1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/dma-mapping.h> 18 #include "ath9k.h" 19 #include "ar9003_mac.h" 20 21 #define BITS_PER_BYTE 8 22 #define OFDM_PLCP_BITS 22 23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1) 24 #define L_STF 8 25 #define L_LTF 8 26 #define L_SIG 4 27 #define HT_SIG 8 28 #define HT_STF 4 29 #define HT_LTF(_ns) (4 * (_ns)) 30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */ 31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */ 32 #define TIME_SYMBOLS(t) ((t) >> 2) 33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18) 34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2) 35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18) 36 37 38 static u16 bits_per_symbol[][2] = { 39 /* 20MHz 40MHz */ 40 { 26, 54 }, /* 0: BPSK */ 41 { 52, 108 }, /* 1: QPSK 1/2 */ 42 { 78, 162 }, /* 2: QPSK 3/4 */ 43 { 104, 216 }, /* 3: 16-QAM 1/2 */ 44 { 156, 324 }, /* 4: 16-QAM 3/4 */ 45 { 208, 432 }, /* 5: 64-QAM 2/3 */ 46 { 234, 486 }, /* 6: 64-QAM 3/4 */ 47 { 260, 540 }, /* 7: 64-QAM 5/6 */ 48 }; 49 50 #define IS_HT_RATE(_rate) ((_rate) & 0x80) 51 52 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 53 struct ath_atx_tid *tid, struct sk_buff *skb); 54 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, 55 int tx_flags, struct ath_txq *txq); 56 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 57 struct ath_txq *txq, struct list_head *bf_q, 58 struct ath_tx_status *ts, int txok); 59 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 60 struct list_head *head, bool internal); 61 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 62 struct ath_tx_status *ts, int nframes, int nbad, 63 int txok); 64 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 65 int seqno); 66 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, 67 struct ath_txq *txq, 68 struct ath_atx_tid *tid, 69 struct sk_buff *skb); 70 71 enum { 72 MCS_HT20, 73 MCS_HT20_SGI, 74 MCS_HT40, 75 MCS_HT40_SGI, 76 }; 77 78 /*********************/ 79 /* Aggregation logic */ 80 /*********************/ 81 82 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq) 83 __acquires(&txq->axq_lock) 84 { 85 spin_lock_bh(&txq->axq_lock); 86 } 87 88 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq) 89 __releases(&txq->axq_lock) 90 { 91 spin_unlock_bh(&txq->axq_lock); 92 } 93 94 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq) 95 __releases(&txq->axq_lock) 96 { 97 struct sk_buff_head q; 98 struct sk_buff *skb; 99 100 __skb_queue_head_init(&q); 101 skb_queue_splice_init(&txq->complete_q, &q); 102 spin_unlock_bh(&txq->axq_lock); 103 104 while ((skb = __skb_dequeue(&q))) 105 ieee80211_tx_status(sc->hw, skb); 106 } 107 108 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid) 109 { 110 struct ath_atx_ac *ac = tid->ac; 111 112 if (tid->paused) 113 return; 114 115 if (tid->sched) 116 return; 117 118 tid->sched = true; 119 list_add_tail(&tid->list, &ac->tid_q); 120 121 if (ac->sched) 122 return; 123 124 ac->sched = true; 125 list_add_tail(&ac->list, &txq->axq_acq); 126 } 127 128 static struct ath_frame_info *get_frame_info(struct sk_buff *skb) 129 { 130 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 131 BUILD_BUG_ON(sizeof(struct ath_frame_info) > 132 sizeof(tx_info->rate_driver_data)); 133 return (struct ath_frame_info *) &tx_info->rate_driver_data[0]; 134 } 135 136 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno) 137 { 138 if (!tid->an->sta) 139 return; 140 141 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno, 142 seqno << IEEE80211_SEQ_SEQ_SHIFT); 143 } 144 145 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta, 146 struct ath_buf *bf) 147 { 148 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates, 149 ARRAY_SIZE(bf->rates)); 150 } 151 152 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq, 153 struct sk_buff *skb) 154 { 155 int q; 156 157 q = skb_get_queue_mapping(skb); 158 if (txq == sc->tx.uapsdq) 159 txq = sc->tx.txq_map[q]; 160 161 if (txq != sc->tx.txq_map[q]) 162 return; 163 164 if (WARN_ON(--txq->pending_frames < 0)) 165 txq->pending_frames = 0; 166 167 if (txq->stopped && 168 txq->pending_frames < sc->tx.txq_max_pending[q]) { 169 ieee80211_wake_queue(sc->hw, q); 170 txq->stopped = false; 171 } 172 } 173 174 static struct ath_atx_tid * 175 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb) 176 { 177 struct ieee80211_hdr *hdr; 178 u8 tidno = 0; 179 180 hdr = (struct ieee80211_hdr *) skb->data; 181 if (ieee80211_is_data_qos(hdr->frame_control)) 182 tidno = ieee80211_get_qos_ctl(hdr)[0]; 183 184 tidno &= IEEE80211_QOS_CTL_TID_MASK; 185 return ATH_AN_2_TID(an, tidno); 186 } 187 188 static bool ath_tid_has_buffered(struct ath_atx_tid *tid) 189 { 190 return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q); 191 } 192 193 static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid) 194 { 195 struct sk_buff *skb; 196 197 skb = __skb_dequeue(&tid->retry_q); 198 if (!skb) 199 skb = __skb_dequeue(&tid->buf_q); 200 201 return skb; 202 } 203 204 /* 205 * ath_tx_tid_change_state: 206 * - clears a-mpdu flag of previous session 207 * - force sequence number allocation to fix next BlockAck Window 208 */ 209 static void 210 ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid) 211 { 212 struct ath_txq *txq = tid->ac->txq; 213 struct ieee80211_tx_info *tx_info; 214 struct sk_buff *skb, *tskb; 215 struct ath_buf *bf; 216 struct ath_frame_info *fi; 217 218 skb_queue_walk_safe(&tid->buf_q, skb, tskb) { 219 fi = get_frame_info(skb); 220 bf = fi->bf; 221 222 tx_info = IEEE80211_SKB_CB(skb); 223 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU; 224 225 if (bf) 226 continue; 227 228 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 229 if (!bf) { 230 __skb_unlink(skb, &tid->buf_q); 231 ath_txq_skb_done(sc, txq, skb); 232 ieee80211_free_txskb(sc->hw, skb); 233 continue; 234 } 235 } 236 237 } 238 239 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid) 240 { 241 struct ath_txq *txq = tid->ac->txq; 242 struct sk_buff *skb; 243 struct ath_buf *bf; 244 struct list_head bf_head; 245 struct ath_tx_status ts; 246 struct ath_frame_info *fi; 247 bool sendbar = false; 248 249 INIT_LIST_HEAD(&bf_head); 250 251 memset(&ts, 0, sizeof(ts)); 252 253 while ((skb = __skb_dequeue(&tid->retry_q))) { 254 fi = get_frame_info(skb); 255 bf = fi->bf; 256 if (!bf) { 257 ath_txq_skb_done(sc, txq, skb); 258 ieee80211_free_txskb(sc->hw, skb); 259 continue; 260 } 261 262 if (fi->baw_tracked) { 263 ath_tx_update_baw(sc, tid, bf->bf_state.seqno); 264 sendbar = true; 265 } 266 267 list_add_tail(&bf->list, &bf_head); 268 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0); 269 } 270 271 if (sendbar) { 272 ath_txq_unlock(sc, txq); 273 ath_send_bar(tid, tid->seq_start); 274 ath_txq_lock(sc, txq); 275 } 276 } 277 278 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 279 int seqno) 280 { 281 int index, cindex; 282 283 index = ATH_BA_INDEX(tid->seq_start, seqno); 284 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 285 286 __clear_bit(cindex, tid->tx_buf); 287 288 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) { 289 INCR(tid->seq_start, IEEE80211_SEQ_MAX); 290 INCR(tid->baw_head, ATH_TID_MAX_BUFS); 291 if (tid->bar_index >= 0) 292 tid->bar_index--; 293 } 294 } 295 296 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 297 struct ath_buf *bf) 298 { 299 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 300 u16 seqno = bf->bf_state.seqno; 301 int index, cindex; 302 303 index = ATH_BA_INDEX(tid->seq_start, seqno); 304 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 305 __set_bit(cindex, tid->tx_buf); 306 fi->baw_tracked = 1; 307 308 if (index >= ((tid->baw_tail - tid->baw_head) & 309 (ATH_TID_MAX_BUFS - 1))) { 310 tid->baw_tail = cindex; 311 INCR(tid->baw_tail, ATH_TID_MAX_BUFS); 312 } 313 } 314 315 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq, 316 struct ath_atx_tid *tid) 317 318 { 319 struct sk_buff *skb; 320 struct ath_buf *bf; 321 struct list_head bf_head; 322 struct ath_tx_status ts; 323 struct ath_frame_info *fi; 324 325 memset(&ts, 0, sizeof(ts)); 326 INIT_LIST_HEAD(&bf_head); 327 328 while ((skb = ath_tid_dequeue(tid))) { 329 fi = get_frame_info(skb); 330 bf = fi->bf; 331 332 if (!bf) { 333 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq); 334 continue; 335 } 336 337 list_add_tail(&bf->list, &bf_head); 338 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0); 339 } 340 } 341 342 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq, 343 struct sk_buff *skb, int count) 344 { 345 struct ath_frame_info *fi = get_frame_info(skb); 346 struct ath_buf *bf = fi->bf; 347 struct ieee80211_hdr *hdr; 348 int prev = fi->retries; 349 350 TX_STAT_INC(txq->axq_qnum, a_retries); 351 fi->retries += count; 352 353 if (prev > 0) 354 return; 355 356 hdr = (struct ieee80211_hdr *)skb->data; 357 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY); 358 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 359 sizeof(*hdr), DMA_TO_DEVICE); 360 } 361 362 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc) 363 { 364 struct ath_buf *bf = NULL; 365 366 spin_lock_bh(&sc->tx.txbuflock); 367 368 if (unlikely(list_empty(&sc->tx.txbuf))) { 369 spin_unlock_bh(&sc->tx.txbuflock); 370 return NULL; 371 } 372 373 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list); 374 list_del(&bf->list); 375 376 spin_unlock_bh(&sc->tx.txbuflock); 377 378 return bf; 379 } 380 381 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf) 382 { 383 spin_lock_bh(&sc->tx.txbuflock); 384 list_add_tail(&bf->list, &sc->tx.txbuf); 385 spin_unlock_bh(&sc->tx.txbuflock); 386 } 387 388 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf) 389 { 390 struct ath_buf *tbf; 391 392 tbf = ath_tx_get_buffer(sc); 393 if (WARN_ON(!tbf)) 394 return NULL; 395 396 ATH_TXBUF_RESET(tbf); 397 398 tbf->bf_mpdu = bf->bf_mpdu; 399 tbf->bf_buf_addr = bf->bf_buf_addr; 400 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len); 401 tbf->bf_state = bf->bf_state; 402 tbf->bf_state.stale = false; 403 404 return tbf; 405 } 406 407 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf, 408 struct ath_tx_status *ts, int txok, 409 int *nframes, int *nbad) 410 { 411 struct ath_frame_info *fi; 412 u16 seq_st = 0; 413 u32 ba[WME_BA_BMP_SIZE >> 5]; 414 int ba_index; 415 int isaggr = 0; 416 417 *nbad = 0; 418 *nframes = 0; 419 420 isaggr = bf_isaggr(bf); 421 if (isaggr) { 422 seq_st = ts->ts_seqnum; 423 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); 424 } 425 426 while (bf) { 427 fi = get_frame_info(bf->bf_mpdu); 428 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno); 429 430 (*nframes)++; 431 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index))) 432 (*nbad)++; 433 434 bf = bf->bf_next; 435 } 436 } 437 438 439 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq, 440 struct ath_buf *bf, struct list_head *bf_q, 441 struct ath_tx_status *ts, int txok) 442 { 443 struct ath_node *an = NULL; 444 struct sk_buff *skb; 445 struct ieee80211_sta *sta; 446 struct ieee80211_hw *hw = sc->hw; 447 struct ieee80211_hdr *hdr; 448 struct ieee80211_tx_info *tx_info; 449 struct ath_atx_tid *tid = NULL; 450 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf; 451 struct list_head bf_head; 452 struct sk_buff_head bf_pending; 453 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first; 454 u32 ba[WME_BA_BMP_SIZE >> 5]; 455 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0; 456 bool rc_update = true, isba; 457 struct ieee80211_tx_rate rates[4]; 458 struct ath_frame_info *fi; 459 int nframes; 460 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH); 461 int i, retries; 462 int bar_index = -1; 463 464 skb = bf->bf_mpdu; 465 hdr = (struct ieee80211_hdr *)skb->data; 466 467 tx_info = IEEE80211_SKB_CB(skb); 468 469 memcpy(rates, bf->rates, sizeof(rates)); 470 471 retries = ts->ts_longretry + 1; 472 for (i = 0; i < ts->ts_rateindex; i++) 473 retries += rates[i].count; 474 475 rcu_read_lock(); 476 477 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2); 478 if (!sta) { 479 rcu_read_unlock(); 480 481 INIT_LIST_HEAD(&bf_head); 482 while (bf) { 483 bf_next = bf->bf_next; 484 485 if (!bf->bf_state.stale || bf_next != NULL) 486 list_move_tail(&bf->list, &bf_head); 487 488 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0); 489 490 bf = bf_next; 491 } 492 return; 493 } 494 495 an = (struct ath_node *)sta->drv_priv; 496 tid = ath_get_skb_tid(sc, an, skb); 497 seq_first = tid->seq_start; 498 isba = ts->ts_flags & ATH9K_TX_BA; 499 500 /* 501 * The hardware occasionally sends a tx status for the wrong TID. 502 * In this case, the BA status cannot be considered valid and all 503 * subframes need to be retransmitted 504 * 505 * Only BlockAcks have a TID and therefore normal Acks cannot be 506 * checked 507 */ 508 if (isba && tid->tidno != ts->tid) 509 txok = false; 510 511 isaggr = bf_isaggr(bf); 512 memset(ba, 0, WME_BA_BMP_SIZE >> 3); 513 514 if (isaggr && txok) { 515 if (ts->ts_flags & ATH9K_TX_BA) { 516 seq_st = ts->ts_seqnum; 517 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); 518 } else { 519 /* 520 * AR5416 can become deaf/mute when BA 521 * issue happens. Chip needs to be reset. 522 * But AP code may have sychronization issues 523 * when perform internal reset in this routine. 524 * Only enable reset in STA mode for now. 525 */ 526 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION) 527 needreset = 1; 528 } 529 } 530 531 __skb_queue_head_init(&bf_pending); 532 533 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad); 534 while (bf) { 535 u16 seqno = bf->bf_state.seqno; 536 537 txfail = txpending = sendbar = 0; 538 bf_next = bf->bf_next; 539 540 skb = bf->bf_mpdu; 541 tx_info = IEEE80211_SKB_CB(skb); 542 fi = get_frame_info(skb); 543 544 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) || 545 !tid->active) { 546 /* 547 * Outside of the current BlockAck window, 548 * maybe part of a previous session 549 */ 550 txfail = 1; 551 } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) { 552 /* transmit completion, subframe is 553 * acked by block ack */ 554 acked_cnt++; 555 } else if (!isaggr && txok) { 556 /* transmit completion */ 557 acked_cnt++; 558 } else if (flush) { 559 txpending = 1; 560 } else if (fi->retries < ATH_MAX_SW_RETRIES) { 561 if (txok || !an->sleeping) 562 ath_tx_set_retry(sc, txq, bf->bf_mpdu, 563 retries); 564 565 txpending = 1; 566 } else { 567 txfail = 1; 568 txfail_cnt++; 569 bar_index = max_t(int, bar_index, 570 ATH_BA_INDEX(seq_first, seqno)); 571 } 572 573 /* 574 * Make sure the last desc is reclaimed if it 575 * not a holding desc. 576 */ 577 INIT_LIST_HEAD(&bf_head); 578 if (bf_next != NULL || !bf_last->bf_state.stale) 579 list_move_tail(&bf->list, &bf_head); 580 581 if (!txpending) { 582 /* 583 * complete the acked-ones/xretried ones; update 584 * block-ack window 585 */ 586 ath_tx_update_baw(sc, tid, seqno); 587 588 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) { 589 memcpy(tx_info->control.rates, rates, sizeof(rates)); 590 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok); 591 rc_update = false; 592 } 593 594 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 595 !txfail); 596 } else { 597 if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) { 598 tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP; 599 ieee80211_sta_eosp(sta); 600 } 601 /* retry the un-acked ones */ 602 if (bf->bf_next == NULL && bf_last->bf_state.stale) { 603 struct ath_buf *tbf; 604 605 tbf = ath_clone_txbuf(sc, bf_last); 606 /* 607 * Update tx baw and complete the 608 * frame with failed status if we 609 * run out of tx buf. 610 */ 611 if (!tbf) { 612 ath_tx_update_baw(sc, tid, seqno); 613 614 ath_tx_complete_buf(sc, bf, txq, 615 &bf_head, ts, 0); 616 bar_index = max_t(int, bar_index, 617 ATH_BA_INDEX(seq_first, seqno)); 618 break; 619 } 620 621 fi->bf = tbf; 622 } 623 624 /* 625 * Put this buffer to the temporary pending 626 * queue to retain ordering 627 */ 628 __skb_queue_tail(&bf_pending, skb); 629 } 630 631 bf = bf_next; 632 } 633 634 /* prepend un-acked frames to the beginning of the pending frame queue */ 635 if (!skb_queue_empty(&bf_pending)) { 636 if (an->sleeping) 637 ieee80211_sta_set_buffered(sta, tid->tidno, true); 638 639 skb_queue_splice_tail(&bf_pending, &tid->retry_q); 640 if (!an->sleeping) { 641 ath_tx_queue_tid(txq, tid); 642 643 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY)) 644 tid->ac->clear_ps_filter = true; 645 } 646 } 647 648 if (bar_index >= 0) { 649 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index); 650 651 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq)) 652 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq); 653 654 ath_txq_unlock(sc, txq); 655 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1)); 656 ath_txq_lock(sc, txq); 657 } 658 659 rcu_read_unlock(); 660 661 if (needreset) 662 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR); 663 } 664 665 static bool bf_is_ampdu_not_probing(struct ath_buf *bf) 666 { 667 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu); 668 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE); 669 } 670 671 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq, 672 struct ath_tx_status *ts, struct ath_buf *bf, 673 struct list_head *bf_head) 674 { 675 struct ieee80211_tx_info *info; 676 bool txok, flush; 677 678 txok = !(ts->ts_status & ATH9K_TXERR_MASK); 679 flush = !!(ts->ts_status & ATH9K_TX_FLUSH); 680 txq->axq_tx_inprogress = false; 681 682 txq->axq_depth--; 683 if (bf_is_ampdu_not_probing(bf)) 684 txq->axq_ampdu_depth--; 685 686 if (!bf_isampdu(bf)) { 687 if (!flush) { 688 info = IEEE80211_SKB_CB(bf->bf_mpdu); 689 memcpy(info->control.rates, bf->rates, 690 sizeof(info->control.rates)); 691 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok); 692 } 693 ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok); 694 } else 695 ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok); 696 697 if (!flush) 698 ath_txq_schedule(sc, txq); 699 } 700 701 static bool ath_lookup_legacy(struct ath_buf *bf) 702 { 703 struct sk_buff *skb; 704 struct ieee80211_tx_info *tx_info; 705 struct ieee80211_tx_rate *rates; 706 int i; 707 708 skb = bf->bf_mpdu; 709 tx_info = IEEE80211_SKB_CB(skb); 710 rates = tx_info->control.rates; 711 712 for (i = 0; i < 4; i++) { 713 if (!rates[i].count || rates[i].idx < 0) 714 break; 715 716 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) 717 return true; 718 } 719 720 return false; 721 } 722 723 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf, 724 struct ath_atx_tid *tid) 725 { 726 struct sk_buff *skb; 727 struct ieee80211_tx_info *tx_info; 728 struct ieee80211_tx_rate *rates; 729 u32 max_4ms_framelen, frmlen; 730 u16 aggr_limit, bt_aggr_limit, legacy = 0; 731 int q = tid->ac->txq->mac80211_qnum; 732 int i; 733 734 skb = bf->bf_mpdu; 735 tx_info = IEEE80211_SKB_CB(skb); 736 rates = bf->rates; 737 738 /* 739 * Find the lowest frame length among the rate series that will have a 740 * 4ms (or TXOP limited) transmit duration. 741 */ 742 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX; 743 744 for (i = 0; i < 4; i++) { 745 int modeidx; 746 747 if (!rates[i].count) 748 continue; 749 750 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) { 751 legacy = 1; 752 break; 753 } 754 755 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 756 modeidx = MCS_HT40; 757 else 758 modeidx = MCS_HT20; 759 760 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 761 modeidx++; 762 763 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx]; 764 max_4ms_framelen = min(max_4ms_framelen, frmlen); 765 } 766 767 /* 768 * limit aggregate size by the minimum rate if rate selected is 769 * not a probe rate, if rate selected is a probe rate then 770 * avoid aggregation of this packet. 771 */ 772 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy) 773 return 0; 774 775 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX); 776 777 /* 778 * Override the default aggregation limit for BTCOEX. 779 */ 780 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen); 781 if (bt_aggr_limit) 782 aggr_limit = bt_aggr_limit; 783 784 /* 785 * h/w can accept aggregates up to 16 bit lengths (65535). 786 * The IE, however can hold up to 65536, which shows up here 787 * as zero. Ignore 65536 since we are constrained by hw. 788 */ 789 if (tid->an->maxampdu) 790 aggr_limit = min(aggr_limit, tid->an->maxampdu); 791 792 return aggr_limit; 793 } 794 795 /* 796 * Returns the number of delimiters to be added to 797 * meet the minimum required mpdudensity. 798 */ 799 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid, 800 struct ath_buf *bf, u16 frmlen, 801 bool first_subfrm) 802 { 803 #define FIRST_DESC_NDELIMS 60 804 u32 nsymbits, nsymbols; 805 u16 minlen; 806 u8 flags, rix; 807 int width, streams, half_gi, ndelim, mindelim; 808 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 809 810 /* Select standard number of delimiters based on frame length alone */ 811 ndelim = ATH_AGGR_GET_NDELIM(frmlen); 812 813 /* 814 * If encryption enabled, hardware requires some more padding between 815 * subframes. 816 * TODO - this could be improved to be dependent on the rate. 817 * The hardware can keep up at lower rates, but not higher rates 818 */ 819 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) && 820 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) 821 ndelim += ATH_AGGR_ENCRYPTDELIM; 822 823 /* 824 * Add delimiter when using RTS/CTS with aggregation 825 * and non enterprise AR9003 card 826 */ 827 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) && 828 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE)) 829 ndelim = max(ndelim, FIRST_DESC_NDELIMS); 830 831 /* 832 * Convert desired mpdu density from microeconds to bytes based 833 * on highest rate in rate series (i.e. first rate) to determine 834 * required minimum length for subframe. Take into account 835 * whether high rate is 20 or 40Mhz and half or full GI. 836 * 837 * If there is no mpdu density restriction, no further calculation 838 * is needed. 839 */ 840 841 if (tid->an->mpdudensity == 0) 842 return ndelim; 843 844 rix = bf->rates[0].idx; 845 flags = bf->rates[0].flags; 846 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0; 847 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0; 848 849 if (half_gi) 850 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity); 851 else 852 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity); 853 854 if (nsymbols == 0) 855 nsymbols = 1; 856 857 streams = HT_RC_2_STREAMS(rix); 858 nsymbits = bits_per_symbol[rix % 8][width] * streams; 859 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE; 860 861 if (frmlen < minlen) { 862 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ; 863 ndelim = max(mindelim, ndelim); 864 } 865 866 return ndelim; 867 } 868 869 static struct ath_buf * 870 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq, 871 struct ath_atx_tid *tid, struct sk_buff_head **q) 872 { 873 struct ieee80211_tx_info *tx_info; 874 struct ath_frame_info *fi; 875 struct sk_buff *skb; 876 struct ath_buf *bf; 877 u16 seqno; 878 879 while (1) { 880 *q = &tid->retry_q; 881 if (skb_queue_empty(*q)) 882 *q = &tid->buf_q; 883 884 skb = skb_peek(*q); 885 if (!skb) 886 break; 887 888 fi = get_frame_info(skb); 889 bf = fi->bf; 890 if (!fi->bf) 891 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 892 else 893 bf->bf_state.stale = false; 894 895 if (!bf) { 896 __skb_unlink(skb, *q); 897 ath_txq_skb_done(sc, txq, skb); 898 ieee80211_free_txskb(sc->hw, skb); 899 continue; 900 } 901 902 bf->bf_next = NULL; 903 bf->bf_lastbf = bf; 904 905 tx_info = IEEE80211_SKB_CB(skb); 906 tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT; 907 if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) { 908 bf->bf_state.bf_type = 0; 909 return bf; 910 } 911 912 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR; 913 seqno = bf->bf_state.seqno; 914 915 /* do not step over block-ack window */ 916 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) 917 break; 918 919 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) { 920 struct ath_tx_status ts = {}; 921 struct list_head bf_head; 922 923 INIT_LIST_HEAD(&bf_head); 924 list_add(&bf->list, &bf_head); 925 __skb_unlink(skb, *q); 926 ath_tx_update_baw(sc, tid, seqno); 927 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0); 928 continue; 929 } 930 931 return bf; 932 } 933 934 return NULL; 935 } 936 937 static bool 938 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq, 939 struct ath_atx_tid *tid, struct list_head *bf_q, 940 struct ath_buf *bf_first, struct sk_buff_head *tid_q, 941 int *aggr_len) 942 { 943 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4) 944 struct ath_buf *bf = bf_first, *bf_prev = NULL; 945 int nframes = 0, ndelim; 946 u16 aggr_limit = 0, al = 0, bpad = 0, 947 al_delta, h_baw = tid->baw_size / 2; 948 struct ieee80211_tx_info *tx_info; 949 struct ath_frame_info *fi; 950 struct sk_buff *skb; 951 bool closed = false; 952 953 bf = bf_first; 954 aggr_limit = ath_lookup_rate(sc, bf, tid); 955 956 do { 957 skb = bf->bf_mpdu; 958 fi = get_frame_info(skb); 959 960 /* do not exceed aggregation limit */ 961 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen; 962 if (nframes) { 963 if (aggr_limit < al + bpad + al_delta || 964 ath_lookup_legacy(bf) || nframes >= h_baw) 965 break; 966 967 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 968 if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) || 969 !(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) 970 break; 971 } 972 973 /* add padding for previous frame to aggregation length */ 974 al += bpad + al_delta; 975 976 /* 977 * Get the delimiters needed to meet the MPDU 978 * density for this node. 979 */ 980 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen, 981 !nframes); 982 bpad = PADBYTES(al_delta) + (ndelim << 2); 983 984 nframes++; 985 bf->bf_next = NULL; 986 987 /* link buffers of this frame to the aggregate */ 988 if (!fi->baw_tracked) 989 ath_tx_addto_baw(sc, tid, bf); 990 bf->bf_state.ndelim = ndelim; 991 992 __skb_unlink(skb, tid_q); 993 list_add_tail(&bf->list, bf_q); 994 if (bf_prev) 995 bf_prev->bf_next = bf; 996 997 bf_prev = bf; 998 999 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q); 1000 if (!bf) { 1001 closed = true; 1002 break; 1003 } 1004 } while (ath_tid_has_buffered(tid)); 1005 1006 bf = bf_first; 1007 bf->bf_lastbf = bf_prev; 1008 1009 if (bf == bf_prev) { 1010 al = get_frame_info(bf->bf_mpdu)->framelen; 1011 bf->bf_state.bf_type = BUF_AMPDU; 1012 } else { 1013 TX_STAT_INC(txq->axq_qnum, a_aggr); 1014 } 1015 1016 *aggr_len = al; 1017 1018 return closed; 1019 #undef PADBYTES 1020 } 1021 1022 /* 1023 * rix - rate index 1024 * pktlen - total bytes (delims + data + fcs + pads + pad delims) 1025 * width - 0 for 20 MHz, 1 for 40 MHz 1026 * half_gi - to use 4us v/s 3.6 us for symbol time 1027 */ 1028 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen, 1029 int width, int half_gi, bool shortPreamble) 1030 { 1031 u32 nbits, nsymbits, duration, nsymbols; 1032 int streams; 1033 1034 /* find number of symbols: PLCP + data */ 1035 streams = HT_RC_2_STREAMS(rix); 1036 nbits = (pktlen << 3) + OFDM_PLCP_BITS; 1037 nsymbits = bits_per_symbol[rix % 8][width] * streams; 1038 nsymbols = (nbits + nsymbits - 1) / nsymbits; 1039 1040 if (!half_gi) 1041 duration = SYMBOL_TIME(nsymbols); 1042 else 1043 duration = SYMBOL_TIME_HALFGI(nsymbols); 1044 1045 /* addup duration for legacy/ht training and signal fields */ 1046 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 1047 1048 return duration; 1049 } 1050 1051 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi) 1052 { 1053 int streams = HT_RC_2_STREAMS(mcs); 1054 int symbols, bits; 1055 int bytes = 0; 1056 1057 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec); 1058 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams; 1059 bits -= OFDM_PLCP_BITS; 1060 bytes = bits / 8; 1061 bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 1062 if (bytes > 65532) 1063 bytes = 65532; 1064 1065 return bytes; 1066 } 1067 1068 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop) 1069 { 1070 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi; 1071 int mcs; 1072 1073 /* 4ms is the default (and maximum) duration */ 1074 if (!txop || txop > 4096) 1075 txop = 4096; 1076 1077 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20]; 1078 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI]; 1079 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40]; 1080 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI]; 1081 for (mcs = 0; mcs < 32; mcs++) { 1082 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false); 1083 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true); 1084 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false); 1085 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true); 1086 } 1087 } 1088 1089 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, 1090 struct ath_tx_info *info, int len, bool rts) 1091 { 1092 struct ath_hw *ah = sc->sc_ah; 1093 struct sk_buff *skb; 1094 struct ieee80211_tx_info *tx_info; 1095 struct ieee80211_tx_rate *rates; 1096 const struct ieee80211_rate *rate; 1097 struct ieee80211_hdr *hdr; 1098 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 1099 u32 rts_thresh = sc->hw->wiphy->rts_threshold; 1100 int i; 1101 u8 rix = 0; 1102 1103 skb = bf->bf_mpdu; 1104 tx_info = IEEE80211_SKB_CB(skb); 1105 rates = bf->rates; 1106 hdr = (struct ieee80211_hdr *)skb->data; 1107 1108 /* set dur_update_en for l-sig computation except for PS-Poll frames */ 1109 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control); 1110 info->rtscts_rate = fi->rtscts_rate; 1111 1112 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) { 1113 bool is_40, is_sgi, is_sp; 1114 int phy; 1115 1116 if (!rates[i].count || (rates[i].idx < 0)) 1117 continue; 1118 1119 rix = rates[i].idx; 1120 info->rates[i].Tries = rates[i].count; 1121 1122 /* 1123 * Handle RTS threshold for unaggregated HT frames. 1124 */ 1125 if (bf_isampdu(bf) && !bf_isaggr(bf) && 1126 (rates[i].flags & IEEE80211_TX_RC_MCS) && 1127 unlikely(rts_thresh != (u32) -1)) { 1128 if (!rts_thresh || (len > rts_thresh)) 1129 rts = true; 1130 } 1131 1132 if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) { 1133 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1134 info->flags |= ATH9K_TXDESC_RTSENA; 1135 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { 1136 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1137 info->flags |= ATH9K_TXDESC_CTSENA; 1138 } 1139 1140 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 1141 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040; 1142 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 1143 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI; 1144 1145 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI); 1146 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH); 1147 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE); 1148 1149 if (rates[i].flags & IEEE80211_TX_RC_MCS) { 1150 /* MCS rates */ 1151 info->rates[i].Rate = rix | 0x80; 1152 info->rates[i].ChSel = ath_txchainmask_reduction(sc, 1153 ah->txchainmask, info->rates[i].Rate); 1154 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len, 1155 is_40, is_sgi, is_sp); 1156 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC)) 1157 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC; 1158 continue; 1159 } 1160 1161 /* legacy rates */ 1162 rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx]; 1163 if ((tx_info->band == IEEE80211_BAND_2GHZ) && 1164 !(rate->flags & IEEE80211_RATE_ERP_G)) 1165 phy = WLAN_RC_PHY_CCK; 1166 else 1167 phy = WLAN_RC_PHY_OFDM; 1168 1169 info->rates[i].Rate = rate->hw_value; 1170 if (rate->hw_value_short) { 1171 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 1172 info->rates[i].Rate |= rate->hw_value_short; 1173 } else { 1174 is_sp = false; 1175 } 1176 1177 if (bf->bf_state.bfs_paprd) 1178 info->rates[i].ChSel = ah->txchainmask; 1179 else 1180 info->rates[i].ChSel = ath_txchainmask_reduction(sc, 1181 ah->txchainmask, info->rates[i].Rate); 1182 1183 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah, 1184 phy, rate->bitrate * 100, len, rix, is_sp); 1185 } 1186 1187 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */ 1188 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit)) 1189 info->flags &= ~ATH9K_TXDESC_RTSENA; 1190 1191 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */ 1192 if (info->flags & ATH9K_TXDESC_RTSENA) 1193 info->flags &= ~ATH9K_TXDESC_CTSENA; 1194 } 1195 1196 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb) 1197 { 1198 struct ieee80211_hdr *hdr; 1199 enum ath9k_pkt_type htype; 1200 __le16 fc; 1201 1202 hdr = (struct ieee80211_hdr *)skb->data; 1203 fc = hdr->frame_control; 1204 1205 if (ieee80211_is_beacon(fc)) 1206 htype = ATH9K_PKT_TYPE_BEACON; 1207 else if (ieee80211_is_probe_resp(fc)) 1208 htype = ATH9K_PKT_TYPE_PROBE_RESP; 1209 else if (ieee80211_is_atim(fc)) 1210 htype = ATH9K_PKT_TYPE_ATIM; 1211 else if (ieee80211_is_pspoll(fc)) 1212 htype = ATH9K_PKT_TYPE_PSPOLL; 1213 else 1214 htype = ATH9K_PKT_TYPE_NORMAL; 1215 1216 return htype; 1217 } 1218 1219 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf, 1220 struct ath_txq *txq, int len) 1221 { 1222 struct ath_hw *ah = sc->sc_ah; 1223 struct ath_buf *bf_first = NULL; 1224 struct ath_tx_info info; 1225 u32 rts_thresh = sc->hw->wiphy->rts_threshold; 1226 bool rts = false; 1227 1228 memset(&info, 0, sizeof(info)); 1229 info.is_first = true; 1230 info.is_last = true; 1231 info.txpower = MAX_RATE_POWER; 1232 info.qcu = txq->axq_qnum; 1233 1234 while (bf) { 1235 struct sk_buff *skb = bf->bf_mpdu; 1236 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1237 struct ath_frame_info *fi = get_frame_info(skb); 1238 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR); 1239 1240 info.type = get_hw_packet_type(skb); 1241 if (bf->bf_next) 1242 info.link = bf->bf_next->bf_daddr; 1243 else 1244 info.link = (sc->tx99_state) ? bf->bf_daddr : 0; 1245 1246 if (!bf_first) { 1247 bf_first = bf; 1248 1249 if (!sc->tx99_state) 1250 info.flags = ATH9K_TXDESC_INTREQ; 1251 if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) || 1252 txq == sc->tx.uapsdq) 1253 info.flags |= ATH9K_TXDESC_CLRDMASK; 1254 1255 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) 1256 info.flags |= ATH9K_TXDESC_NOACK; 1257 if (tx_info->flags & IEEE80211_TX_CTL_LDPC) 1258 info.flags |= ATH9K_TXDESC_LDPC; 1259 1260 if (bf->bf_state.bfs_paprd) 1261 info.flags |= (u32) bf->bf_state.bfs_paprd << 1262 ATH9K_TXDESC_PAPRD_S; 1263 1264 /* 1265 * mac80211 doesn't handle RTS threshold for HT because 1266 * the decision has to be taken based on AMPDU length 1267 * and aggregation is done entirely inside ath9k. 1268 * Set the RTS/CTS flag for the first subframe based 1269 * on the threshold. 1270 */ 1271 if (aggr && (bf == bf_first) && 1272 unlikely(rts_thresh != (u32) -1)) { 1273 /* 1274 * "len" is the size of the entire AMPDU. 1275 */ 1276 if (!rts_thresh || (len > rts_thresh)) 1277 rts = true; 1278 } 1279 ath_buf_set_rate(sc, bf, &info, len, rts); 1280 } 1281 1282 info.buf_addr[0] = bf->bf_buf_addr; 1283 info.buf_len[0] = skb->len; 1284 info.pkt_len = fi->framelen; 1285 info.keyix = fi->keyix; 1286 info.keytype = fi->keytype; 1287 1288 if (aggr) { 1289 if (bf == bf_first) 1290 info.aggr = AGGR_BUF_FIRST; 1291 else if (bf == bf_first->bf_lastbf) 1292 info.aggr = AGGR_BUF_LAST; 1293 else 1294 info.aggr = AGGR_BUF_MIDDLE; 1295 1296 info.ndelim = bf->bf_state.ndelim; 1297 info.aggr_len = len; 1298 } 1299 1300 if (bf == bf_first->bf_lastbf) 1301 bf_first = NULL; 1302 1303 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info); 1304 bf = bf->bf_next; 1305 } 1306 } 1307 1308 static void 1309 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq, 1310 struct ath_atx_tid *tid, struct list_head *bf_q, 1311 struct ath_buf *bf_first, struct sk_buff_head *tid_q) 1312 { 1313 struct ath_buf *bf = bf_first, *bf_prev = NULL; 1314 struct sk_buff *skb; 1315 int nframes = 0; 1316 1317 do { 1318 struct ieee80211_tx_info *tx_info; 1319 skb = bf->bf_mpdu; 1320 1321 nframes++; 1322 __skb_unlink(skb, tid_q); 1323 list_add_tail(&bf->list, bf_q); 1324 if (bf_prev) 1325 bf_prev->bf_next = bf; 1326 bf_prev = bf; 1327 1328 if (nframes >= 2) 1329 break; 1330 1331 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q); 1332 if (!bf) 1333 break; 1334 1335 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1336 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) 1337 break; 1338 1339 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1340 } while (1); 1341 } 1342 1343 static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq, 1344 struct ath_atx_tid *tid, bool *stop) 1345 { 1346 struct ath_buf *bf; 1347 struct ieee80211_tx_info *tx_info; 1348 struct sk_buff_head *tid_q; 1349 struct list_head bf_q; 1350 int aggr_len = 0; 1351 bool aggr, last = true; 1352 1353 if (!ath_tid_has_buffered(tid)) 1354 return false; 1355 1356 INIT_LIST_HEAD(&bf_q); 1357 1358 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q); 1359 if (!bf) 1360 return false; 1361 1362 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1363 aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU); 1364 if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) || 1365 (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) { 1366 *stop = true; 1367 return false; 1368 } 1369 1370 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1371 if (aggr) 1372 last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf, 1373 tid_q, &aggr_len); 1374 else 1375 ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q); 1376 1377 if (list_empty(&bf_q)) 1378 return false; 1379 1380 if (tid->ac->clear_ps_filter || tid->an->no_ps_filter) { 1381 tid->ac->clear_ps_filter = false; 1382 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1383 } 1384 1385 ath_tx_fill_desc(sc, bf, txq, aggr_len); 1386 ath_tx_txqaddbuf(sc, txq, &bf_q, false); 1387 return true; 1388 } 1389 1390 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta, 1391 u16 tid, u16 *ssn) 1392 { 1393 struct ath_atx_tid *txtid; 1394 struct ath_txq *txq; 1395 struct ath_node *an; 1396 u8 density; 1397 1398 an = (struct ath_node *)sta->drv_priv; 1399 txtid = ATH_AN_2_TID(an, tid); 1400 txq = txtid->ac->txq; 1401 1402 ath_txq_lock(sc, txq); 1403 1404 /* update ampdu factor/density, they may have changed. This may happen 1405 * in HT IBSS when a beacon with HT-info is received after the station 1406 * has already been added. 1407 */ 1408 if (sta->ht_cap.ht_supported) { 1409 an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + 1410 sta->ht_cap.ampdu_factor); 1411 density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density); 1412 an->mpdudensity = density; 1413 } 1414 1415 /* force sequence number allocation for pending frames */ 1416 ath_tx_tid_change_state(sc, txtid); 1417 1418 txtid->active = true; 1419 txtid->paused = true; 1420 *ssn = txtid->seq_start = txtid->seq_next; 1421 txtid->bar_index = -1; 1422 1423 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf)); 1424 txtid->baw_head = txtid->baw_tail = 0; 1425 1426 ath_txq_unlock_complete(sc, txq); 1427 1428 return 0; 1429 } 1430 1431 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid) 1432 { 1433 struct ath_node *an = (struct ath_node *)sta->drv_priv; 1434 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid); 1435 struct ath_txq *txq = txtid->ac->txq; 1436 1437 ath_txq_lock(sc, txq); 1438 txtid->active = false; 1439 txtid->paused = false; 1440 ath_tx_flush_tid(sc, txtid); 1441 ath_tx_tid_change_state(sc, txtid); 1442 ath_txq_unlock_complete(sc, txq); 1443 } 1444 1445 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc, 1446 struct ath_node *an) 1447 { 1448 struct ath_atx_tid *tid; 1449 struct ath_atx_ac *ac; 1450 struct ath_txq *txq; 1451 bool buffered; 1452 int tidno; 1453 1454 for (tidno = 0, tid = &an->tid[tidno]; 1455 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) { 1456 1457 if (!tid->sched) 1458 continue; 1459 1460 ac = tid->ac; 1461 txq = ac->txq; 1462 1463 ath_txq_lock(sc, txq); 1464 1465 buffered = ath_tid_has_buffered(tid); 1466 1467 tid->sched = false; 1468 list_del(&tid->list); 1469 1470 if (ac->sched) { 1471 ac->sched = false; 1472 list_del(&ac->list); 1473 } 1474 1475 ath_txq_unlock(sc, txq); 1476 1477 ieee80211_sta_set_buffered(sta, tidno, buffered); 1478 } 1479 } 1480 1481 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an) 1482 { 1483 struct ath_atx_tid *tid; 1484 struct ath_atx_ac *ac; 1485 struct ath_txq *txq; 1486 int tidno; 1487 1488 for (tidno = 0, tid = &an->tid[tidno]; 1489 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) { 1490 1491 ac = tid->ac; 1492 txq = ac->txq; 1493 1494 ath_txq_lock(sc, txq); 1495 ac->clear_ps_filter = true; 1496 1497 if (!tid->paused && ath_tid_has_buffered(tid)) { 1498 ath_tx_queue_tid(txq, tid); 1499 ath_txq_schedule(sc, txq); 1500 } 1501 1502 ath_txq_unlock_complete(sc, txq); 1503 } 1504 } 1505 1506 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, 1507 u16 tidno) 1508 { 1509 struct ath_atx_tid *tid; 1510 struct ath_node *an; 1511 struct ath_txq *txq; 1512 1513 an = (struct ath_node *)sta->drv_priv; 1514 tid = ATH_AN_2_TID(an, tidno); 1515 txq = tid->ac->txq; 1516 1517 ath_txq_lock(sc, txq); 1518 1519 tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor; 1520 tid->paused = false; 1521 1522 if (ath_tid_has_buffered(tid)) { 1523 ath_tx_queue_tid(txq, tid); 1524 ath_txq_schedule(sc, txq); 1525 } 1526 1527 ath_txq_unlock_complete(sc, txq); 1528 } 1529 1530 void ath9k_release_buffered_frames(struct ieee80211_hw *hw, 1531 struct ieee80211_sta *sta, 1532 u16 tids, int nframes, 1533 enum ieee80211_frame_release_type reason, 1534 bool more_data) 1535 { 1536 struct ath_softc *sc = hw->priv; 1537 struct ath_node *an = (struct ath_node *)sta->drv_priv; 1538 struct ath_txq *txq = sc->tx.uapsdq; 1539 struct ieee80211_tx_info *info; 1540 struct list_head bf_q; 1541 struct ath_buf *bf_tail = NULL, *bf; 1542 struct sk_buff_head *tid_q; 1543 int sent = 0; 1544 int i; 1545 1546 INIT_LIST_HEAD(&bf_q); 1547 for (i = 0; tids && nframes; i++, tids >>= 1) { 1548 struct ath_atx_tid *tid; 1549 1550 if (!(tids & 1)) 1551 continue; 1552 1553 tid = ATH_AN_2_TID(an, i); 1554 if (tid->paused) 1555 continue; 1556 1557 ath_txq_lock(sc, tid->ac->txq); 1558 while (nframes > 0) { 1559 bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q); 1560 if (!bf) 1561 break; 1562 1563 __skb_unlink(bf->bf_mpdu, tid_q); 1564 list_add_tail(&bf->list, &bf_q); 1565 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1566 if (bf_isampdu(bf)) { 1567 ath_tx_addto_baw(sc, tid, bf); 1568 bf->bf_state.bf_type &= ~BUF_AGGR; 1569 } 1570 if (bf_tail) 1571 bf_tail->bf_next = bf; 1572 1573 bf_tail = bf; 1574 nframes--; 1575 sent++; 1576 TX_STAT_INC(txq->axq_qnum, a_queued_hw); 1577 1578 if (an->sta && !ath_tid_has_buffered(tid)) 1579 ieee80211_sta_set_buffered(an->sta, i, false); 1580 } 1581 ath_txq_unlock_complete(sc, tid->ac->txq); 1582 } 1583 1584 if (list_empty(&bf_q)) 1585 return; 1586 1587 info = IEEE80211_SKB_CB(bf_tail->bf_mpdu); 1588 info->flags |= IEEE80211_TX_STATUS_EOSP; 1589 1590 bf = list_first_entry(&bf_q, struct ath_buf, list); 1591 ath_txq_lock(sc, txq); 1592 ath_tx_fill_desc(sc, bf, txq, 0); 1593 ath_tx_txqaddbuf(sc, txq, &bf_q, false); 1594 ath_txq_unlock(sc, txq); 1595 } 1596 1597 /********************/ 1598 /* Queue Management */ 1599 /********************/ 1600 1601 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 1602 { 1603 struct ath_hw *ah = sc->sc_ah; 1604 struct ath9k_tx_queue_info qi; 1605 static const int subtype_txq_to_hwq[] = { 1606 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE, 1607 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK, 1608 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI, 1609 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO, 1610 }; 1611 int axq_qnum, i; 1612 1613 memset(&qi, 0, sizeof(qi)); 1614 qi.tqi_subtype = subtype_txq_to_hwq[subtype]; 1615 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT; 1616 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT; 1617 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT; 1618 qi.tqi_physCompBuf = 0; 1619 1620 /* 1621 * Enable interrupts only for EOL and DESC conditions. 1622 * We mark tx descriptors to receive a DESC interrupt 1623 * when a tx queue gets deep; otherwise waiting for the 1624 * EOL to reap descriptors. Note that this is done to 1625 * reduce interrupt load and this only defers reaping 1626 * descriptors, never transmitting frames. Aside from 1627 * reducing interrupts this also permits more concurrency. 1628 * The only potential downside is if the tx queue backs 1629 * up in which case the top half of the kernel may backup 1630 * due to a lack of tx descriptors. 1631 * 1632 * The UAPSD queue is an exception, since we take a desc- 1633 * based intr on the EOSP frames. 1634 */ 1635 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1636 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE; 1637 } else { 1638 if (qtype == ATH9K_TX_QUEUE_UAPSD) 1639 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE; 1640 else 1641 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | 1642 TXQ_FLAG_TXDESCINT_ENABLE; 1643 } 1644 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi); 1645 if (axq_qnum == -1) { 1646 /* 1647 * NB: don't print a message, this happens 1648 * normally on parts with too few tx queues 1649 */ 1650 return NULL; 1651 } 1652 if (!ATH_TXQ_SETUP(sc, axq_qnum)) { 1653 struct ath_txq *txq = &sc->tx.txq[axq_qnum]; 1654 1655 txq->axq_qnum = axq_qnum; 1656 txq->mac80211_qnum = -1; 1657 txq->axq_link = NULL; 1658 __skb_queue_head_init(&txq->complete_q); 1659 INIT_LIST_HEAD(&txq->axq_q); 1660 INIT_LIST_HEAD(&txq->axq_acq); 1661 spin_lock_init(&txq->axq_lock); 1662 txq->axq_depth = 0; 1663 txq->axq_ampdu_depth = 0; 1664 txq->axq_tx_inprogress = false; 1665 sc->tx.txqsetup |= 1<<axq_qnum; 1666 1667 txq->txq_headidx = txq->txq_tailidx = 0; 1668 for (i = 0; i < ATH_TXFIFO_DEPTH; i++) 1669 INIT_LIST_HEAD(&txq->txq_fifo[i]); 1670 } 1671 return &sc->tx.txq[axq_qnum]; 1672 } 1673 1674 int ath_txq_update(struct ath_softc *sc, int qnum, 1675 struct ath9k_tx_queue_info *qinfo) 1676 { 1677 struct ath_hw *ah = sc->sc_ah; 1678 int error = 0; 1679 struct ath9k_tx_queue_info qi; 1680 1681 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum); 1682 1683 ath9k_hw_get_txq_props(ah, qnum, &qi); 1684 qi.tqi_aifs = qinfo->tqi_aifs; 1685 qi.tqi_cwmin = qinfo->tqi_cwmin; 1686 qi.tqi_cwmax = qinfo->tqi_cwmax; 1687 qi.tqi_burstTime = qinfo->tqi_burstTime; 1688 qi.tqi_readyTime = qinfo->tqi_readyTime; 1689 1690 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) { 1691 ath_err(ath9k_hw_common(sc->sc_ah), 1692 "Unable to update hardware queue %u!\n", qnum); 1693 error = -EIO; 1694 } else { 1695 ath9k_hw_resettxqueue(ah, qnum); 1696 } 1697 1698 return error; 1699 } 1700 1701 int ath_cabq_update(struct ath_softc *sc) 1702 { 1703 struct ath9k_tx_queue_info qi; 1704 struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf; 1705 int qnum = sc->beacon.cabq->axq_qnum; 1706 1707 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi); 1708 1709 qi.tqi_readyTime = (cur_conf->beacon_interval * 1710 ATH_CABQ_READY_TIME) / 100; 1711 ath_txq_update(sc, qnum, &qi); 1712 1713 return 0; 1714 } 1715 1716 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq, 1717 struct list_head *list) 1718 { 1719 struct ath_buf *bf, *lastbf; 1720 struct list_head bf_head; 1721 struct ath_tx_status ts; 1722 1723 memset(&ts, 0, sizeof(ts)); 1724 ts.ts_status = ATH9K_TX_FLUSH; 1725 INIT_LIST_HEAD(&bf_head); 1726 1727 while (!list_empty(list)) { 1728 bf = list_first_entry(list, struct ath_buf, list); 1729 1730 if (bf->bf_state.stale) { 1731 list_del(&bf->list); 1732 1733 ath_tx_return_buffer(sc, bf); 1734 continue; 1735 } 1736 1737 lastbf = bf->bf_lastbf; 1738 list_cut_position(&bf_head, list, &lastbf->list); 1739 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 1740 } 1741 } 1742 1743 /* 1744 * Drain a given TX queue (could be Beacon or Data) 1745 * 1746 * This assumes output has been stopped and 1747 * we do not need to block ath_tx_tasklet. 1748 */ 1749 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq) 1750 { 1751 ath_txq_lock(sc, txq); 1752 1753 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1754 int idx = txq->txq_tailidx; 1755 1756 while (!list_empty(&txq->txq_fifo[idx])) { 1757 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]); 1758 1759 INCR(idx, ATH_TXFIFO_DEPTH); 1760 } 1761 txq->txq_tailidx = idx; 1762 } 1763 1764 txq->axq_link = NULL; 1765 txq->axq_tx_inprogress = false; 1766 ath_drain_txq_list(sc, txq, &txq->axq_q); 1767 1768 ath_txq_unlock_complete(sc, txq); 1769 } 1770 1771 bool ath_drain_all_txq(struct ath_softc *sc) 1772 { 1773 struct ath_hw *ah = sc->sc_ah; 1774 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1775 struct ath_txq *txq; 1776 int i; 1777 u32 npend = 0; 1778 1779 if (test_bit(SC_OP_INVALID, &sc->sc_flags)) 1780 return true; 1781 1782 ath9k_hw_abort_tx_dma(ah); 1783 1784 /* Check if any queue remains active */ 1785 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1786 if (!ATH_TXQ_SETUP(sc, i)) 1787 continue; 1788 1789 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum)) 1790 npend |= BIT(i); 1791 } 1792 1793 if (npend) 1794 ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend); 1795 1796 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1797 if (!ATH_TXQ_SETUP(sc, i)) 1798 continue; 1799 1800 /* 1801 * The caller will resume queues with ieee80211_wake_queues. 1802 * Mark the queue as not stopped to prevent ath_tx_complete 1803 * from waking the queue too early. 1804 */ 1805 txq = &sc->tx.txq[i]; 1806 txq->stopped = false; 1807 ath_draintxq(sc, txq); 1808 } 1809 1810 return !npend; 1811 } 1812 1813 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 1814 { 1815 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum); 1816 sc->tx.txqsetup &= ~(1<<txq->axq_qnum); 1817 } 1818 1819 /* For each axq_acq entry, for each tid, try to schedule packets 1820 * for transmit until ampdu_depth has reached min Q depth. 1821 */ 1822 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq) 1823 { 1824 struct ath_atx_ac *ac, *last_ac; 1825 struct ath_atx_tid *tid, *last_tid; 1826 bool sent = false; 1827 1828 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) || 1829 list_empty(&txq->axq_acq)) 1830 return; 1831 1832 rcu_read_lock(); 1833 1834 last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list); 1835 while (!list_empty(&txq->axq_acq)) { 1836 bool stop = false; 1837 1838 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list); 1839 last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list); 1840 list_del(&ac->list); 1841 ac->sched = false; 1842 1843 while (!list_empty(&ac->tid_q)) { 1844 1845 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, 1846 list); 1847 list_del(&tid->list); 1848 tid->sched = false; 1849 1850 if (tid->paused) 1851 continue; 1852 1853 if (ath_tx_sched_aggr(sc, txq, tid, &stop)) 1854 sent = true; 1855 1856 /* 1857 * add tid to round-robin queue if more frames 1858 * are pending for the tid 1859 */ 1860 if (ath_tid_has_buffered(tid)) 1861 ath_tx_queue_tid(txq, tid); 1862 1863 if (stop || tid == last_tid) 1864 break; 1865 } 1866 1867 if (!list_empty(&ac->tid_q) && !ac->sched) { 1868 ac->sched = true; 1869 list_add_tail(&ac->list, &txq->axq_acq); 1870 } 1871 1872 if (stop) 1873 break; 1874 1875 if (ac == last_ac) { 1876 if (!sent) 1877 break; 1878 1879 sent = false; 1880 last_ac = list_entry(txq->axq_acq.prev, 1881 struct ath_atx_ac, list); 1882 } 1883 } 1884 1885 rcu_read_unlock(); 1886 } 1887 1888 /***********/ 1889 /* TX, DMA */ 1890 /***********/ 1891 1892 /* 1893 * Insert a chain of ath_buf (descriptors) on a txq and 1894 * assume the descriptors are already chained together by caller. 1895 */ 1896 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 1897 struct list_head *head, bool internal) 1898 { 1899 struct ath_hw *ah = sc->sc_ah; 1900 struct ath_common *common = ath9k_hw_common(ah); 1901 struct ath_buf *bf, *bf_last; 1902 bool puttxbuf = false; 1903 bool edma; 1904 1905 /* 1906 * Insert the frame on the outbound list and 1907 * pass it on to the hardware. 1908 */ 1909 1910 if (list_empty(head)) 1911 return; 1912 1913 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA); 1914 bf = list_first_entry(head, struct ath_buf, list); 1915 bf_last = list_entry(head->prev, struct ath_buf, list); 1916 1917 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n", 1918 txq->axq_qnum, txq->axq_depth); 1919 1920 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) { 1921 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]); 1922 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH); 1923 puttxbuf = true; 1924 } else { 1925 list_splice_tail_init(head, &txq->axq_q); 1926 1927 if (txq->axq_link) { 1928 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr); 1929 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n", 1930 txq->axq_qnum, txq->axq_link, 1931 ito64(bf->bf_daddr), bf->bf_desc); 1932 } else if (!edma) 1933 puttxbuf = true; 1934 1935 txq->axq_link = bf_last->bf_desc; 1936 } 1937 1938 if (puttxbuf) { 1939 TX_STAT_INC(txq->axq_qnum, puttxbuf); 1940 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 1941 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n", 1942 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc); 1943 } 1944 1945 if (!edma || sc->tx99_state) { 1946 TX_STAT_INC(txq->axq_qnum, txstart); 1947 ath9k_hw_txstart(ah, txq->axq_qnum); 1948 } 1949 1950 if (!internal) { 1951 while (bf) { 1952 txq->axq_depth++; 1953 if (bf_is_ampdu_not_probing(bf)) 1954 txq->axq_ampdu_depth++; 1955 1956 bf_last = bf->bf_lastbf; 1957 bf = bf_last->bf_next; 1958 bf_last->bf_next = NULL; 1959 } 1960 } 1961 } 1962 1963 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 1964 struct ath_atx_tid *tid, struct sk_buff *skb) 1965 { 1966 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1967 struct ath_frame_info *fi = get_frame_info(skb); 1968 struct list_head bf_head; 1969 struct ath_buf *bf = fi->bf; 1970 1971 INIT_LIST_HEAD(&bf_head); 1972 list_add_tail(&bf->list, &bf_head); 1973 bf->bf_state.bf_type = 0; 1974 if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) { 1975 bf->bf_state.bf_type = BUF_AMPDU; 1976 ath_tx_addto_baw(sc, tid, bf); 1977 } 1978 1979 bf->bf_next = NULL; 1980 bf->bf_lastbf = bf; 1981 ath_tx_fill_desc(sc, bf, txq, fi->framelen); 1982 ath_tx_txqaddbuf(sc, txq, &bf_head, false); 1983 TX_STAT_INC(txq->axq_qnum, queued); 1984 } 1985 1986 static void setup_frame_info(struct ieee80211_hw *hw, 1987 struct ieee80211_sta *sta, 1988 struct sk_buff *skb, 1989 int framelen) 1990 { 1991 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1992 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key; 1993 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1994 const struct ieee80211_rate *rate; 1995 struct ath_frame_info *fi = get_frame_info(skb); 1996 struct ath_node *an = NULL; 1997 enum ath9k_key_type keytype; 1998 bool short_preamble = false; 1999 2000 /* 2001 * We check if Short Preamble is needed for the CTS rate by 2002 * checking the BSS's global flag. 2003 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used. 2004 */ 2005 if (tx_info->control.vif && 2006 tx_info->control.vif->bss_conf.use_short_preamble) 2007 short_preamble = true; 2008 2009 rate = ieee80211_get_rts_cts_rate(hw, tx_info); 2010 keytype = ath9k_cmn_get_hw_crypto_keytype(skb); 2011 2012 if (sta) 2013 an = (struct ath_node *) sta->drv_priv; 2014 2015 memset(fi, 0, sizeof(*fi)); 2016 if (hw_key) 2017 fi->keyix = hw_key->hw_key_idx; 2018 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0) 2019 fi->keyix = an->ps_key; 2020 else 2021 fi->keyix = ATH9K_TXKEYIX_INVALID; 2022 fi->keytype = keytype; 2023 fi->framelen = framelen; 2024 2025 if (!rate) 2026 return; 2027 fi->rtscts_rate = rate->hw_value; 2028 if (short_preamble) 2029 fi->rtscts_rate |= rate->hw_value_short; 2030 } 2031 2032 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate) 2033 { 2034 struct ath_hw *ah = sc->sc_ah; 2035 struct ath9k_channel *curchan = ah->curchan; 2036 2037 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) && 2038 (chainmask == 0x7) && (rate < 0x90)) 2039 return 0x3; 2040 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) && 2041 IS_CCK_RATE(rate)) 2042 return 0x2; 2043 else 2044 return chainmask; 2045 } 2046 2047 /* 2048 * Assign a descriptor (and sequence number if necessary, 2049 * and map buffer for DMA. Frees skb on error 2050 */ 2051 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, 2052 struct ath_txq *txq, 2053 struct ath_atx_tid *tid, 2054 struct sk_buff *skb) 2055 { 2056 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2057 struct ath_frame_info *fi = get_frame_info(skb); 2058 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2059 struct ath_buf *bf; 2060 int fragno; 2061 u16 seqno; 2062 2063 bf = ath_tx_get_buffer(sc); 2064 if (!bf) { 2065 ath_dbg(common, XMIT, "TX buffers are full\n"); 2066 return NULL; 2067 } 2068 2069 ATH_TXBUF_RESET(bf); 2070 2071 if (tid) { 2072 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG; 2073 seqno = tid->seq_next; 2074 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT); 2075 2076 if (fragno) 2077 hdr->seq_ctrl |= cpu_to_le16(fragno); 2078 2079 if (!ieee80211_has_morefrags(hdr->frame_control)) 2080 INCR(tid->seq_next, IEEE80211_SEQ_MAX); 2081 2082 bf->bf_state.seqno = seqno; 2083 } 2084 2085 bf->bf_mpdu = skb; 2086 2087 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 2088 skb->len, DMA_TO_DEVICE); 2089 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) { 2090 bf->bf_mpdu = NULL; 2091 bf->bf_buf_addr = 0; 2092 ath_err(ath9k_hw_common(sc->sc_ah), 2093 "dma_mapping_error() on TX\n"); 2094 ath_tx_return_buffer(sc, bf); 2095 return NULL; 2096 } 2097 2098 fi->bf = bf; 2099 2100 return bf; 2101 } 2102 2103 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb, 2104 struct ath_tx_control *txctl) 2105 { 2106 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2107 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2108 struct ieee80211_sta *sta = txctl->sta; 2109 struct ieee80211_vif *vif = info->control.vif; 2110 struct ath_vif *avp; 2111 struct ath_softc *sc = hw->priv; 2112 int frmlen = skb->len + FCS_LEN; 2113 int padpos, padsize; 2114 2115 /* NOTE: sta can be NULL according to net/mac80211.h */ 2116 if (sta) 2117 txctl->an = (struct ath_node *)sta->drv_priv; 2118 else if (vif && ieee80211_is_data(hdr->frame_control)) { 2119 avp = (void *)vif->drv_priv; 2120 txctl->an = &avp->mcast_node; 2121 } 2122 2123 if (info->control.hw_key) 2124 frmlen += info->control.hw_key->icv_len; 2125 2126 /* 2127 * As a temporary workaround, assign seq# here; this will likely need 2128 * to be cleaned up to work better with Beacon transmission and virtual 2129 * BSSes. 2130 */ 2131 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { 2132 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) 2133 sc->tx.seq_no += 0x10; 2134 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); 2135 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no); 2136 } 2137 2138 if ((vif && vif->type != NL80211_IFTYPE_AP && 2139 vif->type != NL80211_IFTYPE_AP_VLAN) || 2140 !ieee80211_is_data(hdr->frame_control)) 2141 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 2142 2143 /* Add the padding after the header if this is not already done */ 2144 padpos = ieee80211_hdrlen(hdr->frame_control); 2145 padsize = padpos & 3; 2146 if (padsize && skb->len > padpos) { 2147 if (skb_headroom(skb) < padsize) 2148 return -ENOMEM; 2149 2150 skb_push(skb, padsize); 2151 memmove(skb->data, skb->data + padsize, padpos); 2152 } 2153 2154 setup_frame_info(hw, sta, skb, frmlen); 2155 return 0; 2156 } 2157 2158 2159 /* Upon failure caller should free skb */ 2160 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb, 2161 struct ath_tx_control *txctl) 2162 { 2163 struct ieee80211_hdr *hdr; 2164 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2165 struct ieee80211_sta *sta = txctl->sta; 2166 struct ieee80211_vif *vif = info->control.vif; 2167 struct ath_softc *sc = hw->priv; 2168 struct ath_txq *txq = txctl->txq; 2169 struct ath_atx_tid *tid = NULL; 2170 struct ath_buf *bf; 2171 int q; 2172 int ret; 2173 2174 ret = ath_tx_prepare(hw, skb, txctl); 2175 if (ret) 2176 return ret; 2177 2178 hdr = (struct ieee80211_hdr *) skb->data; 2179 /* 2180 * At this point, the vif, hw_key and sta pointers in the tx control 2181 * info are no longer valid (overwritten by the ath_frame_info data. 2182 */ 2183 2184 q = skb_get_queue_mapping(skb); 2185 2186 ath_txq_lock(sc, txq); 2187 if (txq == sc->tx.txq_map[q] && 2188 ++txq->pending_frames > sc->tx.txq_max_pending[q] && 2189 !txq->stopped) { 2190 ieee80211_stop_queue(sc->hw, q); 2191 txq->stopped = true; 2192 } 2193 2194 if (info->flags & IEEE80211_TX_CTL_PS_RESPONSE) { 2195 ath_txq_unlock(sc, txq); 2196 txq = sc->tx.uapsdq; 2197 ath_txq_lock(sc, txq); 2198 } else if (txctl->an && 2199 ieee80211_is_data_present(hdr->frame_control)) { 2200 tid = ath_get_skb_tid(sc, txctl->an, skb); 2201 2202 WARN_ON(tid->ac->txq != txctl->txq); 2203 2204 if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) 2205 tid->ac->clear_ps_filter = true; 2206 2207 /* 2208 * Add this frame to software queue for scheduling later 2209 * for aggregation. 2210 */ 2211 TX_STAT_INC(txq->axq_qnum, a_queued_sw); 2212 __skb_queue_tail(&tid->buf_q, skb); 2213 if (!txctl->an->sleeping) 2214 ath_tx_queue_tid(txq, tid); 2215 2216 ath_txq_schedule(sc, txq); 2217 goto out; 2218 } 2219 2220 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 2221 if (!bf) { 2222 ath_txq_skb_done(sc, txq, skb); 2223 if (txctl->paprd) 2224 dev_kfree_skb_any(skb); 2225 else 2226 ieee80211_free_txskb(sc->hw, skb); 2227 goto out; 2228 } 2229 2230 bf->bf_state.bfs_paprd = txctl->paprd; 2231 2232 if (txctl->paprd) 2233 bf->bf_state.bfs_paprd_timestamp = jiffies; 2234 2235 ath_set_rates(vif, sta, bf); 2236 ath_tx_send_normal(sc, txq, tid, skb); 2237 2238 out: 2239 ath_txq_unlock(sc, txq); 2240 2241 return 0; 2242 } 2243 2244 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2245 struct sk_buff *skb) 2246 { 2247 struct ath_softc *sc = hw->priv; 2248 struct ath_tx_control txctl = { 2249 .txq = sc->beacon.cabq 2250 }; 2251 struct ath_tx_info info = {}; 2252 struct ieee80211_hdr *hdr; 2253 struct ath_buf *bf_tail = NULL; 2254 struct ath_buf *bf; 2255 LIST_HEAD(bf_q); 2256 int duration = 0; 2257 int max_duration; 2258 2259 max_duration = 2260 sc->cur_beacon_conf.beacon_interval * 1000 * 2261 sc->cur_beacon_conf.dtim_period / ATH_BCBUF; 2262 2263 do { 2264 struct ath_frame_info *fi = get_frame_info(skb); 2265 2266 if (ath_tx_prepare(hw, skb, &txctl)) 2267 break; 2268 2269 bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb); 2270 if (!bf) 2271 break; 2272 2273 bf->bf_lastbf = bf; 2274 ath_set_rates(vif, NULL, bf); 2275 ath_buf_set_rate(sc, bf, &info, fi->framelen, false); 2276 duration += info.rates[0].PktDuration; 2277 if (bf_tail) 2278 bf_tail->bf_next = bf; 2279 2280 list_add_tail(&bf->list, &bf_q); 2281 bf_tail = bf; 2282 skb = NULL; 2283 2284 if (duration > max_duration) 2285 break; 2286 2287 skb = ieee80211_get_buffered_bc(hw, vif); 2288 } while(skb); 2289 2290 if (skb) 2291 ieee80211_free_txskb(hw, skb); 2292 2293 if (list_empty(&bf_q)) 2294 return; 2295 2296 bf = list_first_entry(&bf_q, struct ath_buf, list); 2297 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data; 2298 2299 if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) { 2300 hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA; 2301 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 2302 sizeof(*hdr), DMA_TO_DEVICE); 2303 } 2304 2305 ath_txq_lock(sc, txctl.txq); 2306 ath_tx_fill_desc(sc, bf, txctl.txq, 0); 2307 ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false); 2308 TX_STAT_INC(txctl.txq->axq_qnum, queued); 2309 ath_txq_unlock(sc, txctl.txq); 2310 } 2311 2312 /*****************/ 2313 /* TX Completion */ 2314 /*****************/ 2315 2316 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, 2317 int tx_flags, struct ath_txq *txq) 2318 { 2319 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2320 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2321 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data; 2322 int padpos, padsize; 2323 unsigned long flags; 2324 2325 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb); 2326 2327 if (sc->sc_ah->caldata) 2328 set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags); 2329 2330 if (!(tx_flags & ATH_TX_ERROR)) 2331 /* Frame was ACKed */ 2332 tx_info->flags |= IEEE80211_TX_STAT_ACK; 2333 2334 padpos = ieee80211_hdrlen(hdr->frame_control); 2335 padsize = padpos & 3; 2336 if (padsize && skb->len>padpos+padsize) { 2337 /* 2338 * Remove MAC header padding before giving the frame back to 2339 * mac80211. 2340 */ 2341 memmove(skb->data + padsize, skb->data, padpos); 2342 skb_pull(skb, padsize); 2343 } 2344 2345 spin_lock_irqsave(&sc->sc_pm_lock, flags); 2346 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) { 2347 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK; 2348 ath_dbg(common, PS, 2349 "Going back to sleep after having received TX status (0x%lx)\n", 2350 sc->ps_flags & (PS_WAIT_FOR_BEACON | 2351 PS_WAIT_FOR_CAB | 2352 PS_WAIT_FOR_PSPOLL_DATA | 2353 PS_WAIT_FOR_TX_ACK)); 2354 } 2355 spin_unlock_irqrestore(&sc->sc_pm_lock, flags); 2356 2357 __skb_queue_tail(&txq->complete_q, skb); 2358 ath_txq_skb_done(sc, txq, skb); 2359 } 2360 2361 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 2362 struct ath_txq *txq, struct list_head *bf_q, 2363 struct ath_tx_status *ts, int txok) 2364 { 2365 struct sk_buff *skb = bf->bf_mpdu; 2366 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2367 unsigned long flags; 2368 int tx_flags = 0; 2369 2370 if (!txok) 2371 tx_flags |= ATH_TX_ERROR; 2372 2373 if (ts->ts_status & ATH9K_TXERR_FILT) 2374 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; 2375 2376 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE); 2377 bf->bf_buf_addr = 0; 2378 if (sc->tx99_state) 2379 goto skip_tx_complete; 2380 2381 if (bf->bf_state.bfs_paprd) { 2382 if (time_after(jiffies, 2383 bf->bf_state.bfs_paprd_timestamp + 2384 msecs_to_jiffies(ATH_PAPRD_TIMEOUT))) 2385 dev_kfree_skb_any(skb); 2386 else 2387 complete(&sc->paprd_complete); 2388 } else { 2389 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags); 2390 ath_tx_complete(sc, skb, tx_flags, txq); 2391 } 2392 skip_tx_complete: 2393 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't 2394 * accidentally reference it later. 2395 */ 2396 bf->bf_mpdu = NULL; 2397 2398 /* 2399 * Return the list of ath_buf of this mpdu to free queue 2400 */ 2401 spin_lock_irqsave(&sc->tx.txbuflock, flags); 2402 list_splice_tail_init(bf_q, &sc->tx.txbuf); 2403 spin_unlock_irqrestore(&sc->tx.txbuflock, flags); 2404 } 2405 2406 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 2407 struct ath_tx_status *ts, int nframes, int nbad, 2408 int txok) 2409 { 2410 struct sk_buff *skb = bf->bf_mpdu; 2411 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2412 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2413 struct ieee80211_hw *hw = sc->hw; 2414 struct ath_hw *ah = sc->sc_ah; 2415 u8 i, tx_rateindex; 2416 2417 if (txok) 2418 tx_info->status.ack_signal = ts->ts_rssi; 2419 2420 tx_rateindex = ts->ts_rateindex; 2421 WARN_ON(tx_rateindex >= hw->max_rates); 2422 2423 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 2424 tx_info->flags |= IEEE80211_TX_STAT_AMPDU; 2425 2426 BUG_ON(nbad > nframes); 2427 } 2428 tx_info->status.ampdu_len = nframes; 2429 tx_info->status.ampdu_ack_len = nframes - nbad; 2430 2431 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 && 2432 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) { 2433 /* 2434 * If an underrun error is seen assume it as an excessive 2435 * retry only if max frame trigger level has been reached 2436 * (2 KB for single stream, and 4 KB for dual stream). 2437 * Adjust the long retry as if the frame was tried 2438 * hw->max_rate_tries times to affect how rate control updates 2439 * PER for the failed rate. 2440 * In case of congestion on the bus penalizing this type of 2441 * underruns should help hardware actually transmit new frames 2442 * successfully by eventually preferring slower rates. 2443 * This itself should also alleviate congestion on the bus. 2444 */ 2445 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN | 2446 ATH9K_TX_DELIM_UNDERRUN)) && 2447 ieee80211_is_data(hdr->frame_control) && 2448 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level) 2449 tx_info->status.rates[tx_rateindex].count = 2450 hw->max_rate_tries; 2451 } 2452 2453 for (i = tx_rateindex + 1; i < hw->max_rates; i++) { 2454 tx_info->status.rates[i].count = 0; 2455 tx_info->status.rates[i].idx = -1; 2456 } 2457 2458 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1; 2459 } 2460 2461 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 2462 { 2463 struct ath_hw *ah = sc->sc_ah; 2464 struct ath_common *common = ath9k_hw_common(ah); 2465 struct ath_buf *bf, *lastbf, *bf_held = NULL; 2466 struct list_head bf_head; 2467 struct ath_desc *ds; 2468 struct ath_tx_status ts; 2469 int status; 2470 2471 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n", 2472 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum), 2473 txq->axq_link); 2474 2475 ath_txq_lock(sc, txq); 2476 for (;;) { 2477 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags)) 2478 break; 2479 2480 if (list_empty(&txq->axq_q)) { 2481 txq->axq_link = NULL; 2482 ath_txq_schedule(sc, txq); 2483 break; 2484 } 2485 bf = list_first_entry(&txq->axq_q, struct ath_buf, list); 2486 2487 /* 2488 * There is a race condition that a BH gets scheduled 2489 * after sw writes TxE and before hw re-load the last 2490 * descriptor to get the newly chained one. 2491 * Software must keep the last DONE descriptor as a 2492 * holding descriptor - software does so by marking 2493 * it with the STALE flag. 2494 */ 2495 bf_held = NULL; 2496 if (bf->bf_state.stale) { 2497 bf_held = bf; 2498 if (list_is_last(&bf_held->list, &txq->axq_q)) 2499 break; 2500 2501 bf = list_entry(bf_held->list.next, struct ath_buf, 2502 list); 2503 } 2504 2505 lastbf = bf->bf_lastbf; 2506 ds = lastbf->bf_desc; 2507 2508 memset(&ts, 0, sizeof(ts)); 2509 status = ath9k_hw_txprocdesc(ah, ds, &ts); 2510 if (status == -EINPROGRESS) 2511 break; 2512 2513 TX_STAT_INC(txq->axq_qnum, txprocdesc); 2514 2515 /* 2516 * Remove ath_buf's of the same transmit unit from txq, 2517 * however leave the last descriptor back as the holding 2518 * descriptor for hw. 2519 */ 2520 lastbf->bf_state.stale = true; 2521 INIT_LIST_HEAD(&bf_head); 2522 if (!list_is_singular(&lastbf->list)) 2523 list_cut_position(&bf_head, 2524 &txq->axq_q, lastbf->list.prev); 2525 2526 if (bf_held) { 2527 list_del(&bf_held->list); 2528 ath_tx_return_buffer(sc, bf_held); 2529 } 2530 2531 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2532 } 2533 ath_txq_unlock_complete(sc, txq); 2534 } 2535 2536 void ath_tx_tasklet(struct ath_softc *sc) 2537 { 2538 struct ath_hw *ah = sc->sc_ah; 2539 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs; 2540 int i; 2541 2542 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 2543 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i))) 2544 ath_tx_processq(sc, &sc->tx.txq[i]); 2545 } 2546 } 2547 2548 void ath_tx_edma_tasklet(struct ath_softc *sc) 2549 { 2550 struct ath_tx_status ts; 2551 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2552 struct ath_hw *ah = sc->sc_ah; 2553 struct ath_txq *txq; 2554 struct ath_buf *bf, *lastbf; 2555 struct list_head bf_head; 2556 struct list_head *fifo_list; 2557 int status; 2558 2559 for (;;) { 2560 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags)) 2561 break; 2562 2563 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts); 2564 if (status == -EINPROGRESS) 2565 break; 2566 if (status == -EIO) { 2567 ath_dbg(common, XMIT, "Error processing tx status\n"); 2568 break; 2569 } 2570 2571 /* Process beacon completions separately */ 2572 if (ts.qid == sc->beacon.beaconq) { 2573 sc->beacon.tx_processed = true; 2574 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK); 2575 2576 ath9k_csa_is_finished(sc); 2577 continue; 2578 } 2579 2580 txq = &sc->tx.txq[ts.qid]; 2581 2582 ath_txq_lock(sc, txq); 2583 2584 TX_STAT_INC(txq->axq_qnum, txprocdesc); 2585 2586 fifo_list = &txq->txq_fifo[txq->txq_tailidx]; 2587 if (list_empty(fifo_list)) { 2588 ath_txq_unlock(sc, txq); 2589 return; 2590 } 2591 2592 bf = list_first_entry(fifo_list, struct ath_buf, list); 2593 if (bf->bf_state.stale) { 2594 list_del(&bf->list); 2595 ath_tx_return_buffer(sc, bf); 2596 bf = list_first_entry(fifo_list, struct ath_buf, list); 2597 } 2598 2599 lastbf = bf->bf_lastbf; 2600 2601 INIT_LIST_HEAD(&bf_head); 2602 if (list_is_last(&lastbf->list, fifo_list)) { 2603 list_splice_tail_init(fifo_list, &bf_head); 2604 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH); 2605 2606 if (!list_empty(&txq->axq_q)) { 2607 struct list_head bf_q; 2608 2609 INIT_LIST_HEAD(&bf_q); 2610 txq->axq_link = NULL; 2611 list_splice_tail_init(&txq->axq_q, &bf_q); 2612 ath_tx_txqaddbuf(sc, txq, &bf_q, true); 2613 } 2614 } else { 2615 lastbf->bf_state.stale = true; 2616 if (bf != lastbf) 2617 list_cut_position(&bf_head, fifo_list, 2618 lastbf->list.prev); 2619 } 2620 2621 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2622 ath_txq_unlock_complete(sc, txq); 2623 } 2624 } 2625 2626 /*****************/ 2627 /* Init, Cleanup */ 2628 /*****************/ 2629 2630 static int ath_txstatus_setup(struct ath_softc *sc, int size) 2631 { 2632 struct ath_descdma *dd = &sc->txsdma; 2633 u8 txs_len = sc->sc_ah->caps.txs_len; 2634 2635 dd->dd_desc_len = size * txs_len; 2636 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len, 2637 &dd->dd_desc_paddr, GFP_KERNEL); 2638 if (!dd->dd_desc) 2639 return -ENOMEM; 2640 2641 return 0; 2642 } 2643 2644 static int ath_tx_edma_init(struct ath_softc *sc) 2645 { 2646 int err; 2647 2648 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE); 2649 if (!err) 2650 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc, 2651 sc->txsdma.dd_desc_paddr, 2652 ATH_TXSTATUS_RING_SIZE); 2653 2654 return err; 2655 } 2656 2657 int ath_tx_init(struct ath_softc *sc, int nbufs) 2658 { 2659 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2660 int error = 0; 2661 2662 spin_lock_init(&sc->tx.txbuflock); 2663 2664 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf, 2665 "tx", nbufs, 1, 1); 2666 if (error != 0) { 2667 ath_err(common, 2668 "Failed to allocate tx descriptors: %d\n", error); 2669 return error; 2670 } 2671 2672 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf, 2673 "beacon", ATH_BCBUF, 1, 1); 2674 if (error != 0) { 2675 ath_err(common, 2676 "Failed to allocate beacon descriptors: %d\n", error); 2677 return error; 2678 } 2679 2680 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work); 2681 2682 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 2683 error = ath_tx_edma_init(sc); 2684 2685 return error; 2686 } 2687 2688 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an) 2689 { 2690 struct ath_atx_tid *tid; 2691 struct ath_atx_ac *ac; 2692 int tidno, acno; 2693 2694 for (tidno = 0, tid = &an->tid[tidno]; 2695 tidno < IEEE80211_NUM_TIDS; 2696 tidno++, tid++) { 2697 tid->an = an; 2698 tid->tidno = tidno; 2699 tid->seq_start = tid->seq_next = 0; 2700 tid->baw_size = WME_MAX_BA; 2701 tid->baw_head = tid->baw_tail = 0; 2702 tid->sched = false; 2703 tid->paused = false; 2704 tid->active = false; 2705 __skb_queue_head_init(&tid->buf_q); 2706 __skb_queue_head_init(&tid->retry_q); 2707 acno = TID_TO_WME_AC(tidno); 2708 tid->ac = &an->ac[acno]; 2709 } 2710 2711 for (acno = 0, ac = &an->ac[acno]; 2712 acno < IEEE80211_NUM_ACS; acno++, ac++) { 2713 ac->sched = false; 2714 ac->clear_ps_filter = true; 2715 ac->txq = sc->tx.txq_map[acno]; 2716 INIT_LIST_HEAD(&ac->tid_q); 2717 } 2718 } 2719 2720 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an) 2721 { 2722 struct ath_atx_ac *ac; 2723 struct ath_atx_tid *tid; 2724 struct ath_txq *txq; 2725 int tidno; 2726 2727 for (tidno = 0, tid = &an->tid[tidno]; 2728 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) { 2729 2730 ac = tid->ac; 2731 txq = ac->txq; 2732 2733 ath_txq_lock(sc, txq); 2734 2735 if (tid->sched) { 2736 list_del(&tid->list); 2737 tid->sched = false; 2738 } 2739 2740 if (ac->sched) { 2741 list_del(&ac->list); 2742 tid->ac->sched = false; 2743 } 2744 2745 ath_tid_drain(sc, txq, tid); 2746 tid->active = false; 2747 2748 ath_txq_unlock(sc, txq); 2749 } 2750 } 2751 2752 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb, 2753 struct ath_tx_control *txctl) 2754 { 2755 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2756 struct ath_frame_info *fi = get_frame_info(skb); 2757 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2758 struct ath_buf *bf; 2759 int padpos, padsize; 2760 2761 padpos = ieee80211_hdrlen(hdr->frame_control); 2762 padsize = padpos & 3; 2763 2764 if (padsize && skb->len > padpos) { 2765 if (skb_headroom(skb) < padsize) { 2766 ath_dbg(common, XMIT, 2767 "tx99 padding failed\n"); 2768 return -EINVAL; 2769 } 2770 2771 skb_push(skb, padsize); 2772 memmove(skb->data, skb->data + padsize, padpos); 2773 } 2774 2775 fi->keyix = ATH9K_TXKEYIX_INVALID; 2776 fi->framelen = skb->len + FCS_LEN; 2777 fi->keytype = ATH9K_KEY_TYPE_CLEAR; 2778 2779 bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb); 2780 if (!bf) { 2781 ath_dbg(common, XMIT, "tx99 buffer setup failed\n"); 2782 return -EINVAL; 2783 } 2784 2785 ath_set_rates(sc->tx99_vif, NULL, bf); 2786 2787 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr); 2788 ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum); 2789 2790 ath_tx_send_normal(sc, txctl->txq, NULL, skb); 2791 2792 return 0; 2793 } 2794