
547 				}
548 
549 				fi->bf = tbf;
550 			}
551 
552 			/*
553 			 * Put this buffer to the temporary pending
554 			 * queue to retain ordering
555 			 */
556 			__skb_queue_tail(&bf_pending, skb);
557 		}
558 
559 		bf = bf_next;
560 	}
561 
562 	/* prepend un-acked frames to the beginning of the pending frame queue */
563 	if (!skb_queue_empty(&bf_pending)) {
564 		if (an->sleeping)
565 			ieee80211_sta_set_buffered(sta, tid->tidno, true);
566 
567 		skb_queue_splice(&bf_pending, &tid->buf_q);
568 		if (!an->sleeping) {
569 			ath_tx_queue_tid(txq, tid);
570 
571 			if (ts->ts_status & ATH9K_TXERR_FILT)
572 				tid->ac->clear_ps_filter = true;
573 		}
574 	}
575 
576 	if (bar_index >= 0) {
577 		u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
578 
579 		if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
580 			tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
581 
582 		ath_txq_unlock(sc, txq);
583 		ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
584 		ath_txq_lock(sc, txq);
585 	}
586 
587 	if (tid->state & AGGR_CLEANUP)
588 		ath_tx_flush_tid(sc, tid);
589 
590 	rcu_read_unlock();
591 
592 	if (needreset)
593 		ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
594 }
595 
596 static bool ath_lookup_legacy(struct ath_buf *bf)
597 {
598 	struct sk_buff *skb;
599 	struct ieee80211_tx_info *tx_info;
600 	struct ieee80211_tx_rate *rates;
601 	int i;
602 
603 	skb = bf->bf_mpdu;
604 	tx_info = IEEE80211_SKB_CB(skb);
605 	rates = tx_info->control.rates;
606 
607 	for (i = 0; i < 4; i++) {
608 		if (!rates[i].count || rates[i].idx < 0)
609 			break;
610 
611 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
612 			return true;
613 	}
614 
615 	return false;
616 }
617 
618 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
619 			   struct ath_atx_tid *tid)
620 {
621 	struct sk_buff *skb;
622 	struct ieee80211_tx_info *tx_info;
623 	struct ieee80211_tx_rate *rates;
624 	u32 max_4ms_framelen, frmlen;
625 	u16 aggr_limit, bt_aggr_limit, legacy = 0;
626 	int q = tid->ac->txq->mac80211_qnum;
627 	int i;
628 
629 	skb = bf->bf_mpdu;
630 	tx_info = IEEE80211_SKB_CB(skb);
631 	rates = tx_info->control.rates;
632 
633 	/*
634 	 * Find the lowest frame length among the rate series that will have a
635 	 * 4ms (or TXOP limited) transmit duration.
636 	 */
637 	max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
638 
639 	for (i = 0; i < 4; i++) {
640 		int modeidx;
641 
642 		if (!rates[i].count)
643 			continue;
644 
645 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
646 			legacy = 1;
647 			break;
648 		}
649 
650 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
651 			modeidx = MCS_HT40;
652 		else
653 			modeidx = MCS_HT20;
654 
655 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
656 			modeidx++;
657 
658 		frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
659 		max_4ms_framelen = min(max_4ms_framelen, frmlen);
660 	}
661 
662 	/*
663 	 * limit aggregate size by the minimum rate if rate selected is
664 	 * not a probe rate, if rate selected is a probe rate then
665 	 * avoid aggregation of this packet.
666 	 */
667 	if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
668 		return 0;
669 
670 	aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
671 
672 	/*
673 	 * Override the default aggregation limit for BTCOEX.
674 	 */
675 	bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
676 	if (bt_aggr_limit)
677 		aggr_limit = bt_aggr_limit;
678 
679 	/*
680 	 * h/w can accept aggregates up to 16 bit lengths (65535).
681 	 * The IE, however can hold up to 65536, which shows up here
682 	 * as zero. Ignore 65536 since we  are constrained by hw.
683 	 */
684 	if (tid->an->maxampdu)
685 		aggr_limit = min(aggr_limit, tid->an->maxampdu);
686 
687 	return aggr_limit;
688 }
689 
690 /*
691  * Returns the number of delimiters to be added to
692  * meet the minimum required mpdudensity.
693  */
694 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
695 				  struct ath_buf *bf, u16 frmlen,
696 				  bool first_subfrm)
697 {
698 #define FIRST_DESC_NDELIMS 60
699 	struct sk_buff *skb = bf->bf_mpdu;
700 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
701 	u32 nsymbits, nsymbols;
702 	u16 minlen;
703 	u8 flags, rix;
704 	int width, streams, half_gi, ndelim, mindelim;
705 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
706 
707 	/* Select standard number of delimiters based on frame length alone */
708 	ndelim = ATH_AGGR_GET_NDELIM(frmlen);
709 
710 	/*
711 	 * If encryption enabled, hardware requires some more padding between
712 	 * subframes.
713 	 * TODO - this could be improved to be dependent on the rate.
714 	 *      The hardware can keep up at lower rates, but not higher rates
715 	 */
716 	if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
717 	    !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
718 		ndelim += ATH_AGGR_ENCRYPTDELIM;
719 
720 	/*
721 	 * Add delimiter when using RTS/CTS with aggregation
722 	 * and non enterprise AR9003 card
723 	 */
724 	if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
725 	    (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
726 		ndelim = max(ndelim, FIRST_DESC_NDELIMS);
727 
728 	/*
729 	 * Convert desired mpdu density from microeconds to bytes based
730 	 * on highest rate in rate series (i.e. first rate) to determine
731 	 * required minimum length for subframe. Take into account
732 	 * whether high rate is 20 or 40Mhz and half or full GI.
733 	 *
734 	 * If there is no mpdu density restriction, no further calculation
735 	 * is needed.
736 	 */
737 
738 	if (tid->an->mpdudensity == 0)
739 		return ndelim;
740 
741 	rix = tx_info->control.rates[0].idx;
742 	flags = tx_info->control.rates[0].flags;
743 	width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
744 	half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
745 
746 	if (half_gi)
747 		nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
748 	else
749 		nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
750 
751 	if (nsymbols == 0)
752 		nsymbols = 1;
753 
754 	streams = HT_RC_2_STREAMS(rix);
755 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
756 	minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
757 
758 	if (frmlen < minlen) {
759 		mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
760 		ndelim = max(mindelim, ndelim);
761 	}
762 
763 	return ndelim;
764 }
765 
766 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
767 					     struct ath_txq *txq,
768 					     struct ath_atx_tid *tid,
769 					     struct list_head *bf_q,
770 					     int *aggr_len)
771 {
772 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
773 	struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
774 	int rl = 0, nframes = 0, ndelim, prev_al = 0;
775 	u16 aggr_limit = 0, al = 0, bpad = 0,
776 		al_delta, h_baw = tid->baw_size / 2;
777 	enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
778 	struct ieee80211_tx_info *tx_info;
779 	struct ath_frame_info *fi;
780 	struct sk_buff *skb;
781 	u16 seqno;
782 
783 	do {
784 		skb = skb_peek(&tid->buf_q);
785 		fi = get_frame_info(skb);
786 		bf = fi->bf;
787 		if (!fi->bf)
788 			bf = ath_tx_setup_buffer(sc, txq, tid, skb, true);
789 
790 		if (!bf)
791 			continue;
792 
793 		bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
794 		seqno = bf->bf_state.seqno;
795 
796 		/* do not step over block-ack window */
797 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
798 			status = ATH_AGGR_BAW_CLOSED;
799 			break;
800 		}
801 
802 		if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
803 			struct ath_tx_status ts = {};
804 			struct list_head bf_head;
805 
806 			INIT_LIST_HEAD(&bf_head);
807 			list_add(&bf->list, &bf_head);
808 			__skb_unlink(skb, &tid->buf_q);
809 			ath_tx_update_baw(sc, tid, seqno);
810 			ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
811 			continue;
812 		}
813 
814 		if (!bf_first)
815 			bf_first = bf;
816 
817 		if (!rl) {
818 			aggr_limit = ath_lookup_rate(sc, bf, tid);
819 			rl = 1;
820 		}
821 
822 		/* do not exceed aggregation limit */
823 		al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
824 
825 		if (nframes &&
826 		    ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
827 		     ath_lookup_legacy(bf))) {
828 			status = ATH_AGGR_LIMITED;
829 			break;
830 		}
831 
832 		tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
833 		if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
834 			break;
835 
836 		/* do not exceed subframe limit */
837 		if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
838 			status = ATH_AGGR_LIMITED;
839 			break;
840 		}
841 
842 		/* add padding for previous frame to aggregation length */
843 		al += bpad + al_delta;
844 
845 		/*
846 		 * Get the delimiters needed to meet the MPDU
847 		 * density for this node.
848 		 */
849 		ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
850 						!nframes);
851 		bpad = PADBYTES(al_delta) + (ndelim << 2);
852 
853 		nframes++;
854 		bf->bf_next = NULL;
855 
856 		/* link buffers of this frame to the aggregate */
857 		if (!fi->retries)
858 			ath_tx_addto_baw(sc, tid, seqno);
859 		bf->bf_state.ndelim = ndelim;
860 
861 		__skb_unlink(skb, &tid->buf_q);
862 		list_add_tail(&bf->list, bf_q);
863 		if (bf_prev)
864 			bf_prev->bf_next = bf;
865 
866 		bf_prev = bf;
867 
868 	} while (!skb_queue_empty(&tid->buf_q));
869 
870 	*aggr_len = al;
871 
872 	return status;
873 #undef PADBYTES
874 }
875 
876 /*
877  * rix - rate index
878  * pktlen - total bytes (delims + data + fcs + pads + pad delims)
879  * width  - 0 for 20 MHz, 1 for 40 MHz
880  * half_gi - to use 4us v/s 3.6 us for symbol time
881  */
882 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
883 			    int width, int half_gi, bool shortPreamble)
884 {
885 	u32 nbits, nsymbits, duration, nsymbols;
886 	int streams;
887 
888 	/* find number of symbols: PLCP + data */
889 	streams = HT_RC_2_STREAMS(rix);
890 	nbits = (pktlen << 3) + OFDM_PLCP_BITS;
891 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
892 	nsymbols = (nbits + nsymbits - 1) / nsymbits;
893 
894 	if (!half_gi)
895 		duration = SYMBOL_TIME(nsymbols);
896 	else
897 		duration = SYMBOL_TIME_HALFGI(nsymbols);
898 
899 	/* addup duration for legacy/ht training and signal fields */
900 	duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
901 
902 	return duration;
903 }
904 
905 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
906 {
907 	int streams = HT_RC_2_STREAMS(mcs);
908 	int symbols, bits;
909 	int bytes = 0;
910 
911 	symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
912 	bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
913 	bits -= OFDM_PLCP_BITS;
914 	bytes = bits / 8;
915 	bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
916 	if (bytes > 65532)
917 		bytes = 65532;
918 
919 	return bytes;
920 }
921 
922 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
923 {
924 	u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
925 	int mcs;
926 
927 	/* 4ms is the default (and maximum) duration */
928 	if (!txop || txop > 4096)
929 		txop = 4096;
930 
931 	cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
932 	cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
933 	cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
934 	cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
935 	for (mcs = 0; mcs < 32; mcs++) {
936 		cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
937 		cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
938 		cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
939 		cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
940 	}
941 }
942 
943 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
944 			     struct ath_tx_info *info, int len)
945 {
946 	struct ath_hw *ah = sc->sc_ah;
947 	struct sk_buff *skb;
948 	struct ieee80211_tx_info *tx_info;
949 	struct ieee80211_tx_rate *rates;
950 	const struct ieee80211_rate *rate;
951 	struct ieee80211_hdr *hdr;
952 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
953 	int i;
954 	u8 rix = 0;
955 
956 	skb = bf->bf_mpdu;
957 	tx_info = IEEE80211_SKB_CB(skb);
958 	rates = tx_info->control.rates;
959 	hdr = (struct ieee80211_hdr *)skb->data;
960 
961 	/* set dur_update_en for l-sig computation except for PS-Poll frames */
962 	info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
963 	info->rtscts_rate = fi->rtscts_rate;
964 
965 	for (i = 0; i < 4; i++) {
966 		bool is_40, is_sgi, is_sp;
967 		int phy;
968 
969 		if (!rates[i].count || (rates[i].idx < 0))
970 			continue;
971 
972 		rix = rates[i].idx;
973 		info->rates[i].Tries = rates[i].count;
974 
975 		    if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
976 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
977 			info->flags |= ATH9K_TXDESC_RTSENA;
978 		} else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
979 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
980 			info->flags |= ATH9K_TXDESC_CTSENA;
981 		}
982 
983 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
984 			info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
985 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
986 			info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
987 
988 		is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
989 		is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
990 		is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
991 
992 		if (rates[i].flags & IEEE80211_TX_RC_MCS) {
993 			/* MCS rates */
994 			info->rates[i].Rate = rix | 0x80;
995 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
996 					ah->txchainmask, info->rates[i].Rate);
997 			info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
998 				 is_40, is_sgi, is_sp);
999 			if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1000 				info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1001 			continue;
1002 		}
1003 
1004 		/* legacy rates */
1005 		rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
1006 		if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1007 		    !(rate->flags & IEEE80211_RATE_ERP_G))
1008 			phy = WLAN_RC_PHY_CCK;
1009 		else
1010 			phy = WLAN_RC_PHY_OFDM;
1011 
1012 		info->rates[i].Rate = rate->hw_value;
1013 		if (rate->hw_value_short) {
1014 			if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1015 				info->rates[i].Rate |= rate->hw_value_short;
1016 		} else {
1017 			is_sp = false;
1018 		}
1019 
1020 		if (bf->bf_state.bfs_paprd)
1021 			info->rates[i].ChSel = ah->txchainmask;
1022 		else
1023 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1024 					ah->txchainmask, info->rates[i].Rate);
1025 
1026 		info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1027 			phy, rate->bitrate * 100, len, rix, is_sp);
1028 	}
1029 
1030 	/* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1031 	if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1032 		info->flags &= ~ATH9K_TXDESC_RTSENA;
1033 
1034 	/* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1035 	if (info->flags & ATH9K_TXDESC_RTSENA)
1036 		info->flags &= ~ATH9K_TXDESC_CTSENA;
1037 }
1038 
1039 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1040 {
1041 	struct ieee80211_hdr *hdr;
1042 	enum ath9k_pkt_type htype;
1043 	__le16 fc;
1044 
1045 	hdr = (struct ieee80211_hdr *)skb->data;
1046 	fc = hdr->frame_control;
1047 
1048 	if (ieee80211_is_beacon(fc))
1049 		htype = ATH9K_PKT_TYPE_BEACON;
1050 	else if (ieee80211_is_probe_resp(fc))
1051 		htype = ATH9K_PKT_TYPE_PROBE_RESP;
1052 	else if (ieee80211_is_atim(fc))
1053 		htype = ATH9K_PKT_TYPE_ATIM;
1054 	else if (ieee80211_is_pspoll(fc))
1055 		htype = ATH9K_PKT_TYPE_PSPOLL;
1056 	else
1057 		htype = ATH9K_PKT_TYPE_NORMAL;
1058 
1059 	return htype;
1060 }
1061 
1062 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1063 			     struct ath_txq *txq, int len)
1064 {
1065 	struct ath_hw *ah = sc->sc_ah;
1066 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1067 	struct ath_buf *bf_first = bf;
1068 	struct ath_tx_info info;
1069 	bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1070 
1071 	memset(&info, 0, sizeof(info));
1072 	info.is_first = true;
1073 	info.is_last = true;
1074 	info.txpower = MAX_RATE_POWER;
1075 	info.qcu = txq->axq_qnum;
1076 
1077 	info.flags = ATH9K_TXDESC_INTREQ;
1078 	if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1079 		info.flags |= ATH9K_TXDESC_NOACK;
1080 	if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1081 		info.flags |= ATH9K_TXDESC_LDPC;
1082 
1083 	ath_buf_set_rate(sc, bf, &info, len);
1084 
1085 	if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
1086 		info.flags |= ATH9K_TXDESC_CLRDMASK;
1087 
1088 	if (bf->bf_state.bfs_paprd)
1089 		info.flags |= (u32) bf->bf_state.bfs_paprd << ATH9K_TXDESC_PAPRD_S;
1090 
1091 
1092 	while (bf) {
1093 		struct sk_buff *skb = bf->bf_mpdu;
1094 		struct ath_frame_info *fi = get_frame_info(skb);
1095 
1096 		info.type = get_hw_packet_type(skb);
1097 		if (bf->bf_next)
1098 			info.link = bf->bf_next->bf_daddr;
1099 		else
1100 			info.link = 0;
1101 
1102 		info.buf_addr[0] = bf->bf_buf_addr;
1103 		info.buf_len[0] = skb->len;
1104 		info.pkt_len = fi->framelen;
1105 		info.keyix = fi->keyix;
1106 		info.keytype = fi->keytype;
1107 
1108 		if (aggr) {
1109 			if (bf == bf_first)
1110 				info.aggr = AGGR_BUF_FIRST;
1111 			else if (!bf->bf_next)
1112 				info.aggr = AGGR_BUF_LAST;
1113 			else
1114 				info.aggr = AGGR_BUF_MIDDLE;
1115 
1116 			info.ndelim = bf->bf_state.ndelim;
1117 			info.aggr_len = len;
1118 		}
1119 
1120 		ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1121 		bf = bf->bf_next;
1122 	}
1123 }
1124 
1125 static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1126 			      struct ath_atx_tid *tid)
1127 {
1128 	struct ath_buf *bf;
1129 	enum ATH_AGGR_STATUS status;
1130 	struct ieee80211_tx_info *tx_info;
1131 	struct list_head bf_q;
1132 	int aggr_len;
1133 
1134 	do {
1135 		if (skb_queue_empty(&tid->buf_q))
1136 			return;
1137 
1138 		INIT_LIST_HEAD(&bf_q);
1139 
1140 		status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
1141 
1142 		/*
1143 		 * no frames picked up to be aggregated;
1144 		 * block-ack window is not open.
1145 		 */
1146 		if (list_empty(&bf_q))
1147 			break;
1148 
1149 		bf = list_first_entry(&bf_q, struct ath_buf, list);
1150 		bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
1151 		tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1152 
1153 		if (tid->ac->clear_ps_filter) {
1154 			tid->ac->clear_ps_filter = false;
1155 			tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1156 		} else {
1157 			tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
1158 		}
1159 
1160 		/* if only one frame, send as non-aggregate */
1161 		if (bf == bf->bf_lastbf) {
1162 			aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
1163 			bf->bf_state.bf_type = BUF_AMPDU;
1164 		} else {
1165 			TX_STAT_INC(txq->axq_qnum, a_aggr);
1166 		}
1167 
1168 		ath_tx_fill_desc(sc, bf, txq, aggr_len);
1169 		ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1170 	} while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
1171 		 status != ATH_AGGR_BAW_CLOSED);
1172 }
1173 
1174 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1175 		      u16 tid, u16 *ssn)
1176 {
1177 	struct ath_atx_tid *txtid;
1178 	struct ath_node *an;
1179 	u8 density;
1180 
1181 	an = (struct ath_node *)sta->drv_priv;
1182 	txtid = ATH_AN_2_TID(an, tid);
1183 
1184 	if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
1185 		return -EAGAIN;
1186 
1187 	/* update ampdu factor/density, they may have changed. This may happen
1188 	 * in HT IBSS when a beacon with HT-info is received after the station
1189 	 * has already been added.
1190 	 */
1191 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1192 		an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1193 				     sta->ht_cap.ampdu_factor);
1194 		density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1195 		an->mpdudensity = density;
1196 	}
1197 
1198 	txtid->state |= AGGR_ADDBA_PROGRESS;
1199 	txtid->paused = true;
1200 	*ssn = txtid->seq_start = txtid->seq_next;
1201 	txtid->bar_index = -1;
1202 
1203 	memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1204 	txtid->baw_head = txtid->baw_tail = 0;
1205 
1206 	return 0;
1207 }
1208 
1209 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1210 {
1211 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1212 	struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1213 	struct ath_txq *txq = txtid->ac->txq;
1214 
1215 	if (txtid->state & AGGR_CLEANUP)
1216 		return;
1217 
1218 	if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
1219 		txtid->state &= ~AGGR_ADDBA_PROGRESS;
1220 		return;
1221 	}
1222 
1223 	ath_txq_lock(sc, txq);
1224 	txtid->paused = true;
1225 
1226 	/*
1227 	 * If frames are still being transmitted for this TID, they will be
1228 	 * cleaned up during tx completion. To prevent race conditions, this
1229 	 * TID can only be reused after all in-progress subframes have been
1230 	 * completed.
1231 	 */
1232 	if (txtid->baw_head != txtid->baw_tail)
1233 		txtid->state |= AGGR_CLEANUP;
1234 	else
1235 		txtid->state &= ~AGGR_ADDBA_COMPLETE;
1236 
1237 	ath_tx_flush_tid(sc, txtid);
1238 	ath_txq_unlock_complete(sc, txq);
1239 }
1240 
1241 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1242 		       struct ath_node *an)
1243 {
1244 	struct ath_atx_tid *tid;
1245 	struct ath_atx_ac *ac;
1246 	struct ath_txq *txq;
1247 	bool buffered;
1248 	int tidno;
1249 
1250 	for (tidno = 0, tid = &an->tid[tidno];
1251 	     tidno < WME_NUM_TID; tidno++, tid++) {
1252 
1253 		if (!tid->sched)
1254 			continue;
1255 
1256 		ac = tid->ac;
1257 		txq = ac->txq;
1258 
1259 		ath_txq_lock(sc, txq);
1260 
1261 		buffered = !skb_queue_empty(&tid->buf_q);
1262 
1263 		tid->sched = false;
1264 		list_del(&tid->list);
1265 
1266 		if (ac->sched) {
1267 			ac->sched = false;
1268 			list_del(&ac->list);
1269 		}
1270 
1271 		ath_txq_unlock(sc, txq);
1272 
1273 		ieee80211_sta_set_buffered(sta, tidno, buffered);
1274 	}
1275 }
1276 
1277 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1278 {
1279 	struct ath_atx_tid *tid;
1280 	struct ath_atx_ac *ac;
1281 	struct ath_txq *txq;
1282 	int tidno;
1283 
1284 	for (tidno = 0, tid = &an->tid[tidno];
1285 	     tidno < WME_NUM_TID; tidno++, tid++) {
1286 
1287 		ac = tid->ac;
1288 		txq = ac->txq;
1289 
1290 		ath_txq_lock(sc, txq);
1291 		ac->clear_ps_filter = true;
1292 
1293 		if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
1294 			ath_tx_queue_tid(txq, tid);
1295 			ath_txq_schedule(sc, txq);
1296 		}
1297 
1298 		ath_txq_unlock_complete(sc, txq);
1299 	}
1300 }
1301 
1302 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1303 {
1304 	struct ath_atx_tid *txtid;
1305 	struct ath_node *an;
1306 
1307 	an = (struct ath_node *)sta->drv_priv;
1308 
1309 	txtid = ATH_AN_2_TID(an, tid);
1310 	txtid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1311 	txtid->state |= AGGR_ADDBA_COMPLETE;
1312 	txtid->state &= ~AGGR_ADDBA_PROGRESS;
1313 	ath_tx_resume_tid(sc, txtid);
1314 }
1315 
1316 /********************/
1317 /* Queue Management */
1318 /********************/
1319 
1320 static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
1321 					  struct ath_txq *txq)
1322 {
1323 	struct ath_atx_ac *ac, *ac_tmp;
1324 	struct ath_atx_tid *tid, *tid_tmp;
1325 
1326 	list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
1327 		list_del(&ac->list);
1328 		ac->sched = false;
1329 		list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
1330 			list_del(&tid->list);
1331 			tid->sched = false;
1332 			ath_tid_drain(sc, txq, tid);
1333 		}
1334 	}
1335 }
1336 
1337 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1338 {
1339 	struct ath_hw *ah = sc->sc_ah;
1340 	struct ath9k_tx_queue_info qi;
1341 	static const int subtype_txq_to_hwq[] = {
1342 		[WME_AC_BE] = ATH_TXQ_AC_BE,
1343 		[WME_AC_BK] = ATH_TXQ_AC_BK,
1344 		[WME_AC_VI] = ATH_TXQ_AC_VI,
1345 		[WME_AC_VO] = ATH_TXQ_AC_VO,
1346 	};
1347 	int axq_qnum, i;
1348 
1349 	memset(&qi, 0, sizeof(qi));
1350 	qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1351 	qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1352 	qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1353 	qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1354 	qi.tqi_physCompBuf = 0;
1355 
1356 	/*
1357 	 * Enable interrupts only for EOL and DESC conditions.
1358 	 * We mark tx descriptors to receive a DESC interrupt
1359 	 * when a tx queue gets deep; otherwise waiting for the
1360 	 * EOL to reap descriptors.  Note that this is done to
1361 	 * reduce interrupt load and this only defers reaping
1362 	 * descriptors, never transmitting frames.  Aside from
1363 	 * reducing interrupts this also permits more concurrency.
1364 	 * The only potential downside is if the tx queue backs
1365 	 * up in which case the top half of the kernel may backup
1366 	 * due to a lack of tx descriptors.
1367 	 *
1368 	 * The UAPSD queue is an exception, since we take a desc-
1369 	 * based intr on the EOSP frames.
1370 	 */
1371 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1372 		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1373 	} else {
1374 		if (qtype == ATH9K_TX_QUEUE_UAPSD)
1375 			qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1376 		else
1377 			qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1378 					TXQ_FLAG_TXDESCINT_ENABLE;
1379 	}
1380 	axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1381 	if (axq_qnum == -1) {
1382 		/*
1383 		 * NB: don't print a message, this happens
1384 		 * normally on parts with too few tx queues
1385 		 */
1386 		return NULL;
1387 	}
1388 	if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1389 		struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1390 
1391 		txq->axq_qnum = axq_qnum;
1392 		txq->mac80211_qnum = -1;
1393 		txq->axq_link = NULL;
1394 		__skb_queue_head_init(&txq->complete_q);
1395 		INIT_LIST_HEAD(&txq->axq_q);
1396 		INIT_LIST_HEAD(&txq->axq_acq);
1397 		spin_lock_init(&txq->axq_lock);
1398 		txq->axq_depth = 0;
1399 		txq->axq_ampdu_depth = 0;
1400 		txq->axq_tx_inprogress = false;
1401 		sc->tx.txqsetup |= 1<<axq_qnum;
1402 
1403 		txq->txq_headidx = txq->txq_tailidx = 0;
1404 		for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1405 			INIT_LIST_HEAD(&txq->txq_fifo[i]);
1406 	}
1407 	return &sc->tx.txq[axq_qnum];
1408 }
1409 
1410 int ath_txq_update(struct ath_softc *sc, int qnum,
1411 		   struct ath9k_tx_queue_info *qinfo)
1412 {
1413 	struct ath_hw *ah = sc->sc_ah;
1414 	int error = 0;
1415 	struct ath9k_tx_queue_info qi;
1416 
1417 	BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1418 
1419 	ath9k_hw_get_txq_props(ah, qnum, &qi);
1420 	qi.tqi_aifs = qinfo->tqi_aifs;
1421 	qi.tqi_cwmin = qinfo->tqi_cwmin;
1422 	qi.tqi_cwmax = qinfo->tqi_cwmax;
1423 	qi.tqi_burstTime = qinfo->tqi_burstTime;
1424 	qi.tqi_readyTime = qinfo->tqi_readyTime;
1425 
1426 	if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1427 		ath_err(ath9k_hw_common(sc->sc_ah),
1428 			"Unable to update hardware queue %u!\n", qnum);
1429 		error = -EIO;
1430 	} else {
1431 		ath9k_hw_resettxqueue(ah, qnum);
1432 	}
1433 
1434 	return error;
1435 }
1436 
1437 int ath_cabq_update(struct ath_softc *sc)
1438 {
1439 	struct ath9k_tx_queue_info qi;
1440 	struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
1441 	int qnum = sc->beacon.cabq->axq_qnum;
1442 
1443 	ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1444 	/*
1445 	 * Ensure the readytime % is within the bounds.
1446 	 */
1447 	if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
1448 		sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
1449 	else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
1450 		sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
1451 
1452 	qi.tqi_readyTime = (cur_conf->beacon_interval *
1453 			    sc->config.cabqReadytime) / 100;
1454 	ath_txq_update(sc, qnum, &qi);
1455 
1456 	return 0;
1457 }
1458 
1459 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
1460 {
1461     struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
1462     return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
1463 }
1464 
1465 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1466 			       struct list_head *list, bool retry_tx)
1467 {
1468 	struct ath_buf *bf, *lastbf;
1469 	struct list_head bf_head;
1470 	struct ath_tx_status ts;
1471 
1472 	memset(&ts, 0, sizeof(ts));
1473 	ts.ts_status = ATH9K_TX_FLUSH;
1474 	INIT_LIST_HEAD(&bf_head);
1475 
1476 	while (!list_empty(list)) {
1477 		bf = list_first_entry(list, struct ath_buf, list);
1478 
1479 		if (bf->bf_stale) {
1480 			list_del(&bf->list);
1481 
1482 			ath_tx_return_buffer(sc, bf);
1483 			continue;
1484 		}
1485 
1486 		lastbf = bf->bf_lastbf;
1487 		list_cut_position(&bf_head, list, &lastbf->list);
1488 
1489 		txq->axq_depth--;
1490 		if (bf_is_ampdu_not_probing(bf))
1491 			txq->axq_ampdu_depth--;
1492 
1493 		if (bf_isampdu(bf))
1494 			ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0,
1495 					     retry_tx);
1496 		else
1497 			ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
1498 	}
1499 }
1500 
1501 /*
1502  * Drain a given TX queue (could be Beacon or Data)
1503  *
1504  * This assumes output has been stopped and
1505  * we do not need to block ath_tx_tasklet.
1506  */
1507 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
1508 {
1509 	ath_txq_lock(sc, txq);
1510 
1511 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1512 		int idx = txq->txq_tailidx;
1513 
1514 		while (!list_empty(&txq->txq_fifo[idx])) {
1515 			ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx],
1516 					   retry_tx);
1517 
1518 			INCR(idx, ATH_TXFIFO_DEPTH);
1519 		}
1520 		txq->txq_tailidx = idx;
1521 	}
1522 
1523 	txq->axq_link = NULL;
1524 	txq->axq_tx_inprogress = false;
1525 	ath_drain_txq_list(sc, txq, &txq->axq_q, retry_tx);
1526 
1527 	/* flush any pending frames if aggregation is enabled */
1528 	if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && !retry_tx)
1529 		ath_txq_drain_pending_buffers(sc, txq);
1530 
1531 	ath_txq_unlock_complete(sc, txq);
1532 }
1533 
1534 bool ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
1535 {
1536 	struct ath_hw *ah = sc->sc_ah;
1537 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1538 	struct ath_txq *txq;
1539 	int i;
1540 	u32 npend = 0;
1541 
1542 	if (test_bit(SC_OP_INVALID, &sc->sc_flags))
1543 		return true;
1544 
1545 	ath9k_hw_abort_tx_dma(ah);
1546 
1547 	/* Check if any queue remains active */
1548 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1549 		if (!ATH_TXQ_SETUP(sc, i))
1550 			continue;
1551 
1552 		if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1553 			npend |= BIT(i);
1554 	}
1555 
1556 	if (npend)
1557 		ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1558 
1559 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1560 		if (!ATH_TXQ_SETUP(sc, i))
1561 			continue;
1562 
1563 		/*
1564 		 * The caller will resume queues with ieee80211_wake_queues.
1565 		 * Mark the queue as not stopped to prevent ath_tx_complete
1566 		 * from waking the queue too early.
1567 		 */
1568 		txq = &sc->tx.txq[i];
1569 		txq->stopped = false;
1570 		ath_draintxq(sc, txq, retry_tx);
1571 	}
1572 
1573 	return !npend;
1574 }
1575 
1576 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1577 {
1578 	ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1579 	sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1580 }
1581 
1582 /* For each axq_acq entry, for each tid, try to schedule packets
1583  * for transmit until ampdu_depth has reached min Q depth.
1584  */
1585 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1586 {
1587 	struct ath_atx_ac *ac, *ac_tmp, *last_ac;
1588 	struct ath_atx_tid *tid, *last_tid;
1589 
1590 	if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) ||
1591 	    list_empty(&txq->axq_acq) ||
1592 	    txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1593 		return;
1594 
1595 	ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1596 	last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
1597 
1598 	list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
1599 		last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
1600 		list_del(&ac->list);
1601 		ac->sched = false;
1602 
1603 		while (!list_empty(&ac->tid_q)) {
1604 			tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
1605 					       list);
1606 			list_del(&tid->list);
1607 			tid->sched = false;
1608 
1609 			if (tid->paused)
1610 				continue;
1611 
1612 			ath_tx_sched_aggr(sc, txq, tid);
1613 
1614 			/*
1615 			 * add tid to round-robin queue if more frames
1616 			 * are pending for the tid
1617 			 */
1618 			if (!skb_queue_empty(&tid->buf_q))
1619 				ath_tx_queue_tid(txq, tid);
1620 
1621 			if (tid == last_tid ||
1622 			    txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1623 				break;
1624 		}
1625 
1626 		if (!list_empty(&ac->tid_q) && !ac->sched) {
1627 			ac->sched = true;
1628 			list_add_tail(&ac->list, &txq->axq_acq);
1629 		}
1630 
1631 		if (ac == last_ac ||
1632 		    txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1633 			return;
1634 	}
1635 }
1636 
1637 /***********/
1638 /* TX, DMA */
1639 /***********/
1640 
1641 /*
1642  * Insert a chain of ath_buf (descriptors) on a txq and
1643  * assume the descriptors are already chained together by caller.
1644  */
1645 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1646 			     struct list_head *head, bool internal)
1647 {
1648 	struct ath_hw *ah = sc->sc_ah;
1649 	struct ath_common *common = ath9k_hw_common(ah);
1650 	struct ath_buf *bf, *bf_last;
1651 	bool puttxbuf = false;
1652 	bool edma;
1653 
1654 	/*
1655 	 * Insert the frame on the outbound list and
1656 	 * pass it on to the hardware.
1657 	 */
1658 
1659 	if (list_empty(head))
1660 		return;
1661 
1662 	edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1663 	bf = list_first_entry(head, struct ath_buf, list);
1664 	bf_last = list_entry(head->prev, struct ath_buf, list);
1665 
1666 	ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
1667 		txq->axq_qnum, txq->axq_depth);
1668 
1669 	if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
1670 		list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
1671 		INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
1672 		puttxbuf = true;
1673 	} else {
1674 		list_splice_tail_init(head, &txq->axq_q);
1675 
1676 		if (txq->axq_link) {
1677 			ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
1678 			ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
1679 				txq->axq_qnum, txq->axq_link,
1680 				ito64(bf->bf_daddr), bf->bf_desc);
1681 		} else if (!edma)
1682 			puttxbuf = true;
1683 
1684 		txq->axq_link = bf_last->bf_desc;
1685 	}
1686 
1687 	if (puttxbuf) {
1688 		TX_STAT_INC(txq->axq_qnum, puttxbuf);
1689 		ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1690 		ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
1691 			txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1692 	}
1693 
1694 	if (!edma) {
1695 		TX_STAT_INC(txq->axq_qnum, txstart);
1696 		ath9k_hw_txstart(ah, txq->axq_qnum);
1697 	}
1698 
1699 	if (!internal) {
1700 		txq->axq_depth++;
1701 		if (bf_is_ampdu_not_probing(bf))
1702 			txq->axq_ampdu_depth++;
1703 	}
1704 }
1705 
1706 static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
1707 			      struct sk_buff *skb, struct ath_tx_control *txctl)
1708 {
1709 	struct ath_frame_info *fi = get_frame_info(skb);
1710 	struct list_head bf_head;
1711 	struct ath_buf *bf;
1712 
1713 	/*
1714 	 * Do not queue to h/w when any of the following conditions is true:
1715 	 * - there are pending frames in software queue
1716 	 * - the TID is currently paused for ADDBA/BAR request
1717 	 * - seqno is not within block-ack window
1718 	 * - h/w queue depth exceeds low water mark
1719 	 */
1720 	if (!skb_queue_empty(&tid->buf_q) || tid->paused ||
1721 	    !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
1722 	    txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) {
1723 		/*
1724 		 * Add this frame to software queue for scheduling later
1725 		 * for aggregation.
1726 		 */
1727 		TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw);
1728 		__skb_queue_tail(&tid->buf_q, skb);
1729 		if (!txctl->an || !txctl->an->sleeping)
1730 			ath_tx_queue_tid(txctl->txq, tid);
1731 		return;
1732 	}
1733 
1734 	bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb, false);
1735 	if (!bf)
1736 		return;
1737 
1738 	bf->bf_state.bf_type = BUF_AMPDU;
1739 	INIT_LIST_HEAD(&bf_head);
1740 	list_add(&bf->list, &bf_head);
1741 
1742 	/* Add sub-frame to BAW */
1743 	ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
1744 
1745 	/* Queue to h/w without aggregation */
1746 	TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw);
1747 	bf->bf_lastbf = bf;
1748 	ath_tx_fill_desc(sc, bf, txctl->txq, fi->framelen);
1749 	ath_tx_txqaddbuf(sc, txctl->txq, &bf_head, false);
1750 }
1751 
1752 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1753 			       struct ath_atx_tid *tid, struct sk_buff *skb)
1754 {
1755 	struct ath_frame_info *fi = get_frame_info(skb);
1756 	struct list_head bf_head;
1757 	struct ath_buf *bf;
1758 
1759 	bf = fi->bf;
1760 	if (!bf)
1761 		bf = ath_tx_setup_buffer(sc, txq, tid, skb, false);
1762 
1763 	if (!bf)
1764 		return;
1765 
1766 	INIT_LIST_HEAD(&bf_head);
1767 	list_add_tail(&bf->list, &bf_head);
1768 	bf->bf_state.bf_type = 0;
1769 
1770 	bf->bf_lastbf = bf;
1771 	ath_tx_fill_desc(sc, bf, txq, fi->framelen);
1772 	ath_tx_txqaddbuf(sc, txq, &bf_head, false);
1773 	TX_STAT_INC(txq->axq_qnum, queued);
1774 }
1775 
1776 static void setup_frame_info(struct ieee80211_hw *hw, struct sk_buff *skb,
1777 			     int framelen)
1778 {
1779 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1780 	struct ieee80211_sta *sta = tx_info->control.sta;
1781 	struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
1782 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1783 	const struct ieee80211_rate *rate;
1784 	struct ath_frame_info *fi = get_frame_info(skb);
1785 	struct ath_node *an = NULL;
1786 	enum ath9k_key_type keytype;
1787 	bool short_preamble = false;
1788 
1789 	/*
1790 	 * We check if Short Preamble is needed for the CTS rate by
1791 	 * checking the BSS's global flag.
1792 	 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
1793 	 */
1794 	if (tx_info->control.vif &&
1795 	    tx_info->control.vif->bss_conf.use_short_preamble)
1796 		short_preamble = true;
1797 
1798 	rate = ieee80211_get_rts_cts_rate(hw, tx_info);
1799 	keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
1800 
1801 	if (sta)
1802 		an = (struct ath_node *) sta->drv_priv;
1803 
1804 	memset(fi, 0, sizeof(*fi));
1805 	if (hw_key)
1806 		fi->keyix = hw_key->hw_key_idx;
1807 	else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
1808 		fi->keyix = an->ps_key;
1809 	else
1810 		fi->keyix = ATH9K_TXKEYIX_INVALID;
1811 	fi->keytype = keytype;
1812 	fi->framelen = framelen;
1813 	fi->rtscts_rate = rate->hw_value;
1814 	if (short_preamble)
1815 		fi->rtscts_rate |= rate->hw_value_short;
1816 }
1817 
1818 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
1819 {
1820 	struct ath_hw *ah = sc->sc_ah;
1821 	struct ath9k_channel *curchan = ah->curchan;
1822 	if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
1823 	    (curchan->channelFlags & CHANNEL_5GHZ) &&
1824 	    (chainmask == 0x7) && (rate < 0x90))
1825 		return 0x3;
1826 	else
1827 		return chainmask;
1828 }
1829 
1830 /*
1831  * Assign a descriptor (and sequence number if necessary,
1832  * and map buffer for DMA. Frees skb on error
1833  */
1834 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
1835 					   struct ath_txq *txq,
1836 					   struct ath_atx_tid *tid,
1837 					   struct sk_buff *skb,
1838 					   bool dequeue)
1839 {
1840 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1841 	struct ath_frame_info *fi = get_frame_info(skb);
1842 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1843 	struct ath_buf *bf;
1844 	int fragno;
1845 	u16 seqno;
1846 
1847 	bf = ath_tx_get_buffer(sc);
1848 	if (!bf) {
1849 		ath_dbg(common, XMIT, "TX buffers are full\n");
1850 		goto error;
1851 	}
1852 
1853 	ATH_TXBUF_RESET(bf);
1854 
1855 	if (tid) {
1856 		fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
1857 		seqno = tid->seq_next;
1858 		hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
1859 
1860 		if (fragno)
1861 			hdr->seq_ctrl |= cpu_to_le16(fragno);
1862 
1863 		if (!ieee80211_has_morefrags(hdr->frame_control))
1864 			INCR(tid->seq_next, IEEE80211_SEQ_MAX);
1865 
1866 		bf->bf_state.seqno = seqno;
1867 	}
1868 
1869 	bf->bf_mpdu = skb;
1870 
1871 	bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
1872 					 skb->len, DMA_TO_DEVICE);
1873 	if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
1874 		bf->bf_mpdu = NULL;
1875 		bf->bf_buf_addr = 0;
1876 		ath_err(ath9k_hw_common(sc->sc_ah),
1877 			"dma_mapping_error() on TX\n");
1878 		ath_tx_return_buffer(sc, bf);
1879 		goto error;
1880 	}
1881 
1882 	fi->bf = bf;
1883 
1884 	return bf;
1885 
1886 error:
1887 	if (dequeue)
1888 		__skb_unlink(skb, &tid->buf_q);
1889 	dev_kfree_skb_any(skb);
1890 	return NULL;
1891 }
1892 
1893 /* FIXME: tx power */
1894 static void ath_tx_start_dma(struct ath_softc *sc, struct sk_buff *skb,
1895 			     struct ath_tx_control *txctl)
1896 {
1897 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1898 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1899 	struct ath_atx_tid *tid = NULL;
1900 	struct ath_buf *bf;
1901 	u8 tidno;
1902 
1903 	if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && txctl->an &&
1904 		ieee80211_is_data_qos(hdr->frame_control)) {
1905 		tidno = ieee80211_get_qos_ctl(hdr)[0] &
1906 			IEEE80211_QOS_CTL_TID_MASK;
1907 		tid = ATH_AN_2_TID(txctl->an, tidno);
1908 
1909 		WARN_ON(tid->ac->txq != txctl->txq);
1910 	}
1911 
1912 	if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
1913 		/*
1914 		 * Try aggregation if it's a unicast data frame
1915 		 * and the destination is HT capable.
1916 		 */
1917 		ath_tx_send_ampdu(sc, tid, skb, txctl);
1918 	} else {
1919 		bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb, false);
1920 		if (!bf)
1921 			return;
1922 
1923 		bf->bf_state.bfs_paprd = txctl->paprd;
1924 
1925 		if (txctl->paprd)
1926 			bf->bf_state.bfs_paprd_timestamp = jiffies;
1927 
1928 		ath_tx_send_normal(sc, txctl->txq, tid, skb);
1929 	}
1930 }
1931 
1932 /* Upon failure caller should free skb */
1933 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
1934 		 struct ath_tx_control *txctl)
1935 {
1936 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1937 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1938 	struct ieee80211_sta *sta = info->control.sta;
1939 	struct ieee80211_vif *vif = info->control.vif;
1940 	struct ath_softc *sc = hw->priv;
1941 	struct ath_txq *txq = txctl->txq;
1942 	int padpos, padsize;
1943 	int frmlen = skb->len + FCS_LEN;
1944 	int q;
1945 
1946 	/* NOTE:  sta can be NULL according to net/mac80211.h */
1947 	if (sta)
1948 		txctl->an = (struct ath_node *)sta->drv_priv;
1949 
1950 	if (info->control.hw_key)
1951 		frmlen += info->control.hw_key->icv_len;
1952 
1953 	/*
1954 	 * As a temporary workaround, assign seq# here; this will likely need
1955 	 * to be cleaned up to work better with Beacon transmission and virtual
1956 	 * BSSes.
1957 	 */
1958 	if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1959 		if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1960 			sc->tx.seq_no += 0x10;
1961 		hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1962 		hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1963 	}
1964 
1965 	/* Add the padding after the header if this is not already done */
1966 	padpos = ath9k_cmn_padpos(hdr->frame_control);
1967 	padsize = padpos & 3;
1968 	if (padsize && skb->len > padpos) {
1969 		if (skb_headroom(skb) < padsize)
1970 			return -ENOMEM;
1971 
1972 		skb_push(skb, padsize);
1973 		memmove(skb->data, skb->data + padsize, padpos);
1974 		hdr = (struct ieee80211_hdr *) skb->data;
1975 	}
1976 
1977 	if ((vif && vif->type != NL80211_IFTYPE_AP &&
1978 	            vif->type != NL80211_IFTYPE_AP_VLAN) ||
1979 	    !ieee80211_is_data(hdr->frame_control))
1980 		info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1981 
1982 	setup_frame_info(hw, skb, frmlen);
1983 
1984 	/*
1985 	 * At this point, the vif, hw_key and sta pointers in the tx control
1986 	 * info are no longer valid (overwritten by the ath_frame_info data.
1987 	 */
1988 
1989 	q = skb_get_queue_mapping(skb);
1990 
1991 	ath_txq_lock(sc, txq);
1992 	if (txq == sc->tx.txq_map[q] &&
1993 	    ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
1994 	    !txq->stopped) {
1995 		ieee80211_stop_queue(sc->hw, q);
1996 		txq->stopped = true;
1997 	}
1998 
1999 	ath_tx_start_dma(sc, skb, txctl);
2000 
2001 	ath_txq_unlock(sc, txq);
2002 
2003 	return 0;
2004 }
2005 
2006 /*****************/
2007 /* TX Completion */
2008 /*****************/
2009 
2010 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2011 			    int tx_flags, struct ath_txq *txq)
2012 {
2013 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2014 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2015 	struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2016 	int q, padpos, padsize;
2017 	unsigned long flags;
2018 
2019 	ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2020 
2021 	if (!(tx_flags & ATH_TX_ERROR))
2022 		/* Frame was ACKed */
2023 		tx_info->flags |= IEEE80211_TX_STAT_ACK;
2024 
2025 	padpos = ath9k_cmn_padpos(hdr->frame_control);
2026 	padsize = padpos & 3;
2027 	if (padsize && skb->len>padpos+padsize) {
2028 		/*
2029 		 * Remove MAC header padding before giving the frame back to
2030 		 * mac80211.
2031 		 */
2032 		memmove(skb->data + padsize, skb->data, padpos);
2033 		skb_pull(skb, padsize);
2034 	}
2035 
2036 	spin_lock_irqsave(&sc->sc_pm_lock, flags);
2037 	if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2038 		sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2039 		ath_dbg(common, PS,
2040 			"Going back to sleep after having received TX status (0x%lx)\n",
2041 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
2042 					PS_WAIT_FOR_CAB |
2043 					PS_WAIT_FOR_PSPOLL_DATA |
2044 					PS_WAIT_FOR_TX_ACK));
2045 	}
2046 	spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2047 
2048 	q = skb_get_queue_mapping(skb);
2049 	if (txq == sc->tx.txq_map[q]) {
2050 		if (WARN_ON(--txq->pending_frames < 0))
2051 			txq->pending_frames = 0;
2052 
2053 		if (txq->stopped &&
2054 		    txq->pending_frames < sc->tx.txq_max_pending[q]) {
2055 			ieee80211_wake_queue(sc->hw, q);
2056 			txq->stopped = false;
2057 		}
2058 	}
2059 
2060 	__skb_queue_tail(&txq->complete_q, skb);
2061 }
2062 
2063 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2064 				struct ath_txq *txq, struct list_head *bf_q,
2065 				struct ath_tx_status *ts, int txok)
2066 {
2067 	struct sk_buff *skb = bf->bf_mpdu;
2068 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2069 	unsigned long flags;
2070 	int tx_flags = 0;
2071 
2072 	if (!txok)
2073 		tx_flags |= ATH_TX_ERROR;
2074 
2075 	if (ts->ts_status & ATH9K_TXERR_FILT)
2076 		tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2077 
2078 	dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2079 	bf->bf_buf_addr = 0;
2080 
2081 	if (bf->bf_state.bfs_paprd) {
2082 		if (time_after(jiffies,
2083 				bf->bf_state.bfs_paprd_timestamp +
2084 				msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2085 			dev_kfree_skb_any(skb);
2086 		else
2087 			complete(&sc->paprd_complete);
2088 	} else {
2089 		ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2090 		ath_tx_complete(sc, skb, tx_flags, txq);
2091 	}
2092 	/* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2093 	 * accidentally reference it later.
2094 	 */
2095 	bf->bf_mpdu = NULL;
2096 
2097 	/*
2098 	 * Return the list of ath_buf of this mpdu to free queue
2099 	 */
2100 	spin_lock_irqsave(&sc->tx.txbuflock, flags);
2101 	list_splice_tail_init(bf_q, &sc->tx.txbuf);
2102 	spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2103 }
2104 
2105 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2106 			     struct ath_tx_status *ts, int nframes, int nbad,
2107 			     int txok)
2108 {
2109 	struct sk_buff *skb = bf->bf_mpdu;
2110 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2111 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2112 	struct ieee80211_hw *hw = sc->hw;
2113 	struct ath_hw *ah = sc->sc_ah;
2114 	u8 i, tx_rateindex;
2115 
2116 	if (txok)
2117 		tx_info->status.ack_signal = ts->ts_rssi;
2118 
2119 	tx_rateindex = ts->ts_rateindex;
2120 	WARN_ON(tx_rateindex >= hw->max_rates);
2121 
2122 	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2123 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2124 
2125 		BUG_ON(nbad > nframes);
2126 	}
2127 	tx_info->status.ampdu_len = nframes;
2128 	tx_info->status.ampdu_ack_len = nframes - nbad;
2129 
2130 	if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2131 	    (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2132 		/*
2133 		 * If an underrun error is seen assume it as an excessive
2134 		 * retry only if max frame trigger level has been reached
2135 		 * (2 KB for single stream, and 4 KB for dual stream).
2136 		 * Adjust the long retry as if the frame was tried
2137 		 * hw->max_rate_tries times to affect how rate control updates
2138 		 * PER for the failed rate.
2139 		 * In case of congestion on the bus penalizing this type of
2140 		 * underruns should help hardware actually transmit new frames
2141 		 * successfully by eventually preferring slower rates.
2142 		 * This itself should also alleviate congestion on the bus.
2143 		 */
2144 		if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2145 		                             ATH9K_TX_DELIM_UNDERRUN)) &&
2146 		    ieee80211_is_data(hdr->frame_control) &&
2147 		    ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2148 			tx_info->status.rates[tx_rateindex].count =
2149 				hw->max_rate_tries;
2150 	}
2151 
2152 	for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2153 		tx_info->status.rates[i].count = 0;
2154 		tx_info->status.rates[i].idx = -1;
2155 	}
2156 
2157 	tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2158 }
2159 
2160 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
2161 				  struct ath_tx_status *ts, struct ath_buf *bf,
2162 				  struct list_head *bf_head)
2163 {
2164 	int txok;
2165 
2166 	txq->axq_depth--;
2167 	txok = !(ts->ts_status & ATH9K_TXERR_MASK);
2168 	txq->axq_tx_inprogress = false;
2169 	if (bf_is_ampdu_not_probing(bf))
2170 		txq->axq_ampdu_depth--;
2171 
2172 	if (!bf_isampdu(bf)) {
2173 		ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
2174 		ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
2175 	} else
2176 		ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok, true);
2177 
2178 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2179 		ath_txq_schedule(sc, txq);
2180 }
2181 
2182 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2183 {
2184 	struct ath_hw *ah = sc->sc_ah;
2185 	struct ath_common *common = ath9k_hw_common(ah);
2186 	struct ath_buf *bf, *lastbf, *bf_held = NULL;
2187 	struct list_head bf_head;
2188 	struct ath_desc *ds;
2189 	struct ath_tx_status ts;
2190 	int status;
2191 
2192 	ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2193 		txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2194 		txq->axq_link);
2195 
2196 	ath_txq_lock(sc, txq);
2197 	for (;;) {
2198 		if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
2199 			break;
2200 
2201 		if (list_empty(&txq->axq_q)) {
2202 			txq->axq_link = NULL;
2203 			if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2204 				ath_txq_schedule(sc, txq);
2205 			break;
2206 		}
2207 		bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2208 
2209 		/*
2210 		 * There is a race condition that a BH gets scheduled
2211 		 * after sw writes TxE and before hw re-load the last
2212 		 * descriptor to get the newly chained one.
2213 		 * Software must keep the last DONE descriptor as a
2214 		 * holding descriptor - software does so by marking
2215 		 * it with the STALE flag.
2216 		 */
2217 		bf_held = NULL;
2218 		if (bf->bf_stale) {
2219 			bf_held = bf;
2220 			if (list_is_last(&bf_held->list, &txq->axq_q))
2221 				break;
2222 
2223 			bf = list_entry(bf_held->list.next, struct ath_buf,
2224 					list);
2225 		}
2226 
2227 		lastbf = bf->bf_lastbf;
2228 		ds = lastbf->bf_desc;
2229 
2230 		memset(&ts, 0, sizeof(ts));
2231 		status = ath9k_hw_txprocdesc(ah, ds, &ts);
2232 		if (status == -EINPROGRESS)
2233 			break;
2234 
2235 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2236 
2237 		/*
2238 		 * Remove ath_buf's of the same transmit unit from txq,
2239 		 * however leave the last descriptor back as the holding
2240 		 * descriptor for hw.
2241 		 */
2242 		lastbf->bf_stale = true;
2243 		INIT_LIST_HEAD(&bf_head);
2244 		if (!list_is_singular(&lastbf->list))
2245 			list_cut_position(&bf_head,
2246 				&txq->axq_q, lastbf->list.prev);
2247 
2248 		if (bf_held) {
2249 			list_del(&bf_held->list);
2250 			ath_tx_return_buffer(sc, bf_held);
2251 		}
2252 
2253 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2254 	}
2255 	ath_txq_unlock_complete(sc, txq);
2256 }
2257 
2258 void ath_tx_tasklet(struct ath_softc *sc)
2259 {
2260 	struct ath_hw *ah = sc->sc_ah;
2261 	u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2262 	int i;
2263 
2264 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2265 		if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2266 			ath_tx_processq(sc, &sc->tx.txq[i]);
2267 	}
2268 }
2269 
2270 void ath_tx_edma_tasklet(struct ath_softc *sc)
2271 {
2272 	struct ath_tx_status ts;
2273 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2274 	struct ath_hw *ah = sc->sc_ah;
2275 	struct ath_txq *txq;
2276 	struct ath_buf *bf, *lastbf;
2277 	struct list_head bf_head;
2278 	int status;
2279 
2280 	for (;;) {
2281 		if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
2282 			break;
2283 
2284 		status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2285 		if (status == -EINPROGRESS)
2286 			break;
2287 		if (status == -EIO) {
2288 			ath_dbg(common, XMIT, "Error processing tx status\n");
2289 			break;
2290 		}
2291 
2292 		/* Process beacon completions separately */
2293 		if (ts.qid == sc->beacon.beaconq) {
2294 			sc->beacon.tx_processed = true;
2295 			sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2296 			continue;
2297 		}
2298 
2299 		txq = &sc->tx.txq[ts.qid];
2300 
2301 		ath_txq_lock(sc, txq);
2302 
2303 		if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
2304 			ath_txq_unlock(sc, txq);
2305 			return;
2306 		}
2307 
2308 		bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
2309 				      struct ath_buf, list);
2310 		lastbf = bf->bf_lastbf;
2311 
2312 		INIT_LIST_HEAD(&bf_head);
2313 		list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
2314 				  &lastbf->list);
2315 
2316 		if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
2317 			INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2318 
2319 			if (!list_empty(&txq->axq_q)) {
2320 				struct list_head bf_q;
2321 
2322 				INIT_LIST_HEAD(&bf_q);
2323 				txq->axq_link = NULL;
2324 				list_splice_tail_init(&txq->axq_q, &bf_q);
2325 				ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2326 			}
2327 		}
2328 
2329 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2330 		ath_txq_unlock_complete(sc, txq);
2331 	}
2332 }
2333 
2334 /*****************/
2335 /* Init, Cleanup */
2336 /*****************/
2337 
2338 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2339 {
2340 	struct ath_descdma *dd = &sc->txsdma;
2341 	u8 txs_len = sc->sc_ah->caps.txs_len;
2342 
2343 	dd->dd_desc_len = size * txs_len;
2344 	dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
2345 					 &dd->dd_desc_paddr, GFP_KERNEL);
2346 	if (!dd->dd_desc)
2347 		return -ENOMEM;
2348 
2349 	return 0;
2350 }
2351 
2352 static int ath_tx_edma_init(struct ath_softc *sc)
2353 {
2354 	int err;
2355 
2356 	err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2357 	if (!err)
2358 		ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2359 					  sc->txsdma.dd_desc_paddr,
2360 					  ATH_TXSTATUS_RING_SIZE);
2361 
2362 	return err;
2363 }
2364 
2365 static void ath_tx_edma_cleanup(struct ath_softc *sc)
2366 {
2367 	struct ath_descdma *dd = &sc->txsdma;
2368 
2369 	dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
2370 			  dd->dd_desc_paddr);
2371 }
2372 
2373 int ath_tx_init(struct ath_softc *sc, int nbufs)
2374 {
2375 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2376 	int error = 0;
2377 
2378 	spin_lock_init(&sc->tx.txbuflock);
2379 
2380 	error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2381 				  "tx", nbufs, 1, 1);
2382 	if (error != 0) {
2383 		ath_err(common,
2384 			"Failed to allocate tx descriptors: %d\n", error);
2385 		goto err;
2386 	}
2387 
2388 	error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2389 				  "beacon", ATH_BCBUF, 1, 1);
2390 	if (error != 0) {
2391 		ath_err(common,
2392 			"Failed to allocate beacon descriptors: %d\n", error);
2393 		goto err;
2394 	}
2395 
2396 	INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2397 
2398 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
2399 		error = ath_tx_edma_init(sc);
2400 		if (error)
2401 			goto err;
2402 	}
2403 
2404 err:
2405 	if (error != 0)
2406 		ath_tx_cleanup(sc);
2407 
2408 	return error;
2409 }
2410 
2411 void ath_tx_cleanup(struct ath_softc *sc)
2412 {
2413 	if (sc->beacon.bdma.dd_desc_len != 0)
2414 		ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
2415 
2416 	if (sc->tx.txdma.dd_desc_len != 0)
2417 		ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
2418 
2419 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2420 		ath_tx_edma_cleanup(sc);
2421 }
2422 
2423 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2424 {
2425 	struct ath_atx_tid *tid;
2426 	struct ath_atx_ac *ac;
2427 	int tidno, acno;
2428 
2429 	for (tidno = 0, tid = &an->tid[tidno];
2430 	     tidno < WME_NUM_TID;
2431 	     tidno++, tid++) {
2432 		tid->an        = an;
2433 		tid->tidno     = tidno;
2434 		tid->seq_start = tid->seq_next = 0;
2435 		tid->baw_size  = WME_MAX_BA;
2436 		tid->baw_head  = tid->baw_tail = 0;
2437 		tid->sched     = false;
2438 		tid->paused    = false;
2439 		tid->state &= ~AGGR_CLEANUP;
2440 		__skb_queue_head_init(&tid->buf_q);
2441 		acno = TID_TO_WME_AC(tidno);
2442 		tid->ac = &an->ac[acno];
2443 		tid->state &= ~AGGR_ADDBA_COMPLETE;
2444 		tid->state &= ~AGGR_ADDBA_PROGRESS;
2445 	}
2446 
2447 	for (acno = 0, ac = &an->ac[acno];
2448 	     acno < WME_NUM_AC; acno++, ac++) {
2449 		ac->sched    = false;
2450 		ac->txq = sc->tx.txq_map[acno];
2451 		INIT_LIST_HEAD(&ac->tid_q);
2452 	}
2453 }
2454 
2455 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2456 {
2457 	struct ath_atx_ac *ac;
2458 	struct ath_atx_tid *tid;
2459 	struct ath_txq *txq;
2460 	int tidno;
2461 
2462 	for (tidno = 0, tid = &an->tid[tidno];
2463 	     tidno < WME_NUM_TID; tidno++, tid++) {
2464 
2465 		ac = tid->ac;
2466 		txq = ac->txq;
2467 
2468 		ath_txq_lock(sc, txq);
2469 
2470 		if (tid->sched) {
2471 			list_del(&tid->list);
2472 			tid->sched = false;
2473 		}
2474 
2475 		if (ac->sched) {
2476 			list_del(&ac->list);
2477 			tid->ac->sched = false;
2478 		}
2479 
2480 		ath_tid_drain(sc, txq, tid);
2481 		tid->state &= ~AGGR_ADDBA_COMPLETE;
2482 		tid->state &= ~AGGR_CLEANUP;
2483 
2484 		ath_txq_unlock(sc, txq);
2485 	}
2486 }
2487