1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/dma-mapping.h> 18 #include "ath9k.h" 19 #include "ar9003_mac.h" 20 21 #define BITS_PER_BYTE 8 22 #define OFDM_PLCP_BITS 22 23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1) 24 #define L_STF 8 25 #define L_LTF 8 26 #define L_SIG 4 27 #define HT_SIG 8 28 #define HT_STF 4 29 #define HT_LTF(_ns) (4 * (_ns)) 30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */ 31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */ 32 #define TIME_SYMBOLS(t) ((t) >> 2) 33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18) 34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2) 35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18) 36 37 38 static u16 bits_per_symbol[][2] = { 39 /* 20MHz 40MHz */ 40 { 26, 54 }, /* 0: BPSK */ 41 { 52, 108 }, /* 1: QPSK 1/2 */ 42 { 78, 162 }, /* 2: QPSK 3/4 */ 43 { 104, 216 }, /* 3: 16-QAM 1/2 */ 44 { 156, 324 }, /* 4: 16-QAM 3/4 */ 45 { 208, 432 }, /* 5: 64-QAM 2/3 */ 46 { 234, 486 }, /* 6: 64-QAM 3/4 */ 47 { 260, 540 }, /* 7: 64-QAM 5/6 */ 48 }; 49 50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 51 struct ath_atx_tid *tid, struct sk_buff *skb); 52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, 53 int tx_flags, struct ath_txq *txq); 54 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 55 struct ath_txq *txq, struct list_head *bf_q, 56 struct ath_tx_status *ts, int txok); 57 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 58 struct list_head *head, bool internal); 59 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 60 struct ath_tx_status *ts, int nframes, int nbad, 61 int txok); 62 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 63 int seqno); 64 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, 65 struct ath_txq *txq, 66 struct ath_atx_tid *tid, 67 struct sk_buff *skb); 68 69 enum { 70 MCS_HT20, 71 MCS_HT20_SGI, 72 MCS_HT40, 73 MCS_HT40_SGI, 74 }; 75 76 /*********************/ 77 /* Aggregation logic */ 78 /*********************/ 79 80 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq) 81 __acquires(&txq->axq_lock) 82 { 83 spin_lock_bh(&txq->axq_lock); 84 } 85 86 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq) 87 __releases(&txq->axq_lock) 88 { 89 spin_unlock_bh(&txq->axq_lock); 90 } 91 92 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq) 93 __releases(&txq->axq_lock) 94 { 95 struct sk_buff_head q; 96 struct sk_buff *skb; 97 98 __skb_queue_head_init(&q); 99 skb_queue_splice_init(&txq->complete_q, &q); 100 spin_unlock_bh(&txq->axq_lock); 101 102 while ((skb = __skb_dequeue(&q))) 103 ieee80211_tx_status(sc->hw, skb); 104 } 105 106 static void ath_tx_queue_tid(struct ath_softc *sc, struct ath_txq *txq, 107 struct ath_atx_tid *tid) 108 { 109 struct ath_atx_ac *ac = tid->ac; 110 struct list_head *list; 111 struct ath_vif *avp = (struct ath_vif *) tid->an->vif->drv_priv; 112 struct ath_chanctx *ctx = avp->chanctx; 113 114 if (!ctx) 115 return; 116 117 if (tid->sched) 118 return; 119 120 tid->sched = true; 121 list_add_tail(&tid->list, &ac->tid_q); 122 123 if (ac->sched) 124 return; 125 126 ac->sched = true; 127 128 list = &ctx->acq[TID_TO_WME_AC(tid->tidno)]; 129 list_add_tail(&ac->list, list); 130 } 131 132 static struct ath_frame_info *get_frame_info(struct sk_buff *skb) 133 { 134 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 135 BUILD_BUG_ON(sizeof(struct ath_frame_info) > 136 sizeof(tx_info->rate_driver_data)); 137 return (struct ath_frame_info *) &tx_info->rate_driver_data[0]; 138 } 139 140 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno) 141 { 142 if (!tid->an->sta) 143 return; 144 145 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno, 146 seqno << IEEE80211_SEQ_SEQ_SHIFT); 147 } 148 149 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta, 150 struct ath_buf *bf) 151 { 152 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates, 153 ARRAY_SIZE(bf->rates)); 154 } 155 156 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq, 157 struct sk_buff *skb) 158 { 159 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 160 struct ath_frame_info *fi = get_frame_info(skb); 161 int q = fi->txq; 162 163 if (q < 0) 164 return; 165 166 txq = sc->tx.txq_map[q]; 167 if (WARN_ON(--txq->pending_frames < 0)) 168 txq->pending_frames = 0; 169 170 if (txq->stopped && 171 txq->pending_frames < sc->tx.txq_max_pending[q]) { 172 ieee80211_wake_queue(sc->hw, info->hw_queue); 173 txq->stopped = false; 174 } 175 } 176 177 static struct ath_atx_tid * 178 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb) 179 { 180 u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK; 181 return ATH_AN_2_TID(an, tidno); 182 } 183 184 static bool ath_tid_has_buffered(struct ath_atx_tid *tid) 185 { 186 return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q); 187 } 188 189 static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid) 190 { 191 struct sk_buff *skb; 192 193 skb = __skb_dequeue(&tid->retry_q); 194 if (!skb) 195 skb = __skb_dequeue(&tid->buf_q); 196 197 return skb; 198 } 199 200 /* 201 * ath_tx_tid_change_state: 202 * - clears a-mpdu flag of previous session 203 * - force sequence number allocation to fix next BlockAck Window 204 */ 205 static void 206 ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid) 207 { 208 struct ath_txq *txq = tid->ac->txq; 209 struct ieee80211_tx_info *tx_info; 210 struct sk_buff *skb, *tskb; 211 struct ath_buf *bf; 212 struct ath_frame_info *fi; 213 214 skb_queue_walk_safe(&tid->buf_q, skb, tskb) { 215 fi = get_frame_info(skb); 216 bf = fi->bf; 217 218 tx_info = IEEE80211_SKB_CB(skb); 219 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU; 220 221 if (bf) 222 continue; 223 224 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 225 if (!bf) { 226 __skb_unlink(skb, &tid->buf_q); 227 ath_txq_skb_done(sc, txq, skb); 228 ieee80211_free_txskb(sc->hw, skb); 229 continue; 230 } 231 } 232 233 } 234 235 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid) 236 { 237 struct ath_txq *txq = tid->ac->txq; 238 struct sk_buff *skb; 239 struct ath_buf *bf; 240 struct list_head bf_head; 241 struct ath_tx_status ts; 242 struct ath_frame_info *fi; 243 bool sendbar = false; 244 245 INIT_LIST_HEAD(&bf_head); 246 247 memset(&ts, 0, sizeof(ts)); 248 249 while ((skb = __skb_dequeue(&tid->retry_q))) { 250 fi = get_frame_info(skb); 251 bf = fi->bf; 252 if (!bf) { 253 ath_txq_skb_done(sc, txq, skb); 254 ieee80211_free_txskb(sc->hw, skb); 255 continue; 256 } 257 258 if (fi->baw_tracked) { 259 ath_tx_update_baw(sc, tid, bf->bf_state.seqno); 260 sendbar = true; 261 } 262 263 list_add_tail(&bf->list, &bf_head); 264 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0); 265 } 266 267 if (sendbar) { 268 ath_txq_unlock(sc, txq); 269 ath_send_bar(tid, tid->seq_start); 270 ath_txq_lock(sc, txq); 271 } 272 } 273 274 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 275 int seqno) 276 { 277 int index, cindex; 278 279 index = ATH_BA_INDEX(tid->seq_start, seqno); 280 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 281 282 __clear_bit(cindex, tid->tx_buf); 283 284 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) { 285 INCR(tid->seq_start, IEEE80211_SEQ_MAX); 286 INCR(tid->baw_head, ATH_TID_MAX_BUFS); 287 if (tid->bar_index >= 0) 288 tid->bar_index--; 289 } 290 } 291 292 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 293 struct ath_buf *bf) 294 { 295 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 296 u16 seqno = bf->bf_state.seqno; 297 int index, cindex; 298 299 index = ATH_BA_INDEX(tid->seq_start, seqno); 300 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 301 __set_bit(cindex, tid->tx_buf); 302 fi->baw_tracked = 1; 303 304 if (index >= ((tid->baw_tail - tid->baw_head) & 305 (ATH_TID_MAX_BUFS - 1))) { 306 tid->baw_tail = cindex; 307 INCR(tid->baw_tail, ATH_TID_MAX_BUFS); 308 } 309 } 310 311 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq, 312 struct ath_atx_tid *tid) 313 314 { 315 struct sk_buff *skb; 316 struct ath_buf *bf; 317 struct list_head bf_head; 318 struct ath_tx_status ts; 319 struct ath_frame_info *fi; 320 321 memset(&ts, 0, sizeof(ts)); 322 INIT_LIST_HEAD(&bf_head); 323 324 while ((skb = ath_tid_dequeue(tid))) { 325 fi = get_frame_info(skb); 326 bf = fi->bf; 327 328 if (!bf) { 329 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq); 330 continue; 331 } 332 333 list_add_tail(&bf->list, &bf_head); 334 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0); 335 } 336 } 337 338 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq, 339 struct sk_buff *skb, int count) 340 { 341 struct ath_frame_info *fi = get_frame_info(skb); 342 struct ath_buf *bf = fi->bf; 343 struct ieee80211_hdr *hdr; 344 int prev = fi->retries; 345 346 TX_STAT_INC(txq->axq_qnum, a_retries); 347 fi->retries += count; 348 349 if (prev > 0) 350 return; 351 352 hdr = (struct ieee80211_hdr *)skb->data; 353 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY); 354 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 355 sizeof(*hdr), DMA_TO_DEVICE); 356 } 357 358 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc) 359 { 360 struct ath_buf *bf = NULL; 361 362 spin_lock_bh(&sc->tx.txbuflock); 363 364 if (unlikely(list_empty(&sc->tx.txbuf))) { 365 spin_unlock_bh(&sc->tx.txbuflock); 366 return NULL; 367 } 368 369 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list); 370 list_del(&bf->list); 371 372 spin_unlock_bh(&sc->tx.txbuflock); 373 374 return bf; 375 } 376 377 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf) 378 { 379 spin_lock_bh(&sc->tx.txbuflock); 380 list_add_tail(&bf->list, &sc->tx.txbuf); 381 spin_unlock_bh(&sc->tx.txbuflock); 382 } 383 384 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf) 385 { 386 struct ath_buf *tbf; 387 388 tbf = ath_tx_get_buffer(sc); 389 if (WARN_ON(!tbf)) 390 return NULL; 391 392 ATH_TXBUF_RESET(tbf); 393 394 tbf->bf_mpdu = bf->bf_mpdu; 395 tbf->bf_buf_addr = bf->bf_buf_addr; 396 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len); 397 tbf->bf_state = bf->bf_state; 398 tbf->bf_state.stale = false; 399 400 return tbf; 401 } 402 403 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf, 404 struct ath_tx_status *ts, int txok, 405 int *nframes, int *nbad) 406 { 407 struct ath_frame_info *fi; 408 u16 seq_st = 0; 409 u32 ba[WME_BA_BMP_SIZE >> 5]; 410 int ba_index; 411 int isaggr = 0; 412 413 *nbad = 0; 414 *nframes = 0; 415 416 isaggr = bf_isaggr(bf); 417 if (isaggr) { 418 seq_st = ts->ts_seqnum; 419 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); 420 } 421 422 while (bf) { 423 fi = get_frame_info(bf->bf_mpdu); 424 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno); 425 426 (*nframes)++; 427 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index))) 428 (*nbad)++; 429 430 bf = bf->bf_next; 431 } 432 } 433 434 435 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq, 436 struct ath_buf *bf, struct list_head *bf_q, 437 struct ath_tx_status *ts, int txok) 438 { 439 struct ath_node *an = NULL; 440 struct sk_buff *skb; 441 struct ieee80211_sta *sta; 442 struct ieee80211_hw *hw = sc->hw; 443 struct ieee80211_hdr *hdr; 444 struct ieee80211_tx_info *tx_info; 445 struct ath_atx_tid *tid = NULL; 446 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf; 447 struct list_head bf_head; 448 struct sk_buff_head bf_pending; 449 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first; 450 u32 ba[WME_BA_BMP_SIZE >> 5]; 451 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0; 452 bool rc_update = true, isba; 453 struct ieee80211_tx_rate rates[4]; 454 struct ath_frame_info *fi; 455 int nframes; 456 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH); 457 int i, retries; 458 int bar_index = -1; 459 460 skb = bf->bf_mpdu; 461 hdr = (struct ieee80211_hdr *)skb->data; 462 463 tx_info = IEEE80211_SKB_CB(skb); 464 465 memcpy(rates, bf->rates, sizeof(rates)); 466 467 retries = ts->ts_longretry + 1; 468 for (i = 0; i < ts->ts_rateindex; i++) 469 retries += rates[i].count; 470 471 rcu_read_lock(); 472 473 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2); 474 if (!sta) { 475 rcu_read_unlock(); 476 477 INIT_LIST_HEAD(&bf_head); 478 while (bf) { 479 bf_next = bf->bf_next; 480 481 if (!bf->bf_state.stale || bf_next != NULL) 482 list_move_tail(&bf->list, &bf_head); 483 484 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0); 485 486 bf = bf_next; 487 } 488 return; 489 } 490 491 an = (struct ath_node *)sta->drv_priv; 492 tid = ath_get_skb_tid(sc, an, skb); 493 seq_first = tid->seq_start; 494 isba = ts->ts_flags & ATH9K_TX_BA; 495 496 /* 497 * The hardware occasionally sends a tx status for the wrong TID. 498 * In this case, the BA status cannot be considered valid and all 499 * subframes need to be retransmitted 500 * 501 * Only BlockAcks have a TID and therefore normal Acks cannot be 502 * checked 503 */ 504 if (isba && tid->tidno != ts->tid) 505 txok = false; 506 507 isaggr = bf_isaggr(bf); 508 memset(ba, 0, WME_BA_BMP_SIZE >> 3); 509 510 if (isaggr && txok) { 511 if (ts->ts_flags & ATH9K_TX_BA) { 512 seq_st = ts->ts_seqnum; 513 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); 514 } else { 515 /* 516 * AR5416 can become deaf/mute when BA 517 * issue happens. Chip needs to be reset. 518 * But AP code may have sychronization issues 519 * when perform internal reset in this routine. 520 * Only enable reset in STA mode for now. 521 */ 522 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION) 523 needreset = 1; 524 } 525 } 526 527 __skb_queue_head_init(&bf_pending); 528 529 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad); 530 while (bf) { 531 u16 seqno = bf->bf_state.seqno; 532 533 txfail = txpending = sendbar = 0; 534 bf_next = bf->bf_next; 535 536 skb = bf->bf_mpdu; 537 tx_info = IEEE80211_SKB_CB(skb); 538 fi = get_frame_info(skb); 539 540 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) || 541 !tid->active) { 542 /* 543 * Outside of the current BlockAck window, 544 * maybe part of a previous session 545 */ 546 txfail = 1; 547 } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) { 548 /* transmit completion, subframe is 549 * acked by block ack */ 550 acked_cnt++; 551 } else if (!isaggr && txok) { 552 /* transmit completion */ 553 acked_cnt++; 554 } else if (flush) { 555 txpending = 1; 556 } else if (fi->retries < ATH_MAX_SW_RETRIES) { 557 if (txok || !an->sleeping) 558 ath_tx_set_retry(sc, txq, bf->bf_mpdu, 559 retries); 560 561 txpending = 1; 562 } else { 563 txfail = 1; 564 txfail_cnt++; 565 bar_index = max_t(int, bar_index, 566 ATH_BA_INDEX(seq_first, seqno)); 567 } 568 569 /* 570 * Make sure the last desc is reclaimed if it 571 * not a holding desc. 572 */ 573 INIT_LIST_HEAD(&bf_head); 574 if (bf_next != NULL || !bf_last->bf_state.stale) 575 list_move_tail(&bf->list, &bf_head); 576 577 if (!txpending) { 578 /* 579 * complete the acked-ones/xretried ones; update 580 * block-ack window 581 */ 582 ath_tx_update_baw(sc, tid, seqno); 583 584 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) { 585 memcpy(tx_info->control.rates, rates, sizeof(rates)); 586 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok); 587 rc_update = false; 588 if (bf == bf->bf_lastbf) 589 ath_dynack_sample_tx_ts(sc->sc_ah, 590 bf->bf_mpdu, 591 ts); 592 } 593 594 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 595 !txfail); 596 } else { 597 if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) { 598 tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP; 599 ieee80211_sta_eosp(sta); 600 } 601 /* retry the un-acked ones */ 602 if (bf->bf_next == NULL && bf_last->bf_state.stale) { 603 struct ath_buf *tbf; 604 605 tbf = ath_clone_txbuf(sc, bf_last); 606 /* 607 * Update tx baw and complete the 608 * frame with failed status if we 609 * run out of tx buf. 610 */ 611 if (!tbf) { 612 ath_tx_update_baw(sc, tid, seqno); 613 614 ath_tx_complete_buf(sc, bf, txq, 615 &bf_head, ts, 0); 616 bar_index = max_t(int, bar_index, 617 ATH_BA_INDEX(seq_first, seqno)); 618 break; 619 } 620 621 fi->bf = tbf; 622 } 623 624 /* 625 * Put this buffer to the temporary pending 626 * queue to retain ordering 627 */ 628 __skb_queue_tail(&bf_pending, skb); 629 } 630 631 bf = bf_next; 632 } 633 634 /* prepend un-acked frames to the beginning of the pending frame queue */ 635 if (!skb_queue_empty(&bf_pending)) { 636 if (an->sleeping) 637 ieee80211_sta_set_buffered(sta, tid->tidno, true); 638 639 skb_queue_splice_tail(&bf_pending, &tid->retry_q); 640 if (!an->sleeping) { 641 ath_tx_queue_tid(sc, txq, tid); 642 643 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY)) 644 tid->ac->clear_ps_filter = true; 645 } 646 } 647 648 if (bar_index >= 0) { 649 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index); 650 651 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq)) 652 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq); 653 654 ath_txq_unlock(sc, txq); 655 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1)); 656 ath_txq_lock(sc, txq); 657 } 658 659 rcu_read_unlock(); 660 661 if (needreset) 662 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR); 663 } 664 665 static bool bf_is_ampdu_not_probing(struct ath_buf *bf) 666 { 667 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu); 668 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE); 669 } 670 671 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq, 672 struct ath_tx_status *ts, struct ath_buf *bf, 673 struct list_head *bf_head) 674 { 675 struct ieee80211_tx_info *info; 676 bool txok, flush; 677 678 txok = !(ts->ts_status & ATH9K_TXERR_MASK); 679 flush = !!(ts->ts_status & ATH9K_TX_FLUSH); 680 txq->axq_tx_inprogress = false; 681 682 txq->axq_depth--; 683 if (bf_is_ampdu_not_probing(bf)) 684 txq->axq_ampdu_depth--; 685 686 ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc, 687 ts->ts_rateindex); 688 if (!bf_isampdu(bf)) { 689 if (!flush) { 690 info = IEEE80211_SKB_CB(bf->bf_mpdu); 691 memcpy(info->control.rates, bf->rates, 692 sizeof(info->control.rates)); 693 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok); 694 ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts); 695 } 696 ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok); 697 } else 698 ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok); 699 700 if (!flush) 701 ath_txq_schedule(sc, txq); 702 } 703 704 static bool ath_lookup_legacy(struct ath_buf *bf) 705 { 706 struct sk_buff *skb; 707 struct ieee80211_tx_info *tx_info; 708 struct ieee80211_tx_rate *rates; 709 int i; 710 711 skb = bf->bf_mpdu; 712 tx_info = IEEE80211_SKB_CB(skb); 713 rates = tx_info->control.rates; 714 715 for (i = 0; i < 4; i++) { 716 if (!rates[i].count || rates[i].idx < 0) 717 break; 718 719 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) 720 return true; 721 } 722 723 return false; 724 } 725 726 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf, 727 struct ath_atx_tid *tid) 728 { 729 struct sk_buff *skb; 730 struct ieee80211_tx_info *tx_info; 731 struct ieee80211_tx_rate *rates; 732 u32 max_4ms_framelen, frmlen; 733 u16 aggr_limit, bt_aggr_limit, legacy = 0; 734 int q = tid->ac->txq->mac80211_qnum; 735 int i; 736 737 skb = bf->bf_mpdu; 738 tx_info = IEEE80211_SKB_CB(skb); 739 rates = bf->rates; 740 741 /* 742 * Find the lowest frame length among the rate series that will have a 743 * 4ms (or TXOP limited) transmit duration. 744 */ 745 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX; 746 747 for (i = 0; i < 4; i++) { 748 int modeidx; 749 750 if (!rates[i].count) 751 continue; 752 753 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) { 754 legacy = 1; 755 break; 756 } 757 758 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 759 modeidx = MCS_HT40; 760 else 761 modeidx = MCS_HT20; 762 763 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 764 modeidx++; 765 766 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx]; 767 max_4ms_framelen = min(max_4ms_framelen, frmlen); 768 } 769 770 /* 771 * limit aggregate size by the minimum rate if rate selected is 772 * not a probe rate, if rate selected is a probe rate then 773 * avoid aggregation of this packet. 774 */ 775 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy) 776 return 0; 777 778 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX); 779 780 /* 781 * Override the default aggregation limit for BTCOEX. 782 */ 783 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen); 784 if (bt_aggr_limit) 785 aggr_limit = bt_aggr_limit; 786 787 if (tid->an->maxampdu) 788 aggr_limit = min(aggr_limit, tid->an->maxampdu); 789 790 return aggr_limit; 791 } 792 793 /* 794 * Returns the number of delimiters to be added to 795 * meet the minimum required mpdudensity. 796 */ 797 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid, 798 struct ath_buf *bf, u16 frmlen, 799 bool first_subfrm) 800 { 801 #define FIRST_DESC_NDELIMS 60 802 u32 nsymbits, nsymbols; 803 u16 minlen; 804 u8 flags, rix; 805 int width, streams, half_gi, ndelim, mindelim; 806 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 807 808 /* Select standard number of delimiters based on frame length alone */ 809 ndelim = ATH_AGGR_GET_NDELIM(frmlen); 810 811 /* 812 * If encryption enabled, hardware requires some more padding between 813 * subframes. 814 * TODO - this could be improved to be dependent on the rate. 815 * The hardware can keep up at lower rates, but not higher rates 816 */ 817 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) && 818 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) 819 ndelim += ATH_AGGR_ENCRYPTDELIM; 820 821 /* 822 * Add delimiter when using RTS/CTS with aggregation 823 * and non enterprise AR9003 card 824 */ 825 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) && 826 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE)) 827 ndelim = max(ndelim, FIRST_DESC_NDELIMS); 828 829 /* 830 * Convert desired mpdu density from microeconds to bytes based 831 * on highest rate in rate series (i.e. first rate) to determine 832 * required minimum length for subframe. Take into account 833 * whether high rate is 20 or 40Mhz and half or full GI. 834 * 835 * If there is no mpdu density restriction, no further calculation 836 * is needed. 837 */ 838 839 if (tid->an->mpdudensity == 0) 840 return ndelim; 841 842 rix = bf->rates[0].idx; 843 flags = bf->rates[0].flags; 844 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0; 845 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0; 846 847 if (half_gi) 848 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity); 849 else 850 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity); 851 852 if (nsymbols == 0) 853 nsymbols = 1; 854 855 streams = HT_RC_2_STREAMS(rix); 856 nsymbits = bits_per_symbol[rix % 8][width] * streams; 857 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE; 858 859 if (frmlen < minlen) { 860 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ; 861 ndelim = max(mindelim, ndelim); 862 } 863 864 return ndelim; 865 } 866 867 static struct ath_buf * 868 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq, 869 struct ath_atx_tid *tid, struct sk_buff_head **q) 870 { 871 struct ieee80211_tx_info *tx_info; 872 struct ath_frame_info *fi; 873 struct sk_buff *skb; 874 struct ath_buf *bf; 875 u16 seqno; 876 877 while (1) { 878 *q = &tid->retry_q; 879 if (skb_queue_empty(*q)) 880 *q = &tid->buf_q; 881 882 skb = skb_peek(*q); 883 if (!skb) 884 break; 885 886 fi = get_frame_info(skb); 887 bf = fi->bf; 888 if (!fi->bf) 889 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 890 else 891 bf->bf_state.stale = false; 892 893 if (!bf) { 894 __skb_unlink(skb, *q); 895 ath_txq_skb_done(sc, txq, skb); 896 ieee80211_free_txskb(sc->hw, skb); 897 continue; 898 } 899 900 bf->bf_next = NULL; 901 bf->bf_lastbf = bf; 902 903 tx_info = IEEE80211_SKB_CB(skb); 904 tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT; 905 906 /* 907 * No aggregation session is running, but there may be frames 908 * from a previous session or a failed attempt in the queue. 909 * Send them out as normal data frames 910 */ 911 if (!tid->active) 912 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU; 913 914 if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) { 915 bf->bf_state.bf_type = 0; 916 return bf; 917 } 918 919 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR; 920 seqno = bf->bf_state.seqno; 921 922 /* do not step over block-ack window */ 923 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) 924 break; 925 926 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) { 927 struct ath_tx_status ts = {}; 928 struct list_head bf_head; 929 930 INIT_LIST_HEAD(&bf_head); 931 list_add(&bf->list, &bf_head); 932 __skb_unlink(skb, *q); 933 ath_tx_update_baw(sc, tid, seqno); 934 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0); 935 continue; 936 } 937 938 return bf; 939 } 940 941 return NULL; 942 } 943 944 static bool 945 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq, 946 struct ath_atx_tid *tid, struct list_head *bf_q, 947 struct ath_buf *bf_first, struct sk_buff_head *tid_q, 948 int *aggr_len) 949 { 950 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4) 951 struct ath_buf *bf = bf_first, *bf_prev = NULL; 952 int nframes = 0, ndelim; 953 u16 aggr_limit = 0, al = 0, bpad = 0, 954 al_delta, h_baw = tid->baw_size / 2; 955 struct ieee80211_tx_info *tx_info; 956 struct ath_frame_info *fi; 957 struct sk_buff *skb; 958 bool closed = false; 959 960 bf = bf_first; 961 aggr_limit = ath_lookup_rate(sc, bf, tid); 962 963 do { 964 skb = bf->bf_mpdu; 965 fi = get_frame_info(skb); 966 967 /* do not exceed aggregation limit */ 968 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen; 969 if (nframes) { 970 if (aggr_limit < al + bpad + al_delta || 971 ath_lookup_legacy(bf) || nframes >= h_baw) 972 break; 973 974 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 975 if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) || 976 !(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) 977 break; 978 } 979 980 /* add padding for previous frame to aggregation length */ 981 al += bpad + al_delta; 982 983 /* 984 * Get the delimiters needed to meet the MPDU 985 * density for this node. 986 */ 987 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen, 988 !nframes); 989 bpad = PADBYTES(al_delta) + (ndelim << 2); 990 991 nframes++; 992 bf->bf_next = NULL; 993 994 /* link buffers of this frame to the aggregate */ 995 if (!fi->baw_tracked) 996 ath_tx_addto_baw(sc, tid, bf); 997 bf->bf_state.ndelim = ndelim; 998 999 __skb_unlink(skb, tid_q); 1000 list_add_tail(&bf->list, bf_q); 1001 if (bf_prev) 1002 bf_prev->bf_next = bf; 1003 1004 bf_prev = bf; 1005 1006 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q); 1007 if (!bf) { 1008 closed = true; 1009 break; 1010 } 1011 } while (ath_tid_has_buffered(tid)); 1012 1013 bf = bf_first; 1014 bf->bf_lastbf = bf_prev; 1015 1016 if (bf == bf_prev) { 1017 al = get_frame_info(bf->bf_mpdu)->framelen; 1018 bf->bf_state.bf_type = BUF_AMPDU; 1019 } else { 1020 TX_STAT_INC(txq->axq_qnum, a_aggr); 1021 } 1022 1023 *aggr_len = al; 1024 1025 return closed; 1026 #undef PADBYTES 1027 } 1028 1029 /* 1030 * rix - rate index 1031 * pktlen - total bytes (delims + data + fcs + pads + pad delims) 1032 * width - 0 for 20 MHz, 1 for 40 MHz 1033 * half_gi - to use 4us v/s 3.6 us for symbol time 1034 */ 1035 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen, 1036 int width, int half_gi, bool shortPreamble) 1037 { 1038 u32 nbits, nsymbits, duration, nsymbols; 1039 int streams; 1040 1041 /* find number of symbols: PLCP + data */ 1042 streams = HT_RC_2_STREAMS(rix); 1043 nbits = (pktlen << 3) + OFDM_PLCP_BITS; 1044 nsymbits = bits_per_symbol[rix % 8][width] * streams; 1045 nsymbols = (nbits + nsymbits - 1) / nsymbits; 1046 1047 if (!half_gi) 1048 duration = SYMBOL_TIME(nsymbols); 1049 else 1050 duration = SYMBOL_TIME_HALFGI(nsymbols); 1051 1052 /* addup duration for legacy/ht training and signal fields */ 1053 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 1054 1055 return duration; 1056 } 1057 1058 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi) 1059 { 1060 int streams = HT_RC_2_STREAMS(mcs); 1061 int symbols, bits; 1062 int bytes = 0; 1063 1064 usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 1065 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec); 1066 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams; 1067 bits -= OFDM_PLCP_BITS; 1068 bytes = bits / 8; 1069 if (bytes > 65532) 1070 bytes = 65532; 1071 1072 return bytes; 1073 } 1074 1075 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop) 1076 { 1077 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi; 1078 int mcs; 1079 1080 /* 4ms is the default (and maximum) duration */ 1081 if (!txop || txop > 4096) 1082 txop = 4096; 1083 1084 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20]; 1085 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI]; 1086 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40]; 1087 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI]; 1088 for (mcs = 0; mcs < 32; mcs++) { 1089 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false); 1090 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true); 1091 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false); 1092 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true); 1093 } 1094 } 1095 1096 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, 1097 struct ath_tx_info *info, int len, bool rts) 1098 { 1099 struct ath_hw *ah = sc->sc_ah; 1100 struct ath_common *common = ath9k_hw_common(ah); 1101 struct sk_buff *skb; 1102 struct ieee80211_tx_info *tx_info; 1103 struct ieee80211_tx_rate *rates; 1104 const struct ieee80211_rate *rate; 1105 struct ieee80211_hdr *hdr; 1106 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 1107 u32 rts_thresh = sc->hw->wiphy->rts_threshold; 1108 int i; 1109 u8 rix = 0; 1110 1111 skb = bf->bf_mpdu; 1112 tx_info = IEEE80211_SKB_CB(skb); 1113 rates = bf->rates; 1114 hdr = (struct ieee80211_hdr *)skb->data; 1115 1116 /* set dur_update_en for l-sig computation except for PS-Poll frames */ 1117 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control); 1118 info->rtscts_rate = fi->rtscts_rate; 1119 1120 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) { 1121 bool is_40, is_sgi, is_sp; 1122 int phy; 1123 1124 if (!rates[i].count || (rates[i].idx < 0)) 1125 continue; 1126 1127 rix = rates[i].idx; 1128 info->rates[i].Tries = rates[i].count; 1129 1130 /* 1131 * Handle RTS threshold for unaggregated HT frames. 1132 */ 1133 if (bf_isampdu(bf) && !bf_isaggr(bf) && 1134 (rates[i].flags & IEEE80211_TX_RC_MCS) && 1135 unlikely(rts_thresh != (u32) -1)) { 1136 if (!rts_thresh || (len > rts_thresh)) 1137 rts = true; 1138 } 1139 1140 if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) { 1141 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1142 info->flags |= ATH9K_TXDESC_RTSENA; 1143 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { 1144 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1145 info->flags |= ATH9K_TXDESC_CTSENA; 1146 } 1147 1148 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 1149 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040; 1150 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 1151 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI; 1152 1153 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI); 1154 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH); 1155 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE); 1156 1157 if (rates[i].flags & IEEE80211_TX_RC_MCS) { 1158 /* MCS rates */ 1159 info->rates[i].Rate = rix | 0x80; 1160 info->rates[i].ChSel = ath_txchainmask_reduction(sc, 1161 ah->txchainmask, info->rates[i].Rate); 1162 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len, 1163 is_40, is_sgi, is_sp); 1164 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC)) 1165 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC; 1166 continue; 1167 } 1168 1169 /* legacy rates */ 1170 rate = &common->sbands[tx_info->band].bitrates[rates[i].idx]; 1171 if ((tx_info->band == IEEE80211_BAND_2GHZ) && 1172 !(rate->flags & IEEE80211_RATE_ERP_G)) 1173 phy = WLAN_RC_PHY_CCK; 1174 else 1175 phy = WLAN_RC_PHY_OFDM; 1176 1177 info->rates[i].Rate = rate->hw_value; 1178 if (rate->hw_value_short) { 1179 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 1180 info->rates[i].Rate |= rate->hw_value_short; 1181 } else { 1182 is_sp = false; 1183 } 1184 1185 if (bf->bf_state.bfs_paprd) 1186 info->rates[i].ChSel = ah->txchainmask; 1187 else 1188 info->rates[i].ChSel = ath_txchainmask_reduction(sc, 1189 ah->txchainmask, info->rates[i].Rate); 1190 1191 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah, 1192 phy, rate->bitrate * 100, len, rix, is_sp); 1193 } 1194 1195 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */ 1196 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit)) 1197 info->flags &= ~ATH9K_TXDESC_RTSENA; 1198 1199 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */ 1200 if (info->flags & ATH9K_TXDESC_RTSENA) 1201 info->flags &= ~ATH9K_TXDESC_CTSENA; 1202 } 1203 1204 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb) 1205 { 1206 struct ieee80211_hdr *hdr; 1207 enum ath9k_pkt_type htype; 1208 __le16 fc; 1209 1210 hdr = (struct ieee80211_hdr *)skb->data; 1211 fc = hdr->frame_control; 1212 1213 if (ieee80211_is_beacon(fc)) 1214 htype = ATH9K_PKT_TYPE_BEACON; 1215 else if (ieee80211_is_probe_resp(fc)) 1216 htype = ATH9K_PKT_TYPE_PROBE_RESP; 1217 else if (ieee80211_is_atim(fc)) 1218 htype = ATH9K_PKT_TYPE_ATIM; 1219 else if (ieee80211_is_pspoll(fc)) 1220 htype = ATH9K_PKT_TYPE_PSPOLL; 1221 else 1222 htype = ATH9K_PKT_TYPE_NORMAL; 1223 1224 return htype; 1225 } 1226 1227 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf, 1228 struct ath_txq *txq, int len) 1229 { 1230 struct ath_hw *ah = sc->sc_ah; 1231 struct ath_buf *bf_first = NULL; 1232 struct ath_tx_info info; 1233 u32 rts_thresh = sc->hw->wiphy->rts_threshold; 1234 bool rts = false; 1235 1236 memset(&info, 0, sizeof(info)); 1237 info.is_first = true; 1238 info.is_last = true; 1239 info.txpower = MAX_RATE_POWER; 1240 info.qcu = txq->axq_qnum; 1241 1242 while (bf) { 1243 struct sk_buff *skb = bf->bf_mpdu; 1244 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1245 struct ath_frame_info *fi = get_frame_info(skb); 1246 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR); 1247 1248 info.type = get_hw_packet_type(skb); 1249 if (bf->bf_next) 1250 info.link = bf->bf_next->bf_daddr; 1251 else 1252 info.link = (sc->tx99_state) ? bf->bf_daddr : 0; 1253 1254 if (!bf_first) { 1255 bf_first = bf; 1256 1257 if (!sc->tx99_state) 1258 info.flags = ATH9K_TXDESC_INTREQ; 1259 if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) || 1260 txq == sc->tx.uapsdq) 1261 info.flags |= ATH9K_TXDESC_CLRDMASK; 1262 1263 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) 1264 info.flags |= ATH9K_TXDESC_NOACK; 1265 if (tx_info->flags & IEEE80211_TX_CTL_LDPC) 1266 info.flags |= ATH9K_TXDESC_LDPC; 1267 1268 if (bf->bf_state.bfs_paprd) 1269 info.flags |= (u32) bf->bf_state.bfs_paprd << 1270 ATH9K_TXDESC_PAPRD_S; 1271 1272 /* 1273 * mac80211 doesn't handle RTS threshold for HT because 1274 * the decision has to be taken based on AMPDU length 1275 * and aggregation is done entirely inside ath9k. 1276 * Set the RTS/CTS flag for the first subframe based 1277 * on the threshold. 1278 */ 1279 if (aggr && (bf == bf_first) && 1280 unlikely(rts_thresh != (u32) -1)) { 1281 /* 1282 * "len" is the size of the entire AMPDU. 1283 */ 1284 if (!rts_thresh || (len > rts_thresh)) 1285 rts = true; 1286 } 1287 1288 if (!aggr) 1289 len = fi->framelen; 1290 1291 ath_buf_set_rate(sc, bf, &info, len, rts); 1292 } 1293 1294 info.buf_addr[0] = bf->bf_buf_addr; 1295 info.buf_len[0] = skb->len; 1296 info.pkt_len = fi->framelen; 1297 info.keyix = fi->keyix; 1298 info.keytype = fi->keytype; 1299 1300 if (aggr) { 1301 if (bf == bf_first) 1302 info.aggr = AGGR_BUF_FIRST; 1303 else if (bf == bf_first->bf_lastbf) 1304 info.aggr = AGGR_BUF_LAST; 1305 else 1306 info.aggr = AGGR_BUF_MIDDLE; 1307 1308 info.ndelim = bf->bf_state.ndelim; 1309 info.aggr_len = len; 1310 } 1311 1312 if (bf == bf_first->bf_lastbf) 1313 bf_first = NULL; 1314 1315 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info); 1316 bf = bf->bf_next; 1317 } 1318 } 1319 1320 static void 1321 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq, 1322 struct ath_atx_tid *tid, struct list_head *bf_q, 1323 struct ath_buf *bf_first, struct sk_buff_head *tid_q) 1324 { 1325 struct ath_buf *bf = bf_first, *bf_prev = NULL; 1326 struct sk_buff *skb; 1327 int nframes = 0; 1328 1329 do { 1330 struct ieee80211_tx_info *tx_info; 1331 skb = bf->bf_mpdu; 1332 1333 nframes++; 1334 __skb_unlink(skb, tid_q); 1335 list_add_tail(&bf->list, bf_q); 1336 if (bf_prev) 1337 bf_prev->bf_next = bf; 1338 bf_prev = bf; 1339 1340 if (nframes >= 2) 1341 break; 1342 1343 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q); 1344 if (!bf) 1345 break; 1346 1347 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1348 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) 1349 break; 1350 1351 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1352 } while (1); 1353 } 1354 1355 static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq, 1356 struct ath_atx_tid *tid, bool *stop) 1357 { 1358 struct ath_buf *bf; 1359 struct ieee80211_tx_info *tx_info; 1360 struct sk_buff_head *tid_q; 1361 struct list_head bf_q; 1362 int aggr_len = 0; 1363 bool aggr, last = true; 1364 1365 if (!ath_tid_has_buffered(tid)) 1366 return false; 1367 1368 INIT_LIST_HEAD(&bf_q); 1369 1370 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q); 1371 if (!bf) 1372 return false; 1373 1374 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1375 aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU); 1376 if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) || 1377 (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) { 1378 *stop = true; 1379 return false; 1380 } 1381 1382 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1383 if (aggr) 1384 last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf, 1385 tid_q, &aggr_len); 1386 else 1387 ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q); 1388 1389 if (list_empty(&bf_q)) 1390 return false; 1391 1392 if (tid->ac->clear_ps_filter || tid->an->no_ps_filter) { 1393 tid->ac->clear_ps_filter = false; 1394 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1395 } 1396 1397 ath_tx_fill_desc(sc, bf, txq, aggr_len); 1398 ath_tx_txqaddbuf(sc, txq, &bf_q, false); 1399 return true; 1400 } 1401 1402 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta, 1403 u16 tid, u16 *ssn) 1404 { 1405 struct ath_atx_tid *txtid; 1406 struct ath_txq *txq; 1407 struct ath_node *an; 1408 u8 density; 1409 1410 an = (struct ath_node *)sta->drv_priv; 1411 txtid = ATH_AN_2_TID(an, tid); 1412 txq = txtid->ac->txq; 1413 1414 ath_txq_lock(sc, txq); 1415 1416 /* update ampdu factor/density, they may have changed. This may happen 1417 * in HT IBSS when a beacon with HT-info is received after the station 1418 * has already been added. 1419 */ 1420 if (sta->ht_cap.ht_supported) { 1421 an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + 1422 sta->ht_cap.ampdu_factor)) - 1; 1423 density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density); 1424 an->mpdudensity = density; 1425 } 1426 1427 /* force sequence number allocation for pending frames */ 1428 ath_tx_tid_change_state(sc, txtid); 1429 1430 txtid->active = true; 1431 *ssn = txtid->seq_start = txtid->seq_next; 1432 txtid->bar_index = -1; 1433 1434 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf)); 1435 txtid->baw_head = txtid->baw_tail = 0; 1436 1437 ath_txq_unlock_complete(sc, txq); 1438 1439 return 0; 1440 } 1441 1442 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid) 1443 { 1444 struct ath_node *an = (struct ath_node *)sta->drv_priv; 1445 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid); 1446 struct ath_txq *txq = txtid->ac->txq; 1447 1448 ath_txq_lock(sc, txq); 1449 txtid->active = false; 1450 ath_tx_flush_tid(sc, txtid); 1451 ath_tx_tid_change_state(sc, txtid); 1452 ath_txq_unlock_complete(sc, txq); 1453 } 1454 1455 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc, 1456 struct ath_node *an) 1457 { 1458 struct ath_atx_tid *tid; 1459 struct ath_atx_ac *ac; 1460 struct ath_txq *txq; 1461 bool buffered; 1462 int tidno; 1463 1464 for (tidno = 0, tid = &an->tid[tidno]; 1465 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) { 1466 1467 ac = tid->ac; 1468 txq = ac->txq; 1469 1470 ath_txq_lock(sc, txq); 1471 1472 if (!tid->sched) { 1473 ath_txq_unlock(sc, txq); 1474 continue; 1475 } 1476 1477 buffered = ath_tid_has_buffered(tid); 1478 1479 tid->sched = false; 1480 list_del(&tid->list); 1481 1482 if (ac->sched) { 1483 ac->sched = false; 1484 list_del(&ac->list); 1485 } 1486 1487 ath_txq_unlock(sc, txq); 1488 1489 ieee80211_sta_set_buffered(sta, tidno, buffered); 1490 } 1491 } 1492 1493 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an) 1494 { 1495 struct ath_atx_tid *tid; 1496 struct ath_atx_ac *ac; 1497 struct ath_txq *txq; 1498 int tidno; 1499 1500 for (tidno = 0, tid = &an->tid[tidno]; 1501 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) { 1502 1503 ac = tid->ac; 1504 txq = ac->txq; 1505 1506 ath_txq_lock(sc, txq); 1507 ac->clear_ps_filter = true; 1508 1509 if (ath_tid_has_buffered(tid)) { 1510 ath_tx_queue_tid(sc, txq, tid); 1511 ath_txq_schedule(sc, txq); 1512 } 1513 1514 ath_txq_unlock_complete(sc, txq); 1515 } 1516 } 1517 1518 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, 1519 u16 tidno) 1520 { 1521 struct ath_atx_tid *tid; 1522 struct ath_node *an; 1523 struct ath_txq *txq; 1524 1525 an = (struct ath_node *)sta->drv_priv; 1526 tid = ATH_AN_2_TID(an, tidno); 1527 txq = tid->ac->txq; 1528 1529 ath_txq_lock(sc, txq); 1530 1531 tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor; 1532 1533 if (ath_tid_has_buffered(tid)) { 1534 ath_tx_queue_tid(sc, txq, tid); 1535 ath_txq_schedule(sc, txq); 1536 } 1537 1538 ath_txq_unlock_complete(sc, txq); 1539 } 1540 1541 void ath9k_release_buffered_frames(struct ieee80211_hw *hw, 1542 struct ieee80211_sta *sta, 1543 u16 tids, int nframes, 1544 enum ieee80211_frame_release_type reason, 1545 bool more_data) 1546 { 1547 struct ath_softc *sc = hw->priv; 1548 struct ath_node *an = (struct ath_node *)sta->drv_priv; 1549 struct ath_txq *txq = sc->tx.uapsdq; 1550 struct ieee80211_tx_info *info; 1551 struct list_head bf_q; 1552 struct ath_buf *bf_tail = NULL, *bf; 1553 struct sk_buff_head *tid_q; 1554 int sent = 0; 1555 int i; 1556 1557 INIT_LIST_HEAD(&bf_q); 1558 for (i = 0; tids && nframes; i++, tids >>= 1) { 1559 struct ath_atx_tid *tid; 1560 1561 if (!(tids & 1)) 1562 continue; 1563 1564 tid = ATH_AN_2_TID(an, i); 1565 1566 ath_txq_lock(sc, tid->ac->txq); 1567 while (nframes > 0) { 1568 bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q); 1569 if (!bf) 1570 break; 1571 1572 __skb_unlink(bf->bf_mpdu, tid_q); 1573 list_add_tail(&bf->list, &bf_q); 1574 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1575 if (bf_isampdu(bf)) { 1576 ath_tx_addto_baw(sc, tid, bf); 1577 bf->bf_state.bf_type &= ~BUF_AGGR; 1578 } 1579 if (bf_tail) 1580 bf_tail->bf_next = bf; 1581 1582 bf_tail = bf; 1583 nframes--; 1584 sent++; 1585 TX_STAT_INC(txq->axq_qnum, a_queued_hw); 1586 1587 if (an->sta && !ath_tid_has_buffered(tid)) 1588 ieee80211_sta_set_buffered(an->sta, i, false); 1589 } 1590 ath_txq_unlock_complete(sc, tid->ac->txq); 1591 } 1592 1593 if (list_empty(&bf_q)) 1594 return; 1595 1596 info = IEEE80211_SKB_CB(bf_tail->bf_mpdu); 1597 info->flags |= IEEE80211_TX_STATUS_EOSP; 1598 1599 bf = list_first_entry(&bf_q, struct ath_buf, list); 1600 ath_txq_lock(sc, txq); 1601 ath_tx_fill_desc(sc, bf, txq, 0); 1602 ath_tx_txqaddbuf(sc, txq, &bf_q, false); 1603 ath_txq_unlock(sc, txq); 1604 } 1605 1606 /********************/ 1607 /* Queue Management */ 1608 /********************/ 1609 1610 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 1611 { 1612 struct ath_hw *ah = sc->sc_ah; 1613 struct ath9k_tx_queue_info qi; 1614 static const int subtype_txq_to_hwq[] = { 1615 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE, 1616 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK, 1617 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI, 1618 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO, 1619 }; 1620 int axq_qnum, i; 1621 1622 memset(&qi, 0, sizeof(qi)); 1623 qi.tqi_subtype = subtype_txq_to_hwq[subtype]; 1624 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT; 1625 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT; 1626 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT; 1627 qi.tqi_physCompBuf = 0; 1628 1629 /* 1630 * Enable interrupts only for EOL and DESC conditions. 1631 * We mark tx descriptors to receive a DESC interrupt 1632 * when a tx queue gets deep; otherwise waiting for the 1633 * EOL to reap descriptors. Note that this is done to 1634 * reduce interrupt load and this only defers reaping 1635 * descriptors, never transmitting frames. Aside from 1636 * reducing interrupts this also permits more concurrency. 1637 * The only potential downside is if the tx queue backs 1638 * up in which case the top half of the kernel may backup 1639 * due to a lack of tx descriptors. 1640 * 1641 * The UAPSD queue is an exception, since we take a desc- 1642 * based intr on the EOSP frames. 1643 */ 1644 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1645 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE; 1646 } else { 1647 if (qtype == ATH9K_TX_QUEUE_UAPSD) 1648 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE; 1649 else 1650 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | 1651 TXQ_FLAG_TXDESCINT_ENABLE; 1652 } 1653 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi); 1654 if (axq_qnum == -1) { 1655 /* 1656 * NB: don't print a message, this happens 1657 * normally on parts with too few tx queues 1658 */ 1659 return NULL; 1660 } 1661 if (!ATH_TXQ_SETUP(sc, axq_qnum)) { 1662 struct ath_txq *txq = &sc->tx.txq[axq_qnum]; 1663 1664 txq->axq_qnum = axq_qnum; 1665 txq->mac80211_qnum = -1; 1666 txq->axq_link = NULL; 1667 __skb_queue_head_init(&txq->complete_q); 1668 INIT_LIST_HEAD(&txq->axq_q); 1669 spin_lock_init(&txq->axq_lock); 1670 txq->axq_depth = 0; 1671 txq->axq_ampdu_depth = 0; 1672 txq->axq_tx_inprogress = false; 1673 sc->tx.txqsetup |= 1<<axq_qnum; 1674 1675 txq->txq_headidx = txq->txq_tailidx = 0; 1676 for (i = 0; i < ATH_TXFIFO_DEPTH; i++) 1677 INIT_LIST_HEAD(&txq->txq_fifo[i]); 1678 } 1679 return &sc->tx.txq[axq_qnum]; 1680 } 1681 1682 int ath_txq_update(struct ath_softc *sc, int qnum, 1683 struct ath9k_tx_queue_info *qinfo) 1684 { 1685 struct ath_hw *ah = sc->sc_ah; 1686 int error = 0; 1687 struct ath9k_tx_queue_info qi; 1688 1689 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum); 1690 1691 ath9k_hw_get_txq_props(ah, qnum, &qi); 1692 qi.tqi_aifs = qinfo->tqi_aifs; 1693 qi.tqi_cwmin = qinfo->tqi_cwmin; 1694 qi.tqi_cwmax = qinfo->tqi_cwmax; 1695 qi.tqi_burstTime = qinfo->tqi_burstTime; 1696 qi.tqi_readyTime = qinfo->tqi_readyTime; 1697 1698 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) { 1699 ath_err(ath9k_hw_common(sc->sc_ah), 1700 "Unable to update hardware queue %u!\n", qnum); 1701 error = -EIO; 1702 } else { 1703 ath9k_hw_resettxqueue(ah, qnum); 1704 } 1705 1706 return error; 1707 } 1708 1709 int ath_cabq_update(struct ath_softc *sc) 1710 { 1711 struct ath9k_tx_queue_info qi; 1712 struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon; 1713 int qnum = sc->beacon.cabq->axq_qnum; 1714 1715 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi); 1716 1717 qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) * 1718 ATH_CABQ_READY_TIME) / 100; 1719 ath_txq_update(sc, qnum, &qi); 1720 1721 return 0; 1722 } 1723 1724 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq, 1725 struct list_head *list) 1726 { 1727 struct ath_buf *bf, *lastbf; 1728 struct list_head bf_head; 1729 struct ath_tx_status ts; 1730 1731 memset(&ts, 0, sizeof(ts)); 1732 ts.ts_status = ATH9K_TX_FLUSH; 1733 INIT_LIST_HEAD(&bf_head); 1734 1735 while (!list_empty(list)) { 1736 bf = list_first_entry(list, struct ath_buf, list); 1737 1738 if (bf->bf_state.stale) { 1739 list_del(&bf->list); 1740 1741 ath_tx_return_buffer(sc, bf); 1742 continue; 1743 } 1744 1745 lastbf = bf->bf_lastbf; 1746 list_cut_position(&bf_head, list, &lastbf->list); 1747 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 1748 } 1749 } 1750 1751 /* 1752 * Drain a given TX queue (could be Beacon or Data) 1753 * 1754 * This assumes output has been stopped and 1755 * we do not need to block ath_tx_tasklet. 1756 */ 1757 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq) 1758 { 1759 ath_txq_lock(sc, txq); 1760 1761 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1762 int idx = txq->txq_tailidx; 1763 1764 while (!list_empty(&txq->txq_fifo[idx])) { 1765 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]); 1766 1767 INCR(idx, ATH_TXFIFO_DEPTH); 1768 } 1769 txq->txq_tailidx = idx; 1770 } 1771 1772 txq->axq_link = NULL; 1773 txq->axq_tx_inprogress = false; 1774 ath_drain_txq_list(sc, txq, &txq->axq_q); 1775 1776 ath_txq_unlock_complete(sc, txq); 1777 } 1778 1779 bool ath_drain_all_txq(struct ath_softc *sc) 1780 { 1781 struct ath_hw *ah = sc->sc_ah; 1782 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1783 struct ath_txq *txq; 1784 int i; 1785 u32 npend = 0; 1786 1787 if (test_bit(ATH_OP_INVALID, &common->op_flags)) 1788 return true; 1789 1790 ath9k_hw_abort_tx_dma(ah); 1791 1792 /* Check if any queue remains active */ 1793 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1794 if (!ATH_TXQ_SETUP(sc, i)) 1795 continue; 1796 1797 if (!sc->tx.txq[i].axq_depth) 1798 continue; 1799 1800 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum)) 1801 npend |= BIT(i); 1802 } 1803 1804 if (npend) 1805 ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend); 1806 1807 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1808 if (!ATH_TXQ_SETUP(sc, i)) 1809 continue; 1810 1811 /* 1812 * The caller will resume queues with ieee80211_wake_queues. 1813 * Mark the queue as not stopped to prevent ath_tx_complete 1814 * from waking the queue too early. 1815 */ 1816 txq = &sc->tx.txq[i]; 1817 txq->stopped = false; 1818 ath_draintxq(sc, txq); 1819 } 1820 1821 return !npend; 1822 } 1823 1824 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 1825 { 1826 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum); 1827 sc->tx.txqsetup &= ~(1<<txq->axq_qnum); 1828 } 1829 1830 /* For each acq entry, for each tid, try to schedule packets 1831 * for transmit until ampdu_depth has reached min Q depth. 1832 */ 1833 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq) 1834 { 1835 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1836 struct ath_atx_ac *ac, *last_ac; 1837 struct ath_atx_tid *tid, *last_tid; 1838 struct list_head *ac_list; 1839 bool sent = false; 1840 1841 if (txq->mac80211_qnum < 0) 1842 return; 1843 1844 if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) 1845 return; 1846 1847 spin_lock_bh(&sc->chan_lock); 1848 ac_list = &sc->cur_chan->acq[txq->mac80211_qnum]; 1849 1850 if (list_empty(ac_list)) { 1851 spin_unlock_bh(&sc->chan_lock); 1852 return; 1853 } 1854 1855 rcu_read_lock(); 1856 1857 last_ac = list_entry(ac_list->prev, struct ath_atx_ac, list); 1858 while (!list_empty(ac_list)) { 1859 bool stop = false; 1860 1861 if (sc->cur_chan->stopped) 1862 break; 1863 1864 ac = list_first_entry(ac_list, struct ath_atx_ac, list); 1865 last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list); 1866 list_del(&ac->list); 1867 ac->sched = false; 1868 1869 while (!list_empty(&ac->tid_q)) { 1870 1871 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, 1872 list); 1873 list_del(&tid->list); 1874 tid->sched = false; 1875 1876 if (ath_tx_sched_aggr(sc, txq, tid, &stop)) 1877 sent = true; 1878 1879 /* 1880 * add tid to round-robin queue if more frames 1881 * are pending for the tid 1882 */ 1883 if (ath_tid_has_buffered(tid)) 1884 ath_tx_queue_tid(sc, txq, tid); 1885 1886 if (stop || tid == last_tid) 1887 break; 1888 } 1889 1890 if (!list_empty(&ac->tid_q) && !ac->sched) { 1891 ac->sched = true; 1892 list_add_tail(&ac->list, ac_list); 1893 } 1894 1895 if (stop) 1896 break; 1897 1898 if (ac == last_ac) { 1899 if (!sent) 1900 break; 1901 1902 sent = false; 1903 last_ac = list_entry(ac_list->prev, 1904 struct ath_atx_ac, list); 1905 } 1906 } 1907 1908 rcu_read_unlock(); 1909 spin_unlock_bh(&sc->chan_lock); 1910 } 1911 1912 void ath_txq_schedule_all(struct ath_softc *sc) 1913 { 1914 struct ath_txq *txq; 1915 int i; 1916 1917 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 1918 txq = sc->tx.txq_map[i]; 1919 1920 spin_lock_bh(&txq->axq_lock); 1921 ath_txq_schedule(sc, txq); 1922 spin_unlock_bh(&txq->axq_lock); 1923 } 1924 } 1925 1926 /***********/ 1927 /* TX, DMA */ 1928 /***********/ 1929 1930 /* 1931 * Insert a chain of ath_buf (descriptors) on a txq and 1932 * assume the descriptors are already chained together by caller. 1933 */ 1934 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 1935 struct list_head *head, bool internal) 1936 { 1937 struct ath_hw *ah = sc->sc_ah; 1938 struct ath_common *common = ath9k_hw_common(ah); 1939 struct ath_buf *bf, *bf_last; 1940 bool puttxbuf = false; 1941 bool edma; 1942 1943 /* 1944 * Insert the frame on the outbound list and 1945 * pass it on to the hardware. 1946 */ 1947 1948 if (list_empty(head)) 1949 return; 1950 1951 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA); 1952 bf = list_first_entry(head, struct ath_buf, list); 1953 bf_last = list_entry(head->prev, struct ath_buf, list); 1954 1955 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n", 1956 txq->axq_qnum, txq->axq_depth); 1957 1958 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) { 1959 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]); 1960 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH); 1961 puttxbuf = true; 1962 } else { 1963 list_splice_tail_init(head, &txq->axq_q); 1964 1965 if (txq->axq_link) { 1966 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr); 1967 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n", 1968 txq->axq_qnum, txq->axq_link, 1969 ito64(bf->bf_daddr), bf->bf_desc); 1970 } else if (!edma) 1971 puttxbuf = true; 1972 1973 txq->axq_link = bf_last->bf_desc; 1974 } 1975 1976 if (puttxbuf) { 1977 TX_STAT_INC(txq->axq_qnum, puttxbuf); 1978 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 1979 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n", 1980 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc); 1981 } 1982 1983 if (!edma || sc->tx99_state) { 1984 TX_STAT_INC(txq->axq_qnum, txstart); 1985 ath9k_hw_txstart(ah, txq->axq_qnum); 1986 } 1987 1988 if (!internal) { 1989 while (bf) { 1990 txq->axq_depth++; 1991 if (bf_is_ampdu_not_probing(bf)) 1992 txq->axq_ampdu_depth++; 1993 1994 bf_last = bf->bf_lastbf; 1995 bf = bf_last->bf_next; 1996 bf_last->bf_next = NULL; 1997 } 1998 } 1999 } 2000 2001 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 2002 struct ath_atx_tid *tid, struct sk_buff *skb) 2003 { 2004 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2005 struct ath_frame_info *fi = get_frame_info(skb); 2006 struct list_head bf_head; 2007 struct ath_buf *bf = fi->bf; 2008 2009 INIT_LIST_HEAD(&bf_head); 2010 list_add_tail(&bf->list, &bf_head); 2011 bf->bf_state.bf_type = 0; 2012 if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) { 2013 bf->bf_state.bf_type = BUF_AMPDU; 2014 ath_tx_addto_baw(sc, tid, bf); 2015 } 2016 2017 bf->bf_next = NULL; 2018 bf->bf_lastbf = bf; 2019 ath_tx_fill_desc(sc, bf, txq, fi->framelen); 2020 ath_tx_txqaddbuf(sc, txq, &bf_head, false); 2021 TX_STAT_INC(txq->axq_qnum, queued); 2022 } 2023 2024 static void setup_frame_info(struct ieee80211_hw *hw, 2025 struct ieee80211_sta *sta, 2026 struct sk_buff *skb, 2027 int framelen) 2028 { 2029 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2030 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key; 2031 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2032 const struct ieee80211_rate *rate; 2033 struct ath_frame_info *fi = get_frame_info(skb); 2034 struct ath_node *an = NULL; 2035 enum ath9k_key_type keytype; 2036 bool short_preamble = false; 2037 2038 /* 2039 * We check if Short Preamble is needed for the CTS rate by 2040 * checking the BSS's global flag. 2041 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used. 2042 */ 2043 if (tx_info->control.vif && 2044 tx_info->control.vif->bss_conf.use_short_preamble) 2045 short_preamble = true; 2046 2047 rate = ieee80211_get_rts_cts_rate(hw, tx_info); 2048 keytype = ath9k_cmn_get_hw_crypto_keytype(skb); 2049 2050 if (sta) 2051 an = (struct ath_node *) sta->drv_priv; 2052 2053 memset(fi, 0, sizeof(*fi)); 2054 fi->txq = -1; 2055 if (hw_key) 2056 fi->keyix = hw_key->hw_key_idx; 2057 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0) 2058 fi->keyix = an->ps_key; 2059 else 2060 fi->keyix = ATH9K_TXKEYIX_INVALID; 2061 fi->keytype = keytype; 2062 fi->framelen = framelen; 2063 2064 if (!rate) 2065 return; 2066 fi->rtscts_rate = rate->hw_value; 2067 if (short_preamble) 2068 fi->rtscts_rate |= rate->hw_value_short; 2069 } 2070 2071 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate) 2072 { 2073 struct ath_hw *ah = sc->sc_ah; 2074 struct ath9k_channel *curchan = ah->curchan; 2075 2076 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) && 2077 (chainmask == 0x7) && (rate < 0x90)) 2078 return 0x3; 2079 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) && 2080 IS_CCK_RATE(rate)) 2081 return 0x2; 2082 else 2083 return chainmask; 2084 } 2085 2086 /* 2087 * Assign a descriptor (and sequence number if necessary, 2088 * and map buffer for DMA. Frees skb on error 2089 */ 2090 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, 2091 struct ath_txq *txq, 2092 struct ath_atx_tid *tid, 2093 struct sk_buff *skb) 2094 { 2095 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2096 struct ath_frame_info *fi = get_frame_info(skb); 2097 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2098 struct ath_buf *bf; 2099 int fragno; 2100 u16 seqno; 2101 2102 bf = ath_tx_get_buffer(sc); 2103 if (!bf) { 2104 ath_dbg(common, XMIT, "TX buffers are full\n"); 2105 return NULL; 2106 } 2107 2108 ATH_TXBUF_RESET(bf); 2109 2110 if (tid && ieee80211_is_data_present(hdr->frame_control)) { 2111 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG; 2112 seqno = tid->seq_next; 2113 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT); 2114 2115 if (fragno) 2116 hdr->seq_ctrl |= cpu_to_le16(fragno); 2117 2118 if (!ieee80211_has_morefrags(hdr->frame_control)) 2119 INCR(tid->seq_next, IEEE80211_SEQ_MAX); 2120 2121 bf->bf_state.seqno = seqno; 2122 } 2123 2124 bf->bf_mpdu = skb; 2125 2126 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 2127 skb->len, DMA_TO_DEVICE); 2128 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) { 2129 bf->bf_mpdu = NULL; 2130 bf->bf_buf_addr = 0; 2131 ath_err(ath9k_hw_common(sc->sc_ah), 2132 "dma_mapping_error() on TX\n"); 2133 ath_tx_return_buffer(sc, bf); 2134 return NULL; 2135 } 2136 2137 fi->bf = bf; 2138 2139 return bf; 2140 } 2141 2142 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb) 2143 { 2144 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2145 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2146 struct ieee80211_vif *vif = info->control.vif; 2147 struct ath_vif *avp; 2148 2149 if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)) 2150 return; 2151 2152 if (!vif) 2153 return; 2154 2155 avp = (struct ath_vif *)vif->drv_priv; 2156 2157 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) 2158 avp->seq_no += 0x10; 2159 2160 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); 2161 hdr->seq_ctrl |= cpu_to_le16(avp->seq_no); 2162 } 2163 2164 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb, 2165 struct ath_tx_control *txctl) 2166 { 2167 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2168 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2169 struct ieee80211_sta *sta = txctl->sta; 2170 struct ieee80211_vif *vif = info->control.vif; 2171 struct ath_vif *avp; 2172 struct ath_softc *sc = hw->priv; 2173 int frmlen = skb->len + FCS_LEN; 2174 int padpos, padsize; 2175 2176 /* NOTE: sta can be NULL according to net/mac80211.h */ 2177 if (sta) 2178 txctl->an = (struct ath_node *)sta->drv_priv; 2179 else if (vif && ieee80211_is_data(hdr->frame_control)) { 2180 avp = (void *)vif->drv_priv; 2181 txctl->an = &avp->mcast_node; 2182 } 2183 2184 if (info->control.hw_key) 2185 frmlen += info->control.hw_key->icv_len; 2186 2187 ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb); 2188 2189 if ((vif && vif->type != NL80211_IFTYPE_AP && 2190 vif->type != NL80211_IFTYPE_AP_VLAN) || 2191 !ieee80211_is_data(hdr->frame_control)) 2192 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 2193 2194 /* Add the padding after the header if this is not already done */ 2195 padpos = ieee80211_hdrlen(hdr->frame_control); 2196 padsize = padpos & 3; 2197 if (padsize && skb->len > padpos) { 2198 if (skb_headroom(skb) < padsize) 2199 return -ENOMEM; 2200 2201 skb_push(skb, padsize); 2202 memmove(skb->data, skb->data + padsize, padpos); 2203 } 2204 2205 setup_frame_info(hw, sta, skb, frmlen); 2206 return 0; 2207 } 2208 2209 2210 /* Upon failure caller should free skb */ 2211 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb, 2212 struct ath_tx_control *txctl) 2213 { 2214 struct ieee80211_hdr *hdr; 2215 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2216 struct ieee80211_sta *sta = txctl->sta; 2217 struct ieee80211_vif *vif = info->control.vif; 2218 struct ath_frame_info *fi = get_frame_info(skb); 2219 struct ath_vif *avp = NULL; 2220 struct ath_softc *sc = hw->priv; 2221 struct ath_txq *txq = txctl->txq; 2222 struct ath_atx_tid *tid = NULL; 2223 struct ath_buf *bf; 2224 bool queue, skip_uapsd = false; 2225 int q, ret; 2226 2227 if (vif) 2228 avp = (void *)vif->drv_priv; 2229 2230 if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) 2231 txctl->force_channel = true; 2232 2233 ret = ath_tx_prepare(hw, skb, txctl); 2234 if (ret) 2235 return ret; 2236 2237 hdr = (struct ieee80211_hdr *) skb->data; 2238 /* 2239 * At this point, the vif, hw_key and sta pointers in the tx control 2240 * info are no longer valid (overwritten by the ath_frame_info data. 2241 */ 2242 2243 q = skb_get_queue_mapping(skb); 2244 2245 ath_txq_lock(sc, txq); 2246 if (txq == sc->tx.txq_map[q]) { 2247 fi->txq = q; 2248 if (++txq->pending_frames > sc->tx.txq_max_pending[q] && 2249 !txq->stopped) { 2250 ieee80211_stop_queue(sc->hw, info->hw_queue); 2251 txq->stopped = true; 2252 } 2253 } 2254 2255 queue = ieee80211_is_data_present(hdr->frame_control); 2256 2257 /* Force queueing of all frames that belong to a virtual interface on 2258 * a different channel context, to ensure that they are sent on the 2259 * correct channel. 2260 */ 2261 if (((avp && avp->chanctx != sc->cur_chan) || 2262 sc->cur_chan->stopped) && !txctl->force_channel) { 2263 if (!txctl->an) 2264 txctl->an = &avp->mcast_node; 2265 queue = true; 2266 skip_uapsd = true; 2267 } 2268 2269 if (txctl->an && queue) 2270 tid = ath_get_skb_tid(sc, txctl->an, skb); 2271 2272 if (!skip_uapsd && (info->flags & IEEE80211_TX_CTL_PS_RESPONSE)) { 2273 ath_txq_unlock(sc, txq); 2274 txq = sc->tx.uapsdq; 2275 ath_txq_lock(sc, txq); 2276 } else if (txctl->an && queue) { 2277 WARN_ON(tid->ac->txq != txctl->txq); 2278 2279 if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) 2280 tid->ac->clear_ps_filter = true; 2281 2282 /* 2283 * Add this frame to software queue for scheduling later 2284 * for aggregation. 2285 */ 2286 TX_STAT_INC(txq->axq_qnum, a_queued_sw); 2287 __skb_queue_tail(&tid->buf_q, skb); 2288 if (!txctl->an->sleeping) 2289 ath_tx_queue_tid(sc, txq, tid); 2290 2291 ath_txq_schedule(sc, txq); 2292 goto out; 2293 } 2294 2295 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 2296 if (!bf) { 2297 ath_txq_skb_done(sc, txq, skb); 2298 if (txctl->paprd) 2299 dev_kfree_skb_any(skb); 2300 else 2301 ieee80211_free_txskb(sc->hw, skb); 2302 goto out; 2303 } 2304 2305 bf->bf_state.bfs_paprd = txctl->paprd; 2306 2307 if (txctl->paprd) 2308 bf->bf_state.bfs_paprd_timestamp = jiffies; 2309 2310 ath_set_rates(vif, sta, bf); 2311 ath_tx_send_normal(sc, txq, tid, skb); 2312 2313 out: 2314 ath_txq_unlock(sc, txq); 2315 2316 return 0; 2317 } 2318 2319 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2320 struct sk_buff *skb) 2321 { 2322 struct ath_softc *sc = hw->priv; 2323 struct ath_tx_control txctl = { 2324 .txq = sc->beacon.cabq 2325 }; 2326 struct ath_tx_info info = {}; 2327 struct ieee80211_hdr *hdr; 2328 struct ath_buf *bf_tail = NULL; 2329 struct ath_buf *bf; 2330 LIST_HEAD(bf_q); 2331 int duration = 0; 2332 int max_duration; 2333 2334 max_duration = 2335 sc->cur_chan->beacon.beacon_interval * 1000 * 2336 sc->cur_chan->beacon.dtim_period / ATH_BCBUF; 2337 2338 do { 2339 struct ath_frame_info *fi = get_frame_info(skb); 2340 2341 if (ath_tx_prepare(hw, skb, &txctl)) 2342 break; 2343 2344 bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb); 2345 if (!bf) 2346 break; 2347 2348 bf->bf_lastbf = bf; 2349 ath_set_rates(vif, NULL, bf); 2350 ath_buf_set_rate(sc, bf, &info, fi->framelen, false); 2351 duration += info.rates[0].PktDuration; 2352 if (bf_tail) 2353 bf_tail->bf_next = bf; 2354 2355 list_add_tail(&bf->list, &bf_q); 2356 bf_tail = bf; 2357 skb = NULL; 2358 2359 if (duration > max_duration) 2360 break; 2361 2362 skb = ieee80211_get_buffered_bc(hw, vif); 2363 } while(skb); 2364 2365 if (skb) 2366 ieee80211_free_txskb(hw, skb); 2367 2368 if (list_empty(&bf_q)) 2369 return; 2370 2371 bf = list_first_entry(&bf_q, struct ath_buf, list); 2372 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data; 2373 2374 if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) { 2375 hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA; 2376 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 2377 sizeof(*hdr), DMA_TO_DEVICE); 2378 } 2379 2380 ath_txq_lock(sc, txctl.txq); 2381 ath_tx_fill_desc(sc, bf, txctl.txq, 0); 2382 ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false); 2383 TX_STAT_INC(txctl.txq->axq_qnum, queued); 2384 ath_txq_unlock(sc, txctl.txq); 2385 } 2386 2387 /*****************/ 2388 /* TX Completion */ 2389 /*****************/ 2390 2391 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, 2392 int tx_flags, struct ath_txq *txq) 2393 { 2394 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2395 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2396 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data; 2397 int padpos, padsize; 2398 unsigned long flags; 2399 2400 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb); 2401 2402 if (sc->sc_ah->caldata) 2403 set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags); 2404 2405 if (!(tx_flags & ATH_TX_ERROR)) 2406 /* Frame was ACKed */ 2407 tx_info->flags |= IEEE80211_TX_STAT_ACK; 2408 2409 padpos = ieee80211_hdrlen(hdr->frame_control); 2410 padsize = padpos & 3; 2411 if (padsize && skb->len>padpos+padsize) { 2412 /* 2413 * Remove MAC header padding before giving the frame back to 2414 * mac80211. 2415 */ 2416 memmove(skb->data + padsize, skb->data, padpos); 2417 skb_pull(skb, padsize); 2418 } 2419 2420 spin_lock_irqsave(&sc->sc_pm_lock, flags); 2421 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) { 2422 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK; 2423 ath_dbg(common, PS, 2424 "Going back to sleep after having received TX status (0x%lx)\n", 2425 sc->ps_flags & (PS_WAIT_FOR_BEACON | 2426 PS_WAIT_FOR_CAB | 2427 PS_WAIT_FOR_PSPOLL_DATA | 2428 PS_WAIT_FOR_TX_ACK)); 2429 } 2430 spin_unlock_irqrestore(&sc->sc_pm_lock, flags); 2431 2432 __skb_queue_tail(&txq->complete_q, skb); 2433 ath_txq_skb_done(sc, txq, skb); 2434 } 2435 2436 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 2437 struct ath_txq *txq, struct list_head *bf_q, 2438 struct ath_tx_status *ts, int txok) 2439 { 2440 struct sk_buff *skb = bf->bf_mpdu; 2441 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2442 unsigned long flags; 2443 int tx_flags = 0; 2444 2445 if (!txok) 2446 tx_flags |= ATH_TX_ERROR; 2447 2448 if (ts->ts_status & ATH9K_TXERR_FILT) 2449 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; 2450 2451 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE); 2452 bf->bf_buf_addr = 0; 2453 if (sc->tx99_state) 2454 goto skip_tx_complete; 2455 2456 if (bf->bf_state.bfs_paprd) { 2457 if (time_after(jiffies, 2458 bf->bf_state.bfs_paprd_timestamp + 2459 msecs_to_jiffies(ATH_PAPRD_TIMEOUT))) 2460 dev_kfree_skb_any(skb); 2461 else 2462 complete(&sc->paprd_complete); 2463 } else { 2464 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags); 2465 ath_tx_complete(sc, skb, tx_flags, txq); 2466 } 2467 skip_tx_complete: 2468 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't 2469 * accidentally reference it later. 2470 */ 2471 bf->bf_mpdu = NULL; 2472 2473 /* 2474 * Return the list of ath_buf of this mpdu to free queue 2475 */ 2476 spin_lock_irqsave(&sc->tx.txbuflock, flags); 2477 list_splice_tail_init(bf_q, &sc->tx.txbuf); 2478 spin_unlock_irqrestore(&sc->tx.txbuflock, flags); 2479 } 2480 2481 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 2482 struct ath_tx_status *ts, int nframes, int nbad, 2483 int txok) 2484 { 2485 struct sk_buff *skb = bf->bf_mpdu; 2486 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2487 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2488 struct ieee80211_hw *hw = sc->hw; 2489 struct ath_hw *ah = sc->sc_ah; 2490 u8 i, tx_rateindex; 2491 2492 if (txok) 2493 tx_info->status.ack_signal = ts->ts_rssi; 2494 2495 tx_rateindex = ts->ts_rateindex; 2496 WARN_ON(tx_rateindex >= hw->max_rates); 2497 2498 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 2499 tx_info->flags |= IEEE80211_TX_STAT_AMPDU; 2500 2501 BUG_ON(nbad > nframes); 2502 } 2503 tx_info->status.ampdu_len = nframes; 2504 tx_info->status.ampdu_ack_len = nframes - nbad; 2505 2506 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 && 2507 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) { 2508 /* 2509 * If an underrun error is seen assume it as an excessive 2510 * retry only if max frame trigger level has been reached 2511 * (2 KB for single stream, and 4 KB for dual stream). 2512 * Adjust the long retry as if the frame was tried 2513 * hw->max_rate_tries times to affect how rate control updates 2514 * PER for the failed rate. 2515 * In case of congestion on the bus penalizing this type of 2516 * underruns should help hardware actually transmit new frames 2517 * successfully by eventually preferring slower rates. 2518 * This itself should also alleviate congestion on the bus. 2519 */ 2520 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN | 2521 ATH9K_TX_DELIM_UNDERRUN)) && 2522 ieee80211_is_data(hdr->frame_control) && 2523 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level) 2524 tx_info->status.rates[tx_rateindex].count = 2525 hw->max_rate_tries; 2526 } 2527 2528 for (i = tx_rateindex + 1; i < hw->max_rates; i++) { 2529 tx_info->status.rates[i].count = 0; 2530 tx_info->status.rates[i].idx = -1; 2531 } 2532 2533 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1; 2534 } 2535 2536 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 2537 { 2538 struct ath_hw *ah = sc->sc_ah; 2539 struct ath_common *common = ath9k_hw_common(ah); 2540 struct ath_buf *bf, *lastbf, *bf_held = NULL; 2541 struct list_head bf_head; 2542 struct ath_desc *ds; 2543 struct ath_tx_status ts; 2544 int status; 2545 2546 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n", 2547 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum), 2548 txq->axq_link); 2549 2550 ath_txq_lock(sc, txq); 2551 for (;;) { 2552 if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) 2553 break; 2554 2555 if (list_empty(&txq->axq_q)) { 2556 txq->axq_link = NULL; 2557 ath_txq_schedule(sc, txq); 2558 break; 2559 } 2560 bf = list_first_entry(&txq->axq_q, struct ath_buf, list); 2561 2562 /* 2563 * There is a race condition that a BH gets scheduled 2564 * after sw writes TxE and before hw re-load the last 2565 * descriptor to get the newly chained one. 2566 * Software must keep the last DONE descriptor as a 2567 * holding descriptor - software does so by marking 2568 * it with the STALE flag. 2569 */ 2570 bf_held = NULL; 2571 if (bf->bf_state.stale) { 2572 bf_held = bf; 2573 if (list_is_last(&bf_held->list, &txq->axq_q)) 2574 break; 2575 2576 bf = list_entry(bf_held->list.next, struct ath_buf, 2577 list); 2578 } 2579 2580 lastbf = bf->bf_lastbf; 2581 ds = lastbf->bf_desc; 2582 2583 memset(&ts, 0, sizeof(ts)); 2584 status = ath9k_hw_txprocdesc(ah, ds, &ts); 2585 if (status == -EINPROGRESS) 2586 break; 2587 2588 TX_STAT_INC(txq->axq_qnum, txprocdesc); 2589 2590 /* 2591 * Remove ath_buf's of the same transmit unit from txq, 2592 * however leave the last descriptor back as the holding 2593 * descriptor for hw. 2594 */ 2595 lastbf->bf_state.stale = true; 2596 INIT_LIST_HEAD(&bf_head); 2597 if (!list_is_singular(&lastbf->list)) 2598 list_cut_position(&bf_head, 2599 &txq->axq_q, lastbf->list.prev); 2600 2601 if (bf_held) { 2602 list_del(&bf_held->list); 2603 ath_tx_return_buffer(sc, bf_held); 2604 } 2605 2606 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2607 } 2608 ath_txq_unlock_complete(sc, txq); 2609 } 2610 2611 void ath_tx_tasklet(struct ath_softc *sc) 2612 { 2613 struct ath_hw *ah = sc->sc_ah; 2614 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs; 2615 int i; 2616 2617 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 2618 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i))) 2619 ath_tx_processq(sc, &sc->tx.txq[i]); 2620 } 2621 } 2622 2623 void ath_tx_edma_tasklet(struct ath_softc *sc) 2624 { 2625 struct ath_tx_status ts; 2626 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2627 struct ath_hw *ah = sc->sc_ah; 2628 struct ath_txq *txq; 2629 struct ath_buf *bf, *lastbf; 2630 struct list_head bf_head; 2631 struct list_head *fifo_list; 2632 int status; 2633 2634 for (;;) { 2635 if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) 2636 break; 2637 2638 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts); 2639 if (status == -EINPROGRESS) 2640 break; 2641 if (status == -EIO) { 2642 ath_dbg(common, XMIT, "Error processing tx status\n"); 2643 break; 2644 } 2645 2646 /* Process beacon completions separately */ 2647 if (ts.qid == sc->beacon.beaconq) { 2648 sc->beacon.tx_processed = true; 2649 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK); 2650 2651 if (ath9k_is_chanctx_enabled()) { 2652 ath_chanctx_event(sc, NULL, 2653 ATH_CHANCTX_EVENT_BEACON_SENT); 2654 } 2655 2656 ath9k_csa_update(sc); 2657 continue; 2658 } 2659 2660 txq = &sc->tx.txq[ts.qid]; 2661 2662 ath_txq_lock(sc, txq); 2663 2664 TX_STAT_INC(txq->axq_qnum, txprocdesc); 2665 2666 fifo_list = &txq->txq_fifo[txq->txq_tailidx]; 2667 if (list_empty(fifo_list)) { 2668 ath_txq_unlock(sc, txq); 2669 return; 2670 } 2671 2672 bf = list_first_entry(fifo_list, struct ath_buf, list); 2673 if (bf->bf_state.stale) { 2674 list_del(&bf->list); 2675 ath_tx_return_buffer(sc, bf); 2676 bf = list_first_entry(fifo_list, struct ath_buf, list); 2677 } 2678 2679 lastbf = bf->bf_lastbf; 2680 2681 INIT_LIST_HEAD(&bf_head); 2682 if (list_is_last(&lastbf->list, fifo_list)) { 2683 list_splice_tail_init(fifo_list, &bf_head); 2684 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH); 2685 2686 if (!list_empty(&txq->axq_q)) { 2687 struct list_head bf_q; 2688 2689 INIT_LIST_HEAD(&bf_q); 2690 txq->axq_link = NULL; 2691 list_splice_tail_init(&txq->axq_q, &bf_q); 2692 ath_tx_txqaddbuf(sc, txq, &bf_q, true); 2693 } 2694 } else { 2695 lastbf->bf_state.stale = true; 2696 if (bf != lastbf) 2697 list_cut_position(&bf_head, fifo_list, 2698 lastbf->list.prev); 2699 } 2700 2701 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2702 ath_txq_unlock_complete(sc, txq); 2703 } 2704 } 2705 2706 /*****************/ 2707 /* Init, Cleanup */ 2708 /*****************/ 2709 2710 static int ath_txstatus_setup(struct ath_softc *sc, int size) 2711 { 2712 struct ath_descdma *dd = &sc->txsdma; 2713 u8 txs_len = sc->sc_ah->caps.txs_len; 2714 2715 dd->dd_desc_len = size * txs_len; 2716 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len, 2717 &dd->dd_desc_paddr, GFP_KERNEL); 2718 if (!dd->dd_desc) 2719 return -ENOMEM; 2720 2721 return 0; 2722 } 2723 2724 static int ath_tx_edma_init(struct ath_softc *sc) 2725 { 2726 int err; 2727 2728 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE); 2729 if (!err) 2730 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc, 2731 sc->txsdma.dd_desc_paddr, 2732 ATH_TXSTATUS_RING_SIZE); 2733 2734 return err; 2735 } 2736 2737 int ath_tx_init(struct ath_softc *sc, int nbufs) 2738 { 2739 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2740 int error = 0; 2741 2742 spin_lock_init(&sc->tx.txbuflock); 2743 2744 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf, 2745 "tx", nbufs, 1, 1); 2746 if (error != 0) { 2747 ath_err(common, 2748 "Failed to allocate tx descriptors: %d\n", error); 2749 return error; 2750 } 2751 2752 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf, 2753 "beacon", ATH_BCBUF, 1, 1); 2754 if (error != 0) { 2755 ath_err(common, 2756 "Failed to allocate beacon descriptors: %d\n", error); 2757 return error; 2758 } 2759 2760 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work); 2761 2762 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 2763 error = ath_tx_edma_init(sc); 2764 2765 return error; 2766 } 2767 2768 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an) 2769 { 2770 struct ath_atx_tid *tid; 2771 struct ath_atx_ac *ac; 2772 int tidno, acno; 2773 2774 for (tidno = 0, tid = &an->tid[tidno]; 2775 tidno < IEEE80211_NUM_TIDS; 2776 tidno++, tid++) { 2777 tid->an = an; 2778 tid->tidno = tidno; 2779 tid->seq_start = tid->seq_next = 0; 2780 tid->baw_size = WME_MAX_BA; 2781 tid->baw_head = tid->baw_tail = 0; 2782 tid->sched = false; 2783 tid->active = false; 2784 __skb_queue_head_init(&tid->buf_q); 2785 __skb_queue_head_init(&tid->retry_q); 2786 acno = TID_TO_WME_AC(tidno); 2787 tid->ac = &an->ac[acno]; 2788 } 2789 2790 for (acno = 0, ac = &an->ac[acno]; 2791 acno < IEEE80211_NUM_ACS; acno++, ac++) { 2792 ac->sched = false; 2793 ac->clear_ps_filter = true; 2794 ac->txq = sc->tx.txq_map[acno]; 2795 INIT_LIST_HEAD(&ac->tid_q); 2796 } 2797 } 2798 2799 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an) 2800 { 2801 struct ath_atx_ac *ac; 2802 struct ath_atx_tid *tid; 2803 struct ath_txq *txq; 2804 int tidno; 2805 2806 for (tidno = 0, tid = &an->tid[tidno]; 2807 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) { 2808 2809 ac = tid->ac; 2810 txq = ac->txq; 2811 2812 ath_txq_lock(sc, txq); 2813 2814 if (tid->sched) { 2815 list_del(&tid->list); 2816 tid->sched = false; 2817 } 2818 2819 if (ac->sched) { 2820 list_del(&ac->list); 2821 tid->ac->sched = false; 2822 } 2823 2824 ath_tid_drain(sc, txq, tid); 2825 tid->active = false; 2826 2827 ath_txq_unlock(sc, txq); 2828 } 2829 } 2830 2831 #ifdef CONFIG_ATH9K_TX99 2832 2833 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb, 2834 struct ath_tx_control *txctl) 2835 { 2836 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2837 struct ath_frame_info *fi = get_frame_info(skb); 2838 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2839 struct ath_buf *bf; 2840 int padpos, padsize; 2841 2842 padpos = ieee80211_hdrlen(hdr->frame_control); 2843 padsize = padpos & 3; 2844 2845 if (padsize && skb->len > padpos) { 2846 if (skb_headroom(skb) < padsize) { 2847 ath_dbg(common, XMIT, 2848 "tx99 padding failed\n"); 2849 return -EINVAL; 2850 } 2851 2852 skb_push(skb, padsize); 2853 memmove(skb->data, skb->data + padsize, padpos); 2854 } 2855 2856 fi->keyix = ATH9K_TXKEYIX_INVALID; 2857 fi->framelen = skb->len + FCS_LEN; 2858 fi->keytype = ATH9K_KEY_TYPE_CLEAR; 2859 2860 bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb); 2861 if (!bf) { 2862 ath_dbg(common, XMIT, "tx99 buffer setup failed\n"); 2863 return -EINVAL; 2864 } 2865 2866 ath_set_rates(sc->tx99_vif, NULL, bf); 2867 2868 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr); 2869 ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum); 2870 2871 ath_tx_send_normal(sc, txctl->txq, NULL, skb); 2872 2873 return 0; 2874 } 2875 2876 #endif /* CONFIG_ATH9K_TX99 */ 2877