1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/dma-mapping.h> 18 #include "ath9k.h" 19 #include "ar9003_mac.h" 20 21 #define BITS_PER_BYTE 8 22 #define OFDM_PLCP_BITS 22 23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1) 24 #define L_STF 8 25 #define L_LTF 8 26 #define L_SIG 4 27 #define HT_SIG 8 28 #define HT_STF 4 29 #define HT_LTF(_ns) (4 * (_ns)) 30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */ 31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */ 32 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2) 33 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18) 34 35 36 static u16 bits_per_symbol[][2] = { 37 /* 20MHz 40MHz */ 38 { 26, 54 }, /* 0: BPSK */ 39 { 52, 108 }, /* 1: QPSK 1/2 */ 40 { 78, 162 }, /* 2: QPSK 3/4 */ 41 { 104, 216 }, /* 3: 16-QAM 1/2 */ 42 { 156, 324 }, /* 4: 16-QAM 3/4 */ 43 { 208, 432 }, /* 5: 64-QAM 2/3 */ 44 { 234, 486 }, /* 6: 64-QAM 3/4 */ 45 { 260, 540 }, /* 7: 64-QAM 5/6 */ 46 }; 47 48 #define IS_HT_RATE(_rate) ((_rate) & 0x80) 49 50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 51 struct ath_atx_tid *tid, 52 struct list_head *bf_head); 53 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 54 struct ath_txq *txq, struct list_head *bf_q, 55 struct ath_tx_status *ts, int txok, int sendbar); 56 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 57 struct list_head *head, bool internal); 58 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, int len); 59 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 60 struct ath_tx_status *ts, int nframes, int nbad, 61 int txok, bool update_rc); 62 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 63 int seqno); 64 65 enum { 66 MCS_HT20, 67 MCS_HT20_SGI, 68 MCS_HT40, 69 MCS_HT40_SGI, 70 }; 71 72 static int ath_max_4ms_framelen[4][32] = { 73 [MCS_HT20] = { 74 3212, 6432, 9648, 12864, 19300, 25736, 28952, 32172, 75 6424, 12852, 19280, 25708, 38568, 51424, 57852, 64280, 76 9628, 19260, 28896, 38528, 57792, 65532, 65532, 65532, 77 12828, 25656, 38488, 51320, 65532, 65532, 65532, 65532, 78 }, 79 [MCS_HT20_SGI] = { 80 3572, 7144, 10720, 14296, 21444, 28596, 32172, 35744, 81 7140, 14284, 21428, 28568, 42856, 57144, 64288, 65532, 82 10700, 21408, 32112, 42816, 64228, 65532, 65532, 65532, 83 14256, 28516, 42780, 57040, 65532, 65532, 65532, 65532, 84 }, 85 [MCS_HT40] = { 86 6680, 13360, 20044, 26724, 40092, 53456, 60140, 65532, 87 13348, 26700, 40052, 53400, 65532, 65532, 65532, 65532, 88 20004, 40008, 60016, 65532, 65532, 65532, 65532, 65532, 89 26644, 53292, 65532, 65532, 65532, 65532, 65532, 65532, 90 }, 91 [MCS_HT40_SGI] = { 92 7420, 14844, 22272, 29696, 44544, 59396, 65532, 65532, 93 14832, 29668, 44504, 59340, 65532, 65532, 65532, 65532, 94 22232, 44464, 65532, 65532, 65532, 65532, 65532, 65532, 95 29616, 59232, 65532, 65532, 65532, 65532, 65532, 65532, 96 } 97 }; 98 99 /*********************/ 100 /* Aggregation logic */ 101 /*********************/ 102 103 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid) 104 { 105 struct ath_atx_ac *ac = tid->ac; 106 107 if (tid->paused) 108 return; 109 110 if (tid->sched) 111 return; 112 113 tid->sched = true; 114 list_add_tail(&tid->list, &ac->tid_q); 115 116 if (ac->sched) 117 return; 118 119 ac->sched = true; 120 list_add_tail(&ac->list, &txq->axq_acq); 121 } 122 123 static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid) 124 { 125 struct ath_txq *txq = tid->ac->txq; 126 127 WARN_ON(!tid->paused); 128 129 spin_lock_bh(&txq->axq_lock); 130 tid->paused = false; 131 132 if (list_empty(&tid->buf_q)) 133 goto unlock; 134 135 ath_tx_queue_tid(txq, tid); 136 ath_txq_schedule(sc, txq); 137 unlock: 138 spin_unlock_bh(&txq->axq_lock); 139 } 140 141 static struct ath_frame_info *get_frame_info(struct sk_buff *skb) 142 { 143 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 144 BUILD_BUG_ON(sizeof(struct ath_frame_info) > 145 sizeof(tx_info->rate_driver_data)); 146 return (struct ath_frame_info *) &tx_info->rate_driver_data[0]; 147 } 148 149 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid) 150 { 151 struct ath_txq *txq = tid->ac->txq; 152 struct ath_buf *bf; 153 struct list_head bf_head; 154 struct ath_tx_status ts; 155 struct ath_frame_info *fi; 156 157 INIT_LIST_HEAD(&bf_head); 158 159 memset(&ts, 0, sizeof(ts)); 160 spin_lock_bh(&txq->axq_lock); 161 162 while (!list_empty(&tid->buf_q)) { 163 bf = list_first_entry(&tid->buf_q, struct ath_buf, list); 164 list_move_tail(&bf->list, &bf_head); 165 166 spin_unlock_bh(&txq->axq_lock); 167 fi = get_frame_info(bf->bf_mpdu); 168 if (fi->retries) { 169 ath_tx_update_baw(sc, tid, fi->seqno); 170 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 1); 171 } else { 172 ath_tx_send_normal(sc, txq, NULL, &bf_head); 173 } 174 spin_lock_bh(&txq->axq_lock); 175 } 176 177 spin_unlock_bh(&txq->axq_lock); 178 } 179 180 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 181 int seqno) 182 { 183 int index, cindex; 184 185 index = ATH_BA_INDEX(tid->seq_start, seqno); 186 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 187 188 __clear_bit(cindex, tid->tx_buf); 189 190 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) { 191 INCR(tid->seq_start, IEEE80211_SEQ_MAX); 192 INCR(tid->baw_head, ATH_TID_MAX_BUFS); 193 } 194 } 195 196 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 197 u16 seqno) 198 { 199 int index, cindex; 200 201 index = ATH_BA_INDEX(tid->seq_start, seqno); 202 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 203 __set_bit(cindex, tid->tx_buf); 204 205 if (index >= ((tid->baw_tail - tid->baw_head) & 206 (ATH_TID_MAX_BUFS - 1))) { 207 tid->baw_tail = cindex; 208 INCR(tid->baw_tail, ATH_TID_MAX_BUFS); 209 } 210 } 211 212 /* 213 * TODO: For frame(s) that are in the retry state, we will reuse the 214 * sequence number(s) without setting the retry bit. The 215 * alternative is to give up on these and BAR the receiver's window 216 * forward. 217 */ 218 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq, 219 struct ath_atx_tid *tid) 220 221 { 222 struct ath_buf *bf; 223 struct list_head bf_head; 224 struct ath_tx_status ts; 225 struct ath_frame_info *fi; 226 227 memset(&ts, 0, sizeof(ts)); 228 INIT_LIST_HEAD(&bf_head); 229 230 for (;;) { 231 if (list_empty(&tid->buf_q)) 232 break; 233 234 bf = list_first_entry(&tid->buf_q, struct ath_buf, list); 235 list_move_tail(&bf->list, &bf_head); 236 237 fi = get_frame_info(bf->bf_mpdu); 238 if (fi->retries) 239 ath_tx_update_baw(sc, tid, fi->seqno); 240 241 spin_unlock(&txq->axq_lock); 242 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0); 243 spin_lock(&txq->axq_lock); 244 } 245 246 tid->seq_next = tid->seq_start; 247 tid->baw_tail = tid->baw_head; 248 } 249 250 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq, 251 struct sk_buff *skb) 252 { 253 struct ath_frame_info *fi = get_frame_info(skb); 254 struct ieee80211_hdr *hdr; 255 256 TX_STAT_INC(txq->axq_qnum, a_retries); 257 if (fi->retries++ > 0) 258 return; 259 260 hdr = (struct ieee80211_hdr *)skb->data; 261 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY); 262 } 263 264 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc) 265 { 266 struct ath_buf *bf = NULL; 267 268 spin_lock_bh(&sc->tx.txbuflock); 269 270 if (unlikely(list_empty(&sc->tx.txbuf))) { 271 spin_unlock_bh(&sc->tx.txbuflock); 272 return NULL; 273 } 274 275 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list); 276 list_del(&bf->list); 277 278 spin_unlock_bh(&sc->tx.txbuflock); 279 280 return bf; 281 } 282 283 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf) 284 { 285 spin_lock_bh(&sc->tx.txbuflock); 286 list_add_tail(&bf->list, &sc->tx.txbuf); 287 spin_unlock_bh(&sc->tx.txbuflock); 288 } 289 290 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf) 291 { 292 struct ath_buf *tbf; 293 294 tbf = ath_tx_get_buffer(sc); 295 if (WARN_ON(!tbf)) 296 return NULL; 297 298 ATH_TXBUF_RESET(tbf); 299 300 tbf->bf_mpdu = bf->bf_mpdu; 301 tbf->bf_buf_addr = bf->bf_buf_addr; 302 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len); 303 tbf->bf_state = bf->bf_state; 304 305 return tbf; 306 } 307 308 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf, 309 struct ath_tx_status *ts, int txok, 310 int *nframes, int *nbad) 311 { 312 struct ath_frame_info *fi; 313 u16 seq_st = 0; 314 u32 ba[WME_BA_BMP_SIZE >> 5]; 315 int ba_index; 316 int isaggr = 0; 317 318 *nbad = 0; 319 *nframes = 0; 320 321 isaggr = bf_isaggr(bf); 322 if (isaggr) { 323 seq_st = ts->ts_seqnum; 324 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); 325 } 326 327 while (bf) { 328 fi = get_frame_info(bf->bf_mpdu); 329 ba_index = ATH_BA_INDEX(seq_st, fi->seqno); 330 331 (*nframes)++; 332 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index))) 333 (*nbad)++; 334 335 bf = bf->bf_next; 336 } 337 } 338 339 340 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq, 341 struct ath_buf *bf, struct list_head *bf_q, 342 struct ath_tx_status *ts, int txok, bool retry) 343 { 344 struct ath_node *an = NULL; 345 struct sk_buff *skb; 346 struct ieee80211_sta *sta; 347 struct ieee80211_hw *hw = sc->hw; 348 struct ieee80211_hdr *hdr; 349 struct ieee80211_tx_info *tx_info; 350 struct ath_atx_tid *tid = NULL; 351 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf; 352 struct list_head bf_head, bf_pending; 353 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0; 354 u32 ba[WME_BA_BMP_SIZE >> 5]; 355 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0; 356 bool rc_update = true; 357 struct ieee80211_tx_rate rates[4]; 358 struct ath_frame_info *fi; 359 int nframes; 360 u8 tidno; 361 bool clear_filter; 362 363 skb = bf->bf_mpdu; 364 hdr = (struct ieee80211_hdr *)skb->data; 365 366 tx_info = IEEE80211_SKB_CB(skb); 367 368 memcpy(rates, tx_info->control.rates, sizeof(rates)); 369 370 rcu_read_lock(); 371 372 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2); 373 if (!sta) { 374 rcu_read_unlock(); 375 376 INIT_LIST_HEAD(&bf_head); 377 while (bf) { 378 bf_next = bf->bf_next; 379 380 bf->bf_state.bf_type |= BUF_XRETRY; 381 if (!bf->bf_stale || bf_next != NULL) 382 list_move_tail(&bf->list, &bf_head); 383 384 ath_tx_rc_status(sc, bf, ts, 1, 1, 0, false); 385 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 386 0, 0); 387 388 bf = bf_next; 389 } 390 return; 391 } 392 393 an = (struct ath_node *)sta->drv_priv; 394 tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK; 395 tid = ATH_AN_2_TID(an, tidno); 396 397 /* 398 * The hardware occasionally sends a tx status for the wrong TID. 399 * In this case, the BA status cannot be considered valid and all 400 * subframes need to be retransmitted 401 */ 402 if (tidno != ts->tid) 403 txok = false; 404 405 isaggr = bf_isaggr(bf); 406 memset(ba, 0, WME_BA_BMP_SIZE >> 3); 407 408 if (isaggr && txok) { 409 if (ts->ts_flags & ATH9K_TX_BA) { 410 seq_st = ts->ts_seqnum; 411 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); 412 } else { 413 /* 414 * AR5416 can become deaf/mute when BA 415 * issue happens. Chip needs to be reset. 416 * But AP code may have sychronization issues 417 * when perform internal reset in this routine. 418 * Only enable reset in STA mode for now. 419 */ 420 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION) 421 needreset = 1; 422 } 423 } 424 425 INIT_LIST_HEAD(&bf_pending); 426 INIT_LIST_HEAD(&bf_head); 427 428 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad); 429 while (bf) { 430 txfail = txpending = sendbar = 0; 431 bf_next = bf->bf_next; 432 433 skb = bf->bf_mpdu; 434 tx_info = IEEE80211_SKB_CB(skb); 435 fi = get_frame_info(skb); 436 437 if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, fi->seqno))) { 438 /* transmit completion, subframe is 439 * acked by block ack */ 440 acked_cnt++; 441 } else if (!isaggr && txok) { 442 /* transmit completion */ 443 acked_cnt++; 444 } else { 445 if ((tid->state & AGGR_CLEANUP) || !retry) { 446 /* 447 * cleanup in progress, just fail 448 * the un-acked sub-frames 449 */ 450 txfail = 1; 451 } else if (fi->retries < ATH_MAX_SW_RETRIES) { 452 if (!(ts->ts_status & ATH9K_TXERR_FILT) || 453 !an->sleeping) 454 ath_tx_set_retry(sc, txq, bf->bf_mpdu); 455 456 clear_filter = true; 457 txpending = 1; 458 } else { 459 bf->bf_state.bf_type |= BUF_XRETRY; 460 txfail = 1; 461 sendbar = 1; 462 txfail_cnt++; 463 } 464 } 465 466 /* 467 * Make sure the last desc is reclaimed if it 468 * not a holding desc. 469 */ 470 if (!bf_last->bf_stale || bf_next != NULL) 471 list_move_tail(&bf->list, &bf_head); 472 else 473 INIT_LIST_HEAD(&bf_head); 474 475 if (!txpending || (tid->state & AGGR_CLEANUP)) { 476 /* 477 * complete the acked-ones/xretried ones; update 478 * block-ack window 479 */ 480 spin_lock_bh(&txq->axq_lock); 481 ath_tx_update_baw(sc, tid, fi->seqno); 482 spin_unlock_bh(&txq->axq_lock); 483 484 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) { 485 memcpy(tx_info->control.rates, rates, sizeof(rates)); 486 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok, true); 487 rc_update = false; 488 } else { 489 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok, false); 490 } 491 492 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 493 !txfail, sendbar); 494 } else { 495 /* retry the un-acked ones */ 496 ath9k_hw_set_clrdmask(sc->sc_ah, bf->bf_desc, false); 497 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) { 498 if (bf->bf_next == NULL && bf_last->bf_stale) { 499 struct ath_buf *tbf; 500 501 tbf = ath_clone_txbuf(sc, bf_last); 502 /* 503 * Update tx baw and complete the 504 * frame with failed status if we 505 * run out of tx buf. 506 */ 507 if (!tbf) { 508 spin_lock_bh(&txq->axq_lock); 509 ath_tx_update_baw(sc, tid, fi->seqno); 510 spin_unlock_bh(&txq->axq_lock); 511 512 bf->bf_state.bf_type |= 513 BUF_XRETRY; 514 ath_tx_rc_status(sc, bf, ts, nframes, 515 nbad, 0, false); 516 ath_tx_complete_buf(sc, bf, txq, 517 &bf_head, 518 ts, 0, 0); 519 break; 520 } 521 522 ath9k_hw_cleartxdesc(sc->sc_ah, 523 tbf->bf_desc); 524 list_add_tail(&tbf->list, &bf_head); 525 } else { 526 /* 527 * Clear descriptor status words for 528 * software retry 529 */ 530 ath9k_hw_cleartxdesc(sc->sc_ah, 531 bf->bf_desc); 532 } 533 } 534 535 /* 536 * Put this buffer to the temporary pending 537 * queue to retain ordering 538 */ 539 list_splice_tail_init(&bf_head, &bf_pending); 540 } 541 542 bf = bf_next; 543 } 544 545 /* prepend un-acked frames to the beginning of the pending frame queue */ 546 if (!list_empty(&bf_pending)) { 547 if (an->sleeping) 548 ieee80211_sta_set_tim(sta); 549 550 spin_lock_bh(&txq->axq_lock); 551 if (clear_filter) 552 tid->ac->clear_ps_filter = true; 553 list_splice(&bf_pending, &tid->buf_q); 554 ath_tx_queue_tid(txq, tid); 555 spin_unlock_bh(&txq->axq_lock); 556 } 557 558 if (tid->state & AGGR_CLEANUP) { 559 ath_tx_flush_tid(sc, tid); 560 561 if (tid->baw_head == tid->baw_tail) { 562 tid->state &= ~AGGR_ADDBA_COMPLETE; 563 tid->state &= ~AGGR_CLEANUP; 564 } 565 } 566 567 rcu_read_unlock(); 568 569 if (needreset) 570 ath_reset(sc, false); 571 } 572 573 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf, 574 struct ath_atx_tid *tid) 575 { 576 struct sk_buff *skb; 577 struct ieee80211_tx_info *tx_info; 578 struct ieee80211_tx_rate *rates; 579 u32 max_4ms_framelen, frmlen; 580 u16 aggr_limit, legacy = 0; 581 int i; 582 583 skb = bf->bf_mpdu; 584 tx_info = IEEE80211_SKB_CB(skb); 585 rates = tx_info->control.rates; 586 587 /* 588 * Find the lowest frame length among the rate series that will have a 589 * 4ms transmit duration. 590 * TODO - TXOP limit needs to be considered. 591 */ 592 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX; 593 594 for (i = 0; i < 4; i++) { 595 if (rates[i].count) { 596 int modeidx; 597 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) { 598 legacy = 1; 599 break; 600 } 601 602 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 603 modeidx = MCS_HT40; 604 else 605 modeidx = MCS_HT20; 606 607 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 608 modeidx++; 609 610 frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx]; 611 max_4ms_framelen = min(max_4ms_framelen, frmlen); 612 } 613 } 614 615 /* 616 * limit aggregate size by the minimum rate if rate selected is 617 * not a probe rate, if rate selected is a probe rate then 618 * avoid aggregation of this packet. 619 */ 620 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy) 621 return 0; 622 623 if (sc->sc_flags & SC_OP_BT_PRIORITY_DETECTED) 624 aggr_limit = min((max_4ms_framelen * 3) / 8, 625 (u32)ATH_AMPDU_LIMIT_MAX); 626 else 627 aggr_limit = min(max_4ms_framelen, 628 (u32)ATH_AMPDU_LIMIT_MAX); 629 630 /* 631 * h/w can accept aggregates up to 16 bit lengths (65535). 632 * The IE, however can hold up to 65536, which shows up here 633 * as zero. Ignore 65536 since we are constrained by hw. 634 */ 635 if (tid->an->maxampdu) 636 aggr_limit = min(aggr_limit, tid->an->maxampdu); 637 638 return aggr_limit; 639 } 640 641 /* 642 * Returns the number of delimiters to be added to 643 * meet the minimum required mpdudensity. 644 */ 645 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid, 646 struct ath_buf *bf, u16 frmlen) 647 { 648 struct sk_buff *skb = bf->bf_mpdu; 649 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 650 u32 nsymbits, nsymbols; 651 u16 minlen; 652 u8 flags, rix; 653 int width, streams, half_gi, ndelim, mindelim; 654 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 655 656 /* Select standard number of delimiters based on frame length alone */ 657 ndelim = ATH_AGGR_GET_NDELIM(frmlen); 658 659 /* 660 * If encryption enabled, hardware requires some more padding between 661 * subframes. 662 * TODO - this could be improved to be dependent on the rate. 663 * The hardware can keep up at lower rates, but not higher rates 664 */ 665 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) && 666 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) 667 ndelim += ATH_AGGR_ENCRYPTDELIM; 668 669 /* 670 * Convert desired mpdu density from microeconds to bytes based 671 * on highest rate in rate series (i.e. first rate) to determine 672 * required minimum length for subframe. Take into account 673 * whether high rate is 20 or 40Mhz and half or full GI. 674 * 675 * If there is no mpdu density restriction, no further calculation 676 * is needed. 677 */ 678 679 if (tid->an->mpdudensity == 0) 680 return ndelim; 681 682 rix = tx_info->control.rates[0].idx; 683 flags = tx_info->control.rates[0].flags; 684 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0; 685 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0; 686 687 if (half_gi) 688 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity); 689 else 690 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity); 691 692 if (nsymbols == 0) 693 nsymbols = 1; 694 695 streams = HT_RC_2_STREAMS(rix); 696 nsymbits = bits_per_symbol[rix % 8][width] * streams; 697 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE; 698 699 if (frmlen < minlen) { 700 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ; 701 ndelim = max(mindelim, ndelim); 702 } 703 704 return ndelim; 705 } 706 707 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc, 708 struct ath_txq *txq, 709 struct ath_atx_tid *tid, 710 struct list_head *bf_q, 711 int *aggr_len) 712 { 713 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4) 714 struct ath_buf *bf, *bf_first, *bf_prev = NULL; 715 int rl = 0, nframes = 0, ndelim, prev_al = 0; 716 u16 aggr_limit = 0, al = 0, bpad = 0, 717 al_delta, h_baw = tid->baw_size / 2; 718 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE; 719 struct ieee80211_tx_info *tx_info; 720 struct ath_frame_info *fi; 721 722 bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list); 723 724 do { 725 bf = list_first_entry(&tid->buf_q, struct ath_buf, list); 726 fi = get_frame_info(bf->bf_mpdu); 727 728 /* do not step over block-ack window */ 729 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, fi->seqno)) { 730 status = ATH_AGGR_BAW_CLOSED; 731 break; 732 } 733 734 if (!rl) { 735 aggr_limit = ath_lookup_rate(sc, bf, tid); 736 rl = 1; 737 } 738 739 /* do not exceed aggregation limit */ 740 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen; 741 742 if (nframes && 743 (aggr_limit < (al + bpad + al_delta + prev_al))) { 744 status = ATH_AGGR_LIMITED; 745 break; 746 } 747 748 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 749 if (nframes && ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) || 750 !(tx_info->control.rates[0].flags & IEEE80211_TX_RC_MCS))) 751 break; 752 753 /* do not exceed subframe limit */ 754 if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) { 755 status = ATH_AGGR_LIMITED; 756 break; 757 } 758 nframes++; 759 760 /* add padding for previous frame to aggregation length */ 761 al += bpad + al_delta; 762 763 /* 764 * Get the delimiters needed to meet the MPDU 765 * density for this node. 766 */ 767 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen); 768 bpad = PADBYTES(al_delta) + (ndelim << 2); 769 770 bf->bf_next = NULL; 771 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, 0); 772 773 /* link buffers of this frame to the aggregate */ 774 if (!fi->retries) 775 ath_tx_addto_baw(sc, tid, fi->seqno); 776 ath9k_hw_set11n_aggr_middle(sc->sc_ah, bf->bf_desc, ndelim); 777 list_move_tail(&bf->list, bf_q); 778 if (bf_prev) { 779 bf_prev->bf_next = bf; 780 ath9k_hw_set_desc_link(sc->sc_ah, bf_prev->bf_desc, 781 bf->bf_daddr); 782 } 783 bf_prev = bf; 784 785 } while (!list_empty(&tid->buf_q)); 786 787 *aggr_len = al; 788 789 return status; 790 #undef PADBYTES 791 } 792 793 static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq, 794 struct ath_atx_tid *tid) 795 { 796 struct ath_buf *bf; 797 enum ATH_AGGR_STATUS status; 798 struct ath_frame_info *fi; 799 struct list_head bf_q; 800 int aggr_len; 801 802 do { 803 if (list_empty(&tid->buf_q)) 804 return; 805 806 INIT_LIST_HEAD(&bf_q); 807 808 status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len); 809 810 /* 811 * no frames picked up to be aggregated; 812 * block-ack window is not open. 813 */ 814 if (list_empty(&bf_q)) 815 break; 816 817 bf = list_first_entry(&bf_q, struct ath_buf, list); 818 bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list); 819 820 if (tid->ac->clear_ps_filter) { 821 tid->ac->clear_ps_filter = false; 822 ath9k_hw_set_clrdmask(sc->sc_ah, bf->bf_desc, true); 823 } 824 825 /* if only one frame, send as non-aggregate */ 826 if (bf == bf->bf_lastbf) { 827 fi = get_frame_info(bf->bf_mpdu); 828 829 bf->bf_state.bf_type &= ~BUF_AGGR; 830 ath9k_hw_clr11n_aggr(sc->sc_ah, bf->bf_desc); 831 ath_buf_set_rate(sc, bf, fi->framelen); 832 ath_tx_txqaddbuf(sc, txq, &bf_q, false); 833 continue; 834 } 835 836 /* setup first desc of aggregate */ 837 bf->bf_state.bf_type |= BUF_AGGR; 838 ath_buf_set_rate(sc, bf, aggr_len); 839 ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, aggr_len); 840 841 /* anchor last desc of aggregate */ 842 ath9k_hw_set11n_aggr_last(sc->sc_ah, bf->bf_lastbf->bf_desc); 843 844 ath_tx_txqaddbuf(sc, txq, &bf_q, false); 845 TX_STAT_INC(txq->axq_qnum, a_aggr); 846 847 } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH && 848 status != ATH_AGGR_BAW_CLOSED); 849 } 850 851 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta, 852 u16 tid, u16 *ssn) 853 { 854 struct ath_atx_tid *txtid; 855 struct ath_node *an; 856 857 an = (struct ath_node *)sta->drv_priv; 858 txtid = ATH_AN_2_TID(an, tid); 859 860 if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE)) 861 return -EAGAIN; 862 863 txtid->state |= AGGR_ADDBA_PROGRESS; 864 txtid->paused = true; 865 *ssn = txtid->seq_start = txtid->seq_next; 866 867 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf)); 868 txtid->baw_head = txtid->baw_tail = 0; 869 870 return 0; 871 } 872 873 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid) 874 { 875 struct ath_node *an = (struct ath_node *)sta->drv_priv; 876 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid); 877 struct ath_txq *txq = txtid->ac->txq; 878 879 if (txtid->state & AGGR_CLEANUP) 880 return; 881 882 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) { 883 txtid->state &= ~AGGR_ADDBA_PROGRESS; 884 return; 885 } 886 887 spin_lock_bh(&txq->axq_lock); 888 txtid->paused = true; 889 890 /* 891 * If frames are still being transmitted for this TID, they will be 892 * cleaned up during tx completion. To prevent race conditions, this 893 * TID can only be reused after all in-progress subframes have been 894 * completed. 895 */ 896 if (txtid->baw_head != txtid->baw_tail) 897 txtid->state |= AGGR_CLEANUP; 898 else 899 txtid->state &= ~AGGR_ADDBA_COMPLETE; 900 spin_unlock_bh(&txq->axq_lock); 901 902 ath_tx_flush_tid(sc, txtid); 903 } 904 905 bool ath_tx_aggr_sleep(struct ath_softc *sc, struct ath_node *an) 906 { 907 struct ath_atx_tid *tid; 908 struct ath_atx_ac *ac; 909 struct ath_txq *txq; 910 bool buffered = false; 911 int tidno; 912 913 for (tidno = 0, tid = &an->tid[tidno]; 914 tidno < WME_NUM_TID; tidno++, tid++) { 915 916 if (!tid->sched) 917 continue; 918 919 ac = tid->ac; 920 txq = ac->txq; 921 922 spin_lock_bh(&txq->axq_lock); 923 924 if (!list_empty(&tid->buf_q)) 925 buffered = true; 926 927 tid->sched = false; 928 list_del(&tid->list); 929 930 if (ac->sched) { 931 ac->sched = false; 932 list_del(&ac->list); 933 } 934 935 spin_unlock_bh(&txq->axq_lock); 936 } 937 938 return buffered; 939 } 940 941 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an) 942 { 943 struct ath_atx_tid *tid; 944 struct ath_atx_ac *ac; 945 struct ath_txq *txq; 946 int tidno; 947 948 for (tidno = 0, tid = &an->tid[tidno]; 949 tidno < WME_NUM_TID; tidno++, tid++) { 950 951 ac = tid->ac; 952 txq = ac->txq; 953 954 spin_lock_bh(&txq->axq_lock); 955 ac->clear_ps_filter = true; 956 957 if (!list_empty(&tid->buf_q) && !tid->paused) { 958 ath_tx_queue_tid(txq, tid); 959 ath_txq_schedule(sc, txq); 960 } 961 962 spin_unlock_bh(&txq->axq_lock); 963 } 964 } 965 966 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid) 967 { 968 struct ath_atx_tid *txtid; 969 struct ath_node *an; 970 971 an = (struct ath_node *)sta->drv_priv; 972 973 if (sc->sc_flags & SC_OP_TXAGGR) { 974 txtid = ATH_AN_2_TID(an, tid); 975 txtid->baw_size = 976 IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor; 977 txtid->state |= AGGR_ADDBA_COMPLETE; 978 txtid->state &= ~AGGR_ADDBA_PROGRESS; 979 ath_tx_resume_tid(sc, txtid); 980 } 981 } 982 983 /********************/ 984 /* Queue Management */ 985 /********************/ 986 987 static void ath_txq_drain_pending_buffers(struct ath_softc *sc, 988 struct ath_txq *txq) 989 { 990 struct ath_atx_ac *ac, *ac_tmp; 991 struct ath_atx_tid *tid, *tid_tmp; 992 993 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) { 994 list_del(&ac->list); 995 ac->sched = false; 996 list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) { 997 list_del(&tid->list); 998 tid->sched = false; 999 ath_tid_drain(sc, txq, tid); 1000 } 1001 } 1002 } 1003 1004 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 1005 { 1006 struct ath_hw *ah = sc->sc_ah; 1007 struct ath_common *common = ath9k_hw_common(ah); 1008 struct ath9k_tx_queue_info qi; 1009 static const int subtype_txq_to_hwq[] = { 1010 [WME_AC_BE] = ATH_TXQ_AC_BE, 1011 [WME_AC_BK] = ATH_TXQ_AC_BK, 1012 [WME_AC_VI] = ATH_TXQ_AC_VI, 1013 [WME_AC_VO] = ATH_TXQ_AC_VO, 1014 }; 1015 int axq_qnum, i; 1016 1017 memset(&qi, 0, sizeof(qi)); 1018 qi.tqi_subtype = subtype_txq_to_hwq[subtype]; 1019 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT; 1020 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT; 1021 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT; 1022 qi.tqi_physCompBuf = 0; 1023 1024 /* 1025 * Enable interrupts only for EOL and DESC conditions. 1026 * We mark tx descriptors to receive a DESC interrupt 1027 * when a tx queue gets deep; otherwise waiting for the 1028 * EOL to reap descriptors. Note that this is done to 1029 * reduce interrupt load and this only defers reaping 1030 * descriptors, never transmitting frames. Aside from 1031 * reducing interrupts this also permits more concurrency. 1032 * The only potential downside is if the tx queue backs 1033 * up in which case the top half of the kernel may backup 1034 * due to a lack of tx descriptors. 1035 * 1036 * The UAPSD queue is an exception, since we take a desc- 1037 * based intr on the EOSP frames. 1038 */ 1039 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1040 qi.tqi_qflags = TXQ_FLAG_TXOKINT_ENABLE | 1041 TXQ_FLAG_TXERRINT_ENABLE; 1042 } else { 1043 if (qtype == ATH9K_TX_QUEUE_UAPSD) 1044 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE; 1045 else 1046 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | 1047 TXQ_FLAG_TXDESCINT_ENABLE; 1048 } 1049 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi); 1050 if (axq_qnum == -1) { 1051 /* 1052 * NB: don't print a message, this happens 1053 * normally on parts with too few tx queues 1054 */ 1055 return NULL; 1056 } 1057 if (axq_qnum >= ARRAY_SIZE(sc->tx.txq)) { 1058 ath_err(common, "qnum %u out of range, max %zu!\n", 1059 axq_qnum, ARRAY_SIZE(sc->tx.txq)); 1060 ath9k_hw_releasetxqueue(ah, axq_qnum); 1061 return NULL; 1062 } 1063 if (!ATH_TXQ_SETUP(sc, axq_qnum)) { 1064 struct ath_txq *txq = &sc->tx.txq[axq_qnum]; 1065 1066 txq->axq_qnum = axq_qnum; 1067 txq->mac80211_qnum = -1; 1068 txq->axq_link = NULL; 1069 INIT_LIST_HEAD(&txq->axq_q); 1070 INIT_LIST_HEAD(&txq->axq_acq); 1071 spin_lock_init(&txq->axq_lock); 1072 txq->axq_depth = 0; 1073 txq->axq_ampdu_depth = 0; 1074 txq->axq_tx_inprogress = false; 1075 sc->tx.txqsetup |= 1<<axq_qnum; 1076 1077 txq->txq_headidx = txq->txq_tailidx = 0; 1078 for (i = 0; i < ATH_TXFIFO_DEPTH; i++) 1079 INIT_LIST_HEAD(&txq->txq_fifo[i]); 1080 } 1081 return &sc->tx.txq[axq_qnum]; 1082 } 1083 1084 int ath_txq_update(struct ath_softc *sc, int qnum, 1085 struct ath9k_tx_queue_info *qinfo) 1086 { 1087 struct ath_hw *ah = sc->sc_ah; 1088 int error = 0; 1089 struct ath9k_tx_queue_info qi; 1090 1091 if (qnum == sc->beacon.beaconq) { 1092 /* 1093 * XXX: for beacon queue, we just save the parameter. 1094 * It will be picked up by ath_beaconq_config when 1095 * it's necessary. 1096 */ 1097 sc->beacon.beacon_qi = *qinfo; 1098 return 0; 1099 } 1100 1101 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum); 1102 1103 ath9k_hw_get_txq_props(ah, qnum, &qi); 1104 qi.tqi_aifs = qinfo->tqi_aifs; 1105 qi.tqi_cwmin = qinfo->tqi_cwmin; 1106 qi.tqi_cwmax = qinfo->tqi_cwmax; 1107 qi.tqi_burstTime = qinfo->tqi_burstTime; 1108 qi.tqi_readyTime = qinfo->tqi_readyTime; 1109 1110 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) { 1111 ath_err(ath9k_hw_common(sc->sc_ah), 1112 "Unable to update hardware queue %u!\n", qnum); 1113 error = -EIO; 1114 } else { 1115 ath9k_hw_resettxqueue(ah, qnum); 1116 } 1117 1118 return error; 1119 } 1120 1121 int ath_cabq_update(struct ath_softc *sc) 1122 { 1123 struct ath9k_tx_queue_info qi; 1124 struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf; 1125 int qnum = sc->beacon.cabq->axq_qnum; 1126 1127 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi); 1128 /* 1129 * Ensure the readytime % is within the bounds. 1130 */ 1131 if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND) 1132 sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND; 1133 else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND) 1134 sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND; 1135 1136 qi.tqi_readyTime = (cur_conf->beacon_interval * 1137 sc->config.cabqReadytime) / 100; 1138 ath_txq_update(sc, qnum, &qi); 1139 1140 return 0; 1141 } 1142 1143 static bool bf_is_ampdu_not_probing(struct ath_buf *bf) 1144 { 1145 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu); 1146 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE); 1147 } 1148 1149 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq, 1150 struct list_head *list, bool retry_tx) 1151 { 1152 struct ath_buf *bf, *lastbf; 1153 struct list_head bf_head; 1154 struct ath_tx_status ts; 1155 1156 memset(&ts, 0, sizeof(ts)); 1157 INIT_LIST_HEAD(&bf_head); 1158 1159 while (!list_empty(list)) { 1160 bf = list_first_entry(list, struct ath_buf, list); 1161 1162 if (bf->bf_stale) { 1163 list_del(&bf->list); 1164 1165 ath_tx_return_buffer(sc, bf); 1166 continue; 1167 } 1168 1169 lastbf = bf->bf_lastbf; 1170 list_cut_position(&bf_head, list, &lastbf->list); 1171 1172 txq->axq_depth--; 1173 if (bf_is_ampdu_not_probing(bf)) 1174 txq->axq_ampdu_depth--; 1175 1176 spin_unlock_bh(&txq->axq_lock); 1177 if (bf_isampdu(bf)) 1178 ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0, 1179 retry_tx); 1180 else 1181 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0); 1182 spin_lock_bh(&txq->axq_lock); 1183 } 1184 } 1185 1186 /* 1187 * Drain a given TX queue (could be Beacon or Data) 1188 * 1189 * This assumes output has been stopped and 1190 * we do not need to block ath_tx_tasklet. 1191 */ 1192 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx) 1193 { 1194 spin_lock_bh(&txq->axq_lock); 1195 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1196 int idx = txq->txq_tailidx; 1197 1198 while (!list_empty(&txq->txq_fifo[idx])) { 1199 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx], 1200 retry_tx); 1201 1202 INCR(idx, ATH_TXFIFO_DEPTH); 1203 } 1204 txq->txq_tailidx = idx; 1205 } 1206 1207 txq->axq_link = NULL; 1208 txq->axq_tx_inprogress = false; 1209 ath_drain_txq_list(sc, txq, &txq->axq_q, retry_tx); 1210 1211 /* flush any pending frames if aggregation is enabled */ 1212 if ((sc->sc_flags & SC_OP_TXAGGR) && !retry_tx) 1213 ath_txq_drain_pending_buffers(sc, txq); 1214 1215 spin_unlock_bh(&txq->axq_lock); 1216 } 1217 1218 bool ath_drain_all_txq(struct ath_softc *sc, bool retry_tx) 1219 { 1220 struct ath_hw *ah = sc->sc_ah; 1221 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1222 struct ath_txq *txq; 1223 int i, npend = 0; 1224 1225 if (sc->sc_flags & SC_OP_INVALID) 1226 return true; 1227 1228 ath9k_hw_abort_tx_dma(ah); 1229 1230 /* Check if any queue remains active */ 1231 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1232 if (!ATH_TXQ_SETUP(sc, i)) 1233 continue; 1234 1235 npend += ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum); 1236 } 1237 1238 if (npend) 1239 ath_err(common, "Failed to stop TX DMA!\n"); 1240 1241 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1242 if (!ATH_TXQ_SETUP(sc, i)) 1243 continue; 1244 1245 /* 1246 * The caller will resume queues with ieee80211_wake_queues. 1247 * Mark the queue as not stopped to prevent ath_tx_complete 1248 * from waking the queue too early. 1249 */ 1250 txq = &sc->tx.txq[i]; 1251 txq->stopped = false; 1252 ath_draintxq(sc, txq, retry_tx); 1253 } 1254 1255 return !npend; 1256 } 1257 1258 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 1259 { 1260 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum); 1261 sc->tx.txqsetup &= ~(1<<txq->axq_qnum); 1262 } 1263 1264 /* For each axq_acq entry, for each tid, try to schedule packets 1265 * for transmit until ampdu_depth has reached min Q depth. 1266 */ 1267 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq) 1268 { 1269 struct ath_atx_ac *ac, *ac_tmp, *last_ac; 1270 struct ath_atx_tid *tid, *last_tid; 1271 1272 if (list_empty(&txq->axq_acq) || 1273 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) 1274 return; 1275 1276 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list); 1277 last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list); 1278 1279 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) { 1280 last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list); 1281 list_del(&ac->list); 1282 ac->sched = false; 1283 1284 while (!list_empty(&ac->tid_q)) { 1285 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, 1286 list); 1287 list_del(&tid->list); 1288 tid->sched = false; 1289 1290 if (tid->paused) 1291 continue; 1292 1293 ath_tx_sched_aggr(sc, txq, tid); 1294 1295 /* 1296 * add tid to round-robin queue if more frames 1297 * are pending for the tid 1298 */ 1299 if (!list_empty(&tid->buf_q)) 1300 ath_tx_queue_tid(txq, tid); 1301 1302 if (tid == last_tid || 1303 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) 1304 break; 1305 } 1306 1307 if (!list_empty(&ac->tid_q)) { 1308 if (!ac->sched) { 1309 ac->sched = true; 1310 list_add_tail(&ac->list, &txq->axq_acq); 1311 } 1312 } 1313 1314 if (ac == last_ac || 1315 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) 1316 return; 1317 } 1318 } 1319 1320 /***********/ 1321 /* TX, DMA */ 1322 /***********/ 1323 1324 /* 1325 * Insert a chain of ath_buf (descriptors) on a txq and 1326 * assume the descriptors are already chained together by caller. 1327 */ 1328 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 1329 struct list_head *head, bool internal) 1330 { 1331 struct ath_hw *ah = sc->sc_ah; 1332 struct ath_common *common = ath9k_hw_common(ah); 1333 struct ath_buf *bf, *bf_last; 1334 bool puttxbuf = false; 1335 bool edma; 1336 1337 /* 1338 * Insert the frame on the outbound list and 1339 * pass it on to the hardware. 1340 */ 1341 1342 if (list_empty(head)) 1343 return; 1344 1345 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA); 1346 bf = list_first_entry(head, struct ath_buf, list); 1347 bf_last = list_entry(head->prev, struct ath_buf, list); 1348 1349 ath_dbg(common, ATH_DBG_QUEUE, 1350 "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth); 1351 1352 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) { 1353 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]); 1354 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH); 1355 puttxbuf = true; 1356 } else { 1357 list_splice_tail_init(head, &txq->axq_q); 1358 1359 if (txq->axq_link) { 1360 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr); 1361 ath_dbg(common, ATH_DBG_XMIT, 1362 "link[%u] (%p)=%llx (%p)\n", 1363 txq->axq_qnum, txq->axq_link, 1364 ito64(bf->bf_daddr), bf->bf_desc); 1365 } else if (!edma) 1366 puttxbuf = true; 1367 1368 txq->axq_link = bf_last->bf_desc; 1369 } 1370 1371 if (puttxbuf) { 1372 TX_STAT_INC(txq->axq_qnum, puttxbuf); 1373 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 1374 ath_dbg(common, ATH_DBG_XMIT, "TXDP[%u] = %llx (%p)\n", 1375 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc); 1376 } 1377 1378 if (!edma) { 1379 TX_STAT_INC(txq->axq_qnum, txstart); 1380 ath9k_hw_txstart(ah, txq->axq_qnum); 1381 } 1382 1383 if (!internal) { 1384 txq->axq_depth++; 1385 if (bf_is_ampdu_not_probing(bf)) 1386 txq->axq_ampdu_depth++; 1387 } 1388 } 1389 1390 static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid, 1391 struct ath_buf *bf, struct ath_tx_control *txctl) 1392 { 1393 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 1394 struct list_head bf_head; 1395 1396 bf->bf_state.bf_type |= BUF_AMPDU; 1397 1398 /* 1399 * Do not queue to h/w when any of the following conditions is true: 1400 * - there are pending frames in software queue 1401 * - the TID is currently paused for ADDBA/BAR request 1402 * - seqno is not within block-ack window 1403 * - h/w queue depth exceeds low water mark 1404 */ 1405 if (!list_empty(&tid->buf_q) || tid->paused || 1406 !BAW_WITHIN(tid->seq_start, tid->baw_size, fi->seqno) || 1407 txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) { 1408 /* 1409 * Add this frame to software queue for scheduling later 1410 * for aggregation. 1411 */ 1412 TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw); 1413 list_add_tail(&bf->list, &tid->buf_q); 1414 ath_tx_queue_tid(txctl->txq, tid); 1415 return; 1416 } 1417 1418 INIT_LIST_HEAD(&bf_head); 1419 list_add(&bf->list, &bf_head); 1420 1421 /* Add sub-frame to BAW */ 1422 if (!fi->retries) 1423 ath_tx_addto_baw(sc, tid, fi->seqno); 1424 1425 /* Queue to h/w without aggregation */ 1426 TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw); 1427 bf->bf_lastbf = bf; 1428 ath_buf_set_rate(sc, bf, fi->framelen); 1429 ath_tx_txqaddbuf(sc, txctl->txq, &bf_head, false); 1430 } 1431 1432 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 1433 struct ath_atx_tid *tid, 1434 struct list_head *bf_head) 1435 { 1436 struct ath_frame_info *fi; 1437 struct ath_buf *bf; 1438 1439 bf = list_first_entry(bf_head, struct ath_buf, list); 1440 bf->bf_state.bf_type &= ~BUF_AMPDU; 1441 1442 /* update starting sequence number for subsequent ADDBA request */ 1443 if (tid) 1444 INCR(tid->seq_start, IEEE80211_SEQ_MAX); 1445 1446 bf->bf_lastbf = bf; 1447 fi = get_frame_info(bf->bf_mpdu); 1448 ath_buf_set_rate(sc, bf, fi->framelen); 1449 ath_tx_txqaddbuf(sc, txq, bf_head, false); 1450 TX_STAT_INC(txq->axq_qnum, queued); 1451 } 1452 1453 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb) 1454 { 1455 struct ieee80211_hdr *hdr; 1456 enum ath9k_pkt_type htype; 1457 __le16 fc; 1458 1459 hdr = (struct ieee80211_hdr *)skb->data; 1460 fc = hdr->frame_control; 1461 1462 if (ieee80211_is_beacon(fc)) 1463 htype = ATH9K_PKT_TYPE_BEACON; 1464 else if (ieee80211_is_probe_resp(fc)) 1465 htype = ATH9K_PKT_TYPE_PROBE_RESP; 1466 else if (ieee80211_is_atim(fc)) 1467 htype = ATH9K_PKT_TYPE_ATIM; 1468 else if (ieee80211_is_pspoll(fc)) 1469 htype = ATH9K_PKT_TYPE_PSPOLL; 1470 else 1471 htype = ATH9K_PKT_TYPE_NORMAL; 1472 1473 return htype; 1474 } 1475 1476 static void setup_frame_info(struct ieee80211_hw *hw, struct sk_buff *skb, 1477 int framelen) 1478 { 1479 struct ath_softc *sc = hw->priv; 1480 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1481 struct ieee80211_sta *sta = tx_info->control.sta; 1482 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key; 1483 struct ieee80211_hdr *hdr; 1484 struct ath_frame_info *fi = get_frame_info(skb); 1485 struct ath_node *an = NULL; 1486 struct ath_atx_tid *tid; 1487 enum ath9k_key_type keytype; 1488 u16 seqno = 0; 1489 u8 tidno; 1490 1491 keytype = ath9k_cmn_get_hw_crypto_keytype(skb); 1492 1493 if (sta) 1494 an = (struct ath_node *) sta->drv_priv; 1495 1496 hdr = (struct ieee80211_hdr *)skb->data; 1497 if (an && ieee80211_is_data_qos(hdr->frame_control) && 1498 conf_is_ht(&hw->conf) && (sc->sc_flags & SC_OP_TXAGGR)) { 1499 1500 tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK; 1501 1502 /* 1503 * Override seqno set by upper layer with the one 1504 * in tx aggregation state. 1505 */ 1506 tid = ATH_AN_2_TID(an, tidno); 1507 seqno = tid->seq_next; 1508 hdr->seq_ctrl = cpu_to_le16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1509 INCR(tid->seq_next, IEEE80211_SEQ_MAX); 1510 } 1511 1512 memset(fi, 0, sizeof(*fi)); 1513 if (hw_key) 1514 fi->keyix = hw_key->hw_key_idx; 1515 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0) 1516 fi->keyix = an->ps_key; 1517 else 1518 fi->keyix = ATH9K_TXKEYIX_INVALID; 1519 fi->keytype = keytype; 1520 fi->framelen = framelen; 1521 fi->seqno = seqno; 1522 } 1523 1524 static int setup_tx_flags(struct sk_buff *skb) 1525 { 1526 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1527 int flags = 0; 1528 1529 flags |= ATH9K_TXDESC_INTREQ; 1530 1531 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) 1532 flags |= ATH9K_TXDESC_NOACK; 1533 1534 if (tx_info->flags & IEEE80211_TX_CTL_LDPC) 1535 flags |= ATH9K_TXDESC_LDPC; 1536 1537 return flags; 1538 } 1539 1540 /* 1541 * rix - rate index 1542 * pktlen - total bytes (delims + data + fcs + pads + pad delims) 1543 * width - 0 for 20 MHz, 1 for 40 MHz 1544 * half_gi - to use 4us v/s 3.6 us for symbol time 1545 */ 1546 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen, 1547 int width, int half_gi, bool shortPreamble) 1548 { 1549 u32 nbits, nsymbits, duration, nsymbols; 1550 int streams; 1551 1552 /* find number of symbols: PLCP + data */ 1553 streams = HT_RC_2_STREAMS(rix); 1554 nbits = (pktlen << 3) + OFDM_PLCP_BITS; 1555 nsymbits = bits_per_symbol[rix % 8][width] * streams; 1556 nsymbols = (nbits + nsymbits - 1) / nsymbits; 1557 1558 if (!half_gi) 1559 duration = SYMBOL_TIME(nsymbols); 1560 else 1561 duration = SYMBOL_TIME_HALFGI(nsymbols); 1562 1563 /* addup duration for legacy/ht training and signal fields */ 1564 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 1565 1566 return duration; 1567 } 1568 1569 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate) 1570 { 1571 struct ath_hw *ah = sc->sc_ah; 1572 struct ath9k_channel *curchan = ah->curchan; 1573 if ((sc->sc_flags & SC_OP_ENABLE_APM) && 1574 (curchan->channelFlags & CHANNEL_5GHZ) && 1575 (chainmask == 0x7) && (rate < 0x90)) 1576 return 0x3; 1577 else 1578 return chainmask; 1579 } 1580 1581 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, int len) 1582 { 1583 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1584 struct ath9k_11n_rate_series series[4]; 1585 struct sk_buff *skb; 1586 struct ieee80211_tx_info *tx_info; 1587 struct ieee80211_tx_rate *rates; 1588 const struct ieee80211_rate *rate; 1589 struct ieee80211_hdr *hdr; 1590 int i, flags = 0; 1591 u8 rix = 0, ctsrate = 0; 1592 bool is_pspoll; 1593 1594 memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4); 1595 1596 skb = bf->bf_mpdu; 1597 tx_info = IEEE80211_SKB_CB(skb); 1598 rates = tx_info->control.rates; 1599 hdr = (struct ieee80211_hdr *)skb->data; 1600 is_pspoll = ieee80211_is_pspoll(hdr->frame_control); 1601 1602 /* 1603 * We check if Short Preamble is needed for the CTS rate by 1604 * checking the BSS's global flag. 1605 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used. 1606 */ 1607 rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info); 1608 ctsrate = rate->hw_value; 1609 if (sc->sc_flags & SC_OP_PREAMBLE_SHORT) 1610 ctsrate |= rate->hw_value_short; 1611 1612 for (i = 0; i < 4; i++) { 1613 bool is_40, is_sgi, is_sp; 1614 int phy; 1615 1616 if (!rates[i].count || (rates[i].idx < 0)) 1617 continue; 1618 1619 rix = rates[i].idx; 1620 series[i].Tries = rates[i].count; 1621 1622 if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) { 1623 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1624 flags |= ATH9K_TXDESC_RTSENA; 1625 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { 1626 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1627 flags |= ATH9K_TXDESC_CTSENA; 1628 } 1629 1630 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 1631 series[i].RateFlags |= ATH9K_RATESERIES_2040; 1632 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 1633 series[i].RateFlags |= ATH9K_RATESERIES_HALFGI; 1634 1635 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI); 1636 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH); 1637 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE); 1638 1639 if (rates[i].flags & IEEE80211_TX_RC_MCS) { 1640 /* MCS rates */ 1641 series[i].Rate = rix | 0x80; 1642 series[i].ChSel = ath_txchainmask_reduction(sc, 1643 common->tx_chainmask, series[i].Rate); 1644 series[i].PktDuration = ath_pkt_duration(sc, rix, len, 1645 is_40, is_sgi, is_sp); 1646 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC)) 1647 series[i].RateFlags |= ATH9K_RATESERIES_STBC; 1648 continue; 1649 } 1650 1651 /* legacy rates */ 1652 if ((tx_info->band == IEEE80211_BAND_2GHZ) && 1653 !(rate->flags & IEEE80211_RATE_ERP_G)) 1654 phy = WLAN_RC_PHY_CCK; 1655 else 1656 phy = WLAN_RC_PHY_OFDM; 1657 1658 rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx]; 1659 series[i].Rate = rate->hw_value; 1660 if (rate->hw_value_short) { 1661 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 1662 series[i].Rate |= rate->hw_value_short; 1663 } else { 1664 is_sp = false; 1665 } 1666 1667 if (bf->bf_state.bfs_paprd) 1668 series[i].ChSel = common->tx_chainmask; 1669 else 1670 series[i].ChSel = ath_txchainmask_reduction(sc, 1671 common->tx_chainmask, series[i].Rate); 1672 1673 series[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah, 1674 phy, rate->bitrate * 100, len, rix, is_sp); 1675 } 1676 1677 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */ 1678 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit)) 1679 flags &= ~ATH9K_TXDESC_RTSENA; 1680 1681 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */ 1682 if (flags & ATH9K_TXDESC_RTSENA) 1683 flags &= ~ATH9K_TXDESC_CTSENA; 1684 1685 /* set dur_update_en for l-sig computation except for PS-Poll frames */ 1686 ath9k_hw_set11n_ratescenario(sc->sc_ah, bf->bf_desc, 1687 bf->bf_lastbf->bf_desc, 1688 !is_pspoll, ctsrate, 1689 0, series, 4, flags); 1690 1691 } 1692 1693 static struct ath_buf *ath_tx_setup_buffer(struct ieee80211_hw *hw, 1694 struct ath_txq *txq, 1695 struct sk_buff *skb) 1696 { 1697 struct ath_softc *sc = hw->priv; 1698 struct ath_hw *ah = sc->sc_ah; 1699 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1700 struct ath_frame_info *fi = get_frame_info(skb); 1701 struct ath_buf *bf; 1702 struct ath_desc *ds; 1703 int frm_type; 1704 1705 bf = ath_tx_get_buffer(sc); 1706 if (!bf) { 1707 ath_dbg(common, ATH_DBG_XMIT, "TX buffers are full\n"); 1708 return NULL; 1709 } 1710 1711 ATH_TXBUF_RESET(bf); 1712 1713 bf->bf_flags = setup_tx_flags(skb); 1714 bf->bf_mpdu = skb; 1715 1716 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 1717 skb->len, DMA_TO_DEVICE); 1718 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) { 1719 bf->bf_mpdu = NULL; 1720 bf->bf_buf_addr = 0; 1721 ath_err(ath9k_hw_common(sc->sc_ah), 1722 "dma_mapping_error() on TX\n"); 1723 ath_tx_return_buffer(sc, bf); 1724 return NULL; 1725 } 1726 1727 frm_type = get_hw_packet_type(skb); 1728 1729 ds = bf->bf_desc; 1730 ath9k_hw_set_desc_link(ah, ds, 0); 1731 1732 ath9k_hw_set11n_txdesc(ah, ds, fi->framelen, frm_type, MAX_RATE_POWER, 1733 fi->keyix, fi->keytype, bf->bf_flags); 1734 1735 ath9k_hw_filltxdesc(ah, ds, 1736 skb->len, /* segment length */ 1737 true, /* first segment */ 1738 true, /* last segment */ 1739 ds, /* first descriptor */ 1740 bf->bf_buf_addr, 1741 txq->axq_qnum); 1742 1743 1744 return bf; 1745 } 1746 1747 /* FIXME: tx power */ 1748 static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf, 1749 struct ath_tx_control *txctl) 1750 { 1751 struct sk_buff *skb = bf->bf_mpdu; 1752 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1753 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1754 struct list_head bf_head; 1755 struct ath_atx_tid *tid = NULL; 1756 u8 tidno; 1757 1758 spin_lock_bh(&txctl->txq->axq_lock); 1759 if ((sc->sc_flags & SC_OP_TXAGGR) && txctl->an && 1760 ieee80211_is_data_qos(hdr->frame_control)) { 1761 tidno = ieee80211_get_qos_ctl(hdr)[0] & 1762 IEEE80211_QOS_CTL_TID_MASK; 1763 tid = ATH_AN_2_TID(txctl->an, tidno); 1764 1765 WARN_ON(tid->ac->txq != txctl->txq); 1766 } 1767 1768 if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && tid) { 1769 /* 1770 * Try aggregation if it's a unicast data frame 1771 * and the destination is HT capable. 1772 */ 1773 ath_tx_send_ampdu(sc, tid, bf, txctl); 1774 } else { 1775 INIT_LIST_HEAD(&bf_head); 1776 list_add_tail(&bf->list, &bf_head); 1777 1778 bf->bf_state.bfs_ftype = txctl->frame_type; 1779 bf->bf_state.bfs_paprd = txctl->paprd; 1780 1781 if (bf->bf_state.bfs_paprd) 1782 ar9003_hw_set_paprd_txdesc(sc->sc_ah, bf->bf_desc, 1783 bf->bf_state.bfs_paprd); 1784 1785 if (txctl->paprd) 1786 bf->bf_state.bfs_paprd_timestamp = jiffies; 1787 1788 if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) 1789 ath9k_hw_set_clrdmask(sc->sc_ah, bf->bf_desc, true); 1790 1791 ath_tx_send_normal(sc, txctl->txq, tid, &bf_head); 1792 } 1793 1794 spin_unlock_bh(&txctl->txq->axq_lock); 1795 } 1796 1797 /* Upon failure caller should free skb */ 1798 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb, 1799 struct ath_tx_control *txctl) 1800 { 1801 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1802 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1803 struct ieee80211_sta *sta = info->control.sta; 1804 struct ieee80211_vif *vif = info->control.vif; 1805 struct ath_softc *sc = hw->priv; 1806 struct ath_txq *txq = txctl->txq; 1807 struct ath_buf *bf; 1808 int padpos, padsize; 1809 int frmlen = skb->len + FCS_LEN; 1810 int q; 1811 1812 /* NOTE: sta can be NULL according to net/mac80211.h */ 1813 if (sta) 1814 txctl->an = (struct ath_node *)sta->drv_priv; 1815 1816 if (info->control.hw_key) 1817 frmlen += info->control.hw_key->icv_len; 1818 1819 /* 1820 * As a temporary workaround, assign seq# here; this will likely need 1821 * to be cleaned up to work better with Beacon transmission and virtual 1822 * BSSes. 1823 */ 1824 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { 1825 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) 1826 sc->tx.seq_no += 0x10; 1827 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); 1828 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no); 1829 } 1830 1831 /* Add the padding after the header if this is not already done */ 1832 padpos = ath9k_cmn_padpos(hdr->frame_control); 1833 padsize = padpos & 3; 1834 if (padsize && skb->len > padpos) { 1835 if (skb_headroom(skb) < padsize) 1836 return -ENOMEM; 1837 1838 skb_push(skb, padsize); 1839 memmove(skb->data, skb->data + padsize, padpos); 1840 } 1841 1842 if ((vif && vif->type != NL80211_IFTYPE_AP && 1843 vif->type != NL80211_IFTYPE_AP_VLAN) || 1844 !ieee80211_is_data(hdr->frame_control)) 1845 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1846 1847 setup_frame_info(hw, skb, frmlen); 1848 1849 /* 1850 * At this point, the vif, hw_key and sta pointers in the tx control 1851 * info are no longer valid (overwritten by the ath_frame_info data. 1852 */ 1853 1854 bf = ath_tx_setup_buffer(hw, txctl->txq, skb); 1855 if (unlikely(!bf)) 1856 return -ENOMEM; 1857 1858 q = skb_get_queue_mapping(skb); 1859 spin_lock_bh(&txq->axq_lock); 1860 if (txq == sc->tx.txq_map[q] && 1861 ++txq->pending_frames > ATH_MAX_QDEPTH && !txq->stopped) { 1862 ieee80211_stop_queue(sc->hw, q); 1863 txq->stopped = 1; 1864 } 1865 spin_unlock_bh(&txq->axq_lock); 1866 1867 ath_tx_start_dma(sc, bf, txctl); 1868 1869 return 0; 1870 } 1871 1872 /*****************/ 1873 /* TX Completion */ 1874 /*****************/ 1875 1876 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, 1877 int tx_flags, int ftype, struct ath_txq *txq) 1878 { 1879 struct ieee80211_hw *hw = sc->hw; 1880 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1881 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1882 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data; 1883 int q, padpos, padsize; 1884 1885 ath_dbg(common, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb); 1886 1887 if (tx_flags & ATH_TX_BAR) 1888 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK; 1889 1890 if (!(tx_flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) { 1891 /* Frame was ACKed */ 1892 tx_info->flags |= IEEE80211_TX_STAT_ACK; 1893 } 1894 1895 padpos = ath9k_cmn_padpos(hdr->frame_control); 1896 padsize = padpos & 3; 1897 if (padsize && skb->len>padpos+padsize) { 1898 /* 1899 * Remove MAC header padding before giving the frame back to 1900 * mac80211. 1901 */ 1902 memmove(skb->data + padsize, skb->data, padpos); 1903 skb_pull(skb, padsize); 1904 } 1905 1906 if (sc->ps_flags & PS_WAIT_FOR_TX_ACK) { 1907 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK; 1908 ath_dbg(common, ATH_DBG_PS, 1909 "Going back to sleep after having received TX status (0x%lx)\n", 1910 sc->ps_flags & (PS_WAIT_FOR_BEACON | 1911 PS_WAIT_FOR_CAB | 1912 PS_WAIT_FOR_PSPOLL_DATA | 1913 PS_WAIT_FOR_TX_ACK)); 1914 } 1915 1916 q = skb_get_queue_mapping(skb); 1917 if (txq == sc->tx.txq_map[q]) { 1918 spin_lock_bh(&txq->axq_lock); 1919 if (WARN_ON(--txq->pending_frames < 0)) 1920 txq->pending_frames = 0; 1921 1922 if (txq->stopped && txq->pending_frames < ATH_MAX_QDEPTH) { 1923 ieee80211_wake_queue(sc->hw, q); 1924 txq->stopped = 0; 1925 } 1926 spin_unlock_bh(&txq->axq_lock); 1927 } 1928 1929 ieee80211_tx_status(hw, skb); 1930 } 1931 1932 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 1933 struct ath_txq *txq, struct list_head *bf_q, 1934 struct ath_tx_status *ts, int txok, int sendbar) 1935 { 1936 struct sk_buff *skb = bf->bf_mpdu; 1937 unsigned long flags; 1938 int tx_flags = 0; 1939 1940 if (sendbar) 1941 tx_flags = ATH_TX_BAR; 1942 1943 if (!txok) { 1944 tx_flags |= ATH_TX_ERROR; 1945 1946 if (bf_isxretried(bf)) 1947 tx_flags |= ATH_TX_XRETRY; 1948 } 1949 1950 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE); 1951 bf->bf_buf_addr = 0; 1952 1953 if (bf->bf_state.bfs_paprd) { 1954 if (time_after(jiffies, 1955 bf->bf_state.bfs_paprd_timestamp + 1956 msecs_to_jiffies(ATH_PAPRD_TIMEOUT))) 1957 dev_kfree_skb_any(skb); 1958 else 1959 complete(&sc->paprd_complete); 1960 } else { 1961 ath_debug_stat_tx(sc, bf, ts, txq); 1962 ath_tx_complete(sc, skb, tx_flags, 1963 bf->bf_state.bfs_ftype, txq); 1964 } 1965 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't 1966 * accidentally reference it later. 1967 */ 1968 bf->bf_mpdu = NULL; 1969 1970 /* 1971 * Return the list of ath_buf of this mpdu to free queue 1972 */ 1973 spin_lock_irqsave(&sc->tx.txbuflock, flags); 1974 list_splice_tail_init(bf_q, &sc->tx.txbuf); 1975 spin_unlock_irqrestore(&sc->tx.txbuflock, flags); 1976 } 1977 1978 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 1979 struct ath_tx_status *ts, int nframes, int nbad, 1980 int txok, bool update_rc) 1981 { 1982 struct sk_buff *skb = bf->bf_mpdu; 1983 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1984 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1985 struct ieee80211_hw *hw = sc->hw; 1986 struct ath_hw *ah = sc->sc_ah; 1987 u8 i, tx_rateindex; 1988 1989 if (txok) 1990 tx_info->status.ack_signal = ts->ts_rssi; 1991 1992 tx_rateindex = ts->ts_rateindex; 1993 WARN_ON(tx_rateindex >= hw->max_rates); 1994 1995 if (ts->ts_status & ATH9K_TXERR_FILT) 1996 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; 1997 if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && update_rc) { 1998 tx_info->flags |= IEEE80211_TX_STAT_AMPDU; 1999 2000 BUG_ON(nbad > nframes); 2001 2002 tx_info->status.ampdu_len = nframes; 2003 tx_info->status.ampdu_ack_len = nframes - nbad; 2004 } 2005 2006 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 && 2007 (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0 && update_rc) { 2008 /* 2009 * If an underrun error is seen assume it as an excessive 2010 * retry only if max frame trigger level has been reached 2011 * (2 KB for single stream, and 4 KB for dual stream). 2012 * Adjust the long retry as if the frame was tried 2013 * hw->max_rate_tries times to affect how rate control updates 2014 * PER for the failed rate. 2015 * In case of congestion on the bus penalizing this type of 2016 * underruns should help hardware actually transmit new frames 2017 * successfully by eventually preferring slower rates. 2018 * This itself should also alleviate congestion on the bus. 2019 */ 2020 if (ieee80211_is_data(hdr->frame_control) && 2021 (ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN | 2022 ATH9K_TX_DELIM_UNDERRUN)) && 2023 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level) 2024 tx_info->status.rates[tx_rateindex].count = 2025 hw->max_rate_tries; 2026 } 2027 2028 for (i = tx_rateindex + 1; i < hw->max_rates; i++) { 2029 tx_info->status.rates[i].count = 0; 2030 tx_info->status.rates[i].idx = -1; 2031 } 2032 2033 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1; 2034 } 2035 2036 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq, 2037 struct ath_tx_status *ts, struct ath_buf *bf, 2038 struct list_head *bf_head) 2039 { 2040 int txok; 2041 2042 txq->axq_depth--; 2043 txok = !(ts->ts_status & ATH9K_TXERR_MASK); 2044 txq->axq_tx_inprogress = false; 2045 if (bf_is_ampdu_not_probing(bf)) 2046 txq->axq_ampdu_depth--; 2047 2048 spin_unlock_bh(&txq->axq_lock); 2049 2050 if (!bf_isampdu(bf)) { 2051 /* 2052 * This frame is sent out as a single frame. 2053 * Use hardware retry status for this frame. 2054 */ 2055 if (ts->ts_status & ATH9K_TXERR_XRETRY) 2056 bf->bf_state.bf_type |= BUF_XRETRY; 2057 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok, true); 2058 ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok, 0); 2059 } else 2060 ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok, true); 2061 2062 spin_lock_bh(&txq->axq_lock); 2063 2064 if (sc->sc_flags & SC_OP_TXAGGR) 2065 ath_txq_schedule(sc, txq); 2066 } 2067 2068 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 2069 { 2070 struct ath_hw *ah = sc->sc_ah; 2071 struct ath_common *common = ath9k_hw_common(ah); 2072 struct ath_buf *bf, *lastbf, *bf_held = NULL; 2073 struct list_head bf_head; 2074 struct ath_desc *ds; 2075 struct ath_tx_status ts; 2076 int status; 2077 2078 ath_dbg(common, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n", 2079 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum), 2080 txq->axq_link); 2081 2082 spin_lock_bh(&txq->axq_lock); 2083 for (;;) { 2084 if (list_empty(&txq->axq_q)) { 2085 txq->axq_link = NULL; 2086 if (sc->sc_flags & SC_OP_TXAGGR) 2087 ath_txq_schedule(sc, txq); 2088 break; 2089 } 2090 bf = list_first_entry(&txq->axq_q, struct ath_buf, list); 2091 2092 /* 2093 * There is a race condition that a BH gets scheduled 2094 * after sw writes TxE and before hw re-load the last 2095 * descriptor to get the newly chained one. 2096 * Software must keep the last DONE descriptor as a 2097 * holding descriptor - software does so by marking 2098 * it with the STALE flag. 2099 */ 2100 bf_held = NULL; 2101 if (bf->bf_stale) { 2102 bf_held = bf; 2103 if (list_is_last(&bf_held->list, &txq->axq_q)) 2104 break; 2105 2106 bf = list_entry(bf_held->list.next, struct ath_buf, 2107 list); 2108 } 2109 2110 lastbf = bf->bf_lastbf; 2111 ds = lastbf->bf_desc; 2112 2113 memset(&ts, 0, sizeof(ts)); 2114 status = ath9k_hw_txprocdesc(ah, ds, &ts); 2115 if (status == -EINPROGRESS) 2116 break; 2117 2118 TX_STAT_INC(txq->axq_qnum, txprocdesc); 2119 2120 /* 2121 * Remove ath_buf's of the same transmit unit from txq, 2122 * however leave the last descriptor back as the holding 2123 * descriptor for hw. 2124 */ 2125 lastbf->bf_stale = true; 2126 INIT_LIST_HEAD(&bf_head); 2127 if (!list_is_singular(&lastbf->list)) 2128 list_cut_position(&bf_head, 2129 &txq->axq_q, lastbf->list.prev); 2130 2131 if (bf_held) { 2132 list_del(&bf_held->list); 2133 ath_tx_return_buffer(sc, bf_held); 2134 } 2135 2136 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2137 } 2138 spin_unlock_bh(&txq->axq_lock); 2139 } 2140 2141 static void ath_tx_complete_poll_work(struct work_struct *work) 2142 { 2143 struct ath_softc *sc = container_of(work, struct ath_softc, 2144 tx_complete_work.work); 2145 struct ath_txq *txq; 2146 int i; 2147 bool needreset = false; 2148 #ifdef CONFIG_ATH9K_DEBUGFS 2149 sc->tx_complete_poll_work_seen++; 2150 #endif 2151 2152 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) 2153 if (ATH_TXQ_SETUP(sc, i)) { 2154 txq = &sc->tx.txq[i]; 2155 spin_lock_bh(&txq->axq_lock); 2156 if (txq->axq_depth) { 2157 if (txq->axq_tx_inprogress) { 2158 needreset = true; 2159 spin_unlock_bh(&txq->axq_lock); 2160 break; 2161 } else { 2162 txq->axq_tx_inprogress = true; 2163 } 2164 } 2165 spin_unlock_bh(&txq->axq_lock); 2166 } 2167 2168 if (needreset) { 2169 ath_dbg(ath9k_hw_common(sc->sc_ah), ATH_DBG_RESET, 2170 "tx hung, resetting the chip\n"); 2171 spin_lock_bh(&sc->sc_pcu_lock); 2172 ath_reset(sc, true); 2173 spin_unlock_bh(&sc->sc_pcu_lock); 2174 } 2175 2176 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work, 2177 msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT)); 2178 } 2179 2180 2181 2182 void ath_tx_tasklet(struct ath_softc *sc) 2183 { 2184 int i; 2185 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1); 2186 2187 ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask); 2188 2189 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 2190 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i))) 2191 ath_tx_processq(sc, &sc->tx.txq[i]); 2192 } 2193 } 2194 2195 void ath_tx_edma_tasklet(struct ath_softc *sc) 2196 { 2197 struct ath_tx_status ts; 2198 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2199 struct ath_hw *ah = sc->sc_ah; 2200 struct ath_txq *txq; 2201 struct ath_buf *bf, *lastbf; 2202 struct list_head bf_head; 2203 int status; 2204 2205 for (;;) { 2206 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts); 2207 if (status == -EINPROGRESS) 2208 break; 2209 if (status == -EIO) { 2210 ath_dbg(common, ATH_DBG_XMIT, 2211 "Error processing tx status\n"); 2212 break; 2213 } 2214 2215 /* Skip beacon completions */ 2216 if (ts.qid == sc->beacon.beaconq) 2217 continue; 2218 2219 txq = &sc->tx.txq[ts.qid]; 2220 2221 spin_lock_bh(&txq->axq_lock); 2222 2223 if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) { 2224 spin_unlock_bh(&txq->axq_lock); 2225 return; 2226 } 2227 2228 bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx], 2229 struct ath_buf, list); 2230 lastbf = bf->bf_lastbf; 2231 2232 INIT_LIST_HEAD(&bf_head); 2233 list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx], 2234 &lastbf->list); 2235 2236 if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) { 2237 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH); 2238 2239 if (!list_empty(&txq->axq_q)) { 2240 struct list_head bf_q; 2241 2242 INIT_LIST_HEAD(&bf_q); 2243 txq->axq_link = NULL; 2244 list_splice_tail_init(&txq->axq_q, &bf_q); 2245 ath_tx_txqaddbuf(sc, txq, &bf_q, true); 2246 } 2247 } 2248 2249 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2250 spin_unlock_bh(&txq->axq_lock); 2251 } 2252 } 2253 2254 /*****************/ 2255 /* Init, Cleanup */ 2256 /*****************/ 2257 2258 static int ath_txstatus_setup(struct ath_softc *sc, int size) 2259 { 2260 struct ath_descdma *dd = &sc->txsdma; 2261 u8 txs_len = sc->sc_ah->caps.txs_len; 2262 2263 dd->dd_desc_len = size * txs_len; 2264 dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len, 2265 &dd->dd_desc_paddr, GFP_KERNEL); 2266 if (!dd->dd_desc) 2267 return -ENOMEM; 2268 2269 return 0; 2270 } 2271 2272 static int ath_tx_edma_init(struct ath_softc *sc) 2273 { 2274 int err; 2275 2276 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE); 2277 if (!err) 2278 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc, 2279 sc->txsdma.dd_desc_paddr, 2280 ATH_TXSTATUS_RING_SIZE); 2281 2282 return err; 2283 } 2284 2285 static void ath_tx_edma_cleanup(struct ath_softc *sc) 2286 { 2287 struct ath_descdma *dd = &sc->txsdma; 2288 2289 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc, 2290 dd->dd_desc_paddr); 2291 } 2292 2293 int ath_tx_init(struct ath_softc *sc, int nbufs) 2294 { 2295 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2296 int error = 0; 2297 2298 spin_lock_init(&sc->tx.txbuflock); 2299 2300 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf, 2301 "tx", nbufs, 1, 1); 2302 if (error != 0) { 2303 ath_err(common, 2304 "Failed to allocate tx descriptors: %d\n", error); 2305 goto err; 2306 } 2307 2308 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf, 2309 "beacon", ATH_BCBUF, 1, 1); 2310 if (error != 0) { 2311 ath_err(common, 2312 "Failed to allocate beacon descriptors: %d\n", error); 2313 goto err; 2314 } 2315 2316 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work); 2317 2318 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 2319 error = ath_tx_edma_init(sc); 2320 if (error) 2321 goto err; 2322 } 2323 2324 err: 2325 if (error != 0) 2326 ath_tx_cleanup(sc); 2327 2328 return error; 2329 } 2330 2331 void ath_tx_cleanup(struct ath_softc *sc) 2332 { 2333 if (sc->beacon.bdma.dd_desc_len != 0) 2334 ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf); 2335 2336 if (sc->tx.txdma.dd_desc_len != 0) 2337 ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf); 2338 2339 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 2340 ath_tx_edma_cleanup(sc); 2341 } 2342 2343 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an) 2344 { 2345 struct ath_atx_tid *tid; 2346 struct ath_atx_ac *ac; 2347 int tidno, acno; 2348 2349 for (tidno = 0, tid = &an->tid[tidno]; 2350 tidno < WME_NUM_TID; 2351 tidno++, tid++) { 2352 tid->an = an; 2353 tid->tidno = tidno; 2354 tid->seq_start = tid->seq_next = 0; 2355 tid->baw_size = WME_MAX_BA; 2356 tid->baw_head = tid->baw_tail = 0; 2357 tid->sched = false; 2358 tid->paused = false; 2359 tid->state &= ~AGGR_CLEANUP; 2360 INIT_LIST_HEAD(&tid->buf_q); 2361 acno = TID_TO_WME_AC(tidno); 2362 tid->ac = &an->ac[acno]; 2363 tid->state &= ~AGGR_ADDBA_COMPLETE; 2364 tid->state &= ~AGGR_ADDBA_PROGRESS; 2365 } 2366 2367 for (acno = 0, ac = &an->ac[acno]; 2368 acno < WME_NUM_AC; acno++, ac++) { 2369 ac->sched = false; 2370 ac->txq = sc->tx.txq_map[acno]; 2371 INIT_LIST_HEAD(&ac->tid_q); 2372 } 2373 } 2374 2375 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an) 2376 { 2377 struct ath_atx_ac *ac; 2378 struct ath_atx_tid *tid; 2379 struct ath_txq *txq; 2380 int tidno; 2381 2382 for (tidno = 0, tid = &an->tid[tidno]; 2383 tidno < WME_NUM_TID; tidno++, tid++) { 2384 2385 ac = tid->ac; 2386 txq = ac->txq; 2387 2388 spin_lock_bh(&txq->axq_lock); 2389 2390 if (tid->sched) { 2391 list_del(&tid->list); 2392 tid->sched = false; 2393 } 2394 2395 if (ac->sched) { 2396 list_del(&ac->list); 2397 tid->ac->sched = false; 2398 } 2399 2400 ath_tid_drain(sc, txq, tid); 2401 tid->state &= ~AGGR_ADDBA_COMPLETE; 2402 tid->state &= ~AGGR_CLEANUP; 2403 2404 spin_unlock_bh(&txq->axq_lock); 2405 } 2406 } 2407