xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/xmit.c (revision 5bd8e16d)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20 
21 #define BITS_PER_BYTE           8
22 #define OFDM_PLCP_BITS          22
23 #define HT_RC_2_STREAMS(_rc)    ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF                   8
25 #define L_LTF                   8
26 #define L_SIG                   4
27 #define HT_SIG                  8
28 #define HT_STF                  4
29 #define HT_LTF(_ns)             (4 * (_ns))
30 #define SYMBOL_TIME(_ns)        ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5)  /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t)         ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t)  (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36 
37 
38 static u16 bits_per_symbol[][2] = {
39 	/* 20MHz 40MHz */
40 	{    26,   54 },     /*  0: BPSK */
41 	{    52,  108 },     /*  1: QPSK 1/2 */
42 	{    78,  162 },     /*  2: QPSK 3/4 */
43 	{   104,  216 },     /*  3: 16-QAM 1/2 */
44 	{   156,  324 },     /*  4: 16-QAM 3/4 */
45 	{   208,  432 },     /*  5: 64-QAM 2/3 */
46 	{   234,  486 },     /*  6: 64-QAM 3/4 */
47 	{   260,  540 },     /*  7: 64-QAM 5/6 */
48 };
49 
50 #define IS_HT_RATE(_rate)     ((_rate) & 0x80)
51 
52 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
53 			       struct ath_atx_tid *tid, struct sk_buff *skb);
54 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
55 			    int tx_flags, struct ath_txq *txq);
56 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
57 				struct ath_txq *txq, struct list_head *bf_q,
58 				struct ath_tx_status *ts, int txok);
59 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
60 			     struct list_head *head, bool internal);
61 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
62 			     struct ath_tx_status *ts, int nframes, int nbad,
63 			     int txok);
64 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
65 			      int seqno);
66 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
67 					   struct ath_txq *txq,
68 					   struct ath_atx_tid *tid,
69 					   struct sk_buff *skb);
70 
71 enum {
72 	MCS_HT20,
73 	MCS_HT20_SGI,
74 	MCS_HT40,
75 	MCS_HT40_SGI,
76 };
77 
78 /*********************/
79 /* Aggregation logic */
80 /*********************/
81 
82 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
83 	__acquires(&txq->axq_lock)
84 {
85 	spin_lock_bh(&txq->axq_lock);
86 }
87 
88 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
89 	__releases(&txq->axq_lock)
90 {
91 	spin_unlock_bh(&txq->axq_lock);
92 }
93 
94 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
95 	__releases(&txq->axq_lock)
96 {
97 	struct sk_buff_head q;
98 	struct sk_buff *skb;
99 
100 	__skb_queue_head_init(&q);
101 	skb_queue_splice_init(&txq->complete_q, &q);
102 	spin_unlock_bh(&txq->axq_lock);
103 
104 	while ((skb = __skb_dequeue(&q)))
105 		ieee80211_tx_status(sc->hw, skb);
106 }
107 
108 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
109 {
110 	struct ath_atx_ac *ac = tid->ac;
111 
112 	if (tid->paused)
113 		return;
114 
115 	if (tid->sched)
116 		return;
117 
118 	tid->sched = true;
119 	list_add_tail(&tid->list, &ac->tid_q);
120 
121 	if (ac->sched)
122 		return;
123 
124 	ac->sched = true;
125 	list_add_tail(&ac->list, &txq->axq_acq);
126 }
127 
128 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
129 {
130 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
131 	BUILD_BUG_ON(sizeof(struct ath_frame_info) >
132 		     sizeof(tx_info->rate_driver_data));
133 	return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
134 }
135 
136 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
137 {
138 	if (!tid->an->sta)
139 		return;
140 
141 	ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
142 			   seqno << IEEE80211_SEQ_SEQ_SHIFT);
143 }
144 
145 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
146 			  struct ath_buf *bf)
147 {
148 	ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
149 			       ARRAY_SIZE(bf->rates));
150 }
151 
152 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
153 			     struct sk_buff *skb)
154 {
155 	int q;
156 
157 	q = skb_get_queue_mapping(skb);
158 	if (txq == sc->tx.uapsdq)
159 		txq = sc->tx.txq_map[q];
160 
161 	if (txq != sc->tx.txq_map[q])
162 		return;
163 
164 	if (WARN_ON(--txq->pending_frames < 0))
165 		txq->pending_frames = 0;
166 
167 	if (txq->stopped &&
168 	    txq->pending_frames < sc->tx.txq_max_pending[q]) {
169 		ieee80211_wake_queue(sc->hw, q);
170 		txq->stopped = false;
171 	}
172 }
173 
174 static struct ath_atx_tid *
175 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
176 {
177 	struct ieee80211_hdr *hdr;
178 	u8 tidno = 0;
179 
180 	hdr = (struct ieee80211_hdr *) skb->data;
181 	if (ieee80211_is_data_qos(hdr->frame_control))
182 		tidno = ieee80211_get_qos_ctl(hdr)[0];
183 
184 	tidno &= IEEE80211_QOS_CTL_TID_MASK;
185 	return ATH_AN_2_TID(an, tidno);
186 }
187 
188 static bool ath_tid_has_buffered(struct ath_atx_tid *tid)
189 {
190 	return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q);
191 }
192 
193 static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid)
194 {
195 	struct sk_buff *skb;
196 
197 	skb = __skb_dequeue(&tid->retry_q);
198 	if (!skb)
199 		skb = __skb_dequeue(&tid->buf_q);
200 
201 	return skb;
202 }
203 
204 /*
205  * ath_tx_tid_change_state:
206  * - clears a-mpdu flag of previous session
207  * - force sequence number allocation to fix next BlockAck Window
208  */
209 static void
210 ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid)
211 {
212 	struct ath_txq *txq = tid->ac->txq;
213 	struct ieee80211_tx_info *tx_info;
214 	struct sk_buff *skb, *tskb;
215 	struct ath_buf *bf;
216 	struct ath_frame_info *fi;
217 
218 	skb_queue_walk_safe(&tid->buf_q, skb, tskb) {
219 		fi = get_frame_info(skb);
220 		bf = fi->bf;
221 
222 		tx_info = IEEE80211_SKB_CB(skb);
223 		tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
224 
225 		if (bf)
226 			continue;
227 
228 		bf = ath_tx_setup_buffer(sc, txq, tid, skb);
229 		if (!bf) {
230 			__skb_unlink(skb, &tid->buf_q);
231 			ath_txq_skb_done(sc, txq, skb);
232 			ieee80211_free_txskb(sc->hw, skb);
233 			continue;
234 		}
235 	}
236 
237 }
238 
239 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
240 {
241 	struct ath_txq *txq = tid->ac->txq;
242 	struct sk_buff *skb;
243 	struct ath_buf *bf;
244 	struct list_head bf_head;
245 	struct ath_tx_status ts;
246 	struct ath_frame_info *fi;
247 	bool sendbar = false;
248 
249 	INIT_LIST_HEAD(&bf_head);
250 
251 	memset(&ts, 0, sizeof(ts));
252 
253 	while ((skb = __skb_dequeue(&tid->retry_q))) {
254 		fi = get_frame_info(skb);
255 		bf = fi->bf;
256 		if (!bf) {
257 			ath_txq_skb_done(sc, txq, skb);
258 			ieee80211_free_txskb(sc->hw, skb);
259 			continue;
260 		}
261 
262 		if (fi->baw_tracked) {
263 			ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
264 			sendbar = true;
265 		}
266 
267 		list_add_tail(&bf->list, &bf_head);
268 		ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
269 	}
270 
271 	if (sendbar) {
272 		ath_txq_unlock(sc, txq);
273 		ath_send_bar(tid, tid->seq_start);
274 		ath_txq_lock(sc, txq);
275 	}
276 }
277 
278 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
279 			      int seqno)
280 {
281 	int index, cindex;
282 
283 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
284 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
285 
286 	__clear_bit(cindex, tid->tx_buf);
287 
288 	while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
289 		INCR(tid->seq_start, IEEE80211_SEQ_MAX);
290 		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
291 		if (tid->bar_index >= 0)
292 			tid->bar_index--;
293 	}
294 }
295 
296 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
297 			     struct ath_buf *bf)
298 {
299 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
300 	u16 seqno = bf->bf_state.seqno;
301 	int index, cindex;
302 
303 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
304 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
305 	__set_bit(cindex, tid->tx_buf);
306 	fi->baw_tracked = 1;
307 
308 	if (index >= ((tid->baw_tail - tid->baw_head) &
309 		(ATH_TID_MAX_BUFS - 1))) {
310 		tid->baw_tail = cindex;
311 		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
312 	}
313 }
314 
315 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
316 			  struct ath_atx_tid *tid)
317 
318 {
319 	struct sk_buff *skb;
320 	struct ath_buf *bf;
321 	struct list_head bf_head;
322 	struct ath_tx_status ts;
323 	struct ath_frame_info *fi;
324 
325 	memset(&ts, 0, sizeof(ts));
326 	INIT_LIST_HEAD(&bf_head);
327 
328 	while ((skb = ath_tid_dequeue(tid))) {
329 		fi = get_frame_info(skb);
330 		bf = fi->bf;
331 
332 		if (!bf) {
333 			ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
334 			continue;
335 		}
336 
337 		list_add_tail(&bf->list, &bf_head);
338 		ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
339 	}
340 }
341 
342 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
343 			     struct sk_buff *skb, int count)
344 {
345 	struct ath_frame_info *fi = get_frame_info(skb);
346 	struct ath_buf *bf = fi->bf;
347 	struct ieee80211_hdr *hdr;
348 	int prev = fi->retries;
349 
350 	TX_STAT_INC(txq->axq_qnum, a_retries);
351 	fi->retries += count;
352 
353 	if (prev > 0)
354 		return;
355 
356 	hdr = (struct ieee80211_hdr *)skb->data;
357 	hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
358 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
359 		sizeof(*hdr), DMA_TO_DEVICE);
360 }
361 
362 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
363 {
364 	struct ath_buf *bf = NULL;
365 
366 	spin_lock_bh(&sc->tx.txbuflock);
367 
368 	if (unlikely(list_empty(&sc->tx.txbuf))) {
369 		spin_unlock_bh(&sc->tx.txbuflock);
370 		return NULL;
371 	}
372 
373 	bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
374 	list_del(&bf->list);
375 
376 	spin_unlock_bh(&sc->tx.txbuflock);
377 
378 	return bf;
379 }
380 
381 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
382 {
383 	spin_lock_bh(&sc->tx.txbuflock);
384 	list_add_tail(&bf->list, &sc->tx.txbuf);
385 	spin_unlock_bh(&sc->tx.txbuflock);
386 }
387 
388 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
389 {
390 	struct ath_buf *tbf;
391 
392 	tbf = ath_tx_get_buffer(sc);
393 	if (WARN_ON(!tbf))
394 		return NULL;
395 
396 	ATH_TXBUF_RESET(tbf);
397 
398 	tbf->bf_mpdu = bf->bf_mpdu;
399 	tbf->bf_buf_addr = bf->bf_buf_addr;
400 	memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
401 	tbf->bf_state = bf->bf_state;
402 
403 	return tbf;
404 }
405 
406 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
407 			        struct ath_tx_status *ts, int txok,
408 			        int *nframes, int *nbad)
409 {
410 	struct ath_frame_info *fi;
411 	u16 seq_st = 0;
412 	u32 ba[WME_BA_BMP_SIZE >> 5];
413 	int ba_index;
414 	int isaggr = 0;
415 
416 	*nbad = 0;
417 	*nframes = 0;
418 
419 	isaggr = bf_isaggr(bf);
420 	if (isaggr) {
421 		seq_st = ts->ts_seqnum;
422 		memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
423 	}
424 
425 	while (bf) {
426 		fi = get_frame_info(bf->bf_mpdu);
427 		ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
428 
429 		(*nframes)++;
430 		if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
431 			(*nbad)++;
432 
433 		bf = bf->bf_next;
434 	}
435 }
436 
437 
438 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
439 				 struct ath_buf *bf, struct list_head *bf_q,
440 				 struct ath_tx_status *ts, int txok)
441 {
442 	struct ath_node *an = NULL;
443 	struct sk_buff *skb;
444 	struct ieee80211_sta *sta;
445 	struct ieee80211_hw *hw = sc->hw;
446 	struct ieee80211_hdr *hdr;
447 	struct ieee80211_tx_info *tx_info;
448 	struct ath_atx_tid *tid = NULL;
449 	struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
450 	struct list_head bf_head;
451 	struct sk_buff_head bf_pending;
452 	u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
453 	u32 ba[WME_BA_BMP_SIZE >> 5];
454 	int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
455 	bool rc_update = true, isba;
456 	struct ieee80211_tx_rate rates[4];
457 	struct ath_frame_info *fi;
458 	int nframes;
459 	bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
460 	int i, retries;
461 	int bar_index = -1;
462 
463 	skb = bf->bf_mpdu;
464 	hdr = (struct ieee80211_hdr *)skb->data;
465 
466 	tx_info = IEEE80211_SKB_CB(skb);
467 
468 	memcpy(rates, bf->rates, sizeof(rates));
469 
470 	retries = ts->ts_longretry + 1;
471 	for (i = 0; i < ts->ts_rateindex; i++)
472 		retries += rates[i].count;
473 
474 	rcu_read_lock();
475 
476 	sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
477 	if (!sta) {
478 		rcu_read_unlock();
479 
480 		INIT_LIST_HEAD(&bf_head);
481 		while (bf) {
482 			bf_next = bf->bf_next;
483 
484 			if (!bf->bf_state.stale || bf_next != NULL)
485 				list_move_tail(&bf->list, &bf_head);
486 
487 			ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
488 
489 			bf = bf_next;
490 		}
491 		return;
492 	}
493 
494 	an = (struct ath_node *)sta->drv_priv;
495 	tid = ath_get_skb_tid(sc, an, skb);
496 	seq_first = tid->seq_start;
497 	isba = ts->ts_flags & ATH9K_TX_BA;
498 
499 	/*
500 	 * The hardware occasionally sends a tx status for the wrong TID.
501 	 * In this case, the BA status cannot be considered valid and all
502 	 * subframes need to be retransmitted
503 	 *
504 	 * Only BlockAcks have a TID and therefore normal Acks cannot be
505 	 * checked
506 	 */
507 	if (isba && tid->tidno != ts->tid)
508 		txok = false;
509 
510 	isaggr = bf_isaggr(bf);
511 	memset(ba, 0, WME_BA_BMP_SIZE >> 3);
512 
513 	if (isaggr && txok) {
514 		if (ts->ts_flags & ATH9K_TX_BA) {
515 			seq_st = ts->ts_seqnum;
516 			memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
517 		} else {
518 			/*
519 			 * AR5416 can become deaf/mute when BA
520 			 * issue happens. Chip needs to be reset.
521 			 * But AP code may have sychronization issues
522 			 * when perform internal reset in this routine.
523 			 * Only enable reset in STA mode for now.
524 			 */
525 			if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
526 				needreset = 1;
527 		}
528 	}
529 
530 	__skb_queue_head_init(&bf_pending);
531 
532 	ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
533 	while (bf) {
534 		u16 seqno = bf->bf_state.seqno;
535 
536 		txfail = txpending = sendbar = 0;
537 		bf_next = bf->bf_next;
538 
539 		skb = bf->bf_mpdu;
540 		tx_info = IEEE80211_SKB_CB(skb);
541 		fi = get_frame_info(skb);
542 
543 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
544 		    !tid->active) {
545 			/*
546 			 * Outside of the current BlockAck window,
547 			 * maybe part of a previous session
548 			 */
549 			txfail = 1;
550 		} else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
551 			/* transmit completion, subframe is
552 			 * acked by block ack */
553 			acked_cnt++;
554 		} else if (!isaggr && txok) {
555 			/* transmit completion */
556 			acked_cnt++;
557 		} else if (flush) {
558 			txpending = 1;
559 		} else if (fi->retries < ATH_MAX_SW_RETRIES) {
560 			if (txok || !an->sleeping)
561 				ath_tx_set_retry(sc, txq, bf->bf_mpdu,
562 						 retries);
563 
564 			txpending = 1;
565 		} else {
566 			txfail = 1;
567 			txfail_cnt++;
568 			bar_index = max_t(int, bar_index,
569 				ATH_BA_INDEX(seq_first, seqno));
570 		}
571 
572 		/*
573 		 * Make sure the last desc is reclaimed if it
574 		 * not a holding desc.
575 		 */
576 		INIT_LIST_HEAD(&bf_head);
577 		if (bf_next != NULL || !bf_last->bf_state.stale)
578 			list_move_tail(&bf->list, &bf_head);
579 
580 		if (!txpending) {
581 			/*
582 			 * complete the acked-ones/xretried ones; update
583 			 * block-ack window
584 			 */
585 			ath_tx_update_baw(sc, tid, seqno);
586 
587 			if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
588 				memcpy(tx_info->control.rates, rates, sizeof(rates));
589 				ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
590 				rc_update = false;
591 			}
592 
593 			ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
594 				!txfail);
595 		} else {
596 			if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
597 				tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
598 				ieee80211_sta_eosp(sta);
599 			}
600 			/* retry the un-acked ones */
601 			if (bf->bf_next == NULL && bf_last->bf_state.stale) {
602 				struct ath_buf *tbf;
603 
604 				tbf = ath_clone_txbuf(sc, bf_last);
605 				/*
606 				 * Update tx baw and complete the
607 				 * frame with failed status if we
608 				 * run out of tx buf.
609 				 */
610 				if (!tbf) {
611 					ath_tx_update_baw(sc, tid, seqno);
612 
613 					ath_tx_complete_buf(sc, bf, txq,
614 							    &bf_head, ts, 0);
615 					bar_index = max_t(int, bar_index,
616 						ATH_BA_INDEX(seq_first, seqno));
617 					break;
618 				}
619 
620 				fi->bf = tbf;
621 			}
622 
623 			/*
624 			 * Put this buffer to the temporary pending
625 			 * queue to retain ordering
626 			 */
627 			__skb_queue_tail(&bf_pending, skb);
628 		}
629 
630 		bf = bf_next;
631 	}
632 
633 	/* prepend un-acked frames to the beginning of the pending frame queue */
634 	if (!skb_queue_empty(&bf_pending)) {
635 		if (an->sleeping)
636 			ieee80211_sta_set_buffered(sta, tid->tidno, true);
637 
638 		skb_queue_splice_tail(&bf_pending, &tid->retry_q);
639 		if (!an->sleeping) {
640 			ath_tx_queue_tid(txq, tid);
641 
642 			if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
643 				tid->ac->clear_ps_filter = true;
644 		}
645 	}
646 
647 	if (bar_index >= 0) {
648 		u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
649 
650 		if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
651 			tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
652 
653 		ath_txq_unlock(sc, txq);
654 		ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
655 		ath_txq_lock(sc, txq);
656 	}
657 
658 	rcu_read_unlock();
659 
660 	if (needreset)
661 		ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
662 }
663 
664 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
665 {
666     struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
667     return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
668 }
669 
670 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
671 				  struct ath_tx_status *ts, struct ath_buf *bf,
672 				  struct list_head *bf_head)
673 {
674 	struct ieee80211_tx_info *info;
675 	bool txok, flush;
676 
677 	txok = !(ts->ts_status & ATH9K_TXERR_MASK);
678 	flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
679 	txq->axq_tx_inprogress = false;
680 
681 	txq->axq_depth--;
682 	if (bf_is_ampdu_not_probing(bf))
683 		txq->axq_ampdu_depth--;
684 
685 	if (!bf_isampdu(bf)) {
686 		if (!flush) {
687 			info = IEEE80211_SKB_CB(bf->bf_mpdu);
688 			memcpy(info->control.rates, bf->rates,
689 			       sizeof(info->control.rates));
690 			ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
691 		}
692 		ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
693 	} else
694 		ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
695 
696 	if (!flush)
697 		ath_txq_schedule(sc, txq);
698 }
699 
700 static bool ath_lookup_legacy(struct ath_buf *bf)
701 {
702 	struct sk_buff *skb;
703 	struct ieee80211_tx_info *tx_info;
704 	struct ieee80211_tx_rate *rates;
705 	int i;
706 
707 	skb = bf->bf_mpdu;
708 	tx_info = IEEE80211_SKB_CB(skb);
709 	rates = tx_info->control.rates;
710 
711 	for (i = 0; i < 4; i++) {
712 		if (!rates[i].count || rates[i].idx < 0)
713 			break;
714 
715 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
716 			return true;
717 	}
718 
719 	return false;
720 }
721 
722 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
723 			   struct ath_atx_tid *tid)
724 {
725 	struct sk_buff *skb;
726 	struct ieee80211_tx_info *tx_info;
727 	struct ieee80211_tx_rate *rates;
728 	u32 max_4ms_framelen, frmlen;
729 	u16 aggr_limit, bt_aggr_limit, legacy = 0;
730 	int q = tid->ac->txq->mac80211_qnum;
731 	int i;
732 
733 	skb = bf->bf_mpdu;
734 	tx_info = IEEE80211_SKB_CB(skb);
735 	rates = bf->rates;
736 
737 	/*
738 	 * Find the lowest frame length among the rate series that will have a
739 	 * 4ms (or TXOP limited) transmit duration.
740 	 */
741 	max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
742 
743 	for (i = 0; i < 4; i++) {
744 		int modeidx;
745 
746 		if (!rates[i].count)
747 			continue;
748 
749 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
750 			legacy = 1;
751 			break;
752 		}
753 
754 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
755 			modeidx = MCS_HT40;
756 		else
757 			modeidx = MCS_HT20;
758 
759 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
760 			modeidx++;
761 
762 		frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
763 		max_4ms_framelen = min(max_4ms_framelen, frmlen);
764 	}
765 
766 	/*
767 	 * limit aggregate size by the minimum rate if rate selected is
768 	 * not a probe rate, if rate selected is a probe rate then
769 	 * avoid aggregation of this packet.
770 	 */
771 	if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
772 		return 0;
773 
774 	aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
775 
776 	/*
777 	 * Override the default aggregation limit for BTCOEX.
778 	 */
779 	bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
780 	if (bt_aggr_limit)
781 		aggr_limit = bt_aggr_limit;
782 
783 	/*
784 	 * h/w can accept aggregates up to 16 bit lengths (65535).
785 	 * The IE, however can hold up to 65536, which shows up here
786 	 * as zero. Ignore 65536 since we  are constrained by hw.
787 	 */
788 	if (tid->an->maxampdu)
789 		aggr_limit = min(aggr_limit, tid->an->maxampdu);
790 
791 	return aggr_limit;
792 }
793 
794 /*
795  * Returns the number of delimiters to be added to
796  * meet the minimum required mpdudensity.
797  */
798 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
799 				  struct ath_buf *bf, u16 frmlen,
800 				  bool first_subfrm)
801 {
802 #define FIRST_DESC_NDELIMS 60
803 	u32 nsymbits, nsymbols;
804 	u16 minlen;
805 	u8 flags, rix;
806 	int width, streams, half_gi, ndelim, mindelim;
807 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
808 
809 	/* Select standard number of delimiters based on frame length alone */
810 	ndelim = ATH_AGGR_GET_NDELIM(frmlen);
811 
812 	/*
813 	 * If encryption enabled, hardware requires some more padding between
814 	 * subframes.
815 	 * TODO - this could be improved to be dependent on the rate.
816 	 *      The hardware can keep up at lower rates, but not higher rates
817 	 */
818 	if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
819 	    !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
820 		ndelim += ATH_AGGR_ENCRYPTDELIM;
821 
822 	/*
823 	 * Add delimiter when using RTS/CTS with aggregation
824 	 * and non enterprise AR9003 card
825 	 */
826 	if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
827 	    (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
828 		ndelim = max(ndelim, FIRST_DESC_NDELIMS);
829 
830 	/*
831 	 * Convert desired mpdu density from microeconds to bytes based
832 	 * on highest rate in rate series (i.e. first rate) to determine
833 	 * required minimum length for subframe. Take into account
834 	 * whether high rate is 20 or 40Mhz and half or full GI.
835 	 *
836 	 * If there is no mpdu density restriction, no further calculation
837 	 * is needed.
838 	 */
839 
840 	if (tid->an->mpdudensity == 0)
841 		return ndelim;
842 
843 	rix = bf->rates[0].idx;
844 	flags = bf->rates[0].flags;
845 	width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
846 	half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
847 
848 	if (half_gi)
849 		nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
850 	else
851 		nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
852 
853 	if (nsymbols == 0)
854 		nsymbols = 1;
855 
856 	streams = HT_RC_2_STREAMS(rix);
857 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
858 	minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
859 
860 	if (frmlen < minlen) {
861 		mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
862 		ndelim = max(mindelim, ndelim);
863 	}
864 
865 	return ndelim;
866 }
867 
868 static struct ath_buf *
869 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
870 			struct ath_atx_tid *tid, struct sk_buff_head **q)
871 {
872 	struct ieee80211_tx_info *tx_info;
873 	struct ath_frame_info *fi;
874 	struct sk_buff *skb;
875 	struct ath_buf *bf;
876 	u16 seqno;
877 
878 	while (1) {
879 		*q = &tid->retry_q;
880 		if (skb_queue_empty(*q))
881 			*q = &tid->buf_q;
882 
883 		skb = skb_peek(*q);
884 		if (!skb)
885 			break;
886 
887 		fi = get_frame_info(skb);
888 		bf = fi->bf;
889 		if (!fi->bf)
890 			bf = ath_tx_setup_buffer(sc, txq, tid, skb);
891 		else
892 			bf->bf_state.stale = false;
893 
894 		if (!bf) {
895 			__skb_unlink(skb, *q);
896 			ath_txq_skb_done(sc, txq, skb);
897 			ieee80211_free_txskb(sc->hw, skb);
898 			continue;
899 		}
900 
901 		bf->bf_next = NULL;
902 		bf->bf_lastbf = bf;
903 
904 		tx_info = IEEE80211_SKB_CB(skb);
905 		tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
906 		if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
907 			bf->bf_state.bf_type = 0;
908 			return bf;
909 		}
910 
911 		bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
912 		seqno = bf->bf_state.seqno;
913 
914 		/* do not step over block-ack window */
915 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno))
916 			break;
917 
918 		if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
919 			struct ath_tx_status ts = {};
920 			struct list_head bf_head;
921 
922 			INIT_LIST_HEAD(&bf_head);
923 			list_add(&bf->list, &bf_head);
924 			__skb_unlink(skb, *q);
925 			ath_tx_update_baw(sc, tid, seqno);
926 			ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
927 			continue;
928 		}
929 
930 		return bf;
931 	}
932 
933 	return NULL;
934 }
935 
936 static bool
937 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
938 		 struct ath_atx_tid *tid, struct list_head *bf_q,
939 		 struct ath_buf *bf_first, struct sk_buff_head *tid_q,
940 		 int *aggr_len)
941 {
942 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
943 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
944 	int nframes = 0, ndelim;
945 	u16 aggr_limit = 0, al = 0, bpad = 0,
946 	    al_delta, h_baw = tid->baw_size / 2;
947 	struct ieee80211_tx_info *tx_info;
948 	struct ath_frame_info *fi;
949 	struct sk_buff *skb;
950 	bool closed = false;
951 
952 	bf = bf_first;
953 	aggr_limit = ath_lookup_rate(sc, bf, tid);
954 
955 	do {
956 		skb = bf->bf_mpdu;
957 		fi = get_frame_info(skb);
958 
959 		/* do not exceed aggregation limit */
960 		al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
961 		if (nframes) {
962 			if (aggr_limit < al + bpad + al_delta ||
963 			    ath_lookup_legacy(bf) || nframes >= h_baw)
964 				break;
965 
966 			tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
967 			if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
968 			    !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
969 				break;
970 		}
971 
972 		/* add padding for previous frame to aggregation length */
973 		al += bpad + al_delta;
974 
975 		/*
976 		 * Get the delimiters needed to meet the MPDU
977 		 * density for this node.
978 		 */
979 		ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
980 						!nframes);
981 		bpad = PADBYTES(al_delta) + (ndelim << 2);
982 
983 		nframes++;
984 		bf->bf_next = NULL;
985 
986 		/* link buffers of this frame to the aggregate */
987 		if (!fi->baw_tracked)
988 			ath_tx_addto_baw(sc, tid, bf);
989 		bf->bf_state.ndelim = ndelim;
990 
991 		__skb_unlink(skb, tid_q);
992 		list_add_tail(&bf->list, bf_q);
993 		if (bf_prev)
994 			bf_prev->bf_next = bf;
995 
996 		bf_prev = bf;
997 
998 		bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
999 		if (!bf) {
1000 			closed = true;
1001 			break;
1002 		}
1003 	} while (ath_tid_has_buffered(tid));
1004 
1005 	bf = bf_first;
1006 	bf->bf_lastbf = bf_prev;
1007 
1008 	if (bf == bf_prev) {
1009 		al = get_frame_info(bf->bf_mpdu)->framelen;
1010 		bf->bf_state.bf_type = BUF_AMPDU;
1011 	} else {
1012 		TX_STAT_INC(txq->axq_qnum, a_aggr);
1013 	}
1014 
1015 	*aggr_len = al;
1016 
1017 	return closed;
1018 #undef PADBYTES
1019 }
1020 
1021 /*
1022  * rix - rate index
1023  * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1024  * width  - 0 for 20 MHz, 1 for 40 MHz
1025  * half_gi - to use 4us v/s 3.6 us for symbol time
1026  */
1027 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1028 			    int width, int half_gi, bool shortPreamble)
1029 {
1030 	u32 nbits, nsymbits, duration, nsymbols;
1031 	int streams;
1032 
1033 	/* find number of symbols: PLCP + data */
1034 	streams = HT_RC_2_STREAMS(rix);
1035 	nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1036 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
1037 	nsymbols = (nbits + nsymbits - 1) / nsymbits;
1038 
1039 	if (!half_gi)
1040 		duration = SYMBOL_TIME(nsymbols);
1041 	else
1042 		duration = SYMBOL_TIME_HALFGI(nsymbols);
1043 
1044 	/* addup duration for legacy/ht training and signal fields */
1045 	duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1046 
1047 	return duration;
1048 }
1049 
1050 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1051 {
1052 	int streams = HT_RC_2_STREAMS(mcs);
1053 	int symbols, bits;
1054 	int bytes = 0;
1055 
1056 	symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1057 	bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1058 	bits -= OFDM_PLCP_BITS;
1059 	bytes = bits / 8;
1060 	bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1061 	if (bytes > 65532)
1062 		bytes = 65532;
1063 
1064 	return bytes;
1065 }
1066 
1067 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1068 {
1069 	u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1070 	int mcs;
1071 
1072 	/* 4ms is the default (and maximum) duration */
1073 	if (!txop || txop > 4096)
1074 		txop = 4096;
1075 
1076 	cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1077 	cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1078 	cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1079 	cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1080 	for (mcs = 0; mcs < 32; mcs++) {
1081 		cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1082 		cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1083 		cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1084 		cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1085 	}
1086 }
1087 
1088 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1089 			     struct ath_tx_info *info, int len, bool rts)
1090 {
1091 	struct ath_hw *ah = sc->sc_ah;
1092 	struct sk_buff *skb;
1093 	struct ieee80211_tx_info *tx_info;
1094 	struct ieee80211_tx_rate *rates;
1095 	const struct ieee80211_rate *rate;
1096 	struct ieee80211_hdr *hdr;
1097 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1098 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1099 	int i;
1100 	u8 rix = 0;
1101 
1102 	skb = bf->bf_mpdu;
1103 	tx_info = IEEE80211_SKB_CB(skb);
1104 	rates = bf->rates;
1105 	hdr = (struct ieee80211_hdr *)skb->data;
1106 
1107 	/* set dur_update_en for l-sig computation except for PS-Poll frames */
1108 	info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1109 	info->rtscts_rate = fi->rtscts_rate;
1110 
1111 	for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1112 		bool is_40, is_sgi, is_sp;
1113 		int phy;
1114 
1115 		if (!rates[i].count || (rates[i].idx < 0))
1116 			continue;
1117 
1118 		rix = rates[i].idx;
1119 		info->rates[i].Tries = rates[i].count;
1120 
1121 		/*
1122 		 * Handle RTS threshold for unaggregated HT frames.
1123 		 */
1124 		if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1125 		    (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1126 		    unlikely(rts_thresh != (u32) -1)) {
1127 			if (!rts_thresh || (len > rts_thresh))
1128 				rts = true;
1129 		}
1130 
1131 		if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1132 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1133 			info->flags |= ATH9K_TXDESC_RTSENA;
1134 		} else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1135 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1136 			info->flags |= ATH9K_TXDESC_CTSENA;
1137 		}
1138 
1139 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1140 			info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1141 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1142 			info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1143 
1144 		is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1145 		is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1146 		is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1147 
1148 		if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1149 			/* MCS rates */
1150 			info->rates[i].Rate = rix | 0x80;
1151 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1152 					ah->txchainmask, info->rates[i].Rate);
1153 			info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1154 				 is_40, is_sgi, is_sp);
1155 			if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1156 				info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1157 			continue;
1158 		}
1159 
1160 		/* legacy rates */
1161 		rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
1162 		if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1163 		    !(rate->flags & IEEE80211_RATE_ERP_G))
1164 			phy = WLAN_RC_PHY_CCK;
1165 		else
1166 			phy = WLAN_RC_PHY_OFDM;
1167 
1168 		info->rates[i].Rate = rate->hw_value;
1169 		if (rate->hw_value_short) {
1170 			if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1171 				info->rates[i].Rate |= rate->hw_value_short;
1172 		} else {
1173 			is_sp = false;
1174 		}
1175 
1176 		if (bf->bf_state.bfs_paprd)
1177 			info->rates[i].ChSel = ah->txchainmask;
1178 		else
1179 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1180 					ah->txchainmask, info->rates[i].Rate);
1181 
1182 		info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1183 			phy, rate->bitrate * 100, len, rix, is_sp);
1184 	}
1185 
1186 	/* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1187 	if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1188 		info->flags &= ~ATH9K_TXDESC_RTSENA;
1189 
1190 	/* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1191 	if (info->flags & ATH9K_TXDESC_RTSENA)
1192 		info->flags &= ~ATH9K_TXDESC_CTSENA;
1193 }
1194 
1195 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1196 {
1197 	struct ieee80211_hdr *hdr;
1198 	enum ath9k_pkt_type htype;
1199 	__le16 fc;
1200 
1201 	hdr = (struct ieee80211_hdr *)skb->data;
1202 	fc = hdr->frame_control;
1203 
1204 	if (ieee80211_is_beacon(fc))
1205 		htype = ATH9K_PKT_TYPE_BEACON;
1206 	else if (ieee80211_is_probe_resp(fc))
1207 		htype = ATH9K_PKT_TYPE_PROBE_RESP;
1208 	else if (ieee80211_is_atim(fc))
1209 		htype = ATH9K_PKT_TYPE_ATIM;
1210 	else if (ieee80211_is_pspoll(fc))
1211 		htype = ATH9K_PKT_TYPE_PSPOLL;
1212 	else
1213 		htype = ATH9K_PKT_TYPE_NORMAL;
1214 
1215 	return htype;
1216 }
1217 
1218 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1219 			     struct ath_txq *txq, int len)
1220 {
1221 	struct ath_hw *ah = sc->sc_ah;
1222 	struct ath_buf *bf_first = NULL;
1223 	struct ath_tx_info info;
1224 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1225 	bool rts = false;
1226 
1227 	memset(&info, 0, sizeof(info));
1228 	info.is_first = true;
1229 	info.is_last = true;
1230 	info.txpower = MAX_RATE_POWER;
1231 	info.qcu = txq->axq_qnum;
1232 
1233 	while (bf) {
1234 		struct sk_buff *skb = bf->bf_mpdu;
1235 		struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1236 		struct ath_frame_info *fi = get_frame_info(skb);
1237 		bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1238 
1239 		info.type = get_hw_packet_type(skb);
1240 		if (bf->bf_next)
1241 			info.link = bf->bf_next->bf_daddr;
1242 		else
1243 			info.link = 0;
1244 
1245 		if (!bf_first) {
1246 			bf_first = bf;
1247 
1248 			info.flags = ATH9K_TXDESC_INTREQ;
1249 			if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1250 			    txq == sc->tx.uapsdq)
1251 				info.flags |= ATH9K_TXDESC_CLRDMASK;
1252 
1253 			if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1254 				info.flags |= ATH9K_TXDESC_NOACK;
1255 			if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1256 				info.flags |= ATH9K_TXDESC_LDPC;
1257 
1258 			if (bf->bf_state.bfs_paprd)
1259 				info.flags |= (u32) bf->bf_state.bfs_paprd <<
1260 					      ATH9K_TXDESC_PAPRD_S;
1261 
1262 			/*
1263 			 * mac80211 doesn't handle RTS threshold for HT because
1264 			 * the decision has to be taken based on AMPDU length
1265 			 * and aggregation is done entirely inside ath9k.
1266 			 * Set the RTS/CTS flag for the first subframe based
1267 			 * on the threshold.
1268 			 */
1269 			if (aggr && (bf == bf_first) &&
1270 			    unlikely(rts_thresh != (u32) -1)) {
1271 				/*
1272 				 * "len" is the size of the entire AMPDU.
1273 				 */
1274 				if (!rts_thresh || (len > rts_thresh))
1275 					rts = true;
1276 			}
1277 			ath_buf_set_rate(sc, bf, &info, len, rts);
1278 		}
1279 
1280 		info.buf_addr[0] = bf->bf_buf_addr;
1281 		info.buf_len[0] = skb->len;
1282 		info.pkt_len = fi->framelen;
1283 		info.keyix = fi->keyix;
1284 		info.keytype = fi->keytype;
1285 
1286 		if (aggr) {
1287 			if (bf == bf_first)
1288 				info.aggr = AGGR_BUF_FIRST;
1289 			else if (bf == bf_first->bf_lastbf)
1290 				info.aggr = AGGR_BUF_LAST;
1291 			else
1292 				info.aggr = AGGR_BUF_MIDDLE;
1293 
1294 			info.ndelim = bf->bf_state.ndelim;
1295 			info.aggr_len = len;
1296 		}
1297 
1298 		if (bf == bf_first->bf_lastbf)
1299 			bf_first = NULL;
1300 
1301 		ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1302 		bf = bf->bf_next;
1303 	}
1304 }
1305 
1306 static void
1307 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1308 		  struct ath_atx_tid *tid, struct list_head *bf_q,
1309 		  struct ath_buf *bf_first, struct sk_buff_head *tid_q)
1310 {
1311 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
1312 	struct sk_buff *skb;
1313 	int nframes = 0;
1314 
1315 	do {
1316 		struct ieee80211_tx_info *tx_info;
1317 		skb = bf->bf_mpdu;
1318 
1319 		nframes++;
1320 		__skb_unlink(skb, tid_q);
1321 		list_add_tail(&bf->list, bf_q);
1322 		if (bf_prev)
1323 			bf_prev->bf_next = bf;
1324 		bf_prev = bf;
1325 
1326 		if (nframes >= 2)
1327 			break;
1328 
1329 		bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1330 		if (!bf)
1331 			break;
1332 
1333 		tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1334 		if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
1335 			break;
1336 
1337 		ath_set_rates(tid->an->vif, tid->an->sta, bf);
1338 	} while (1);
1339 }
1340 
1341 static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1342 			      struct ath_atx_tid *tid, bool *stop)
1343 {
1344 	struct ath_buf *bf;
1345 	struct ieee80211_tx_info *tx_info;
1346 	struct sk_buff_head *tid_q;
1347 	struct list_head bf_q;
1348 	int aggr_len = 0;
1349 	bool aggr, last = true;
1350 
1351 	if (!ath_tid_has_buffered(tid))
1352 		return false;
1353 
1354 	INIT_LIST_HEAD(&bf_q);
1355 
1356 	bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1357 	if (!bf)
1358 		return false;
1359 
1360 	tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1361 	aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1362 	if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1363 		(!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1364 		*stop = true;
1365 		return false;
1366 	}
1367 
1368 	ath_set_rates(tid->an->vif, tid->an->sta, bf);
1369 	if (aggr)
1370 		last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf,
1371 					tid_q, &aggr_len);
1372 	else
1373 		ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q);
1374 
1375 	if (list_empty(&bf_q))
1376 		return false;
1377 
1378 	if (tid->ac->clear_ps_filter || tid->an->no_ps_filter) {
1379 		tid->ac->clear_ps_filter = false;
1380 		tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1381 	}
1382 
1383 	ath_tx_fill_desc(sc, bf, txq, aggr_len);
1384 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1385 	return true;
1386 }
1387 
1388 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1389 		      u16 tid, u16 *ssn)
1390 {
1391 	struct ath_atx_tid *txtid;
1392 	struct ath_node *an;
1393 	u8 density;
1394 
1395 	an = (struct ath_node *)sta->drv_priv;
1396 	txtid = ATH_AN_2_TID(an, tid);
1397 
1398 	/* update ampdu factor/density, they may have changed. This may happen
1399 	 * in HT IBSS when a beacon with HT-info is received after the station
1400 	 * has already been added.
1401 	 */
1402 	if (sta->ht_cap.ht_supported) {
1403 		an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1404 				     sta->ht_cap.ampdu_factor);
1405 		density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1406 		an->mpdudensity = density;
1407 	}
1408 
1409 	/* force sequence number allocation for pending frames */
1410 	ath_tx_tid_change_state(sc, txtid);
1411 
1412 	txtid->active = true;
1413 	txtid->paused = true;
1414 	*ssn = txtid->seq_start = txtid->seq_next;
1415 	txtid->bar_index = -1;
1416 
1417 	memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1418 	txtid->baw_head = txtid->baw_tail = 0;
1419 
1420 	return 0;
1421 }
1422 
1423 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1424 {
1425 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1426 	struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1427 	struct ath_txq *txq = txtid->ac->txq;
1428 
1429 	ath_txq_lock(sc, txq);
1430 	txtid->active = false;
1431 	txtid->paused = false;
1432 	ath_tx_flush_tid(sc, txtid);
1433 	ath_tx_tid_change_state(sc, txtid);
1434 	ath_txq_unlock_complete(sc, txq);
1435 }
1436 
1437 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1438 		       struct ath_node *an)
1439 {
1440 	struct ath_atx_tid *tid;
1441 	struct ath_atx_ac *ac;
1442 	struct ath_txq *txq;
1443 	bool buffered;
1444 	int tidno;
1445 
1446 	for (tidno = 0, tid = &an->tid[tidno];
1447 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1448 
1449 		if (!tid->sched)
1450 			continue;
1451 
1452 		ac = tid->ac;
1453 		txq = ac->txq;
1454 
1455 		ath_txq_lock(sc, txq);
1456 
1457 		buffered = ath_tid_has_buffered(tid);
1458 
1459 		tid->sched = false;
1460 		list_del(&tid->list);
1461 
1462 		if (ac->sched) {
1463 			ac->sched = false;
1464 			list_del(&ac->list);
1465 		}
1466 
1467 		ath_txq_unlock(sc, txq);
1468 
1469 		ieee80211_sta_set_buffered(sta, tidno, buffered);
1470 	}
1471 }
1472 
1473 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1474 {
1475 	struct ath_atx_tid *tid;
1476 	struct ath_atx_ac *ac;
1477 	struct ath_txq *txq;
1478 	int tidno;
1479 
1480 	for (tidno = 0, tid = &an->tid[tidno];
1481 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1482 
1483 		ac = tid->ac;
1484 		txq = ac->txq;
1485 
1486 		ath_txq_lock(sc, txq);
1487 		ac->clear_ps_filter = true;
1488 
1489 		if (!tid->paused && ath_tid_has_buffered(tid)) {
1490 			ath_tx_queue_tid(txq, tid);
1491 			ath_txq_schedule(sc, txq);
1492 		}
1493 
1494 		ath_txq_unlock_complete(sc, txq);
1495 	}
1496 }
1497 
1498 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
1499 			u16 tidno)
1500 {
1501 	struct ath_atx_tid *tid;
1502 	struct ath_node *an;
1503 	struct ath_txq *txq;
1504 
1505 	an = (struct ath_node *)sta->drv_priv;
1506 	tid = ATH_AN_2_TID(an, tidno);
1507 	txq = tid->ac->txq;
1508 
1509 	ath_txq_lock(sc, txq);
1510 
1511 	tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1512 	tid->paused = false;
1513 
1514 	if (ath_tid_has_buffered(tid)) {
1515 		ath_tx_queue_tid(txq, tid);
1516 		ath_txq_schedule(sc, txq);
1517 	}
1518 
1519 	ath_txq_unlock_complete(sc, txq);
1520 }
1521 
1522 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1523 				   struct ieee80211_sta *sta,
1524 				   u16 tids, int nframes,
1525 				   enum ieee80211_frame_release_type reason,
1526 				   bool more_data)
1527 {
1528 	struct ath_softc *sc = hw->priv;
1529 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1530 	struct ath_txq *txq = sc->tx.uapsdq;
1531 	struct ieee80211_tx_info *info;
1532 	struct list_head bf_q;
1533 	struct ath_buf *bf_tail = NULL, *bf;
1534 	struct sk_buff_head *tid_q;
1535 	int sent = 0;
1536 	int i;
1537 
1538 	INIT_LIST_HEAD(&bf_q);
1539 	for (i = 0; tids && nframes; i++, tids >>= 1) {
1540 		struct ath_atx_tid *tid;
1541 
1542 		if (!(tids & 1))
1543 			continue;
1544 
1545 		tid = ATH_AN_2_TID(an, i);
1546 		if (tid->paused)
1547 			continue;
1548 
1549 		ath_txq_lock(sc, tid->ac->txq);
1550 		while (nframes > 0) {
1551 			bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q);
1552 			if (!bf)
1553 				break;
1554 
1555 			__skb_unlink(bf->bf_mpdu, tid_q);
1556 			list_add_tail(&bf->list, &bf_q);
1557 			ath_set_rates(tid->an->vif, tid->an->sta, bf);
1558 			ath_tx_addto_baw(sc, tid, bf);
1559 			bf->bf_state.bf_type &= ~BUF_AGGR;
1560 			if (bf_tail)
1561 				bf_tail->bf_next = bf;
1562 
1563 			bf_tail = bf;
1564 			nframes--;
1565 			sent++;
1566 			TX_STAT_INC(txq->axq_qnum, a_queued_hw);
1567 
1568 			if (an->sta && !ath_tid_has_buffered(tid))
1569 				ieee80211_sta_set_buffered(an->sta, i, false);
1570 		}
1571 		ath_txq_unlock_complete(sc, tid->ac->txq);
1572 	}
1573 
1574 	if (list_empty(&bf_q))
1575 		return;
1576 
1577 	info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1578 	info->flags |= IEEE80211_TX_STATUS_EOSP;
1579 
1580 	bf = list_first_entry(&bf_q, struct ath_buf, list);
1581 	ath_txq_lock(sc, txq);
1582 	ath_tx_fill_desc(sc, bf, txq, 0);
1583 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1584 	ath_txq_unlock(sc, txq);
1585 }
1586 
1587 /********************/
1588 /* Queue Management */
1589 /********************/
1590 
1591 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1592 {
1593 	struct ath_hw *ah = sc->sc_ah;
1594 	struct ath9k_tx_queue_info qi;
1595 	static const int subtype_txq_to_hwq[] = {
1596 		[IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1597 		[IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1598 		[IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1599 		[IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1600 	};
1601 	int axq_qnum, i;
1602 
1603 	memset(&qi, 0, sizeof(qi));
1604 	qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1605 	qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1606 	qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1607 	qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1608 	qi.tqi_physCompBuf = 0;
1609 
1610 	/*
1611 	 * Enable interrupts only for EOL and DESC conditions.
1612 	 * We mark tx descriptors to receive a DESC interrupt
1613 	 * when a tx queue gets deep; otherwise waiting for the
1614 	 * EOL to reap descriptors.  Note that this is done to
1615 	 * reduce interrupt load and this only defers reaping
1616 	 * descriptors, never transmitting frames.  Aside from
1617 	 * reducing interrupts this also permits more concurrency.
1618 	 * The only potential downside is if the tx queue backs
1619 	 * up in which case the top half of the kernel may backup
1620 	 * due to a lack of tx descriptors.
1621 	 *
1622 	 * The UAPSD queue is an exception, since we take a desc-
1623 	 * based intr on the EOSP frames.
1624 	 */
1625 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1626 		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1627 	} else {
1628 		if (qtype == ATH9K_TX_QUEUE_UAPSD)
1629 			qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1630 		else
1631 			qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1632 					TXQ_FLAG_TXDESCINT_ENABLE;
1633 	}
1634 	axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1635 	if (axq_qnum == -1) {
1636 		/*
1637 		 * NB: don't print a message, this happens
1638 		 * normally on parts with too few tx queues
1639 		 */
1640 		return NULL;
1641 	}
1642 	if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1643 		struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1644 
1645 		txq->axq_qnum = axq_qnum;
1646 		txq->mac80211_qnum = -1;
1647 		txq->axq_link = NULL;
1648 		__skb_queue_head_init(&txq->complete_q);
1649 		INIT_LIST_HEAD(&txq->axq_q);
1650 		INIT_LIST_HEAD(&txq->axq_acq);
1651 		spin_lock_init(&txq->axq_lock);
1652 		txq->axq_depth = 0;
1653 		txq->axq_ampdu_depth = 0;
1654 		txq->axq_tx_inprogress = false;
1655 		sc->tx.txqsetup |= 1<<axq_qnum;
1656 
1657 		txq->txq_headidx = txq->txq_tailidx = 0;
1658 		for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1659 			INIT_LIST_HEAD(&txq->txq_fifo[i]);
1660 	}
1661 	return &sc->tx.txq[axq_qnum];
1662 }
1663 
1664 int ath_txq_update(struct ath_softc *sc, int qnum,
1665 		   struct ath9k_tx_queue_info *qinfo)
1666 {
1667 	struct ath_hw *ah = sc->sc_ah;
1668 	int error = 0;
1669 	struct ath9k_tx_queue_info qi;
1670 
1671 	BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1672 
1673 	ath9k_hw_get_txq_props(ah, qnum, &qi);
1674 	qi.tqi_aifs = qinfo->tqi_aifs;
1675 	qi.tqi_cwmin = qinfo->tqi_cwmin;
1676 	qi.tqi_cwmax = qinfo->tqi_cwmax;
1677 	qi.tqi_burstTime = qinfo->tqi_burstTime;
1678 	qi.tqi_readyTime = qinfo->tqi_readyTime;
1679 
1680 	if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1681 		ath_err(ath9k_hw_common(sc->sc_ah),
1682 			"Unable to update hardware queue %u!\n", qnum);
1683 		error = -EIO;
1684 	} else {
1685 		ath9k_hw_resettxqueue(ah, qnum);
1686 	}
1687 
1688 	return error;
1689 }
1690 
1691 int ath_cabq_update(struct ath_softc *sc)
1692 {
1693 	struct ath9k_tx_queue_info qi;
1694 	struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
1695 	int qnum = sc->beacon.cabq->axq_qnum;
1696 
1697 	ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1698 	/*
1699 	 * Ensure the readytime % is within the bounds.
1700 	 */
1701 	if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
1702 		sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
1703 	else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
1704 		sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
1705 
1706 	qi.tqi_readyTime = (cur_conf->beacon_interval *
1707 			    sc->config.cabqReadytime) / 100;
1708 	ath_txq_update(sc, qnum, &qi);
1709 
1710 	return 0;
1711 }
1712 
1713 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1714 			       struct list_head *list)
1715 {
1716 	struct ath_buf *bf, *lastbf;
1717 	struct list_head bf_head;
1718 	struct ath_tx_status ts;
1719 
1720 	memset(&ts, 0, sizeof(ts));
1721 	ts.ts_status = ATH9K_TX_FLUSH;
1722 	INIT_LIST_HEAD(&bf_head);
1723 
1724 	while (!list_empty(list)) {
1725 		bf = list_first_entry(list, struct ath_buf, list);
1726 
1727 		if (bf->bf_state.stale) {
1728 			list_del(&bf->list);
1729 
1730 			ath_tx_return_buffer(sc, bf);
1731 			continue;
1732 		}
1733 
1734 		lastbf = bf->bf_lastbf;
1735 		list_cut_position(&bf_head, list, &lastbf->list);
1736 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1737 	}
1738 }
1739 
1740 /*
1741  * Drain a given TX queue (could be Beacon or Data)
1742  *
1743  * This assumes output has been stopped and
1744  * we do not need to block ath_tx_tasklet.
1745  */
1746 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1747 {
1748 	ath_txq_lock(sc, txq);
1749 
1750 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1751 		int idx = txq->txq_tailidx;
1752 
1753 		while (!list_empty(&txq->txq_fifo[idx])) {
1754 			ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1755 
1756 			INCR(idx, ATH_TXFIFO_DEPTH);
1757 		}
1758 		txq->txq_tailidx = idx;
1759 	}
1760 
1761 	txq->axq_link = NULL;
1762 	txq->axq_tx_inprogress = false;
1763 	ath_drain_txq_list(sc, txq, &txq->axq_q);
1764 
1765 	ath_txq_unlock_complete(sc, txq);
1766 }
1767 
1768 bool ath_drain_all_txq(struct ath_softc *sc)
1769 {
1770 	struct ath_hw *ah = sc->sc_ah;
1771 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1772 	struct ath_txq *txq;
1773 	int i;
1774 	u32 npend = 0;
1775 
1776 	if (test_bit(SC_OP_INVALID, &sc->sc_flags))
1777 		return true;
1778 
1779 	ath9k_hw_abort_tx_dma(ah);
1780 
1781 	/* Check if any queue remains active */
1782 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1783 		if (!ATH_TXQ_SETUP(sc, i))
1784 			continue;
1785 
1786 		if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1787 			npend |= BIT(i);
1788 	}
1789 
1790 	if (npend)
1791 		ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1792 
1793 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1794 		if (!ATH_TXQ_SETUP(sc, i))
1795 			continue;
1796 
1797 		/*
1798 		 * The caller will resume queues with ieee80211_wake_queues.
1799 		 * Mark the queue as not stopped to prevent ath_tx_complete
1800 		 * from waking the queue too early.
1801 		 */
1802 		txq = &sc->tx.txq[i];
1803 		txq->stopped = false;
1804 		ath_draintxq(sc, txq);
1805 	}
1806 
1807 	return !npend;
1808 }
1809 
1810 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1811 {
1812 	ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1813 	sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1814 }
1815 
1816 /* For each axq_acq entry, for each tid, try to schedule packets
1817  * for transmit until ampdu_depth has reached min Q depth.
1818  */
1819 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1820 {
1821 	struct ath_atx_ac *ac, *last_ac;
1822 	struct ath_atx_tid *tid, *last_tid;
1823 	bool sent = false;
1824 
1825 	if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) ||
1826 	    list_empty(&txq->axq_acq))
1827 		return;
1828 
1829 	rcu_read_lock();
1830 
1831 	last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
1832 	while (!list_empty(&txq->axq_acq)) {
1833 		bool stop = false;
1834 
1835 		ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1836 		last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
1837 		list_del(&ac->list);
1838 		ac->sched = false;
1839 
1840 		while (!list_empty(&ac->tid_q)) {
1841 
1842 			tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
1843 					       list);
1844 			list_del(&tid->list);
1845 			tid->sched = false;
1846 
1847 			if (tid->paused)
1848 				continue;
1849 
1850 			if (ath_tx_sched_aggr(sc, txq, tid, &stop))
1851 				sent = true;
1852 
1853 			/*
1854 			 * add tid to round-robin queue if more frames
1855 			 * are pending for the tid
1856 			 */
1857 			if (ath_tid_has_buffered(tid))
1858 				ath_tx_queue_tid(txq, tid);
1859 
1860 			if (stop || tid == last_tid)
1861 				break;
1862 		}
1863 
1864 		if (!list_empty(&ac->tid_q) && !ac->sched) {
1865 			ac->sched = true;
1866 			list_add_tail(&ac->list, &txq->axq_acq);
1867 		}
1868 
1869 		if (stop)
1870 			break;
1871 
1872 		if (ac == last_ac) {
1873 			if (!sent)
1874 				break;
1875 
1876 			sent = false;
1877 			last_ac = list_entry(txq->axq_acq.prev,
1878 					     struct ath_atx_ac, list);
1879 		}
1880 	}
1881 
1882 	rcu_read_unlock();
1883 }
1884 
1885 /***********/
1886 /* TX, DMA */
1887 /***********/
1888 
1889 /*
1890  * Insert a chain of ath_buf (descriptors) on a txq and
1891  * assume the descriptors are already chained together by caller.
1892  */
1893 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1894 			     struct list_head *head, bool internal)
1895 {
1896 	struct ath_hw *ah = sc->sc_ah;
1897 	struct ath_common *common = ath9k_hw_common(ah);
1898 	struct ath_buf *bf, *bf_last;
1899 	bool puttxbuf = false;
1900 	bool edma;
1901 
1902 	/*
1903 	 * Insert the frame on the outbound list and
1904 	 * pass it on to the hardware.
1905 	 */
1906 
1907 	if (list_empty(head))
1908 		return;
1909 
1910 	edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1911 	bf = list_first_entry(head, struct ath_buf, list);
1912 	bf_last = list_entry(head->prev, struct ath_buf, list);
1913 
1914 	ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
1915 		txq->axq_qnum, txq->axq_depth);
1916 
1917 	if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
1918 		list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
1919 		INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
1920 		puttxbuf = true;
1921 	} else {
1922 		list_splice_tail_init(head, &txq->axq_q);
1923 
1924 		if (txq->axq_link) {
1925 			ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
1926 			ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
1927 				txq->axq_qnum, txq->axq_link,
1928 				ito64(bf->bf_daddr), bf->bf_desc);
1929 		} else if (!edma)
1930 			puttxbuf = true;
1931 
1932 		txq->axq_link = bf_last->bf_desc;
1933 	}
1934 
1935 	if (puttxbuf) {
1936 		TX_STAT_INC(txq->axq_qnum, puttxbuf);
1937 		ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1938 		ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
1939 			txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1940 	}
1941 
1942 	if (!edma) {
1943 		TX_STAT_INC(txq->axq_qnum, txstart);
1944 		ath9k_hw_txstart(ah, txq->axq_qnum);
1945 	}
1946 
1947 	if (!internal) {
1948 		while (bf) {
1949 			txq->axq_depth++;
1950 			if (bf_is_ampdu_not_probing(bf))
1951 				txq->axq_ampdu_depth++;
1952 
1953 			bf = bf->bf_lastbf->bf_next;
1954 		}
1955 	}
1956 }
1957 
1958 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1959 			       struct ath_atx_tid *tid, struct sk_buff *skb)
1960 {
1961 	struct ath_frame_info *fi = get_frame_info(skb);
1962 	struct list_head bf_head;
1963 	struct ath_buf *bf;
1964 
1965 	bf = fi->bf;
1966 
1967 	INIT_LIST_HEAD(&bf_head);
1968 	list_add_tail(&bf->list, &bf_head);
1969 	bf->bf_state.bf_type = 0;
1970 
1971 	bf->bf_next = NULL;
1972 	bf->bf_lastbf = bf;
1973 	ath_tx_fill_desc(sc, bf, txq, fi->framelen);
1974 	ath_tx_txqaddbuf(sc, txq, &bf_head, false);
1975 	TX_STAT_INC(txq->axq_qnum, queued);
1976 }
1977 
1978 static void setup_frame_info(struct ieee80211_hw *hw,
1979 			     struct ieee80211_sta *sta,
1980 			     struct sk_buff *skb,
1981 			     int framelen)
1982 {
1983 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1984 	struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
1985 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1986 	const struct ieee80211_rate *rate;
1987 	struct ath_frame_info *fi = get_frame_info(skb);
1988 	struct ath_node *an = NULL;
1989 	enum ath9k_key_type keytype;
1990 	bool short_preamble = false;
1991 
1992 	/*
1993 	 * We check if Short Preamble is needed for the CTS rate by
1994 	 * checking the BSS's global flag.
1995 	 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
1996 	 */
1997 	if (tx_info->control.vif &&
1998 	    tx_info->control.vif->bss_conf.use_short_preamble)
1999 		short_preamble = true;
2000 
2001 	rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2002 	keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2003 
2004 	if (sta)
2005 		an = (struct ath_node *) sta->drv_priv;
2006 
2007 	memset(fi, 0, sizeof(*fi));
2008 	if (hw_key)
2009 		fi->keyix = hw_key->hw_key_idx;
2010 	else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2011 		fi->keyix = an->ps_key;
2012 	else
2013 		fi->keyix = ATH9K_TXKEYIX_INVALID;
2014 	fi->keytype = keytype;
2015 	fi->framelen = framelen;
2016 	fi->rtscts_rate = rate->hw_value;
2017 	if (short_preamble)
2018 		fi->rtscts_rate |= rate->hw_value_short;
2019 }
2020 
2021 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2022 {
2023 	struct ath_hw *ah = sc->sc_ah;
2024 	struct ath9k_channel *curchan = ah->curchan;
2025 
2026 	if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
2027 	    (curchan->channelFlags & CHANNEL_5GHZ) &&
2028 	    (chainmask == 0x7) && (rate < 0x90))
2029 		return 0x3;
2030 	else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2031 		 IS_CCK_RATE(rate))
2032 		return 0x2;
2033 	else
2034 		return chainmask;
2035 }
2036 
2037 /*
2038  * Assign a descriptor (and sequence number if necessary,
2039  * and map buffer for DMA. Frees skb on error
2040  */
2041 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2042 					   struct ath_txq *txq,
2043 					   struct ath_atx_tid *tid,
2044 					   struct sk_buff *skb)
2045 {
2046 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2047 	struct ath_frame_info *fi = get_frame_info(skb);
2048 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2049 	struct ath_buf *bf;
2050 	int fragno;
2051 	u16 seqno;
2052 
2053 	bf = ath_tx_get_buffer(sc);
2054 	if (!bf) {
2055 		ath_dbg(common, XMIT, "TX buffers are full\n");
2056 		return NULL;
2057 	}
2058 
2059 	ATH_TXBUF_RESET(bf);
2060 
2061 	if (tid) {
2062 		fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2063 		seqno = tid->seq_next;
2064 		hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2065 
2066 		if (fragno)
2067 			hdr->seq_ctrl |= cpu_to_le16(fragno);
2068 
2069 		if (!ieee80211_has_morefrags(hdr->frame_control))
2070 			INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2071 
2072 		bf->bf_state.seqno = seqno;
2073 	}
2074 
2075 	bf->bf_mpdu = skb;
2076 
2077 	bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2078 					 skb->len, DMA_TO_DEVICE);
2079 	if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2080 		bf->bf_mpdu = NULL;
2081 		bf->bf_buf_addr = 0;
2082 		ath_err(ath9k_hw_common(sc->sc_ah),
2083 			"dma_mapping_error() on TX\n");
2084 		ath_tx_return_buffer(sc, bf);
2085 		return NULL;
2086 	}
2087 
2088 	fi->bf = bf;
2089 
2090 	return bf;
2091 }
2092 
2093 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2094 			  struct ath_tx_control *txctl)
2095 {
2096 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2097 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2098 	struct ieee80211_sta *sta = txctl->sta;
2099 	struct ieee80211_vif *vif = info->control.vif;
2100 	struct ath_vif *avp;
2101 	struct ath_softc *sc = hw->priv;
2102 	int frmlen = skb->len + FCS_LEN;
2103 	int padpos, padsize;
2104 
2105 	/* NOTE:  sta can be NULL according to net/mac80211.h */
2106 	if (sta)
2107 		txctl->an = (struct ath_node *)sta->drv_priv;
2108 	else if (vif && ieee80211_is_data(hdr->frame_control)) {
2109 		avp = (void *)vif->drv_priv;
2110 		txctl->an = &avp->mcast_node;
2111 	}
2112 
2113 	if (info->control.hw_key)
2114 		frmlen += info->control.hw_key->icv_len;
2115 
2116 	/*
2117 	 * As a temporary workaround, assign seq# here; this will likely need
2118 	 * to be cleaned up to work better with Beacon transmission and virtual
2119 	 * BSSes.
2120 	 */
2121 	if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2122 		if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2123 			sc->tx.seq_no += 0x10;
2124 		hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2125 		hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2126 	}
2127 
2128 	if ((vif && vif->type != NL80211_IFTYPE_AP &&
2129 	            vif->type != NL80211_IFTYPE_AP_VLAN) ||
2130 	    !ieee80211_is_data(hdr->frame_control))
2131 		info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2132 
2133 	/* Add the padding after the header if this is not already done */
2134 	padpos = ieee80211_hdrlen(hdr->frame_control);
2135 	padsize = padpos & 3;
2136 	if (padsize && skb->len > padpos) {
2137 		if (skb_headroom(skb) < padsize)
2138 			return -ENOMEM;
2139 
2140 		skb_push(skb, padsize);
2141 		memmove(skb->data, skb->data + padsize, padpos);
2142 	}
2143 
2144 	setup_frame_info(hw, sta, skb, frmlen);
2145 	return 0;
2146 }
2147 
2148 
2149 /* Upon failure caller should free skb */
2150 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2151 		 struct ath_tx_control *txctl)
2152 {
2153 	struct ieee80211_hdr *hdr;
2154 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2155 	struct ieee80211_sta *sta = txctl->sta;
2156 	struct ieee80211_vif *vif = info->control.vif;
2157 	struct ath_softc *sc = hw->priv;
2158 	struct ath_txq *txq = txctl->txq;
2159 	struct ath_atx_tid *tid = NULL;
2160 	struct ath_buf *bf;
2161 	int q;
2162 	int ret;
2163 
2164 	ret = ath_tx_prepare(hw, skb, txctl);
2165 	if (ret)
2166 	    return ret;
2167 
2168 	hdr = (struct ieee80211_hdr *) skb->data;
2169 	/*
2170 	 * At this point, the vif, hw_key and sta pointers in the tx control
2171 	 * info are no longer valid (overwritten by the ath_frame_info data.
2172 	 */
2173 
2174 	q = skb_get_queue_mapping(skb);
2175 
2176 	ath_txq_lock(sc, txq);
2177 	if (txq == sc->tx.txq_map[q] &&
2178 	    ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
2179 	    !txq->stopped) {
2180 		ieee80211_stop_queue(sc->hw, q);
2181 		txq->stopped = true;
2182 	}
2183 
2184 	if (info->flags & IEEE80211_TX_CTL_PS_RESPONSE) {
2185 		ath_txq_unlock(sc, txq);
2186 		txq = sc->tx.uapsdq;
2187 		ath_txq_lock(sc, txq);
2188 	} else if (txctl->an &&
2189 		   ieee80211_is_data_present(hdr->frame_control)) {
2190 		tid = ath_get_skb_tid(sc, txctl->an, skb);
2191 
2192 		WARN_ON(tid->ac->txq != txctl->txq);
2193 
2194 		if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
2195 			tid->ac->clear_ps_filter = true;
2196 
2197 		/*
2198 		 * Add this frame to software queue for scheduling later
2199 		 * for aggregation.
2200 		 */
2201 		TX_STAT_INC(txq->axq_qnum, a_queued_sw);
2202 		__skb_queue_tail(&tid->buf_q, skb);
2203 		if (!txctl->an->sleeping)
2204 			ath_tx_queue_tid(txq, tid);
2205 
2206 		ath_txq_schedule(sc, txq);
2207 		goto out;
2208 	}
2209 
2210 	bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2211 	if (!bf) {
2212 		ath_txq_skb_done(sc, txq, skb);
2213 		if (txctl->paprd)
2214 			dev_kfree_skb_any(skb);
2215 		else
2216 			ieee80211_free_txskb(sc->hw, skb);
2217 		goto out;
2218 	}
2219 
2220 	bf->bf_state.bfs_paprd = txctl->paprd;
2221 
2222 	if (txctl->paprd)
2223 		bf->bf_state.bfs_paprd_timestamp = jiffies;
2224 
2225 	ath_set_rates(vif, sta, bf);
2226 	ath_tx_send_normal(sc, txq, tid, skb);
2227 
2228 out:
2229 	ath_txq_unlock(sc, txq);
2230 
2231 	return 0;
2232 }
2233 
2234 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2235 		 struct sk_buff *skb)
2236 {
2237 	struct ath_softc *sc = hw->priv;
2238 	struct ath_tx_control txctl = {
2239 		.txq = sc->beacon.cabq
2240 	};
2241 	struct ath_tx_info info = {};
2242 	struct ieee80211_hdr *hdr;
2243 	struct ath_buf *bf_tail = NULL;
2244 	struct ath_buf *bf;
2245 	LIST_HEAD(bf_q);
2246 	int duration = 0;
2247 	int max_duration;
2248 
2249 	max_duration =
2250 		sc->cur_beacon_conf.beacon_interval * 1000 *
2251 		sc->cur_beacon_conf.dtim_period / ATH_BCBUF;
2252 
2253 	do {
2254 		struct ath_frame_info *fi = get_frame_info(skb);
2255 
2256 		if (ath_tx_prepare(hw, skb, &txctl))
2257 			break;
2258 
2259 		bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2260 		if (!bf)
2261 			break;
2262 
2263 		bf->bf_lastbf = bf;
2264 		ath_set_rates(vif, NULL, bf);
2265 		ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2266 		duration += info.rates[0].PktDuration;
2267 		if (bf_tail)
2268 			bf_tail->bf_next = bf;
2269 
2270 		list_add_tail(&bf->list, &bf_q);
2271 		bf_tail = bf;
2272 		skb = NULL;
2273 
2274 		if (duration > max_duration)
2275 			break;
2276 
2277 		skb = ieee80211_get_buffered_bc(hw, vif);
2278 	} while(skb);
2279 
2280 	if (skb)
2281 		ieee80211_free_txskb(hw, skb);
2282 
2283 	if (list_empty(&bf_q))
2284 		return;
2285 
2286 	bf = list_first_entry(&bf_q, struct ath_buf, list);
2287 	hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
2288 
2289 	if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) {
2290 		hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA;
2291 		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
2292 			sizeof(*hdr), DMA_TO_DEVICE);
2293 	}
2294 
2295 	ath_txq_lock(sc, txctl.txq);
2296 	ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2297 	ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2298 	TX_STAT_INC(txctl.txq->axq_qnum, queued);
2299 	ath_txq_unlock(sc, txctl.txq);
2300 }
2301 
2302 /*****************/
2303 /* TX Completion */
2304 /*****************/
2305 
2306 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2307 			    int tx_flags, struct ath_txq *txq)
2308 {
2309 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2310 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2311 	struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2312 	int padpos, padsize;
2313 	unsigned long flags;
2314 
2315 	ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2316 
2317 	if (sc->sc_ah->caldata)
2318 		sc->sc_ah->caldata->paprd_packet_sent = true;
2319 
2320 	if (!(tx_flags & ATH_TX_ERROR))
2321 		/* Frame was ACKed */
2322 		tx_info->flags |= IEEE80211_TX_STAT_ACK;
2323 
2324 	padpos = ieee80211_hdrlen(hdr->frame_control);
2325 	padsize = padpos & 3;
2326 	if (padsize && skb->len>padpos+padsize) {
2327 		/*
2328 		 * Remove MAC header padding before giving the frame back to
2329 		 * mac80211.
2330 		 */
2331 		memmove(skb->data + padsize, skb->data, padpos);
2332 		skb_pull(skb, padsize);
2333 	}
2334 
2335 	spin_lock_irqsave(&sc->sc_pm_lock, flags);
2336 	if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2337 		sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2338 		ath_dbg(common, PS,
2339 			"Going back to sleep after having received TX status (0x%lx)\n",
2340 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
2341 					PS_WAIT_FOR_CAB |
2342 					PS_WAIT_FOR_PSPOLL_DATA |
2343 					PS_WAIT_FOR_TX_ACK));
2344 	}
2345 	spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2346 
2347 	__skb_queue_tail(&txq->complete_q, skb);
2348 	ath_txq_skb_done(sc, txq, skb);
2349 }
2350 
2351 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2352 				struct ath_txq *txq, struct list_head *bf_q,
2353 				struct ath_tx_status *ts, int txok)
2354 {
2355 	struct sk_buff *skb = bf->bf_mpdu;
2356 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2357 	unsigned long flags;
2358 	int tx_flags = 0;
2359 
2360 	if (!txok)
2361 		tx_flags |= ATH_TX_ERROR;
2362 
2363 	if (ts->ts_status & ATH9K_TXERR_FILT)
2364 		tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2365 
2366 	dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2367 	bf->bf_buf_addr = 0;
2368 
2369 	if (bf->bf_state.bfs_paprd) {
2370 		if (time_after(jiffies,
2371 				bf->bf_state.bfs_paprd_timestamp +
2372 				msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2373 			dev_kfree_skb_any(skb);
2374 		else
2375 			complete(&sc->paprd_complete);
2376 	} else {
2377 		ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2378 		ath_tx_complete(sc, skb, tx_flags, txq);
2379 	}
2380 	/* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2381 	 * accidentally reference it later.
2382 	 */
2383 	bf->bf_mpdu = NULL;
2384 
2385 	/*
2386 	 * Return the list of ath_buf of this mpdu to free queue
2387 	 */
2388 	spin_lock_irqsave(&sc->tx.txbuflock, flags);
2389 	list_splice_tail_init(bf_q, &sc->tx.txbuf);
2390 	spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2391 }
2392 
2393 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2394 			     struct ath_tx_status *ts, int nframes, int nbad,
2395 			     int txok)
2396 {
2397 	struct sk_buff *skb = bf->bf_mpdu;
2398 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2399 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2400 	struct ieee80211_hw *hw = sc->hw;
2401 	struct ath_hw *ah = sc->sc_ah;
2402 	u8 i, tx_rateindex;
2403 
2404 	if (txok)
2405 		tx_info->status.ack_signal = ts->ts_rssi;
2406 
2407 	tx_rateindex = ts->ts_rateindex;
2408 	WARN_ON(tx_rateindex >= hw->max_rates);
2409 
2410 	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2411 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2412 
2413 		BUG_ON(nbad > nframes);
2414 	}
2415 	tx_info->status.ampdu_len = nframes;
2416 	tx_info->status.ampdu_ack_len = nframes - nbad;
2417 
2418 	if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2419 	    (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2420 		/*
2421 		 * If an underrun error is seen assume it as an excessive
2422 		 * retry only if max frame trigger level has been reached
2423 		 * (2 KB for single stream, and 4 KB for dual stream).
2424 		 * Adjust the long retry as if the frame was tried
2425 		 * hw->max_rate_tries times to affect how rate control updates
2426 		 * PER for the failed rate.
2427 		 * In case of congestion on the bus penalizing this type of
2428 		 * underruns should help hardware actually transmit new frames
2429 		 * successfully by eventually preferring slower rates.
2430 		 * This itself should also alleviate congestion on the bus.
2431 		 */
2432 		if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2433 		                             ATH9K_TX_DELIM_UNDERRUN)) &&
2434 		    ieee80211_is_data(hdr->frame_control) &&
2435 		    ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2436 			tx_info->status.rates[tx_rateindex].count =
2437 				hw->max_rate_tries;
2438 	}
2439 
2440 	for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2441 		tx_info->status.rates[i].count = 0;
2442 		tx_info->status.rates[i].idx = -1;
2443 	}
2444 
2445 	tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2446 }
2447 
2448 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2449 {
2450 	struct ath_hw *ah = sc->sc_ah;
2451 	struct ath_common *common = ath9k_hw_common(ah);
2452 	struct ath_buf *bf, *lastbf, *bf_held = NULL;
2453 	struct list_head bf_head;
2454 	struct ath_desc *ds;
2455 	struct ath_tx_status ts;
2456 	int status;
2457 
2458 	ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2459 		txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2460 		txq->axq_link);
2461 
2462 	ath_txq_lock(sc, txq);
2463 	for (;;) {
2464 		if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
2465 			break;
2466 
2467 		if (list_empty(&txq->axq_q)) {
2468 			txq->axq_link = NULL;
2469 			ath_txq_schedule(sc, txq);
2470 			break;
2471 		}
2472 		bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2473 
2474 		/*
2475 		 * There is a race condition that a BH gets scheduled
2476 		 * after sw writes TxE and before hw re-load the last
2477 		 * descriptor to get the newly chained one.
2478 		 * Software must keep the last DONE descriptor as a
2479 		 * holding descriptor - software does so by marking
2480 		 * it with the STALE flag.
2481 		 */
2482 		bf_held = NULL;
2483 		if (bf->bf_state.stale) {
2484 			bf_held = bf;
2485 			if (list_is_last(&bf_held->list, &txq->axq_q))
2486 				break;
2487 
2488 			bf = list_entry(bf_held->list.next, struct ath_buf,
2489 					list);
2490 		}
2491 
2492 		lastbf = bf->bf_lastbf;
2493 		ds = lastbf->bf_desc;
2494 
2495 		memset(&ts, 0, sizeof(ts));
2496 		status = ath9k_hw_txprocdesc(ah, ds, &ts);
2497 		if (status == -EINPROGRESS)
2498 			break;
2499 
2500 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2501 
2502 		/*
2503 		 * Remove ath_buf's of the same transmit unit from txq,
2504 		 * however leave the last descriptor back as the holding
2505 		 * descriptor for hw.
2506 		 */
2507 		lastbf->bf_state.stale = true;
2508 		INIT_LIST_HEAD(&bf_head);
2509 		if (!list_is_singular(&lastbf->list))
2510 			list_cut_position(&bf_head,
2511 				&txq->axq_q, lastbf->list.prev);
2512 
2513 		if (bf_held) {
2514 			list_del(&bf_held->list);
2515 			ath_tx_return_buffer(sc, bf_held);
2516 		}
2517 
2518 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2519 	}
2520 	ath_txq_unlock_complete(sc, txq);
2521 }
2522 
2523 void ath_tx_tasklet(struct ath_softc *sc)
2524 {
2525 	struct ath_hw *ah = sc->sc_ah;
2526 	u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2527 	int i;
2528 
2529 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2530 		if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2531 			ath_tx_processq(sc, &sc->tx.txq[i]);
2532 	}
2533 }
2534 
2535 void ath_tx_edma_tasklet(struct ath_softc *sc)
2536 {
2537 	struct ath_tx_status ts;
2538 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2539 	struct ath_hw *ah = sc->sc_ah;
2540 	struct ath_txq *txq;
2541 	struct ath_buf *bf, *lastbf;
2542 	struct list_head bf_head;
2543 	struct list_head *fifo_list;
2544 	int status;
2545 
2546 	for (;;) {
2547 		if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
2548 			break;
2549 
2550 		status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2551 		if (status == -EINPROGRESS)
2552 			break;
2553 		if (status == -EIO) {
2554 			ath_dbg(common, XMIT, "Error processing tx status\n");
2555 			break;
2556 		}
2557 
2558 		/* Process beacon completions separately */
2559 		if (ts.qid == sc->beacon.beaconq) {
2560 			sc->beacon.tx_processed = true;
2561 			sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2562 
2563 			ath9k_csa_is_finished(sc);
2564 			continue;
2565 		}
2566 
2567 		txq = &sc->tx.txq[ts.qid];
2568 
2569 		ath_txq_lock(sc, txq);
2570 
2571 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2572 
2573 		fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2574 		if (list_empty(fifo_list)) {
2575 			ath_txq_unlock(sc, txq);
2576 			return;
2577 		}
2578 
2579 		bf = list_first_entry(fifo_list, struct ath_buf, list);
2580 		if (bf->bf_state.stale) {
2581 			list_del(&bf->list);
2582 			ath_tx_return_buffer(sc, bf);
2583 			bf = list_first_entry(fifo_list, struct ath_buf, list);
2584 		}
2585 
2586 		lastbf = bf->bf_lastbf;
2587 
2588 		INIT_LIST_HEAD(&bf_head);
2589 		if (list_is_last(&lastbf->list, fifo_list)) {
2590 			list_splice_tail_init(fifo_list, &bf_head);
2591 			INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2592 
2593 			if (!list_empty(&txq->axq_q)) {
2594 				struct list_head bf_q;
2595 
2596 				INIT_LIST_HEAD(&bf_q);
2597 				txq->axq_link = NULL;
2598 				list_splice_tail_init(&txq->axq_q, &bf_q);
2599 				ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2600 			}
2601 		} else {
2602 			lastbf->bf_state.stale = true;
2603 			if (bf != lastbf)
2604 				list_cut_position(&bf_head, fifo_list,
2605 						  lastbf->list.prev);
2606 		}
2607 
2608 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2609 		ath_txq_unlock_complete(sc, txq);
2610 	}
2611 }
2612 
2613 /*****************/
2614 /* Init, Cleanup */
2615 /*****************/
2616 
2617 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2618 {
2619 	struct ath_descdma *dd = &sc->txsdma;
2620 	u8 txs_len = sc->sc_ah->caps.txs_len;
2621 
2622 	dd->dd_desc_len = size * txs_len;
2623 	dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2624 					  &dd->dd_desc_paddr, GFP_KERNEL);
2625 	if (!dd->dd_desc)
2626 		return -ENOMEM;
2627 
2628 	return 0;
2629 }
2630 
2631 static int ath_tx_edma_init(struct ath_softc *sc)
2632 {
2633 	int err;
2634 
2635 	err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2636 	if (!err)
2637 		ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2638 					  sc->txsdma.dd_desc_paddr,
2639 					  ATH_TXSTATUS_RING_SIZE);
2640 
2641 	return err;
2642 }
2643 
2644 int ath_tx_init(struct ath_softc *sc, int nbufs)
2645 {
2646 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2647 	int error = 0;
2648 
2649 	spin_lock_init(&sc->tx.txbuflock);
2650 
2651 	error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2652 				  "tx", nbufs, 1, 1);
2653 	if (error != 0) {
2654 		ath_err(common,
2655 			"Failed to allocate tx descriptors: %d\n", error);
2656 		return error;
2657 	}
2658 
2659 	error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2660 				  "beacon", ATH_BCBUF, 1, 1);
2661 	if (error != 0) {
2662 		ath_err(common,
2663 			"Failed to allocate beacon descriptors: %d\n", error);
2664 		return error;
2665 	}
2666 
2667 	INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2668 
2669 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2670 		error = ath_tx_edma_init(sc);
2671 
2672 	return error;
2673 }
2674 
2675 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2676 {
2677 	struct ath_atx_tid *tid;
2678 	struct ath_atx_ac *ac;
2679 	int tidno, acno;
2680 
2681 	for (tidno = 0, tid = &an->tid[tidno];
2682 	     tidno < IEEE80211_NUM_TIDS;
2683 	     tidno++, tid++) {
2684 		tid->an        = an;
2685 		tid->tidno     = tidno;
2686 		tid->seq_start = tid->seq_next = 0;
2687 		tid->baw_size  = WME_MAX_BA;
2688 		tid->baw_head  = tid->baw_tail = 0;
2689 		tid->sched     = false;
2690 		tid->paused    = false;
2691 		tid->active	   = false;
2692 		__skb_queue_head_init(&tid->buf_q);
2693 		__skb_queue_head_init(&tid->retry_q);
2694 		acno = TID_TO_WME_AC(tidno);
2695 		tid->ac = &an->ac[acno];
2696 	}
2697 
2698 	for (acno = 0, ac = &an->ac[acno];
2699 	     acno < IEEE80211_NUM_ACS; acno++, ac++) {
2700 		ac->sched    = false;
2701 		ac->clear_ps_filter = true;
2702 		ac->txq = sc->tx.txq_map[acno];
2703 		INIT_LIST_HEAD(&ac->tid_q);
2704 	}
2705 }
2706 
2707 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2708 {
2709 	struct ath_atx_ac *ac;
2710 	struct ath_atx_tid *tid;
2711 	struct ath_txq *txq;
2712 	int tidno;
2713 
2714 	for (tidno = 0, tid = &an->tid[tidno];
2715 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
2716 
2717 		ac = tid->ac;
2718 		txq = ac->txq;
2719 
2720 		ath_txq_lock(sc, txq);
2721 
2722 		if (tid->sched) {
2723 			list_del(&tid->list);
2724 			tid->sched = false;
2725 		}
2726 
2727 		if (ac->sched) {
2728 			list_del(&ac->list);
2729 			tid->ac->sched = false;
2730 		}
2731 
2732 		ath_tid_drain(sc, txq, tid);
2733 		tid->active = false;
2734 
2735 		ath_txq_unlock(sc, txq);
2736 	}
2737 }
2738