xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/xmit.c (revision 79a93295)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20 
21 #define BITS_PER_BYTE           8
22 #define OFDM_PLCP_BITS          22
23 #define HT_RC_2_STREAMS(_rc)    ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF                   8
25 #define L_LTF                   8
26 #define L_SIG                   4
27 #define HT_SIG                  8
28 #define HT_STF                  4
29 #define HT_LTF(_ns)             (4 * (_ns))
30 #define SYMBOL_TIME(_ns)        ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5)  /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t)         ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t)  (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36 
37 
38 static u16 bits_per_symbol[][2] = {
39 	/* 20MHz 40MHz */
40 	{    26,   54 },     /*  0: BPSK */
41 	{    52,  108 },     /*  1: QPSK 1/2 */
42 	{    78,  162 },     /*  2: QPSK 3/4 */
43 	{   104,  216 },     /*  3: 16-QAM 1/2 */
44 	{   156,  324 },     /*  4: 16-QAM 3/4 */
45 	{   208,  432 },     /*  5: 64-QAM 2/3 */
46 	{   234,  486 },     /*  6: 64-QAM 3/4 */
47 	{   260,  540 },     /*  7: 64-QAM 5/6 */
48 };
49 
50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
51 			       struct ath_atx_tid *tid, struct sk_buff *skb);
52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
53 			    int tx_flags, struct ath_txq *txq,
54 			    struct ieee80211_sta *sta);
55 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
56 				struct ath_txq *txq, struct list_head *bf_q,
57 				struct ieee80211_sta *sta,
58 				struct ath_tx_status *ts, int txok);
59 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
60 			     struct list_head *head, bool internal);
61 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
62 			     struct ath_tx_status *ts, int nframes, int nbad,
63 			     int txok);
64 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
65 			      int seqno);
66 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
67 					   struct ath_txq *txq,
68 					   struct ath_atx_tid *tid,
69 					   struct sk_buff *skb);
70 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
71 			  struct ath_tx_control *txctl);
72 
73 enum {
74 	MCS_HT20,
75 	MCS_HT20_SGI,
76 	MCS_HT40,
77 	MCS_HT40_SGI,
78 };
79 
80 /*********************/
81 /* Aggregation logic */
82 /*********************/
83 
84 static void ath_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb)
85 {
86 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
87 	struct ieee80211_sta *sta = info->status.status_driver_data[0];
88 
89 	if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
90 		ieee80211_tx_status(hw, skb);
91 		return;
92 	}
93 
94 	if (sta)
95 		ieee80211_tx_status_noskb(hw, sta, info);
96 
97 	dev_kfree_skb(skb);
98 }
99 
100 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
101 	__acquires(&txq->axq_lock)
102 {
103 	spin_lock_bh(&txq->axq_lock);
104 }
105 
106 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
107 	__releases(&txq->axq_lock)
108 {
109 	spin_unlock_bh(&txq->axq_lock);
110 }
111 
112 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
113 	__releases(&txq->axq_lock)
114 {
115 	struct ieee80211_hw *hw = sc->hw;
116 	struct sk_buff_head q;
117 	struct sk_buff *skb;
118 
119 	__skb_queue_head_init(&q);
120 	skb_queue_splice_init(&txq->complete_q, &q);
121 	spin_unlock_bh(&txq->axq_lock);
122 
123 	while ((skb = __skb_dequeue(&q)))
124 		ath_tx_status(hw, skb);
125 }
126 
127 static void ath_tx_queue_tid(struct ath_softc *sc, struct ath_txq *txq,
128 			     struct ath_atx_tid *tid)
129 {
130 	struct list_head *list;
131 	struct ath_vif *avp = (struct ath_vif *) tid->an->vif->drv_priv;
132 	struct ath_chanctx *ctx = avp->chanctx;
133 
134 	if (!ctx)
135 		return;
136 
137 	list = &ctx->acq[TID_TO_WME_AC(tid->tidno)];
138 	if (list_empty(&tid->list))
139 		list_add_tail(&tid->list, list);
140 }
141 
142 void ath9k_wake_tx_queue(struct ieee80211_hw *hw, struct ieee80211_txq *queue)
143 {
144 	struct ath_softc *sc = hw->priv;
145 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
146 	struct ath_atx_tid *tid = (struct ath_atx_tid *) queue->drv_priv;
147 	struct ath_txq *txq = tid->txq;
148 
149 	ath_dbg(common, QUEUE, "Waking TX queue: %pM (%d)\n",
150 		queue->sta ? queue->sta->addr : queue->vif->addr,
151 		tid->tidno);
152 
153 	ath_txq_lock(sc, txq);
154 
155 	tid->has_queued = true;
156 	ath_tx_queue_tid(sc, txq, tid);
157 	ath_txq_schedule(sc, txq);
158 
159 	ath_txq_unlock(sc, txq);
160 }
161 
162 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
163 {
164 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
165 	BUILD_BUG_ON(sizeof(struct ath_frame_info) >
166 		     sizeof(tx_info->rate_driver_data));
167 	return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
168 }
169 
170 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
171 {
172 	if (!tid->an->sta)
173 		return;
174 
175 	ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
176 			   seqno << IEEE80211_SEQ_SEQ_SHIFT);
177 }
178 
179 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
180 			  struct ath_buf *bf)
181 {
182 	ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
183 			       ARRAY_SIZE(bf->rates));
184 }
185 
186 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
187 			     struct sk_buff *skb)
188 {
189 	struct ath_frame_info *fi = get_frame_info(skb);
190 	int q = fi->txq;
191 
192 	if (q < 0)
193 		return;
194 
195 	txq = sc->tx.txq_map[q];
196 	if (WARN_ON(--txq->pending_frames < 0))
197 		txq->pending_frames = 0;
198 
199 }
200 
201 static struct ath_atx_tid *
202 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
203 {
204 	u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
205 	return ATH_AN_2_TID(an, tidno);
206 }
207 
208 static struct sk_buff *
209 ath_tid_pull(struct ath_atx_tid *tid)
210 {
211 	struct ieee80211_txq *txq = container_of((void*)tid, struct ieee80211_txq, drv_priv);
212 	struct ath_softc *sc = tid->an->sc;
213 	struct ieee80211_hw *hw = sc->hw;
214 	struct ath_tx_control txctl = {
215 		.txq = tid->txq,
216 		.sta = tid->an->sta,
217 	};
218 	struct sk_buff *skb;
219 	struct ath_frame_info *fi;
220 	int q;
221 
222 	if (!tid->has_queued)
223 		return NULL;
224 
225 	skb = ieee80211_tx_dequeue(hw, txq);
226 	if (!skb) {
227 		tid->has_queued = false;
228 		return NULL;
229 	}
230 
231 	if (ath_tx_prepare(hw, skb, &txctl)) {
232 		ieee80211_free_txskb(hw, skb);
233 		return NULL;
234 	}
235 
236 	q = skb_get_queue_mapping(skb);
237 	if (tid->txq == sc->tx.txq_map[q]) {
238 		fi = get_frame_info(skb);
239 		fi->txq = q;
240 		++tid->txq->pending_frames;
241 	}
242 
243 	return skb;
244  }
245 
246 
247 static bool ath_tid_has_buffered(struct ath_atx_tid *tid)
248 {
249 	return !skb_queue_empty(&tid->retry_q) || tid->has_queued;
250 }
251 
252 static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid)
253 {
254 	struct sk_buff *skb;
255 
256 	skb = __skb_dequeue(&tid->retry_q);
257 	if (!skb)
258 		skb = ath_tid_pull(tid);
259 
260 	return skb;
261 }
262 
263 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
264 {
265 	struct ath_txq *txq = tid->txq;
266 	struct sk_buff *skb;
267 	struct ath_buf *bf;
268 	struct list_head bf_head;
269 	struct ath_tx_status ts;
270 	struct ath_frame_info *fi;
271 	bool sendbar = false;
272 
273 	INIT_LIST_HEAD(&bf_head);
274 
275 	memset(&ts, 0, sizeof(ts));
276 
277 	while ((skb = __skb_dequeue(&tid->retry_q))) {
278 		fi = get_frame_info(skb);
279 		bf = fi->bf;
280 		if (!bf) {
281 			ath_txq_skb_done(sc, txq, skb);
282 			ieee80211_free_txskb(sc->hw, skb);
283 			continue;
284 		}
285 
286 		if (fi->baw_tracked) {
287 			ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
288 			sendbar = true;
289 		}
290 
291 		list_add_tail(&bf->list, &bf_head);
292 		ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
293 	}
294 
295 	if (sendbar) {
296 		ath_txq_unlock(sc, txq);
297 		ath_send_bar(tid, tid->seq_start);
298 		ath_txq_lock(sc, txq);
299 	}
300 }
301 
302 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
303 			      int seqno)
304 {
305 	int index, cindex;
306 
307 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
308 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
309 
310 	__clear_bit(cindex, tid->tx_buf);
311 
312 	while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
313 		INCR(tid->seq_start, IEEE80211_SEQ_MAX);
314 		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
315 		if (tid->bar_index >= 0)
316 			tid->bar_index--;
317 	}
318 }
319 
320 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
321 			     struct ath_buf *bf)
322 {
323 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
324 	u16 seqno = bf->bf_state.seqno;
325 	int index, cindex;
326 
327 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
328 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
329 	__set_bit(cindex, tid->tx_buf);
330 	fi->baw_tracked = 1;
331 
332 	if (index >= ((tid->baw_tail - tid->baw_head) &
333 		(ATH_TID_MAX_BUFS - 1))) {
334 		tid->baw_tail = cindex;
335 		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
336 	}
337 }
338 
339 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
340 			  struct ath_atx_tid *tid)
341 
342 {
343 	struct sk_buff *skb;
344 	struct ath_buf *bf;
345 	struct list_head bf_head;
346 	struct ath_tx_status ts;
347 	struct ath_frame_info *fi;
348 
349 	memset(&ts, 0, sizeof(ts));
350 	INIT_LIST_HEAD(&bf_head);
351 
352 	while ((skb = ath_tid_dequeue(tid))) {
353 		fi = get_frame_info(skb);
354 		bf = fi->bf;
355 
356 		if (!bf) {
357 			ath_tx_complete(sc, skb, ATH_TX_ERROR, txq, NULL);
358 			continue;
359 		}
360 
361 		list_add_tail(&bf->list, &bf_head);
362 		ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
363 	}
364 }
365 
366 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
367 			     struct sk_buff *skb, int count)
368 {
369 	struct ath_frame_info *fi = get_frame_info(skb);
370 	struct ath_buf *bf = fi->bf;
371 	struct ieee80211_hdr *hdr;
372 	int prev = fi->retries;
373 
374 	TX_STAT_INC(txq->axq_qnum, a_retries);
375 	fi->retries += count;
376 
377 	if (prev > 0)
378 		return;
379 
380 	hdr = (struct ieee80211_hdr *)skb->data;
381 	hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
382 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
383 		sizeof(*hdr), DMA_TO_DEVICE);
384 }
385 
386 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
387 {
388 	struct ath_buf *bf = NULL;
389 
390 	spin_lock_bh(&sc->tx.txbuflock);
391 
392 	if (unlikely(list_empty(&sc->tx.txbuf))) {
393 		spin_unlock_bh(&sc->tx.txbuflock);
394 		return NULL;
395 	}
396 
397 	bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
398 	list_del(&bf->list);
399 
400 	spin_unlock_bh(&sc->tx.txbuflock);
401 
402 	return bf;
403 }
404 
405 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
406 {
407 	spin_lock_bh(&sc->tx.txbuflock);
408 	list_add_tail(&bf->list, &sc->tx.txbuf);
409 	spin_unlock_bh(&sc->tx.txbuflock);
410 }
411 
412 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
413 {
414 	struct ath_buf *tbf;
415 
416 	tbf = ath_tx_get_buffer(sc);
417 	if (WARN_ON(!tbf))
418 		return NULL;
419 
420 	ATH_TXBUF_RESET(tbf);
421 
422 	tbf->bf_mpdu = bf->bf_mpdu;
423 	tbf->bf_buf_addr = bf->bf_buf_addr;
424 	memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
425 	tbf->bf_state = bf->bf_state;
426 	tbf->bf_state.stale = false;
427 
428 	return tbf;
429 }
430 
431 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
432 			        struct ath_tx_status *ts, int txok,
433 			        int *nframes, int *nbad)
434 {
435 	struct ath_frame_info *fi;
436 	u16 seq_st = 0;
437 	u32 ba[WME_BA_BMP_SIZE >> 5];
438 	int ba_index;
439 	int isaggr = 0;
440 
441 	*nbad = 0;
442 	*nframes = 0;
443 
444 	isaggr = bf_isaggr(bf);
445 	if (isaggr) {
446 		seq_st = ts->ts_seqnum;
447 		memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
448 	}
449 
450 	while (bf) {
451 		fi = get_frame_info(bf->bf_mpdu);
452 		ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
453 
454 		(*nframes)++;
455 		if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
456 			(*nbad)++;
457 
458 		bf = bf->bf_next;
459 	}
460 }
461 
462 
463 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
464 				 struct ath_buf *bf, struct list_head *bf_q,
465 				 struct ieee80211_sta *sta,
466 				 struct ath_atx_tid *tid,
467 				 struct ath_tx_status *ts, int txok)
468 {
469 	struct ath_node *an = NULL;
470 	struct sk_buff *skb;
471 	struct ieee80211_hdr *hdr;
472 	struct ieee80211_tx_info *tx_info;
473 	struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
474 	struct list_head bf_head;
475 	struct sk_buff_head bf_pending;
476 	u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
477 	u32 ba[WME_BA_BMP_SIZE >> 5];
478 	int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
479 	bool rc_update = true, isba;
480 	struct ieee80211_tx_rate rates[4];
481 	struct ath_frame_info *fi;
482 	int nframes;
483 	bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
484 	int i, retries;
485 	int bar_index = -1;
486 
487 	skb = bf->bf_mpdu;
488 	hdr = (struct ieee80211_hdr *)skb->data;
489 
490 	tx_info = IEEE80211_SKB_CB(skb);
491 
492 	memcpy(rates, bf->rates, sizeof(rates));
493 
494 	retries = ts->ts_longretry + 1;
495 	for (i = 0; i < ts->ts_rateindex; i++)
496 		retries += rates[i].count;
497 
498 	if (!sta) {
499 		INIT_LIST_HEAD(&bf_head);
500 		while (bf) {
501 			bf_next = bf->bf_next;
502 
503 			if (!bf->bf_state.stale || bf_next != NULL)
504 				list_move_tail(&bf->list, &bf_head);
505 
506 			ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, ts, 0);
507 
508 			bf = bf_next;
509 		}
510 		return;
511 	}
512 
513 	an = (struct ath_node *)sta->drv_priv;
514 	seq_first = tid->seq_start;
515 	isba = ts->ts_flags & ATH9K_TX_BA;
516 
517 	/*
518 	 * The hardware occasionally sends a tx status for the wrong TID.
519 	 * In this case, the BA status cannot be considered valid and all
520 	 * subframes need to be retransmitted
521 	 *
522 	 * Only BlockAcks have a TID and therefore normal Acks cannot be
523 	 * checked
524 	 */
525 	if (isba && tid->tidno != ts->tid)
526 		txok = false;
527 
528 	isaggr = bf_isaggr(bf);
529 	memset(ba, 0, WME_BA_BMP_SIZE >> 3);
530 
531 	if (isaggr && txok) {
532 		if (ts->ts_flags & ATH9K_TX_BA) {
533 			seq_st = ts->ts_seqnum;
534 			memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
535 		} else {
536 			/*
537 			 * AR5416 can become deaf/mute when BA
538 			 * issue happens. Chip needs to be reset.
539 			 * But AP code may have sychronization issues
540 			 * when perform internal reset in this routine.
541 			 * Only enable reset in STA mode for now.
542 			 */
543 			if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
544 				needreset = 1;
545 		}
546 	}
547 
548 	__skb_queue_head_init(&bf_pending);
549 
550 	ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
551 	while (bf) {
552 		u16 seqno = bf->bf_state.seqno;
553 
554 		txfail = txpending = sendbar = 0;
555 		bf_next = bf->bf_next;
556 
557 		skb = bf->bf_mpdu;
558 		tx_info = IEEE80211_SKB_CB(skb);
559 		fi = get_frame_info(skb);
560 
561 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
562 		    !tid->active) {
563 			/*
564 			 * Outside of the current BlockAck window,
565 			 * maybe part of a previous session
566 			 */
567 			txfail = 1;
568 		} else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
569 			/* transmit completion, subframe is
570 			 * acked by block ack */
571 			acked_cnt++;
572 		} else if (!isaggr && txok) {
573 			/* transmit completion */
574 			acked_cnt++;
575 		} else if (flush) {
576 			txpending = 1;
577 		} else if (fi->retries < ATH_MAX_SW_RETRIES) {
578 			if (txok || !an->sleeping)
579 				ath_tx_set_retry(sc, txq, bf->bf_mpdu,
580 						 retries);
581 
582 			txpending = 1;
583 		} else {
584 			txfail = 1;
585 			txfail_cnt++;
586 			bar_index = max_t(int, bar_index,
587 				ATH_BA_INDEX(seq_first, seqno));
588 		}
589 
590 		/*
591 		 * Make sure the last desc is reclaimed if it
592 		 * not a holding desc.
593 		 */
594 		INIT_LIST_HEAD(&bf_head);
595 		if (bf_next != NULL || !bf_last->bf_state.stale)
596 			list_move_tail(&bf->list, &bf_head);
597 
598 		if (!txpending) {
599 			/*
600 			 * complete the acked-ones/xretried ones; update
601 			 * block-ack window
602 			 */
603 			ath_tx_update_baw(sc, tid, seqno);
604 
605 			if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
606 				memcpy(tx_info->control.rates, rates, sizeof(rates));
607 				ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
608 				rc_update = false;
609 				if (bf == bf->bf_lastbf)
610 					ath_dynack_sample_tx_ts(sc->sc_ah,
611 								bf->bf_mpdu,
612 								ts);
613 			}
614 
615 			ath_tx_complete_buf(sc, bf, txq, &bf_head, sta, ts,
616 				!txfail);
617 		} else {
618 			if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
619 				tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
620 				ieee80211_sta_eosp(sta);
621 			}
622 			/* retry the un-acked ones */
623 			if (bf->bf_next == NULL && bf_last->bf_state.stale) {
624 				struct ath_buf *tbf;
625 
626 				tbf = ath_clone_txbuf(sc, bf_last);
627 				/*
628 				 * Update tx baw and complete the
629 				 * frame with failed status if we
630 				 * run out of tx buf.
631 				 */
632 				if (!tbf) {
633 					ath_tx_update_baw(sc, tid, seqno);
634 
635 					ath_tx_complete_buf(sc, bf, txq,
636 							    &bf_head, NULL, ts,
637 							    0);
638 					bar_index = max_t(int, bar_index,
639 						ATH_BA_INDEX(seq_first, seqno));
640 					break;
641 				}
642 
643 				fi->bf = tbf;
644 			}
645 
646 			/*
647 			 * Put this buffer to the temporary pending
648 			 * queue to retain ordering
649 			 */
650 			__skb_queue_tail(&bf_pending, skb);
651 		}
652 
653 		bf = bf_next;
654 	}
655 
656 	/* prepend un-acked frames to the beginning of the pending frame queue */
657 	if (!skb_queue_empty(&bf_pending)) {
658 		if (an->sleeping)
659 			ieee80211_sta_set_buffered(sta, tid->tidno, true);
660 
661 		skb_queue_splice_tail(&bf_pending, &tid->retry_q);
662 		if (!an->sleeping) {
663 			ath_tx_queue_tid(sc, txq, tid);
664 
665 			if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
666 				tid->clear_ps_filter = true;
667 		}
668 	}
669 
670 	if (bar_index >= 0) {
671 		u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
672 
673 		if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
674 			tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
675 
676 		ath_txq_unlock(sc, txq);
677 		ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
678 		ath_txq_lock(sc, txq);
679 	}
680 
681 	if (needreset)
682 		ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
683 }
684 
685 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
686 {
687     struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
688     return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
689 }
690 
691 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
692 				  struct ath_tx_status *ts, struct ath_buf *bf,
693 				  struct list_head *bf_head)
694 {
695 	struct ieee80211_hw *hw = sc->hw;
696 	struct ieee80211_tx_info *info;
697 	struct ieee80211_sta *sta;
698 	struct ieee80211_hdr *hdr;
699 	struct ath_atx_tid *tid = NULL;
700 	bool txok, flush;
701 
702 	txok = !(ts->ts_status & ATH9K_TXERR_MASK);
703 	flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
704 	txq->axq_tx_inprogress = false;
705 
706 	txq->axq_depth--;
707 	if (bf_is_ampdu_not_probing(bf))
708 		txq->axq_ampdu_depth--;
709 
710 	ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc,
711 					     ts->ts_rateindex);
712 
713 	hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
714 	sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
715 	if (sta) {
716 		struct ath_node *an = (struct ath_node *)sta->drv_priv;
717 		tid = ath_get_skb_tid(sc, an, bf->bf_mpdu);
718 		if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
719 			tid->clear_ps_filter = true;
720 	}
721 
722 	if (!bf_isampdu(bf)) {
723 		if (!flush) {
724 			info = IEEE80211_SKB_CB(bf->bf_mpdu);
725 			memcpy(info->control.rates, bf->rates,
726 			       sizeof(info->control.rates));
727 			ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
728 			ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts);
729 		}
730 		ath_tx_complete_buf(sc, bf, txq, bf_head, sta, ts, txok);
731 	} else
732 		ath_tx_complete_aggr(sc, txq, bf, bf_head, sta, tid, ts, txok);
733 
734 	if (!flush)
735 		ath_txq_schedule(sc, txq);
736 }
737 
738 static bool ath_lookup_legacy(struct ath_buf *bf)
739 {
740 	struct sk_buff *skb;
741 	struct ieee80211_tx_info *tx_info;
742 	struct ieee80211_tx_rate *rates;
743 	int i;
744 
745 	skb = bf->bf_mpdu;
746 	tx_info = IEEE80211_SKB_CB(skb);
747 	rates = tx_info->control.rates;
748 
749 	for (i = 0; i < 4; i++) {
750 		if (!rates[i].count || rates[i].idx < 0)
751 			break;
752 
753 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
754 			return true;
755 	}
756 
757 	return false;
758 }
759 
760 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
761 			   struct ath_atx_tid *tid)
762 {
763 	struct sk_buff *skb;
764 	struct ieee80211_tx_info *tx_info;
765 	struct ieee80211_tx_rate *rates;
766 	u32 max_4ms_framelen, frmlen;
767 	u16 aggr_limit, bt_aggr_limit, legacy = 0;
768 	int q = tid->txq->mac80211_qnum;
769 	int i;
770 
771 	skb = bf->bf_mpdu;
772 	tx_info = IEEE80211_SKB_CB(skb);
773 	rates = bf->rates;
774 
775 	/*
776 	 * Find the lowest frame length among the rate series that will have a
777 	 * 4ms (or TXOP limited) transmit duration.
778 	 */
779 	max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
780 
781 	for (i = 0; i < 4; i++) {
782 		int modeidx;
783 
784 		if (!rates[i].count)
785 			continue;
786 
787 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
788 			legacy = 1;
789 			break;
790 		}
791 
792 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
793 			modeidx = MCS_HT40;
794 		else
795 			modeidx = MCS_HT20;
796 
797 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
798 			modeidx++;
799 
800 		frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
801 		max_4ms_framelen = min(max_4ms_framelen, frmlen);
802 	}
803 
804 	/*
805 	 * limit aggregate size by the minimum rate if rate selected is
806 	 * not a probe rate, if rate selected is a probe rate then
807 	 * avoid aggregation of this packet.
808 	 */
809 	if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
810 		return 0;
811 
812 	aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
813 
814 	/*
815 	 * Override the default aggregation limit for BTCOEX.
816 	 */
817 	bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
818 	if (bt_aggr_limit)
819 		aggr_limit = bt_aggr_limit;
820 
821 	if (tid->an->maxampdu)
822 		aggr_limit = min(aggr_limit, tid->an->maxampdu);
823 
824 	return aggr_limit;
825 }
826 
827 /*
828  * Returns the number of delimiters to be added to
829  * meet the minimum required mpdudensity.
830  */
831 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
832 				  struct ath_buf *bf, u16 frmlen,
833 				  bool first_subfrm)
834 {
835 #define FIRST_DESC_NDELIMS 60
836 	u32 nsymbits, nsymbols;
837 	u16 minlen;
838 	u8 flags, rix;
839 	int width, streams, half_gi, ndelim, mindelim;
840 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
841 
842 	/* Select standard number of delimiters based on frame length alone */
843 	ndelim = ATH_AGGR_GET_NDELIM(frmlen);
844 
845 	/*
846 	 * If encryption enabled, hardware requires some more padding between
847 	 * subframes.
848 	 * TODO - this could be improved to be dependent on the rate.
849 	 *      The hardware can keep up at lower rates, but not higher rates
850 	 */
851 	if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
852 	    !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
853 		ndelim += ATH_AGGR_ENCRYPTDELIM;
854 
855 	/*
856 	 * Add delimiter when using RTS/CTS with aggregation
857 	 * and non enterprise AR9003 card
858 	 */
859 	if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
860 	    (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
861 		ndelim = max(ndelim, FIRST_DESC_NDELIMS);
862 
863 	/*
864 	 * Convert desired mpdu density from microeconds to bytes based
865 	 * on highest rate in rate series (i.e. first rate) to determine
866 	 * required minimum length for subframe. Take into account
867 	 * whether high rate is 20 or 40Mhz and half or full GI.
868 	 *
869 	 * If there is no mpdu density restriction, no further calculation
870 	 * is needed.
871 	 */
872 
873 	if (tid->an->mpdudensity == 0)
874 		return ndelim;
875 
876 	rix = bf->rates[0].idx;
877 	flags = bf->rates[0].flags;
878 	width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
879 	half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
880 
881 	if (half_gi)
882 		nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
883 	else
884 		nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
885 
886 	if (nsymbols == 0)
887 		nsymbols = 1;
888 
889 	streams = HT_RC_2_STREAMS(rix);
890 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
891 	minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
892 
893 	if (frmlen < minlen) {
894 		mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
895 		ndelim = max(mindelim, ndelim);
896 	}
897 
898 	return ndelim;
899 }
900 
901 static struct ath_buf *
902 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
903 			struct ath_atx_tid *tid)
904 {
905 	struct ieee80211_tx_info *tx_info;
906 	struct ath_frame_info *fi;
907 	struct sk_buff *skb, *first_skb = NULL;
908 	struct ath_buf *bf;
909 	u16 seqno;
910 
911 	while (1) {
912 		skb = ath_tid_dequeue(tid);
913 		if (!skb)
914 			break;
915 
916 		fi = get_frame_info(skb);
917 		bf = fi->bf;
918 		if (!fi->bf)
919 			bf = ath_tx_setup_buffer(sc, txq, tid, skb);
920 		else
921 			bf->bf_state.stale = false;
922 
923 		if (!bf) {
924 			ath_txq_skb_done(sc, txq, skb);
925 			ieee80211_free_txskb(sc->hw, skb);
926 			continue;
927 		}
928 
929 		bf->bf_next = NULL;
930 		bf->bf_lastbf = bf;
931 
932 		tx_info = IEEE80211_SKB_CB(skb);
933 		tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
934 
935 		/*
936 		 * No aggregation session is running, but there may be frames
937 		 * from a previous session or a failed attempt in the queue.
938 		 * Send them out as normal data frames
939 		 */
940 		if (!tid->active)
941 			tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
942 
943 		if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
944 			bf->bf_state.bf_type = 0;
945 			return bf;
946 		}
947 
948 		bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
949 		seqno = bf->bf_state.seqno;
950 
951 		/* do not step over block-ack window */
952 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
953 			__skb_queue_tail(&tid->retry_q, skb);
954 
955 			/* If there are other skbs in the retry q, they are
956 			 * probably within the BAW, so loop immediately to get
957 			 * one of them. Otherwise the queue can get stuck. */
958 			if (!skb_queue_is_first(&tid->retry_q, skb) &&
959 			    !WARN_ON(skb == first_skb)) {
960 				if(!first_skb) /* infinite loop prevention */
961 					first_skb = skb;
962 				continue;
963 			}
964 			break;
965 		}
966 
967 		if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
968 			struct ath_tx_status ts = {};
969 			struct list_head bf_head;
970 
971 			INIT_LIST_HEAD(&bf_head);
972 			list_add(&bf->list, &bf_head);
973 			ath_tx_update_baw(sc, tid, seqno);
974 			ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
975 			continue;
976 		}
977 
978 		return bf;
979 	}
980 
981 	return NULL;
982 }
983 
984 static int
985 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
986 		 struct ath_atx_tid *tid, struct list_head *bf_q,
987 		 struct ath_buf *bf_first)
988 {
989 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
990 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
991 	int nframes = 0, ndelim;
992 	u16 aggr_limit = 0, al = 0, bpad = 0,
993 	    al_delta, h_baw = tid->baw_size / 2;
994 	struct ieee80211_tx_info *tx_info;
995 	struct ath_frame_info *fi;
996 	struct sk_buff *skb;
997 
998 
999 	bf = bf_first;
1000 	aggr_limit = ath_lookup_rate(sc, bf, tid);
1001 
1002 	while (bf)
1003 	{
1004 		skb = bf->bf_mpdu;
1005 		fi = get_frame_info(skb);
1006 
1007 		/* do not exceed aggregation limit */
1008 		al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
1009 		if (nframes) {
1010 			if (aggr_limit < al + bpad + al_delta ||
1011 			    ath_lookup_legacy(bf) || nframes >= h_baw)
1012 				goto stop;
1013 
1014 			tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1015 			if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
1016 			    !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
1017 				goto stop;
1018 		}
1019 
1020 		/* add padding for previous frame to aggregation length */
1021 		al += bpad + al_delta;
1022 
1023 		/*
1024 		 * Get the delimiters needed to meet the MPDU
1025 		 * density for this node.
1026 		 */
1027 		ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
1028 						!nframes);
1029 		bpad = PADBYTES(al_delta) + (ndelim << 2);
1030 
1031 		nframes++;
1032 		bf->bf_next = NULL;
1033 
1034 		/* link buffers of this frame to the aggregate */
1035 		if (!fi->baw_tracked)
1036 			ath_tx_addto_baw(sc, tid, bf);
1037 		bf->bf_state.ndelim = ndelim;
1038 
1039 		list_add_tail(&bf->list, bf_q);
1040 		if (bf_prev)
1041 			bf_prev->bf_next = bf;
1042 
1043 		bf_prev = bf;
1044 
1045 		bf = ath_tx_get_tid_subframe(sc, txq, tid);
1046 	}
1047 	goto finish;
1048 stop:
1049 	__skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1050 finish:
1051 	bf = bf_first;
1052 	bf->bf_lastbf = bf_prev;
1053 
1054 	if (bf == bf_prev) {
1055 		al = get_frame_info(bf->bf_mpdu)->framelen;
1056 		bf->bf_state.bf_type = BUF_AMPDU;
1057 	} else {
1058 		TX_STAT_INC(txq->axq_qnum, a_aggr);
1059 	}
1060 
1061 	return al;
1062 #undef PADBYTES
1063 }
1064 
1065 /*
1066  * rix - rate index
1067  * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1068  * width  - 0 for 20 MHz, 1 for 40 MHz
1069  * half_gi - to use 4us v/s 3.6 us for symbol time
1070  */
1071 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1072 			    int width, int half_gi, bool shortPreamble)
1073 {
1074 	u32 nbits, nsymbits, duration, nsymbols;
1075 	int streams;
1076 
1077 	/* find number of symbols: PLCP + data */
1078 	streams = HT_RC_2_STREAMS(rix);
1079 	nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1080 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
1081 	nsymbols = (nbits + nsymbits - 1) / nsymbits;
1082 
1083 	if (!half_gi)
1084 		duration = SYMBOL_TIME(nsymbols);
1085 	else
1086 		duration = SYMBOL_TIME_HALFGI(nsymbols);
1087 
1088 	/* addup duration for legacy/ht training and signal fields */
1089 	duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1090 
1091 	return duration;
1092 }
1093 
1094 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1095 {
1096 	int streams = HT_RC_2_STREAMS(mcs);
1097 	int symbols, bits;
1098 	int bytes = 0;
1099 
1100 	usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1101 	symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1102 	bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1103 	bits -= OFDM_PLCP_BITS;
1104 	bytes = bits / 8;
1105 	if (bytes > 65532)
1106 		bytes = 65532;
1107 
1108 	return bytes;
1109 }
1110 
1111 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1112 {
1113 	u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1114 	int mcs;
1115 
1116 	/* 4ms is the default (and maximum) duration */
1117 	if (!txop || txop > 4096)
1118 		txop = 4096;
1119 
1120 	cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1121 	cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1122 	cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1123 	cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1124 	for (mcs = 0; mcs < 32; mcs++) {
1125 		cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1126 		cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1127 		cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1128 		cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1129 	}
1130 }
1131 
1132 static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf,
1133 			       u8 rateidx, bool is_40, bool is_cck)
1134 {
1135 	u8 max_power;
1136 	struct sk_buff *skb;
1137 	struct ath_frame_info *fi;
1138 	struct ieee80211_tx_info *info;
1139 	struct ath_hw *ah = sc->sc_ah;
1140 
1141 	if (sc->tx99_state || !ah->tpc_enabled)
1142 		return MAX_RATE_POWER;
1143 
1144 	skb = bf->bf_mpdu;
1145 	fi = get_frame_info(skb);
1146 	info = IEEE80211_SKB_CB(skb);
1147 
1148 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
1149 		int txpower = fi->tx_power;
1150 
1151 		if (is_40) {
1152 			u8 power_ht40delta;
1153 			struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1154 
1155 			if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
1156 				bool is_2ghz;
1157 				struct modal_eep_header *pmodal;
1158 
1159 				is_2ghz = info->band == NL80211_BAND_2GHZ;
1160 				pmodal = &eep->modalHeader[is_2ghz];
1161 				power_ht40delta = pmodal->ht40PowerIncForPdadc;
1162 			} else {
1163 				power_ht40delta = 2;
1164 			}
1165 			txpower += power_ht40delta;
1166 		}
1167 
1168 		if (AR_SREV_9287(ah) || AR_SREV_9285(ah) ||
1169 		    AR_SREV_9271(ah)) {
1170 			txpower -= 2 * AR9287_PWR_TABLE_OFFSET_DB;
1171 		} else if (AR_SREV_9280_20_OR_LATER(ah)) {
1172 			s8 power_offset;
1173 
1174 			power_offset = ah->eep_ops->get_eeprom(ah,
1175 							EEP_PWR_TABLE_OFFSET);
1176 			txpower -= 2 * power_offset;
1177 		}
1178 
1179 		if (OLC_FOR_AR9280_20_LATER && is_cck)
1180 			txpower -= 2;
1181 
1182 		txpower = max(txpower, 0);
1183 		max_power = min_t(u8, ah->tx_power[rateidx], txpower);
1184 
1185 		/* XXX: clamp minimum TX power at 1 for AR9160 since if
1186 		 * max_power is set to 0, frames are transmitted at max
1187 		 * TX power
1188 		 */
1189 		if (!max_power && !AR_SREV_9280_20_OR_LATER(ah))
1190 			max_power = 1;
1191 	} else if (!bf->bf_state.bfs_paprd) {
1192 		if (rateidx < 8 && (info->flags & IEEE80211_TX_CTL_STBC))
1193 			max_power = min_t(u8, ah->tx_power_stbc[rateidx],
1194 					  fi->tx_power);
1195 		else
1196 			max_power = min_t(u8, ah->tx_power[rateidx],
1197 					  fi->tx_power);
1198 	} else {
1199 		max_power = ah->paprd_training_power;
1200 	}
1201 
1202 	return max_power;
1203 }
1204 
1205 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1206 			     struct ath_tx_info *info, int len, bool rts)
1207 {
1208 	struct ath_hw *ah = sc->sc_ah;
1209 	struct ath_common *common = ath9k_hw_common(ah);
1210 	struct sk_buff *skb;
1211 	struct ieee80211_tx_info *tx_info;
1212 	struct ieee80211_tx_rate *rates;
1213 	const struct ieee80211_rate *rate;
1214 	struct ieee80211_hdr *hdr;
1215 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1216 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1217 	int i;
1218 	u8 rix = 0;
1219 
1220 	skb = bf->bf_mpdu;
1221 	tx_info = IEEE80211_SKB_CB(skb);
1222 	rates = bf->rates;
1223 	hdr = (struct ieee80211_hdr *)skb->data;
1224 
1225 	/* set dur_update_en for l-sig computation except for PS-Poll frames */
1226 	info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1227 	info->rtscts_rate = fi->rtscts_rate;
1228 
1229 	for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1230 		bool is_40, is_sgi, is_sp, is_cck;
1231 		int phy;
1232 
1233 		if (!rates[i].count || (rates[i].idx < 0))
1234 			continue;
1235 
1236 		rix = rates[i].idx;
1237 		info->rates[i].Tries = rates[i].count;
1238 
1239 		/*
1240 		 * Handle RTS threshold for unaggregated HT frames.
1241 		 */
1242 		if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1243 		    (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1244 		    unlikely(rts_thresh != (u32) -1)) {
1245 			if (!rts_thresh || (len > rts_thresh))
1246 				rts = true;
1247 		}
1248 
1249 		if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1250 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1251 			info->flags |= ATH9K_TXDESC_RTSENA;
1252 		} else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1253 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1254 			info->flags |= ATH9K_TXDESC_CTSENA;
1255 		}
1256 
1257 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1258 			info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1259 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1260 			info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1261 
1262 		is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1263 		is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1264 		is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1265 
1266 		if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1267 			/* MCS rates */
1268 			info->rates[i].Rate = rix | 0x80;
1269 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1270 					ah->txchainmask, info->rates[i].Rate);
1271 			info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1272 				 is_40, is_sgi, is_sp);
1273 			if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1274 				info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1275 
1276 			info->txpower[i] = ath_get_rate_txpower(sc, bf, rix,
1277 								is_40, false);
1278 			continue;
1279 		}
1280 
1281 		/* legacy rates */
1282 		rate = &common->sbands[tx_info->band].bitrates[rates[i].idx];
1283 		if ((tx_info->band == NL80211_BAND_2GHZ) &&
1284 		    !(rate->flags & IEEE80211_RATE_ERP_G))
1285 			phy = WLAN_RC_PHY_CCK;
1286 		else
1287 			phy = WLAN_RC_PHY_OFDM;
1288 
1289 		info->rates[i].Rate = rate->hw_value;
1290 		if (rate->hw_value_short) {
1291 			if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1292 				info->rates[i].Rate |= rate->hw_value_short;
1293 		} else {
1294 			is_sp = false;
1295 		}
1296 
1297 		if (bf->bf_state.bfs_paprd)
1298 			info->rates[i].ChSel = ah->txchainmask;
1299 		else
1300 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1301 					ah->txchainmask, info->rates[i].Rate);
1302 
1303 		info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1304 			phy, rate->bitrate * 100, len, rix, is_sp);
1305 
1306 		is_cck = IS_CCK_RATE(info->rates[i].Rate);
1307 		info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, false,
1308 							is_cck);
1309 	}
1310 
1311 	/* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1312 	if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1313 		info->flags &= ~ATH9K_TXDESC_RTSENA;
1314 
1315 	/* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1316 	if (info->flags & ATH9K_TXDESC_RTSENA)
1317 		info->flags &= ~ATH9K_TXDESC_CTSENA;
1318 }
1319 
1320 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1321 {
1322 	struct ieee80211_hdr *hdr;
1323 	enum ath9k_pkt_type htype;
1324 	__le16 fc;
1325 
1326 	hdr = (struct ieee80211_hdr *)skb->data;
1327 	fc = hdr->frame_control;
1328 
1329 	if (ieee80211_is_beacon(fc))
1330 		htype = ATH9K_PKT_TYPE_BEACON;
1331 	else if (ieee80211_is_probe_resp(fc))
1332 		htype = ATH9K_PKT_TYPE_PROBE_RESP;
1333 	else if (ieee80211_is_atim(fc))
1334 		htype = ATH9K_PKT_TYPE_ATIM;
1335 	else if (ieee80211_is_pspoll(fc))
1336 		htype = ATH9K_PKT_TYPE_PSPOLL;
1337 	else
1338 		htype = ATH9K_PKT_TYPE_NORMAL;
1339 
1340 	return htype;
1341 }
1342 
1343 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1344 			     struct ath_txq *txq, int len)
1345 {
1346 	struct ath_hw *ah = sc->sc_ah;
1347 	struct ath_buf *bf_first = NULL;
1348 	struct ath_tx_info info;
1349 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1350 	bool rts = false;
1351 
1352 	memset(&info, 0, sizeof(info));
1353 	info.is_first = true;
1354 	info.is_last = true;
1355 	info.qcu = txq->axq_qnum;
1356 
1357 	while (bf) {
1358 		struct sk_buff *skb = bf->bf_mpdu;
1359 		struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1360 		struct ath_frame_info *fi = get_frame_info(skb);
1361 		bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1362 
1363 		info.type = get_hw_packet_type(skb);
1364 		if (bf->bf_next)
1365 			info.link = bf->bf_next->bf_daddr;
1366 		else
1367 			info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
1368 
1369 		if (!bf_first) {
1370 			bf_first = bf;
1371 
1372 			if (!sc->tx99_state)
1373 				info.flags = ATH9K_TXDESC_INTREQ;
1374 			if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1375 			    txq == sc->tx.uapsdq)
1376 				info.flags |= ATH9K_TXDESC_CLRDMASK;
1377 
1378 			if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1379 				info.flags |= ATH9K_TXDESC_NOACK;
1380 			if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1381 				info.flags |= ATH9K_TXDESC_LDPC;
1382 
1383 			if (bf->bf_state.bfs_paprd)
1384 				info.flags |= (u32) bf->bf_state.bfs_paprd <<
1385 					      ATH9K_TXDESC_PAPRD_S;
1386 
1387 			/*
1388 			 * mac80211 doesn't handle RTS threshold for HT because
1389 			 * the decision has to be taken based on AMPDU length
1390 			 * and aggregation is done entirely inside ath9k.
1391 			 * Set the RTS/CTS flag for the first subframe based
1392 			 * on the threshold.
1393 			 */
1394 			if (aggr && (bf == bf_first) &&
1395 			    unlikely(rts_thresh != (u32) -1)) {
1396 				/*
1397 				 * "len" is the size of the entire AMPDU.
1398 				 */
1399 				if (!rts_thresh || (len > rts_thresh))
1400 					rts = true;
1401 			}
1402 
1403 			if (!aggr)
1404 				len = fi->framelen;
1405 
1406 			ath_buf_set_rate(sc, bf, &info, len, rts);
1407 		}
1408 
1409 		info.buf_addr[0] = bf->bf_buf_addr;
1410 		info.buf_len[0] = skb->len;
1411 		info.pkt_len = fi->framelen;
1412 		info.keyix = fi->keyix;
1413 		info.keytype = fi->keytype;
1414 
1415 		if (aggr) {
1416 			if (bf == bf_first)
1417 				info.aggr = AGGR_BUF_FIRST;
1418 			else if (bf == bf_first->bf_lastbf)
1419 				info.aggr = AGGR_BUF_LAST;
1420 			else
1421 				info.aggr = AGGR_BUF_MIDDLE;
1422 
1423 			info.ndelim = bf->bf_state.ndelim;
1424 			info.aggr_len = len;
1425 		}
1426 
1427 		if (bf == bf_first->bf_lastbf)
1428 			bf_first = NULL;
1429 
1430 		ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1431 		bf = bf->bf_next;
1432 	}
1433 }
1434 
1435 static void
1436 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1437 		  struct ath_atx_tid *tid, struct list_head *bf_q,
1438 		  struct ath_buf *bf_first)
1439 {
1440 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
1441 	int nframes = 0;
1442 
1443 	do {
1444 		struct ieee80211_tx_info *tx_info;
1445 
1446 		nframes++;
1447 		list_add_tail(&bf->list, bf_q);
1448 		if (bf_prev)
1449 			bf_prev->bf_next = bf;
1450 		bf_prev = bf;
1451 
1452 		if (nframes >= 2)
1453 			break;
1454 
1455 		bf = ath_tx_get_tid_subframe(sc, txq, tid);
1456 		if (!bf)
1457 			break;
1458 
1459 		tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1460 		if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
1461 			__skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1462 			break;
1463 		}
1464 
1465 		ath_set_rates(tid->an->vif, tid->an->sta, bf);
1466 	} while (1);
1467 }
1468 
1469 static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1470 			      struct ath_atx_tid *tid, bool *stop)
1471 {
1472 	struct ath_buf *bf;
1473 	struct ieee80211_tx_info *tx_info;
1474 	struct list_head bf_q;
1475 	int aggr_len = 0;
1476 	bool aggr;
1477 
1478 	if (!ath_tid_has_buffered(tid))
1479 		return false;
1480 
1481 	INIT_LIST_HEAD(&bf_q);
1482 
1483 	bf = ath_tx_get_tid_subframe(sc, txq, tid);
1484 	if (!bf)
1485 		return false;
1486 
1487 	tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1488 	aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1489 	if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1490 	    (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1491 		__skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1492 		*stop = true;
1493 		return false;
1494 	}
1495 
1496 	ath_set_rates(tid->an->vif, tid->an->sta, bf);
1497 	if (aggr)
1498 		aggr_len = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf);
1499 	else
1500 		ath_tx_form_burst(sc, txq, tid, &bf_q, bf);
1501 
1502 	if (list_empty(&bf_q))
1503 		return false;
1504 
1505 	if (tid->clear_ps_filter || tid->an->no_ps_filter) {
1506 		tid->clear_ps_filter = false;
1507 		tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1508 	}
1509 
1510 	ath_tx_fill_desc(sc, bf, txq, aggr_len);
1511 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1512 	return true;
1513 }
1514 
1515 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1516 		      u16 tid, u16 *ssn)
1517 {
1518 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1519 	struct ath_atx_tid *txtid;
1520 	struct ath_txq *txq;
1521 	struct ath_node *an;
1522 	u8 density;
1523 
1524 	ath_dbg(common, XMIT, "%s called\n", __func__);
1525 
1526 	an = (struct ath_node *)sta->drv_priv;
1527 	txtid = ATH_AN_2_TID(an, tid);
1528 	txq = txtid->txq;
1529 
1530 	ath_txq_lock(sc, txq);
1531 
1532 	/* update ampdu factor/density, they may have changed. This may happen
1533 	 * in HT IBSS when a beacon with HT-info is received after the station
1534 	 * has already been added.
1535 	 */
1536 	if (sta->ht_cap.ht_supported) {
1537 		an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1538 				      sta->ht_cap.ampdu_factor)) - 1;
1539 		density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1540 		an->mpdudensity = density;
1541 	}
1542 
1543 	txtid->active = true;
1544 	*ssn = txtid->seq_start = txtid->seq_next;
1545 	txtid->bar_index = -1;
1546 
1547 	memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1548 	txtid->baw_head = txtid->baw_tail = 0;
1549 
1550 	ath_txq_unlock_complete(sc, txq);
1551 
1552 	return 0;
1553 }
1554 
1555 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1556 {
1557 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1558 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1559 	struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1560 	struct ath_txq *txq = txtid->txq;
1561 
1562 	ath_dbg(common, XMIT, "%s called\n", __func__);
1563 
1564 	ath_txq_lock(sc, txq);
1565 	txtid->active = false;
1566 	ath_tx_flush_tid(sc, txtid);
1567 	ath_txq_unlock_complete(sc, txq);
1568 }
1569 
1570 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1571 		       struct ath_node *an)
1572 {
1573 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1574 	struct ath_atx_tid *tid;
1575 	struct ath_txq *txq;
1576 	int tidno;
1577 
1578 	ath_dbg(common, XMIT, "%s called\n", __func__);
1579 
1580 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
1581 		tid = ath_node_to_tid(an, tidno);
1582 		txq = tid->txq;
1583 
1584 		ath_txq_lock(sc, txq);
1585 
1586 		if (list_empty(&tid->list)) {
1587 			ath_txq_unlock(sc, txq);
1588 			continue;
1589 		}
1590 
1591 		if (!skb_queue_empty(&tid->retry_q))
1592 			ieee80211_sta_set_buffered(sta, tid->tidno, true);
1593 
1594 		list_del_init(&tid->list);
1595 
1596 		ath_txq_unlock(sc, txq);
1597 	}
1598 }
1599 
1600 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1601 {
1602 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1603 	struct ath_atx_tid *tid;
1604 	struct ath_txq *txq;
1605 	int tidno;
1606 
1607 	ath_dbg(common, XMIT, "%s called\n", __func__);
1608 
1609 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
1610 		tid = ath_node_to_tid(an, tidno);
1611 		txq = tid->txq;
1612 
1613 		ath_txq_lock(sc, txq);
1614 		tid->clear_ps_filter = true;
1615 		if (ath_tid_has_buffered(tid)) {
1616 			ath_tx_queue_tid(sc, txq, tid);
1617 			ath_txq_schedule(sc, txq);
1618 		}
1619 		ath_txq_unlock_complete(sc, txq);
1620 	}
1621 }
1622 
1623 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1624 				   struct ieee80211_sta *sta,
1625 				   u16 tids, int nframes,
1626 				   enum ieee80211_frame_release_type reason,
1627 				   bool more_data)
1628 {
1629 	struct ath_softc *sc = hw->priv;
1630 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1631 	struct ath_txq *txq = sc->tx.uapsdq;
1632 	struct ieee80211_tx_info *info;
1633 	struct list_head bf_q;
1634 	struct ath_buf *bf_tail = NULL, *bf;
1635 	int sent = 0;
1636 	int i;
1637 
1638 	INIT_LIST_HEAD(&bf_q);
1639 	for (i = 0; tids && nframes; i++, tids >>= 1) {
1640 		struct ath_atx_tid *tid;
1641 
1642 		if (!(tids & 1))
1643 			continue;
1644 
1645 		tid = ATH_AN_2_TID(an, i);
1646 
1647 		ath_txq_lock(sc, tid->txq);
1648 		while (nframes > 0) {
1649 			bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid);
1650 			if (!bf)
1651 				break;
1652 
1653 			list_add_tail(&bf->list, &bf_q);
1654 			ath_set_rates(tid->an->vif, tid->an->sta, bf);
1655 			if (bf_isampdu(bf)) {
1656 				ath_tx_addto_baw(sc, tid, bf);
1657 				bf->bf_state.bf_type &= ~BUF_AGGR;
1658 			}
1659 			if (bf_tail)
1660 				bf_tail->bf_next = bf;
1661 
1662 			bf_tail = bf;
1663 			nframes--;
1664 			sent++;
1665 			TX_STAT_INC(txq->axq_qnum, a_queued_hw);
1666 
1667 			if (an->sta && skb_queue_empty(&tid->retry_q))
1668 				ieee80211_sta_set_buffered(an->sta, i, false);
1669 		}
1670 		ath_txq_unlock_complete(sc, tid->txq);
1671 	}
1672 
1673 	if (list_empty(&bf_q))
1674 		return;
1675 
1676 	info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1677 	info->flags |= IEEE80211_TX_STATUS_EOSP;
1678 
1679 	bf = list_first_entry(&bf_q, struct ath_buf, list);
1680 	ath_txq_lock(sc, txq);
1681 	ath_tx_fill_desc(sc, bf, txq, 0);
1682 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1683 	ath_txq_unlock(sc, txq);
1684 }
1685 
1686 /********************/
1687 /* Queue Management */
1688 /********************/
1689 
1690 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1691 {
1692 	struct ath_hw *ah = sc->sc_ah;
1693 	struct ath9k_tx_queue_info qi;
1694 	static const int subtype_txq_to_hwq[] = {
1695 		[IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1696 		[IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1697 		[IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1698 		[IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1699 	};
1700 	int axq_qnum, i;
1701 
1702 	memset(&qi, 0, sizeof(qi));
1703 	qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1704 	qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1705 	qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1706 	qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1707 	qi.tqi_physCompBuf = 0;
1708 
1709 	/*
1710 	 * Enable interrupts only for EOL and DESC conditions.
1711 	 * We mark tx descriptors to receive a DESC interrupt
1712 	 * when a tx queue gets deep; otherwise waiting for the
1713 	 * EOL to reap descriptors.  Note that this is done to
1714 	 * reduce interrupt load and this only defers reaping
1715 	 * descriptors, never transmitting frames.  Aside from
1716 	 * reducing interrupts this also permits more concurrency.
1717 	 * The only potential downside is if the tx queue backs
1718 	 * up in which case the top half of the kernel may backup
1719 	 * due to a lack of tx descriptors.
1720 	 *
1721 	 * The UAPSD queue is an exception, since we take a desc-
1722 	 * based intr on the EOSP frames.
1723 	 */
1724 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1725 		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1726 	} else {
1727 		if (qtype == ATH9K_TX_QUEUE_UAPSD)
1728 			qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1729 		else
1730 			qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1731 					TXQ_FLAG_TXDESCINT_ENABLE;
1732 	}
1733 	axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1734 	if (axq_qnum == -1) {
1735 		/*
1736 		 * NB: don't print a message, this happens
1737 		 * normally on parts with too few tx queues
1738 		 */
1739 		return NULL;
1740 	}
1741 	if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1742 		struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1743 
1744 		txq->axq_qnum = axq_qnum;
1745 		txq->mac80211_qnum = -1;
1746 		txq->axq_link = NULL;
1747 		__skb_queue_head_init(&txq->complete_q);
1748 		INIT_LIST_HEAD(&txq->axq_q);
1749 		spin_lock_init(&txq->axq_lock);
1750 		txq->axq_depth = 0;
1751 		txq->axq_ampdu_depth = 0;
1752 		txq->axq_tx_inprogress = false;
1753 		sc->tx.txqsetup |= 1<<axq_qnum;
1754 
1755 		txq->txq_headidx = txq->txq_tailidx = 0;
1756 		for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1757 			INIT_LIST_HEAD(&txq->txq_fifo[i]);
1758 	}
1759 	return &sc->tx.txq[axq_qnum];
1760 }
1761 
1762 int ath_txq_update(struct ath_softc *sc, int qnum,
1763 		   struct ath9k_tx_queue_info *qinfo)
1764 {
1765 	struct ath_hw *ah = sc->sc_ah;
1766 	int error = 0;
1767 	struct ath9k_tx_queue_info qi;
1768 
1769 	BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1770 
1771 	ath9k_hw_get_txq_props(ah, qnum, &qi);
1772 	qi.tqi_aifs = qinfo->tqi_aifs;
1773 	qi.tqi_cwmin = qinfo->tqi_cwmin;
1774 	qi.tqi_cwmax = qinfo->tqi_cwmax;
1775 	qi.tqi_burstTime = qinfo->tqi_burstTime;
1776 	qi.tqi_readyTime = qinfo->tqi_readyTime;
1777 
1778 	if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1779 		ath_err(ath9k_hw_common(sc->sc_ah),
1780 			"Unable to update hardware queue %u!\n", qnum);
1781 		error = -EIO;
1782 	} else {
1783 		ath9k_hw_resettxqueue(ah, qnum);
1784 	}
1785 
1786 	return error;
1787 }
1788 
1789 int ath_cabq_update(struct ath_softc *sc)
1790 {
1791 	struct ath9k_tx_queue_info qi;
1792 	struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon;
1793 	int qnum = sc->beacon.cabq->axq_qnum;
1794 
1795 	ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1796 
1797 	qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) *
1798 			    ATH_CABQ_READY_TIME) / 100;
1799 	ath_txq_update(sc, qnum, &qi);
1800 
1801 	return 0;
1802 }
1803 
1804 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1805 			       struct list_head *list)
1806 {
1807 	struct ath_buf *bf, *lastbf;
1808 	struct list_head bf_head;
1809 	struct ath_tx_status ts;
1810 
1811 	memset(&ts, 0, sizeof(ts));
1812 	ts.ts_status = ATH9K_TX_FLUSH;
1813 	INIT_LIST_HEAD(&bf_head);
1814 
1815 	while (!list_empty(list)) {
1816 		bf = list_first_entry(list, struct ath_buf, list);
1817 
1818 		if (bf->bf_state.stale) {
1819 			list_del(&bf->list);
1820 
1821 			ath_tx_return_buffer(sc, bf);
1822 			continue;
1823 		}
1824 
1825 		lastbf = bf->bf_lastbf;
1826 		list_cut_position(&bf_head, list, &lastbf->list);
1827 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1828 	}
1829 }
1830 
1831 /*
1832  * Drain a given TX queue (could be Beacon or Data)
1833  *
1834  * This assumes output has been stopped and
1835  * we do not need to block ath_tx_tasklet.
1836  */
1837 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1838 {
1839 	rcu_read_lock();
1840 	ath_txq_lock(sc, txq);
1841 
1842 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1843 		int idx = txq->txq_tailidx;
1844 
1845 		while (!list_empty(&txq->txq_fifo[idx])) {
1846 			ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1847 
1848 			INCR(idx, ATH_TXFIFO_DEPTH);
1849 		}
1850 		txq->txq_tailidx = idx;
1851 	}
1852 
1853 	txq->axq_link = NULL;
1854 	txq->axq_tx_inprogress = false;
1855 	ath_drain_txq_list(sc, txq, &txq->axq_q);
1856 
1857 	ath_txq_unlock_complete(sc, txq);
1858 	rcu_read_unlock();
1859 }
1860 
1861 bool ath_drain_all_txq(struct ath_softc *sc)
1862 {
1863 	struct ath_hw *ah = sc->sc_ah;
1864 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1865 	struct ath_txq *txq;
1866 	int i;
1867 	u32 npend = 0;
1868 
1869 	if (test_bit(ATH_OP_INVALID, &common->op_flags))
1870 		return true;
1871 
1872 	ath9k_hw_abort_tx_dma(ah);
1873 
1874 	/* Check if any queue remains active */
1875 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1876 		if (!ATH_TXQ_SETUP(sc, i))
1877 			continue;
1878 
1879 		if (!sc->tx.txq[i].axq_depth)
1880 			continue;
1881 
1882 		if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1883 			npend |= BIT(i);
1884 	}
1885 
1886 	if (npend) {
1887 		RESET_STAT_INC(sc, RESET_TX_DMA_ERROR);
1888 		ath_dbg(common, RESET,
1889 			"Failed to stop TX DMA, queues=0x%03x!\n", npend);
1890 	}
1891 
1892 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1893 		if (!ATH_TXQ_SETUP(sc, i))
1894 			continue;
1895 
1896 		txq = &sc->tx.txq[i];
1897 		ath_draintxq(sc, txq);
1898 	}
1899 
1900 	return !npend;
1901 }
1902 
1903 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1904 {
1905 	ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1906 	sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1907 }
1908 
1909 /* For each acq entry, for each tid, try to schedule packets
1910  * for transmit until ampdu_depth has reached min Q depth.
1911  */
1912 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1913 {
1914 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1915 	struct ath_atx_tid *tid, *last_tid;
1916 	struct list_head *tid_list;
1917 	bool sent = false;
1918 
1919 	if (txq->mac80211_qnum < 0)
1920 		return;
1921 
1922 	if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
1923 		return;
1924 
1925 	spin_lock_bh(&sc->chan_lock);
1926 	tid_list = &sc->cur_chan->acq[txq->mac80211_qnum];
1927 
1928 	if (list_empty(tid_list)) {
1929 		spin_unlock_bh(&sc->chan_lock);
1930 		return;
1931 	}
1932 
1933 	rcu_read_lock();
1934 
1935 	last_tid = list_entry(tid_list->prev, struct ath_atx_tid, list);
1936 	while (!list_empty(tid_list)) {
1937 		bool stop = false;
1938 
1939 		if (sc->cur_chan->stopped)
1940 			break;
1941 
1942 		tid = list_first_entry(tid_list, struct ath_atx_tid, list);
1943 		list_del_init(&tid->list);
1944 
1945 		if (ath_tx_sched_aggr(sc, txq, tid, &stop))
1946 			sent = true;
1947 
1948 		/*
1949 		 * add tid to round-robin queue if more frames
1950 		 * are pending for the tid
1951 		 */
1952 		if (ath_tid_has_buffered(tid))
1953 			ath_tx_queue_tid(sc, txq, tid);
1954 
1955 		if (stop)
1956 			break;
1957 
1958 		if (tid == last_tid) {
1959 			if (!sent)
1960 				break;
1961 
1962 			sent = false;
1963 			last_tid = list_entry(tid_list->prev,
1964 					      struct ath_atx_tid, list);
1965 		}
1966 	}
1967 
1968 	rcu_read_unlock();
1969 	spin_unlock_bh(&sc->chan_lock);
1970 }
1971 
1972 void ath_txq_schedule_all(struct ath_softc *sc)
1973 {
1974 	struct ath_txq *txq;
1975 	int i;
1976 
1977 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
1978 		txq = sc->tx.txq_map[i];
1979 
1980 		spin_lock_bh(&txq->axq_lock);
1981 		ath_txq_schedule(sc, txq);
1982 		spin_unlock_bh(&txq->axq_lock);
1983 	}
1984 }
1985 
1986 /***********/
1987 /* TX, DMA */
1988 /***********/
1989 
1990 /*
1991  * Insert a chain of ath_buf (descriptors) on a txq and
1992  * assume the descriptors are already chained together by caller.
1993  */
1994 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1995 			     struct list_head *head, bool internal)
1996 {
1997 	struct ath_hw *ah = sc->sc_ah;
1998 	struct ath_common *common = ath9k_hw_common(ah);
1999 	struct ath_buf *bf, *bf_last;
2000 	bool puttxbuf = false;
2001 	bool edma;
2002 
2003 	/*
2004 	 * Insert the frame on the outbound list and
2005 	 * pass it on to the hardware.
2006 	 */
2007 
2008 	if (list_empty(head))
2009 		return;
2010 
2011 	edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
2012 	bf = list_first_entry(head, struct ath_buf, list);
2013 	bf_last = list_entry(head->prev, struct ath_buf, list);
2014 
2015 	ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
2016 		txq->axq_qnum, txq->axq_depth);
2017 
2018 	if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
2019 		list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
2020 		INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
2021 		puttxbuf = true;
2022 	} else {
2023 		list_splice_tail_init(head, &txq->axq_q);
2024 
2025 		if (txq->axq_link) {
2026 			ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
2027 			ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
2028 				txq->axq_qnum, txq->axq_link,
2029 				ito64(bf->bf_daddr), bf->bf_desc);
2030 		} else if (!edma)
2031 			puttxbuf = true;
2032 
2033 		txq->axq_link = bf_last->bf_desc;
2034 	}
2035 
2036 	if (puttxbuf) {
2037 		TX_STAT_INC(txq->axq_qnum, puttxbuf);
2038 		ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
2039 		ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
2040 			txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
2041 	}
2042 
2043 	if (!edma || sc->tx99_state) {
2044 		TX_STAT_INC(txq->axq_qnum, txstart);
2045 		ath9k_hw_txstart(ah, txq->axq_qnum);
2046 	}
2047 
2048 	if (!internal) {
2049 		while (bf) {
2050 			txq->axq_depth++;
2051 			if (bf_is_ampdu_not_probing(bf))
2052 				txq->axq_ampdu_depth++;
2053 
2054 			bf_last = bf->bf_lastbf;
2055 			bf = bf_last->bf_next;
2056 			bf_last->bf_next = NULL;
2057 		}
2058 	}
2059 }
2060 
2061 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
2062 			       struct ath_atx_tid *tid, struct sk_buff *skb)
2063 {
2064 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2065 	struct ath_frame_info *fi = get_frame_info(skb);
2066 	struct list_head bf_head;
2067 	struct ath_buf *bf = fi->bf;
2068 
2069 	INIT_LIST_HEAD(&bf_head);
2070 	list_add_tail(&bf->list, &bf_head);
2071 	bf->bf_state.bf_type = 0;
2072 	if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
2073 		bf->bf_state.bf_type = BUF_AMPDU;
2074 		ath_tx_addto_baw(sc, tid, bf);
2075 	}
2076 
2077 	bf->bf_next = NULL;
2078 	bf->bf_lastbf = bf;
2079 	ath_tx_fill_desc(sc, bf, txq, fi->framelen);
2080 	ath_tx_txqaddbuf(sc, txq, &bf_head, false);
2081 	TX_STAT_INC(txq->axq_qnum, queued);
2082 }
2083 
2084 static void setup_frame_info(struct ieee80211_hw *hw,
2085 			     struct ieee80211_sta *sta,
2086 			     struct sk_buff *skb,
2087 			     int framelen)
2088 {
2089 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2090 	struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
2091 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2092 	const struct ieee80211_rate *rate;
2093 	struct ath_frame_info *fi = get_frame_info(skb);
2094 	struct ath_node *an = NULL;
2095 	enum ath9k_key_type keytype;
2096 	bool short_preamble = false;
2097 	u8 txpower;
2098 
2099 	/*
2100 	 * We check if Short Preamble is needed for the CTS rate by
2101 	 * checking the BSS's global flag.
2102 	 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
2103 	 */
2104 	if (tx_info->control.vif &&
2105 	    tx_info->control.vif->bss_conf.use_short_preamble)
2106 		short_preamble = true;
2107 
2108 	rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2109 	keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2110 
2111 	if (sta)
2112 		an = (struct ath_node *) sta->drv_priv;
2113 
2114 	if (tx_info->control.vif) {
2115 		struct ieee80211_vif *vif = tx_info->control.vif;
2116 
2117 		txpower = 2 * vif->bss_conf.txpower;
2118 	} else {
2119 		struct ath_softc *sc = hw->priv;
2120 
2121 		txpower = sc->cur_chan->cur_txpower;
2122 	}
2123 
2124 	memset(fi, 0, sizeof(*fi));
2125 	fi->txq = -1;
2126 	if (hw_key)
2127 		fi->keyix = hw_key->hw_key_idx;
2128 	else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2129 		fi->keyix = an->ps_key;
2130 	else
2131 		fi->keyix = ATH9K_TXKEYIX_INVALID;
2132 	fi->keytype = keytype;
2133 	fi->framelen = framelen;
2134 	fi->tx_power = txpower;
2135 
2136 	if (!rate)
2137 		return;
2138 	fi->rtscts_rate = rate->hw_value;
2139 	if (short_preamble)
2140 		fi->rtscts_rate |= rate->hw_value_short;
2141 }
2142 
2143 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2144 {
2145 	struct ath_hw *ah = sc->sc_ah;
2146 	struct ath9k_channel *curchan = ah->curchan;
2147 
2148 	if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
2149 	    (chainmask == 0x7) && (rate < 0x90))
2150 		return 0x3;
2151 	else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2152 		 IS_CCK_RATE(rate))
2153 		return 0x2;
2154 	else
2155 		return chainmask;
2156 }
2157 
2158 /*
2159  * Assign a descriptor (and sequence number if necessary,
2160  * and map buffer for DMA. Frees skb on error
2161  */
2162 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2163 					   struct ath_txq *txq,
2164 					   struct ath_atx_tid *tid,
2165 					   struct sk_buff *skb)
2166 {
2167 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2168 	struct ath_frame_info *fi = get_frame_info(skb);
2169 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2170 	struct ath_buf *bf;
2171 	int fragno;
2172 	u16 seqno;
2173 
2174 	bf = ath_tx_get_buffer(sc);
2175 	if (!bf) {
2176 		ath_dbg(common, XMIT, "TX buffers are full\n");
2177 		return NULL;
2178 	}
2179 
2180 	ATH_TXBUF_RESET(bf);
2181 
2182 	if (tid && ieee80211_is_data_present(hdr->frame_control)) {
2183 		fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2184 		seqno = tid->seq_next;
2185 		hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2186 
2187 		if (fragno)
2188 			hdr->seq_ctrl |= cpu_to_le16(fragno);
2189 
2190 		if (!ieee80211_has_morefrags(hdr->frame_control))
2191 			INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2192 
2193 		bf->bf_state.seqno = seqno;
2194 	}
2195 
2196 	bf->bf_mpdu = skb;
2197 
2198 	bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2199 					 skb->len, DMA_TO_DEVICE);
2200 	if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2201 		bf->bf_mpdu = NULL;
2202 		bf->bf_buf_addr = 0;
2203 		ath_err(ath9k_hw_common(sc->sc_ah),
2204 			"dma_mapping_error() on TX\n");
2205 		ath_tx_return_buffer(sc, bf);
2206 		return NULL;
2207 	}
2208 
2209 	fi->bf = bf;
2210 
2211 	return bf;
2212 }
2213 
2214 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb)
2215 {
2216 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2217 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2218 	struct ieee80211_vif *vif = info->control.vif;
2219 	struct ath_vif *avp;
2220 
2221 	if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
2222 		return;
2223 
2224 	if (!vif)
2225 		return;
2226 
2227 	avp = (struct ath_vif *)vif->drv_priv;
2228 
2229 	if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2230 		avp->seq_no += 0x10;
2231 
2232 	hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2233 	hdr->seq_ctrl |= cpu_to_le16(avp->seq_no);
2234 }
2235 
2236 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2237 			  struct ath_tx_control *txctl)
2238 {
2239 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2240 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2241 	struct ieee80211_sta *sta = txctl->sta;
2242 	struct ieee80211_vif *vif = info->control.vif;
2243 	struct ath_vif *avp;
2244 	struct ath_softc *sc = hw->priv;
2245 	int frmlen = skb->len + FCS_LEN;
2246 	int padpos, padsize;
2247 
2248 	/* NOTE:  sta can be NULL according to net/mac80211.h */
2249 	if (sta)
2250 		txctl->an = (struct ath_node *)sta->drv_priv;
2251 	else if (vif && ieee80211_is_data(hdr->frame_control)) {
2252 		avp = (void *)vif->drv_priv;
2253 		txctl->an = &avp->mcast_node;
2254 	}
2255 
2256 	if (info->control.hw_key)
2257 		frmlen += info->control.hw_key->icv_len;
2258 
2259 	ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb);
2260 
2261 	if ((vif && vif->type != NL80211_IFTYPE_AP &&
2262 	            vif->type != NL80211_IFTYPE_AP_VLAN) ||
2263 	    !ieee80211_is_data(hdr->frame_control))
2264 		info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2265 
2266 	/* Add the padding after the header if this is not already done */
2267 	padpos = ieee80211_hdrlen(hdr->frame_control);
2268 	padsize = padpos & 3;
2269 	if (padsize && skb->len > padpos) {
2270 		if (skb_headroom(skb) < padsize)
2271 			return -ENOMEM;
2272 
2273 		skb_push(skb, padsize);
2274 		memmove(skb->data, skb->data + padsize, padpos);
2275 	}
2276 
2277 	setup_frame_info(hw, sta, skb, frmlen);
2278 	return 0;
2279 }
2280 
2281 
2282 /* Upon failure caller should free skb */
2283 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2284 		 struct ath_tx_control *txctl)
2285 {
2286 	struct ieee80211_hdr *hdr;
2287 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2288 	struct ieee80211_sta *sta = txctl->sta;
2289 	struct ieee80211_vif *vif = info->control.vif;
2290 	struct ath_frame_info *fi = get_frame_info(skb);
2291 	struct ath_vif *avp = NULL;
2292 	struct ath_softc *sc = hw->priv;
2293 	struct ath_txq *txq = txctl->txq;
2294 	struct ath_atx_tid *tid = NULL;
2295 	struct ath_node *an = NULL;
2296 	struct ath_buf *bf;
2297 	bool ps_resp;
2298 	int q, ret;
2299 
2300 	if (vif)
2301 		avp = (void *)vif->drv_priv;
2302 
2303 	ps_resp = !!(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE);
2304 
2305 	ret = ath_tx_prepare(hw, skb, txctl);
2306 	if (ret)
2307 	    return ret;
2308 
2309 	hdr = (struct ieee80211_hdr *) skb->data;
2310 	/*
2311 	 * At this point, the vif, hw_key and sta pointers in the tx control
2312 	 * info are no longer valid (overwritten by the ath_frame_info data.
2313 	 */
2314 
2315 	q = skb_get_queue_mapping(skb);
2316 
2317 	if (ps_resp)
2318 		txq = sc->tx.uapsdq;
2319 
2320 	if (txctl->sta) {
2321 		an = (struct ath_node *) sta->drv_priv;
2322 		tid = ath_get_skb_tid(sc, an, skb);
2323 	}
2324 
2325 	ath_txq_lock(sc, txq);
2326 	if (txq == sc->tx.txq_map[q]) {
2327 		fi->txq = q;
2328 		++txq->pending_frames;
2329 	}
2330 
2331 	bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2332 	if (!bf) {
2333 		ath_txq_skb_done(sc, txq, skb);
2334 		if (txctl->paprd)
2335 			dev_kfree_skb_any(skb);
2336 		else
2337 			ieee80211_free_txskb(sc->hw, skb);
2338 		goto out;
2339 	}
2340 
2341 	bf->bf_state.bfs_paprd = txctl->paprd;
2342 
2343 	if (txctl->paprd)
2344 		bf->bf_state.bfs_paprd_timestamp = jiffies;
2345 
2346 	ath_set_rates(vif, sta, bf);
2347 	ath_tx_send_normal(sc, txq, tid, skb);
2348 
2349 out:
2350 	ath_txq_unlock(sc, txq);
2351 
2352 	return 0;
2353 }
2354 
2355 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2356 		 struct sk_buff *skb)
2357 {
2358 	struct ath_softc *sc = hw->priv;
2359 	struct ath_tx_control txctl = {
2360 		.txq = sc->beacon.cabq
2361 	};
2362 	struct ath_tx_info info = {};
2363 	struct ieee80211_hdr *hdr;
2364 	struct ath_buf *bf_tail = NULL;
2365 	struct ath_buf *bf;
2366 	LIST_HEAD(bf_q);
2367 	int duration = 0;
2368 	int max_duration;
2369 
2370 	max_duration =
2371 		sc->cur_chan->beacon.beacon_interval * 1000 *
2372 		sc->cur_chan->beacon.dtim_period / ATH_BCBUF;
2373 
2374 	do {
2375 		struct ath_frame_info *fi = get_frame_info(skb);
2376 
2377 		if (ath_tx_prepare(hw, skb, &txctl))
2378 			break;
2379 
2380 		bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2381 		if (!bf)
2382 			break;
2383 
2384 		bf->bf_lastbf = bf;
2385 		ath_set_rates(vif, NULL, bf);
2386 		ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2387 		duration += info.rates[0].PktDuration;
2388 		if (bf_tail)
2389 			bf_tail->bf_next = bf;
2390 
2391 		list_add_tail(&bf->list, &bf_q);
2392 		bf_tail = bf;
2393 		skb = NULL;
2394 
2395 		if (duration > max_duration)
2396 			break;
2397 
2398 		skb = ieee80211_get_buffered_bc(hw, vif);
2399 	} while(skb);
2400 
2401 	if (skb)
2402 		ieee80211_free_txskb(hw, skb);
2403 
2404 	if (list_empty(&bf_q))
2405 		return;
2406 
2407 	bf = list_first_entry(&bf_q, struct ath_buf, list);
2408 	hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
2409 
2410 	if (hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_MOREDATA)) {
2411 		hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_MOREDATA);
2412 		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
2413 			sizeof(*hdr), DMA_TO_DEVICE);
2414 	}
2415 
2416 	ath_txq_lock(sc, txctl.txq);
2417 	ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2418 	ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2419 	TX_STAT_INC(txctl.txq->axq_qnum, queued);
2420 	ath_txq_unlock(sc, txctl.txq);
2421 }
2422 
2423 /*****************/
2424 /* TX Completion */
2425 /*****************/
2426 
2427 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2428 			    int tx_flags, struct ath_txq *txq,
2429 			    struct ieee80211_sta *sta)
2430 {
2431 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2432 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2433 	struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2434 	int padpos, padsize;
2435 	unsigned long flags;
2436 
2437 	ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2438 
2439 	if (sc->sc_ah->caldata)
2440 		set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
2441 
2442 	if (!(tx_flags & ATH_TX_ERROR)) {
2443 		if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
2444 			tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
2445 		else
2446 			tx_info->flags |= IEEE80211_TX_STAT_ACK;
2447 	}
2448 
2449 	if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
2450 		padpos = ieee80211_hdrlen(hdr->frame_control);
2451 		padsize = padpos & 3;
2452 		if (padsize && skb->len>padpos+padsize) {
2453 			/*
2454 			 * Remove MAC header padding before giving the frame back to
2455 			 * mac80211.
2456 			 */
2457 			memmove(skb->data + padsize, skb->data, padpos);
2458 			skb_pull(skb, padsize);
2459 		}
2460 	}
2461 
2462 	spin_lock_irqsave(&sc->sc_pm_lock, flags);
2463 	if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2464 		sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2465 		ath_dbg(common, PS,
2466 			"Going back to sleep after having received TX status (0x%lx)\n",
2467 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
2468 					PS_WAIT_FOR_CAB |
2469 					PS_WAIT_FOR_PSPOLL_DATA |
2470 					PS_WAIT_FOR_TX_ACK));
2471 	}
2472 	spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2473 
2474 	ath_txq_skb_done(sc, txq, skb);
2475 	tx_info->status.status_driver_data[0] = sta;
2476 	__skb_queue_tail(&txq->complete_q, skb);
2477 }
2478 
2479 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2480 				struct ath_txq *txq, struct list_head *bf_q,
2481 				struct ieee80211_sta *sta,
2482 				struct ath_tx_status *ts, int txok)
2483 {
2484 	struct sk_buff *skb = bf->bf_mpdu;
2485 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2486 	unsigned long flags;
2487 	int tx_flags = 0;
2488 
2489 	if (!txok)
2490 		tx_flags |= ATH_TX_ERROR;
2491 
2492 	if (ts->ts_status & ATH9K_TXERR_FILT)
2493 		tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2494 
2495 	dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2496 	bf->bf_buf_addr = 0;
2497 	if (sc->tx99_state)
2498 		goto skip_tx_complete;
2499 
2500 	if (bf->bf_state.bfs_paprd) {
2501 		if (time_after(jiffies,
2502 				bf->bf_state.bfs_paprd_timestamp +
2503 				msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2504 			dev_kfree_skb_any(skb);
2505 		else
2506 			complete(&sc->paprd_complete);
2507 	} else {
2508 		ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2509 		ath_tx_complete(sc, skb, tx_flags, txq, sta);
2510 	}
2511 skip_tx_complete:
2512 	/* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2513 	 * accidentally reference it later.
2514 	 */
2515 	bf->bf_mpdu = NULL;
2516 
2517 	/*
2518 	 * Return the list of ath_buf of this mpdu to free queue
2519 	 */
2520 	spin_lock_irqsave(&sc->tx.txbuflock, flags);
2521 	list_splice_tail_init(bf_q, &sc->tx.txbuf);
2522 	spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2523 }
2524 
2525 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2526 			     struct ath_tx_status *ts, int nframes, int nbad,
2527 			     int txok)
2528 {
2529 	struct sk_buff *skb = bf->bf_mpdu;
2530 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2531 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2532 	struct ieee80211_hw *hw = sc->hw;
2533 	struct ath_hw *ah = sc->sc_ah;
2534 	u8 i, tx_rateindex;
2535 
2536 	if (txok)
2537 		tx_info->status.ack_signal = ts->ts_rssi;
2538 
2539 	tx_rateindex = ts->ts_rateindex;
2540 	WARN_ON(tx_rateindex >= hw->max_rates);
2541 
2542 	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2543 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2544 
2545 		BUG_ON(nbad > nframes);
2546 	}
2547 	tx_info->status.ampdu_len = nframes;
2548 	tx_info->status.ampdu_ack_len = nframes - nbad;
2549 
2550 	if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2551 	    (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2552 		/*
2553 		 * If an underrun error is seen assume it as an excessive
2554 		 * retry only if max frame trigger level has been reached
2555 		 * (2 KB for single stream, and 4 KB for dual stream).
2556 		 * Adjust the long retry as if the frame was tried
2557 		 * hw->max_rate_tries times to affect how rate control updates
2558 		 * PER for the failed rate.
2559 		 * In case of congestion on the bus penalizing this type of
2560 		 * underruns should help hardware actually transmit new frames
2561 		 * successfully by eventually preferring slower rates.
2562 		 * This itself should also alleviate congestion on the bus.
2563 		 */
2564 		if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2565 		                             ATH9K_TX_DELIM_UNDERRUN)) &&
2566 		    ieee80211_is_data(hdr->frame_control) &&
2567 		    ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2568 			tx_info->status.rates[tx_rateindex].count =
2569 				hw->max_rate_tries;
2570 	}
2571 
2572 	for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2573 		tx_info->status.rates[i].count = 0;
2574 		tx_info->status.rates[i].idx = -1;
2575 	}
2576 
2577 	tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2578 }
2579 
2580 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2581 {
2582 	struct ath_hw *ah = sc->sc_ah;
2583 	struct ath_common *common = ath9k_hw_common(ah);
2584 	struct ath_buf *bf, *lastbf, *bf_held = NULL;
2585 	struct list_head bf_head;
2586 	struct ath_desc *ds;
2587 	struct ath_tx_status ts;
2588 	int status;
2589 
2590 	ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2591 		txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2592 		txq->axq_link);
2593 
2594 	ath_txq_lock(sc, txq);
2595 	for (;;) {
2596 		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2597 			break;
2598 
2599 		if (list_empty(&txq->axq_q)) {
2600 			txq->axq_link = NULL;
2601 			ath_txq_schedule(sc, txq);
2602 			break;
2603 		}
2604 		bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2605 
2606 		/*
2607 		 * There is a race condition that a BH gets scheduled
2608 		 * after sw writes TxE and before hw re-load the last
2609 		 * descriptor to get the newly chained one.
2610 		 * Software must keep the last DONE descriptor as a
2611 		 * holding descriptor - software does so by marking
2612 		 * it with the STALE flag.
2613 		 */
2614 		bf_held = NULL;
2615 		if (bf->bf_state.stale) {
2616 			bf_held = bf;
2617 			if (list_is_last(&bf_held->list, &txq->axq_q))
2618 				break;
2619 
2620 			bf = list_entry(bf_held->list.next, struct ath_buf,
2621 					list);
2622 		}
2623 
2624 		lastbf = bf->bf_lastbf;
2625 		ds = lastbf->bf_desc;
2626 
2627 		memset(&ts, 0, sizeof(ts));
2628 		status = ath9k_hw_txprocdesc(ah, ds, &ts);
2629 		if (status == -EINPROGRESS)
2630 			break;
2631 
2632 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2633 
2634 		/*
2635 		 * Remove ath_buf's of the same transmit unit from txq,
2636 		 * however leave the last descriptor back as the holding
2637 		 * descriptor for hw.
2638 		 */
2639 		lastbf->bf_state.stale = true;
2640 		INIT_LIST_HEAD(&bf_head);
2641 		if (!list_is_singular(&lastbf->list))
2642 			list_cut_position(&bf_head,
2643 				&txq->axq_q, lastbf->list.prev);
2644 
2645 		if (bf_held) {
2646 			list_del(&bf_held->list);
2647 			ath_tx_return_buffer(sc, bf_held);
2648 		}
2649 
2650 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2651 	}
2652 	ath_txq_unlock_complete(sc, txq);
2653 }
2654 
2655 void ath_tx_tasklet(struct ath_softc *sc)
2656 {
2657 	struct ath_hw *ah = sc->sc_ah;
2658 	u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2659 	int i;
2660 
2661 	rcu_read_lock();
2662 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2663 		if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2664 			ath_tx_processq(sc, &sc->tx.txq[i]);
2665 	}
2666 	rcu_read_unlock();
2667 }
2668 
2669 void ath_tx_edma_tasklet(struct ath_softc *sc)
2670 {
2671 	struct ath_tx_status ts;
2672 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2673 	struct ath_hw *ah = sc->sc_ah;
2674 	struct ath_txq *txq;
2675 	struct ath_buf *bf, *lastbf;
2676 	struct list_head bf_head;
2677 	struct list_head *fifo_list;
2678 	int status;
2679 
2680 	rcu_read_lock();
2681 	for (;;) {
2682 		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2683 			break;
2684 
2685 		status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2686 		if (status == -EINPROGRESS)
2687 			break;
2688 		if (status == -EIO) {
2689 			ath_dbg(common, XMIT, "Error processing tx status\n");
2690 			break;
2691 		}
2692 
2693 		/* Process beacon completions separately */
2694 		if (ts.qid == sc->beacon.beaconq) {
2695 			sc->beacon.tx_processed = true;
2696 			sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2697 
2698 			if (ath9k_is_chanctx_enabled()) {
2699 				ath_chanctx_event(sc, NULL,
2700 						  ATH_CHANCTX_EVENT_BEACON_SENT);
2701 			}
2702 
2703 			ath9k_csa_update(sc);
2704 			continue;
2705 		}
2706 
2707 		txq = &sc->tx.txq[ts.qid];
2708 
2709 		ath_txq_lock(sc, txq);
2710 
2711 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2712 
2713 		fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2714 		if (list_empty(fifo_list)) {
2715 			ath_txq_unlock(sc, txq);
2716 			break;
2717 		}
2718 
2719 		bf = list_first_entry(fifo_list, struct ath_buf, list);
2720 		if (bf->bf_state.stale) {
2721 			list_del(&bf->list);
2722 			ath_tx_return_buffer(sc, bf);
2723 			bf = list_first_entry(fifo_list, struct ath_buf, list);
2724 		}
2725 
2726 		lastbf = bf->bf_lastbf;
2727 
2728 		INIT_LIST_HEAD(&bf_head);
2729 		if (list_is_last(&lastbf->list, fifo_list)) {
2730 			list_splice_tail_init(fifo_list, &bf_head);
2731 			INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2732 
2733 			if (!list_empty(&txq->axq_q)) {
2734 				struct list_head bf_q;
2735 
2736 				INIT_LIST_HEAD(&bf_q);
2737 				txq->axq_link = NULL;
2738 				list_splice_tail_init(&txq->axq_q, &bf_q);
2739 				ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2740 			}
2741 		} else {
2742 			lastbf->bf_state.stale = true;
2743 			if (bf != lastbf)
2744 				list_cut_position(&bf_head, fifo_list,
2745 						  lastbf->list.prev);
2746 		}
2747 
2748 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2749 		ath_txq_unlock_complete(sc, txq);
2750 	}
2751 	rcu_read_unlock();
2752 }
2753 
2754 /*****************/
2755 /* Init, Cleanup */
2756 /*****************/
2757 
2758 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2759 {
2760 	struct ath_descdma *dd = &sc->txsdma;
2761 	u8 txs_len = sc->sc_ah->caps.txs_len;
2762 
2763 	dd->dd_desc_len = size * txs_len;
2764 	dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2765 					  &dd->dd_desc_paddr, GFP_KERNEL);
2766 	if (!dd->dd_desc)
2767 		return -ENOMEM;
2768 
2769 	return 0;
2770 }
2771 
2772 static int ath_tx_edma_init(struct ath_softc *sc)
2773 {
2774 	int err;
2775 
2776 	err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2777 	if (!err)
2778 		ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2779 					  sc->txsdma.dd_desc_paddr,
2780 					  ATH_TXSTATUS_RING_SIZE);
2781 
2782 	return err;
2783 }
2784 
2785 int ath_tx_init(struct ath_softc *sc, int nbufs)
2786 {
2787 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2788 	int error = 0;
2789 
2790 	spin_lock_init(&sc->tx.txbuflock);
2791 
2792 	error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2793 				  "tx", nbufs, 1, 1);
2794 	if (error != 0) {
2795 		ath_err(common,
2796 			"Failed to allocate tx descriptors: %d\n", error);
2797 		return error;
2798 	}
2799 
2800 	error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2801 				  "beacon", ATH_BCBUF, 1, 1);
2802 	if (error != 0) {
2803 		ath_err(common,
2804 			"Failed to allocate beacon descriptors: %d\n", error);
2805 		return error;
2806 	}
2807 
2808 	INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2809 
2810 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2811 		error = ath_tx_edma_init(sc);
2812 
2813 	return error;
2814 }
2815 
2816 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2817 {
2818 	struct ath_atx_tid *tid;
2819 	int tidno, acno;
2820 
2821 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
2822 		tid = ath_node_to_tid(an, tidno);
2823 		tid->an        = an;
2824 		tid->tidno     = tidno;
2825 		tid->seq_start = tid->seq_next = 0;
2826 		tid->baw_size  = WME_MAX_BA;
2827 		tid->baw_head  = tid->baw_tail = 0;
2828 		tid->active	   = false;
2829 		tid->clear_ps_filter = true;
2830 		tid->has_queued  = false;
2831 		__skb_queue_head_init(&tid->retry_q);
2832 		INIT_LIST_HEAD(&tid->list);
2833 		acno = TID_TO_WME_AC(tidno);
2834 		tid->txq = sc->tx.txq_map[acno];
2835 
2836 		if (!an->sta)
2837 			break; /* just one multicast ath_atx_tid */
2838 	}
2839 }
2840 
2841 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2842 {
2843 	struct ath_atx_tid *tid;
2844 	struct ath_txq *txq;
2845 	int tidno;
2846 
2847 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
2848 		tid = ath_node_to_tid(an, tidno);
2849 		txq = tid->txq;
2850 
2851 		ath_txq_lock(sc, txq);
2852 
2853 		if (!list_empty(&tid->list))
2854 			list_del_init(&tid->list);
2855 
2856 		ath_tid_drain(sc, txq, tid);
2857 		tid->active = false;
2858 
2859 		ath_txq_unlock(sc, txq);
2860 
2861 		if (!an->sta)
2862 			break; /* just one multicast ath_atx_tid */
2863 	}
2864 }
2865 
2866 #ifdef CONFIG_ATH9K_TX99
2867 
2868 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
2869 		    struct ath_tx_control *txctl)
2870 {
2871 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2872 	struct ath_frame_info *fi = get_frame_info(skb);
2873 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2874 	struct ath_buf *bf;
2875 	int padpos, padsize;
2876 
2877 	padpos = ieee80211_hdrlen(hdr->frame_control);
2878 	padsize = padpos & 3;
2879 
2880 	if (padsize && skb->len > padpos) {
2881 		if (skb_headroom(skb) < padsize) {
2882 			ath_dbg(common, XMIT,
2883 				"tx99 padding failed\n");
2884 			return -EINVAL;
2885 		}
2886 
2887 		skb_push(skb, padsize);
2888 		memmove(skb->data, skb->data + padsize, padpos);
2889 	}
2890 
2891 	fi->keyix = ATH9K_TXKEYIX_INVALID;
2892 	fi->framelen = skb->len + FCS_LEN;
2893 	fi->keytype = ATH9K_KEY_TYPE_CLEAR;
2894 
2895 	bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
2896 	if (!bf) {
2897 		ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
2898 		return -EINVAL;
2899 	}
2900 
2901 	ath_set_rates(sc->tx99_vif, NULL, bf);
2902 
2903 	ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
2904 	ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
2905 
2906 	ath_tx_send_normal(sc, txctl->txq, NULL, skb);
2907 
2908 	return 0;
2909 }
2910 
2911 #endif /* CONFIG_ATH9K_TX99 */
2912