1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/dma-mapping.h> 18 #include "ath9k.h" 19 #include "ar9003_mac.h" 20 21 #define BITS_PER_BYTE 8 22 #define OFDM_PLCP_BITS 22 23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1) 24 #define L_STF 8 25 #define L_LTF 8 26 #define L_SIG 4 27 #define HT_SIG 8 28 #define HT_STF 4 29 #define HT_LTF(_ns) (4 * (_ns)) 30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */ 31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */ 32 #define TIME_SYMBOLS(t) ((t) >> 2) 33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18) 34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2) 35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18) 36 37 38 static u16 bits_per_symbol[][2] = { 39 /* 20MHz 40MHz */ 40 { 26, 54 }, /* 0: BPSK */ 41 { 52, 108 }, /* 1: QPSK 1/2 */ 42 { 78, 162 }, /* 2: QPSK 3/4 */ 43 { 104, 216 }, /* 3: 16-QAM 1/2 */ 44 { 156, 324 }, /* 4: 16-QAM 3/4 */ 45 { 208, 432 }, /* 5: 64-QAM 2/3 */ 46 { 234, 486 }, /* 6: 64-QAM 3/4 */ 47 { 260, 540 }, /* 7: 64-QAM 5/6 */ 48 }; 49 50 #define IS_HT_RATE(_rate) ((_rate) & 0x80) 51 52 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 53 struct ath_atx_tid *tid, struct sk_buff *skb); 54 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, 55 int tx_flags, struct ath_txq *txq); 56 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 57 struct ath_txq *txq, struct list_head *bf_q, 58 struct ath_tx_status *ts, int txok); 59 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 60 struct list_head *head, bool internal); 61 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 62 struct ath_tx_status *ts, int nframes, int nbad, 63 int txok); 64 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 65 int seqno); 66 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, 67 struct ath_txq *txq, 68 struct ath_atx_tid *tid, 69 struct sk_buff *skb); 70 71 enum { 72 MCS_HT20, 73 MCS_HT20_SGI, 74 MCS_HT40, 75 MCS_HT40_SGI, 76 }; 77 78 /*********************/ 79 /* Aggregation logic */ 80 /*********************/ 81 82 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq) 83 __acquires(&txq->axq_lock) 84 { 85 spin_lock_bh(&txq->axq_lock); 86 } 87 88 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq) 89 __releases(&txq->axq_lock) 90 { 91 spin_unlock_bh(&txq->axq_lock); 92 } 93 94 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq) 95 __releases(&txq->axq_lock) 96 { 97 struct sk_buff_head q; 98 struct sk_buff *skb; 99 100 __skb_queue_head_init(&q); 101 skb_queue_splice_init(&txq->complete_q, &q); 102 spin_unlock_bh(&txq->axq_lock); 103 104 while ((skb = __skb_dequeue(&q))) 105 ieee80211_tx_status(sc->hw, skb); 106 } 107 108 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid) 109 { 110 struct ath_atx_ac *ac = tid->ac; 111 112 if (tid->paused) 113 return; 114 115 if (tid->sched) 116 return; 117 118 tid->sched = true; 119 list_add_tail(&tid->list, &ac->tid_q); 120 121 if (ac->sched) 122 return; 123 124 ac->sched = true; 125 list_add_tail(&ac->list, &txq->axq_acq); 126 } 127 128 static struct ath_frame_info *get_frame_info(struct sk_buff *skb) 129 { 130 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 131 BUILD_BUG_ON(sizeof(struct ath_frame_info) > 132 sizeof(tx_info->rate_driver_data)); 133 return (struct ath_frame_info *) &tx_info->rate_driver_data[0]; 134 } 135 136 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno) 137 { 138 if (!tid->an->sta) 139 return; 140 141 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno, 142 seqno << IEEE80211_SEQ_SEQ_SHIFT); 143 } 144 145 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta, 146 struct ath_buf *bf) 147 { 148 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates, 149 ARRAY_SIZE(bf->rates)); 150 } 151 152 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq, 153 struct sk_buff *skb) 154 { 155 int q; 156 157 q = skb_get_queue_mapping(skb); 158 if (txq == sc->tx.uapsdq) 159 txq = sc->tx.txq_map[q]; 160 161 if (txq != sc->tx.txq_map[q]) 162 return; 163 164 if (WARN_ON(--txq->pending_frames < 0)) 165 txq->pending_frames = 0; 166 167 if (txq->stopped && 168 txq->pending_frames < sc->tx.txq_max_pending[q]) { 169 ieee80211_wake_queue(sc->hw, q); 170 txq->stopped = false; 171 } 172 } 173 174 static struct ath_atx_tid * 175 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb) 176 { 177 struct ieee80211_hdr *hdr; 178 u8 tidno = 0; 179 180 hdr = (struct ieee80211_hdr *) skb->data; 181 if (ieee80211_is_data_qos(hdr->frame_control)) 182 tidno = ieee80211_get_qos_ctl(hdr)[0]; 183 184 tidno &= IEEE80211_QOS_CTL_TID_MASK; 185 return ATH_AN_2_TID(an, tidno); 186 } 187 188 static bool ath_tid_has_buffered(struct ath_atx_tid *tid) 189 { 190 return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q); 191 } 192 193 static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid) 194 { 195 struct sk_buff *skb; 196 197 skb = __skb_dequeue(&tid->retry_q); 198 if (!skb) 199 skb = __skb_dequeue(&tid->buf_q); 200 201 return skb; 202 } 203 204 /* 205 * ath_tx_tid_change_state: 206 * - clears a-mpdu flag of previous session 207 * - force sequence number allocation to fix next BlockAck Window 208 */ 209 static void 210 ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid) 211 { 212 struct ath_txq *txq = tid->ac->txq; 213 struct ieee80211_tx_info *tx_info; 214 struct sk_buff *skb, *tskb; 215 struct ath_buf *bf; 216 struct ath_frame_info *fi; 217 218 skb_queue_walk_safe(&tid->buf_q, skb, tskb) { 219 fi = get_frame_info(skb); 220 bf = fi->bf; 221 222 tx_info = IEEE80211_SKB_CB(skb); 223 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU; 224 225 if (bf) 226 continue; 227 228 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 229 if (!bf) { 230 __skb_unlink(skb, &tid->buf_q); 231 ath_txq_skb_done(sc, txq, skb); 232 ieee80211_free_txskb(sc->hw, skb); 233 continue; 234 } 235 } 236 237 } 238 239 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid) 240 { 241 struct ath_txq *txq = tid->ac->txq; 242 struct sk_buff *skb; 243 struct ath_buf *bf; 244 struct list_head bf_head; 245 struct ath_tx_status ts; 246 struct ath_frame_info *fi; 247 bool sendbar = false; 248 249 INIT_LIST_HEAD(&bf_head); 250 251 memset(&ts, 0, sizeof(ts)); 252 253 while ((skb = __skb_dequeue(&tid->retry_q))) { 254 fi = get_frame_info(skb); 255 bf = fi->bf; 256 if (!bf) { 257 ath_txq_skb_done(sc, txq, skb); 258 ieee80211_free_txskb(sc->hw, skb); 259 continue; 260 } 261 262 if (fi->baw_tracked) { 263 ath_tx_update_baw(sc, tid, bf->bf_state.seqno); 264 sendbar = true; 265 } 266 267 list_add_tail(&bf->list, &bf_head); 268 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0); 269 } 270 271 if (sendbar) { 272 ath_txq_unlock(sc, txq); 273 ath_send_bar(tid, tid->seq_start); 274 ath_txq_lock(sc, txq); 275 } 276 } 277 278 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 279 int seqno) 280 { 281 int index, cindex; 282 283 index = ATH_BA_INDEX(tid->seq_start, seqno); 284 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 285 286 __clear_bit(cindex, tid->tx_buf); 287 288 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) { 289 INCR(tid->seq_start, IEEE80211_SEQ_MAX); 290 INCR(tid->baw_head, ATH_TID_MAX_BUFS); 291 if (tid->bar_index >= 0) 292 tid->bar_index--; 293 } 294 } 295 296 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 297 struct ath_buf *bf) 298 { 299 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 300 u16 seqno = bf->bf_state.seqno; 301 int index, cindex; 302 303 index = ATH_BA_INDEX(tid->seq_start, seqno); 304 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 305 __set_bit(cindex, tid->tx_buf); 306 fi->baw_tracked = 1; 307 308 if (index >= ((tid->baw_tail - tid->baw_head) & 309 (ATH_TID_MAX_BUFS - 1))) { 310 tid->baw_tail = cindex; 311 INCR(tid->baw_tail, ATH_TID_MAX_BUFS); 312 } 313 } 314 315 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq, 316 struct ath_atx_tid *tid) 317 318 { 319 struct sk_buff *skb; 320 struct ath_buf *bf; 321 struct list_head bf_head; 322 struct ath_tx_status ts; 323 struct ath_frame_info *fi; 324 325 memset(&ts, 0, sizeof(ts)); 326 INIT_LIST_HEAD(&bf_head); 327 328 while ((skb = ath_tid_dequeue(tid))) { 329 fi = get_frame_info(skb); 330 bf = fi->bf; 331 332 if (!bf) { 333 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq); 334 continue; 335 } 336 337 list_add_tail(&bf->list, &bf_head); 338 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0); 339 } 340 } 341 342 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq, 343 struct sk_buff *skb, int count) 344 { 345 struct ath_frame_info *fi = get_frame_info(skb); 346 struct ath_buf *bf = fi->bf; 347 struct ieee80211_hdr *hdr; 348 int prev = fi->retries; 349 350 TX_STAT_INC(txq->axq_qnum, a_retries); 351 fi->retries += count; 352 353 if (prev > 0) 354 return; 355 356 hdr = (struct ieee80211_hdr *)skb->data; 357 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY); 358 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 359 sizeof(*hdr), DMA_TO_DEVICE); 360 } 361 362 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc) 363 { 364 struct ath_buf *bf = NULL; 365 366 spin_lock_bh(&sc->tx.txbuflock); 367 368 if (unlikely(list_empty(&sc->tx.txbuf))) { 369 spin_unlock_bh(&sc->tx.txbuflock); 370 return NULL; 371 } 372 373 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list); 374 list_del(&bf->list); 375 376 spin_unlock_bh(&sc->tx.txbuflock); 377 378 return bf; 379 } 380 381 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf) 382 { 383 spin_lock_bh(&sc->tx.txbuflock); 384 list_add_tail(&bf->list, &sc->tx.txbuf); 385 spin_unlock_bh(&sc->tx.txbuflock); 386 } 387 388 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf) 389 { 390 struct ath_buf *tbf; 391 392 tbf = ath_tx_get_buffer(sc); 393 if (WARN_ON(!tbf)) 394 return NULL; 395 396 ATH_TXBUF_RESET(tbf); 397 398 tbf->bf_mpdu = bf->bf_mpdu; 399 tbf->bf_buf_addr = bf->bf_buf_addr; 400 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len); 401 tbf->bf_state = bf->bf_state; 402 403 return tbf; 404 } 405 406 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf, 407 struct ath_tx_status *ts, int txok, 408 int *nframes, int *nbad) 409 { 410 struct ath_frame_info *fi; 411 u16 seq_st = 0; 412 u32 ba[WME_BA_BMP_SIZE >> 5]; 413 int ba_index; 414 int isaggr = 0; 415 416 *nbad = 0; 417 *nframes = 0; 418 419 isaggr = bf_isaggr(bf); 420 if (isaggr) { 421 seq_st = ts->ts_seqnum; 422 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); 423 } 424 425 while (bf) { 426 fi = get_frame_info(bf->bf_mpdu); 427 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno); 428 429 (*nframes)++; 430 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index))) 431 (*nbad)++; 432 433 bf = bf->bf_next; 434 } 435 } 436 437 438 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq, 439 struct ath_buf *bf, struct list_head *bf_q, 440 struct ath_tx_status *ts, int txok) 441 { 442 struct ath_node *an = NULL; 443 struct sk_buff *skb; 444 struct ieee80211_sta *sta; 445 struct ieee80211_hw *hw = sc->hw; 446 struct ieee80211_hdr *hdr; 447 struct ieee80211_tx_info *tx_info; 448 struct ath_atx_tid *tid = NULL; 449 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf; 450 struct list_head bf_head; 451 struct sk_buff_head bf_pending; 452 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first; 453 u32 ba[WME_BA_BMP_SIZE >> 5]; 454 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0; 455 bool rc_update = true, isba; 456 struct ieee80211_tx_rate rates[4]; 457 struct ath_frame_info *fi; 458 int nframes; 459 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH); 460 int i, retries; 461 int bar_index = -1; 462 463 skb = bf->bf_mpdu; 464 hdr = (struct ieee80211_hdr *)skb->data; 465 466 tx_info = IEEE80211_SKB_CB(skb); 467 468 memcpy(rates, bf->rates, sizeof(rates)); 469 470 retries = ts->ts_longretry + 1; 471 for (i = 0; i < ts->ts_rateindex; i++) 472 retries += rates[i].count; 473 474 rcu_read_lock(); 475 476 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2); 477 if (!sta) { 478 rcu_read_unlock(); 479 480 INIT_LIST_HEAD(&bf_head); 481 while (bf) { 482 bf_next = bf->bf_next; 483 484 if (!bf->bf_state.stale || bf_next != NULL) 485 list_move_tail(&bf->list, &bf_head); 486 487 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0); 488 489 bf = bf_next; 490 } 491 return; 492 } 493 494 an = (struct ath_node *)sta->drv_priv; 495 tid = ath_get_skb_tid(sc, an, skb); 496 seq_first = tid->seq_start; 497 isba = ts->ts_flags & ATH9K_TX_BA; 498 499 /* 500 * The hardware occasionally sends a tx status for the wrong TID. 501 * In this case, the BA status cannot be considered valid and all 502 * subframes need to be retransmitted 503 * 504 * Only BlockAcks have a TID and therefore normal Acks cannot be 505 * checked 506 */ 507 if (isba && tid->tidno != ts->tid) 508 txok = false; 509 510 isaggr = bf_isaggr(bf); 511 memset(ba, 0, WME_BA_BMP_SIZE >> 3); 512 513 if (isaggr && txok) { 514 if (ts->ts_flags & ATH9K_TX_BA) { 515 seq_st = ts->ts_seqnum; 516 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); 517 } else { 518 /* 519 * AR5416 can become deaf/mute when BA 520 * issue happens. Chip needs to be reset. 521 * But AP code may have sychronization issues 522 * when perform internal reset in this routine. 523 * Only enable reset in STA mode for now. 524 */ 525 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION) 526 needreset = 1; 527 } 528 } 529 530 __skb_queue_head_init(&bf_pending); 531 532 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad); 533 while (bf) { 534 u16 seqno = bf->bf_state.seqno; 535 536 txfail = txpending = sendbar = 0; 537 bf_next = bf->bf_next; 538 539 skb = bf->bf_mpdu; 540 tx_info = IEEE80211_SKB_CB(skb); 541 fi = get_frame_info(skb); 542 543 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) || 544 !tid->active) { 545 /* 546 * Outside of the current BlockAck window, 547 * maybe part of a previous session 548 */ 549 txfail = 1; 550 } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) { 551 /* transmit completion, subframe is 552 * acked by block ack */ 553 acked_cnt++; 554 } else if (!isaggr && txok) { 555 /* transmit completion */ 556 acked_cnt++; 557 } else if (flush) { 558 txpending = 1; 559 } else if (fi->retries < ATH_MAX_SW_RETRIES) { 560 if (txok || !an->sleeping) 561 ath_tx_set_retry(sc, txq, bf->bf_mpdu, 562 retries); 563 564 txpending = 1; 565 } else { 566 txfail = 1; 567 txfail_cnt++; 568 bar_index = max_t(int, bar_index, 569 ATH_BA_INDEX(seq_first, seqno)); 570 } 571 572 /* 573 * Make sure the last desc is reclaimed if it 574 * not a holding desc. 575 */ 576 INIT_LIST_HEAD(&bf_head); 577 if (bf_next != NULL || !bf_last->bf_state.stale) 578 list_move_tail(&bf->list, &bf_head); 579 580 if (!txpending) { 581 /* 582 * complete the acked-ones/xretried ones; update 583 * block-ack window 584 */ 585 ath_tx_update_baw(sc, tid, seqno); 586 587 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) { 588 memcpy(tx_info->control.rates, rates, sizeof(rates)); 589 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok); 590 rc_update = false; 591 } 592 593 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 594 !txfail); 595 } else { 596 if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) { 597 tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP; 598 ieee80211_sta_eosp(sta); 599 } 600 /* retry the un-acked ones */ 601 if (bf->bf_next == NULL && bf_last->bf_state.stale) { 602 struct ath_buf *tbf; 603 604 tbf = ath_clone_txbuf(sc, bf_last); 605 /* 606 * Update tx baw and complete the 607 * frame with failed status if we 608 * run out of tx buf. 609 */ 610 if (!tbf) { 611 ath_tx_update_baw(sc, tid, seqno); 612 613 ath_tx_complete_buf(sc, bf, txq, 614 &bf_head, ts, 0); 615 bar_index = max_t(int, bar_index, 616 ATH_BA_INDEX(seq_first, seqno)); 617 break; 618 } 619 620 fi->bf = tbf; 621 } 622 623 /* 624 * Put this buffer to the temporary pending 625 * queue to retain ordering 626 */ 627 __skb_queue_tail(&bf_pending, skb); 628 } 629 630 bf = bf_next; 631 } 632 633 /* prepend un-acked frames to the beginning of the pending frame queue */ 634 if (!skb_queue_empty(&bf_pending)) { 635 if (an->sleeping) 636 ieee80211_sta_set_buffered(sta, tid->tidno, true); 637 638 skb_queue_splice_tail(&bf_pending, &tid->retry_q); 639 if (!an->sleeping) { 640 ath_tx_queue_tid(txq, tid); 641 642 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY)) 643 tid->ac->clear_ps_filter = true; 644 } 645 } 646 647 if (bar_index >= 0) { 648 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index); 649 650 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq)) 651 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq); 652 653 ath_txq_unlock(sc, txq); 654 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1)); 655 ath_txq_lock(sc, txq); 656 } 657 658 rcu_read_unlock(); 659 660 if (needreset) 661 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR); 662 } 663 664 static bool bf_is_ampdu_not_probing(struct ath_buf *bf) 665 { 666 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu); 667 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE); 668 } 669 670 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq, 671 struct ath_tx_status *ts, struct ath_buf *bf, 672 struct list_head *bf_head) 673 { 674 struct ieee80211_tx_info *info; 675 bool txok, flush; 676 677 txok = !(ts->ts_status & ATH9K_TXERR_MASK); 678 flush = !!(ts->ts_status & ATH9K_TX_FLUSH); 679 txq->axq_tx_inprogress = false; 680 681 txq->axq_depth--; 682 if (bf_is_ampdu_not_probing(bf)) 683 txq->axq_ampdu_depth--; 684 685 if (!bf_isampdu(bf)) { 686 if (!flush) { 687 info = IEEE80211_SKB_CB(bf->bf_mpdu); 688 memcpy(info->control.rates, bf->rates, 689 sizeof(info->control.rates)); 690 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok); 691 } 692 ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok); 693 } else 694 ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok); 695 696 if (!flush) 697 ath_txq_schedule(sc, txq); 698 } 699 700 static bool ath_lookup_legacy(struct ath_buf *bf) 701 { 702 struct sk_buff *skb; 703 struct ieee80211_tx_info *tx_info; 704 struct ieee80211_tx_rate *rates; 705 int i; 706 707 skb = bf->bf_mpdu; 708 tx_info = IEEE80211_SKB_CB(skb); 709 rates = tx_info->control.rates; 710 711 for (i = 0; i < 4; i++) { 712 if (!rates[i].count || rates[i].idx < 0) 713 break; 714 715 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) 716 return true; 717 } 718 719 return false; 720 } 721 722 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf, 723 struct ath_atx_tid *tid) 724 { 725 struct sk_buff *skb; 726 struct ieee80211_tx_info *tx_info; 727 struct ieee80211_tx_rate *rates; 728 u32 max_4ms_framelen, frmlen; 729 u16 aggr_limit, bt_aggr_limit, legacy = 0; 730 int q = tid->ac->txq->mac80211_qnum; 731 int i; 732 733 skb = bf->bf_mpdu; 734 tx_info = IEEE80211_SKB_CB(skb); 735 rates = bf->rates; 736 737 /* 738 * Find the lowest frame length among the rate series that will have a 739 * 4ms (or TXOP limited) transmit duration. 740 */ 741 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX; 742 743 for (i = 0; i < 4; i++) { 744 int modeidx; 745 746 if (!rates[i].count) 747 continue; 748 749 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) { 750 legacy = 1; 751 break; 752 } 753 754 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 755 modeidx = MCS_HT40; 756 else 757 modeidx = MCS_HT20; 758 759 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 760 modeidx++; 761 762 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx]; 763 max_4ms_framelen = min(max_4ms_framelen, frmlen); 764 } 765 766 /* 767 * limit aggregate size by the minimum rate if rate selected is 768 * not a probe rate, if rate selected is a probe rate then 769 * avoid aggregation of this packet. 770 */ 771 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy) 772 return 0; 773 774 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX); 775 776 /* 777 * Override the default aggregation limit for BTCOEX. 778 */ 779 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen); 780 if (bt_aggr_limit) 781 aggr_limit = bt_aggr_limit; 782 783 /* 784 * h/w can accept aggregates up to 16 bit lengths (65535). 785 * The IE, however can hold up to 65536, which shows up here 786 * as zero. Ignore 65536 since we are constrained by hw. 787 */ 788 if (tid->an->maxampdu) 789 aggr_limit = min(aggr_limit, tid->an->maxampdu); 790 791 return aggr_limit; 792 } 793 794 /* 795 * Returns the number of delimiters to be added to 796 * meet the minimum required mpdudensity. 797 */ 798 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid, 799 struct ath_buf *bf, u16 frmlen, 800 bool first_subfrm) 801 { 802 #define FIRST_DESC_NDELIMS 60 803 u32 nsymbits, nsymbols; 804 u16 minlen; 805 u8 flags, rix; 806 int width, streams, half_gi, ndelim, mindelim; 807 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 808 809 /* Select standard number of delimiters based on frame length alone */ 810 ndelim = ATH_AGGR_GET_NDELIM(frmlen); 811 812 /* 813 * If encryption enabled, hardware requires some more padding between 814 * subframes. 815 * TODO - this could be improved to be dependent on the rate. 816 * The hardware can keep up at lower rates, but not higher rates 817 */ 818 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) && 819 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) 820 ndelim += ATH_AGGR_ENCRYPTDELIM; 821 822 /* 823 * Add delimiter when using RTS/CTS with aggregation 824 * and non enterprise AR9003 card 825 */ 826 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) && 827 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE)) 828 ndelim = max(ndelim, FIRST_DESC_NDELIMS); 829 830 /* 831 * Convert desired mpdu density from microeconds to bytes based 832 * on highest rate in rate series (i.e. first rate) to determine 833 * required minimum length for subframe. Take into account 834 * whether high rate is 20 or 40Mhz and half or full GI. 835 * 836 * If there is no mpdu density restriction, no further calculation 837 * is needed. 838 */ 839 840 if (tid->an->mpdudensity == 0) 841 return ndelim; 842 843 rix = bf->rates[0].idx; 844 flags = bf->rates[0].flags; 845 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0; 846 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0; 847 848 if (half_gi) 849 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity); 850 else 851 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity); 852 853 if (nsymbols == 0) 854 nsymbols = 1; 855 856 streams = HT_RC_2_STREAMS(rix); 857 nsymbits = bits_per_symbol[rix % 8][width] * streams; 858 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE; 859 860 if (frmlen < minlen) { 861 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ; 862 ndelim = max(mindelim, ndelim); 863 } 864 865 return ndelim; 866 } 867 868 static struct ath_buf * 869 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq, 870 struct ath_atx_tid *tid, struct sk_buff_head **q) 871 { 872 struct ieee80211_tx_info *tx_info; 873 struct ath_frame_info *fi; 874 struct sk_buff *skb; 875 struct ath_buf *bf; 876 u16 seqno; 877 878 while (1) { 879 *q = &tid->retry_q; 880 if (skb_queue_empty(*q)) 881 *q = &tid->buf_q; 882 883 skb = skb_peek(*q); 884 if (!skb) 885 break; 886 887 fi = get_frame_info(skb); 888 bf = fi->bf; 889 if (!fi->bf) 890 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 891 else 892 bf->bf_state.stale = false; 893 894 if (!bf) { 895 __skb_unlink(skb, *q); 896 ath_txq_skb_done(sc, txq, skb); 897 ieee80211_free_txskb(sc->hw, skb); 898 continue; 899 } 900 901 bf->bf_next = NULL; 902 bf->bf_lastbf = bf; 903 904 tx_info = IEEE80211_SKB_CB(skb); 905 tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT; 906 if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) { 907 bf->bf_state.bf_type = 0; 908 return bf; 909 } 910 911 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR; 912 seqno = bf->bf_state.seqno; 913 914 /* do not step over block-ack window */ 915 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) 916 break; 917 918 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) { 919 struct ath_tx_status ts = {}; 920 struct list_head bf_head; 921 922 INIT_LIST_HEAD(&bf_head); 923 list_add(&bf->list, &bf_head); 924 __skb_unlink(skb, *q); 925 ath_tx_update_baw(sc, tid, seqno); 926 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0); 927 continue; 928 } 929 930 return bf; 931 } 932 933 return NULL; 934 } 935 936 static bool 937 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq, 938 struct ath_atx_tid *tid, struct list_head *bf_q, 939 struct ath_buf *bf_first, struct sk_buff_head *tid_q, 940 int *aggr_len) 941 { 942 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4) 943 struct ath_buf *bf = bf_first, *bf_prev = NULL; 944 int nframes = 0, ndelim; 945 u16 aggr_limit = 0, al = 0, bpad = 0, 946 al_delta, h_baw = tid->baw_size / 2; 947 struct ieee80211_tx_info *tx_info; 948 struct ath_frame_info *fi; 949 struct sk_buff *skb; 950 bool closed = false; 951 952 bf = bf_first; 953 aggr_limit = ath_lookup_rate(sc, bf, tid); 954 955 do { 956 skb = bf->bf_mpdu; 957 fi = get_frame_info(skb); 958 959 /* do not exceed aggregation limit */ 960 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen; 961 if (nframes) { 962 if (aggr_limit < al + bpad + al_delta || 963 ath_lookup_legacy(bf) || nframes >= h_baw) 964 break; 965 966 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 967 if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) || 968 !(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) 969 break; 970 } 971 972 /* add padding for previous frame to aggregation length */ 973 al += bpad + al_delta; 974 975 /* 976 * Get the delimiters needed to meet the MPDU 977 * density for this node. 978 */ 979 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen, 980 !nframes); 981 bpad = PADBYTES(al_delta) + (ndelim << 2); 982 983 nframes++; 984 bf->bf_next = NULL; 985 986 /* link buffers of this frame to the aggregate */ 987 if (!fi->baw_tracked) 988 ath_tx_addto_baw(sc, tid, bf); 989 bf->bf_state.ndelim = ndelim; 990 991 __skb_unlink(skb, tid_q); 992 list_add_tail(&bf->list, bf_q); 993 if (bf_prev) 994 bf_prev->bf_next = bf; 995 996 bf_prev = bf; 997 998 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q); 999 if (!bf) { 1000 closed = true; 1001 break; 1002 } 1003 } while (ath_tid_has_buffered(tid)); 1004 1005 bf = bf_first; 1006 bf->bf_lastbf = bf_prev; 1007 1008 if (bf == bf_prev) { 1009 al = get_frame_info(bf->bf_mpdu)->framelen; 1010 bf->bf_state.bf_type = BUF_AMPDU; 1011 } else { 1012 TX_STAT_INC(txq->axq_qnum, a_aggr); 1013 } 1014 1015 *aggr_len = al; 1016 1017 return closed; 1018 #undef PADBYTES 1019 } 1020 1021 /* 1022 * rix - rate index 1023 * pktlen - total bytes (delims + data + fcs + pads + pad delims) 1024 * width - 0 for 20 MHz, 1 for 40 MHz 1025 * half_gi - to use 4us v/s 3.6 us for symbol time 1026 */ 1027 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen, 1028 int width, int half_gi, bool shortPreamble) 1029 { 1030 u32 nbits, nsymbits, duration, nsymbols; 1031 int streams; 1032 1033 /* find number of symbols: PLCP + data */ 1034 streams = HT_RC_2_STREAMS(rix); 1035 nbits = (pktlen << 3) + OFDM_PLCP_BITS; 1036 nsymbits = bits_per_symbol[rix % 8][width] * streams; 1037 nsymbols = (nbits + nsymbits - 1) / nsymbits; 1038 1039 if (!half_gi) 1040 duration = SYMBOL_TIME(nsymbols); 1041 else 1042 duration = SYMBOL_TIME_HALFGI(nsymbols); 1043 1044 /* addup duration for legacy/ht training and signal fields */ 1045 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 1046 1047 return duration; 1048 } 1049 1050 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi) 1051 { 1052 int streams = HT_RC_2_STREAMS(mcs); 1053 int symbols, bits; 1054 int bytes = 0; 1055 1056 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec); 1057 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams; 1058 bits -= OFDM_PLCP_BITS; 1059 bytes = bits / 8; 1060 bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 1061 if (bytes > 65532) 1062 bytes = 65532; 1063 1064 return bytes; 1065 } 1066 1067 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop) 1068 { 1069 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi; 1070 int mcs; 1071 1072 /* 4ms is the default (and maximum) duration */ 1073 if (!txop || txop > 4096) 1074 txop = 4096; 1075 1076 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20]; 1077 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI]; 1078 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40]; 1079 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI]; 1080 for (mcs = 0; mcs < 32; mcs++) { 1081 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false); 1082 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true); 1083 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false); 1084 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true); 1085 } 1086 } 1087 1088 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, 1089 struct ath_tx_info *info, int len, bool rts) 1090 { 1091 struct ath_hw *ah = sc->sc_ah; 1092 struct sk_buff *skb; 1093 struct ieee80211_tx_info *tx_info; 1094 struct ieee80211_tx_rate *rates; 1095 const struct ieee80211_rate *rate; 1096 struct ieee80211_hdr *hdr; 1097 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 1098 u32 rts_thresh = sc->hw->wiphy->rts_threshold; 1099 int i; 1100 u8 rix = 0; 1101 1102 skb = bf->bf_mpdu; 1103 tx_info = IEEE80211_SKB_CB(skb); 1104 rates = bf->rates; 1105 hdr = (struct ieee80211_hdr *)skb->data; 1106 1107 /* set dur_update_en for l-sig computation except for PS-Poll frames */ 1108 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control); 1109 info->rtscts_rate = fi->rtscts_rate; 1110 1111 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) { 1112 bool is_40, is_sgi, is_sp; 1113 int phy; 1114 1115 if (!rates[i].count || (rates[i].idx < 0)) 1116 continue; 1117 1118 rix = rates[i].idx; 1119 info->rates[i].Tries = rates[i].count; 1120 1121 /* 1122 * Handle RTS threshold for unaggregated HT frames. 1123 */ 1124 if (bf_isampdu(bf) && !bf_isaggr(bf) && 1125 (rates[i].flags & IEEE80211_TX_RC_MCS) && 1126 unlikely(rts_thresh != (u32) -1)) { 1127 if (!rts_thresh || (len > rts_thresh)) 1128 rts = true; 1129 } 1130 1131 if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) { 1132 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1133 info->flags |= ATH9K_TXDESC_RTSENA; 1134 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { 1135 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1136 info->flags |= ATH9K_TXDESC_CTSENA; 1137 } 1138 1139 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 1140 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040; 1141 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 1142 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI; 1143 1144 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI); 1145 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH); 1146 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE); 1147 1148 if (rates[i].flags & IEEE80211_TX_RC_MCS) { 1149 /* MCS rates */ 1150 info->rates[i].Rate = rix | 0x80; 1151 info->rates[i].ChSel = ath_txchainmask_reduction(sc, 1152 ah->txchainmask, info->rates[i].Rate); 1153 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len, 1154 is_40, is_sgi, is_sp); 1155 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC)) 1156 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC; 1157 continue; 1158 } 1159 1160 /* legacy rates */ 1161 rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx]; 1162 if ((tx_info->band == IEEE80211_BAND_2GHZ) && 1163 !(rate->flags & IEEE80211_RATE_ERP_G)) 1164 phy = WLAN_RC_PHY_CCK; 1165 else 1166 phy = WLAN_RC_PHY_OFDM; 1167 1168 info->rates[i].Rate = rate->hw_value; 1169 if (rate->hw_value_short) { 1170 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 1171 info->rates[i].Rate |= rate->hw_value_short; 1172 } else { 1173 is_sp = false; 1174 } 1175 1176 if (bf->bf_state.bfs_paprd) 1177 info->rates[i].ChSel = ah->txchainmask; 1178 else 1179 info->rates[i].ChSel = ath_txchainmask_reduction(sc, 1180 ah->txchainmask, info->rates[i].Rate); 1181 1182 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah, 1183 phy, rate->bitrate * 100, len, rix, is_sp); 1184 } 1185 1186 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */ 1187 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit)) 1188 info->flags &= ~ATH9K_TXDESC_RTSENA; 1189 1190 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */ 1191 if (info->flags & ATH9K_TXDESC_RTSENA) 1192 info->flags &= ~ATH9K_TXDESC_CTSENA; 1193 } 1194 1195 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb) 1196 { 1197 struct ieee80211_hdr *hdr; 1198 enum ath9k_pkt_type htype; 1199 __le16 fc; 1200 1201 hdr = (struct ieee80211_hdr *)skb->data; 1202 fc = hdr->frame_control; 1203 1204 if (ieee80211_is_beacon(fc)) 1205 htype = ATH9K_PKT_TYPE_BEACON; 1206 else if (ieee80211_is_probe_resp(fc)) 1207 htype = ATH9K_PKT_TYPE_PROBE_RESP; 1208 else if (ieee80211_is_atim(fc)) 1209 htype = ATH9K_PKT_TYPE_ATIM; 1210 else if (ieee80211_is_pspoll(fc)) 1211 htype = ATH9K_PKT_TYPE_PSPOLL; 1212 else 1213 htype = ATH9K_PKT_TYPE_NORMAL; 1214 1215 return htype; 1216 } 1217 1218 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf, 1219 struct ath_txq *txq, int len) 1220 { 1221 struct ath_hw *ah = sc->sc_ah; 1222 struct ath_buf *bf_first = NULL; 1223 struct ath_tx_info info; 1224 u32 rts_thresh = sc->hw->wiphy->rts_threshold; 1225 bool rts = false; 1226 1227 memset(&info, 0, sizeof(info)); 1228 info.is_first = true; 1229 info.is_last = true; 1230 info.txpower = MAX_RATE_POWER; 1231 info.qcu = txq->axq_qnum; 1232 1233 while (bf) { 1234 struct sk_buff *skb = bf->bf_mpdu; 1235 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1236 struct ath_frame_info *fi = get_frame_info(skb); 1237 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR); 1238 1239 info.type = get_hw_packet_type(skb); 1240 if (bf->bf_next) 1241 info.link = bf->bf_next->bf_daddr; 1242 else 1243 info.link = 0; 1244 1245 if (!bf_first) { 1246 bf_first = bf; 1247 1248 info.flags = ATH9K_TXDESC_INTREQ; 1249 if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) || 1250 txq == sc->tx.uapsdq) 1251 info.flags |= ATH9K_TXDESC_CLRDMASK; 1252 1253 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) 1254 info.flags |= ATH9K_TXDESC_NOACK; 1255 if (tx_info->flags & IEEE80211_TX_CTL_LDPC) 1256 info.flags |= ATH9K_TXDESC_LDPC; 1257 1258 if (bf->bf_state.bfs_paprd) 1259 info.flags |= (u32) bf->bf_state.bfs_paprd << 1260 ATH9K_TXDESC_PAPRD_S; 1261 1262 /* 1263 * mac80211 doesn't handle RTS threshold for HT because 1264 * the decision has to be taken based on AMPDU length 1265 * and aggregation is done entirely inside ath9k. 1266 * Set the RTS/CTS flag for the first subframe based 1267 * on the threshold. 1268 */ 1269 if (aggr && (bf == bf_first) && 1270 unlikely(rts_thresh != (u32) -1)) { 1271 /* 1272 * "len" is the size of the entire AMPDU. 1273 */ 1274 if (!rts_thresh || (len > rts_thresh)) 1275 rts = true; 1276 } 1277 ath_buf_set_rate(sc, bf, &info, len, rts); 1278 } 1279 1280 info.buf_addr[0] = bf->bf_buf_addr; 1281 info.buf_len[0] = skb->len; 1282 info.pkt_len = fi->framelen; 1283 info.keyix = fi->keyix; 1284 info.keytype = fi->keytype; 1285 1286 if (aggr) { 1287 if (bf == bf_first) 1288 info.aggr = AGGR_BUF_FIRST; 1289 else if (bf == bf_first->bf_lastbf) 1290 info.aggr = AGGR_BUF_LAST; 1291 else 1292 info.aggr = AGGR_BUF_MIDDLE; 1293 1294 info.ndelim = bf->bf_state.ndelim; 1295 info.aggr_len = len; 1296 } 1297 1298 if (bf == bf_first->bf_lastbf) 1299 bf_first = NULL; 1300 1301 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info); 1302 bf = bf->bf_next; 1303 } 1304 } 1305 1306 static void 1307 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq, 1308 struct ath_atx_tid *tid, struct list_head *bf_q, 1309 struct ath_buf *bf_first, struct sk_buff_head *tid_q) 1310 { 1311 struct ath_buf *bf = bf_first, *bf_prev = NULL; 1312 struct sk_buff *skb; 1313 int nframes = 0; 1314 1315 do { 1316 struct ieee80211_tx_info *tx_info; 1317 skb = bf->bf_mpdu; 1318 1319 nframes++; 1320 __skb_unlink(skb, tid_q); 1321 list_add_tail(&bf->list, bf_q); 1322 if (bf_prev) 1323 bf_prev->bf_next = bf; 1324 bf_prev = bf; 1325 1326 if (nframes >= 2) 1327 break; 1328 1329 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q); 1330 if (!bf) 1331 break; 1332 1333 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1334 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) 1335 break; 1336 1337 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1338 } while (1); 1339 } 1340 1341 static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq, 1342 struct ath_atx_tid *tid, bool *stop) 1343 { 1344 struct ath_buf *bf; 1345 struct ieee80211_tx_info *tx_info; 1346 struct sk_buff_head *tid_q; 1347 struct list_head bf_q; 1348 int aggr_len = 0; 1349 bool aggr, last = true; 1350 1351 if (!ath_tid_has_buffered(tid)) 1352 return false; 1353 1354 INIT_LIST_HEAD(&bf_q); 1355 1356 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q); 1357 if (!bf) 1358 return false; 1359 1360 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1361 aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU); 1362 if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) || 1363 (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) { 1364 *stop = true; 1365 return false; 1366 } 1367 1368 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1369 if (aggr) 1370 last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf, 1371 tid_q, &aggr_len); 1372 else 1373 ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q); 1374 1375 if (list_empty(&bf_q)) 1376 return false; 1377 1378 if (tid->ac->clear_ps_filter || tid->an->no_ps_filter) { 1379 tid->ac->clear_ps_filter = false; 1380 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1381 } 1382 1383 ath_tx_fill_desc(sc, bf, txq, aggr_len); 1384 ath_tx_txqaddbuf(sc, txq, &bf_q, false); 1385 return true; 1386 } 1387 1388 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta, 1389 u16 tid, u16 *ssn) 1390 { 1391 struct ath_atx_tid *txtid; 1392 struct ath_node *an; 1393 u8 density; 1394 1395 an = (struct ath_node *)sta->drv_priv; 1396 txtid = ATH_AN_2_TID(an, tid); 1397 1398 /* update ampdu factor/density, they may have changed. This may happen 1399 * in HT IBSS when a beacon with HT-info is received after the station 1400 * has already been added. 1401 */ 1402 if (sta->ht_cap.ht_supported) { 1403 an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + 1404 sta->ht_cap.ampdu_factor); 1405 density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density); 1406 an->mpdudensity = density; 1407 } 1408 1409 /* force sequence number allocation for pending frames */ 1410 ath_tx_tid_change_state(sc, txtid); 1411 1412 txtid->active = true; 1413 txtid->paused = true; 1414 *ssn = txtid->seq_start = txtid->seq_next; 1415 txtid->bar_index = -1; 1416 1417 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf)); 1418 txtid->baw_head = txtid->baw_tail = 0; 1419 1420 return 0; 1421 } 1422 1423 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid) 1424 { 1425 struct ath_node *an = (struct ath_node *)sta->drv_priv; 1426 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid); 1427 struct ath_txq *txq = txtid->ac->txq; 1428 1429 ath_txq_lock(sc, txq); 1430 txtid->active = false; 1431 txtid->paused = false; 1432 ath_tx_flush_tid(sc, txtid); 1433 ath_tx_tid_change_state(sc, txtid); 1434 ath_txq_unlock_complete(sc, txq); 1435 } 1436 1437 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc, 1438 struct ath_node *an) 1439 { 1440 struct ath_atx_tid *tid; 1441 struct ath_atx_ac *ac; 1442 struct ath_txq *txq; 1443 bool buffered; 1444 int tidno; 1445 1446 for (tidno = 0, tid = &an->tid[tidno]; 1447 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) { 1448 1449 if (!tid->sched) 1450 continue; 1451 1452 ac = tid->ac; 1453 txq = ac->txq; 1454 1455 ath_txq_lock(sc, txq); 1456 1457 buffered = ath_tid_has_buffered(tid); 1458 1459 tid->sched = false; 1460 list_del(&tid->list); 1461 1462 if (ac->sched) { 1463 ac->sched = false; 1464 list_del(&ac->list); 1465 } 1466 1467 ath_txq_unlock(sc, txq); 1468 1469 ieee80211_sta_set_buffered(sta, tidno, buffered); 1470 } 1471 } 1472 1473 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an) 1474 { 1475 struct ath_atx_tid *tid; 1476 struct ath_atx_ac *ac; 1477 struct ath_txq *txq; 1478 int tidno; 1479 1480 for (tidno = 0, tid = &an->tid[tidno]; 1481 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) { 1482 1483 ac = tid->ac; 1484 txq = ac->txq; 1485 1486 ath_txq_lock(sc, txq); 1487 ac->clear_ps_filter = true; 1488 1489 if (!tid->paused && ath_tid_has_buffered(tid)) { 1490 ath_tx_queue_tid(txq, tid); 1491 ath_txq_schedule(sc, txq); 1492 } 1493 1494 ath_txq_unlock_complete(sc, txq); 1495 } 1496 } 1497 1498 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, 1499 u16 tidno) 1500 { 1501 struct ath_atx_tid *tid; 1502 struct ath_node *an; 1503 struct ath_txq *txq; 1504 1505 an = (struct ath_node *)sta->drv_priv; 1506 tid = ATH_AN_2_TID(an, tidno); 1507 txq = tid->ac->txq; 1508 1509 ath_txq_lock(sc, txq); 1510 1511 tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor; 1512 tid->paused = false; 1513 1514 if (ath_tid_has_buffered(tid)) { 1515 ath_tx_queue_tid(txq, tid); 1516 ath_txq_schedule(sc, txq); 1517 } 1518 1519 ath_txq_unlock_complete(sc, txq); 1520 } 1521 1522 void ath9k_release_buffered_frames(struct ieee80211_hw *hw, 1523 struct ieee80211_sta *sta, 1524 u16 tids, int nframes, 1525 enum ieee80211_frame_release_type reason, 1526 bool more_data) 1527 { 1528 struct ath_softc *sc = hw->priv; 1529 struct ath_node *an = (struct ath_node *)sta->drv_priv; 1530 struct ath_txq *txq = sc->tx.uapsdq; 1531 struct ieee80211_tx_info *info; 1532 struct list_head bf_q; 1533 struct ath_buf *bf_tail = NULL, *bf; 1534 struct sk_buff_head *tid_q; 1535 int sent = 0; 1536 int i; 1537 1538 INIT_LIST_HEAD(&bf_q); 1539 for (i = 0; tids && nframes; i++, tids >>= 1) { 1540 struct ath_atx_tid *tid; 1541 1542 if (!(tids & 1)) 1543 continue; 1544 1545 tid = ATH_AN_2_TID(an, i); 1546 if (tid->paused) 1547 continue; 1548 1549 ath_txq_lock(sc, tid->ac->txq); 1550 while (nframes > 0) { 1551 bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q); 1552 if (!bf) 1553 break; 1554 1555 __skb_unlink(bf->bf_mpdu, tid_q); 1556 list_add_tail(&bf->list, &bf_q); 1557 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1558 ath_tx_addto_baw(sc, tid, bf); 1559 bf->bf_state.bf_type &= ~BUF_AGGR; 1560 if (bf_tail) 1561 bf_tail->bf_next = bf; 1562 1563 bf_tail = bf; 1564 nframes--; 1565 sent++; 1566 TX_STAT_INC(txq->axq_qnum, a_queued_hw); 1567 1568 if (an->sta && !ath_tid_has_buffered(tid)) 1569 ieee80211_sta_set_buffered(an->sta, i, false); 1570 } 1571 ath_txq_unlock_complete(sc, tid->ac->txq); 1572 } 1573 1574 if (list_empty(&bf_q)) 1575 return; 1576 1577 info = IEEE80211_SKB_CB(bf_tail->bf_mpdu); 1578 info->flags |= IEEE80211_TX_STATUS_EOSP; 1579 1580 bf = list_first_entry(&bf_q, struct ath_buf, list); 1581 ath_txq_lock(sc, txq); 1582 ath_tx_fill_desc(sc, bf, txq, 0); 1583 ath_tx_txqaddbuf(sc, txq, &bf_q, false); 1584 ath_txq_unlock(sc, txq); 1585 } 1586 1587 /********************/ 1588 /* Queue Management */ 1589 /********************/ 1590 1591 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 1592 { 1593 struct ath_hw *ah = sc->sc_ah; 1594 struct ath9k_tx_queue_info qi; 1595 static const int subtype_txq_to_hwq[] = { 1596 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE, 1597 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK, 1598 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI, 1599 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO, 1600 }; 1601 int axq_qnum, i; 1602 1603 memset(&qi, 0, sizeof(qi)); 1604 qi.tqi_subtype = subtype_txq_to_hwq[subtype]; 1605 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT; 1606 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT; 1607 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT; 1608 qi.tqi_physCompBuf = 0; 1609 1610 /* 1611 * Enable interrupts only for EOL and DESC conditions. 1612 * We mark tx descriptors to receive a DESC interrupt 1613 * when a tx queue gets deep; otherwise waiting for the 1614 * EOL to reap descriptors. Note that this is done to 1615 * reduce interrupt load and this only defers reaping 1616 * descriptors, never transmitting frames. Aside from 1617 * reducing interrupts this also permits more concurrency. 1618 * The only potential downside is if the tx queue backs 1619 * up in which case the top half of the kernel may backup 1620 * due to a lack of tx descriptors. 1621 * 1622 * The UAPSD queue is an exception, since we take a desc- 1623 * based intr on the EOSP frames. 1624 */ 1625 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1626 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE; 1627 } else { 1628 if (qtype == ATH9K_TX_QUEUE_UAPSD) 1629 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE; 1630 else 1631 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | 1632 TXQ_FLAG_TXDESCINT_ENABLE; 1633 } 1634 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi); 1635 if (axq_qnum == -1) { 1636 /* 1637 * NB: don't print a message, this happens 1638 * normally on parts with too few tx queues 1639 */ 1640 return NULL; 1641 } 1642 if (!ATH_TXQ_SETUP(sc, axq_qnum)) { 1643 struct ath_txq *txq = &sc->tx.txq[axq_qnum]; 1644 1645 txq->axq_qnum = axq_qnum; 1646 txq->mac80211_qnum = -1; 1647 txq->axq_link = NULL; 1648 __skb_queue_head_init(&txq->complete_q); 1649 INIT_LIST_HEAD(&txq->axq_q); 1650 INIT_LIST_HEAD(&txq->axq_acq); 1651 spin_lock_init(&txq->axq_lock); 1652 txq->axq_depth = 0; 1653 txq->axq_ampdu_depth = 0; 1654 txq->axq_tx_inprogress = false; 1655 sc->tx.txqsetup |= 1<<axq_qnum; 1656 1657 txq->txq_headidx = txq->txq_tailidx = 0; 1658 for (i = 0; i < ATH_TXFIFO_DEPTH; i++) 1659 INIT_LIST_HEAD(&txq->txq_fifo[i]); 1660 } 1661 return &sc->tx.txq[axq_qnum]; 1662 } 1663 1664 int ath_txq_update(struct ath_softc *sc, int qnum, 1665 struct ath9k_tx_queue_info *qinfo) 1666 { 1667 struct ath_hw *ah = sc->sc_ah; 1668 int error = 0; 1669 struct ath9k_tx_queue_info qi; 1670 1671 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum); 1672 1673 ath9k_hw_get_txq_props(ah, qnum, &qi); 1674 qi.tqi_aifs = qinfo->tqi_aifs; 1675 qi.tqi_cwmin = qinfo->tqi_cwmin; 1676 qi.tqi_cwmax = qinfo->tqi_cwmax; 1677 qi.tqi_burstTime = qinfo->tqi_burstTime; 1678 qi.tqi_readyTime = qinfo->tqi_readyTime; 1679 1680 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) { 1681 ath_err(ath9k_hw_common(sc->sc_ah), 1682 "Unable to update hardware queue %u!\n", qnum); 1683 error = -EIO; 1684 } else { 1685 ath9k_hw_resettxqueue(ah, qnum); 1686 } 1687 1688 return error; 1689 } 1690 1691 int ath_cabq_update(struct ath_softc *sc) 1692 { 1693 struct ath9k_tx_queue_info qi; 1694 struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf; 1695 int qnum = sc->beacon.cabq->axq_qnum; 1696 1697 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi); 1698 /* 1699 * Ensure the readytime % is within the bounds. 1700 */ 1701 if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND) 1702 sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND; 1703 else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND) 1704 sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND; 1705 1706 qi.tqi_readyTime = (cur_conf->beacon_interval * 1707 sc->config.cabqReadytime) / 100; 1708 ath_txq_update(sc, qnum, &qi); 1709 1710 return 0; 1711 } 1712 1713 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq, 1714 struct list_head *list) 1715 { 1716 struct ath_buf *bf, *lastbf; 1717 struct list_head bf_head; 1718 struct ath_tx_status ts; 1719 1720 memset(&ts, 0, sizeof(ts)); 1721 ts.ts_status = ATH9K_TX_FLUSH; 1722 INIT_LIST_HEAD(&bf_head); 1723 1724 while (!list_empty(list)) { 1725 bf = list_first_entry(list, struct ath_buf, list); 1726 1727 if (bf->bf_state.stale) { 1728 list_del(&bf->list); 1729 1730 ath_tx_return_buffer(sc, bf); 1731 continue; 1732 } 1733 1734 lastbf = bf->bf_lastbf; 1735 list_cut_position(&bf_head, list, &lastbf->list); 1736 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 1737 } 1738 } 1739 1740 /* 1741 * Drain a given TX queue (could be Beacon or Data) 1742 * 1743 * This assumes output has been stopped and 1744 * we do not need to block ath_tx_tasklet. 1745 */ 1746 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq) 1747 { 1748 ath_txq_lock(sc, txq); 1749 1750 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1751 int idx = txq->txq_tailidx; 1752 1753 while (!list_empty(&txq->txq_fifo[idx])) { 1754 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]); 1755 1756 INCR(idx, ATH_TXFIFO_DEPTH); 1757 } 1758 txq->txq_tailidx = idx; 1759 } 1760 1761 txq->axq_link = NULL; 1762 txq->axq_tx_inprogress = false; 1763 ath_drain_txq_list(sc, txq, &txq->axq_q); 1764 1765 ath_txq_unlock_complete(sc, txq); 1766 } 1767 1768 bool ath_drain_all_txq(struct ath_softc *sc) 1769 { 1770 struct ath_hw *ah = sc->sc_ah; 1771 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1772 struct ath_txq *txq; 1773 int i; 1774 u32 npend = 0; 1775 1776 if (test_bit(SC_OP_INVALID, &sc->sc_flags)) 1777 return true; 1778 1779 ath9k_hw_abort_tx_dma(ah); 1780 1781 /* Check if any queue remains active */ 1782 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1783 if (!ATH_TXQ_SETUP(sc, i)) 1784 continue; 1785 1786 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum)) 1787 npend |= BIT(i); 1788 } 1789 1790 if (npend) 1791 ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend); 1792 1793 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1794 if (!ATH_TXQ_SETUP(sc, i)) 1795 continue; 1796 1797 /* 1798 * The caller will resume queues with ieee80211_wake_queues. 1799 * Mark the queue as not stopped to prevent ath_tx_complete 1800 * from waking the queue too early. 1801 */ 1802 txq = &sc->tx.txq[i]; 1803 txq->stopped = false; 1804 ath_draintxq(sc, txq); 1805 } 1806 1807 return !npend; 1808 } 1809 1810 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 1811 { 1812 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum); 1813 sc->tx.txqsetup &= ~(1<<txq->axq_qnum); 1814 } 1815 1816 /* For each axq_acq entry, for each tid, try to schedule packets 1817 * for transmit until ampdu_depth has reached min Q depth. 1818 */ 1819 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq) 1820 { 1821 struct ath_atx_ac *ac, *last_ac; 1822 struct ath_atx_tid *tid, *last_tid; 1823 bool sent = false; 1824 1825 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) || 1826 list_empty(&txq->axq_acq)) 1827 return; 1828 1829 rcu_read_lock(); 1830 1831 last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list); 1832 while (!list_empty(&txq->axq_acq)) { 1833 bool stop = false; 1834 1835 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list); 1836 last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list); 1837 list_del(&ac->list); 1838 ac->sched = false; 1839 1840 while (!list_empty(&ac->tid_q)) { 1841 1842 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, 1843 list); 1844 list_del(&tid->list); 1845 tid->sched = false; 1846 1847 if (tid->paused) 1848 continue; 1849 1850 if (ath_tx_sched_aggr(sc, txq, tid, &stop)) 1851 sent = true; 1852 1853 /* 1854 * add tid to round-robin queue if more frames 1855 * are pending for the tid 1856 */ 1857 if (ath_tid_has_buffered(tid)) 1858 ath_tx_queue_tid(txq, tid); 1859 1860 if (stop || tid == last_tid) 1861 break; 1862 } 1863 1864 if (!list_empty(&ac->tid_q) && !ac->sched) { 1865 ac->sched = true; 1866 list_add_tail(&ac->list, &txq->axq_acq); 1867 } 1868 1869 if (stop) 1870 break; 1871 1872 if (ac == last_ac) { 1873 if (!sent) 1874 break; 1875 1876 sent = false; 1877 last_ac = list_entry(txq->axq_acq.prev, 1878 struct ath_atx_ac, list); 1879 } 1880 } 1881 1882 rcu_read_unlock(); 1883 } 1884 1885 /***********/ 1886 /* TX, DMA */ 1887 /***********/ 1888 1889 /* 1890 * Insert a chain of ath_buf (descriptors) on a txq and 1891 * assume the descriptors are already chained together by caller. 1892 */ 1893 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 1894 struct list_head *head, bool internal) 1895 { 1896 struct ath_hw *ah = sc->sc_ah; 1897 struct ath_common *common = ath9k_hw_common(ah); 1898 struct ath_buf *bf, *bf_last; 1899 bool puttxbuf = false; 1900 bool edma; 1901 1902 /* 1903 * Insert the frame on the outbound list and 1904 * pass it on to the hardware. 1905 */ 1906 1907 if (list_empty(head)) 1908 return; 1909 1910 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA); 1911 bf = list_first_entry(head, struct ath_buf, list); 1912 bf_last = list_entry(head->prev, struct ath_buf, list); 1913 1914 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n", 1915 txq->axq_qnum, txq->axq_depth); 1916 1917 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) { 1918 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]); 1919 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH); 1920 puttxbuf = true; 1921 } else { 1922 list_splice_tail_init(head, &txq->axq_q); 1923 1924 if (txq->axq_link) { 1925 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr); 1926 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n", 1927 txq->axq_qnum, txq->axq_link, 1928 ito64(bf->bf_daddr), bf->bf_desc); 1929 } else if (!edma) 1930 puttxbuf = true; 1931 1932 txq->axq_link = bf_last->bf_desc; 1933 } 1934 1935 if (puttxbuf) { 1936 TX_STAT_INC(txq->axq_qnum, puttxbuf); 1937 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 1938 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n", 1939 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc); 1940 } 1941 1942 if (!edma) { 1943 TX_STAT_INC(txq->axq_qnum, txstart); 1944 ath9k_hw_txstart(ah, txq->axq_qnum); 1945 } 1946 1947 if (!internal) { 1948 while (bf) { 1949 txq->axq_depth++; 1950 if (bf_is_ampdu_not_probing(bf)) 1951 txq->axq_ampdu_depth++; 1952 1953 bf = bf->bf_lastbf->bf_next; 1954 } 1955 } 1956 } 1957 1958 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 1959 struct ath_atx_tid *tid, struct sk_buff *skb) 1960 { 1961 struct ath_frame_info *fi = get_frame_info(skb); 1962 struct list_head bf_head; 1963 struct ath_buf *bf; 1964 1965 bf = fi->bf; 1966 1967 INIT_LIST_HEAD(&bf_head); 1968 list_add_tail(&bf->list, &bf_head); 1969 bf->bf_state.bf_type = 0; 1970 1971 bf->bf_next = NULL; 1972 bf->bf_lastbf = bf; 1973 ath_tx_fill_desc(sc, bf, txq, fi->framelen); 1974 ath_tx_txqaddbuf(sc, txq, &bf_head, false); 1975 TX_STAT_INC(txq->axq_qnum, queued); 1976 } 1977 1978 static void setup_frame_info(struct ieee80211_hw *hw, 1979 struct ieee80211_sta *sta, 1980 struct sk_buff *skb, 1981 int framelen) 1982 { 1983 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1984 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key; 1985 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1986 const struct ieee80211_rate *rate; 1987 struct ath_frame_info *fi = get_frame_info(skb); 1988 struct ath_node *an = NULL; 1989 enum ath9k_key_type keytype; 1990 bool short_preamble = false; 1991 1992 /* 1993 * We check if Short Preamble is needed for the CTS rate by 1994 * checking the BSS's global flag. 1995 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used. 1996 */ 1997 if (tx_info->control.vif && 1998 tx_info->control.vif->bss_conf.use_short_preamble) 1999 short_preamble = true; 2000 2001 rate = ieee80211_get_rts_cts_rate(hw, tx_info); 2002 keytype = ath9k_cmn_get_hw_crypto_keytype(skb); 2003 2004 if (sta) 2005 an = (struct ath_node *) sta->drv_priv; 2006 2007 memset(fi, 0, sizeof(*fi)); 2008 if (hw_key) 2009 fi->keyix = hw_key->hw_key_idx; 2010 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0) 2011 fi->keyix = an->ps_key; 2012 else 2013 fi->keyix = ATH9K_TXKEYIX_INVALID; 2014 fi->keytype = keytype; 2015 fi->framelen = framelen; 2016 fi->rtscts_rate = rate->hw_value; 2017 if (short_preamble) 2018 fi->rtscts_rate |= rate->hw_value_short; 2019 } 2020 2021 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate) 2022 { 2023 struct ath_hw *ah = sc->sc_ah; 2024 struct ath9k_channel *curchan = ah->curchan; 2025 2026 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && 2027 (curchan->channelFlags & CHANNEL_5GHZ) && 2028 (chainmask == 0x7) && (rate < 0x90)) 2029 return 0x3; 2030 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) && 2031 IS_CCK_RATE(rate)) 2032 return 0x2; 2033 else 2034 return chainmask; 2035 } 2036 2037 /* 2038 * Assign a descriptor (and sequence number if necessary, 2039 * and map buffer for DMA. Frees skb on error 2040 */ 2041 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, 2042 struct ath_txq *txq, 2043 struct ath_atx_tid *tid, 2044 struct sk_buff *skb) 2045 { 2046 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2047 struct ath_frame_info *fi = get_frame_info(skb); 2048 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2049 struct ath_buf *bf; 2050 int fragno; 2051 u16 seqno; 2052 2053 bf = ath_tx_get_buffer(sc); 2054 if (!bf) { 2055 ath_dbg(common, XMIT, "TX buffers are full\n"); 2056 return NULL; 2057 } 2058 2059 ATH_TXBUF_RESET(bf); 2060 2061 if (tid) { 2062 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG; 2063 seqno = tid->seq_next; 2064 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT); 2065 2066 if (fragno) 2067 hdr->seq_ctrl |= cpu_to_le16(fragno); 2068 2069 if (!ieee80211_has_morefrags(hdr->frame_control)) 2070 INCR(tid->seq_next, IEEE80211_SEQ_MAX); 2071 2072 bf->bf_state.seqno = seqno; 2073 } 2074 2075 bf->bf_mpdu = skb; 2076 2077 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 2078 skb->len, DMA_TO_DEVICE); 2079 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) { 2080 bf->bf_mpdu = NULL; 2081 bf->bf_buf_addr = 0; 2082 ath_err(ath9k_hw_common(sc->sc_ah), 2083 "dma_mapping_error() on TX\n"); 2084 ath_tx_return_buffer(sc, bf); 2085 return NULL; 2086 } 2087 2088 fi->bf = bf; 2089 2090 return bf; 2091 } 2092 2093 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb, 2094 struct ath_tx_control *txctl) 2095 { 2096 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2097 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2098 struct ieee80211_sta *sta = txctl->sta; 2099 struct ieee80211_vif *vif = info->control.vif; 2100 struct ath_vif *avp; 2101 struct ath_softc *sc = hw->priv; 2102 int frmlen = skb->len + FCS_LEN; 2103 int padpos, padsize; 2104 2105 /* NOTE: sta can be NULL according to net/mac80211.h */ 2106 if (sta) 2107 txctl->an = (struct ath_node *)sta->drv_priv; 2108 else if (vif && ieee80211_is_data(hdr->frame_control)) { 2109 avp = (void *)vif->drv_priv; 2110 txctl->an = &avp->mcast_node; 2111 } 2112 2113 if (info->control.hw_key) 2114 frmlen += info->control.hw_key->icv_len; 2115 2116 /* 2117 * As a temporary workaround, assign seq# here; this will likely need 2118 * to be cleaned up to work better with Beacon transmission and virtual 2119 * BSSes. 2120 */ 2121 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { 2122 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) 2123 sc->tx.seq_no += 0x10; 2124 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); 2125 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no); 2126 } 2127 2128 if ((vif && vif->type != NL80211_IFTYPE_AP && 2129 vif->type != NL80211_IFTYPE_AP_VLAN) || 2130 !ieee80211_is_data(hdr->frame_control)) 2131 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 2132 2133 /* Add the padding after the header if this is not already done */ 2134 padpos = ieee80211_hdrlen(hdr->frame_control); 2135 padsize = padpos & 3; 2136 if (padsize && skb->len > padpos) { 2137 if (skb_headroom(skb) < padsize) 2138 return -ENOMEM; 2139 2140 skb_push(skb, padsize); 2141 memmove(skb->data, skb->data + padsize, padpos); 2142 } 2143 2144 setup_frame_info(hw, sta, skb, frmlen); 2145 return 0; 2146 } 2147 2148 2149 /* Upon failure caller should free skb */ 2150 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb, 2151 struct ath_tx_control *txctl) 2152 { 2153 struct ieee80211_hdr *hdr; 2154 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2155 struct ieee80211_sta *sta = txctl->sta; 2156 struct ieee80211_vif *vif = info->control.vif; 2157 struct ath_softc *sc = hw->priv; 2158 struct ath_txq *txq = txctl->txq; 2159 struct ath_atx_tid *tid = NULL; 2160 struct ath_buf *bf; 2161 int q; 2162 int ret; 2163 2164 ret = ath_tx_prepare(hw, skb, txctl); 2165 if (ret) 2166 return ret; 2167 2168 hdr = (struct ieee80211_hdr *) skb->data; 2169 /* 2170 * At this point, the vif, hw_key and sta pointers in the tx control 2171 * info are no longer valid (overwritten by the ath_frame_info data. 2172 */ 2173 2174 q = skb_get_queue_mapping(skb); 2175 2176 ath_txq_lock(sc, txq); 2177 if (txq == sc->tx.txq_map[q] && 2178 ++txq->pending_frames > sc->tx.txq_max_pending[q] && 2179 !txq->stopped) { 2180 ieee80211_stop_queue(sc->hw, q); 2181 txq->stopped = true; 2182 } 2183 2184 if (info->flags & IEEE80211_TX_CTL_PS_RESPONSE) { 2185 ath_txq_unlock(sc, txq); 2186 txq = sc->tx.uapsdq; 2187 ath_txq_lock(sc, txq); 2188 } else if (txctl->an && 2189 ieee80211_is_data_present(hdr->frame_control)) { 2190 tid = ath_get_skb_tid(sc, txctl->an, skb); 2191 2192 WARN_ON(tid->ac->txq != txctl->txq); 2193 2194 if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) 2195 tid->ac->clear_ps_filter = true; 2196 2197 /* 2198 * Add this frame to software queue for scheduling later 2199 * for aggregation. 2200 */ 2201 TX_STAT_INC(txq->axq_qnum, a_queued_sw); 2202 __skb_queue_tail(&tid->buf_q, skb); 2203 if (!txctl->an->sleeping) 2204 ath_tx_queue_tid(txq, tid); 2205 2206 ath_txq_schedule(sc, txq); 2207 goto out; 2208 } 2209 2210 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 2211 if (!bf) { 2212 ath_txq_skb_done(sc, txq, skb); 2213 if (txctl->paprd) 2214 dev_kfree_skb_any(skb); 2215 else 2216 ieee80211_free_txskb(sc->hw, skb); 2217 goto out; 2218 } 2219 2220 bf->bf_state.bfs_paprd = txctl->paprd; 2221 2222 if (txctl->paprd) 2223 bf->bf_state.bfs_paprd_timestamp = jiffies; 2224 2225 ath_set_rates(vif, sta, bf); 2226 ath_tx_send_normal(sc, txq, tid, skb); 2227 2228 out: 2229 ath_txq_unlock(sc, txq); 2230 2231 return 0; 2232 } 2233 2234 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2235 struct sk_buff *skb) 2236 { 2237 struct ath_softc *sc = hw->priv; 2238 struct ath_tx_control txctl = { 2239 .txq = sc->beacon.cabq 2240 }; 2241 struct ath_tx_info info = {}; 2242 struct ieee80211_hdr *hdr; 2243 struct ath_buf *bf_tail = NULL; 2244 struct ath_buf *bf; 2245 LIST_HEAD(bf_q); 2246 int duration = 0; 2247 int max_duration; 2248 2249 max_duration = 2250 sc->cur_beacon_conf.beacon_interval * 1000 * 2251 sc->cur_beacon_conf.dtim_period / ATH_BCBUF; 2252 2253 do { 2254 struct ath_frame_info *fi = get_frame_info(skb); 2255 2256 if (ath_tx_prepare(hw, skb, &txctl)) 2257 break; 2258 2259 bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb); 2260 if (!bf) 2261 break; 2262 2263 bf->bf_lastbf = bf; 2264 ath_set_rates(vif, NULL, bf); 2265 ath_buf_set_rate(sc, bf, &info, fi->framelen, false); 2266 duration += info.rates[0].PktDuration; 2267 if (bf_tail) 2268 bf_tail->bf_next = bf; 2269 2270 list_add_tail(&bf->list, &bf_q); 2271 bf_tail = bf; 2272 skb = NULL; 2273 2274 if (duration > max_duration) 2275 break; 2276 2277 skb = ieee80211_get_buffered_bc(hw, vif); 2278 } while(skb); 2279 2280 if (skb) 2281 ieee80211_free_txskb(hw, skb); 2282 2283 if (list_empty(&bf_q)) 2284 return; 2285 2286 bf = list_first_entry(&bf_q, struct ath_buf, list); 2287 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data; 2288 2289 if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) { 2290 hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA; 2291 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 2292 sizeof(*hdr), DMA_TO_DEVICE); 2293 } 2294 2295 ath_txq_lock(sc, txctl.txq); 2296 ath_tx_fill_desc(sc, bf, txctl.txq, 0); 2297 ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false); 2298 TX_STAT_INC(txctl.txq->axq_qnum, queued); 2299 ath_txq_unlock(sc, txctl.txq); 2300 } 2301 2302 /*****************/ 2303 /* TX Completion */ 2304 /*****************/ 2305 2306 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, 2307 int tx_flags, struct ath_txq *txq) 2308 { 2309 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2310 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2311 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data; 2312 int padpos, padsize; 2313 unsigned long flags; 2314 2315 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb); 2316 2317 if (sc->sc_ah->caldata) 2318 sc->sc_ah->caldata->paprd_packet_sent = true; 2319 2320 if (!(tx_flags & ATH_TX_ERROR)) 2321 /* Frame was ACKed */ 2322 tx_info->flags |= IEEE80211_TX_STAT_ACK; 2323 2324 padpos = ieee80211_hdrlen(hdr->frame_control); 2325 padsize = padpos & 3; 2326 if (padsize && skb->len>padpos+padsize) { 2327 /* 2328 * Remove MAC header padding before giving the frame back to 2329 * mac80211. 2330 */ 2331 memmove(skb->data + padsize, skb->data, padpos); 2332 skb_pull(skb, padsize); 2333 } 2334 2335 spin_lock_irqsave(&sc->sc_pm_lock, flags); 2336 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) { 2337 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK; 2338 ath_dbg(common, PS, 2339 "Going back to sleep after having received TX status (0x%lx)\n", 2340 sc->ps_flags & (PS_WAIT_FOR_BEACON | 2341 PS_WAIT_FOR_CAB | 2342 PS_WAIT_FOR_PSPOLL_DATA | 2343 PS_WAIT_FOR_TX_ACK)); 2344 } 2345 spin_unlock_irqrestore(&sc->sc_pm_lock, flags); 2346 2347 __skb_queue_tail(&txq->complete_q, skb); 2348 ath_txq_skb_done(sc, txq, skb); 2349 } 2350 2351 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 2352 struct ath_txq *txq, struct list_head *bf_q, 2353 struct ath_tx_status *ts, int txok) 2354 { 2355 struct sk_buff *skb = bf->bf_mpdu; 2356 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2357 unsigned long flags; 2358 int tx_flags = 0; 2359 2360 if (!txok) 2361 tx_flags |= ATH_TX_ERROR; 2362 2363 if (ts->ts_status & ATH9K_TXERR_FILT) 2364 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; 2365 2366 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE); 2367 bf->bf_buf_addr = 0; 2368 2369 if (bf->bf_state.bfs_paprd) { 2370 if (time_after(jiffies, 2371 bf->bf_state.bfs_paprd_timestamp + 2372 msecs_to_jiffies(ATH_PAPRD_TIMEOUT))) 2373 dev_kfree_skb_any(skb); 2374 else 2375 complete(&sc->paprd_complete); 2376 } else { 2377 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags); 2378 ath_tx_complete(sc, skb, tx_flags, txq); 2379 } 2380 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't 2381 * accidentally reference it later. 2382 */ 2383 bf->bf_mpdu = NULL; 2384 2385 /* 2386 * Return the list of ath_buf of this mpdu to free queue 2387 */ 2388 spin_lock_irqsave(&sc->tx.txbuflock, flags); 2389 list_splice_tail_init(bf_q, &sc->tx.txbuf); 2390 spin_unlock_irqrestore(&sc->tx.txbuflock, flags); 2391 } 2392 2393 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 2394 struct ath_tx_status *ts, int nframes, int nbad, 2395 int txok) 2396 { 2397 struct sk_buff *skb = bf->bf_mpdu; 2398 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2399 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2400 struct ieee80211_hw *hw = sc->hw; 2401 struct ath_hw *ah = sc->sc_ah; 2402 u8 i, tx_rateindex; 2403 2404 if (txok) 2405 tx_info->status.ack_signal = ts->ts_rssi; 2406 2407 tx_rateindex = ts->ts_rateindex; 2408 WARN_ON(tx_rateindex >= hw->max_rates); 2409 2410 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 2411 tx_info->flags |= IEEE80211_TX_STAT_AMPDU; 2412 2413 BUG_ON(nbad > nframes); 2414 } 2415 tx_info->status.ampdu_len = nframes; 2416 tx_info->status.ampdu_ack_len = nframes - nbad; 2417 2418 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 && 2419 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) { 2420 /* 2421 * If an underrun error is seen assume it as an excessive 2422 * retry only if max frame trigger level has been reached 2423 * (2 KB for single stream, and 4 KB for dual stream). 2424 * Adjust the long retry as if the frame was tried 2425 * hw->max_rate_tries times to affect how rate control updates 2426 * PER for the failed rate. 2427 * In case of congestion on the bus penalizing this type of 2428 * underruns should help hardware actually transmit new frames 2429 * successfully by eventually preferring slower rates. 2430 * This itself should also alleviate congestion on the bus. 2431 */ 2432 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN | 2433 ATH9K_TX_DELIM_UNDERRUN)) && 2434 ieee80211_is_data(hdr->frame_control) && 2435 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level) 2436 tx_info->status.rates[tx_rateindex].count = 2437 hw->max_rate_tries; 2438 } 2439 2440 for (i = tx_rateindex + 1; i < hw->max_rates; i++) { 2441 tx_info->status.rates[i].count = 0; 2442 tx_info->status.rates[i].idx = -1; 2443 } 2444 2445 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1; 2446 } 2447 2448 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 2449 { 2450 struct ath_hw *ah = sc->sc_ah; 2451 struct ath_common *common = ath9k_hw_common(ah); 2452 struct ath_buf *bf, *lastbf, *bf_held = NULL; 2453 struct list_head bf_head; 2454 struct ath_desc *ds; 2455 struct ath_tx_status ts; 2456 int status; 2457 2458 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n", 2459 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum), 2460 txq->axq_link); 2461 2462 ath_txq_lock(sc, txq); 2463 for (;;) { 2464 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags)) 2465 break; 2466 2467 if (list_empty(&txq->axq_q)) { 2468 txq->axq_link = NULL; 2469 ath_txq_schedule(sc, txq); 2470 break; 2471 } 2472 bf = list_first_entry(&txq->axq_q, struct ath_buf, list); 2473 2474 /* 2475 * There is a race condition that a BH gets scheduled 2476 * after sw writes TxE and before hw re-load the last 2477 * descriptor to get the newly chained one. 2478 * Software must keep the last DONE descriptor as a 2479 * holding descriptor - software does so by marking 2480 * it with the STALE flag. 2481 */ 2482 bf_held = NULL; 2483 if (bf->bf_state.stale) { 2484 bf_held = bf; 2485 if (list_is_last(&bf_held->list, &txq->axq_q)) 2486 break; 2487 2488 bf = list_entry(bf_held->list.next, struct ath_buf, 2489 list); 2490 } 2491 2492 lastbf = bf->bf_lastbf; 2493 ds = lastbf->bf_desc; 2494 2495 memset(&ts, 0, sizeof(ts)); 2496 status = ath9k_hw_txprocdesc(ah, ds, &ts); 2497 if (status == -EINPROGRESS) 2498 break; 2499 2500 TX_STAT_INC(txq->axq_qnum, txprocdesc); 2501 2502 /* 2503 * Remove ath_buf's of the same transmit unit from txq, 2504 * however leave the last descriptor back as the holding 2505 * descriptor for hw. 2506 */ 2507 lastbf->bf_state.stale = true; 2508 INIT_LIST_HEAD(&bf_head); 2509 if (!list_is_singular(&lastbf->list)) 2510 list_cut_position(&bf_head, 2511 &txq->axq_q, lastbf->list.prev); 2512 2513 if (bf_held) { 2514 list_del(&bf_held->list); 2515 ath_tx_return_buffer(sc, bf_held); 2516 } 2517 2518 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2519 } 2520 ath_txq_unlock_complete(sc, txq); 2521 } 2522 2523 void ath_tx_tasklet(struct ath_softc *sc) 2524 { 2525 struct ath_hw *ah = sc->sc_ah; 2526 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs; 2527 int i; 2528 2529 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 2530 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i))) 2531 ath_tx_processq(sc, &sc->tx.txq[i]); 2532 } 2533 } 2534 2535 void ath_tx_edma_tasklet(struct ath_softc *sc) 2536 { 2537 struct ath_tx_status ts; 2538 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2539 struct ath_hw *ah = sc->sc_ah; 2540 struct ath_txq *txq; 2541 struct ath_buf *bf, *lastbf; 2542 struct list_head bf_head; 2543 struct list_head *fifo_list; 2544 int status; 2545 2546 for (;;) { 2547 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags)) 2548 break; 2549 2550 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts); 2551 if (status == -EINPROGRESS) 2552 break; 2553 if (status == -EIO) { 2554 ath_dbg(common, XMIT, "Error processing tx status\n"); 2555 break; 2556 } 2557 2558 /* Process beacon completions separately */ 2559 if (ts.qid == sc->beacon.beaconq) { 2560 sc->beacon.tx_processed = true; 2561 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK); 2562 2563 ath9k_csa_is_finished(sc); 2564 continue; 2565 } 2566 2567 txq = &sc->tx.txq[ts.qid]; 2568 2569 ath_txq_lock(sc, txq); 2570 2571 TX_STAT_INC(txq->axq_qnum, txprocdesc); 2572 2573 fifo_list = &txq->txq_fifo[txq->txq_tailidx]; 2574 if (list_empty(fifo_list)) { 2575 ath_txq_unlock(sc, txq); 2576 return; 2577 } 2578 2579 bf = list_first_entry(fifo_list, struct ath_buf, list); 2580 if (bf->bf_state.stale) { 2581 list_del(&bf->list); 2582 ath_tx_return_buffer(sc, bf); 2583 bf = list_first_entry(fifo_list, struct ath_buf, list); 2584 } 2585 2586 lastbf = bf->bf_lastbf; 2587 2588 INIT_LIST_HEAD(&bf_head); 2589 if (list_is_last(&lastbf->list, fifo_list)) { 2590 list_splice_tail_init(fifo_list, &bf_head); 2591 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH); 2592 2593 if (!list_empty(&txq->axq_q)) { 2594 struct list_head bf_q; 2595 2596 INIT_LIST_HEAD(&bf_q); 2597 txq->axq_link = NULL; 2598 list_splice_tail_init(&txq->axq_q, &bf_q); 2599 ath_tx_txqaddbuf(sc, txq, &bf_q, true); 2600 } 2601 } else { 2602 lastbf->bf_state.stale = true; 2603 if (bf != lastbf) 2604 list_cut_position(&bf_head, fifo_list, 2605 lastbf->list.prev); 2606 } 2607 2608 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2609 ath_txq_unlock_complete(sc, txq); 2610 } 2611 } 2612 2613 /*****************/ 2614 /* Init, Cleanup */ 2615 /*****************/ 2616 2617 static int ath_txstatus_setup(struct ath_softc *sc, int size) 2618 { 2619 struct ath_descdma *dd = &sc->txsdma; 2620 u8 txs_len = sc->sc_ah->caps.txs_len; 2621 2622 dd->dd_desc_len = size * txs_len; 2623 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len, 2624 &dd->dd_desc_paddr, GFP_KERNEL); 2625 if (!dd->dd_desc) 2626 return -ENOMEM; 2627 2628 return 0; 2629 } 2630 2631 static int ath_tx_edma_init(struct ath_softc *sc) 2632 { 2633 int err; 2634 2635 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE); 2636 if (!err) 2637 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc, 2638 sc->txsdma.dd_desc_paddr, 2639 ATH_TXSTATUS_RING_SIZE); 2640 2641 return err; 2642 } 2643 2644 int ath_tx_init(struct ath_softc *sc, int nbufs) 2645 { 2646 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2647 int error = 0; 2648 2649 spin_lock_init(&sc->tx.txbuflock); 2650 2651 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf, 2652 "tx", nbufs, 1, 1); 2653 if (error != 0) { 2654 ath_err(common, 2655 "Failed to allocate tx descriptors: %d\n", error); 2656 return error; 2657 } 2658 2659 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf, 2660 "beacon", ATH_BCBUF, 1, 1); 2661 if (error != 0) { 2662 ath_err(common, 2663 "Failed to allocate beacon descriptors: %d\n", error); 2664 return error; 2665 } 2666 2667 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work); 2668 2669 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 2670 error = ath_tx_edma_init(sc); 2671 2672 return error; 2673 } 2674 2675 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an) 2676 { 2677 struct ath_atx_tid *tid; 2678 struct ath_atx_ac *ac; 2679 int tidno, acno; 2680 2681 for (tidno = 0, tid = &an->tid[tidno]; 2682 tidno < IEEE80211_NUM_TIDS; 2683 tidno++, tid++) { 2684 tid->an = an; 2685 tid->tidno = tidno; 2686 tid->seq_start = tid->seq_next = 0; 2687 tid->baw_size = WME_MAX_BA; 2688 tid->baw_head = tid->baw_tail = 0; 2689 tid->sched = false; 2690 tid->paused = false; 2691 tid->active = false; 2692 __skb_queue_head_init(&tid->buf_q); 2693 __skb_queue_head_init(&tid->retry_q); 2694 acno = TID_TO_WME_AC(tidno); 2695 tid->ac = &an->ac[acno]; 2696 } 2697 2698 for (acno = 0, ac = &an->ac[acno]; 2699 acno < IEEE80211_NUM_ACS; acno++, ac++) { 2700 ac->sched = false; 2701 ac->clear_ps_filter = true; 2702 ac->txq = sc->tx.txq_map[acno]; 2703 INIT_LIST_HEAD(&ac->tid_q); 2704 } 2705 } 2706 2707 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an) 2708 { 2709 struct ath_atx_ac *ac; 2710 struct ath_atx_tid *tid; 2711 struct ath_txq *txq; 2712 int tidno; 2713 2714 for (tidno = 0, tid = &an->tid[tidno]; 2715 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) { 2716 2717 ac = tid->ac; 2718 txq = ac->txq; 2719 2720 ath_txq_lock(sc, txq); 2721 2722 if (tid->sched) { 2723 list_del(&tid->list); 2724 tid->sched = false; 2725 } 2726 2727 if (ac->sched) { 2728 list_del(&ac->list); 2729 tid->ac->sched = false; 2730 } 2731 2732 ath_tid_drain(sc, txq, tid); 2733 tid->active = false; 2734 2735 ath_txq_unlock(sc, txq); 2736 } 2737 } 2738