1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/dma-mapping.h> 18 #include "ath9k.h" 19 #include "ar9003_mac.h" 20 21 #define BITS_PER_BYTE 8 22 #define OFDM_PLCP_BITS 22 23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1) 24 #define L_STF 8 25 #define L_LTF 8 26 #define L_SIG 4 27 #define HT_SIG 8 28 #define HT_STF 4 29 #define HT_LTF(_ns) (4 * (_ns)) 30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */ 31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */ 32 #define TIME_SYMBOLS(t) ((t) >> 2) 33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18) 34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2) 35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18) 36 37 38 static u16 bits_per_symbol[][2] = { 39 /* 20MHz 40MHz */ 40 { 26, 54 }, /* 0: BPSK */ 41 { 52, 108 }, /* 1: QPSK 1/2 */ 42 { 78, 162 }, /* 2: QPSK 3/4 */ 43 { 104, 216 }, /* 3: 16-QAM 1/2 */ 44 { 156, 324 }, /* 4: 16-QAM 3/4 */ 45 { 208, 432 }, /* 5: 64-QAM 2/3 */ 46 { 234, 486 }, /* 6: 64-QAM 3/4 */ 47 { 260, 540 }, /* 7: 64-QAM 5/6 */ 48 }; 49 50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 51 struct ath_atx_tid *tid, struct sk_buff *skb); 52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, 53 int tx_flags, struct ath_txq *txq, 54 struct ieee80211_sta *sta); 55 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 56 struct ath_txq *txq, struct list_head *bf_q, 57 struct ieee80211_sta *sta, 58 struct ath_tx_status *ts, int txok); 59 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 60 struct list_head *head, bool internal); 61 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 62 struct ath_tx_status *ts, int nframes, int nbad, 63 int txok); 64 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 65 struct ath_buf *bf); 66 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, 67 struct ath_txq *txq, 68 struct ath_atx_tid *tid, 69 struct sk_buff *skb); 70 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb, 71 struct ath_tx_control *txctl); 72 73 enum { 74 MCS_HT20, 75 MCS_HT20_SGI, 76 MCS_HT40, 77 MCS_HT40_SGI, 78 }; 79 80 /*********************/ 81 /* Aggregation logic */ 82 /*********************/ 83 84 static void ath_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb) 85 { 86 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 87 struct ieee80211_sta *sta = info->status.status_driver_data[0]; 88 89 if (info->flags & (IEEE80211_TX_CTL_REQ_TX_STATUS | 90 IEEE80211_TX_STATUS_EOSP)) { 91 ieee80211_tx_status(hw, skb); 92 return; 93 } 94 95 if (sta) 96 ieee80211_tx_status_noskb(hw, sta, info); 97 98 dev_kfree_skb(skb); 99 } 100 101 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq) 102 __releases(&txq->axq_lock) 103 { 104 struct ieee80211_hw *hw = sc->hw; 105 struct sk_buff_head q; 106 struct sk_buff *skb; 107 108 __skb_queue_head_init(&q); 109 skb_queue_splice_init(&txq->complete_q, &q); 110 spin_unlock_bh(&txq->axq_lock); 111 112 while ((skb = __skb_dequeue(&q))) 113 ath_tx_status(hw, skb); 114 } 115 116 void ath_tx_queue_tid(struct ath_softc *sc, struct ath_atx_tid *tid) 117 { 118 struct ieee80211_txq *queue = 119 container_of((void *)tid, struct ieee80211_txq, drv_priv); 120 121 ieee80211_schedule_txq(sc->hw, queue); 122 } 123 124 void ath9k_wake_tx_queue(struct ieee80211_hw *hw, struct ieee80211_txq *queue) 125 { 126 struct ath_softc *sc = hw->priv; 127 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 128 struct ath_atx_tid *tid = (struct ath_atx_tid *) queue->drv_priv; 129 struct ath_txq *txq = tid->txq; 130 131 ath_dbg(common, QUEUE, "Waking TX queue: %pM (%d)\n", 132 queue->sta ? queue->sta->addr : queue->vif->addr, 133 tid->tidno); 134 135 ath_txq_lock(sc, txq); 136 ath_txq_schedule(sc, txq); 137 ath_txq_unlock(sc, txq); 138 } 139 140 static struct ath_frame_info *get_frame_info(struct sk_buff *skb) 141 { 142 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 143 BUILD_BUG_ON(sizeof(struct ath_frame_info) > 144 sizeof(tx_info->rate_driver_data)); 145 return (struct ath_frame_info *) &tx_info->rate_driver_data[0]; 146 } 147 148 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno) 149 { 150 if (!tid->an->sta) 151 return; 152 153 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno, 154 seqno << IEEE80211_SEQ_SEQ_SHIFT); 155 } 156 157 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta, 158 struct ath_buf *bf) 159 { 160 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates, 161 ARRAY_SIZE(bf->rates)); 162 } 163 164 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq, 165 struct sk_buff *skb) 166 { 167 struct ath_frame_info *fi = get_frame_info(skb); 168 int q = fi->txq; 169 170 if (q < 0) 171 return; 172 173 txq = sc->tx.txq_map[q]; 174 if (WARN_ON(--txq->pending_frames < 0)) 175 txq->pending_frames = 0; 176 177 } 178 179 static struct ath_atx_tid * 180 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb) 181 { 182 u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK; 183 return ATH_AN_2_TID(an, tidno); 184 } 185 186 static int 187 ath_tid_pull(struct ath_atx_tid *tid, struct sk_buff **skbuf) 188 { 189 struct ieee80211_txq *txq = container_of((void*)tid, struct ieee80211_txq, drv_priv); 190 struct ath_softc *sc = tid->an->sc; 191 struct ieee80211_hw *hw = sc->hw; 192 struct ath_tx_control txctl = { 193 .txq = tid->txq, 194 .sta = tid->an->sta, 195 }; 196 struct sk_buff *skb; 197 struct ath_frame_info *fi; 198 int q, ret; 199 200 skb = ieee80211_tx_dequeue(hw, txq); 201 if (!skb) 202 return -ENOENT; 203 204 ret = ath_tx_prepare(hw, skb, &txctl); 205 if (ret) { 206 ieee80211_free_txskb(hw, skb); 207 return ret; 208 } 209 210 q = skb_get_queue_mapping(skb); 211 if (tid->txq == sc->tx.txq_map[q]) { 212 fi = get_frame_info(skb); 213 fi->txq = q; 214 ++tid->txq->pending_frames; 215 } 216 217 *skbuf = skb; 218 return 0; 219 } 220 221 static int ath_tid_dequeue(struct ath_atx_tid *tid, 222 struct sk_buff **skb) 223 { 224 int ret = 0; 225 *skb = __skb_dequeue(&tid->retry_q); 226 if (!*skb) 227 ret = ath_tid_pull(tid, skb); 228 229 return ret; 230 } 231 232 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid) 233 { 234 struct ath_txq *txq = tid->txq; 235 struct sk_buff *skb; 236 struct ath_buf *bf; 237 struct list_head bf_head; 238 struct ath_tx_status ts; 239 struct ath_frame_info *fi; 240 bool sendbar = false; 241 242 INIT_LIST_HEAD(&bf_head); 243 244 memset(&ts, 0, sizeof(ts)); 245 246 while ((skb = __skb_dequeue(&tid->retry_q))) { 247 fi = get_frame_info(skb); 248 bf = fi->bf; 249 if (!bf) { 250 ath_txq_skb_done(sc, txq, skb); 251 ieee80211_free_txskb(sc->hw, skb); 252 continue; 253 } 254 255 if (fi->baw_tracked) { 256 ath_tx_update_baw(sc, tid, bf); 257 sendbar = true; 258 } 259 260 list_add_tail(&bf->list, &bf_head); 261 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0); 262 } 263 264 if (sendbar) { 265 ath_txq_unlock(sc, txq); 266 ath_send_bar(tid, tid->seq_start); 267 ath_txq_lock(sc, txq); 268 } 269 } 270 271 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 272 struct ath_buf *bf) 273 { 274 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 275 u16 seqno = bf->bf_state.seqno; 276 int index, cindex; 277 278 if (!fi->baw_tracked) 279 return; 280 281 index = ATH_BA_INDEX(tid->seq_start, seqno); 282 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 283 284 __clear_bit(cindex, tid->tx_buf); 285 286 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) { 287 INCR(tid->seq_start, IEEE80211_SEQ_MAX); 288 INCR(tid->baw_head, ATH_TID_MAX_BUFS); 289 if (tid->bar_index >= 0) 290 tid->bar_index--; 291 } 292 } 293 294 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 295 struct ath_buf *bf) 296 { 297 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 298 u16 seqno = bf->bf_state.seqno; 299 int index, cindex; 300 301 if (fi->baw_tracked) 302 return; 303 304 index = ATH_BA_INDEX(tid->seq_start, seqno); 305 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 306 __set_bit(cindex, tid->tx_buf); 307 fi->baw_tracked = 1; 308 309 if (index >= ((tid->baw_tail - tid->baw_head) & 310 (ATH_TID_MAX_BUFS - 1))) { 311 tid->baw_tail = cindex; 312 INCR(tid->baw_tail, ATH_TID_MAX_BUFS); 313 } 314 } 315 316 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq, 317 struct ath_atx_tid *tid) 318 319 { 320 struct sk_buff *skb; 321 struct ath_buf *bf; 322 struct list_head bf_head; 323 struct ath_tx_status ts; 324 struct ath_frame_info *fi; 325 int ret; 326 327 memset(&ts, 0, sizeof(ts)); 328 INIT_LIST_HEAD(&bf_head); 329 330 while ((ret = ath_tid_dequeue(tid, &skb)) == 0) { 331 fi = get_frame_info(skb); 332 bf = fi->bf; 333 334 if (!bf) { 335 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq, NULL); 336 continue; 337 } 338 339 list_add_tail(&bf->list, &bf_head); 340 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0); 341 } 342 } 343 344 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq, 345 struct sk_buff *skb, int count) 346 { 347 struct ath_frame_info *fi = get_frame_info(skb); 348 struct ath_buf *bf = fi->bf; 349 struct ieee80211_hdr *hdr; 350 int prev = fi->retries; 351 352 TX_STAT_INC(sc, txq->axq_qnum, a_retries); 353 fi->retries += count; 354 355 if (prev > 0) 356 return; 357 358 hdr = (struct ieee80211_hdr *)skb->data; 359 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY); 360 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 361 sizeof(*hdr), DMA_TO_DEVICE); 362 } 363 364 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc) 365 { 366 struct ath_buf *bf = NULL; 367 368 spin_lock_bh(&sc->tx.txbuflock); 369 370 if (unlikely(list_empty(&sc->tx.txbuf))) { 371 spin_unlock_bh(&sc->tx.txbuflock); 372 return NULL; 373 } 374 375 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list); 376 list_del(&bf->list); 377 378 spin_unlock_bh(&sc->tx.txbuflock); 379 380 return bf; 381 } 382 383 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf) 384 { 385 spin_lock_bh(&sc->tx.txbuflock); 386 list_add_tail(&bf->list, &sc->tx.txbuf); 387 spin_unlock_bh(&sc->tx.txbuflock); 388 } 389 390 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf) 391 { 392 struct ath_buf *tbf; 393 394 tbf = ath_tx_get_buffer(sc); 395 if (WARN_ON(!tbf)) 396 return NULL; 397 398 ATH_TXBUF_RESET(tbf); 399 400 tbf->bf_mpdu = bf->bf_mpdu; 401 tbf->bf_buf_addr = bf->bf_buf_addr; 402 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len); 403 tbf->bf_state = bf->bf_state; 404 tbf->bf_state.stale = false; 405 406 return tbf; 407 } 408 409 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf, 410 struct ath_tx_status *ts, int txok, 411 int *nframes, int *nbad) 412 { 413 u16 seq_st = 0; 414 u32 ba[WME_BA_BMP_SIZE >> 5]; 415 int ba_index; 416 int isaggr = 0; 417 418 *nbad = 0; 419 *nframes = 0; 420 421 isaggr = bf_isaggr(bf); 422 if (isaggr) { 423 seq_st = ts->ts_seqnum; 424 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); 425 } 426 427 while (bf) { 428 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno); 429 430 (*nframes)++; 431 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index))) 432 (*nbad)++; 433 434 bf = bf->bf_next; 435 } 436 } 437 438 439 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq, 440 struct ath_buf *bf, struct list_head *bf_q, 441 struct ieee80211_sta *sta, 442 struct ath_atx_tid *tid, 443 struct ath_tx_status *ts, int txok) 444 { 445 struct ath_node *an = NULL; 446 struct sk_buff *skb; 447 struct ieee80211_tx_info *tx_info; 448 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf; 449 struct list_head bf_head; 450 struct sk_buff_head bf_pending; 451 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first; 452 u32 ba[WME_BA_BMP_SIZE >> 5]; 453 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0; 454 bool rc_update = true, isba; 455 struct ieee80211_tx_rate rates[4]; 456 struct ath_frame_info *fi; 457 int nframes; 458 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH); 459 int i, retries; 460 int bar_index = -1; 461 462 skb = bf->bf_mpdu; 463 tx_info = IEEE80211_SKB_CB(skb); 464 465 memcpy(rates, bf->rates, sizeof(rates)); 466 467 retries = ts->ts_longretry + 1; 468 for (i = 0; i < ts->ts_rateindex; i++) 469 retries += rates[i].count; 470 471 if (!sta) { 472 INIT_LIST_HEAD(&bf_head); 473 while (bf) { 474 bf_next = bf->bf_next; 475 476 if (!bf->bf_state.stale || bf_next != NULL) 477 list_move_tail(&bf->list, &bf_head); 478 479 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, ts, 0); 480 481 bf = bf_next; 482 } 483 return; 484 } 485 486 an = (struct ath_node *)sta->drv_priv; 487 seq_first = tid->seq_start; 488 isba = ts->ts_flags & ATH9K_TX_BA; 489 490 /* 491 * The hardware occasionally sends a tx status for the wrong TID. 492 * In this case, the BA status cannot be considered valid and all 493 * subframes need to be retransmitted 494 * 495 * Only BlockAcks have a TID and therefore normal Acks cannot be 496 * checked 497 */ 498 if (isba && tid->tidno != ts->tid) 499 txok = false; 500 501 isaggr = bf_isaggr(bf); 502 memset(ba, 0, WME_BA_BMP_SIZE >> 3); 503 504 if (isaggr && txok) { 505 if (ts->ts_flags & ATH9K_TX_BA) { 506 seq_st = ts->ts_seqnum; 507 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); 508 } else { 509 /* 510 * AR5416 can become deaf/mute when BA 511 * issue happens. Chip needs to be reset. 512 * But AP code may have sychronization issues 513 * when perform internal reset in this routine. 514 * Only enable reset in STA mode for now. 515 */ 516 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION) 517 needreset = 1; 518 } 519 } 520 521 __skb_queue_head_init(&bf_pending); 522 523 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad); 524 while (bf) { 525 u16 seqno = bf->bf_state.seqno; 526 527 txfail = txpending = sendbar = 0; 528 bf_next = bf->bf_next; 529 530 skb = bf->bf_mpdu; 531 tx_info = IEEE80211_SKB_CB(skb); 532 fi = get_frame_info(skb); 533 534 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) || 535 !tid->active) { 536 /* 537 * Outside of the current BlockAck window, 538 * maybe part of a previous session 539 */ 540 txfail = 1; 541 } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) { 542 /* transmit completion, subframe is 543 * acked by block ack */ 544 acked_cnt++; 545 } else if (!isaggr && txok) { 546 /* transmit completion */ 547 acked_cnt++; 548 } else if (flush) { 549 txpending = 1; 550 } else if (fi->retries < ATH_MAX_SW_RETRIES) { 551 if (txok || !an->sleeping) 552 ath_tx_set_retry(sc, txq, bf->bf_mpdu, 553 retries); 554 555 txpending = 1; 556 } else { 557 txfail = 1; 558 txfail_cnt++; 559 bar_index = max_t(int, bar_index, 560 ATH_BA_INDEX(seq_first, seqno)); 561 } 562 563 /* 564 * Make sure the last desc is reclaimed if it 565 * not a holding desc. 566 */ 567 INIT_LIST_HEAD(&bf_head); 568 if (bf_next != NULL || !bf_last->bf_state.stale) 569 list_move_tail(&bf->list, &bf_head); 570 571 if (!txpending) { 572 /* 573 * complete the acked-ones/xretried ones; update 574 * block-ack window 575 */ 576 ath_tx_update_baw(sc, tid, bf); 577 578 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) { 579 memcpy(tx_info->control.rates, rates, sizeof(rates)); 580 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok); 581 rc_update = false; 582 if (bf == bf->bf_lastbf) 583 ath_dynack_sample_tx_ts(sc->sc_ah, 584 bf->bf_mpdu, 585 ts, sta); 586 } 587 588 ath_tx_complete_buf(sc, bf, txq, &bf_head, sta, ts, 589 !txfail); 590 } else { 591 if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) { 592 tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP; 593 ieee80211_sta_eosp(sta); 594 } 595 /* retry the un-acked ones */ 596 if (bf->bf_next == NULL && bf_last->bf_state.stale) { 597 struct ath_buf *tbf; 598 599 tbf = ath_clone_txbuf(sc, bf_last); 600 /* 601 * Update tx baw and complete the 602 * frame with failed status if we 603 * run out of tx buf. 604 */ 605 if (!tbf) { 606 ath_tx_update_baw(sc, tid, bf); 607 608 ath_tx_complete_buf(sc, bf, txq, 609 &bf_head, NULL, ts, 610 0); 611 bar_index = max_t(int, bar_index, 612 ATH_BA_INDEX(seq_first, seqno)); 613 break; 614 } 615 616 fi->bf = tbf; 617 } 618 619 /* 620 * Put this buffer to the temporary pending 621 * queue to retain ordering 622 */ 623 __skb_queue_tail(&bf_pending, skb); 624 } 625 626 bf = bf_next; 627 } 628 629 /* prepend un-acked frames to the beginning of the pending frame queue */ 630 if (!skb_queue_empty(&bf_pending)) { 631 if (an->sleeping) 632 ieee80211_sta_set_buffered(sta, tid->tidno, true); 633 634 skb_queue_splice_tail(&bf_pending, &tid->retry_q); 635 if (!an->sleeping) { 636 ath_tx_queue_tid(sc, tid); 637 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY)) 638 tid->clear_ps_filter = true; 639 } 640 } 641 642 if (bar_index >= 0) { 643 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index); 644 645 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq)) 646 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq); 647 648 ath_txq_unlock(sc, txq); 649 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1)); 650 ath_txq_lock(sc, txq); 651 } 652 653 if (needreset) 654 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR); 655 } 656 657 static bool bf_is_ampdu_not_probing(struct ath_buf *bf) 658 { 659 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu); 660 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE); 661 } 662 663 static void ath_tx_count_airtime(struct ath_softc *sc, 664 struct ieee80211_sta *sta, 665 struct ath_buf *bf, 666 struct ath_tx_status *ts, 667 u8 tid) 668 { 669 u32 airtime = 0; 670 int i; 671 672 airtime += ts->duration * (ts->ts_longretry + 1); 673 for(i = 0; i < ts->ts_rateindex; i++) { 674 int rate_dur = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc, i); 675 airtime += rate_dur * bf->rates[i].count; 676 } 677 678 ieee80211_sta_register_airtime(sta, tid, airtime, 0); 679 } 680 681 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq, 682 struct ath_tx_status *ts, struct ath_buf *bf, 683 struct list_head *bf_head) 684 { 685 struct ieee80211_hw *hw = sc->hw; 686 struct ieee80211_tx_info *info; 687 struct ieee80211_sta *sta; 688 struct ieee80211_hdr *hdr; 689 struct ath_atx_tid *tid = NULL; 690 bool txok, flush; 691 692 txok = !(ts->ts_status & ATH9K_TXERR_MASK); 693 flush = !!(ts->ts_status & ATH9K_TX_FLUSH); 694 txq->axq_tx_inprogress = false; 695 696 txq->axq_depth--; 697 if (bf_is_ampdu_not_probing(bf)) 698 txq->axq_ampdu_depth--; 699 700 ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc, 701 ts->ts_rateindex); 702 703 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data; 704 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2); 705 if (sta) { 706 struct ath_node *an = (struct ath_node *)sta->drv_priv; 707 tid = ath_get_skb_tid(sc, an, bf->bf_mpdu); 708 ath_tx_count_airtime(sc, sta, bf, ts, tid->tidno); 709 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY)) 710 tid->clear_ps_filter = true; 711 } 712 713 if (!bf_isampdu(bf)) { 714 if (!flush) { 715 info = IEEE80211_SKB_CB(bf->bf_mpdu); 716 memcpy(info->control.rates, bf->rates, 717 sizeof(info->control.rates)); 718 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok); 719 ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts, 720 sta); 721 } 722 ath_tx_complete_buf(sc, bf, txq, bf_head, sta, ts, txok); 723 } else 724 ath_tx_complete_aggr(sc, txq, bf, bf_head, sta, tid, ts, txok); 725 726 if (!flush) 727 ath_txq_schedule(sc, txq); 728 } 729 730 static bool ath_lookup_legacy(struct ath_buf *bf) 731 { 732 struct sk_buff *skb; 733 struct ieee80211_tx_info *tx_info; 734 struct ieee80211_tx_rate *rates; 735 int i; 736 737 skb = bf->bf_mpdu; 738 tx_info = IEEE80211_SKB_CB(skb); 739 rates = tx_info->control.rates; 740 741 for (i = 0; i < 4; i++) { 742 if (!rates[i].count || rates[i].idx < 0) 743 break; 744 745 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) 746 return true; 747 } 748 749 return false; 750 } 751 752 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf, 753 struct ath_atx_tid *tid) 754 { 755 struct sk_buff *skb; 756 struct ieee80211_tx_info *tx_info; 757 struct ieee80211_tx_rate *rates; 758 u32 max_4ms_framelen, frmlen; 759 u16 aggr_limit, bt_aggr_limit, legacy = 0; 760 int q = tid->txq->mac80211_qnum; 761 int i; 762 763 skb = bf->bf_mpdu; 764 tx_info = IEEE80211_SKB_CB(skb); 765 rates = bf->rates; 766 767 /* 768 * Find the lowest frame length among the rate series that will have a 769 * 4ms (or TXOP limited) transmit duration. 770 */ 771 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX; 772 773 for (i = 0; i < 4; i++) { 774 int modeidx; 775 776 if (!rates[i].count) 777 continue; 778 779 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) { 780 legacy = 1; 781 break; 782 } 783 784 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 785 modeidx = MCS_HT40; 786 else 787 modeidx = MCS_HT20; 788 789 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 790 modeidx++; 791 792 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx]; 793 max_4ms_framelen = min(max_4ms_framelen, frmlen); 794 } 795 796 /* 797 * limit aggregate size by the minimum rate if rate selected is 798 * not a probe rate, if rate selected is a probe rate then 799 * avoid aggregation of this packet. 800 */ 801 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy) 802 return 0; 803 804 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX); 805 806 /* 807 * Override the default aggregation limit for BTCOEX. 808 */ 809 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen); 810 if (bt_aggr_limit) 811 aggr_limit = bt_aggr_limit; 812 813 if (tid->an->maxampdu) 814 aggr_limit = min(aggr_limit, tid->an->maxampdu); 815 816 return aggr_limit; 817 } 818 819 /* 820 * Returns the number of delimiters to be added to 821 * meet the minimum required mpdudensity. 822 */ 823 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid, 824 struct ath_buf *bf, u16 frmlen, 825 bool first_subfrm) 826 { 827 #define FIRST_DESC_NDELIMS 60 828 u32 nsymbits, nsymbols; 829 u16 minlen; 830 u8 flags, rix; 831 int width, streams, half_gi, ndelim, mindelim; 832 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 833 834 /* Select standard number of delimiters based on frame length alone */ 835 ndelim = ATH_AGGR_GET_NDELIM(frmlen); 836 837 /* 838 * If encryption enabled, hardware requires some more padding between 839 * subframes. 840 * TODO - this could be improved to be dependent on the rate. 841 * The hardware can keep up at lower rates, but not higher rates 842 */ 843 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) && 844 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) 845 ndelim += ATH_AGGR_ENCRYPTDELIM; 846 847 /* 848 * Add delimiter when using RTS/CTS with aggregation 849 * and non enterprise AR9003 card 850 */ 851 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) && 852 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE)) 853 ndelim = max(ndelim, FIRST_DESC_NDELIMS); 854 855 /* 856 * Convert desired mpdu density from microeconds to bytes based 857 * on highest rate in rate series (i.e. first rate) to determine 858 * required minimum length for subframe. Take into account 859 * whether high rate is 20 or 40Mhz and half or full GI. 860 * 861 * If there is no mpdu density restriction, no further calculation 862 * is needed. 863 */ 864 865 if (tid->an->mpdudensity == 0) 866 return ndelim; 867 868 rix = bf->rates[0].idx; 869 flags = bf->rates[0].flags; 870 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0; 871 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0; 872 873 if (half_gi) 874 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity); 875 else 876 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity); 877 878 if (nsymbols == 0) 879 nsymbols = 1; 880 881 streams = HT_RC_2_STREAMS(rix); 882 nsymbits = bits_per_symbol[rix % 8][width] * streams; 883 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE; 884 885 if (frmlen < minlen) { 886 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ; 887 ndelim = max(mindelim, ndelim); 888 } 889 890 return ndelim; 891 } 892 893 static int 894 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq, 895 struct ath_atx_tid *tid, struct ath_buf **buf) 896 { 897 struct ieee80211_tx_info *tx_info; 898 struct ath_frame_info *fi; 899 struct ath_buf *bf; 900 struct sk_buff *skb, *first_skb = NULL; 901 u16 seqno; 902 int ret; 903 904 while (1) { 905 ret = ath_tid_dequeue(tid, &skb); 906 if (ret < 0) 907 return ret; 908 909 fi = get_frame_info(skb); 910 bf = fi->bf; 911 if (!fi->bf) 912 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 913 else 914 bf->bf_state.stale = false; 915 916 if (!bf) { 917 ath_txq_skb_done(sc, txq, skb); 918 ieee80211_free_txskb(sc->hw, skb); 919 continue; 920 } 921 922 bf->bf_next = NULL; 923 bf->bf_lastbf = bf; 924 925 tx_info = IEEE80211_SKB_CB(skb); 926 tx_info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT | 927 IEEE80211_TX_STATUS_EOSP); 928 929 /* 930 * No aggregation session is running, but there may be frames 931 * from a previous session or a failed attempt in the queue. 932 * Send them out as normal data frames 933 */ 934 if (!tid->active) 935 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU; 936 937 if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) { 938 bf->bf_state.bf_type = 0; 939 break; 940 } 941 942 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR; 943 seqno = bf->bf_state.seqno; 944 945 /* do not step over block-ack window */ 946 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) { 947 __skb_queue_tail(&tid->retry_q, skb); 948 949 /* If there are other skbs in the retry q, they are 950 * probably within the BAW, so loop immediately to get 951 * one of them. Otherwise the queue can get stuck. */ 952 if (!skb_queue_is_first(&tid->retry_q, skb) && 953 !WARN_ON(skb == first_skb)) { 954 if(!first_skb) /* infinite loop prevention */ 955 first_skb = skb; 956 continue; 957 } 958 return -EINPROGRESS; 959 } 960 961 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) { 962 struct ath_tx_status ts = {}; 963 struct list_head bf_head; 964 965 INIT_LIST_HEAD(&bf_head); 966 list_add(&bf->list, &bf_head); 967 ath_tx_update_baw(sc, tid, bf); 968 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0); 969 continue; 970 } 971 972 if (bf_isampdu(bf)) 973 ath_tx_addto_baw(sc, tid, bf); 974 975 break; 976 } 977 978 *buf = bf; 979 return 0; 980 } 981 982 static int 983 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq, 984 struct ath_atx_tid *tid, struct list_head *bf_q, 985 struct ath_buf *bf_first) 986 { 987 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4) 988 struct ath_buf *bf = bf_first, *bf_prev = NULL; 989 int nframes = 0, ndelim, ret; 990 u16 aggr_limit = 0, al = 0, bpad = 0, 991 al_delta, h_baw = tid->baw_size / 2; 992 struct ieee80211_tx_info *tx_info; 993 struct ath_frame_info *fi; 994 struct sk_buff *skb; 995 996 997 bf = bf_first; 998 aggr_limit = ath_lookup_rate(sc, bf, tid); 999 1000 while (bf) 1001 { 1002 skb = bf->bf_mpdu; 1003 fi = get_frame_info(skb); 1004 1005 /* do not exceed aggregation limit */ 1006 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen; 1007 if (nframes) { 1008 if (aggr_limit < al + bpad + al_delta || 1009 ath_lookup_legacy(bf) || nframes >= h_baw) 1010 goto stop; 1011 1012 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1013 if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) || 1014 !(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) 1015 goto stop; 1016 } 1017 1018 /* add padding for previous frame to aggregation length */ 1019 al += bpad + al_delta; 1020 1021 /* 1022 * Get the delimiters needed to meet the MPDU 1023 * density for this node. 1024 */ 1025 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen, 1026 !nframes); 1027 bpad = PADBYTES(al_delta) + (ndelim << 2); 1028 1029 nframes++; 1030 bf->bf_next = NULL; 1031 1032 /* link buffers of this frame to the aggregate */ 1033 bf->bf_state.ndelim = ndelim; 1034 1035 list_add_tail(&bf->list, bf_q); 1036 if (bf_prev) 1037 bf_prev->bf_next = bf; 1038 1039 bf_prev = bf; 1040 1041 ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf); 1042 if (ret < 0) 1043 break; 1044 } 1045 goto finish; 1046 stop: 1047 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu); 1048 finish: 1049 bf = bf_first; 1050 bf->bf_lastbf = bf_prev; 1051 1052 if (bf == bf_prev) { 1053 al = get_frame_info(bf->bf_mpdu)->framelen; 1054 bf->bf_state.bf_type = BUF_AMPDU; 1055 } else { 1056 TX_STAT_INC(sc, txq->axq_qnum, a_aggr); 1057 } 1058 1059 return al; 1060 #undef PADBYTES 1061 } 1062 1063 /* 1064 * rix - rate index 1065 * pktlen - total bytes (delims + data + fcs + pads + pad delims) 1066 * width - 0 for 20 MHz, 1 for 40 MHz 1067 * half_gi - to use 4us v/s 3.6 us for symbol time 1068 */ 1069 u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen, 1070 int width, int half_gi, bool shortPreamble) 1071 { 1072 u32 nbits, nsymbits, duration, nsymbols; 1073 int streams; 1074 1075 /* find number of symbols: PLCP + data */ 1076 streams = HT_RC_2_STREAMS(rix); 1077 nbits = (pktlen << 3) + OFDM_PLCP_BITS; 1078 nsymbits = bits_per_symbol[rix % 8][width] * streams; 1079 nsymbols = (nbits + nsymbits - 1) / nsymbits; 1080 1081 if (!half_gi) 1082 duration = SYMBOL_TIME(nsymbols); 1083 else 1084 duration = SYMBOL_TIME_HALFGI(nsymbols); 1085 1086 /* addup duration for legacy/ht training and signal fields */ 1087 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 1088 1089 return duration; 1090 } 1091 1092 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi) 1093 { 1094 int streams = HT_RC_2_STREAMS(mcs); 1095 int symbols, bits; 1096 int bytes = 0; 1097 1098 usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 1099 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec); 1100 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams; 1101 bits -= OFDM_PLCP_BITS; 1102 bytes = bits / 8; 1103 if (bytes > 65532) 1104 bytes = 65532; 1105 1106 return bytes; 1107 } 1108 1109 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop) 1110 { 1111 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi; 1112 int mcs; 1113 1114 /* 4ms is the default (and maximum) duration */ 1115 if (!txop || txop > 4096) 1116 txop = 4096; 1117 1118 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20]; 1119 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI]; 1120 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40]; 1121 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI]; 1122 for (mcs = 0; mcs < 32; mcs++) { 1123 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false); 1124 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true); 1125 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false); 1126 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true); 1127 } 1128 } 1129 1130 static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf, 1131 u8 rateidx, bool is_40, bool is_cck) 1132 { 1133 u8 max_power; 1134 struct sk_buff *skb; 1135 struct ath_frame_info *fi; 1136 struct ieee80211_tx_info *info; 1137 struct ath_hw *ah = sc->sc_ah; 1138 1139 if (sc->tx99_state || !ah->tpc_enabled) 1140 return MAX_RATE_POWER; 1141 1142 skb = bf->bf_mpdu; 1143 fi = get_frame_info(skb); 1144 info = IEEE80211_SKB_CB(skb); 1145 1146 if (!AR_SREV_9300_20_OR_LATER(ah)) { 1147 int txpower = fi->tx_power; 1148 1149 if (is_40) { 1150 u8 power_ht40delta; 1151 struct ar5416_eeprom_def *eep = &ah->eeprom.def; 1152 u16 eeprom_rev = ah->eep_ops->get_eeprom_rev(ah); 1153 1154 if (eeprom_rev >= AR5416_EEP_MINOR_VER_2) { 1155 bool is_2ghz; 1156 struct modal_eep_header *pmodal; 1157 1158 is_2ghz = info->band == NL80211_BAND_2GHZ; 1159 pmodal = &eep->modalHeader[is_2ghz]; 1160 power_ht40delta = pmodal->ht40PowerIncForPdadc; 1161 } else { 1162 power_ht40delta = 2; 1163 } 1164 txpower += power_ht40delta; 1165 } 1166 1167 if (AR_SREV_9287(ah) || AR_SREV_9285(ah) || 1168 AR_SREV_9271(ah)) { 1169 txpower -= 2 * AR9287_PWR_TABLE_OFFSET_DB; 1170 } else if (AR_SREV_9280_20_OR_LATER(ah)) { 1171 s8 power_offset; 1172 1173 power_offset = ah->eep_ops->get_eeprom(ah, 1174 EEP_PWR_TABLE_OFFSET); 1175 txpower -= 2 * power_offset; 1176 } 1177 1178 if (OLC_FOR_AR9280_20_LATER && is_cck) 1179 txpower -= 2; 1180 1181 txpower = max(txpower, 0); 1182 max_power = min_t(u8, ah->tx_power[rateidx], txpower); 1183 1184 /* XXX: clamp minimum TX power at 1 for AR9160 since if 1185 * max_power is set to 0, frames are transmitted at max 1186 * TX power 1187 */ 1188 if (!max_power && !AR_SREV_9280_20_OR_LATER(ah)) 1189 max_power = 1; 1190 } else if (!bf->bf_state.bfs_paprd) { 1191 if (rateidx < 8 && (info->flags & IEEE80211_TX_CTL_STBC)) 1192 max_power = min_t(u8, ah->tx_power_stbc[rateidx], 1193 fi->tx_power); 1194 else 1195 max_power = min_t(u8, ah->tx_power[rateidx], 1196 fi->tx_power); 1197 } else { 1198 max_power = ah->paprd_training_power; 1199 } 1200 1201 return max_power; 1202 } 1203 1204 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, 1205 struct ath_tx_info *info, int len, bool rts) 1206 { 1207 struct ath_hw *ah = sc->sc_ah; 1208 struct ath_common *common = ath9k_hw_common(ah); 1209 struct sk_buff *skb; 1210 struct ieee80211_tx_info *tx_info; 1211 struct ieee80211_tx_rate *rates; 1212 const struct ieee80211_rate *rate; 1213 struct ieee80211_hdr *hdr; 1214 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 1215 u32 rts_thresh = sc->hw->wiphy->rts_threshold; 1216 int i; 1217 u8 rix = 0; 1218 1219 skb = bf->bf_mpdu; 1220 tx_info = IEEE80211_SKB_CB(skb); 1221 rates = bf->rates; 1222 hdr = (struct ieee80211_hdr *)skb->data; 1223 1224 /* set dur_update_en for l-sig computation except for PS-Poll frames */ 1225 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control); 1226 info->rtscts_rate = fi->rtscts_rate; 1227 1228 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) { 1229 bool is_40, is_sgi, is_sp, is_cck; 1230 int phy; 1231 1232 if (!rates[i].count || (rates[i].idx < 0)) 1233 continue; 1234 1235 rix = rates[i].idx; 1236 info->rates[i].Tries = rates[i].count; 1237 1238 /* 1239 * Handle RTS threshold for unaggregated HT frames. 1240 */ 1241 if (bf_isampdu(bf) && !bf_isaggr(bf) && 1242 (rates[i].flags & IEEE80211_TX_RC_MCS) && 1243 unlikely(rts_thresh != (u32) -1)) { 1244 if (!rts_thresh || (len > rts_thresh)) 1245 rts = true; 1246 } 1247 1248 if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) { 1249 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1250 info->flags |= ATH9K_TXDESC_RTSENA; 1251 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { 1252 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1253 info->flags |= ATH9K_TXDESC_CTSENA; 1254 } 1255 1256 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 1257 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040; 1258 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 1259 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI; 1260 1261 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI); 1262 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH); 1263 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE); 1264 1265 if (rates[i].flags & IEEE80211_TX_RC_MCS) { 1266 /* MCS rates */ 1267 info->rates[i].Rate = rix | 0x80; 1268 info->rates[i].ChSel = ath_txchainmask_reduction(sc, 1269 ah->txchainmask, info->rates[i].Rate); 1270 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len, 1271 is_40, is_sgi, is_sp); 1272 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC)) 1273 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC; 1274 if (rix >= 8 && fi->dyn_smps) { 1275 info->rates[i].RateFlags |= 1276 ATH9K_RATESERIES_RTS_CTS; 1277 info->flags |= ATH9K_TXDESC_CTSENA; 1278 } 1279 1280 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, 1281 is_40, false); 1282 continue; 1283 } 1284 1285 /* legacy rates */ 1286 rate = &common->sbands[tx_info->band].bitrates[rates[i].idx]; 1287 if ((tx_info->band == NL80211_BAND_2GHZ) && 1288 !(rate->flags & IEEE80211_RATE_ERP_G)) 1289 phy = WLAN_RC_PHY_CCK; 1290 else 1291 phy = WLAN_RC_PHY_OFDM; 1292 1293 info->rates[i].Rate = rate->hw_value; 1294 if (rate->hw_value_short) { 1295 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 1296 info->rates[i].Rate |= rate->hw_value_short; 1297 } else { 1298 is_sp = false; 1299 } 1300 1301 if (bf->bf_state.bfs_paprd) 1302 info->rates[i].ChSel = ah->txchainmask; 1303 else 1304 info->rates[i].ChSel = ath_txchainmask_reduction(sc, 1305 ah->txchainmask, info->rates[i].Rate); 1306 1307 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah, 1308 phy, rate->bitrate * 100, len, rix, is_sp); 1309 1310 is_cck = IS_CCK_RATE(info->rates[i].Rate); 1311 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, false, 1312 is_cck); 1313 } 1314 1315 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */ 1316 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit)) 1317 info->flags &= ~ATH9K_TXDESC_RTSENA; 1318 1319 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */ 1320 if (info->flags & ATH9K_TXDESC_RTSENA) 1321 info->flags &= ~ATH9K_TXDESC_CTSENA; 1322 } 1323 1324 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb) 1325 { 1326 struct ieee80211_hdr *hdr; 1327 enum ath9k_pkt_type htype; 1328 __le16 fc; 1329 1330 hdr = (struct ieee80211_hdr *)skb->data; 1331 fc = hdr->frame_control; 1332 1333 if (ieee80211_is_beacon(fc)) 1334 htype = ATH9K_PKT_TYPE_BEACON; 1335 else if (ieee80211_is_probe_resp(fc)) 1336 htype = ATH9K_PKT_TYPE_PROBE_RESP; 1337 else if (ieee80211_is_atim(fc)) 1338 htype = ATH9K_PKT_TYPE_ATIM; 1339 else if (ieee80211_is_pspoll(fc)) 1340 htype = ATH9K_PKT_TYPE_PSPOLL; 1341 else 1342 htype = ATH9K_PKT_TYPE_NORMAL; 1343 1344 return htype; 1345 } 1346 1347 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf, 1348 struct ath_txq *txq, int len) 1349 { 1350 struct ath_hw *ah = sc->sc_ah; 1351 struct ath_buf *bf_first = NULL; 1352 struct ath_tx_info info; 1353 u32 rts_thresh = sc->hw->wiphy->rts_threshold; 1354 bool rts = false; 1355 1356 memset(&info, 0, sizeof(info)); 1357 info.is_first = true; 1358 info.is_last = true; 1359 info.qcu = txq->axq_qnum; 1360 1361 while (bf) { 1362 struct sk_buff *skb = bf->bf_mpdu; 1363 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1364 struct ath_frame_info *fi = get_frame_info(skb); 1365 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR); 1366 1367 info.type = get_hw_packet_type(skb); 1368 if (bf->bf_next) 1369 info.link = bf->bf_next->bf_daddr; 1370 else 1371 info.link = (sc->tx99_state) ? bf->bf_daddr : 0; 1372 1373 if (!bf_first) { 1374 bf_first = bf; 1375 1376 if (!sc->tx99_state) 1377 info.flags = ATH9K_TXDESC_INTREQ; 1378 if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) || 1379 txq == sc->tx.uapsdq) 1380 info.flags |= ATH9K_TXDESC_CLRDMASK; 1381 1382 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) 1383 info.flags |= ATH9K_TXDESC_NOACK; 1384 if (tx_info->flags & IEEE80211_TX_CTL_LDPC) 1385 info.flags |= ATH9K_TXDESC_LDPC; 1386 1387 if (bf->bf_state.bfs_paprd) 1388 info.flags |= (u32) bf->bf_state.bfs_paprd << 1389 ATH9K_TXDESC_PAPRD_S; 1390 1391 /* 1392 * mac80211 doesn't handle RTS threshold for HT because 1393 * the decision has to be taken based on AMPDU length 1394 * and aggregation is done entirely inside ath9k. 1395 * Set the RTS/CTS flag for the first subframe based 1396 * on the threshold. 1397 */ 1398 if (aggr && (bf == bf_first) && 1399 unlikely(rts_thresh != (u32) -1)) { 1400 /* 1401 * "len" is the size of the entire AMPDU. 1402 */ 1403 if (!rts_thresh || (len > rts_thresh)) 1404 rts = true; 1405 } 1406 1407 if (!aggr) 1408 len = fi->framelen; 1409 1410 ath_buf_set_rate(sc, bf, &info, len, rts); 1411 } 1412 1413 info.buf_addr[0] = bf->bf_buf_addr; 1414 info.buf_len[0] = skb->len; 1415 info.pkt_len = fi->framelen; 1416 info.keyix = fi->keyix; 1417 info.keytype = fi->keytype; 1418 1419 if (aggr) { 1420 if (bf == bf_first) 1421 info.aggr = AGGR_BUF_FIRST; 1422 else if (bf == bf_first->bf_lastbf) 1423 info.aggr = AGGR_BUF_LAST; 1424 else 1425 info.aggr = AGGR_BUF_MIDDLE; 1426 1427 info.ndelim = bf->bf_state.ndelim; 1428 info.aggr_len = len; 1429 } 1430 1431 if (bf == bf_first->bf_lastbf) 1432 bf_first = NULL; 1433 1434 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info); 1435 bf = bf->bf_next; 1436 } 1437 } 1438 1439 static void 1440 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq, 1441 struct ath_atx_tid *tid, struct list_head *bf_q, 1442 struct ath_buf *bf_first) 1443 { 1444 struct ath_buf *bf = bf_first, *bf_prev = NULL; 1445 int nframes = 0, ret; 1446 1447 do { 1448 struct ieee80211_tx_info *tx_info; 1449 1450 nframes++; 1451 list_add_tail(&bf->list, bf_q); 1452 if (bf_prev) 1453 bf_prev->bf_next = bf; 1454 bf_prev = bf; 1455 1456 if (nframes >= 2) 1457 break; 1458 1459 ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf); 1460 if (ret < 0) 1461 break; 1462 1463 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1464 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 1465 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu); 1466 break; 1467 } 1468 1469 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1470 } while (1); 1471 } 1472 1473 static int ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq, 1474 struct ath_atx_tid *tid) 1475 { 1476 struct ath_buf *bf = NULL; 1477 struct ieee80211_tx_info *tx_info; 1478 struct list_head bf_q; 1479 int aggr_len = 0, ret; 1480 bool aggr; 1481 1482 INIT_LIST_HEAD(&bf_q); 1483 1484 ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf); 1485 if (ret < 0) 1486 return ret; 1487 1488 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1489 aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU); 1490 if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) || 1491 (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) { 1492 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu); 1493 return -EBUSY; 1494 } 1495 1496 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1497 if (aggr) 1498 aggr_len = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf); 1499 else 1500 ath_tx_form_burst(sc, txq, tid, &bf_q, bf); 1501 1502 if (list_empty(&bf_q)) 1503 return -EAGAIN; 1504 1505 if (tid->clear_ps_filter || tid->an->no_ps_filter) { 1506 tid->clear_ps_filter = false; 1507 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1508 } 1509 1510 ath_tx_fill_desc(sc, bf, txq, aggr_len); 1511 ath_tx_txqaddbuf(sc, txq, &bf_q, false); 1512 return 0; 1513 } 1514 1515 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta, 1516 u16 tid, u16 *ssn) 1517 { 1518 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1519 struct ath_atx_tid *txtid; 1520 struct ath_txq *txq; 1521 struct ath_node *an; 1522 u8 density; 1523 1524 ath_dbg(common, XMIT, "%s called\n", __func__); 1525 1526 an = (struct ath_node *)sta->drv_priv; 1527 txtid = ATH_AN_2_TID(an, tid); 1528 txq = txtid->txq; 1529 1530 ath_txq_lock(sc, txq); 1531 1532 /* update ampdu factor/density, they may have changed. This may happen 1533 * in HT IBSS when a beacon with HT-info is received after the station 1534 * has already been added. 1535 */ 1536 if (sta->ht_cap.ht_supported) { 1537 an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + 1538 sta->ht_cap.ampdu_factor)) - 1; 1539 density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density); 1540 an->mpdudensity = density; 1541 } 1542 1543 txtid->active = true; 1544 *ssn = txtid->seq_start = txtid->seq_next; 1545 txtid->bar_index = -1; 1546 1547 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf)); 1548 txtid->baw_head = txtid->baw_tail = 0; 1549 1550 ath_txq_unlock_complete(sc, txq); 1551 1552 return 0; 1553 } 1554 1555 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid) 1556 { 1557 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1558 struct ath_node *an = (struct ath_node *)sta->drv_priv; 1559 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid); 1560 struct ath_txq *txq = txtid->txq; 1561 1562 ath_dbg(common, XMIT, "%s called\n", __func__); 1563 1564 ath_txq_lock(sc, txq); 1565 txtid->active = false; 1566 ath_tx_flush_tid(sc, txtid); 1567 ath_txq_unlock_complete(sc, txq); 1568 } 1569 1570 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc, 1571 struct ath_node *an) 1572 { 1573 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1574 struct ath_atx_tid *tid; 1575 int tidno; 1576 1577 ath_dbg(common, XMIT, "%s called\n", __func__); 1578 1579 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) { 1580 tid = ath_node_to_tid(an, tidno); 1581 1582 if (!skb_queue_empty(&tid->retry_q)) 1583 ieee80211_sta_set_buffered(sta, tid->tidno, true); 1584 1585 } 1586 } 1587 1588 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an) 1589 { 1590 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1591 struct ath_atx_tid *tid; 1592 struct ath_txq *txq; 1593 int tidno; 1594 1595 ath_dbg(common, XMIT, "%s called\n", __func__); 1596 1597 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) { 1598 tid = ath_node_to_tid(an, tidno); 1599 txq = tid->txq; 1600 1601 ath_txq_lock(sc, txq); 1602 tid->clear_ps_filter = true; 1603 if (!skb_queue_empty(&tid->retry_q)) { 1604 ath_tx_queue_tid(sc, tid); 1605 ath_txq_schedule(sc, txq); 1606 } 1607 ath_txq_unlock_complete(sc, txq); 1608 1609 } 1610 } 1611 1612 1613 static void 1614 ath9k_set_moredata(struct ath_softc *sc, struct ath_buf *bf, bool val) 1615 { 1616 struct ieee80211_hdr *hdr; 1617 u16 mask = cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1618 u16 mask_val = mask * val; 1619 1620 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data; 1621 if ((hdr->frame_control & mask) != mask_val) { 1622 hdr->frame_control = (hdr->frame_control & ~mask) | mask_val; 1623 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 1624 sizeof(*hdr), DMA_TO_DEVICE); 1625 } 1626 } 1627 1628 void ath9k_release_buffered_frames(struct ieee80211_hw *hw, 1629 struct ieee80211_sta *sta, 1630 u16 tids, int nframes, 1631 enum ieee80211_frame_release_type reason, 1632 bool more_data) 1633 { 1634 struct ath_softc *sc = hw->priv; 1635 struct ath_node *an = (struct ath_node *)sta->drv_priv; 1636 struct ath_txq *txq = sc->tx.uapsdq; 1637 struct ieee80211_tx_info *info; 1638 struct list_head bf_q; 1639 struct ath_buf *bf_tail = NULL, *bf = NULL; 1640 int sent = 0; 1641 int i, ret; 1642 1643 INIT_LIST_HEAD(&bf_q); 1644 for (i = 0; tids && nframes; i++, tids >>= 1) { 1645 struct ath_atx_tid *tid; 1646 1647 if (!(tids & 1)) 1648 continue; 1649 1650 tid = ATH_AN_2_TID(an, i); 1651 1652 ath_txq_lock(sc, tid->txq); 1653 while (nframes > 0) { 1654 ret = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, 1655 tid, &bf); 1656 if (ret < 0) 1657 break; 1658 1659 ath9k_set_moredata(sc, bf, true); 1660 list_add_tail(&bf->list, &bf_q); 1661 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1662 if (bf_isampdu(bf)) 1663 bf->bf_state.bf_type &= ~BUF_AGGR; 1664 if (bf_tail) 1665 bf_tail->bf_next = bf; 1666 1667 bf_tail = bf; 1668 nframes--; 1669 sent++; 1670 TX_STAT_INC(sc, txq->axq_qnum, a_queued_hw); 1671 1672 if (an->sta && skb_queue_empty(&tid->retry_q)) 1673 ieee80211_sta_set_buffered(an->sta, i, false); 1674 } 1675 ath_txq_unlock_complete(sc, tid->txq); 1676 } 1677 1678 if (list_empty(&bf_q)) 1679 return; 1680 1681 if (!more_data) 1682 ath9k_set_moredata(sc, bf_tail, false); 1683 1684 info = IEEE80211_SKB_CB(bf_tail->bf_mpdu); 1685 info->flags |= IEEE80211_TX_STATUS_EOSP; 1686 1687 bf = list_first_entry(&bf_q, struct ath_buf, list); 1688 ath_txq_lock(sc, txq); 1689 ath_tx_fill_desc(sc, bf, txq, 0); 1690 ath_tx_txqaddbuf(sc, txq, &bf_q, false); 1691 ath_txq_unlock(sc, txq); 1692 } 1693 1694 /********************/ 1695 /* Queue Management */ 1696 /********************/ 1697 1698 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 1699 { 1700 struct ath_hw *ah = sc->sc_ah; 1701 struct ath9k_tx_queue_info qi; 1702 static const int subtype_txq_to_hwq[] = { 1703 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE, 1704 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK, 1705 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI, 1706 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO, 1707 }; 1708 int axq_qnum, i; 1709 1710 memset(&qi, 0, sizeof(qi)); 1711 qi.tqi_subtype = subtype_txq_to_hwq[subtype]; 1712 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT; 1713 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT; 1714 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT; 1715 qi.tqi_physCompBuf = 0; 1716 1717 /* 1718 * Enable interrupts only for EOL and DESC conditions. 1719 * We mark tx descriptors to receive a DESC interrupt 1720 * when a tx queue gets deep; otherwise waiting for the 1721 * EOL to reap descriptors. Note that this is done to 1722 * reduce interrupt load and this only defers reaping 1723 * descriptors, never transmitting frames. Aside from 1724 * reducing interrupts this also permits more concurrency. 1725 * The only potential downside is if the tx queue backs 1726 * up in which case the top half of the kernel may backup 1727 * due to a lack of tx descriptors. 1728 * 1729 * The UAPSD queue is an exception, since we take a desc- 1730 * based intr on the EOSP frames. 1731 */ 1732 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1733 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE; 1734 } else { 1735 if (qtype == ATH9K_TX_QUEUE_UAPSD) 1736 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE; 1737 else 1738 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | 1739 TXQ_FLAG_TXDESCINT_ENABLE; 1740 } 1741 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi); 1742 if (axq_qnum == -1) { 1743 /* 1744 * NB: don't print a message, this happens 1745 * normally on parts with too few tx queues 1746 */ 1747 return NULL; 1748 } 1749 if (!ATH_TXQ_SETUP(sc, axq_qnum)) { 1750 struct ath_txq *txq = &sc->tx.txq[axq_qnum]; 1751 1752 txq->axq_qnum = axq_qnum; 1753 txq->mac80211_qnum = -1; 1754 txq->axq_link = NULL; 1755 __skb_queue_head_init(&txq->complete_q); 1756 INIT_LIST_HEAD(&txq->axq_q); 1757 spin_lock_init(&txq->axq_lock); 1758 txq->axq_depth = 0; 1759 txq->axq_ampdu_depth = 0; 1760 txq->axq_tx_inprogress = false; 1761 sc->tx.txqsetup |= 1<<axq_qnum; 1762 1763 txq->txq_headidx = txq->txq_tailidx = 0; 1764 for (i = 0; i < ATH_TXFIFO_DEPTH; i++) 1765 INIT_LIST_HEAD(&txq->txq_fifo[i]); 1766 } 1767 return &sc->tx.txq[axq_qnum]; 1768 } 1769 1770 int ath_txq_update(struct ath_softc *sc, int qnum, 1771 struct ath9k_tx_queue_info *qinfo) 1772 { 1773 struct ath_hw *ah = sc->sc_ah; 1774 int error = 0; 1775 struct ath9k_tx_queue_info qi; 1776 1777 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum); 1778 1779 ath9k_hw_get_txq_props(ah, qnum, &qi); 1780 qi.tqi_aifs = qinfo->tqi_aifs; 1781 qi.tqi_cwmin = qinfo->tqi_cwmin; 1782 qi.tqi_cwmax = qinfo->tqi_cwmax; 1783 qi.tqi_burstTime = qinfo->tqi_burstTime; 1784 qi.tqi_readyTime = qinfo->tqi_readyTime; 1785 1786 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) { 1787 ath_err(ath9k_hw_common(sc->sc_ah), 1788 "Unable to update hardware queue %u!\n", qnum); 1789 error = -EIO; 1790 } else { 1791 ath9k_hw_resettxqueue(ah, qnum); 1792 } 1793 1794 return error; 1795 } 1796 1797 int ath_cabq_update(struct ath_softc *sc) 1798 { 1799 struct ath9k_tx_queue_info qi; 1800 struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon; 1801 int qnum = sc->beacon.cabq->axq_qnum; 1802 1803 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi); 1804 1805 qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) * 1806 ATH_CABQ_READY_TIME) / 100; 1807 ath_txq_update(sc, qnum, &qi); 1808 1809 return 0; 1810 } 1811 1812 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq, 1813 struct list_head *list) 1814 { 1815 struct ath_buf *bf, *lastbf; 1816 struct list_head bf_head; 1817 struct ath_tx_status ts; 1818 1819 memset(&ts, 0, sizeof(ts)); 1820 ts.ts_status = ATH9K_TX_FLUSH; 1821 INIT_LIST_HEAD(&bf_head); 1822 1823 while (!list_empty(list)) { 1824 bf = list_first_entry(list, struct ath_buf, list); 1825 1826 if (bf->bf_state.stale) { 1827 list_del(&bf->list); 1828 1829 ath_tx_return_buffer(sc, bf); 1830 continue; 1831 } 1832 1833 lastbf = bf->bf_lastbf; 1834 list_cut_position(&bf_head, list, &lastbf->list); 1835 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 1836 } 1837 } 1838 1839 /* 1840 * Drain a given TX queue (could be Beacon or Data) 1841 * 1842 * This assumes output has been stopped and 1843 * we do not need to block ath_tx_tasklet. 1844 */ 1845 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq) 1846 { 1847 rcu_read_lock(); 1848 ath_txq_lock(sc, txq); 1849 1850 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1851 int idx = txq->txq_tailidx; 1852 1853 while (!list_empty(&txq->txq_fifo[idx])) { 1854 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]); 1855 1856 INCR(idx, ATH_TXFIFO_DEPTH); 1857 } 1858 txq->txq_tailidx = idx; 1859 } 1860 1861 txq->axq_link = NULL; 1862 txq->axq_tx_inprogress = false; 1863 ath_drain_txq_list(sc, txq, &txq->axq_q); 1864 1865 ath_txq_unlock_complete(sc, txq); 1866 rcu_read_unlock(); 1867 } 1868 1869 bool ath_drain_all_txq(struct ath_softc *sc) 1870 { 1871 struct ath_hw *ah = sc->sc_ah; 1872 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1873 struct ath_txq *txq; 1874 int i; 1875 u32 npend = 0; 1876 1877 if (test_bit(ATH_OP_INVALID, &common->op_flags)) 1878 return true; 1879 1880 ath9k_hw_abort_tx_dma(ah); 1881 1882 /* Check if any queue remains active */ 1883 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1884 if (!ATH_TXQ_SETUP(sc, i)) 1885 continue; 1886 1887 if (!sc->tx.txq[i].axq_depth) 1888 continue; 1889 1890 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum)) 1891 npend |= BIT(i); 1892 } 1893 1894 if (npend) { 1895 RESET_STAT_INC(sc, RESET_TX_DMA_ERROR); 1896 ath_dbg(common, RESET, 1897 "Failed to stop TX DMA, queues=0x%03x!\n", npend); 1898 } 1899 1900 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1901 if (!ATH_TXQ_SETUP(sc, i)) 1902 continue; 1903 1904 txq = &sc->tx.txq[i]; 1905 ath_draintxq(sc, txq); 1906 } 1907 1908 return !npend; 1909 } 1910 1911 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 1912 { 1913 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum); 1914 sc->tx.txqsetup &= ~(1<<txq->axq_qnum); 1915 } 1916 1917 /* For each acq entry, for each tid, try to schedule packets 1918 * for transmit until ampdu_depth has reached min Q depth. 1919 */ 1920 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq) 1921 { 1922 struct ieee80211_hw *hw = sc->hw; 1923 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1924 struct ieee80211_txq *queue; 1925 struct ath_atx_tid *tid; 1926 int ret; 1927 1928 if (txq->mac80211_qnum < 0) 1929 return; 1930 1931 if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) 1932 return; 1933 1934 ieee80211_txq_schedule_start(hw, txq->mac80211_qnum); 1935 spin_lock_bh(&sc->chan_lock); 1936 rcu_read_lock(); 1937 1938 if (sc->cur_chan->stopped) 1939 goto out; 1940 1941 while ((queue = ieee80211_next_txq(hw, txq->mac80211_qnum))) { 1942 bool force; 1943 1944 tid = (struct ath_atx_tid *)queue->drv_priv; 1945 1946 ret = ath_tx_sched_aggr(sc, txq, tid); 1947 ath_dbg(common, QUEUE, "ath_tx_sched_aggr returned %d\n", ret); 1948 1949 force = !skb_queue_empty(&tid->retry_q); 1950 ieee80211_return_txq(hw, queue, force); 1951 } 1952 1953 out: 1954 rcu_read_unlock(); 1955 spin_unlock_bh(&sc->chan_lock); 1956 ieee80211_txq_schedule_end(hw, txq->mac80211_qnum); 1957 } 1958 1959 void ath_txq_schedule_all(struct ath_softc *sc) 1960 { 1961 struct ath_txq *txq; 1962 int i; 1963 1964 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 1965 txq = sc->tx.txq_map[i]; 1966 1967 spin_lock_bh(&txq->axq_lock); 1968 ath_txq_schedule(sc, txq); 1969 spin_unlock_bh(&txq->axq_lock); 1970 } 1971 } 1972 1973 /***********/ 1974 /* TX, DMA */ 1975 /***********/ 1976 1977 /* 1978 * Insert a chain of ath_buf (descriptors) on a txq and 1979 * assume the descriptors are already chained together by caller. 1980 */ 1981 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 1982 struct list_head *head, bool internal) 1983 { 1984 struct ath_hw *ah = sc->sc_ah; 1985 struct ath_common *common = ath9k_hw_common(ah); 1986 struct ath_buf *bf, *bf_last; 1987 bool puttxbuf = false; 1988 bool edma; 1989 1990 /* 1991 * Insert the frame on the outbound list and 1992 * pass it on to the hardware. 1993 */ 1994 1995 if (list_empty(head)) 1996 return; 1997 1998 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA); 1999 bf = list_first_entry(head, struct ath_buf, list); 2000 bf_last = list_entry(head->prev, struct ath_buf, list); 2001 2002 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n", 2003 txq->axq_qnum, txq->axq_depth); 2004 2005 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) { 2006 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]); 2007 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH); 2008 puttxbuf = true; 2009 } else { 2010 list_splice_tail_init(head, &txq->axq_q); 2011 2012 if (txq->axq_link) { 2013 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr); 2014 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n", 2015 txq->axq_qnum, txq->axq_link, 2016 ito64(bf->bf_daddr), bf->bf_desc); 2017 } else if (!edma) 2018 puttxbuf = true; 2019 2020 txq->axq_link = bf_last->bf_desc; 2021 } 2022 2023 if (puttxbuf) { 2024 TX_STAT_INC(sc, txq->axq_qnum, puttxbuf); 2025 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 2026 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n", 2027 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc); 2028 } 2029 2030 if (!edma || sc->tx99_state) { 2031 TX_STAT_INC(sc, txq->axq_qnum, txstart); 2032 ath9k_hw_txstart(ah, txq->axq_qnum); 2033 } 2034 2035 if (!internal) { 2036 while (bf) { 2037 txq->axq_depth++; 2038 if (bf_is_ampdu_not_probing(bf)) 2039 txq->axq_ampdu_depth++; 2040 2041 bf_last = bf->bf_lastbf; 2042 bf = bf_last->bf_next; 2043 bf_last->bf_next = NULL; 2044 } 2045 } 2046 } 2047 2048 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 2049 struct ath_atx_tid *tid, struct sk_buff *skb) 2050 { 2051 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2052 struct ath_frame_info *fi = get_frame_info(skb); 2053 struct list_head bf_head; 2054 struct ath_buf *bf = fi->bf; 2055 2056 INIT_LIST_HEAD(&bf_head); 2057 list_add_tail(&bf->list, &bf_head); 2058 bf->bf_state.bf_type = 0; 2059 if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) { 2060 bf->bf_state.bf_type = BUF_AMPDU; 2061 ath_tx_addto_baw(sc, tid, bf); 2062 } 2063 2064 bf->bf_next = NULL; 2065 bf->bf_lastbf = bf; 2066 ath_tx_fill_desc(sc, bf, txq, fi->framelen); 2067 ath_tx_txqaddbuf(sc, txq, &bf_head, false); 2068 TX_STAT_INC(sc, txq->axq_qnum, queued); 2069 } 2070 2071 static void setup_frame_info(struct ieee80211_hw *hw, 2072 struct ieee80211_sta *sta, 2073 struct sk_buff *skb, 2074 int framelen) 2075 { 2076 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2077 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key; 2078 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2079 const struct ieee80211_rate *rate; 2080 struct ath_frame_info *fi = get_frame_info(skb); 2081 struct ath_node *an = NULL; 2082 enum ath9k_key_type keytype; 2083 bool short_preamble = false; 2084 u8 txpower; 2085 2086 /* 2087 * We check if Short Preamble is needed for the CTS rate by 2088 * checking the BSS's global flag. 2089 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used. 2090 */ 2091 if (tx_info->control.vif && 2092 tx_info->control.vif->bss_conf.use_short_preamble) 2093 short_preamble = true; 2094 2095 rate = ieee80211_get_rts_cts_rate(hw, tx_info); 2096 keytype = ath9k_cmn_get_hw_crypto_keytype(skb); 2097 2098 if (sta) 2099 an = (struct ath_node *) sta->drv_priv; 2100 2101 if (tx_info->control.vif) { 2102 struct ieee80211_vif *vif = tx_info->control.vif; 2103 if (vif->bss_conf.txpower == INT_MIN) 2104 goto nonvifpower; 2105 txpower = 2 * vif->bss_conf.txpower; 2106 } else { 2107 struct ath_softc *sc; 2108 nonvifpower: 2109 sc = hw->priv; 2110 2111 txpower = sc->cur_chan->cur_txpower; 2112 } 2113 2114 memset(fi, 0, sizeof(*fi)); 2115 fi->txq = -1; 2116 if (hw_key) 2117 fi->keyix = hw_key->hw_key_idx; 2118 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0) 2119 fi->keyix = an->ps_key; 2120 else 2121 fi->keyix = ATH9K_TXKEYIX_INVALID; 2122 fi->dyn_smps = sta && sta->smps_mode == IEEE80211_SMPS_DYNAMIC; 2123 fi->keytype = keytype; 2124 fi->framelen = framelen; 2125 fi->tx_power = txpower; 2126 2127 if (!rate) 2128 return; 2129 fi->rtscts_rate = rate->hw_value; 2130 if (short_preamble) 2131 fi->rtscts_rate |= rate->hw_value_short; 2132 } 2133 2134 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate) 2135 { 2136 struct ath_hw *ah = sc->sc_ah; 2137 struct ath9k_channel *curchan = ah->curchan; 2138 2139 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) && 2140 (chainmask == 0x7) && (rate < 0x90)) 2141 return 0x3; 2142 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) && 2143 IS_CCK_RATE(rate)) 2144 return 0x2; 2145 else 2146 return chainmask; 2147 } 2148 2149 /* 2150 * Assign a descriptor (and sequence number if necessary, 2151 * and map buffer for DMA. Frees skb on error 2152 */ 2153 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, 2154 struct ath_txq *txq, 2155 struct ath_atx_tid *tid, 2156 struct sk_buff *skb) 2157 { 2158 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2159 struct ath_frame_info *fi = get_frame_info(skb); 2160 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2161 struct ath_buf *bf; 2162 int fragno; 2163 u16 seqno; 2164 2165 bf = ath_tx_get_buffer(sc); 2166 if (!bf) { 2167 ath_dbg(common, XMIT, "TX buffers are full\n"); 2168 return NULL; 2169 } 2170 2171 ATH_TXBUF_RESET(bf); 2172 2173 if (tid && ieee80211_is_data_present(hdr->frame_control)) { 2174 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG; 2175 seqno = tid->seq_next; 2176 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT); 2177 2178 if (fragno) 2179 hdr->seq_ctrl |= cpu_to_le16(fragno); 2180 2181 if (!ieee80211_has_morefrags(hdr->frame_control)) 2182 INCR(tid->seq_next, IEEE80211_SEQ_MAX); 2183 2184 bf->bf_state.seqno = seqno; 2185 } 2186 2187 bf->bf_mpdu = skb; 2188 2189 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 2190 skb->len, DMA_TO_DEVICE); 2191 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) { 2192 bf->bf_mpdu = NULL; 2193 bf->bf_buf_addr = 0; 2194 ath_err(ath9k_hw_common(sc->sc_ah), 2195 "dma_mapping_error() on TX\n"); 2196 ath_tx_return_buffer(sc, bf); 2197 return NULL; 2198 } 2199 2200 fi->bf = bf; 2201 2202 return bf; 2203 } 2204 2205 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb) 2206 { 2207 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2208 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2209 struct ieee80211_vif *vif = info->control.vif; 2210 struct ath_vif *avp; 2211 2212 if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)) 2213 return; 2214 2215 if (!vif) 2216 return; 2217 2218 avp = (struct ath_vif *)vif->drv_priv; 2219 2220 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) 2221 avp->seq_no += 0x10; 2222 2223 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); 2224 hdr->seq_ctrl |= cpu_to_le16(avp->seq_no); 2225 } 2226 2227 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb, 2228 struct ath_tx_control *txctl) 2229 { 2230 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2231 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2232 struct ieee80211_sta *sta = txctl->sta; 2233 struct ieee80211_vif *vif = info->control.vif; 2234 struct ath_vif *avp; 2235 struct ath_softc *sc = hw->priv; 2236 int frmlen = skb->len + FCS_LEN; 2237 int padpos, padsize; 2238 2239 /* NOTE: sta can be NULL according to net/mac80211.h */ 2240 if (sta) 2241 txctl->an = (struct ath_node *)sta->drv_priv; 2242 else if (vif && ieee80211_is_data(hdr->frame_control)) { 2243 avp = (void *)vif->drv_priv; 2244 txctl->an = &avp->mcast_node; 2245 } 2246 2247 if (info->control.hw_key) 2248 frmlen += info->control.hw_key->icv_len; 2249 2250 ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb); 2251 2252 if ((vif && vif->type != NL80211_IFTYPE_AP && 2253 vif->type != NL80211_IFTYPE_AP_VLAN) || 2254 !ieee80211_is_data(hdr->frame_control)) 2255 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 2256 2257 /* Add the padding after the header if this is not already done */ 2258 padpos = ieee80211_hdrlen(hdr->frame_control); 2259 padsize = padpos & 3; 2260 if (padsize && skb->len > padpos) { 2261 if (skb_headroom(skb) < padsize) 2262 return -ENOMEM; 2263 2264 skb_push(skb, padsize); 2265 memmove(skb->data, skb->data + padsize, padpos); 2266 } 2267 2268 setup_frame_info(hw, sta, skb, frmlen); 2269 return 0; 2270 } 2271 2272 2273 /* Upon failure caller should free skb */ 2274 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb, 2275 struct ath_tx_control *txctl) 2276 { 2277 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2278 struct ieee80211_sta *sta = txctl->sta; 2279 struct ieee80211_vif *vif = info->control.vif; 2280 struct ath_frame_info *fi = get_frame_info(skb); 2281 struct ath_softc *sc = hw->priv; 2282 struct ath_txq *txq = txctl->txq; 2283 struct ath_atx_tid *tid = NULL; 2284 struct ath_node *an = NULL; 2285 struct ath_buf *bf; 2286 bool ps_resp; 2287 int q, ret; 2288 2289 ps_resp = !!(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE); 2290 2291 ret = ath_tx_prepare(hw, skb, txctl); 2292 if (ret) 2293 return ret; 2294 2295 /* 2296 * At this point, the vif, hw_key and sta pointers in the tx control 2297 * info are no longer valid (overwritten by the ath_frame_info data. 2298 */ 2299 2300 q = skb_get_queue_mapping(skb); 2301 2302 if (ps_resp) 2303 txq = sc->tx.uapsdq; 2304 2305 if (txctl->sta) { 2306 an = (struct ath_node *) sta->drv_priv; 2307 tid = ath_get_skb_tid(sc, an, skb); 2308 } 2309 2310 ath_txq_lock(sc, txq); 2311 if (txq == sc->tx.txq_map[q]) { 2312 fi->txq = q; 2313 ++txq->pending_frames; 2314 } 2315 2316 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 2317 if (!bf) { 2318 ath_txq_skb_done(sc, txq, skb); 2319 if (txctl->paprd) 2320 dev_kfree_skb_any(skb); 2321 else 2322 ieee80211_free_txskb(sc->hw, skb); 2323 goto out; 2324 } 2325 2326 bf->bf_state.bfs_paprd = txctl->paprd; 2327 2328 if (txctl->paprd) 2329 bf->bf_state.bfs_paprd_timestamp = jiffies; 2330 2331 ath_set_rates(vif, sta, bf); 2332 ath_tx_send_normal(sc, txq, tid, skb); 2333 2334 out: 2335 ath_txq_unlock(sc, txq); 2336 2337 return 0; 2338 } 2339 2340 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2341 struct sk_buff *skb) 2342 { 2343 struct ath_softc *sc = hw->priv; 2344 struct ath_tx_control txctl = { 2345 .txq = sc->beacon.cabq 2346 }; 2347 struct ath_tx_info info = {}; 2348 struct ath_buf *bf_tail = NULL; 2349 struct ath_buf *bf; 2350 LIST_HEAD(bf_q); 2351 int duration = 0; 2352 int max_duration; 2353 2354 max_duration = 2355 sc->cur_chan->beacon.beacon_interval * 1000 * 2356 sc->cur_chan->beacon.dtim_period / ATH_BCBUF; 2357 2358 do { 2359 struct ath_frame_info *fi = get_frame_info(skb); 2360 2361 if (ath_tx_prepare(hw, skb, &txctl)) 2362 break; 2363 2364 bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb); 2365 if (!bf) 2366 break; 2367 2368 bf->bf_lastbf = bf; 2369 ath_set_rates(vif, NULL, bf); 2370 ath_buf_set_rate(sc, bf, &info, fi->framelen, false); 2371 duration += info.rates[0].PktDuration; 2372 if (bf_tail) 2373 bf_tail->bf_next = bf; 2374 2375 list_add_tail(&bf->list, &bf_q); 2376 bf_tail = bf; 2377 skb = NULL; 2378 2379 if (duration > max_duration) 2380 break; 2381 2382 skb = ieee80211_get_buffered_bc(hw, vif); 2383 } while(skb); 2384 2385 if (skb) 2386 ieee80211_free_txskb(hw, skb); 2387 2388 if (list_empty(&bf_q)) 2389 return; 2390 2391 bf = list_last_entry(&bf_q, struct ath_buf, list); 2392 ath9k_set_moredata(sc, bf, false); 2393 2394 bf = list_first_entry(&bf_q, struct ath_buf, list); 2395 ath_txq_lock(sc, txctl.txq); 2396 ath_tx_fill_desc(sc, bf, txctl.txq, 0); 2397 ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false); 2398 TX_STAT_INC(sc, txctl.txq->axq_qnum, queued); 2399 ath_txq_unlock(sc, txctl.txq); 2400 } 2401 2402 /*****************/ 2403 /* TX Completion */ 2404 /*****************/ 2405 2406 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, 2407 int tx_flags, struct ath_txq *txq, 2408 struct ieee80211_sta *sta) 2409 { 2410 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2411 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2412 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data; 2413 int padpos, padsize; 2414 unsigned long flags; 2415 2416 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb); 2417 2418 if (sc->sc_ah->caldata) 2419 set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags); 2420 2421 if (!(tx_flags & ATH_TX_ERROR)) { 2422 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) 2423 tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED; 2424 else 2425 tx_info->flags |= IEEE80211_TX_STAT_ACK; 2426 } 2427 2428 if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) { 2429 padpos = ieee80211_hdrlen(hdr->frame_control); 2430 padsize = padpos & 3; 2431 if (padsize && skb->len>padpos+padsize) { 2432 /* 2433 * Remove MAC header padding before giving the frame back to 2434 * mac80211. 2435 */ 2436 memmove(skb->data + padsize, skb->data, padpos); 2437 skb_pull(skb, padsize); 2438 } 2439 } 2440 2441 spin_lock_irqsave(&sc->sc_pm_lock, flags); 2442 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) { 2443 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK; 2444 ath_dbg(common, PS, 2445 "Going back to sleep after having received TX status (0x%lx)\n", 2446 sc->ps_flags & (PS_WAIT_FOR_BEACON | 2447 PS_WAIT_FOR_CAB | 2448 PS_WAIT_FOR_PSPOLL_DATA | 2449 PS_WAIT_FOR_TX_ACK)); 2450 } 2451 spin_unlock_irqrestore(&sc->sc_pm_lock, flags); 2452 2453 ath_txq_skb_done(sc, txq, skb); 2454 tx_info->status.status_driver_data[0] = sta; 2455 __skb_queue_tail(&txq->complete_q, skb); 2456 } 2457 2458 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 2459 struct ath_txq *txq, struct list_head *bf_q, 2460 struct ieee80211_sta *sta, 2461 struct ath_tx_status *ts, int txok) 2462 { 2463 struct sk_buff *skb = bf->bf_mpdu; 2464 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2465 unsigned long flags; 2466 int tx_flags = 0; 2467 2468 if (!txok) 2469 tx_flags |= ATH_TX_ERROR; 2470 2471 if (ts->ts_status & ATH9K_TXERR_FILT) 2472 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; 2473 2474 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE); 2475 bf->bf_buf_addr = 0; 2476 if (sc->tx99_state) 2477 goto skip_tx_complete; 2478 2479 if (bf->bf_state.bfs_paprd) { 2480 if (time_after(jiffies, 2481 bf->bf_state.bfs_paprd_timestamp + 2482 msecs_to_jiffies(ATH_PAPRD_TIMEOUT))) 2483 dev_kfree_skb_any(skb); 2484 else 2485 complete(&sc->paprd_complete); 2486 } else { 2487 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags); 2488 ath_tx_complete(sc, skb, tx_flags, txq, sta); 2489 } 2490 skip_tx_complete: 2491 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't 2492 * accidentally reference it later. 2493 */ 2494 bf->bf_mpdu = NULL; 2495 2496 /* 2497 * Return the list of ath_buf of this mpdu to free queue 2498 */ 2499 spin_lock_irqsave(&sc->tx.txbuflock, flags); 2500 list_splice_tail_init(bf_q, &sc->tx.txbuf); 2501 spin_unlock_irqrestore(&sc->tx.txbuflock, flags); 2502 } 2503 2504 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 2505 struct ath_tx_status *ts, int nframes, int nbad, 2506 int txok) 2507 { 2508 struct sk_buff *skb = bf->bf_mpdu; 2509 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2510 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2511 struct ieee80211_hw *hw = sc->hw; 2512 struct ath_hw *ah = sc->sc_ah; 2513 u8 i, tx_rateindex; 2514 2515 if (txok) 2516 tx_info->status.ack_signal = ts->ts_rssi; 2517 2518 tx_rateindex = ts->ts_rateindex; 2519 WARN_ON(tx_rateindex >= hw->max_rates); 2520 2521 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 2522 tx_info->flags |= IEEE80211_TX_STAT_AMPDU; 2523 2524 BUG_ON(nbad > nframes); 2525 } 2526 tx_info->status.ampdu_len = nframes; 2527 tx_info->status.ampdu_ack_len = nframes - nbad; 2528 2529 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 && 2530 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) { 2531 /* 2532 * If an underrun error is seen assume it as an excessive 2533 * retry only if max frame trigger level has been reached 2534 * (2 KB for single stream, and 4 KB for dual stream). 2535 * Adjust the long retry as if the frame was tried 2536 * hw->max_rate_tries times to affect how rate control updates 2537 * PER for the failed rate. 2538 * In case of congestion on the bus penalizing this type of 2539 * underruns should help hardware actually transmit new frames 2540 * successfully by eventually preferring slower rates. 2541 * This itself should also alleviate congestion on the bus. 2542 */ 2543 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN | 2544 ATH9K_TX_DELIM_UNDERRUN)) && 2545 ieee80211_is_data(hdr->frame_control) && 2546 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level) 2547 tx_info->status.rates[tx_rateindex].count = 2548 hw->max_rate_tries; 2549 } 2550 2551 for (i = tx_rateindex + 1; i < hw->max_rates; i++) { 2552 tx_info->status.rates[i].count = 0; 2553 tx_info->status.rates[i].idx = -1; 2554 } 2555 2556 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1; 2557 2558 /* we report airtime in ath_tx_count_airtime(), don't report twice */ 2559 tx_info->status.tx_time = 0; 2560 } 2561 2562 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 2563 { 2564 struct ath_hw *ah = sc->sc_ah; 2565 struct ath_common *common = ath9k_hw_common(ah); 2566 struct ath_buf *bf, *lastbf, *bf_held = NULL; 2567 struct list_head bf_head; 2568 struct ath_desc *ds; 2569 struct ath_tx_status ts; 2570 int status; 2571 2572 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n", 2573 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum), 2574 txq->axq_link); 2575 2576 ath_txq_lock(sc, txq); 2577 for (;;) { 2578 if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) 2579 break; 2580 2581 if (list_empty(&txq->axq_q)) { 2582 txq->axq_link = NULL; 2583 ath_txq_schedule(sc, txq); 2584 break; 2585 } 2586 bf = list_first_entry(&txq->axq_q, struct ath_buf, list); 2587 2588 /* 2589 * There is a race condition that a BH gets scheduled 2590 * after sw writes TxE and before hw re-load the last 2591 * descriptor to get the newly chained one. 2592 * Software must keep the last DONE descriptor as a 2593 * holding descriptor - software does so by marking 2594 * it with the STALE flag. 2595 */ 2596 bf_held = NULL; 2597 if (bf->bf_state.stale) { 2598 bf_held = bf; 2599 if (list_is_last(&bf_held->list, &txq->axq_q)) 2600 break; 2601 2602 bf = list_entry(bf_held->list.next, struct ath_buf, 2603 list); 2604 } 2605 2606 lastbf = bf->bf_lastbf; 2607 ds = lastbf->bf_desc; 2608 2609 memset(&ts, 0, sizeof(ts)); 2610 status = ath9k_hw_txprocdesc(ah, ds, &ts); 2611 if (status == -EINPROGRESS) 2612 break; 2613 2614 TX_STAT_INC(sc, txq->axq_qnum, txprocdesc); 2615 2616 /* 2617 * Remove ath_buf's of the same transmit unit from txq, 2618 * however leave the last descriptor back as the holding 2619 * descriptor for hw. 2620 */ 2621 lastbf->bf_state.stale = true; 2622 INIT_LIST_HEAD(&bf_head); 2623 if (!list_is_singular(&lastbf->list)) 2624 list_cut_position(&bf_head, 2625 &txq->axq_q, lastbf->list.prev); 2626 2627 if (bf_held) { 2628 list_del(&bf_held->list); 2629 ath_tx_return_buffer(sc, bf_held); 2630 } 2631 2632 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2633 } 2634 ath_txq_unlock_complete(sc, txq); 2635 } 2636 2637 void ath_tx_tasklet(struct ath_softc *sc) 2638 { 2639 struct ath_hw *ah = sc->sc_ah; 2640 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs; 2641 int i; 2642 2643 rcu_read_lock(); 2644 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 2645 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i))) 2646 ath_tx_processq(sc, &sc->tx.txq[i]); 2647 } 2648 rcu_read_unlock(); 2649 } 2650 2651 void ath_tx_edma_tasklet(struct ath_softc *sc) 2652 { 2653 struct ath_tx_status ts; 2654 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2655 struct ath_hw *ah = sc->sc_ah; 2656 struct ath_txq *txq; 2657 struct ath_buf *bf, *lastbf; 2658 struct list_head bf_head; 2659 struct list_head *fifo_list; 2660 int status; 2661 2662 rcu_read_lock(); 2663 for (;;) { 2664 if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) 2665 break; 2666 2667 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts); 2668 if (status == -EINPROGRESS) 2669 break; 2670 if (status == -EIO) { 2671 ath_dbg(common, XMIT, "Error processing tx status\n"); 2672 break; 2673 } 2674 2675 /* Process beacon completions separately */ 2676 if (ts.qid == sc->beacon.beaconq) { 2677 sc->beacon.tx_processed = true; 2678 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK); 2679 2680 if (ath9k_is_chanctx_enabled()) { 2681 ath_chanctx_event(sc, NULL, 2682 ATH_CHANCTX_EVENT_BEACON_SENT); 2683 } 2684 2685 ath9k_csa_update(sc); 2686 continue; 2687 } 2688 2689 txq = &sc->tx.txq[ts.qid]; 2690 2691 ath_txq_lock(sc, txq); 2692 2693 TX_STAT_INC(sc, txq->axq_qnum, txprocdesc); 2694 2695 fifo_list = &txq->txq_fifo[txq->txq_tailidx]; 2696 if (list_empty(fifo_list)) { 2697 ath_txq_unlock(sc, txq); 2698 break; 2699 } 2700 2701 bf = list_first_entry(fifo_list, struct ath_buf, list); 2702 if (bf->bf_state.stale) { 2703 list_del(&bf->list); 2704 ath_tx_return_buffer(sc, bf); 2705 bf = list_first_entry(fifo_list, struct ath_buf, list); 2706 } 2707 2708 lastbf = bf->bf_lastbf; 2709 2710 INIT_LIST_HEAD(&bf_head); 2711 if (list_is_last(&lastbf->list, fifo_list)) { 2712 list_splice_tail_init(fifo_list, &bf_head); 2713 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH); 2714 2715 if (!list_empty(&txq->axq_q)) { 2716 struct list_head bf_q; 2717 2718 INIT_LIST_HEAD(&bf_q); 2719 txq->axq_link = NULL; 2720 list_splice_tail_init(&txq->axq_q, &bf_q); 2721 ath_tx_txqaddbuf(sc, txq, &bf_q, true); 2722 } 2723 } else { 2724 lastbf->bf_state.stale = true; 2725 if (bf != lastbf) 2726 list_cut_position(&bf_head, fifo_list, 2727 lastbf->list.prev); 2728 } 2729 2730 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2731 ath_txq_unlock_complete(sc, txq); 2732 } 2733 rcu_read_unlock(); 2734 } 2735 2736 /*****************/ 2737 /* Init, Cleanup */ 2738 /*****************/ 2739 2740 static int ath_txstatus_setup(struct ath_softc *sc, int size) 2741 { 2742 struct ath_descdma *dd = &sc->txsdma; 2743 u8 txs_len = sc->sc_ah->caps.txs_len; 2744 2745 dd->dd_desc_len = size * txs_len; 2746 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len, 2747 &dd->dd_desc_paddr, GFP_KERNEL); 2748 if (!dd->dd_desc) 2749 return -ENOMEM; 2750 2751 return 0; 2752 } 2753 2754 static int ath_tx_edma_init(struct ath_softc *sc) 2755 { 2756 int err; 2757 2758 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE); 2759 if (!err) 2760 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc, 2761 sc->txsdma.dd_desc_paddr, 2762 ATH_TXSTATUS_RING_SIZE); 2763 2764 return err; 2765 } 2766 2767 int ath_tx_init(struct ath_softc *sc, int nbufs) 2768 { 2769 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2770 int error = 0; 2771 2772 spin_lock_init(&sc->tx.txbuflock); 2773 2774 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf, 2775 "tx", nbufs, 1, 1); 2776 if (error != 0) { 2777 ath_err(common, 2778 "Failed to allocate tx descriptors: %d\n", error); 2779 return error; 2780 } 2781 2782 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf, 2783 "beacon", ATH_BCBUF, 1, 1); 2784 if (error != 0) { 2785 ath_err(common, 2786 "Failed to allocate beacon descriptors: %d\n", error); 2787 return error; 2788 } 2789 2790 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 2791 error = ath_tx_edma_init(sc); 2792 2793 return error; 2794 } 2795 2796 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an) 2797 { 2798 struct ath_atx_tid *tid; 2799 int tidno, acno; 2800 2801 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) { 2802 tid = ath_node_to_tid(an, tidno); 2803 tid->an = an; 2804 tid->tidno = tidno; 2805 tid->seq_start = tid->seq_next = 0; 2806 tid->baw_size = WME_MAX_BA; 2807 tid->baw_head = tid->baw_tail = 0; 2808 tid->active = false; 2809 tid->clear_ps_filter = true; 2810 __skb_queue_head_init(&tid->retry_q); 2811 INIT_LIST_HEAD(&tid->list); 2812 acno = TID_TO_WME_AC(tidno); 2813 tid->txq = sc->tx.txq_map[acno]; 2814 2815 if (!an->sta) 2816 break; /* just one multicast ath_atx_tid */ 2817 } 2818 } 2819 2820 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an) 2821 { 2822 struct ath_atx_tid *tid; 2823 struct ath_txq *txq; 2824 int tidno; 2825 2826 rcu_read_lock(); 2827 2828 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) { 2829 tid = ath_node_to_tid(an, tidno); 2830 txq = tid->txq; 2831 2832 ath_txq_lock(sc, txq); 2833 2834 if (!list_empty(&tid->list)) 2835 list_del_init(&tid->list); 2836 2837 ath_tid_drain(sc, txq, tid); 2838 tid->active = false; 2839 2840 ath_txq_unlock(sc, txq); 2841 2842 if (!an->sta) 2843 break; /* just one multicast ath_atx_tid */ 2844 } 2845 2846 rcu_read_unlock(); 2847 } 2848 2849 #ifdef CONFIG_ATH9K_TX99 2850 2851 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb, 2852 struct ath_tx_control *txctl) 2853 { 2854 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2855 struct ath_frame_info *fi = get_frame_info(skb); 2856 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2857 struct ath_buf *bf; 2858 int padpos, padsize; 2859 2860 padpos = ieee80211_hdrlen(hdr->frame_control); 2861 padsize = padpos & 3; 2862 2863 if (padsize && skb->len > padpos) { 2864 if (skb_headroom(skb) < padsize) { 2865 ath_dbg(common, XMIT, 2866 "tx99 padding failed\n"); 2867 return -EINVAL; 2868 } 2869 2870 skb_push(skb, padsize); 2871 memmove(skb->data, skb->data + padsize, padpos); 2872 } 2873 2874 fi->keyix = ATH9K_TXKEYIX_INVALID; 2875 fi->framelen = skb->len + FCS_LEN; 2876 fi->keytype = ATH9K_KEY_TYPE_CLEAR; 2877 2878 bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb); 2879 if (!bf) { 2880 ath_dbg(common, XMIT, "tx99 buffer setup failed\n"); 2881 return -EINVAL; 2882 } 2883 2884 ath_set_rates(sc->tx99_vif, NULL, bf); 2885 2886 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr); 2887 ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum); 2888 2889 ath_tx_send_normal(sc, txctl->txq, NULL, skb); 2890 2891 return 0; 2892 } 2893 2894 #endif /* CONFIG_ATH9K_TX99 */ 2895