xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/xmit.c (revision 37be287c)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20 
21 #define BITS_PER_BYTE           8
22 #define OFDM_PLCP_BITS          22
23 #define HT_RC_2_STREAMS(_rc)    ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF                   8
25 #define L_LTF                   8
26 #define L_SIG                   4
27 #define HT_SIG                  8
28 #define HT_STF                  4
29 #define HT_LTF(_ns)             (4 * (_ns))
30 #define SYMBOL_TIME(_ns)        ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5)  /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t)         ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t)  (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36 
37 
38 static u16 bits_per_symbol[][2] = {
39 	/* 20MHz 40MHz */
40 	{    26,   54 },     /*  0: BPSK */
41 	{    52,  108 },     /*  1: QPSK 1/2 */
42 	{    78,  162 },     /*  2: QPSK 3/4 */
43 	{   104,  216 },     /*  3: 16-QAM 1/2 */
44 	{   156,  324 },     /*  4: 16-QAM 3/4 */
45 	{   208,  432 },     /*  5: 64-QAM 2/3 */
46 	{   234,  486 },     /*  6: 64-QAM 3/4 */
47 	{   260,  540 },     /*  7: 64-QAM 5/6 */
48 };
49 
50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
51 			       struct ath_atx_tid *tid, struct sk_buff *skb);
52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
53 			    int tx_flags, struct ath_txq *txq);
54 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
55 				struct ath_txq *txq, struct list_head *bf_q,
56 				struct ath_tx_status *ts, int txok);
57 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
58 			     struct list_head *head, bool internal);
59 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
60 			     struct ath_tx_status *ts, int nframes, int nbad,
61 			     int txok);
62 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
63 			      int seqno);
64 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
65 					   struct ath_txq *txq,
66 					   struct ath_atx_tid *tid,
67 					   struct sk_buff *skb);
68 
69 enum {
70 	MCS_HT20,
71 	MCS_HT20_SGI,
72 	MCS_HT40,
73 	MCS_HT40_SGI,
74 };
75 
76 /*********************/
77 /* Aggregation logic */
78 /*********************/
79 
80 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
81 	__acquires(&txq->axq_lock)
82 {
83 	spin_lock_bh(&txq->axq_lock);
84 }
85 
86 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
87 	__releases(&txq->axq_lock)
88 {
89 	spin_unlock_bh(&txq->axq_lock);
90 }
91 
92 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
93 	__releases(&txq->axq_lock)
94 {
95 	struct sk_buff_head q;
96 	struct sk_buff *skb;
97 
98 	__skb_queue_head_init(&q);
99 	skb_queue_splice_init(&txq->complete_q, &q);
100 	spin_unlock_bh(&txq->axq_lock);
101 
102 	while ((skb = __skb_dequeue(&q)))
103 		ieee80211_tx_status(sc->hw, skb);
104 }
105 
106 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
107 {
108 	struct ath_atx_ac *ac = tid->ac;
109 
110 	if (tid->paused)
111 		return;
112 
113 	if (tid->sched)
114 		return;
115 
116 	tid->sched = true;
117 	list_add_tail(&tid->list, &ac->tid_q);
118 
119 	if (ac->sched)
120 		return;
121 
122 	ac->sched = true;
123 	list_add_tail(&ac->list, &txq->axq_acq);
124 }
125 
126 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
127 {
128 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
129 	BUILD_BUG_ON(sizeof(struct ath_frame_info) >
130 		     sizeof(tx_info->rate_driver_data));
131 	return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
132 }
133 
134 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
135 {
136 	if (!tid->an->sta)
137 		return;
138 
139 	ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
140 			   seqno << IEEE80211_SEQ_SEQ_SHIFT);
141 }
142 
143 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
144 			  struct ath_buf *bf)
145 {
146 	ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
147 			       ARRAY_SIZE(bf->rates));
148 }
149 
150 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
151 			     struct sk_buff *skb)
152 {
153 	int q;
154 
155 	q = skb_get_queue_mapping(skb);
156 	if (txq == sc->tx.uapsdq)
157 		txq = sc->tx.txq_map[q];
158 
159 	if (txq != sc->tx.txq_map[q])
160 		return;
161 
162 	if (WARN_ON(--txq->pending_frames < 0))
163 		txq->pending_frames = 0;
164 
165 	if (txq->stopped &&
166 	    txq->pending_frames < sc->tx.txq_max_pending[q]) {
167 		ieee80211_wake_queue(sc->hw, q);
168 		txq->stopped = false;
169 	}
170 }
171 
172 static struct ath_atx_tid *
173 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
174 {
175 	u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
176 	return ATH_AN_2_TID(an, tidno);
177 }
178 
179 static bool ath_tid_has_buffered(struct ath_atx_tid *tid)
180 {
181 	return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q);
182 }
183 
184 static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid)
185 {
186 	struct sk_buff *skb;
187 
188 	skb = __skb_dequeue(&tid->retry_q);
189 	if (!skb)
190 		skb = __skb_dequeue(&tid->buf_q);
191 
192 	return skb;
193 }
194 
195 /*
196  * ath_tx_tid_change_state:
197  * - clears a-mpdu flag of previous session
198  * - force sequence number allocation to fix next BlockAck Window
199  */
200 static void
201 ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid)
202 {
203 	struct ath_txq *txq = tid->ac->txq;
204 	struct ieee80211_tx_info *tx_info;
205 	struct sk_buff *skb, *tskb;
206 	struct ath_buf *bf;
207 	struct ath_frame_info *fi;
208 
209 	skb_queue_walk_safe(&tid->buf_q, skb, tskb) {
210 		fi = get_frame_info(skb);
211 		bf = fi->bf;
212 
213 		tx_info = IEEE80211_SKB_CB(skb);
214 		tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
215 
216 		if (bf)
217 			continue;
218 
219 		bf = ath_tx_setup_buffer(sc, txq, tid, skb);
220 		if (!bf) {
221 			__skb_unlink(skb, &tid->buf_q);
222 			ath_txq_skb_done(sc, txq, skb);
223 			ieee80211_free_txskb(sc->hw, skb);
224 			continue;
225 		}
226 	}
227 
228 }
229 
230 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
231 {
232 	struct ath_txq *txq = tid->ac->txq;
233 	struct sk_buff *skb;
234 	struct ath_buf *bf;
235 	struct list_head bf_head;
236 	struct ath_tx_status ts;
237 	struct ath_frame_info *fi;
238 	bool sendbar = false;
239 
240 	INIT_LIST_HEAD(&bf_head);
241 
242 	memset(&ts, 0, sizeof(ts));
243 
244 	while ((skb = __skb_dequeue(&tid->retry_q))) {
245 		fi = get_frame_info(skb);
246 		bf = fi->bf;
247 		if (!bf) {
248 			ath_txq_skb_done(sc, txq, skb);
249 			ieee80211_free_txskb(sc->hw, skb);
250 			continue;
251 		}
252 
253 		if (fi->baw_tracked) {
254 			ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
255 			sendbar = true;
256 		}
257 
258 		list_add_tail(&bf->list, &bf_head);
259 		ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
260 	}
261 
262 	if (sendbar) {
263 		ath_txq_unlock(sc, txq);
264 		ath_send_bar(tid, tid->seq_start);
265 		ath_txq_lock(sc, txq);
266 	}
267 }
268 
269 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
270 			      int seqno)
271 {
272 	int index, cindex;
273 
274 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
275 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
276 
277 	__clear_bit(cindex, tid->tx_buf);
278 
279 	while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
280 		INCR(tid->seq_start, IEEE80211_SEQ_MAX);
281 		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
282 		if (tid->bar_index >= 0)
283 			tid->bar_index--;
284 	}
285 }
286 
287 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
288 			     struct ath_buf *bf)
289 {
290 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
291 	u16 seqno = bf->bf_state.seqno;
292 	int index, cindex;
293 
294 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
295 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
296 	__set_bit(cindex, tid->tx_buf);
297 	fi->baw_tracked = 1;
298 
299 	if (index >= ((tid->baw_tail - tid->baw_head) &
300 		(ATH_TID_MAX_BUFS - 1))) {
301 		tid->baw_tail = cindex;
302 		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
303 	}
304 }
305 
306 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
307 			  struct ath_atx_tid *tid)
308 
309 {
310 	struct sk_buff *skb;
311 	struct ath_buf *bf;
312 	struct list_head bf_head;
313 	struct ath_tx_status ts;
314 	struct ath_frame_info *fi;
315 
316 	memset(&ts, 0, sizeof(ts));
317 	INIT_LIST_HEAD(&bf_head);
318 
319 	while ((skb = ath_tid_dequeue(tid))) {
320 		fi = get_frame_info(skb);
321 		bf = fi->bf;
322 
323 		if (!bf) {
324 			ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
325 			continue;
326 		}
327 
328 		list_add_tail(&bf->list, &bf_head);
329 		ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
330 	}
331 }
332 
333 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
334 			     struct sk_buff *skb, int count)
335 {
336 	struct ath_frame_info *fi = get_frame_info(skb);
337 	struct ath_buf *bf = fi->bf;
338 	struct ieee80211_hdr *hdr;
339 	int prev = fi->retries;
340 
341 	TX_STAT_INC(txq->axq_qnum, a_retries);
342 	fi->retries += count;
343 
344 	if (prev > 0)
345 		return;
346 
347 	hdr = (struct ieee80211_hdr *)skb->data;
348 	hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
349 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
350 		sizeof(*hdr), DMA_TO_DEVICE);
351 }
352 
353 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
354 {
355 	struct ath_buf *bf = NULL;
356 
357 	spin_lock_bh(&sc->tx.txbuflock);
358 
359 	if (unlikely(list_empty(&sc->tx.txbuf))) {
360 		spin_unlock_bh(&sc->tx.txbuflock);
361 		return NULL;
362 	}
363 
364 	bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
365 	list_del(&bf->list);
366 
367 	spin_unlock_bh(&sc->tx.txbuflock);
368 
369 	return bf;
370 }
371 
372 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
373 {
374 	spin_lock_bh(&sc->tx.txbuflock);
375 	list_add_tail(&bf->list, &sc->tx.txbuf);
376 	spin_unlock_bh(&sc->tx.txbuflock);
377 }
378 
379 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
380 {
381 	struct ath_buf *tbf;
382 
383 	tbf = ath_tx_get_buffer(sc);
384 	if (WARN_ON(!tbf))
385 		return NULL;
386 
387 	ATH_TXBUF_RESET(tbf);
388 
389 	tbf->bf_mpdu = bf->bf_mpdu;
390 	tbf->bf_buf_addr = bf->bf_buf_addr;
391 	memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
392 	tbf->bf_state = bf->bf_state;
393 	tbf->bf_state.stale = false;
394 
395 	return tbf;
396 }
397 
398 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
399 			        struct ath_tx_status *ts, int txok,
400 			        int *nframes, int *nbad)
401 {
402 	struct ath_frame_info *fi;
403 	u16 seq_st = 0;
404 	u32 ba[WME_BA_BMP_SIZE >> 5];
405 	int ba_index;
406 	int isaggr = 0;
407 
408 	*nbad = 0;
409 	*nframes = 0;
410 
411 	isaggr = bf_isaggr(bf);
412 	if (isaggr) {
413 		seq_st = ts->ts_seqnum;
414 		memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
415 	}
416 
417 	while (bf) {
418 		fi = get_frame_info(bf->bf_mpdu);
419 		ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
420 
421 		(*nframes)++;
422 		if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
423 			(*nbad)++;
424 
425 		bf = bf->bf_next;
426 	}
427 }
428 
429 
430 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
431 				 struct ath_buf *bf, struct list_head *bf_q,
432 				 struct ath_tx_status *ts, int txok)
433 {
434 	struct ath_node *an = NULL;
435 	struct sk_buff *skb;
436 	struct ieee80211_sta *sta;
437 	struct ieee80211_hw *hw = sc->hw;
438 	struct ieee80211_hdr *hdr;
439 	struct ieee80211_tx_info *tx_info;
440 	struct ath_atx_tid *tid = NULL;
441 	struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
442 	struct list_head bf_head;
443 	struct sk_buff_head bf_pending;
444 	u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
445 	u32 ba[WME_BA_BMP_SIZE >> 5];
446 	int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
447 	bool rc_update = true, isba;
448 	struct ieee80211_tx_rate rates[4];
449 	struct ath_frame_info *fi;
450 	int nframes;
451 	bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
452 	int i, retries;
453 	int bar_index = -1;
454 
455 	skb = bf->bf_mpdu;
456 	hdr = (struct ieee80211_hdr *)skb->data;
457 
458 	tx_info = IEEE80211_SKB_CB(skb);
459 
460 	memcpy(rates, bf->rates, sizeof(rates));
461 
462 	retries = ts->ts_longretry + 1;
463 	for (i = 0; i < ts->ts_rateindex; i++)
464 		retries += rates[i].count;
465 
466 	rcu_read_lock();
467 
468 	sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
469 	if (!sta) {
470 		rcu_read_unlock();
471 
472 		INIT_LIST_HEAD(&bf_head);
473 		while (bf) {
474 			bf_next = bf->bf_next;
475 
476 			if (!bf->bf_state.stale || bf_next != NULL)
477 				list_move_tail(&bf->list, &bf_head);
478 
479 			ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
480 
481 			bf = bf_next;
482 		}
483 		return;
484 	}
485 
486 	an = (struct ath_node *)sta->drv_priv;
487 	tid = ath_get_skb_tid(sc, an, skb);
488 	seq_first = tid->seq_start;
489 	isba = ts->ts_flags & ATH9K_TX_BA;
490 
491 	/*
492 	 * The hardware occasionally sends a tx status for the wrong TID.
493 	 * In this case, the BA status cannot be considered valid and all
494 	 * subframes need to be retransmitted
495 	 *
496 	 * Only BlockAcks have a TID and therefore normal Acks cannot be
497 	 * checked
498 	 */
499 	if (isba && tid->tidno != ts->tid)
500 		txok = false;
501 
502 	isaggr = bf_isaggr(bf);
503 	memset(ba, 0, WME_BA_BMP_SIZE >> 3);
504 
505 	if (isaggr && txok) {
506 		if (ts->ts_flags & ATH9K_TX_BA) {
507 			seq_st = ts->ts_seqnum;
508 			memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
509 		} else {
510 			/*
511 			 * AR5416 can become deaf/mute when BA
512 			 * issue happens. Chip needs to be reset.
513 			 * But AP code may have sychronization issues
514 			 * when perform internal reset in this routine.
515 			 * Only enable reset in STA mode for now.
516 			 */
517 			if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
518 				needreset = 1;
519 		}
520 	}
521 
522 	__skb_queue_head_init(&bf_pending);
523 
524 	ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
525 	while (bf) {
526 		u16 seqno = bf->bf_state.seqno;
527 
528 		txfail = txpending = sendbar = 0;
529 		bf_next = bf->bf_next;
530 
531 		skb = bf->bf_mpdu;
532 		tx_info = IEEE80211_SKB_CB(skb);
533 		fi = get_frame_info(skb);
534 
535 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
536 		    !tid->active) {
537 			/*
538 			 * Outside of the current BlockAck window,
539 			 * maybe part of a previous session
540 			 */
541 			txfail = 1;
542 		} else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
543 			/* transmit completion, subframe is
544 			 * acked by block ack */
545 			acked_cnt++;
546 		} else if (!isaggr && txok) {
547 			/* transmit completion */
548 			acked_cnt++;
549 		} else if (flush) {
550 			txpending = 1;
551 		} else if (fi->retries < ATH_MAX_SW_RETRIES) {
552 			if (txok || !an->sleeping)
553 				ath_tx_set_retry(sc, txq, bf->bf_mpdu,
554 						 retries);
555 
556 			txpending = 1;
557 		} else {
558 			txfail = 1;
559 			txfail_cnt++;
560 			bar_index = max_t(int, bar_index,
561 				ATH_BA_INDEX(seq_first, seqno));
562 		}
563 
564 		/*
565 		 * Make sure the last desc is reclaimed if it
566 		 * not a holding desc.
567 		 */
568 		INIT_LIST_HEAD(&bf_head);
569 		if (bf_next != NULL || !bf_last->bf_state.stale)
570 			list_move_tail(&bf->list, &bf_head);
571 
572 		if (!txpending) {
573 			/*
574 			 * complete the acked-ones/xretried ones; update
575 			 * block-ack window
576 			 */
577 			ath_tx_update_baw(sc, tid, seqno);
578 
579 			if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
580 				memcpy(tx_info->control.rates, rates, sizeof(rates));
581 				ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
582 				rc_update = false;
583 			}
584 
585 			ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
586 				!txfail);
587 		} else {
588 			if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
589 				tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
590 				ieee80211_sta_eosp(sta);
591 			}
592 			/* retry the un-acked ones */
593 			if (bf->bf_next == NULL && bf_last->bf_state.stale) {
594 				struct ath_buf *tbf;
595 
596 				tbf = ath_clone_txbuf(sc, bf_last);
597 				/*
598 				 * Update tx baw and complete the
599 				 * frame with failed status if we
600 				 * run out of tx buf.
601 				 */
602 				if (!tbf) {
603 					ath_tx_update_baw(sc, tid, seqno);
604 
605 					ath_tx_complete_buf(sc, bf, txq,
606 							    &bf_head, ts, 0);
607 					bar_index = max_t(int, bar_index,
608 						ATH_BA_INDEX(seq_first, seqno));
609 					break;
610 				}
611 
612 				fi->bf = tbf;
613 			}
614 
615 			/*
616 			 * Put this buffer to the temporary pending
617 			 * queue to retain ordering
618 			 */
619 			__skb_queue_tail(&bf_pending, skb);
620 		}
621 
622 		bf = bf_next;
623 	}
624 
625 	/* prepend un-acked frames to the beginning of the pending frame queue */
626 	if (!skb_queue_empty(&bf_pending)) {
627 		if (an->sleeping)
628 			ieee80211_sta_set_buffered(sta, tid->tidno, true);
629 
630 		skb_queue_splice_tail(&bf_pending, &tid->retry_q);
631 		if (!an->sleeping) {
632 			ath_tx_queue_tid(txq, tid);
633 
634 			if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
635 				tid->ac->clear_ps_filter = true;
636 		}
637 	}
638 
639 	if (bar_index >= 0) {
640 		u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
641 
642 		if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
643 			tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
644 
645 		ath_txq_unlock(sc, txq);
646 		ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
647 		ath_txq_lock(sc, txq);
648 	}
649 
650 	rcu_read_unlock();
651 
652 	if (needreset)
653 		ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
654 }
655 
656 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
657 {
658     struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
659     return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
660 }
661 
662 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
663 				  struct ath_tx_status *ts, struct ath_buf *bf,
664 				  struct list_head *bf_head)
665 {
666 	struct ieee80211_tx_info *info;
667 	bool txok, flush;
668 
669 	txok = !(ts->ts_status & ATH9K_TXERR_MASK);
670 	flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
671 	txq->axq_tx_inprogress = false;
672 
673 	txq->axq_depth--;
674 	if (bf_is_ampdu_not_probing(bf))
675 		txq->axq_ampdu_depth--;
676 
677 	if (!bf_isampdu(bf)) {
678 		if (!flush) {
679 			info = IEEE80211_SKB_CB(bf->bf_mpdu);
680 			memcpy(info->control.rates, bf->rates,
681 			       sizeof(info->control.rates));
682 			ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
683 		}
684 		ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
685 	} else
686 		ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
687 
688 	if (!flush)
689 		ath_txq_schedule(sc, txq);
690 }
691 
692 static bool ath_lookup_legacy(struct ath_buf *bf)
693 {
694 	struct sk_buff *skb;
695 	struct ieee80211_tx_info *tx_info;
696 	struct ieee80211_tx_rate *rates;
697 	int i;
698 
699 	skb = bf->bf_mpdu;
700 	tx_info = IEEE80211_SKB_CB(skb);
701 	rates = tx_info->control.rates;
702 
703 	for (i = 0; i < 4; i++) {
704 		if (!rates[i].count || rates[i].idx < 0)
705 			break;
706 
707 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
708 			return true;
709 	}
710 
711 	return false;
712 }
713 
714 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
715 			   struct ath_atx_tid *tid)
716 {
717 	struct sk_buff *skb;
718 	struct ieee80211_tx_info *tx_info;
719 	struct ieee80211_tx_rate *rates;
720 	u32 max_4ms_framelen, frmlen;
721 	u16 aggr_limit, bt_aggr_limit, legacy = 0;
722 	int q = tid->ac->txq->mac80211_qnum;
723 	int i;
724 
725 	skb = bf->bf_mpdu;
726 	tx_info = IEEE80211_SKB_CB(skb);
727 	rates = bf->rates;
728 
729 	/*
730 	 * Find the lowest frame length among the rate series that will have a
731 	 * 4ms (or TXOP limited) transmit duration.
732 	 */
733 	max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
734 
735 	for (i = 0; i < 4; i++) {
736 		int modeidx;
737 
738 		if (!rates[i].count)
739 			continue;
740 
741 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
742 			legacy = 1;
743 			break;
744 		}
745 
746 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
747 			modeidx = MCS_HT40;
748 		else
749 			modeidx = MCS_HT20;
750 
751 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
752 			modeidx++;
753 
754 		frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
755 		max_4ms_framelen = min(max_4ms_framelen, frmlen);
756 	}
757 
758 	/*
759 	 * limit aggregate size by the minimum rate if rate selected is
760 	 * not a probe rate, if rate selected is a probe rate then
761 	 * avoid aggregation of this packet.
762 	 */
763 	if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
764 		return 0;
765 
766 	aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
767 
768 	/*
769 	 * Override the default aggregation limit for BTCOEX.
770 	 */
771 	bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
772 	if (bt_aggr_limit)
773 		aggr_limit = bt_aggr_limit;
774 
775 	if (tid->an->maxampdu)
776 		aggr_limit = min(aggr_limit, tid->an->maxampdu);
777 
778 	return aggr_limit;
779 }
780 
781 /*
782  * Returns the number of delimiters to be added to
783  * meet the minimum required mpdudensity.
784  */
785 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
786 				  struct ath_buf *bf, u16 frmlen,
787 				  bool first_subfrm)
788 {
789 #define FIRST_DESC_NDELIMS 60
790 	u32 nsymbits, nsymbols;
791 	u16 minlen;
792 	u8 flags, rix;
793 	int width, streams, half_gi, ndelim, mindelim;
794 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
795 
796 	/* Select standard number of delimiters based on frame length alone */
797 	ndelim = ATH_AGGR_GET_NDELIM(frmlen);
798 
799 	/*
800 	 * If encryption enabled, hardware requires some more padding between
801 	 * subframes.
802 	 * TODO - this could be improved to be dependent on the rate.
803 	 *      The hardware can keep up at lower rates, but not higher rates
804 	 */
805 	if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
806 	    !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
807 		ndelim += ATH_AGGR_ENCRYPTDELIM;
808 
809 	/*
810 	 * Add delimiter when using RTS/CTS with aggregation
811 	 * and non enterprise AR9003 card
812 	 */
813 	if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
814 	    (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
815 		ndelim = max(ndelim, FIRST_DESC_NDELIMS);
816 
817 	/*
818 	 * Convert desired mpdu density from microeconds to bytes based
819 	 * on highest rate in rate series (i.e. first rate) to determine
820 	 * required minimum length for subframe. Take into account
821 	 * whether high rate is 20 or 40Mhz and half or full GI.
822 	 *
823 	 * If there is no mpdu density restriction, no further calculation
824 	 * is needed.
825 	 */
826 
827 	if (tid->an->mpdudensity == 0)
828 		return ndelim;
829 
830 	rix = bf->rates[0].idx;
831 	flags = bf->rates[0].flags;
832 	width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
833 	half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
834 
835 	if (half_gi)
836 		nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
837 	else
838 		nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
839 
840 	if (nsymbols == 0)
841 		nsymbols = 1;
842 
843 	streams = HT_RC_2_STREAMS(rix);
844 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
845 	minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
846 
847 	if (frmlen < minlen) {
848 		mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
849 		ndelim = max(mindelim, ndelim);
850 	}
851 
852 	return ndelim;
853 }
854 
855 static struct ath_buf *
856 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
857 			struct ath_atx_tid *tid, struct sk_buff_head **q)
858 {
859 	struct ieee80211_tx_info *tx_info;
860 	struct ath_frame_info *fi;
861 	struct sk_buff *skb;
862 	struct ath_buf *bf;
863 	u16 seqno;
864 
865 	while (1) {
866 		*q = &tid->retry_q;
867 		if (skb_queue_empty(*q))
868 			*q = &tid->buf_q;
869 
870 		skb = skb_peek(*q);
871 		if (!skb)
872 			break;
873 
874 		fi = get_frame_info(skb);
875 		bf = fi->bf;
876 		if (!fi->bf)
877 			bf = ath_tx_setup_buffer(sc, txq, tid, skb);
878 		else
879 			bf->bf_state.stale = false;
880 
881 		if (!bf) {
882 			__skb_unlink(skb, *q);
883 			ath_txq_skb_done(sc, txq, skb);
884 			ieee80211_free_txskb(sc->hw, skb);
885 			continue;
886 		}
887 
888 		bf->bf_next = NULL;
889 		bf->bf_lastbf = bf;
890 
891 		tx_info = IEEE80211_SKB_CB(skb);
892 		tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
893 		if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
894 			bf->bf_state.bf_type = 0;
895 			return bf;
896 		}
897 
898 		bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
899 		seqno = bf->bf_state.seqno;
900 
901 		/* do not step over block-ack window */
902 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno))
903 			break;
904 
905 		if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
906 			struct ath_tx_status ts = {};
907 			struct list_head bf_head;
908 
909 			INIT_LIST_HEAD(&bf_head);
910 			list_add(&bf->list, &bf_head);
911 			__skb_unlink(skb, *q);
912 			ath_tx_update_baw(sc, tid, seqno);
913 			ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
914 			continue;
915 		}
916 
917 		return bf;
918 	}
919 
920 	return NULL;
921 }
922 
923 static bool
924 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
925 		 struct ath_atx_tid *tid, struct list_head *bf_q,
926 		 struct ath_buf *bf_first, struct sk_buff_head *tid_q,
927 		 int *aggr_len)
928 {
929 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
930 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
931 	int nframes = 0, ndelim;
932 	u16 aggr_limit = 0, al = 0, bpad = 0,
933 	    al_delta, h_baw = tid->baw_size / 2;
934 	struct ieee80211_tx_info *tx_info;
935 	struct ath_frame_info *fi;
936 	struct sk_buff *skb;
937 	bool closed = false;
938 
939 	bf = bf_first;
940 	aggr_limit = ath_lookup_rate(sc, bf, tid);
941 
942 	do {
943 		skb = bf->bf_mpdu;
944 		fi = get_frame_info(skb);
945 
946 		/* do not exceed aggregation limit */
947 		al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
948 		if (nframes) {
949 			if (aggr_limit < al + bpad + al_delta ||
950 			    ath_lookup_legacy(bf) || nframes >= h_baw)
951 				break;
952 
953 			tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
954 			if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
955 			    !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
956 				break;
957 		}
958 
959 		/* add padding for previous frame to aggregation length */
960 		al += bpad + al_delta;
961 
962 		/*
963 		 * Get the delimiters needed to meet the MPDU
964 		 * density for this node.
965 		 */
966 		ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
967 						!nframes);
968 		bpad = PADBYTES(al_delta) + (ndelim << 2);
969 
970 		nframes++;
971 		bf->bf_next = NULL;
972 
973 		/* link buffers of this frame to the aggregate */
974 		if (!fi->baw_tracked)
975 			ath_tx_addto_baw(sc, tid, bf);
976 		bf->bf_state.ndelim = ndelim;
977 
978 		__skb_unlink(skb, tid_q);
979 		list_add_tail(&bf->list, bf_q);
980 		if (bf_prev)
981 			bf_prev->bf_next = bf;
982 
983 		bf_prev = bf;
984 
985 		bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
986 		if (!bf) {
987 			closed = true;
988 			break;
989 		}
990 	} while (ath_tid_has_buffered(tid));
991 
992 	bf = bf_first;
993 	bf->bf_lastbf = bf_prev;
994 
995 	if (bf == bf_prev) {
996 		al = get_frame_info(bf->bf_mpdu)->framelen;
997 		bf->bf_state.bf_type = BUF_AMPDU;
998 	} else {
999 		TX_STAT_INC(txq->axq_qnum, a_aggr);
1000 	}
1001 
1002 	*aggr_len = al;
1003 
1004 	return closed;
1005 #undef PADBYTES
1006 }
1007 
1008 /*
1009  * rix - rate index
1010  * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1011  * width  - 0 for 20 MHz, 1 for 40 MHz
1012  * half_gi - to use 4us v/s 3.6 us for symbol time
1013  */
1014 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1015 			    int width, int half_gi, bool shortPreamble)
1016 {
1017 	u32 nbits, nsymbits, duration, nsymbols;
1018 	int streams;
1019 
1020 	/* find number of symbols: PLCP + data */
1021 	streams = HT_RC_2_STREAMS(rix);
1022 	nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1023 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
1024 	nsymbols = (nbits + nsymbits - 1) / nsymbits;
1025 
1026 	if (!half_gi)
1027 		duration = SYMBOL_TIME(nsymbols);
1028 	else
1029 		duration = SYMBOL_TIME_HALFGI(nsymbols);
1030 
1031 	/* addup duration for legacy/ht training and signal fields */
1032 	duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1033 
1034 	return duration;
1035 }
1036 
1037 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1038 {
1039 	int streams = HT_RC_2_STREAMS(mcs);
1040 	int symbols, bits;
1041 	int bytes = 0;
1042 
1043 	symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1044 	bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1045 	bits -= OFDM_PLCP_BITS;
1046 	bytes = bits / 8;
1047 	bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1048 	if (bytes > 65532)
1049 		bytes = 65532;
1050 
1051 	return bytes;
1052 }
1053 
1054 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1055 {
1056 	u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1057 	int mcs;
1058 
1059 	/* 4ms is the default (and maximum) duration */
1060 	if (!txop || txop > 4096)
1061 		txop = 4096;
1062 
1063 	cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1064 	cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1065 	cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1066 	cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1067 	for (mcs = 0; mcs < 32; mcs++) {
1068 		cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1069 		cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1070 		cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1071 		cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1072 	}
1073 }
1074 
1075 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1076 			     struct ath_tx_info *info, int len, bool rts)
1077 {
1078 	struct ath_hw *ah = sc->sc_ah;
1079 	struct sk_buff *skb;
1080 	struct ieee80211_tx_info *tx_info;
1081 	struct ieee80211_tx_rate *rates;
1082 	const struct ieee80211_rate *rate;
1083 	struct ieee80211_hdr *hdr;
1084 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1085 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1086 	int i;
1087 	u8 rix = 0;
1088 
1089 	skb = bf->bf_mpdu;
1090 	tx_info = IEEE80211_SKB_CB(skb);
1091 	rates = bf->rates;
1092 	hdr = (struct ieee80211_hdr *)skb->data;
1093 
1094 	/* set dur_update_en for l-sig computation except for PS-Poll frames */
1095 	info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1096 	info->rtscts_rate = fi->rtscts_rate;
1097 
1098 	for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1099 		bool is_40, is_sgi, is_sp;
1100 		int phy;
1101 
1102 		if (!rates[i].count || (rates[i].idx < 0))
1103 			continue;
1104 
1105 		rix = rates[i].idx;
1106 		info->rates[i].Tries = rates[i].count;
1107 
1108 		/*
1109 		 * Handle RTS threshold for unaggregated HT frames.
1110 		 */
1111 		if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1112 		    (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1113 		    unlikely(rts_thresh != (u32) -1)) {
1114 			if (!rts_thresh || (len > rts_thresh))
1115 				rts = true;
1116 		}
1117 
1118 		if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1119 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1120 			info->flags |= ATH9K_TXDESC_RTSENA;
1121 		} else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1122 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1123 			info->flags |= ATH9K_TXDESC_CTSENA;
1124 		}
1125 
1126 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1127 			info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1128 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1129 			info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1130 
1131 		is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1132 		is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1133 		is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1134 
1135 		if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1136 			/* MCS rates */
1137 			info->rates[i].Rate = rix | 0x80;
1138 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1139 					ah->txchainmask, info->rates[i].Rate);
1140 			info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1141 				 is_40, is_sgi, is_sp);
1142 			if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1143 				info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1144 			continue;
1145 		}
1146 
1147 		/* legacy rates */
1148 		rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
1149 		if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1150 		    !(rate->flags & IEEE80211_RATE_ERP_G))
1151 			phy = WLAN_RC_PHY_CCK;
1152 		else
1153 			phy = WLAN_RC_PHY_OFDM;
1154 
1155 		info->rates[i].Rate = rate->hw_value;
1156 		if (rate->hw_value_short) {
1157 			if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1158 				info->rates[i].Rate |= rate->hw_value_short;
1159 		} else {
1160 			is_sp = false;
1161 		}
1162 
1163 		if (bf->bf_state.bfs_paprd)
1164 			info->rates[i].ChSel = ah->txchainmask;
1165 		else
1166 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1167 					ah->txchainmask, info->rates[i].Rate);
1168 
1169 		info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1170 			phy, rate->bitrate * 100, len, rix, is_sp);
1171 	}
1172 
1173 	/* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1174 	if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1175 		info->flags &= ~ATH9K_TXDESC_RTSENA;
1176 
1177 	/* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1178 	if (info->flags & ATH9K_TXDESC_RTSENA)
1179 		info->flags &= ~ATH9K_TXDESC_CTSENA;
1180 }
1181 
1182 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1183 {
1184 	struct ieee80211_hdr *hdr;
1185 	enum ath9k_pkt_type htype;
1186 	__le16 fc;
1187 
1188 	hdr = (struct ieee80211_hdr *)skb->data;
1189 	fc = hdr->frame_control;
1190 
1191 	if (ieee80211_is_beacon(fc))
1192 		htype = ATH9K_PKT_TYPE_BEACON;
1193 	else if (ieee80211_is_probe_resp(fc))
1194 		htype = ATH9K_PKT_TYPE_PROBE_RESP;
1195 	else if (ieee80211_is_atim(fc))
1196 		htype = ATH9K_PKT_TYPE_ATIM;
1197 	else if (ieee80211_is_pspoll(fc))
1198 		htype = ATH9K_PKT_TYPE_PSPOLL;
1199 	else
1200 		htype = ATH9K_PKT_TYPE_NORMAL;
1201 
1202 	return htype;
1203 }
1204 
1205 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1206 			     struct ath_txq *txq, int len)
1207 {
1208 	struct ath_hw *ah = sc->sc_ah;
1209 	struct ath_buf *bf_first = NULL;
1210 	struct ath_tx_info info;
1211 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1212 	bool rts = false;
1213 
1214 	memset(&info, 0, sizeof(info));
1215 	info.is_first = true;
1216 	info.is_last = true;
1217 	info.txpower = MAX_RATE_POWER;
1218 	info.qcu = txq->axq_qnum;
1219 
1220 	while (bf) {
1221 		struct sk_buff *skb = bf->bf_mpdu;
1222 		struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1223 		struct ath_frame_info *fi = get_frame_info(skb);
1224 		bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1225 
1226 		info.type = get_hw_packet_type(skb);
1227 		if (bf->bf_next)
1228 			info.link = bf->bf_next->bf_daddr;
1229 		else
1230 			info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
1231 
1232 		if (!bf_first) {
1233 			bf_first = bf;
1234 
1235 			if (!sc->tx99_state)
1236 				info.flags = ATH9K_TXDESC_INTREQ;
1237 			if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1238 			    txq == sc->tx.uapsdq)
1239 				info.flags |= ATH9K_TXDESC_CLRDMASK;
1240 
1241 			if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1242 				info.flags |= ATH9K_TXDESC_NOACK;
1243 			if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1244 				info.flags |= ATH9K_TXDESC_LDPC;
1245 
1246 			if (bf->bf_state.bfs_paprd)
1247 				info.flags |= (u32) bf->bf_state.bfs_paprd <<
1248 					      ATH9K_TXDESC_PAPRD_S;
1249 
1250 			/*
1251 			 * mac80211 doesn't handle RTS threshold for HT because
1252 			 * the decision has to be taken based on AMPDU length
1253 			 * and aggregation is done entirely inside ath9k.
1254 			 * Set the RTS/CTS flag for the first subframe based
1255 			 * on the threshold.
1256 			 */
1257 			if (aggr && (bf == bf_first) &&
1258 			    unlikely(rts_thresh != (u32) -1)) {
1259 				/*
1260 				 * "len" is the size of the entire AMPDU.
1261 				 */
1262 				if (!rts_thresh || (len > rts_thresh))
1263 					rts = true;
1264 			}
1265 
1266 			if (!aggr)
1267 				len = fi->framelen;
1268 
1269 			ath_buf_set_rate(sc, bf, &info, len, rts);
1270 		}
1271 
1272 		info.buf_addr[0] = bf->bf_buf_addr;
1273 		info.buf_len[0] = skb->len;
1274 		info.pkt_len = fi->framelen;
1275 		info.keyix = fi->keyix;
1276 		info.keytype = fi->keytype;
1277 
1278 		if (aggr) {
1279 			if (bf == bf_first)
1280 				info.aggr = AGGR_BUF_FIRST;
1281 			else if (bf == bf_first->bf_lastbf)
1282 				info.aggr = AGGR_BUF_LAST;
1283 			else
1284 				info.aggr = AGGR_BUF_MIDDLE;
1285 
1286 			info.ndelim = bf->bf_state.ndelim;
1287 			info.aggr_len = len;
1288 		}
1289 
1290 		if (bf == bf_first->bf_lastbf)
1291 			bf_first = NULL;
1292 
1293 		ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1294 		bf = bf->bf_next;
1295 	}
1296 }
1297 
1298 static void
1299 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1300 		  struct ath_atx_tid *tid, struct list_head *bf_q,
1301 		  struct ath_buf *bf_first, struct sk_buff_head *tid_q)
1302 {
1303 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
1304 	struct sk_buff *skb;
1305 	int nframes = 0;
1306 
1307 	do {
1308 		struct ieee80211_tx_info *tx_info;
1309 		skb = bf->bf_mpdu;
1310 
1311 		nframes++;
1312 		__skb_unlink(skb, tid_q);
1313 		list_add_tail(&bf->list, bf_q);
1314 		if (bf_prev)
1315 			bf_prev->bf_next = bf;
1316 		bf_prev = bf;
1317 
1318 		if (nframes >= 2)
1319 			break;
1320 
1321 		bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1322 		if (!bf)
1323 			break;
1324 
1325 		tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1326 		if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
1327 			break;
1328 
1329 		ath_set_rates(tid->an->vif, tid->an->sta, bf);
1330 	} while (1);
1331 }
1332 
1333 static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1334 			      struct ath_atx_tid *tid, bool *stop)
1335 {
1336 	struct ath_buf *bf;
1337 	struct ieee80211_tx_info *tx_info;
1338 	struct sk_buff_head *tid_q;
1339 	struct list_head bf_q;
1340 	int aggr_len = 0;
1341 	bool aggr, last = true;
1342 
1343 	if (!ath_tid_has_buffered(tid))
1344 		return false;
1345 
1346 	INIT_LIST_HEAD(&bf_q);
1347 
1348 	bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1349 	if (!bf)
1350 		return false;
1351 
1352 	tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1353 	aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1354 	if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1355 		(!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1356 		*stop = true;
1357 		return false;
1358 	}
1359 
1360 	ath_set_rates(tid->an->vif, tid->an->sta, bf);
1361 	if (aggr)
1362 		last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf,
1363 					tid_q, &aggr_len);
1364 	else
1365 		ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q);
1366 
1367 	if (list_empty(&bf_q))
1368 		return false;
1369 
1370 	if (tid->ac->clear_ps_filter || tid->an->no_ps_filter) {
1371 		tid->ac->clear_ps_filter = false;
1372 		tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1373 	}
1374 
1375 	ath_tx_fill_desc(sc, bf, txq, aggr_len);
1376 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1377 	return true;
1378 }
1379 
1380 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1381 		      u16 tid, u16 *ssn)
1382 {
1383 	struct ath_atx_tid *txtid;
1384 	struct ath_txq *txq;
1385 	struct ath_node *an;
1386 	u8 density;
1387 
1388 	an = (struct ath_node *)sta->drv_priv;
1389 	txtid = ATH_AN_2_TID(an, tid);
1390 	txq = txtid->ac->txq;
1391 
1392 	ath_txq_lock(sc, txq);
1393 
1394 	/* update ampdu factor/density, they may have changed. This may happen
1395 	 * in HT IBSS when a beacon with HT-info is received after the station
1396 	 * has already been added.
1397 	 */
1398 	if (sta->ht_cap.ht_supported) {
1399 		an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1400 				      sta->ht_cap.ampdu_factor)) - 1;
1401 		density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1402 		an->mpdudensity = density;
1403 	}
1404 
1405 	/* force sequence number allocation for pending frames */
1406 	ath_tx_tid_change_state(sc, txtid);
1407 
1408 	txtid->active = true;
1409 	txtid->paused = true;
1410 	*ssn = txtid->seq_start = txtid->seq_next;
1411 	txtid->bar_index = -1;
1412 
1413 	memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1414 	txtid->baw_head = txtid->baw_tail = 0;
1415 
1416 	ath_txq_unlock_complete(sc, txq);
1417 
1418 	return 0;
1419 }
1420 
1421 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1422 {
1423 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1424 	struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1425 	struct ath_txq *txq = txtid->ac->txq;
1426 
1427 	ath_txq_lock(sc, txq);
1428 	txtid->active = false;
1429 	txtid->paused = false;
1430 	ath_tx_flush_tid(sc, txtid);
1431 	ath_tx_tid_change_state(sc, txtid);
1432 	ath_txq_unlock_complete(sc, txq);
1433 }
1434 
1435 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1436 		       struct ath_node *an)
1437 {
1438 	struct ath_atx_tid *tid;
1439 	struct ath_atx_ac *ac;
1440 	struct ath_txq *txq;
1441 	bool buffered;
1442 	int tidno;
1443 
1444 	for (tidno = 0, tid = &an->tid[tidno];
1445 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1446 
1447 		if (!tid->sched)
1448 			continue;
1449 
1450 		ac = tid->ac;
1451 		txq = ac->txq;
1452 
1453 		ath_txq_lock(sc, txq);
1454 
1455 		buffered = ath_tid_has_buffered(tid);
1456 
1457 		tid->sched = false;
1458 		list_del(&tid->list);
1459 
1460 		if (ac->sched) {
1461 			ac->sched = false;
1462 			list_del(&ac->list);
1463 		}
1464 
1465 		ath_txq_unlock(sc, txq);
1466 
1467 		ieee80211_sta_set_buffered(sta, tidno, buffered);
1468 	}
1469 }
1470 
1471 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1472 {
1473 	struct ath_atx_tid *tid;
1474 	struct ath_atx_ac *ac;
1475 	struct ath_txq *txq;
1476 	int tidno;
1477 
1478 	for (tidno = 0, tid = &an->tid[tidno];
1479 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1480 
1481 		ac = tid->ac;
1482 		txq = ac->txq;
1483 
1484 		ath_txq_lock(sc, txq);
1485 		ac->clear_ps_filter = true;
1486 
1487 		if (!tid->paused && ath_tid_has_buffered(tid)) {
1488 			ath_tx_queue_tid(txq, tid);
1489 			ath_txq_schedule(sc, txq);
1490 		}
1491 
1492 		ath_txq_unlock_complete(sc, txq);
1493 	}
1494 }
1495 
1496 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
1497 			u16 tidno)
1498 {
1499 	struct ath_atx_tid *tid;
1500 	struct ath_node *an;
1501 	struct ath_txq *txq;
1502 
1503 	an = (struct ath_node *)sta->drv_priv;
1504 	tid = ATH_AN_2_TID(an, tidno);
1505 	txq = tid->ac->txq;
1506 
1507 	ath_txq_lock(sc, txq);
1508 
1509 	tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1510 	tid->paused = false;
1511 
1512 	if (ath_tid_has_buffered(tid)) {
1513 		ath_tx_queue_tid(txq, tid);
1514 		ath_txq_schedule(sc, txq);
1515 	}
1516 
1517 	ath_txq_unlock_complete(sc, txq);
1518 }
1519 
1520 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1521 				   struct ieee80211_sta *sta,
1522 				   u16 tids, int nframes,
1523 				   enum ieee80211_frame_release_type reason,
1524 				   bool more_data)
1525 {
1526 	struct ath_softc *sc = hw->priv;
1527 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1528 	struct ath_txq *txq = sc->tx.uapsdq;
1529 	struct ieee80211_tx_info *info;
1530 	struct list_head bf_q;
1531 	struct ath_buf *bf_tail = NULL, *bf;
1532 	struct sk_buff_head *tid_q;
1533 	int sent = 0;
1534 	int i;
1535 
1536 	INIT_LIST_HEAD(&bf_q);
1537 	for (i = 0; tids && nframes; i++, tids >>= 1) {
1538 		struct ath_atx_tid *tid;
1539 
1540 		if (!(tids & 1))
1541 			continue;
1542 
1543 		tid = ATH_AN_2_TID(an, i);
1544 		if (tid->paused)
1545 			continue;
1546 
1547 		ath_txq_lock(sc, tid->ac->txq);
1548 		while (nframes > 0) {
1549 			bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q);
1550 			if (!bf)
1551 				break;
1552 
1553 			__skb_unlink(bf->bf_mpdu, tid_q);
1554 			list_add_tail(&bf->list, &bf_q);
1555 			ath_set_rates(tid->an->vif, tid->an->sta, bf);
1556 			if (bf_isampdu(bf)) {
1557 				ath_tx_addto_baw(sc, tid, bf);
1558 				bf->bf_state.bf_type &= ~BUF_AGGR;
1559 			}
1560 			if (bf_tail)
1561 				bf_tail->bf_next = bf;
1562 
1563 			bf_tail = bf;
1564 			nframes--;
1565 			sent++;
1566 			TX_STAT_INC(txq->axq_qnum, a_queued_hw);
1567 
1568 			if (an->sta && !ath_tid_has_buffered(tid))
1569 				ieee80211_sta_set_buffered(an->sta, i, false);
1570 		}
1571 		ath_txq_unlock_complete(sc, tid->ac->txq);
1572 	}
1573 
1574 	if (list_empty(&bf_q))
1575 		return;
1576 
1577 	info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1578 	info->flags |= IEEE80211_TX_STATUS_EOSP;
1579 
1580 	bf = list_first_entry(&bf_q, struct ath_buf, list);
1581 	ath_txq_lock(sc, txq);
1582 	ath_tx_fill_desc(sc, bf, txq, 0);
1583 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1584 	ath_txq_unlock(sc, txq);
1585 }
1586 
1587 /********************/
1588 /* Queue Management */
1589 /********************/
1590 
1591 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1592 {
1593 	struct ath_hw *ah = sc->sc_ah;
1594 	struct ath9k_tx_queue_info qi;
1595 	static const int subtype_txq_to_hwq[] = {
1596 		[IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1597 		[IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1598 		[IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1599 		[IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1600 	};
1601 	int axq_qnum, i;
1602 
1603 	memset(&qi, 0, sizeof(qi));
1604 	qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1605 	qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1606 	qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1607 	qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1608 	qi.tqi_physCompBuf = 0;
1609 
1610 	/*
1611 	 * Enable interrupts only for EOL and DESC conditions.
1612 	 * We mark tx descriptors to receive a DESC interrupt
1613 	 * when a tx queue gets deep; otherwise waiting for the
1614 	 * EOL to reap descriptors.  Note that this is done to
1615 	 * reduce interrupt load and this only defers reaping
1616 	 * descriptors, never transmitting frames.  Aside from
1617 	 * reducing interrupts this also permits more concurrency.
1618 	 * The only potential downside is if the tx queue backs
1619 	 * up in which case the top half of the kernel may backup
1620 	 * due to a lack of tx descriptors.
1621 	 *
1622 	 * The UAPSD queue is an exception, since we take a desc-
1623 	 * based intr on the EOSP frames.
1624 	 */
1625 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1626 		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1627 	} else {
1628 		if (qtype == ATH9K_TX_QUEUE_UAPSD)
1629 			qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1630 		else
1631 			qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1632 					TXQ_FLAG_TXDESCINT_ENABLE;
1633 	}
1634 	axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1635 	if (axq_qnum == -1) {
1636 		/*
1637 		 * NB: don't print a message, this happens
1638 		 * normally on parts with too few tx queues
1639 		 */
1640 		return NULL;
1641 	}
1642 	if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1643 		struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1644 
1645 		txq->axq_qnum = axq_qnum;
1646 		txq->mac80211_qnum = -1;
1647 		txq->axq_link = NULL;
1648 		__skb_queue_head_init(&txq->complete_q);
1649 		INIT_LIST_HEAD(&txq->axq_q);
1650 		INIT_LIST_HEAD(&txq->axq_acq);
1651 		spin_lock_init(&txq->axq_lock);
1652 		txq->axq_depth = 0;
1653 		txq->axq_ampdu_depth = 0;
1654 		txq->axq_tx_inprogress = false;
1655 		sc->tx.txqsetup |= 1<<axq_qnum;
1656 
1657 		txq->txq_headidx = txq->txq_tailidx = 0;
1658 		for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1659 			INIT_LIST_HEAD(&txq->txq_fifo[i]);
1660 	}
1661 	return &sc->tx.txq[axq_qnum];
1662 }
1663 
1664 int ath_txq_update(struct ath_softc *sc, int qnum,
1665 		   struct ath9k_tx_queue_info *qinfo)
1666 {
1667 	struct ath_hw *ah = sc->sc_ah;
1668 	int error = 0;
1669 	struct ath9k_tx_queue_info qi;
1670 
1671 	BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1672 
1673 	ath9k_hw_get_txq_props(ah, qnum, &qi);
1674 	qi.tqi_aifs = qinfo->tqi_aifs;
1675 	qi.tqi_cwmin = qinfo->tqi_cwmin;
1676 	qi.tqi_cwmax = qinfo->tqi_cwmax;
1677 	qi.tqi_burstTime = qinfo->tqi_burstTime;
1678 	qi.tqi_readyTime = qinfo->tqi_readyTime;
1679 
1680 	if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1681 		ath_err(ath9k_hw_common(sc->sc_ah),
1682 			"Unable to update hardware queue %u!\n", qnum);
1683 		error = -EIO;
1684 	} else {
1685 		ath9k_hw_resettxqueue(ah, qnum);
1686 	}
1687 
1688 	return error;
1689 }
1690 
1691 int ath_cabq_update(struct ath_softc *sc)
1692 {
1693 	struct ath9k_tx_queue_info qi;
1694 	struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
1695 	int qnum = sc->beacon.cabq->axq_qnum;
1696 
1697 	ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1698 
1699 	qi.tqi_readyTime = (cur_conf->beacon_interval *
1700 			    ATH_CABQ_READY_TIME) / 100;
1701 	ath_txq_update(sc, qnum, &qi);
1702 
1703 	return 0;
1704 }
1705 
1706 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1707 			       struct list_head *list)
1708 {
1709 	struct ath_buf *bf, *lastbf;
1710 	struct list_head bf_head;
1711 	struct ath_tx_status ts;
1712 
1713 	memset(&ts, 0, sizeof(ts));
1714 	ts.ts_status = ATH9K_TX_FLUSH;
1715 	INIT_LIST_HEAD(&bf_head);
1716 
1717 	while (!list_empty(list)) {
1718 		bf = list_first_entry(list, struct ath_buf, list);
1719 
1720 		if (bf->bf_state.stale) {
1721 			list_del(&bf->list);
1722 
1723 			ath_tx_return_buffer(sc, bf);
1724 			continue;
1725 		}
1726 
1727 		lastbf = bf->bf_lastbf;
1728 		list_cut_position(&bf_head, list, &lastbf->list);
1729 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1730 	}
1731 }
1732 
1733 /*
1734  * Drain a given TX queue (could be Beacon or Data)
1735  *
1736  * This assumes output has been stopped and
1737  * we do not need to block ath_tx_tasklet.
1738  */
1739 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1740 {
1741 	ath_txq_lock(sc, txq);
1742 
1743 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1744 		int idx = txq->txq_tailidx;
1745 
1746 		while (!list_empty(&txq->txq_fifo[idx])) {
1747 			ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1748 
1749 			INCR(idx, ATH_TXFIFO_DEPTH);
1750 		}
1751 		txq->txq_tailidx = idx;
1752 	}
1753 
1754 	txq->axq_link = NULL;
1755 	txq->axq_tx_inprogress = false;
1756 	ath_drain_txq_list(sc, txq, &txq->axq_q);
1757 
1758 	ath_txq_unlock_complete(sc, txq);
1759 }
1760 
1761 bool ath_drain_all_txq(struct ath_softc *sc)
1762 {
1763 	struct ath_hw *ah = sc->sc_ah;
1764 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1765 	struct ath_txq *txq;
1766 	int i;
1767 	u32 npend = 0;
1768 
1769 	if (test_bit(SC_OP_INVALID, &sc->sc_flags))
1770 		return true;
1771 
1772 	ath9k_hw_abort_tx_dma(ah);
1773 
1774 	/* Check if any queue remains active */
1775 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1776 		if (!ATH_TXQ_SETUP(sc, i))
1777 			continue;
1778 
1779 		if (!sc->tx.txq[i].axq_depth)
1780 			continue;
1781 
1782 		if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1783 			npend |= BIT(i);
1784 	}
1785 
1786 	if (npend)
1787 		ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1788 
1789 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1790 		if (!ATH_TXQ_SETUP(sc, i))
1791 			continue;
1792 
1793 		/*
1794 		 * The caller will resume queues with ieee80211_wake_queues.
1795 		 * Mark the queue as not stopped to prevent ath_tx_complete
1796 		 * from waking the queue too early.
1797 		 */
1798 		txq = &sc->tx.txq[i];
1799 		txq->stopped = false;
1800 		ath_draintxq(sc, txq);
1801 	}
1802 
1803 	return !npend;
1804 }
1805 
1806 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1807 {
1808 	ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1809 	sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1810 }
1811 
1812 /* For each axq_acq entry, for each tid, try to schedule packets
1813  * for transmit until ampdu_depth has reached min Q depth.
1814  */
1815 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1816 {
1817 	struct ath_atx_ac *ac, *last_ac;
1818 	struct ath_atx_tid *tid, *last_tid;
1819 	bool sent = false;
1820 
1821 	if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) ||
1822 	    list_empty(&txq->axq_acq))
1823 		return;
1824 
1825 	rcu_read_lock();
1826 
1827 	last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
1828 	while (!list_empty(&txq->axq_acq)) {
1829 		bool stop = false;
1830 
1831 		ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1832 		last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
1833 		list_del(&ac->list);
1834 		ac->sched = false;
1835 
1836 		while (!list_empty(&ac->tid_q)) {
1837 
1838 			tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
1839 					       list);
1840 			list_del(&tid->list);
1841 			tid->sched = false;
1842 
1843 			if (tid->paused)
1844 				continue;
1845 
1846 			if (ath_tx_sched_aggr(sc, txq, tid, &stop))
1847 				sent = true;
1848 
1849 			/*
1850 			 * add tid to round-robin queue if more frames
1851 			 * are pending for the tid
1852 			 */
1853 			if (ath_tid_has_buffered(tid))
1854 				ath_tx_queue_tid(txq, tid);
1855 
1856 			if (stop || tid == last_tid)
1857 				break;
1858 		}
1859 
1860 		if (!list_empty(&ac->tid_q) && !ac->sched) {
1861 			ac->sched = true;
1862 			list_add_tail(&ac->list, &txq->axq_acq);
1863 		}
1864 
1865 		if (stop)
1866 			break;
1867 
1868 		if (ac == last_ac) {
1869 			if (!sent)
1870 				break;
1871 
1872 			sent = false;
1873 			last_ac = list_entry(txq->axq_acq.prev,
1874 					     struct ath_atx_ac, list);
1875 		}
1876 	}
1877 
1878 	rcu_read_unlock();
1879 }
1880 
1881 /***********/
1882 /* TX, DMA */
1883 /***********/
1884 
1885 /*
1886  * Insert a chain of ath_buf (descriptors) on a txq and
1887  * assume the descriptors are already chained together by caller.
1888  */
1889 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1890 			     struct list_head *head, bool internal)
1891 {
1892 	struct ath_hw *ah = sc->sc_ah;
1893 	struct ath_common *common = ath9k_hw_common(ah);
1894 	struct ath_buf *bf, *bf_last;
1895 	bool puttxbuf = false;
1896 	bool edma;
1897 
1898 	/*
1899 	 * Insert the frame on the outbound list and
1900 	 * pass it on to the hardware.
1901 	 */
1902 
1903 	if (list_empty(head))
1904 		return;
1905 
1906 	edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1907 	bf = list_first_entry(head, struct ath_buf, list);
1908 	bf_last = list_entry(head->prev, struct ath_buf, list);
1909 
1910 	ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
1911 		txq->axq_qnum, txq->axq_depth);
1912 
1913 	if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
1914 		list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
1915 		INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
1916 		puttxbuf = true;
1917 	} else {
1918 		list_splice_tail_init(head, &txq->axq_q);
1919 
1920 		if (txq->axq_link) {
1921 			ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
1922 			ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
1923 				txq->axq_qnum, txq->axq_link,
1924 				ito64(bf->bf_daddr), bf->bf_desc);
1925 		} else if (!edma)
1926 			puttxbuf = true;
1927 
1928 		txq->axq_link = bf_last->bf_desc;
1929 	}
1930 
1931 	if (puttxbuf) {
1932 		TX_STAT_INC(txq->axq_qnum, puttxbuf);
1933 		ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1934 		ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
1935 			txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1936 	}
1937 
1938 	if (!edma || sc->tx99_state) {
1939 		TX_STAT_INC(txq->axq_qnum, txstart);
1940 		ath9k_hw_txstart(ah, txq->axq_qnum);
1941 	}
1942 
1943 	if (!internal) {
1944 		while (bf) {
1945 			txq->axq_depth++;
1946 			if (bf_is_ampdu_not_probing(bf))
1947 				txq->axq_ampdu_depth++;
1948 
1949 			bf_last = bf->bf_lastbf;
1950 			bf = bf_last->bf_next;
1951 			bf_last->bf_next = NULL;
1952 		}
1953 	}
1954 }
1955 
1956 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1957 			       struct ath_atx_tid *tid, struct sk_buff *skb)
1958 {
1959 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1960 	struct ath_frame_info *fi = get_frame_info(skb);
1961 	struct list_head bf_head;
1962 	struct ath_buf *bf = fi->bf;
1963 
1964 	INIT_LIST_HEAD(&bf_head);
1965 	list_add_tail(&bf->list, &bf_head);
1966 	bf->bf_state.bf_type = 0;
1967 	if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
1968 		bf->bf_state.bf_type = BUF_AMPDU;
1969 		ath_tx_addto_baw(sc, tid, bf);
1970 	}
1971 
1972 	bf->bf_next = NULL;
1973 	bf->bf_lastbf = bf;
1974 	ath_tx_fill_desc(sc, bf, txq, fi->framelen);
1975 	ath_tx_txqaddbuf(sc, txq, &bf_head, false);
1976 	TX_STAT_INC(txq->axq_qnum, queued);
1977 }
1978 
1979 static void setup_frame_info(struct ieee80211_hw *hw,
1980 			     struct ieee80211_sta *sta,
1981 			     struct sk_buff *skb,
1982 			     int framelen)
1983 {
1984 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1985 	struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
1986 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1987 	const struct ieee80211_rate *rate;
1988 	struct ath_frame_info *fi = get_frame_info(skb);
1989 	struct ath_node *an = NULL;
1990 	enum ath9k_key_type keytype;
1991 	bool short_preamble = false;
1992 
1993 	/*
1994 	 * We check if Short Preamble is needed for the CTS rate by
1995 	 * checking the BSS's global flag.
1996 	 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
1997 	 */
1998 	if (tx_info->control.vif &&
1999 	    tx_info->control.vif->bss_conf.use_short_preamble)
2000 		short_preamble = true;
2001 
2002 	rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2003 	keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2004 
2005 	if (sta)
2006 		an = (struct ath_node *) sta->drv_priv;
2007 
2008 	memset(fi, 0, sizeof(*fi));
2009 	if (hw_key)
2010 		fi->keyix = hw_key->hw_key_idx;
2011 	else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2012 		fi->keyix = an->ps_key;
2013 	else
2014 		fi->keyix = ATH9K_TXKEYIX_INVALID;
2015 	fi->keytype = keytype;
2016 	fi->framelen = framelen;
2017 
2018 	if (!rate)
2019 		return;
2020 	fi->rtscts_rate = rate->hw_value;
2021 	if (short_preamble)
2022 		fi->rtscts_rate |= rate->hw_value_short;
2023 }
2024 
2025 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2026 {
2027 	struct ath_hw *ah = sc->sc_ah;
2028 	struct ath9k_channel *curchan = ah->curchan;
2029 
2030 	if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
2031 	    (chainmask == 0x7) && (rate < 0x90))
2032 		return 0x3;
2033 	else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2034 		 IS_CCK_RATE(rate))
2035 		return 0x2;
2036 	else
2037 		return chainmask;
2038 }
2039 
2040 /*
2041  * Assign a descriptor (and sequence number if necessary,
2042  * and map buffer for DMA. Frees skb on error
2043  */
2044 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2045 					   struct ath_txq *txq,
2046 					   struct ath_atx_tid *tid,
2047 					   struct sk_buff *skb)
2048 {
2049 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2050 	struct ath_frame_info *fi = get_frame_info(skb);
2051 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2052 	struct ath_buf *bf;
2053 	int fragno;
2054 	u16 seqno;
2055 
2056 	bf = ath_tx_get_buffer(sc);
2057 	if (!bf) {
2058 		ath_dbg(common, XMIT, "TX buffers are full\n");
2059 		return NULL;
2060 	}
2061 
2062 	ATH_TXBUF_RESET(bf);
2063 
2064 	if (tid) {
2065 		fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2066 		seqno = tid->seq_next;
2067 		hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2068 
2069 		if (fragno)
2070 			hdr->seq_ctrl |= cpu_to_le16(fragno);
2071 
2072 		if (!ieee80211_has_morefrags(hdr->frame_control))
2073 			INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2074 
2075 		bf->bf_state.seqno = seqno;
2076 	}
2077 
2078 	bf->bf_mpdu = skb;
2079 
2080 	bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2081 					 skb->len, DMA_TO_DEVICE);
2082 	if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2083 		bf->bf_mpdu = NULL;
2084 		bf->bf_buf_addr = 0;
2085 		ath_err(ath9k_hw_common(sc->sc_ah),
2086 			"dma_mapping_error() on TX\n");
2087 		ath_tx_return_buffer(sc, bf);
2088 		return NULL;
2089 	}
2090 
2091 	fi->bf = bf;
2092 
2093 	return bf;
2094 }
2095 
2096 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2097 			  struct ath_tx_control *txctl)
2098 {
2099 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2100 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2101 	struct ieee80211_sta *sta = txctl->sta;
2102 	struct ieee80211_vif *vif = info->control.vif;
2103 	struct ath_vif *avp;
2104 	struct ath_softc *sc = hw->priv;
2105 	int frmlen = skb->len + FCS_LEN;
2106 	int padpos, padsize;
2107 
2108 	/* NOTE:  sta can be NULL according to net/mac80211.h */
2109 	if (sta)
2110 		txctl->an = (struct ath_node *)sta->drv_priv;
2111 	else if (vif && ieee80211_is_data(hdr->frame_control)) {
2112 		avp = (void *)vif->drv_priv;
2113 		txctl->an = &avp->mcast_node;
2114 	}
2115 
2116 	if (info->control.hw_key)
2117 		frmlen += info->control.hw_key->icv_len;
2118 
2119 	/*
2120 	 * As a temporary workaround, assign seq# here; this will likely need
2121 	 * to be cleaned up to work better with Beacon transmission and virtual
2122 	 * BSSes.
2123 	 */
2124 	if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2125 		if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2126 			sc->tx.seq_no += 0x10;
2127 		hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2128 		hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2129 	}
2130 
2131 	if ((vif && vif->type != NL80211_IFTYPE_AP &&
2132 	            vif->type != NL80211_IFTYPE_AP_VLAN) ||
2133 	    !ieee80211_is_data(hdr->frame_control))
2134 		info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2135 
2136 	/* Add the padding after the header if this is not already done */
2137 	padpos = ieee80211_hdrlen(hdr->frame_control);
2138 	padsize = padpos & 3;
2139 	if (padsize && skb->len > padpos) {
2140 		if (skb_headroom(skb) < padsize)
2141 			return -ENOMEM;
2142 
2143 		skb_push(skb, padsize);
2144 		memmove(skb->data, skb->data + padsize, padpos);
2145 	}
2146 
2147 	setup_frame_info(hw, sta, skb, frmlen);
2148 	return 0;
2149 }
2150 
2151 
2152 /* Upon failure caller should free skb */
2153 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2154 		 struct ath_tx_control *txctl)
2155 {
2156 	struct ieee80211_hdr *hdr;
2157 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2158 	struct ieee80211_sta *sta = txctl->sta;
2159 	struct ieee80211_vif *vif = info->control.vif;
2160 	struct ath_softc *sc = hw->priv;
2161 	struct ath_txq *txq = txctl->txq;
2162 	struct ath_atx_tid *tid = NULL;
2163 	struct ath_buf *bf;
2164 	int q;
2165 	int ret;
2166 
2167 	ret = ath_tx_prepare(hw, skb, txctl);
2168 	if (ret)
2169 	    return ret;
2170 
2171 	hdr = (struct ieee80211_hdr *) skb->data;
2172 	/*
2173 	 * At this point, the vif, hw_key and sta pointers in the tx control
2174 	 * info are no longer valid (overwritten by the ath_frame_info data.
2175 	 */
2176 
2177 	q = skb_get_queue_mapping(skb);
2178 
2179 	ath_txq_lock(sc, txq);
2180 	if (txq == sc->tx.txq_map[q] &&
2181 	    ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
2182 	    !txq->stopped) {
2183 		ieee80211_stop_queue(sc->hw, q);
2184 		txq->stopped = true;
2185 	}
2186 
2187 	if (info->flags & IEEE80211_TX_CTL_PS_RESPONSE) {
2188 		ath_txq_unlock(sc, txq);
2189 		txq = sc->tx.uapsdq;
2190 		ath_txq_lock(sc, txq);
2191 	} else if (txctl->an &&
2192 		   ieee80211_is_data_present(hdr->frame_control)) {
2193 		tid = ath_get_skb_tid(sc, txctl->an, skb);
2194 
2195 		WARN_ON(tid->ac->txq != txctl->txq);
2196 
2197 		if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
2198 			tid->ac->clear_ps_filter = true;
2199 
2200 		/*
2201 		 * Add this frame to software queue for scheduling later
2202 		 * for aggregation.
2203 		 */
2204 		TX_STAT_INC(txq->axq_qnum, a_queued_sw);
2205 		__skb_queue_tail(&tid->buf_q, skb);
2206 		if (!txctl->an->sleeping)
2207 			ath_tx_queue_tid(txq, tid);
2208 
2209 		ath_txq_schedule(sc, txq);
2210 		goto out;
2211 	}
2212 
2213 	bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2214 	if (!bf) {
2215 		ath_txq_skb_done(sc, txq, skb);
2216 		if (txctl->paprd)
2217 			dev_kfree_skb_any(skb);
2218 		else
2219 			ieee80211_free_txskb(sc->hw, skb);
2220 		goto out;
2221 	}
2222 
2223 	bf->bf_state.bfs_paprd = txctl->paprd;
2224 
2225 	if (txctl->paprd)
2226 		bf->bf_state.bfs_paprd_timestamp = jiffies;
2227 
2228 	ath_set_rates(vif, sta, bf);
2229 	ath_tx_send_normal(sc, txq, tid, skb);
2230 
2231 out:
2232 	ath_txq_unlock(sc, txq);
2233 
2234 	return 0;
2235 }
2236 
2237 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2238 		 struct sk_buff *skb)
2239 {
2240 	struct ath_softc *sc = hw->priv;
2241 	struct ath_tx_control txctl = {
2242 		.txq = sc->beacon.cabq
2243 	};
2244 	struct ath_tx_info info = {};
2245 	struct ieee80211_hdr *hdr;
2246 	struct ath_buf *bf_tail = NULL;
2247 	struct ath_buf *bf;
2248 	LIST_HEAD(bf_q);
2249 	int duration = 0;
2250 	int max_duration;
2251 
2252 	max_duration =
2253 		sc->cur_beacon_conf.beacon_interval * 1000 *
2254 		sc->cur_beacon_conf.dtim_period / ATH_BCBUF;
2255 
2256 	do {
2257 		struct ath_frame_info *fi = get_frame_info(skb);
2258 
2259 		if (ath_tx_prepare(hw, skb, &txctl))
2260 			break;
2261 
2262 		bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2263 		if (!bf)
2264 			break;
2265 
2266 		bf->bf_lastbf = bf;
2267 		ath_set_rates(vif, NULL, bf);
2268 		ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2269 		duration += info.rates[0].PktDuration;
2270 		if (bf_tail)
2271 			bf_tail->bf_next = bf;
2272 
2273 		list_add_tail(&bf->list, &bf_q);
2274 		bf_tail = bf;
2275 		skb = NULL;
2276 
2277 		if (duration > max_duration)
2278 			break;
2279 
2280 		skb = ieee80211_get_buffered_bc(hw, vif);
2281 	} while(skb);
2282 
2283 	if (skb)
2284 		ieee80211_free_txskb(hw, skb);
2285 
2286 	if (list_empty(&bf_q))
2287 		return;
2288 
2289 	bf = list_first_entry(&bf_q, struct ath_buf, list);
2290 	hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
2291 
2292 	if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) {
2293 		hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA;
2294 		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
2295 			sizeof(*hdr), DMA_TO_DEVICE);
2296 	}
2297 
2298 	ath_txq_lock(sc, txctl.txq);
2299 	ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2300 	ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2301 	TX_STAT_INC(txctl.txq->axq_qnum, queued);
2302 	ath_txq_unlock(sc, txctl.txq);
2303 }
2304 
2305 /*****************/
2306 /* TX Completion */
2307 /*****************/
2308 
2309 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2310 			    int tx_flags, struct ath_txq *txq)
2311 {
2312 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2313 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2314 	struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2315 	int padpos, padsize;
2316 	unsigned long flags;
2317 
2318 	ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2319 
2320 	if (sc->sc_ah->caldata)
2321 		set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
2322 
2323 	if (!(tx_flags & ATH_TX_ERROR))
2324 		/* Frame was ACKed */
2325 		tx_info->flags |= IEEE80211_TX_STAT_ACK;
2326 
2327 	padpos = ieee80211_hdrlen(hdr->frame_control);
2328 	padsize = padpos & 3;
2329 	if (padsize && skb->len>padpos+padsize) {
2330 		/*
2331 		 * Remove MAC header padding before giving the frame back to
2332 		 * mac80211.
2333 		 */
2334 		memmove(skb->data + padsize, skb->data, padpos);
2335 		skb_pull(skb, padsize);
2336 	}
2337 
2338 	spin_lock_irqsave(&sc->sc_pm_lock, flags);
2339 	if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2340 		sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2341 		ath_dbg(common, PS,
2342 			"Going back to sleep after having received TX status (0x%lx)\n",
2343 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
2344 					PS_WAIT_FOR_CAB |
2345 					PS_WAIT_FOR_PSPOLL_DATA |
2346 					PS_WAIT_FOR_TX_ACK));
2347 	}
2348 	spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2349 
2350 	__skb_queue_tail(&txq->complete_q, skb);
2351 	ath_txq_skb_done(sc, txq, skb);
2352 }
2353 
2354 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2355 				struct ath_txq *txq, struct list_head *bf_q,
2356 				struct ath_tx_status *ts, int txok)
2357 {
2358 	struct sk_buff *skb = bf->bf_mpdu;
2359 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2360 	unsigned long flags;
2361 	int tx_flags = 0;
2362 
2363 	if (!txok)
2364 		tx_flags |= ATH_TX_ERROR;
2365 
2366 	if (ts->ts_status & ATH9K_TXERR_FILT)
2367 		tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2368 
2369 	dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2370 	bf->bf_buf_addr = 0;
2371 	if (sc->tx99_state)
2372 		goto skip_tx_complete;
2373 
2374 	if (bf->bf_state.bfs_paprd) {
2375 		if (time_after(jiffies,
2376 				bf->bf_state.bfs_paprd_timestamp +
2377 				msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2378 			dev_kfree_skb_any(skb);
2379 		else
2380 			complete(&sc->paprd_complete);
2381 	} else {
2382 		ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2383 		ath_tx_complete(sc, skb, tx_flags, txq);
2384 	}
2385 skip_tx_complete:
2386 	/* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2387 	 * accidentally reference it later.
2388 	 */
2389 	bf->bf_mpdu = NULL;
2390 
2391 	/*
2392 	 * Return the list of ath_buf of this mpdu to free queue
2393 	 */
2394 	spin_lock_irqsave(&sc->tx.txbuflock, flags);
2395 	list_splice_tail_init(bf_q, &sc->tx.txbuf);
2396 	spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2397 }
2398 
2399 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2400 			     struct ath_tx_status *ts, int nframes, int nbad,
2401 			     int txok)
2402 {
2403 	struct sk_buff *skb = bf->bf_mpdu;
2404 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2405 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2406 	struct ieee80211_hw *hw = sc->hw;
2407 	struct ath_hw *ah = sc->sc_ah;
2408 	u8 i, tx_rateindex;
2409 
2410 	if (txok)
2411 		tx_info->status.ack_signal = ts->ts_rssi;
2412 
2413 	tx_rateindex = ts->ts_rateindex;
2414 	WARN_ON(tx_rateindex >= hw->max_rates);
2415 
2416 	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2417 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2418 
2419 		BUG_ON(nbad > nframes);
2420 	}
2421 	tx_info->status.ampdu_len = nframes;
2422 	tx_info->status.ampdu_ack_len = nframes - nbad;
2423 
2424 	if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2425 	    (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2426 		/*
2427 		 * If an underrun error is seen assume it as an excessive
2428 		 * retry only if max frame trigger level has been reached
2429 		 * (2 KB for single stream, and 4 KB for dual stream).
2430 		 * Adjust the long retry as if the frame was tried
2431 		 * hw->max_rate_tries times to affect how rate control updates
2432 		 * PER for the failed rate.
2433 		 * In case of congestion on the bus penalizing this type of
2434 		 * underruns should help hardware actually transmit new frames
2435 		 * successfully by eventually preferring slower rates.
2436 		 * This itself should also alleviate congestion on the bus.
2437 		 */
2438 		if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2439 		                             ATH9K_TX_DELIM_UNDERRUN)) &&
2440 		    ieee80211_is_data(hdr->frame_control) &&
2441 		    ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2442 			tx_info->status.rates[tx_rateindex].count =
2443 				hw->max_rate_tries;
2444 	}
2445 
2446 	for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2447 		tx_info->status.rates[i].count = 0;
2448 		tx_info->status.rates[i].idx = -1;
2449 	}
2450 
2451 	tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2452 }
2453 
2454 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2455 {
2456 	struct ath_hw *ah = sc->sc_ah;
2457 	struct ath_common *common = ath9k_hw_common(ah);
2458 	struct ath_buf *bf, *lastbf, *bf_held = NULL;
2459 	struct list_head bf_head;
2460 	struct ath_desc *ds;
2461 	struct ath_tx_status ts;
2462 	int status;
2463 
2464 	ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2465 		txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2466 		txq->axq_link);
2467 
2468 	ath_txq_lock(sc, txq);
2469 	for (;;) {
2470 		if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
2471 			break;
2472 
2473 		if (list_empty(&txq->axq_q)) {
2474 			txq->axq_link = NULL;
2475 			ath_txq_schedule(sc, txq);
2476 			break;
2477 		}
2478 		bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2479 
2480 		/*
2481 		 * There is a race condition that a BH gets scheduled
2482 		 * after sw writes TxE and before hw re-load the last
2483 		 * descriptor to get the newly chained one.
2484 		 * Software must keep the last DONE descriptor as a
2485 		 * holding descriptor - software does so by marking
2486 		 * it with the STALE flag.
2487 		 */
2488 		bf_held = NULL;
2489 		if (bf->bf_state.stale) {
2490 			bf_held = bf;
2491 			if (list_is_last(&bf_held->list, &txq->axq_q))
2492 				break;
2493 
2494 			bf = list_entry(bf_held->list.next, struct ath_buf,
2495 					list);
2496 		}
2497 
2498 		lastbf = bf->bf_lastbf;
2499 		ds = lastbf->bf_desc;
2500 
2501 		memset(&ts, 0, sizeof(ts));
2502 		status = ath9k_hw_txprocdesc(ah, ds, &ts);
2503 		if (status == -EINPROGRESS)
2504 			break;
2505 
2506 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2507 
2508 		/*
2509 		 * Remove ath_buf's of the same transmit unit from txq,
2510 		 * however leave the last descriptor back as the holding
2511 		 * descriptor for hw.
2512 		 */
2513 		lastbf->bf_state.stale = true;
2514 		INIT_LIST_HEAD(&bf_head);
2515 		if (!list_is_singular(&lastbf->list))
2516 			list_cut_position(&bf_head,
2517 				&txq->axq_q, lastbf->list.prev);
2518 
2519 		if (bf_held) {
2520 			list_del(&bf_held->list);
2521 			ath_tx_return_buffer(sc, bf_held);
2522 		}
2523 
2524 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2525 	}
2526 	ath_txq_unlock_complete(sc, txq);
2527 }
2528 
2529 void ath_tx_tasklet(struct ath_softc *sc)
2530 {
2531 	struct ath_hw *ah = sc->sc_ah;
2532 	u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2533 	int i;
2534 
2535 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2536 		if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2537 			ath_tx_processq(sc, &sc->tx.txq[i]);
2538 	}
2539 }
2540 
2541 void ath_tx_edma_tasklet(struct ath_softc *sc)
2542 {
2543 	struct ath_tx_status ts;
2544 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2545 	struct ath_hw *ah = sc->sc_ah;
2546 	struct ath_txq *txq;
2547 	struct ath_buf *bf, *lastbf;
2548 	struct list_head bf_head;
2549 	struct list_head *fifo_list;
2550 	int status;
2551 
2552 	for (;;) {
2553 		if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
2554 			break;
2555 
2556 		status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2557 		if (status == -EINPROGRESS)
2558 			break;
2559 		if (status == -EIO) {
2560 			ath_dbg(common, XMIT, "Error processing tx status\n");
2561 			break;
2562 		}
2563 
2564 		/* Process beacon completions separately */
2565 		if (ts.qid == sc->beacon.beaconq) {
2566 			sc->beacon.tx_processed = true;
2567 			sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2568 
2569 			ath9k_csa_is_finished(sc);
2570 			continue;
2571 		}
2572 
2573 		txq = &sc->tx.txq[ts.qid];
2574 
2575 		ath_txq_lock(sc, txq);
2576 
2577 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2578 
2579 		fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2580 		if (list_empty(fifo_list)) {
2581 			ath_txq_unlock(sc, txq);
2582 			return;
2583 		}
2584 
2585 		bf = list_first_entry(fifo_list, struct ath_buf, list);
2586 		if (bf->bf_state.stale) {
2587 			list_del(&bf->list);
2588 			ath_tx_return_buffer(sc, bf);
2589 			bf = list_first_entry(fifo_list, struct ath_buf, list);
2590 		}
2591 
2592 		lastbf = bf->bf_lastbf;
2593 
2594 		INIT_LIST_HEAD(&bf_head);
2595 		if (list_is_last(&lastbf->list, fifo_list)) {
2596 			list_splice_tail_init(fifo_list, &bf_head);
2597 			INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2598 
2599 			if (!list_empty(&txq->axq_q)) {
2600 				struct list_head bf_q;
2601 
2602 				INIT_LIST_HEAD(&bf_q);
2603 				txq->axq_link = NULL;
2604 				list_splice_tail_init(&txq->axq_q, &bf_q);
2605 				ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2606 			}
2607 		} else {
2608 			lastbf->bf_state.stale = true;
2609 			if (bf != lastbf)
2610 				list_cut_position(&bf_head, fifo_list,
2611 						  lastbf->list.prev);
2612 		}
2613 
2614 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2615 		ath_txq_unlock_complete(sc, txq);
2616 	}
2617 }
2618 
2619 /*****************/
2620 /* Init, Cleanup */
2621 /*****************/
2622 
2623 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2624 {
2625 	struct ath_descdma *dd = &sc->txsdma;
2626 	u8 txs_len = sc->sc_ah->caps.txs_len;
2627 
2628 	dd->dd_desc_len = size * txs_len;
2629 	dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2630 					  &dd->dd_desc_paddr, GFP_KERNEL);
2631 	if (!dd->dd_desc)
2632 		return -ENOMEM;
2633 
2634 	return 0;
2635 }
2636 
2637 static int ath_tx_edma_init(struct ath_softc *sc)
2638 {
2639 	int err;
2640 
2641 	err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2642 	if (!err)
2643 		ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2644 					  sc->txsdma.dd_desc_paddr,
2645 					  ATH_TXSTATUS_RING_SIZE);
2646 
2647 	return err;
2648 }
2649 
2650 int ath_tx_init(struct ath_softc *sc, int nbufs)
2651 {
2652 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2653 	int error = 0;
2654 
2655 	spin_lock_init(&sc->tx.txbuflock);
2656 
2657 	error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2658 				  "tx", nbufs, 1, 1);
2659 	if (error != 0) {
2660 		ath_err(common,
2661 			"Failed to allocate tx descriptors: %d\n", error);
2662 		return error;
2663 	}
2664 
2665 	error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2666 				  "beacon", ATH_BCBUF, 1, 1);
2667 	if (error != 0) {
2668 		ath_err(common,
2669 			"Failed to allocate beacon descriptors: %d\n", error);
2670 		return error;
2671 	}
2672 
2673 	INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2674 
2675 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2676 		error = ath_tx_edma_init(sc);
2677 
2678 	return error;
2679 }
2680 
2681 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2682 {
2683 	struct ath_atx_tid *tid;
2684 	struct ath_atx_ac *ac;
2685 	int tidno, acno;
2686 
2687 	for (tidno = 0, tid = &an->tid[tidno];
2688 	     tidno < IEEE80211_NUM_TIDS;
2689 	     tidno++, tid++) {
2690 		tid->an        = an;
2691 		tid->tidno     = tidno;
2692 		tid->seq_start = tid->seq_next = 0;
2693 		tid->baw_size  = WME_MAX_BA;
2694 		tid->baw_head  = tid->baw_tail = 0;
2695 		tid->sched     = false;
2696 		tid->paused    = false;
2697 		tid->active	   = false;
2698 		__skb_queue_head_init(&tid->buf_q);
2699 		__skb_queue_head_init(&tid->retry_q);
2700 		acno = TID_TO_WME_AC(tidno);
2701 		tid->ac = &an->ac[acno];
2702 	}
2703 
2704 	for (acno = 0, ac = &an->ac[acno];
2705 	     acno < IEEE80211_NUM_ACS; acno++, ac++) {
2706 		ac->sched    = false;
2707 		ac->clear_ps_filter = true;
2708 		ac->txq = sc->tx.txq_map[acno];
2709 		INIT_LIST_HEAD(&ac->tid_q);
2710 	}
2711 }
2712 
2713 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2714 {
2715 	struct ath_atx_ac *ac;
2716 	struct ath_atx_tid *tid;
2717 	struct ath_txq *txq;
2718 	int tidno;
2719 
2720 	for (tidno = 0, tid = &an->tid[tidno];
2721 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
2722 
2723 		ac = tid->ac;
2724 		txq = ac->txq;
2725 
2726 		ath_txq_lock(sc, txq);
2727 
2728 		if (tid->sched) {
2729 			list_del(&tid->list);
2730 			tid->sched = false;
2731 		}
2732 
2733 		if (ac->sched) {
2734 			list_del(&ac->list);
2735 			tid->ac->sched = false;
2736 		}
2737 
2738 		ath_tid_drain(sc, txq, tid);
2739 		tid->active = false;
2740 
2741 		ath_txq_unlock(sc, txq);
2742 	}
2743 }
2744 
2745 #ifdef CONFIG_ATH9K_TX99
2746 
2747 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
2748 		    struct ath_tx_control *txctl)
2749 {
2750 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2751 	struct ath_frame_info *fi = get_frame_info(skb);
2752 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2753 	struct ath_buf *bf;
2754 	int padpos, padsize;
2755 
2756 	padpos = ieee80211_hdrlen(hdr->frame_control);
2757 	padsize = padpos & 3;
2758 
2759 	if (padsize && skb->len > padpos) {
2760 		if (skb_headroom(skb) < padsize) {
2761 			ath_dbg(common, XMIT,
2762 				"tx99 padding failed\n");
2763 		return -EINVAL;
2764 		}
2765 
2766 		skb_push(skb, padsize);
2767 		memmove(skb->data, skb->data + padsize, padpos);
2768 	}
2769 
2770 	fi->keyix = ATH9K_TXKEYIX_INVALID;
2771 	fi->framelen = skb->len + FCS_LEN;
2772 	fi->keytype = ATH9K_KEY_TYPE_CLEAR;
2773 
2774 	bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
2775 	if (!bf) {
2776 		ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
2777 		return -EINVAL;
2778 	}
2779 
2780 	ath_set_rates(sc->tx99_vif, NULL, bf);
2781 
2782 	ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
2783 	ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
2784 
2785 	ath_tx_send_normal(sc, txctl->txq, NULL, skb);
2786 
2787 	return 0;
2788 }
2789 
2790 #endif /* CONFIG_ATH9K_TX99 */
2791