xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/xmit.c (revision 609e478b)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20 
21 #define BITS_PER_BYTE           8
22 #define OFDM_PLCP_BITS          22
23 #define HT_RC_2_STREAMS(_rc)    ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF                   8
25 #define L_LTF                   8
26 #define L_SIG                   4
27 #define HT_SIG                  8
28 #define HT_STF                  4
29 #define HT_LTF(_ns)             (4 * (_ns))
30 #define SYMBOL_TIME(_ns)        ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5)  /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t)         ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t)  (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36 
37 
38 static u16 bits_per_symbol[][2] = {
39 	/* 20MHz 40MHz */
40 	{    26,   54 },     /*  0: BPSK */
41 	{    52,  108 },     /*  1: QPSK 1/2 */
42 	{    78,  162 },     /*  2: QPSK 3/4 */
43 	{   104,  216 },     /*  3: 16-QAM 1/2 */
44 	{   156,  324 },     /*  4: 16-QAM 3/4 */
45 	{   208,  432 },     /*  5: 64-QAM 2/3 */
46 	{   234,  486 },     /*  6: 64-QAM 3/4 */
47 	{   260,  540 },     /*  7: 64-QAM 5/6 */
48 };
49 
50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
51 			       struct ath_atx_tid *tid, struct sk_buff *skb);
52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
53 			    int tx_flags, struct ath_txq *txq);
54 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
55 				struct ath_txq *txq, struct list_head *bf_q,
56 				struct ath_tx_status *ts, int txok);
57 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
58 			     struct list_head *head, bool internal);
59 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
60 			     struct ath_tx_status *ts, int nframes, int nbad,
61 			     int txok);
62 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
63 			      int seqno);
64 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
65 					   struct ath_txq *txq,
66 					   struct ath_atx_tid *tid,
67 					   struct sk_buff *skb);
68 
69 enum {
70 	MCS_HT20,
71 	MCS_HT20_SGI,
72 	MCS_HT40,
73 	MCS_HT40_SGI,
74 };
75 
76 /*********************/
77 /* Aggregation logic */
78 /*********************/
79 
80 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
81 	__acquires(&txq->axq_lock)
82 {
83 	spin_lock_bh(&txq->axq_lock);
84 }
85 
86 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
87 	__releases(&txq->axq_lock)
88 {
89 	spin_unlock_bh(&txq->axq_lock);
90 }
91 
92 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
93 	__releases(&txq->axq_lock)
94 {
95 	struct sk_buff_head q;
96 	struct sk_buff *skb;
97 
98 	__skb_queue_head_init(&q);
99 	skb_queue_splice_init(&txq->complete_q, &q);
100 	spin_unlock_bh(&txq->axq_lock);
101 
102 	while ((skb = __skb_dequeue(&q)))
103 		ieee80211_tx_status(sc->hw, skb);
104 }
105 
106 static void ath_tx_queue_tid(struct ath_softc *sc, struct ath_txq *txq,
107 			     struct ath_atx_tid *tid)
108 {
109 	struct ath_atx_ac *ac = tid->ac;
110 	struct list_head *list;
111 	struct ath_vif *avp = (struct ath_vif *) tid->an->vif->drv_priv;
112 	struct ath_chanctx *ctx = avp->chanctx;
113 
114 	if (!ctx)
115 		return;
116 
117 	if (tid->sched)
118 		return;
119 
120 	tid->sched = true;
121 	list_add_tail(&tid->list, &ac->tid_q);
122 
123 	if (ac->sched)
124 		return;
125 
126 	ac->sched = true;
127 
128 	list = &ctx->acq[TID_TO_WME_AC(tid->tidno)];
129 	list_add_tail(&ac->list, list);
130 }
131 
132 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
133 {
134 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
135 	BUILD_BUG_ON(sizeof(struct ath_frame_info) >
136 		     sizeof(tx_info->rate_driver_data));
137 	return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
138 }
139 
140 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
141 {
142 	if (!tid->an->sta)
143 		return;
144 
145 	ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
146 			   seqno << IEEE80211_SEQ_SEQ_SHIFT);
147 }
148 
149 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
150 			  struct ath_buf *bf)
151 {
152 	ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
153 			       ARRAY_SIZE(bf->rates));
154 }
155 
156 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
157 			     struct sk_buff *skb)
158 {
159 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
160 	struct ath_frame_info *fi = get_frame_info(skb);
161 	int q = fi->txq;
162 
163 	if (q < 0)
164 		return;
165 
166 	txq = sc->tx.txq_map[q];
167 	if (WARN_ON(--txq->pending_frames < 0))
168 		txq->pending_frames = 0;
169 
170 	if (txq->stopped &&
171 	    txq->pending_frames < sc->tx.txq_max_pending[q]) {
172 		ieee80211_wake_queue(sc->hw, info->hw_queue);
173 		txq->stopped = false;
174 	}
175 }
176 
177 static struct ath_atx_tid *
178 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
179 {
180 	u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
181 	return ATH_AN_2_TID(an, tidno);
182 }
183 
184 static bool ath_tid_has_buffered(struct ath_atx_tid *tid)
185 {
186 	return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q);
187 }
188 
189 static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid)
190 {
191 	struct sk_buff *skb;
192 
193 	skb = __skb_dequeue(&tid->retry_q);
194 	if (!skb)
195 		skb = __skb_dequeue(&tid->buf_q);
196 
197 	return skb;
198 }
199 
200 /*
201  * ath_tx_tid_change_state:
202  * - clears a-mpdu flag of previous session
203  * - force sequence number allocation to fix next BlockAck Window
204  */
205 static void
206 ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid)
207 {
208 	struct ath_txq *txq = tid->ac->txq;
209 	struct ieee80211_tx_info *tx_info;
210 	struct sk_buff *skb, *tskb;
211 	struct ath_buf *bf;
212 	struct ath_frame_info *fi;
213 
214 	skb_queue_walk_safe(&tid->buf_q, skb, tskb) {
215 		fi = get_frame_info(skb);
216 		bf = fi->bf;
217 
218 		tx_info = IEEE80211_SKB_CB(skb);
219 		tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
220 
221 		if (bf)
222 			continue;
223 
224 		bf = ath_tx_setup_buffer(sc, txq, tid, skb);
225 		if (!bf) {
226 			__skb_unlink(skb, &tid->buf_q);
227 			ath_txq_skb_done(sc, txq, skb);
228 			ieee80211_free_txskb(sc->hw, skb);
229 			continue;
230 		}
231 	}
232 
233 }
234 
235 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
236 {
237 	struct ath_txq *txq = tid->ac->txq;
238 	struct sk_buff *skb;
239 	struct ath_buf *bf;
240 	struct list_head bf_head;
241 	struct ath_tx_status ts;
242 	struct ath_frame_info *fi;
243 	bool sendbar = false;
244 
245 	INIT_LIST_HEAD(&bf_head);
246 
247 	memset(&ts, 0, sizeof(ts));
248 
249 	while ((skb = __skb_dequeue(&tid->retry_q))) {
250 		fi = get_frame_info(skb);
251 		bf = fi->bf;
252 		if (!bf) {
253 			ath_txq_skb_done(sc, txq, skb);
254 			ieee80211_free_txskb(sc->hw, skb);
255 			continue;
256 		}
257 
258 		if (fi->baw_tracked) {
259 			ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
260 			sendbar = true;
261 		}
262 
263 		list_add_tail(&bf->list, &bf_head);
264 		ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
265 	}
266 
267 	if (sendbar) {
268 		ath_txq_unlock(sc, txq);
269 		ath_send_bar(tid, tid->seq_start);
270 		ath_txq_lock(sc, txq);
271 	}
272 }
273 
274 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
275 			      int seqno)
276 {
277 	int index, cindex;
278 
279 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
280 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
281 
282 	__clear_bit(cindex, tid->tx_buf);
283 
284 	while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
285 		INCR(tid->seq_start, IEEE80211_SEQ_MAX);
286 		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
287 		if (tid->bar_index >= 0)
288 			tid->bar_index--;
289 	}
290 }
291 
292 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
293 			     struct ath_buf *bf)
294 {
295 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
296 	u16 seqno = bf->bf_state.seqno;
297 	int index, cindex;
298 
299 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
300 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
301 	__set_bit(cindex, tid->tx_buf);
302 	fi->baw_tracked = 1;
303 
304 	if (index >= ((tid->baw_tail - tid->baw_head) &
305 		(ATH_TID_MAX_BUFS - 1))) {
306 		tid->baw_tail = cindex;
307 		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
308 	}
309 }
310 
311 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
312 			  struct ath_atx_tid *tid)
313 
314 {
315 	struct sk_buff *skb;
316 	struct ath_buf *bf;
317 	struct list_head bf_head;
318 	struct ath_tx_status ts;
319 	struct ath_frame_info *fi;
320 
321 	memset(&ts, 0, sizeof(ts));
322 	INIT_LIST_HEAD(&bf_head);
323 
324 	while ((skb = ath_tid_dequeue(tid))) {
325 		fi = get_frame_info(skb);
326 		bf = fi->bf;
327 
328 		if (!bf) {
329 			ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
330 			continue;
331 		}
332 
333 		list_add_tail(&bf->list, &bf_head);
334 		ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
335 	}
336 }
337 
338 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
339 			     struct sk_buff *skb, int count)
340 {
341 	struct ath_frame_info *fi = get_frame_info(skb);
342 	struct ath_buf *bf = fi->bf;
343 	struct ieee80211_hdr *hdr;
344 	int prev = fi->retries;
345 
346 	TX_STAT_INC(txq->axq_qnum, a_retries);
347 	fi->retries += count;
348 
349 	if (prev > 0)
350 		return;
351 
352 	hdr = (struct ieee80211_hdr *)skb->data;
353 	hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
354 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
355 		sizeof(*hdr), DMA_TO_DEVICE);
356 }
357 
358 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
359 {
360 	struct ath_buf *bf = NULL;
361 
362 	spin_lock_bh(&sc->tx.txbuflock);
363 
364 	if (unlikely(list_empty(&sc->tx.txbuf))) {
365 		spin_unlock_bh(&sc->tx.txbuflock);
366 		return NULL;
367 	}
368 
369 	bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
370 	list_del(&bf->list);
371 
372 	spin_unlock_bh(&sc->tx.txbuflock);
373 
374 	return bf;
375 }
376 
377 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
378 {
379 	spin_lock_bh(&sc->tx.txbuflock);
380 	list_add_tail(&bf->list, &sc->tx.txbuf);
381 	spin_unlock_bh(&sc->tx.txbuflock);
382 }
383 
384 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
385 {
386 	struct ath_buf *tbf;
387 
388 	tbf = ath_tx_get_buffer(sc);
389 	if (WARN_ON(!tbf))
390 		return NULL;
391 
392 	ATH_TXBUF_RESET(tbf);
393 
394 	tbf->bf_mpdu = bf->bf_mpdu;
395 	tbf->bf_buf_addr = bf->bf_buf_addr;
396 	memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
397 	tbf->bf_state = bf->bf_state;
398 	tbf->bf_state.stale = false;
399 
400 	return tbf;
401 }
402 
403 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
404 			        struct ath_tx_status *ts, int txok,
405 			        int *nframes, int *nbad)
406 {
407 	struct ath_frame_info *fi;
408 	u16 seq_st = 0;
409 	u32 ba[WME_BA_BMP_SIZE >> 5];
410 	int ba_index;
411 	int isaggr = 0;
412 
413 	*nbad = 0;
414 	*nframes = 0;
415 
416 	isaggr = bf_isaggr(bf);
417 	if (isaggr) {
418 		seq_st = ts->ts_seqnum;
419 		memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
420 	}
421 
422 	while (bf) {
423 		fi = get_frame_info(bf->bf_mpdu);
424 		ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
425 
426 		(*nframes)++;
427 		if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
428 			(*nbad)++;
429 
430 		bf = bf->bf_next;
431 	}
432 }
433 
434 
435 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
436 				 struct ath_buf *bf, struct list_head *bf_q,
437 				 struct ath_tx_status *ts, int txok)
438 {
439 	struct ath_node *an = NULL;
440 	struct sk_buff *skb;
441 	struct ieee80211_sta *sta;
442 	struct ieee80211_hw *hw = sc->hw;
443 	struct ieee80211_hdr *hdr;
444 	struct ieee80211_tx_info *tx_info;
445 	struct ath_atx_tid *tid = NULL;
446 	struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
447 	struct list_head bf_head;
448 	struct sk_buff_head bf_pending;
449 	u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
450 	u32 ba[WME_BA_BMP_SIZE >> 5];
451 	int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
452 	bool rc_update = true, isba;
453 	struct ieee80211_tx_rate rates[4];
454 	struct ath_frame_info *fi;
455 	int nframes;
456 	bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
457 	int i, retries;
458 	int bar_index = -1;
459 
460 	skb = bf->bf_mpdu;
461 	hdr = (struct ieee80211_hdr *)skb->data;
462 
463 	tx_info = IEEE80211_SKB_CB(skb);
464 
465 	memcpy(rates, bf->rates, sizeof(rates));
466 
467 	retries = ts->ts_longretry + 1;
468 	for (i = 0; i < ts->ts_rateindex; i++)
469 		retries += rates[i].count;
470 
471 	rcu_read_lock();
472 
473 	sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
474 	if (!sta) {
475 		rcu_read_unlock();
476 
477 		INIT_LIST_HEAD(&bf_head);
478 		while (bf) {
479 			bf_next = bf->bf_next;
480 
481 			if (!bf->bf_state.stale || bf_next != NULL)
482 				list_move_tail(&bf->list, &bf_head);
483 
484 			ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
485 
486 			bf = bf_next;
487 		}
488 		return;
489 	}
490 
491 	an = (struct ath_node *)sta->drv_priv;
492 	tid = ath_get_skb_tid(sc, an, skb);
493 	seq_first = tid->seq_start;
494 	isba = ts->ts_flags & ATH9K_TX_BA;
495 
496 	/*
497 	 * The hardware occasionally sends a tx status for the wrong TID.
498 	 * In this case, the BA status cannot be considered valid and all
499 	 * subframes need to be retransmitted
500 	 *
501 	 * Only BlockAcks have a TID and therefore normal Acks cannot be
502 	 * checked
503 	 */
504 	if (isba && tid->tidno != ts->tid)
505 		txok = false;
506 
507 	isaggr = bf_isaggr(bf);
508 	memset(ba, 0, WME_BA_BMP_SIZE >> 3);
509 
510 	if (isaggr && txok) {
511 		if (ts->ts_flags & ATH9K_TX_BA) {
512 			seq_st = ts->ts_seqnum;
513 			memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
514 		} else {
515 			/*
516 			 * AR5416 can become deaf/mute when BA
517 			 * issue happens. Chip needs to be reset.
518 			 * But AP code may have sychronization issues
519 			 * when perform internal reset in this routine.
520 			 * Only enable reset in STA mode for now.
521 			 */
522 			if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
523 				needreset = 1;
524 		}
525 	}
526 
527 	__skb_queue_head_init(&bf_pending);
528 
529 	ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
530 	while (bf) {
531 		u16 seqno = bf->bf_state.seqno;
532 
533 		txfail = txpending = sendbar = 0;
534 		bf_next = bf->bf_next;
535 
536 		skb = bf->bf_mpdu;
537 		tx_info = IEEE80211_SKB_CB(skb);
538 		fi = get_frame_info(skb);
539 
540 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
541 		    !tid->active) {
542 			/*
543 			 * Outside of the current BlockAck window,
544 			 * maybe part of a previous session
545 			 */
546 			txfail = 1;
547 		} else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
548 			/* transmit completion, subframe is
549 			 * acked by block ack */
550 			acked_cnt++;
551 		} else if (!isaggr && txok) {
552 			/* transmit completion */
553 			acked_cnt++;
554 		} else if (flush) {
555 			txpending = 1;
556 		} else if (fi->retries < ATH_MAX_SW_RETRIES) {
557 			if (txok || !an->sleeping)
558 				ath_tx_set_retry(sc, txq, bf->bf_mpdu,
559 						 retries);
560 
561 			txpending = 1;
562 		} else {
563 			txfail = 1;
564 			txfail_cnt++;
565 			bar_index = max_t(int, bar_index,
566 				ATH_BA_INDEX(seq_first, seqno));
567 		}
568 
569 		/*
570 		 * Make sure the last desc is reclaimed if it
571 		 * not a holding desc.
572 		 */
573 		INIT_LIST_HEAD(&bf_head);
574 		if (bf_next != NULL || !bf_last->bf_state.stale)
575 			list_move_tail(&bf->list, &bf_head);
576 
577 		if (!txpending) {
578 			/*
579 			 * complete the acked-ones/xretried ones; update
580 			 * block-ack window
581 			 */
582 			ath_tx_update_baw(sc, tid, seqno);
583 
584 			if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
585 				memcpy(tx_info->control.rates, rates, sizeof(rates));
586 				ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
587 				rc_update = false;
588 				if (bf == bf->bf_lastbf)
589 					ath_dynack_sample_tx_ts(sc->sc_ah,
590 								bf->bf_mpdu,
591 								ts);
592 			}
593 
594 			ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
595 				!txfail);
596 		} else {
597 			if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
598 				tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
599 				ieee80211_sta_eosp(sta);
600 			}
601 			/* retry the un-acked ones */
602 			if (bf->bf_next == NULL && bf_last->bf_state.stale) {
603 				struct ath_buf *tbf;
604 
605 				tbf = ath_clone_txbuf(sc, bf_last);
606 				/*
607 				 * Update tx baw and complete the
608 				 * frame with failed status if we
609 				 * run out of tx buf.
610 				 */
611 				if (!tbf) {
612 					ath_tx_update_baw(sc, tid, seqno);
613 
614 					ath_tx_complete_buf(sc, bf, txq,
615 							    &bf_head, ts, 0);
616 					bar_index = max_t(int, bar_index,
617 						ATH_BA_INDEX(seq_first, seqno));
618 					break;
619 				}
620 
621 				fi->bf = tbf;
622 			}
623 
624 			/*
625 			 * Put this buffer to the temporary pending
626 			 * queue to retain ordering
627 			 */
628 			__skb_queue_tail(&bf_pending, skb);
629 		}
630 
631 		bf = bf_next;
632 	}
633 
634 	/* prepend un-acked frames to the beginning of the pending frame queue */
635 	if (!skb_queue_empty(&bf_pending)) {
636 		if (an->sleeping)
637 			ieee80211_sta_set_buffered(sta, tid->tidno, true);
638 
639 		skb_queue_splice_tail(&bf_pending, &tid->retry_q);
640 		if (!an->sleeping) {
641 			ath_tx_queue_tid(sc, txq, tid);
642 
643 			if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
644 				tid->ac->clear_ps_filter = true;
645 		}
646 	}
647 
648 	if (bar_index >= 0) {
649 		u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
650 
651 		if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
652 			tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
653 
654 		ath_txq_unlock(sc, txq);
655 		ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
656 		ath_txq_lock(sc, txq);
657 	}
658 
659 	rcu_read_unlock();
660 
661 	if (needreset)
662 		ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
663 }
664 
665 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
666 {
667     struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
668     return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
669 }
670 
671 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
672 				  struct ath_tx_status *ts, struct ath_buf *bf,
673 				  struct list_head *bf_head)
674 {
675 	struct ieee80211_tx_info *info;
676 	bool txok, flush;
677 
678 	txok = !(ts->ts_status & ATH9K_TXERR_MASK);
679 	flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
680 	txq->axq_tx_inprogress = false;
681 
682 	txq->axq_depth--;
683 	if (bf_is_ampdu_not_probing(bf))
684 		txq->axq_ampdu_depth--;
685 
686 	ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc,
687 					     ts->ts_rateindex);
688 	if (!bf_isampdu(bf)) {
689 		if (!flush) {
690 			info = IEEE80211_SKB_CB(bf->bf_mpdu);
691 			memcpy(info->control.rates, bf->rates,
692 			       sizeof(info->control.rates));
693 			ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
694 			ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts);
695 		}
696 		ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
697 	} else
698 		ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
699 
700 	if (!flush)
701 		ath_txq_schedule(sc, txq);
702 }
703 
704 static bool ath_lookup_legacy(struct ath_buf *bf)
705 {
706 	struct sk_buff *skb;
707 	struct ieee80211_tx_info *tx_info;
708 	struct ieee80211_tx_rate *rates;
709 	int i;
710 
711 	skb = bf->bf_mpdu;
712 	tx_info = IEEE80211_SKB_CB(skb);
713 	rates = tx_info->control.rates;
714 
715 	for (i = 0; i < 4; i++) {
716 		if (!rates[i].count || rates[i].idx < 0)
717 			break;
718 
719 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
720 			return true;
721 	}
722 
723 	return false;
724 }
725 
726 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
727 			   struct ath_atx_tid *tid)
728 {
729 	struct sk_buff *skb;
730 	struct ieee80211_tx_info *tx_info;
731 	struct ieee80211_tx_rate *rates;
732 	u32 max_4ms_framelen, frmlen;
733 	u16 aggr_limit, bt_aggr_limit, legacy = 0;
734 	int q = tid->ac->txq->mac80211_qnum;
735 	int i;
736 
737 	skb = bf->bf_mpdu;
738 	tx_info = IEEE80211_SKB_CB(skb);
739 	rates = bf->rates;
740 
741 	/*
742 	 * Find the lowest frame length among the rate series that will have a
743 	 * 4ms (or TXOP limited) transmit duration.
744 	 */
745 	max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
746 
747 	for (i = 0; i < 4; i++) {
748 		int modeidx;
749 
750 		if (!rates[i].count)
751 			continue;
752 
753 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
754 			legacy = 1;
755 			break;
756 		}
757 
758 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
759 			modeidx = MCS_HT40;
760 		else
761 			modeidx = MCS_HT20;
762 
763 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
764 			modeidx++;
765 
766 		frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
767 		max_4ms_framelen = min(max_4ms_framelen, frmlen);
768 	}
769 
770 	/*
771 	 * limit aggregate size by the minimum rate if rate selected is
772 	 * not a probe rate, if rate selected is a probe rate then
773 	 * avoid aggregation of this packet.
774 	 */
775 	if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
776 		return 0;
777 
778 	aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
779 
780 	/*
781 	 * Override the default aggregation limit for BTCOEX.
782 	 */
783 	bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
784 	if (bt_aggr_limit)
785 		aggr_limit = bt_aggr_limit;
786 
787 	if (tid->an->maxampdu)
788 		aggr_limit = min(aggr_limit, tid->an->maxampdu);
789 
790 	return aggr_limit;
791 }
792 
793 /*
794  * Returns the number of delimiters to be added to
795  * meet the minimum required mpdudensity.
796  */
797 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
798 				  struct ath_buf *bf, u16 frmlen,
799 				  bool first_subfrm)
800 {
801 #define FIRST_DESC_NDELIMS 60
802 	u32 nsymbits, nsymbols;
803 	u16 minlen;
804 	u8 flags, rix;
805 	int width, streams, half_gi, ndelim, mindelim;
806 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
807 
808 	/* Select standard number of delimiters based on frame length alone */
809 	ndelim = ATH_AGGR_GET_NDELIM(frmlen);
810 
811 	/*
812 	 * If encryption enabled, hardware requires some more padding between
813 	 * subframes.
814 	 * TODO - this could be improved to be dependent on the rate.
815 	 *      The hardware can keep up at lower rates, but not higher rates
816 	 */
817 	if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
818 	    !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
819 		ndelim += ATH_AGGR_ENCRYPTDELIM;
820 
821 	/*
822 	 * Add delimiter when using RTS/CTS with aggregation
823 	 * and non enterprise AR9003 card
824 	 */
825 	if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
826 	    (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
827 		ndelim = max(ndelim, FIRST_DESC_NDELIMS);
828 
829 	/*
830 	 * Convert desired mpdu density from microeconds to bytes based
831 	 * on highest rate in rate series (i.e. first rate) to determine
832 	 * required minimum length for subframe. Take into account
833 	 * whether high rate is 20 or 40Mhz and half or full GI.
834 	 *
835 	 * If there is no mpdu density restriction, no further calculation
836 	 * is needed.
837 	 */
838 
839 	if (tid->an->mpdudensity == 0)
840 		return ndelim;
841 
842 	rix = bf->rates[0].idx;
843 	flags = bf->rates[0].flags;
844 	width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
845 	half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
846 
847 	if (half_gi)
848 		nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
849 	else
850 		nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
851 
852 	if (nsymbols == 0)
853 		nsymbols = 1;
854 
855 	streams = HT_RC_2_STREAMS(rix);
856 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
857 	minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
858 
859 	if (frmlen < minlen) {
860 		mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
861 		ndelim = max(mindelim, ndelim);
862 	}
863 
864 	return ndelim;
865 }
866 
867 static struct ath_buf *
868 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
869 			struct ath_atx_tid *tid, struct sk_buff_head **q)
870 {
871 	struct ieee80211_tx_info *tx_info;
872 	struct ath_frame_info *fi;
873 	struct sk_buff *skb;
874 	struct ath_buf *bf;
875 	u16 seqno;
876 
877 	while (1) {
878 		*q = &tid->retry_q;
879 		if (skb_queue_empty(*q))
880 			*q = &tid->buf_q;
881 
882 		skb = skb_peek(*q);
883 		if (!skb)
884 			break;
885 
886 		fi = get_frame_info(skb);
887 		bf = fi->bf;
888 		if (!fi->bf)
889 			bf = ath_tx_setup_buffer(sc, txq, tid, skb);
890 		else
891 			bf->bf_state.stale = false;
892 
893 		if (!bf) {
894 			__skb_unlink(skb, *q);
895 			ath_txq_skb_done(sc, txq, skb);
896 			ieee80211_free_txskb(sc->hw, skb);
897 			continue;
898 		}
899 
900 		bf->bf_next = NULL;
901 		bf->bf_lastbf = bf;
902 
903 		tx_info = IEEE80211_SKB_CB(skb);
904 		tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
905 
906 		/*
907 		 * No aggregation session is running, but there may be frames
908 		 * from a previous session or a failed attempt in the queue.
909 		 * Send them out as normal data frames
910 		 */
911 		if (!tid->active)
912 			tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
913 
914 		if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
915 			bf->bf_state.bf_type = 0;
916 			return bf;
917 		}
918 
919 		bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
920 		seqno = bf->bf_state.seqno;
921 
922 		/* do not step over block-ack window */
923 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno))
924 			break;
925 
926 		if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
927 			struct ath_tx_status ts = {};
928 			struct list_head bf_head;
929 
930 			INIT_LIST_HEAD(&bf_head);
931 			list_add(&bf->list, &bf_head);
932 			__skb_unlink(skb, *q);
933 			ath_tx_update_baw(sc, tid, seqno);
934 			ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
935 			continue;
936 		}
937 
938 		return bf;
939 	}
940 
941 	return NULL;
942 }
943 
944 static bool
945 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
946 		 struct ath_atx_tid *tid, struct list_head *bf_q,
947 		 struct ath_buf *bf_first, struct sk_buff_head *tid_q,
948 		 int *aggr_len)
949 {
950 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
951 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
952 	int nframes = 0, ndelim;
953 	u16 aggr_limit = 0, al = 0, bpad = 0,
954 	    al_delta, h_baw = tid->baw_size / 2;
955 	struct ieee80211_tx_info *tx_info;
956 	struct ath_frame_info *fi;
957 	struct sk_buff *skb;
958 	bool closed = false;
959 
960 	bf = bf_first;
961 	aggr_limit = ath_lookup_rate(sc, bf, tid);
962 
963 	do {
964 		skb = bf->bf_mpdu;
965 		fi = get_frame_info(skb);
966 
967 		/* do not exceed aggregation limit */
968 		al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
969 		if (nframes) {
970 			if (aggr_limit < al + bpad + al_delta ||
971 			    ath_lookup_legacy(bf) || nframes >= h_baw)
972 				break;
973 
974 			tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
975 			if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
976 			    !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
977 				break;
978 		}
979 
980 		/* add padding for previous frame to aggregation length */
981 		al += bpad + al_delta;
982 
983 		/*
984 		 * Get the delimiters needed to meet the MPDU
985 		 * density for this node.
986 		 */
987 		ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
988 						!nframes);
989 		bpad = PADBYTES(al_delta) + (ndelim << 2);
990 
991 		nframes++;
992 		bf->bf_next = NULL;
993 
994 		/* link buffers of this frame to the aggregate */
995 		if (!fi->baw_tracked)
996 			ath_tx_addto_baw(sc, tid, bf);
997 		bf->bf_state.ndelim = ndelim;
998 
999 		__skb_unlink(skb, tid_q);
1000 		list_add_tail(&bf->list, bf_q);
1001 		if (bf_prev)
1002 			bf_prev->bf_next = bf;
1003 
1004 		bf_prev = bf;
1005 
1006 		bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1007 		if (!bf) {
1008 			closed = true;
1009 			break;
1010 		}
1011 	} while (ath_tid_has_buffered(tid));
1012 
1013 	bf = bf_first;
1014 	bf->bf_lastbf = bf_prev;
1015 
1016 	if (bf == bf_prev) {
1017 		al = get_frame_info(bf->bf_mpdu)->framelen;
1018 		bf->bf_state.bf_type = BUF_AMPDU;
1019 	} else {
1020 		TX_STAT_INC(txq->axq_qnum, a_aggr);
1021 	}
1022 
1023 	*aggr_len = al;
1024 
1025 	return closed;
1026 #undef PADBYTES
1027 }
1028 
1029 /*
1030  * rix - rate index
1031  * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1032  * width  - 0 for 20 MHz, 1 for 40 MHz
1033  * half_gi - to use 4us v/s 3.6 us for symbol time
1034  */
1035 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1036 			    int width, int half_gi, bool shortPreamble)
1037 {
1038 	u32 nbits, nsymbits, duration, nsymbols;
1039 	int streams;
1040 
1041 	/* find number of symbols: PLCP + data */
1042 	streams = HT_RC_2_STREAMS(rix);
1043 	nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1044 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
1045 	nsymbols = (nbits + nsymbits - 1) / nsymbits;
1046 
1047 	if (!half_gi)
1048 		duration = SYMBOL_TIME(nsymbols);
1049 	else
1050 		duration = SYMBOL_TIME_HALFGI(nsymbols);
1051 
1052 	/* addup duration for legacy/ht training and signal fields */
1053 	duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1054 
1055 	return duration;
1056 }
1057 
1058 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1059 {
1060 	int streams = HT_RC_2_STREAMS(mcs);
1061 	int symbols, bits;
1062 	int bytes = 0;
1063 
1064 	usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1065 	symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1066 	bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1067 	bits -= OFDM_PLCP_BITS;
1068 	bytes = bits / 8;
1069 	if (bytes > 65532)
1070 		bytes = 65532;
1071 
1072 	return bytes;
1073 }
1074 
1075 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1076 {
1077 	u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1078 	int mcs;
1079 
1080 	/* 4ms is the default (and maximum) duration */
1081 	if (!txop || txop > 4096)
1082 		txop = 4096;
1083 
1084 	cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1085 	cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1086 	cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1087 	cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1088 	for (mcs = 0; mcs < 32; mcs++) {
1089 		cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1090 		cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1091 		cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1092 		cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1093 	}
1094 }
1095 
1096 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1097 			     struct ath_tx_info *info, int len, bool rts)
1098 {
1099 	struct ath_hw *ah = sc->sc_ah;
1100 	struct ath_common *common = ath9k_hw_common(ah);
1101 	struct sk_buff *skb;
1102 	struct ieee80211_tx_info *tx_info;
1103 	struct ieee80211_tx_rate *rates;
1104 	const struct ieee80211_rate *rate;
1105 	struct ieee80211_hdr *hdr;
1106 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1107 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1108 	int i;
1109 	u8 rix = 0;
1110 
1111 	skb = bf->bf_mpdu;
1112 	tx_info = IEEE80211_SKB_CB(skb);
1113 	rates = bf->rates;
1114 	hdr = (struct ieee80211_hdr *)skb->data;
1115 
1116 	/* set dur_update_en for l-sig computation except for PS-Poll frames */
1117 	info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1118 	info->rtscts_rate = fi->rtscts_rate;
1119 
1120 	for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1121 		bool is_40, is_sgi, is_sp;
1122 		int phy;
1123 
1124 		if (!rates[i].count || (rates[i].idx < 0))
1125 			continue;
1126 
1127 		rix = rates[i].idx;
1128 		info->rates[i].Tries = rates[i].count;
1129 
1130 		/*
1131 		 * Handle RTS threshold for unaggregated HT frames.
1132 		 */
1133 		if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1134 		    (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1135 		    unlikely(rts_thresh != (u32) -1)) {
1136 			if (!rts_thresh || (len > rts_thresh))
1137 				rts = true;
1138 		}
1139 
1140 		if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1141 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1142 			info->flags |= ATH9K_TXDESC_RTSENA;
1143 		} else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1144 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1145 			info->flags |= ATH9K_TXDESC_CTSENA;
1146 		}
1147 
1148 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1149 			info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1150 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1151 			info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1152 
1153 		is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1154 		is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1155 		is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1156 
1157 		if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1158 			/* MCS rates */
1159 			info->rates[i].Rate = rix | 0x80;
1160 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1161 					ah->txchainmask, info->rates[i].Rate);
1162 			info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1163 				 is_40, is_sgi, is_sp);
1164 			if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1165 				info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1166 			continue;
1167 		}
1168 
1169 		/* legacy rates */
1170 		rate = &common->sbands[tx_info->band].bitrates[rates[i].idx];
1171 		if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1172 		    !(rate->flags & IEEE80211_RATE_ERP_G))
1173 			phy = WLAN_RC_PHY_CCK;
1174 		else
1175 			phy = WLAN_RC_PHY_OFDM;
1176 
1177 		info->rates[i].Rate = rate->hw_value;
1178 		if (rate->hw_value_short) {
1179 			if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1180 				info->rates[i].Rate |= rate->hw_value_short;
1181 		} else {
1182 			is_sp = false;
1183 		}
1184 
1185 		if (bf->bf_state.bfs_paprd)
1186 			info->rates[i].ChSel = ah->txchainmask;
1187 		else
1188 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1189 					ah->txchainmask, info->rates[i].Rate);
1190 
1191 		info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1192 			phy, rate->bitrate * 100, len, rix, is_sp);
1193 	}
1194 
1195 	/* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1196 	if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1197 		info->flags &= ~ATH9K_TXDESC_RTSENA;
1198 
1199 	/* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1200 	if (info->flags & ATH9K_TXDESC_RTSENA)
1201 		info->flags &= ~ATH9K_TXDESC_CTSENA;
1202 }
1203 
1204 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1205 {
1206 	struct ieee80211_hdr *hdr;
1207 	enum ath9k_pkt_type htype;
1208 	__le16 fc;
1209 
1210 	hdr = (struct ieee80211_hdr *)skb->data;
1211 	fc = hdr->frame_control;
1212 
1213 	if (ieee80211_is_beacon(fc))
1214 		htype = ATH9K_PKT_TYPE_BEACON;
1215 	else if (ieee80211_is_probe_resp(fc))
1216 		htype = ATH9K_PKT_TYPE_PROBE_RESP;
1217 	else if (ieee80211_is_atim(fc))
1218 		htype = ATH9K_PKT_TYPE_ATIM;
1219 	else if (ieee80211_is_pspoll(fc))
1220 		htype = ATH9K_PKT_TYPE_PSPOLL;
1221 	else
1222 		htype = ATH9K_PKT_TYPE_NORMAL;
1223 
1224 	return htype;
1225 }
1226 
1227 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1228 			     struct ath_txq *txq, int len)
1229 {
1230 	struct ath_hw *ah = sc->sc_ah;
1231 	struct ath_buf *bf_first = NULL;
1232 	struct ath_tx_info info;
1233 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1234 	bool rts = false;
1235 
1236 	memset(&info, 0, sizeof(info));
1237 	info.is_first = true;
1238 	info.is_last = true;
1239 	info.txpower = MAX_RATE_POWER;
1240 	info.qcu = txq->axq_qnum;
1241 
1242 	while (bf) {
1243 		struct sk_buff *skb = bf->bf_mpdu;
1244 		struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1245 		struct ath_frame_info *fi = get_frame_info(skb);
1246 		bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1247 
1248 		info.type = get_hw_packet_type(skb);
1249 		if (bf->bf_next)
1250 			info.link = bf->bf_next->bf_daddr;
1251 		else
1252 			info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
1253 
1254 		if (!bf_first) {
1255 			bf_first = bf;
1256 
1257 			if (!sc->tx99_state)
1258 				info.flags = ATH9K_TXDESC_INTREQ;
1259 			if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1260 			    txq == sc->tx.uapsdq)
1261 				info.flags |= ATH9K_TXDESC_CLRDMASK;
1262 
1263 			if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1264 				info.flags |= ATH9K_TXDESC_NOACK;
1265 			if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1266 				info.flags |= ATH9K_TXDESC_LDPC;
1267 
1268 			if (bf->bf_state.bfs_paprd)
1269 				info.flags |= (u32) bf->bf_state.bfs_paprd <<
1270 					      ATH9K_TXDESC_PAPRD_S;
1271 
1272 			/*
1273 			 * mac80211 doesn't handle RTS threshold for HT because
1274 			 * the decision has to be taken based on AMPDU length
1275 			 * and aggregation is done entirely inside ath9k.
1276 			 * Set the RTS/CTS flag for the first subframe based
1277 			 * on the threshold.
1278 			 */
1279 			if (aggr && (bf == bf_first) &&
1280 			    unlikely(rts_thresh != (u32) -1)) {
1281 				/*
1282 				 * "len" is the size of the entire AMPDU.
1283 				 */
1284 				if (!rts_thresh || (len > rts_thresh))
1285 					rts = true;
1286 			}
1287 
1288 			if (!aggr)
1289 				len = fi->framelen;
1290 
1291 			ath_buf_set_rate(sc, bf, &info, len, rts);
1292 		}
1293 
1294 		info.buf_addr[0] = bf->bf_buf_addr;
1295 		info.buf_len[0] = skb->len;
1296 		info.pkt_len = fi->framelen;
1297 		info.keyix = fi->keyix;
1298 		info.keytype = fi->keytype;
1299 
1300 		if (aggr) {
1301 			if (bf == bf_first)
1302 				info.aggr = AGGR_BUF_FIRST;
1303 			else if (bf == bf_first->bf_lastbf)
1304 				info.aggr = AGGR_BUF_LAST;
1305 			else
1306 				info.aggr = AGGR_BUF_MIDDLE;
1307 
1308 			info.ndelim = bf->bf_state.ndelim;
1309 			info.aggr_len = len;
1310 		}
1311 
1312 		if (bf == bf_first->bf_lastbf)
1313 			bf_first = NULL;
1314 
1315 		ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1316 		bf = bf->bf_next;
1317 	}
1318 }
1319 
1320 static void
1321 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1322 		  struct ath_atx_tid *tid, struct list_head *bf_q,
1323 		  struct ath_buf *bf_first, struct sk_buff_head *tid_q)
1324 {
1325 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
1326 	struct sk_buff *skb;
1327 	int nframes = 0;
1328 
1329 	do {
1330 		struct ieee80211_tx_info *tx_info;
1331 		skb = bf->bf_mpdu;
1332 
1333 		nframes++;
1334 		__skb_unlink(skb, tid_q);
1335 		list_add_tail(&bf->list, bf_q);
1336 		if (bf_prev)
1337 			bf_prev->bf_next = bf;
1338 		bf_prev = bf;
1339 
1340 		if (nframes >= 2)
1341 			break;
1342 
1343 		bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1344 		if (!bf)
1345 			break;
1346 
1347 		tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1348 		if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
1349 			break;
1350 
1351 		ath_set_rates(tid->an->vif, tid->an->sta, bf);
1352 	} while (1);
1353 }
1354 
1355 static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1356 			      struct ath_atx_tid *tid, bool *stop)
1357 {
1358 	struct ath_buf *bf;
1359 	struct ieee80211_tx_info *tx_info;
1360 	struct sk_buff_head *tid_q;
1361 	struct list_head bf_q;
1362 	int aggr_len = 0;
1363 	bool aggr, last = true;
1364 
1365 	if (!ath_tid_has_buffered(tid))
1366 		return false;
1367 
1368 	INIT_LIST_HEAD(&bf_q);
1369 
1370 	bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1371 	if (!bf)
1372 		return false;
1373 
1374 	tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1375 	aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1376 	if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1377 		(!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1378 		*stop = true;
1379 		return false;
1380 	}
1381 
1382 	ath_set_rates(tid->an->vif, tid->an->sta, bf);
1383 	if (aggr)
1384 		last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf,
1385 					tid_q, &aggr_len);
1386 	else
1387 		ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q);
1388 
1389 	if (list_empty(&bf_q))
1390 		return false;
1391 
1392 	if (tid->ac->clear_ps_filter || tid->an->no_ps_filter) {
1393 		tid->ac->clear_ps_filter = false;
1394 		tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1395 	}
1396 
1397 	ath_tx_fill_desc(sc, bf, txq, aggr_len);
1398 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1399 	return true;
1400 }
1401 
1402 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1403 		      u16 tid, u16 *ssn)
1404 {
1405 	struct ath_atx_tid *txtid;
1406 	struct ath_txq *txq;
1407 	struct ath_node *an;
1408 	u8 density;
1409 
1410 	an = (struct ath_node *)sta->drv_priv;
1411 	txtid = ATH_AN_2_TID(an, tid);
1412 	txq = txtid->ac->txq;
1413 
1414 	ath_txq_lock(sc, txq);
1415 
1416 	/* update ampdu factor/density, they may have changed. This may happen
1417 	 * in HT IBSS when a beacon with HT-info is received after the station
1418 	 * has already been added.
1419 	 */
1420 	if (sta->ht_cap.ht_supported) {
1421 		an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1422 				      sta->ht_cap.ampdu_factor)) - 1;
1423 		density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1424 		an->mpdudensity = density;
1425 	}
1426 
1427 	/* force sequence number allocation for pending frames */
1428 	ath_tx_tid_change_state(sc, txtid);
1429 
1430 	txtid->active = true;
1431 	*ssn = txtid->seq_start = txtid->seq_next;
1432 	txtid->bar_index = -1;
1433 
1434 	memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1435 	txtid->baw_head = txtid->baw_tail = 0;
1436 
1437 	ath_txq_unlock_complete(sc, txq);
1438 
1439 	return 0;
1440 }
1441 
1442 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1443 {
1444 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1445 	struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1446 	struct ath_txq *txq = txtid->ac->txq;
1447 
1448 	ath_txq_lock(sc, txq);
1449 	txtid->active = false;
1450 	ath_tx_flush_tid(sc, txtid);
1451 	ath_tx_tid_change_state(sc, txtid);
1452 	ath_txq_unlock_complete(sc, txq);
1453 }
1454 
1455 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1456 		       struct ath_node *an)
1457 {
1458 	struct ath_atx_tid *tid;
1459 	struct ath_atx_ac *ac;
1460 	struct ath_txq *txq;
1461 	bool buffered;
1462 	int tidno;
1463 
1464 	for (tidno = 0, tid = &an->tid[tidno];
1465 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1466 
1467 		ac = tid->ac;
1468 		txq = ac->txq;
1469 
1470 		ath_txq_lock(sc, txq);
1471 
1472 		if (!tid->sched) {
1473 			ath_txq_unlock(sc, txq);
1474 			continue;
1475 		}
1476 
1477 		buffered = ath_tid_has_buffered(tid);
1478 
1479 		tid->sched = false;
1480 		list_del(&tid->list);
1481 
1482 		if (ac->sched) {
1483 			ac->sched = false;
1484 			list_del(&ac->list);
1485 		}
1486 
1487 		ath_txq_unlock(sc, txq);
1488 
1489 		ieee80211_sta_set_buffered(sta, tidno, buffered);
1490 	}
1491 }
1492 
1493 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1494 {
1495 	struct ath_atx_tid *tid;
1496 	struct ath_atx_ac *ac;
1497 	struct ath_txq *txq;
1498 	int tidno;
1499 
1500 	for (tidno = 0, tid = &an->tid[tidno];
1501 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1502 
1503 		ac = tid->ac;
1504 		txq = ac->txq;
1505 
1506 		ath_txq_lock(sc, txq);
1507 		ac->clear_ps_filter = true;
1508 
1509 		if (ath_tid_has_buffered(tid)) {
1510 			ath_tx_queue_tid(sc, txq, tid);
1511 			ath_txq_schedule(sc, txq);
1512 		}
1513 
1514 		ath_txq_unlock_complete(sc, txq);
1515 	}
1516 }
1517 
1518 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
1519 			u16 tidno)
1520 {
1521 	struct ath_atx_tid *tid;
1522 	struct ath_node *an;
1523 	struct ath_txq *txq;
1524 
1525 	an = (struct ath_node *)sta->drv_priv;
1526 	tid = ATH_AN_2_TID(an, tidno);
1527 	txq = tid->ac->txq;
1528 
1529 	ath_txq_lock(sc, txq);
1530 
1531 	tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1532 
1533 	if (ath_tid_has_buffered(tid)) {
1534 		ath_tx_queue_tid(sc, txq, tid);
1535 		ath_txq_schedule(sc, txq);
1536 	}
1537 
1538 	ath_txq_unlock_complete(sc, txq);
1539 }
1540 
1541 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1542 				   struct ieee80211_sta *sta,
1543 				   u16 tids, int nframes,
1544 				   enum ieee80211_frame_release_type reason,
1545 				   bool more_data)
1546 {
1547 	struct ath_softc *sc = hw->priv;
1548 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1549 	struct ath_txq *txq = sc->tx.uapsdq;
1550 	struct ieee80211_tx_info *info;
1551 	struct list_head bf_q;
1552 	struct ath_buf *bf_tail = NULL, *bf;
1553 	struct sk_buff_head *tid_q;
1554 	int sent = 0;
1555 	int i;
1556 
1557 	INIT_LIST_HEAD(&bf_q);
1558 	for (i = 0; tids && nframes; i++, tids >>= 1) {
1559 		struct ath_atx_tid *tid;
1560 
1561 		if (!(tids & 1))
1562 			continue;
1563 
1564 		tid = ATH_AN_2_TID(an, i);
1565 
1566 		ath_txq_lock(sc, tid->ac->txq);
1567 		while (nframes > 0) {
1568 			bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q);
1569 			if (!bf)
1570 				break;
1571 
1572 			__skb_unlink(bf->bf_mpdu, tid_q);
1573 			list_add_tail(&bf->list, &bf_q);
1574 			ath_set_rates(tid->an->vif, tid->an->sta, bf);
1575 			if (bf_isampdu(bf)) {
1576 				ath_tx_addto_baw(sc, tid, bf);
1577 				bf->bf_state.bf_type &= ~BUF_AGGR;
1578 			}
1579 			if (bf_tail)
1580 				bf_tail->bf_next = bf;
1581 
1582 			bf_tail = bf;
1583 			nframes--;
1584 			sent++;
1585 			TX_STAT_INC(txq->axq_qnum, a_queued_hw);
1586 
1587 			if (an->sta && !ath_tid_has_buffered(tid))
1588 				ieee80211_sta_set_buffered(an->sta, i, false);
1589 		}
1590 		ath_txq_unlock_complete(sc, tid->ac->txq);
1591 	}
1592 
1593 	if (list_empty(&bf_q))
1594 		return;
1595 
1596 	info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1597 	info->flags |= IEEE80211_TX_STATUS_EOSP;
1598 
1599 	bf = list_first_entry(&bf_q, struct ath_buf, list);
1600 	ath_txq_lock(sc, txq);
1601 	ath_tx_fill_desc(sc, bf, txq, 0);
1602 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1603 	ath_txq_unlock(sc, txq);
1604 }
1605 
1606 /********************/
1607 /* Queue Management */
1608 /********************/
1609 
1610 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1611 {
1612 	struct ath_hw *ah = sc->sc_ah;
1613 	struct ath9k_tx_queue_info qi;
1614 	static const int subtype_txq_to_hwq[] = {
1615 		[IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1616 		[IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1617 		[IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1618 		[IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1619 	};
1620 	int axq_qnum, i;
1621 
1622 	memset(&qi, 0, sizeof(qi));
1623 	qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1624 	qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1625 	qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1626 	qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1627 	qi.tqi_physCompBuf = 0;
1628 
1629 	/*
1630 	 * Enable interrupts only for EOL and DESC conditions.
1631 	 * We mark tx descriptors to receive a DESC interrupt
1632 	 * when a tx queue gets deep; otherwise waiting for the
1633 	 * EOL to reap descriptors.  Note that this is done to
1634 	 * reduce interrupt load and this only defers reaping
1635 	 * descriptors, never transmitting frames.  Aside from
1636 	 * reducing interrupts this also permits more concurrency.
1637 	 * The only potential downside is if the tx queue backs
1638 	 * up in which case the top half of the kernel may backup
1639 	 * due to a lack of tx descriptors.
1640 	 *
1641 	 * The UAPSD queue is an exception, since we take a desc-
1642 	 * based intr on the EOSP frames.
1643 	 */
1644 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1645 		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1646 	} else {
1647 		if (qtype == ATH9K_TX_QUEUE_UAPSD)
1648 			qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1649 		else
1650 			qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1651 					TXQ_FLAG_TXDESCINT_ENABLE;
1652 	}
1653 	axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1654 	if (axq_qnum == -1) {
1655 		/*
1656 		 * NB: don't print a message, this happens
1657 		 * normally on parts with too few tx queues
1658 		 */
1659 		return NULL;
1660 	}
1661 	if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1662 		struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1663 
1664 		txq->axq_qnum = axq_qnum;
1665 		txq->mac80211_qnum = -1;
1666 		txq->axq_link = NULL;
1667 		__skb_queue_head_init(&txq->complete_q);
1668 		INIT_LIST_HEAD(&txq->axq_q);
1669 		spin_lock_init(&txq->axq_lock);
1670 		txq->axq_depth = 0;
1671 		txq->axq_ampdu_depth = 0;
1672 		txq->axq_tx_inprogress = false;
1673 		sc->tx.txqsetup |= 1<<axq_qnum;
1674 
1675 		txq->txq_headidx = txq->txq_tailidx = 0;
1676 		for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1677 			INIT_LIST_HEAD(&txq->txq_fifo[i]);
1678 	}
1679 	return &sc->tx.txq[axq_qnum];
1680 }
1681 
1682 int ath_txq_update(struct ath_softc *sc, int qnum,
1683 		   struct ath9k_tx_queue_info *qinfo)
1684 {
1685 	struct ath_hw *ah = sc->sc_ah;
1686 	int error = 0;
1687 	struct ath9k_tx_queue_info qi;
1688 
1689 	BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1690 
1691 	ath9k_hw_get_txq_props(ah, qnum, &qi);
1692 	qi.tqi_aifs = qinfo->tqi_aifs;
1693 	qi.tqi_cwmin = qinfo->tqi_cwmin;
1694 	qi.tqi_cwmax = qinfo->tqi_cwmax;
1695 	qi.tqi_burstTime = qinfo->tqi_burstTime;
1696 	qi.tqi_readyTime = qinfo->tqi_readyTime;
1697 
1698 	if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1699 		ath_err(ath9k_hw_common(sc->sc_ah),
1700 			"Unable to update hardware queue %u!\n", qnum);
1701 		error = -EIO;
1702 	} else {
1703 		ath9k_hw_resettxqueue(ah, qnum);
1704 	}
1705 
1706 	return error;
1707 }
1708 
1709 int ath_cabq_update(struct ath_softc *sc)
1710 {
1711 	struct ath9k_tx_queue_info qi;
1712 	struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon;
1713 	int qnum = sc->beacon.cabq->axq_qnum;
1714 
1715 	ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1716 
1717 	qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) *
1718 			    ATH_CABQ_READY_TIME) / 100;
1719 	ath_txq_update(sc, qnum, &qi);
1720 
1721 	return 0;
1722 }
1723 
1724 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1725 			       struct list_head *list)
1726 {
1727 	struct ath_buf *bf, *lastbf;
1728 	struct list_head bf_head;
1729 	struct ath_tx_status ts;
1730 
1731 	memset(&ts, 0, sizeof(ts));
1732 	ts.ts_status = ATH9K_TX_FLUSH;
1733 	INIT_LIST_HEAD(&bf_head);
1734 
1735 	while (!list_empty(list)) {
1736 		bf = list_first_entry(list, struct ath_buf, list);
1737 
1738 		if (bf->bf_state.stale) {
1739 			list_del(&bf->list);
1740 
1741 			ath_tx_return_buffer(sc, bf);
1742 			continue;
1743 		}
1744 
1745 		lastbf = bf->bf_lastbf;
1746 		list_cut_position(&bf_head, list, &lastbf->list);
1747 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1748 	}
1749 }
1750 
1751 /*
1752  * Drain a given TX queue (could be Beacon or Data)
1753  *
1754  * This assumes output has been stopped and
1755  * we do not need to block ath_tx_tasklet.
1756  */
1757 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1758 {
1759 	ath_txq_lock(sc, txq);
1760 
1761 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1762 		int idx = txq->txq_tailidx;
1763 
1764 		while (!list_empty(&txq->txq_fifo[idx])) {
1765 			ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1766 
1767 			INCR(idx, ATH_TXFIFO_DEPTH);
1768 		}
1769 		txq->txq_tailidx = idx;
1770 	}
1771 
1772 	txq->axq_link = NULL;
1773 	txq->axq_tx_inprogress = false;
1774 	ath_drain_txq_list(sc, txq, &txq->axq_q);
1775 
1776 	ath_txq_unlock_complete(sc, txq);
1777 }
1778 
1779 bool ath_drain_all_txq(struct ath_softc *sc)
1780 {
1781 	struct ath_hw *ah = sc->sc_ah;
1782 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1783 	struct ath_txq *txq;
1784 	int i;
1785 	u32 npend = 0;
1786 
1787 	if (test_bit(ATH_OP_INVALID, &common->op_flags))
1788 		return true;
1789 
1790 	ath9k_hw_abort_tx_dma(ah);
1791 
1792 	/* Check if any queue remains active */
1793 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1794 		if (!ATH_TXQ_SETUP(sc, i))
1795 			continue;
1796 
1797 		if (!sc->tx.txq[i].axq_depth)
1798 			continue;
1799 
1800 		if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1801 			npend |= BIT(i);
1802 	}
1803 
1804 	if (npend)
1805 		ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1806 
1807 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1808 		if (!ATH_TXQ_SETUP(sc, i))
1809 			continue;
1810 
1811 		/*
1812 		 * The caller will resume queues with ieee80211_wake_queues.
1813 		 * Mark the queue as not stopped to prevent ath_tx_complete
1814 		 * from waking the queue too early.
1815 		 */
1816 		txq = &sc->tx.txq[i];
1817 		txq->stopped = false;
1818 		ath_draintxq(sc, txq);
1819 	}
1820 
1821 	return !npend;
1822 }
1823 
1824 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1825 {
1826 	ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1827 	sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1828 }
1829 
1830 /* For each acq entry, for each tid, try to schedule packets
1831  * for transmit until ampdu_depth has reached min Q depth.
1832  */
1833 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1834 {
1835 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1836 	struct ath_atx_ac *ac, *last_ac;
1837 	struct ath_atx_tid *tid, *last_tid;
1838 	struct list_head *ac_list;
1839 	bool sent = false;
1840 
1841 	if (txq->mac80211_qnum < 0)
1842 		return;
1843 
1844 	if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
1845 		return;
1846 
1847 	spin_lock_bh(&sc->chan_lock);
1848 	ac_list = &sc->cur_chan->acq[txq->mac80211_qnum];
1849 
1850 	if (list_empty(ac_list)) {
1851 		spin_unlock_bh(&sc->chan_lock);
1852 		return;
1853 	}
1854 
1855 	rcu_read_lock();
1856 
1857 	last_ac = list_entry(ac_list->prev, struct ath_atx_ac, list);
1858 	while (!list_empty(ac_list)) {
1859 		bool stop = false;
1860 
1861 		if (sc->cur_chan->stopped)
1862 			break;
1863 
1864 		ac = list_first_entry(ac_list, struct ath_atx_ac, list);
1865 		last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
1866 		list_del(&ac->list);
1867 		ac->sched = false;
1868 
1869 		while (!list_empty(&ac->tid_q)) {
1870 
1871 			tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
1872 					       list);
1873 			list_del(&tid->list);
1874 			tid->sched = false;
1875 
1876 			if (ath_tx_sched_aggr(sc, txq, tid, &stop))
1877 				sent = true;
1878 
1879 			/*
1880 			 * add tid to round-robin queue if more frames
1881 			 * are pending for the tid
1882 			 */
1883 			if (ath_tid_has_buffered(tid))
1884 				ath_tx_queue_tid(sc, txq, tid);
1885 
1886 			if (stop || tid == last_tid)
1887 				break;
1888 		}
1889 
1890 		if (!list_empty(&ac->tid_q) && !ac->sched) {
1891 			ac->sched = true;
1892 			list_add_tail(&ac->list, ac_list);
1893 		}
1894 
1895 		if (stop)
1896 			break;
1897 
1898 		if (ac == last_ac) {
1899 			if (!sent)
1900 				break;
1901 
1902 			sent = false;
1903 			last_ac = list_entry(ac_list->prev,
1904 					     struct ath_atx_ac, list);
1905 		}
1906 	}
1907 
1908 	rcu_read_unlock();
1909 	spin_unlock_bh(&sc->chan_lock);
1910 }
1911 
1912 void ath_txq_schedule_all(struct ath_softc *sc)
1913 {
1914 	struct ath_txq *txq;
1915 	int i;
1916 
1917 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
1918 		txq = sc->tx.txq_map[i];
1919 
1920 		spin_lock_bh(&txq->axq_lock);
1921 		ath_txq_schedule(sc, txq);
1922 		spin_unlock_bh(&txq->axq_lock);
1923 	}
1924 }
1925 
1926 /***********/
1927 /* TX, DMA */
1928 /***********/
1929 
1930 /*
1931  * Insert a chain of ath_buf (descriptors) on a txq and
1932  * assume the descriptors are already chained together by caller.
1933  */
1934 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1935 			     struct list_head *head, bool internal)
1936 {
1937 	struct ath_hw *ah = sc->sc_ah;
1938 	struct ath_common *common = ath9k_hw_common(ah);
1939 	struct ath_buf *bf, *bf_last;
1940 	bool puttxbuf = false;
1941 	bool edma;
1942 
1943 	/*
1944 	 * Insert the frame on the outbound list and
1945 	 * pass it on to the hardware.
1946 	 */
1947 
1948 	if (list_empty(head))
1949 		return;
1950 
1951 	edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1952 	bf = list_first_entry(head, struct ath_buf, list);
1953 	bf_last = list_entry(head->prev, struct ath_buf, list);
1954 
1955 	ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
1956 		txq->axq_qnum, txq->axq_depth);
1957 
1958 	if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
1959 		list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
1960 		INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
1961 		puttxbuf = true;
1962 	} else {
1963 		list_splice_tail_init(head, &txq->axq_q);
1964 
1965 		if (txq->axq_link) {
1966 			ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
1967 			ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
1968 				txq->axq_qnum, txq->axq_link,
1969 				ito64(bf->bf_daddr), bf->bf_desc);
1970 		} else if (!edma)
1971 			puttxbuf = true;
1972 
1973 		txq->axq_link = bf_last->bf_desc;
1974 	}
1975 
1976 	if (puttxbuf) {
1977 		TX_STAT_INC(txq->axq_qnum, puttxbuf);
1978 		ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1979 		ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
1980 			txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1981 	}
1982 
1983 	if (!edma || sc->tx99_state) {
1984 		TX_STAT_INC(txq->axq_qnum, txstart);
1985 		ath9k_hw_txstart(ah, txq->axq_qnum);
1986 	}
1987 
1988 	if (!internal) {
1989 		while (bf) {
1990 			txq->axq_depth++;
1991 			if (bf_is_ampdu_not_probing(bf))
1992 				txq->axq_ampdu_depth++;
1993 
1994 			bf_last = bf->bf_lastbf;
1995 			bf = bf_last->bf_next;
1996 			bf_last->bf_next = NULL;
1997 		}
1998 	}
1999 }
2000 
2001 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
2002 			       struct ath_atx_tid *tid, struct sk_buff *skb)
2003 {
2004 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2005 	struct ath_frame_info *fi = get_frame_info(skb);
2006 	struct list_head bf_head;
2007 	struct ath_buf *bf = fi->bf;
2008 
2009 	INIT_LIST_HEAD(&bf_head);
2010 	list_add_tail(&bf->list, &bf_head);
2011 	bf->bf_state.bf_type = 0;
2012 	if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
2013 		bf->bf_state.bf_type = BUF_AMPDU;
2014 		ath_tx_addto_baw(sc, tid, bf);
2015 	}
2016 
2017 	bf->bf_next = NULL;
2018 	bf->bf_lastbf = bf;
2019 	ath_tx_fill_desc(sc, bf, txq, fi->framelen);
2020 	ath_tx_txqaddbuf(sc, txq, &bf_head, false);
2021 	TX_STAT_INC(txq->axq_qnum, queued);
2022 }
2023 
2024 static void setup_frame_info(struct ieee80211_hw *hw,
2025 			     struct ieee80211_sta *sta,
2026 			     struct sk_buff *skb,
2027 			     int framelen)
2028 {
2029 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2030 	struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
2031 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2032 	const struct ieee80211_rate *rate;
2033 	struct ath_frame_info *fi = get_frame_info(skb);
2034 	struct ath_node *an = NULL;
2035 	enum ath9k_key_type keytype;
2036 	bool short_preamble = false;
2037 
2038 	/*
2039 	 * We check if Short Preamble is needed for the CTS rate by
2040 	 * checking the BSS's global flag.
2041 	 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
2042 	 */
2043 	if (tx_info->control.vif &&
2044 	    tx_info->control.vif->bss_conf.use_short_preamble)
2045 		short_preamble = true;
2046 
2047 	rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2048 	keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2049 
2050 	if (sta)
2051 		an = (struct ath_node *) sta->drv_priv;
2052 
2053 	memset(fi, 0, sizeof(*fi));
2054 	fi->txq = -1;
2055 	if (hw_key)
2056 		fi->keyix = hw_key->hw_key_idx;
2057 	else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2058 		fi->keyix = an->ps_key;
2059 	else
2060 		fi->keyix = ATH9K_TXKEYIX_INVALID;
2061 	fi->keytype = keytype;
2062 	fi->framelen = framelen;
2063 
2064 	if (!rate)
2065 		return;
2066 	fi->rtscts_rate = rate->hw_value;
2067 	if (short_preamble)
2068 		fi->rtscts_rate |= rate->hw_value_short;
2069 }
2070 
2071 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2072 {
2073 	struct ath_hw *ah = sc->sc_ah;
2074 	struct ath9k_channel *curchan = ah->curchan;
2075 
2076 	if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
2077 	    (chainmask == 0x7) && (rate < 0x90))
2078 		return 0x3;
2079 	else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2080 		 IS_CCK_RATE(rate))
2081 		return 0x2;
2082 	else
2083 		return chainmask;
2084 }
2085 
2086 /*
2087  * Assign a descriptor (and sequence number if necessary,
2088  * and map buffer for DMA. Frees skb on error
2089  */
2090 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2091 					   struct ath_txq *txq,
2092 					   struct ath_atx_tid *tid,
2093 					   struct sk_buff *skb)
2094 {
2095 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2096 	struct ath_frame_info *fi = get_frame_info(skb);
2097 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2098 	struct ath_buf *bf;
2099 	int fragno;
2100 	u16 seqno;
2101 
2102 	bf = ath_tx_get_buffer(sc);
2103 	if (!bf) {
2104 		ath_dbg(common, XMIT, "TX buffers are full\n");
2105 		return NULL;
2106 	}
2107 
2108 	ATH_TXBUF_RESET(bf);
2109 
2110 	if (tid && ieee80211_is_data_present(hdr->frame_control)) {
2111 		fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2112 		seqno = tid->seq_next;
2113 		hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2114 
2115 		if (fragno)
2116 			hdr->seq_ctrl |= cpu_to_le16(fragno);
2117 
2118 		if (!ieee80211_has_morefrags(hdr->frame_control))
2119 			INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2120 
2121 		bf->bf_state.seqno = seqno;
2122 	}
2123 
2124 	bf->bf_mpdu = skb;
2125 
2126 	bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2127 					 skb->len, DMA_TO_DEVICE);
2128 	if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2129 		bf->bf_mpdu = NULL;
2130 		bf->bf_buf_addr = 0;
2131 		ath_err(ath9k_hw_common(sc->sc_ah),
2132 			"dma_mapping_error() on TX\n");
2133 		ath_tx_return_buffer(sc, bf);
2134 		return NULL;
2135 	}
2136 
2137 	fi->bf = bf;
2138 
2139 	return bf;
2140 }
2141 
2142 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb)
2143 {
2144 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2145 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2146 	struct ieee80211_vif *vif = info->control.vif;
2147 	struct ath_vif *avp;
2148 
2149 	if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
2150 		return;
2151 
2152 	if (!vif)
2153 		return;
2154 
2155 	avp = (struct ath_vif *)vif->drv_priv;
2156 
2157 	if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2158 		avp->seq_no += 0x10;
2159 
2160 	hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2161 	hdr->seq_ctrl |= cpu_to_le16(avp->seq_no);
2162 }
2163 
2164 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2165 			  struct ath_tx_control *txctl)
2166 {
2167 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2168 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2169 	struct ieee80211_sta *sta = txctl->sta;
2170 	struct ieee80211_vif *vif = info->control.vif;
2171 	struct ath_vif *avp;
2172 	struct ath_softc *sc = hw->priv;
2173 	int frmlen = skb->len + FCS_LEN;
2174 	int padpos, padsize;
2175 
2176 	/* NOTE:  sta can be NULL according to net/mac80211.h */
2177 	if (sta)
2178 		txctl->an = (struct ath_node *)sta->drv_priv;
2179 	else if (vif && ieee80211_is_data(hdr->frame_control)) {
2180 		avp = (void *)vif->drv_priv;
2181 		txctl->an = &avp->mcast_node;
2182 	}
2183 
2184 	if (info->control.hw_key)
2185 		frmlen += info->control.hw_key->icv_len;
2186 
2187 	ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb);
2188 
2189 	if ((vif && vif->type != NL80211_IFTYPE_AP &&
2190 	            vif->type != NL80211_IFTYPE_AP_VLAN) ||
2191 	    !ieee80211_is_data(hdr->frame_control))
2192 		info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2193 
2194 	/* Add the padding after the header if this is not already done */
2195 	padpos = ieee80211_hdrlen(hdr->frame_control);
2196 	padsize = padpos & 3;
2197 	if (padsize && skb->len > padpos) {
2198 		if (skb_headroom(skb) < padsize)
2199 			return -ENOMEM;
2200 
2201 		skb_push(skb, padsize);
2202 		memmove(skb->data, skb->data + padsize, padpos);
2203 	}
2204 
2205 	setup_frame_info(hw, sta, skb, frmlen);
2206 	return 0;
2207 }
2208 
2209 
2210 /* Upon failure caller should free skb */
2211 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2212 		 struct ath_tx_control *txctl)
2213 {
2214 	struct ieee80211_hdr *hdr;
2215 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2216 	struct ieee80211_sta *sta = txctl->sta;
2217 	struct ieee80211_vif *vif = info->control.vif;
2218 	struct ath_frame_info *fi = get_frame_info(skb);
2219 	struct ath_vif *avp = NULL;
2220 	struct ath_softc *sc = hw->priv;
2221 	struct ath_txq *txq = txctl->txq;
2222 	struct ath_atx_tid *tid = NULL;
2223 	struct ath_buf *bf;
2224 	bool queue, skip_uapsd = false;
2225 	int q, ret;
2226 
2227 	if (vif)
2228 		avp = (void *)vif->drv_priv;
2229 
2230 	if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN)
2231 		txctl->force_channel = true;
2232 
2233 	ret = ath_tx_prepare(hw, skb, txctl);
2234 	if (ret)
2235 	    return ret;
2236 
2237 	hdr = (struct ieee80211_hdr *) skb->data;
2238 	/*
2239 	 * At this point, the vif, hw_key and sta pointers in the tx control
2240 	 * info are no longer valid (overwritten by the ath_frame_info data.
2241 	 */
2242 
2243 	q = skb_get_queue_mapping(skb);
2244 
2245 	ath_txq_lock(sc, txq);
2246 	if (txq == sc->tx.txq_map[q]) {
2247 		fi->txq = q;
2248 		if (++txq->pending_frames > sc->tx.txq_max_pending[q] &&
2249 		    !txq->stopped) {
2250 			ieee80211_stop_queue(sc->hw, info->hw_queue);
2251 			txq->stopped = true;
2252 		}
2253 	}
2254 
2255 	queue = ieee80211_is_data_present(hdr->frame_control);
2256 
2257 	/* Force queueing of all frames that belong to a virtual interface on
2258 	 * a different channel context, to ensure that they are sent on the
2259 	 * correct channel.
2260 	 */
2261 	if (((avp && avp->chanctx != sc->cur_chan) ||
2262 	     sc->cur_chan->stopped) && !txctl->force_channel) {
2263 		if (!txctl->an)
2264 			txctl->an = &avp->mcast_node;
2265 		queue = true;
2266 		skip_uapsd = true;
2267 	}
2268 
2269 	if (txctl->an && queue)
2270 		tid = ath_get_skb_tid(sc, txctl->an, skb);
2271 
2272 	if (!skip_uapsd && (info->flags & IEEE80211_TX_CTL_PS_RESPONSE)) {
2273 		ath_txq_unlock(sc, txq);
2274 		txq = sc->tx.uapsdq;
2275 		ath_txq_lock(sc, txq);
2276 	} else if (txctl->an && queue) {
2277 		WARN_ON(tid->ac->txq != txctl->txq);
2278 
2279 		if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
2280 			tid->ac->clear_ps_filter = true;
2281 
2282 		/*
2283 		 * Add this frame to software queue for scheduling later
2284 		 * for aggregation.
2285 		 */
2286 		TX_STAT_INC(txq->axq_qnum, a_queued_sw);
2287 		__skb_queue_tail(&tid->buf_q, skb);
2288 		if (!txctl->an->sleeping)
2289 			ath_tx_queue_tid(sc, txq, tid);
2290 
2291 		ath_txq_schedule(sc, txq);
2292 		goto out;
2293 	}
2294 
2295 	bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2296 	if (!bf) {
2297 		ath_txq_skb_done(sc, txq, skb);
2298 		if (txctl->paprd)
2299 			dev_kfree_skb_any(skb);
2300 		else
2301 			ieee80211_free_txskb(sc->hw, skb);
2302 		goto out;
2303 	}
2304 
2305 	bf->bf_state.bfs_paprd = txctl->paprd;
2306 
2307 	if (txctl->paprd)
2308 		bf->bf_state.bfs_paprd_timestamp = jiffies;
2309 
2310 	ath_set_rates(vif, sta, bf);
2311 	ath_tx_send_normal(sc, txq, tid, skb);
2312 
2313 out:
2314 	ath_txq_unlock(sc, txq);
2315 
2316 	return 0;
2317 }
2318 
2319 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2320 		 struct sk_buff *skb)
2321 {
2322 	struct ath_softc *sc = hw->priv;
2323 	struct ath_tx_control txctl = {
2324 		.txq = sc->beacon.cabq
2325 	};
2326 	struct ath_tx_info info = {};
2327 	struct ieee80211_hdr *hdr;
2328 	struct ath_buf *bf_tail = NULL;
2329 	struct ath_buf *bf;
2330 	LIST_HEAD(bf_q);
2331 	int duration = 0;
2332 	int max_duration;
2333 
2334 	max_duration =
2335 		sc->cur_chan->beacon.beacon_interval * 1000 *
2336 		sc->cur_chan->beacon.dtim_period / ATH_BCBUF;
2337 
2338 	do {
2339 		struct ath_frame_info *fi = get_frame_info(skb);
2340 
2341 		if (ath_tx_prepare(hw, skb, &txctl))
2342 			break;
2343 
2344 		bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2345 		if (!bf)
2346 			break;
2347 
2348 		bf->bf_lastbf = bf;
2349 		ath_set_rates(vif, NULL, bf);
2350 		ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2351 		duration += info.rates[0].PktDuration;
2352 		if (bf_tail)
2353 			bf_tail->bf_next = bf;
2354 
2355 		list_add_tail(&bf->list, &bf_q);
2356 		bf_tail = bf;
2357 		skb = NULL;
2358 
2359 		if (duration > max_duration)
2360 			break;
2361 
2362 		skb = ieee80211_get_buffered_bc(hw, vif);
2363 	} while(skb);
2364 
2365 	if (skb)
2366 		ieee80211_free_txskb(hw, skb);
2367 
2368 	if (list_empty(&bf_q))
2369 		return;
2370 
2371 	bf = list_first_entry(&bf_q, struct ath_buf, list);
2372 	hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
2373 
2374 	if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) {
2375 		hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA;
2376 		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
2377 			sizeof(*hdr), DMA_TO_DEVICE);
2378 	}
2379 
2380 	ath_txq_lock(sc, txctl.txq);
2381 	ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2382 	ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2383 	TX_STAT_INC(txctl.txq->axq_qnum, queued);
2384 	ath_txq_unlock(sc, txctl.txq);
2385 }
2386 
2387 /*****************/
2388 /* TX Completion */
2389 /*****************/
2390 
2391 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2392 			    int tx_flags, struct ath_txq *txq)
2393 {
2394 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2395 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2396 	struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2397 	int padpos, padsize;
2398 	unsigned long flags;
2399 
2400 	ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2401 
2402 	if (sc->sc_ah->caldata)
2403 		set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
2404 
2405 	if (!(tx_flags & ATH_TX_ERROR))
2406 		/* Frame was ACKed */
2407 		tx_info->flags |= IEEE80211_TX_STAT_ACK;
2408 
2409 	padpos = ieee80211_hdrlen(hdr->frame_control);
2410 	padsize = padpos & 3;
2411 	if (padsize && skb->len>padpos+padsize) {
2412 		/*
2413 		 * Remove MAC header padding before giving the frame back to
2414 		 * mac80211.
2415 		 */
2416 		memmove(skb->data + padsize, skb->data, padpos);
2417 		skb_pull(skb, padsize);
2418 	}
2419 
2420 	spin_lock_irqsave(&sc->sc_pm_lock, flags);
2421 	if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2422 		sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2423 		ath_dbg(common, PS,
2424 			"Going back to sleep after having received TX status (0x%lx)\n",
2425 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
2426 					PS_WAIT_FOR_CAB |
2427 					PS_WAIT_FOR_PSPOLL_DATA |
2428 					PS_WAIT_FOR_TX_ACK));
2429 	}
2430 	spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2431 
2432 	__skb_queue_tail(&txq->complete_q, skb);
2433 	ath_txq_skb_done(sc, txq, skb);
2434 }
2435 
2436 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2437 				struct ath_txq *txq, struct list_head *bf_q,
2438 				struct ath_tx_status *ts, int txok)
2439 {
2440 	struct sk_buff *skb = bf->bf_mpdu;
2441 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2442 	unsigned long flags;
2443 	int tx_flags = 0;
2444 
2445 	if (!txok)
2446 		tx_flags |= ATH_TX_ERROR;
2447 
2448 	if (ts->ts_status & ATH9K_TXERR_FILT)
2449 		tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2450 
2451 	dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2452 	bf->bf_buf_addr = 0;
2453 	if (sc->tx99_state)
2454 		goto skip_tx_complete;
2455 
2456 	if (bf->bf_state.bfs_paprd) {
2457 		if (time_after(jiffies,
2458 				bf->bf_state.bfs_paprd_timestamp +
2459 				msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2460 			dev_kfree_skb_any(skb);
2461 		else
2462 			complete(&sc->paprd_complete);
2463 	} else {
2464 		ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2465 		ath_tx_complete(sc, skb, tx_flags, txq);
2466 	}
2467 skip_tx_complete:
2468 	/* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2469 	 * accidentally reference it later.
2470 	 */
2471 	bf->bf_mpdu = NULL;
2472 
2473 	/*
2474 	 * Return the list of ath_buf of this mpdu to free queue
2475 	 */
2476 	spin_lock_irqsave(&sc->tx.txbuflock, flags);
2477 	list_splice_tail_init(bf_q, &sc->tx.txbuf);
2478 	spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2479 }
2480 
2481 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2482 			     struct ath_tx_status *ts, int nframes, int nbad,
2483 			     int txok)
2484 {
2485 	struct sk_buff *skb = bf->bf_mpdu;
2486 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2487 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2488 	struct ieee80211_hw *hw = sc->hw;
2489 	struct ath_hw *ah = sc->sc_ah;
2490 	u8 i, tx_rateindex;
2491 
2492 	if (txok)
2493 		tx_info->status.ack_signal = ts->ts_rssi;
2494 
2495 	tx_rateindex = ts->ts_rateindex;
2496 	WARN_ON(tx_rateindex >= hw->max_rates);
2497 
2498 	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2499 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2500 
2501 		BUG_ON(nbad > nframes);
2502 	}
2503 	tx_info->status.ampdu_len = nframes;
2504 	tx_info->status.ampdu_ack_len = nframes - nbad;
2505 
2506 	if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2507 	    (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2508 		/*
2509 		 * If an underrun error is seen assume it as an excessive
2510 		 * retry only if max frame trigger level has been reached
2511 		 * (2 KB for single stream, and 4 KB for dual stream).
2512 		 * Adjust the long retry as if the frame was tried
2513 		 * hw->max_rate_tries times to affect how rate control updates
2514 		 * PER for the failed rate.
2515 		 * In case of congestion on the bus penalizing this type of
2516 		 * underruns should help hardware actually transmit new frames
2517 		 * successfully by eventually preferring slower rates.
2518 		 * This itself should also alleviate congestion on the bus.
2519 		 */
2520 		if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2521 		                             ATH9K_TX_DELIM_UNDERRUN)) &&
2522 		    ieee80211_is_data(hdr->frame_control) &&
2523 		    ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2524 			tx_info->status.rates[tx_rateindex].count =
2525 				hw->max_rate_tries;
2526 	}
2527 
2528 	for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2529 		tx_info->status.rates[i].count = 0;
2530 		tx_info->status.rates[i].idx = -1;
2531 	}
2532 
2533 	tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2534 }
2535 
2536 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2537 {
2538 	struct ath_hw *ah = sc->sc_ah;
2539 	struct ath_common *common = ath9k_hw_common(ah);
2540 	struct ath_buf *bf, *lastbf, *bf_held = NULL;
2541 	struct list_head bf_head;
2542 	struct ath_desc *ds;
2543 	struct ath_tx_status ts;
2544 	int status;
2545 
2546 	ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2547 		txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2548 		txq->axq_link);
2549 
2550 	ath_txq_lock(sc, txq);
2551 	for (;;) {
2552 		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2553 			break;
2554 
2555 		if (list_empty(&txq->axq_q)) {
2556 			txq->axq_link = NULL;
2557 			ath_txq_schedule(sc, txq);
2558 			break;
2559 		}
2560 		bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2561 
2562 		/*
2563 		 * There is a race condition that a BH gets scheduled
2564 		 * after sw writes TxE and before hw re-load the last
2565 		 * descriptor to get the newly chained one.
2566 		 * Software must keep the last DONE descriptor as a
2567 		 * holding descriptor - software does so by marking
2568 		 * it with the STALE flag.
2569 		 */
2570 		bf_held = NULL;
2571 		if (bf->bf_state.stale) {
2572 			bf_held = bf;
2573 			if (list_is_last(&bf_held->list, &txq->axq_q))
2574 				break;
2575 
2576 			bf = list_entry(bf_held->list.next, struct ath_buf,
2577 					list);
2578 		}
2579 
2580 		lastbf = bf->bf_lastbf;
2581 		ds = lastbf->bf_desc;
2582 
2583 		memset(&ts, 0, sizeof(ts));
2584 		status = ath9k_hw_txprocdesc(ah, ds, &ts);
2585 		if (status == -EINPROGRESS)
2586 			break;
2587 
2588 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2589 
2590 		/*
2591 		 * Remove ath_buf's of the same transmit unit from txq,
2592 		 * however leave the last descriptor back as the holding
2593 		 * descriptor for hw.
2594 		 */
2595 		lastbf->bf_state.stale = true;
2596 		INIT_LIST_HEAD(&bf_head);
2597 		if (!list_is_singular(&lastbf->list))
2598 			list_cut_position(&bf_head,
2599 				&txq->axq_q, lastbf->list.prev);
2600 
2601 		if (bf_held) {
2602 			list_del(&bf_held->list);
2603 			ath_tx_return_buffer(sc, bf_held);
2604 		}
2605 
2606 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2607 	}
2608 	ath_txq_unlock_complete(sc, txq);
2609 }
2610 
2611 void ath_tx_tasklet(struct ath_softc *sc)
2612 {
2613 	struct ath_hw *ah = sc->sc_ah;
2614 	u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2615 	int i;
2616 
2617 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2618 		if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2619 			ath_tx_processq(sc, &sc->tx.txq[i]);
2620 	}
2621 }
2622 
2623 void ath_tx_edma_tasklet(struct ath_softc *sc)
2624 {
2625 	struct ath_tx_status ts;
2626 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2627 	struct ath_hw *ah = sc->sc_ah;
2628 	struct ath_txq *txq;
2629 	struct ath_buf *bf, *lastbf;
2630 	struct list_head bf_head;
2631 	struct list_head *fifo_list;
2632 	int status;
2633 
2634 	for (;;) {
2635 		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2636 			break;
2637 
2638 		status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2639 		if (status == -EINPROGRESS)
2640 			break;
2641 		if (status == -EIO) {
2642 			ath_dbg(common, XMIT, "Error processing tx status\n");
2643 			break;
2644 		}
2645 
2646 		/* Process beacon completions separately */
2647 		if (ts.qid == sc->beacon.beaconq) {
2648 			sc->beacon.tx_processed = true;
2649 			sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2650 
2651 			if (ath9k_is_chanctx_enabled()) {
2652 				ath_chanctx_event(sc, NULL,
2653 						  ATH_CHANCTX_EVENT_BEACON_SENT);
2654 			}
2655 
2656 			ath9k_csa_update(sc);
2657 			continue;
2658 		}
2659 
2660 		txq = &sc->tx.txq[ts.qid];
2661 
2662 		ath_txq_lock(sc, txq);
2663 
2664 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2665 
2666 		fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2667 		if (list_empty(fifo_list)) {
2668 			ath_txq_unlock(sc, txq);
2669 			return;
2670 		}
2671 
2672 		bf = list_first_entry(fifo_list, struct ath_buf, list);
2673 		if (bf->bf_state.stale) {
2674 			list_del(&bf->list);
2675 			ath_tx_return_buffer(sc, bf);
2676 			bf = list_first_entry(fifo_list, struct ath_buf, list);
2677 		}
2678 
2679 		lastbf = bf->bf_lastbf;
2680 
2681 		INIT_LIST_HEAD(&bf_head);
2682 		if (list_is_last(&lastbf->list, fifo_list)) {
2683 			list_splice_tail_init(fifo_list, &bf_head);
2684 			INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2685 
2686 			if (!list_empty(&txq->axq_q)) {
2687 				struct list_head bf_q;
2688 
2689 				INIT_LIST_HEAD(&bf_q);
2690 				txq->axq_link = NULL;
2691 				list_splice_tail_init(&txq->axq_q, &bf_q);
2692 				ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2693 			}
2694 		} else {
2695 			lastbf->bf_state.stale = true;
2696 			if (bf != lastbf)
2697 				list_cut_position(&bf_head, fifo_list,
2698 						  lastbf->list.prev);
2699 		}
2700 
2701 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2702 		ath_txq_unlock_complete(sc, txq);
2703 	}
2704 }
2705 
2706 /*****************/
2707 /* Init, Cleanup */
2708 /*****************/
2709 
2710 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2711 {
2712 	struct ath_descdma *dd = &sc->txsdma;
2713 	u8 txs_len = sc->sc_ah->caps.txs_len;
2714 
2715 	dd->dd_desc_len = size * txs_len;
2716 	dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2717 					  &dd->dd_desc_paddr, GFP_KERNEL);
2718 	if (!dd->dd_desc)
2719 		return -ENOMEM;
2720 
2721 	return 0;
2722 }
2723 
2724 static int ath_tx_edma_init(struct ath_softc *sc)
2725 {
2726 	int err;
2727 
2728 	err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2729 	if (!err)
2730 		ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2731 					  sc->txsdma.dd_desc_paddr,
2732 					  ATH_TXSTATUS_RING_SIZE);
2733 
2734 	return err;
2735 }
2736 
2737 int ath_tx_init(struct ath_softc *sc, int nbufs)
2738 {
2739 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2740 	int error = 0;
2741 
2742 	spin_lock_init(&sc->tx.txbuflock);
2743 
2744 	error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2745 				  "tx", nbufs, 1, 1);
2746 	if (error != 0) {
2747 		ath_err(common,
2748 			"Failed to allocate tx descriptors: %d\n", error);
2749 		return error;
2750 	}
2751 
2752 	error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2753 				  "beacon", ATH_BCBUF, 1, 1);
2754 	if (error != 0) {
2755 		ath_err(common,
2756 			"Failed to allocate beacon descriptors: %d\n", error);
2757 		return error;
2758 	}
2759 
2760 	INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2761 
2762 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2763 		error = ath_tx_edma_init(sc);
2764 
2765 	return error;
2766 }
2767 
2768 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2769 {
2770 	struct ath_atx_tid *tid;
2771 	struct ath_atx_ac *ac;
2772 	int tidno, acno;
2773 
2774 	for (tidno = 0, tid = &an->tid[tidno];
2775 	     tidno < IEEE80211_NUM_TIDS;
2776 	     tidno++, tid++) {
2777 		tid->an        = an;
2778 		tid->tidno     = tidno;
2779 		tid->seq_start = tid->seq_next = 0;
2780 		tid->baw_size  = WME_MAX_BA;
2781 		tid->baw_head  = tid->baw_tail = 0;
2782 		tid->sched     = false;
2783 		tid->active	   = false;
2784 		__skb_queue_head_init(&tid->buf_q);
2785 		__skb_queue_head_init(&tid->retry_q);
2786 		acno = TID_TO_WME_AC(tidno);
2787 		tid->ac = &an->ac[acno];
2788 	}
2789 
2790 	for (acno = 0, ac = &an->ac[acno];
2791 	     acno < IEEE80211_NUM_ACS; acno++, ac++) {
2792 		ac->sched    = false;
2793 		ac->clear_ps_filter = true;
2794 		ac->txq = sc->tx.txq_map[acno];
2795 		INIT_LIST_HEAD(&ac->tid_q);
2796 	}
2797 }
2798 
2799 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2800 {
2801 	struct ath_atx_ac *ac;
2802 	struct ath_atx_tid *tid;
2803 	struct ath_txq *txq;
2804 	int tidno;
2805 
2806 	for (tidno = 0, tid = &an->tid[tidno];
2807 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
2808 
2809 		ac = tid->ac;
2810 		txq = ac->txq;
2811 
2812 		ath_txq_lock(sc, txq);
2813 
2814 		if (tid->sched) {
2815 			list_del(&tid->list);
2816 			tid->sched = false;
2817 		}
2818 
2819 		if (ac->sched) {
2820 			list_del(&ac->list);
2821 			tid->ac->sched = false;
2822 		}
2823 
2824 		ath_tid_drain(sc, txq, tid);
2825 		tid->active = false;
2826 
2827 		ath_txq_unlock(sc, txq);
2828 	}
2829 }
2830 
2831 #ifdef CONFIG_ATH9K_TX99
2832 
2833 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
2834 		    struct ath_tx_control *txctl)
2835 {
2836 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2837 	struct ath_frame_info *fi = get_frame_info(skb);
2838 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2839 	struct ath_buf *bf;
2840 	int padpos, padsize;
2841 
2842 	padpos = ieee80211_hdrlen(hdr->frame_control);
2843 	padsize = padpos & 3;
2844 
2845 	if (padsize && skb->len > padpos) {
2846 		if (skb_headroom(skb) < padsize) {
2847 			ath_dbg(common, XMIT,
2848 				"tx99 padding failed\n");
2849 		return -EINVAL;
2850 		}
2851 
2852 		skb_push(skb, padsize);
2853 		memmove(skb->data, skb->data + padsize, padpos);
2854 	}
2855 
2856 	fi->keyix = ATH9K_TXKEYIX_INVALID;
2857 	fi->framelen = skb->len + FCS_LEN;
2858 	fi->keytype = ATH9K_KEY_TYPE_CLEAR;
2859 
2860 	bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
2861 	if (!bf) {
2862 		ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
2863 		return -EINVAL;
2864 	}
2865 
2866 	ath_set_rates(sc->tx99_vif, NULL, bf);
2867 
2868 	ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
2869 	ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
2870 
2871 	ath_tx_send_normal(sc, txctl->txq, NULL, skb);
2872 
2873 	return 0;
2874 }
2875 
2876 #endif /* CONFIG_ATH9K_TX99 */
2877