1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/dma-mapping.h> 18 #include "ath9k.h" 19 #include "ar9003_mac.h" 20 21 #define BITS_PER_BYTE 8 22 #define OFDM_PLCP_BITS 22 23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1) 24 #define L_STF 8 25 #define L_LTF 8 26 #define L_SIG 4 27 #define HT_SIG 8 28 #define HT_STF 4 29 #define HT_LTF(_ns) (4 * (_ns)) 30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */ 31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */ 32 #define TIME_SYMBOLS(t) ((t) >> 2) 33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18) 34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2) 35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18) 36 37 38 static u16 bits_per_symbol[][2] = { 39 /* 20MHz 40MHz */ 40 { 26, 54 }, /* 0: BPSK */ 41 { 52, 108 }, /* 1: QPSK 1/2 */ 42 { 78, 162 }, /* 2: QPSK 3/4 */ 43 { 104, 216 }, /* 3: 16-QAM 1/2 */ 44 { 156, 324 }, /* 4: 16-QAM 3/4 */ 45 { 208, 432 }, /* 5: 64-QAM 2/3 */ 46 { 234, 486 }, /* 6: 64-QAM 3/4 */ 47 { 260, 540 }, /* 7: 64-QAM 5/6 */ 48 }; 49 50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 51 struct ath_atx_tid *tid, struct sk_buff *skb); 52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, 53 int tx_flags, struct ath_txq *txq); 54 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 55 struct ath_txq *txq, struct list_head *bf_q, 56 struct ath_tx_status *ts, int txok); 57 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 58 struct list_head *head, bool internal); 59 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 60 struct ath_tx_status *ts, int nframes, int nbad, 61 int txok); 62 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 63 int seqno); 64 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, 65 struct ath_txq *txq, 66 struct ath_atx_tid *tid, 67 struct sk_buff *skb); 68 69 enum { 70 MCS_HT20, 71 MCS_HT20_SGI, 72 MCS_HT40, 73 MCS_HT40_SGI, 74 }; 75 76 /*********************/ 77 /* Aggregation logic */ 78 /*********************/ 79 80 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq) 81 __acquires(&txq->axq_lock) 82 { 83 spin_lock_bh(&txq->axq_lock); 84 } 85 86 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq) 87 __releases(&txq->axq_lock) 88 { 89 spin_unlock_bh(&txq->axq_lock); 90 } 91 92 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq) 93 __releases(&txq->axq_lock) 94 { 95 struct sk_buff_head q; 96 struct sk_buff *skb; 97 98 __skb_queue_head_init(&q); 99 skb_queue_splice_init(&txq->complete_q, &q); 100 spin_unlock_bh(&txq->axq_lock); 101 102 while ((skb = __skb_dequeue(&q))) 103 ieee80211_tx_status(sc->hw, skb); 104 } 105 106 static void ath_tx_queue_tid(struct ath_softc *sc, struct ath_txq *txq, 107 struct ath_atx_tid *tid) 108 { 109 struct ath_atx_ac *ac = tid->ac; 110 struct list_head *list; 111 struct ath_vif *avp = (struct ath_vif *) tid->an->vif->drv_priv; 112 struct ath_chanctx *ctx = avp->chanctx; 113 114 if (!ctx) 115 return; 116 117 if (tid->sched) 118 return; 119 120 tid->sched = true; 121 list_add_tail(&tid->list, &ac->tid_q); 122 123 if (ac->sched) 124 return; 125 126 ac->sched = true; 127 128 list = &ctx->acq[TID_TO_WME_AC(tid->tidno)]; 129 list_add_tail(&ac->list, list); 130 } 131 132 static struct ath_frame_info *get_frame_info(struct sk_buff *skb) 133 { 134 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 135 BUILD_BUG_ON(sizeof(struct ath_frame_info) > 136 sizeof(tx_info->rate_driver_data)); 137 return (struct ath_frame_info *) &tx_info->rate_driver_data[0]; 138 } 139 140 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno) 141 { 142 if (!tid->an->sta) 143 return; 144 145 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno, 146 seqno << IEEE80211_SEQ_SEQ_SHIFT); 147 } 148 149 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta, 150 struct ath_buf *bf) 151 { 152 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates, 153 ARRAY_SIZE(bf->rates)); 154 } 155 156 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq, 157 struct sk_buff *skb) 158 { 159 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 160 struct ath_frame_info *fi = get_frame_info(skb); 161 int hw_queue; 162 int q = fi->txq; 163 164 if (q < 0) 165 return; 166 167 txq = sc->tx.txq_map[q]; 168 if (WARN_ON(--txq->pending_frames < 0)) 169 txq->pending_frames = 0; 170 171 hw_queue = (info->hw_queue >= sc->hw->queues - 2) ? q : info->hw_queue; 172 if (txq->stopped && 173 txq->pending_frames < sc->tx.txq_max_pending[q]) { 174 ieee80211_wake_queue(sc->hw, hw_queue); 175 txq->stopped = false; 176 } 177 } 178 179 static struct ath_atx_tid * 180 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb) 181 { 182 u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK; 183 return ATH_AN_2_TID(an, tidno); 184 } 185 186 static bool ath_tid_has_buffered(struct ath_atx_tid *tid) 187 { 188 return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q); 189 } 190 191 static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid) 192 { 193 struct sk_buff *skb; 194 195 skb = __skb_dequeue(&tid->retry_q); 196 if (!skb) 197 skb = __skb_dequeue(&tid->buf_q); 198 199 return skb; 200 } 201 202 /* 203 * ath_tx_tid_change_state: 204 * - clears a-mpdu flag of previous session 205 * - force sequence number allocation to fix next BlockAck Window 206 */ 207 static void 208 ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid) 209 { 210 struct ath_txq *txq = tid->ac->txq; 211 struct ieee80211_tx_info *tx_info; 212 struct sk_buff *skb, *tskb; 213 struct ath_buf *bf; 214 struct ath_frame_info *fi; 215 216 skb_queue_walk_safe(&tid->buf_q, skb, tskb) { 217 fi = get_frame_info(skb); 218 bf = fi->bf; 219 220 tx_info = IEEE80211_SKB_CB(skb); 221 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU; 222 223 if (bf) 224 continue; 225 226 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 227 if (!bf) { 228 __skb_unlink(skb, &tid->buf_q); 229 ath_txq_skb_done(sc, txq, skb); 230 ieee80211_free_txskb(sc->hw, skb); 231 continue; 232 } 233 } 234 235 } 236 237 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid) 238 { 239 struct ath_txq *txq = tid->ac->txq; 240 struct sk_buff *skb; 241 struct ath_buf *bf; 242 struct list_head bf_head; 243 struct ath_tx_status ts; 244 struct ath_frame_info *fi; 245 bool sendbar = false; 246 247 INIT_LIST_HEAD(&bf_head); 248 249 memset(&ts, 0, sizeof(ts)); 250 251 while ((skb = __skb_dequeue(&tid->retry_q))) { 252 fi = get_frame_info(skb); 253 bf = fi->bf; 254 if (!bf) { 255 ath_txq_skb_done(sc, txq, skb); 256 ieee80211_free_txskb(sc->hw, skb); 257 continue; 258 } 259 260 if (fi->baw_tracked) { 261 ath_tx_update_baw(sc, tid, bf->bf_state.seqno); 262 sendbar = true; 263 } 264 265 list_add_tail(&bf->list, &bf_head); 266 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0); 267 } 268 269 if (sendbar) { 270 ath_txq_unlock(sc, txq); 271 ath_send_bar(tid, tid->seq_start); 272 ath_txq_lock(sc, txq); 273 } 274 } 275 276 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 277 int seqno) 278 { 279 int index, cindex; 280 281 index = ATH_BA_INDEX(tid->seq_start, seqno); 282 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 283 284 __clear_bit(cindex, tid->tx_buf); 285 286 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) { 287 INCR(tid->seq_start, IEEE80211_SEQ_MAX); 288 INCR(tid->baw_head, ATH_TID_MAX_BUFS); 289 if (tid->bar_index >= 0) 290 tid->bar_index--; 291 } 292 } 293 294 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 295 struct ath_buf *bf) 296 { 297 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 298 u16 seqno = bf->bf_state.seqno; 299 int index, cindex; 300 301 index = ATH_BA_INDEX(tid->seq_start, seqno); 302 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 303 __set_bit(cindex, tid->tx_buf); 304 fi->baw_tracked = 1; 305 306 if (index >= ((tid->baw_tail - tid->baw_head) & 307 (ATH_TID_MAX_BUFS - 1))) { 308 tid->baw_tail = cindex; 309 INCR(tid->baw_tail, ATH_TID_MAX_BUFS); 310 } 311 } 312 313 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq, 314 struct ath_atx_tid *tid) 315 316 { 317 struct sk_buff *skb; 318 struct ath_buf *bf; 319 struct list_head bf_head; 320 struct ath_tx_status ts; 321 struct ath_frame_info *fi; 322 323 memset(&ts, 0, sizeof(ts)); 324 INIT_LIST_HEAD(&bf_head); 325 326 while ((skb = ath_tid_dequeue(tid))) { 327 fi = get_frame_info(skb); 328 bf = fi->bf; 329 330 if (!bf) { 331 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq); 332 continue; 333 } 334 335 list_add_tail(&bf->list, &bf_head); 336 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0); 337 } 338 } 339 340 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq, 341 struct sk_buff *skb, int count) 342 { 343 struct ath_frame_info *fi = get_frame_info(skb); 344 struct ath_buf *bf = fi->bf; 345 struct ieee80211_hdr *hdr; 346 int prev = fi->retries; 347 348 TX_STAT_INC(txq->axq_qnum, a_retries); 349 fi->retries += count; 350 351 if (prev > 0) 352 return; 353 354 hdr = (struct ieee80211_hdr *)skb->data; 355 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY); 356 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 357 sizeof(*hdr), DMA_TO_DEVICE); 358 } 359 360 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc) 361 { 362 struct ath_buf *bf = NULL; 363 364 spin_lock_bh(&sc->tx.txbuflock); 365 366 if (unlikely(list_empty(&sc->tx.txbuf))) { 367 spin_unlock_bh(&sc->tx.txbuflock); 368 return NULL; 369 } 370 371 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list); 372 list_del(&bf->list); 373 374 spin_unlock_bh(&sc->tx.txbuflock); 375 376 return bf; 377 } 378 379 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf) 380 { 381 spin_lock_bh(&sc->tx.txbuflock); 382 list_add_tail(&bf->list, &sc->tx.txbuf); 383 spin_unlock_bh(&sc->tx.txbuflock); 384 } 385 386 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf) 387 { 388 struct ath_buf *tbf; 389 390 tbf = ath_tx_get_buffer(sc); 391 if (WARN_ON(!tbf)) 392 return NULL; 393 394 ATH_TXBUF_RESET(tbf); 395 396 tbf->bf_mpdu = bf->bf_mpdu; 397 tbf->bf_buf_addr = bf->bf_buf_addr; 398 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len); 399 tbf->bf_state = bf->bf_state; 400 tbf->bf_state.stale = false; 401 402 return tbf; 403 } 404 405 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf, 406 struct ath_tx_status *ts, int txok, 407 int *nframes, int *nbad) 408 { 409 struct ath_frame_info *fi; 410 u16 seq_st = 0; 411 u32 ba[WME_BA_BMP_SIZE >> 5]; 412 int ba_index; 413 int isaggr = 0; 414 415 *nbad = 0; 416 *nframes = 0; 417 418 isaggr = bf_isaggr(bf); 419 if (isaggr) { 420 seq_st = ts->ts_seqnum; 421 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); 422 } 423 424 while (bf) { 425 fi = get_frame_info(bf->bf_mpdu); 426 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno); 427 428 (*nframes)++; 429 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index))) 430 (*nbad)++; 431 432 bf = bf->bf_next; 433 } 434 } 435 436 437 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq, 438 struct ath_buf *bf, struct list_head *bf_q, 439 struct ath_tx_status *ts, int txok) 440 { 441 struct ath_node *an = NULL; 442 struct sk_buff *skb; 443 struct ieee80211_sta *sta; 444 struct ieee80211_hw *hw = sc->hw; 445 struct ieee80211_hdr *hdr; 446 struct ieee80211_tx_info *tx_info; 447 struct ath_atx_tid *tid = NULL; 448 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf; 449 struct list_head bf_head; 450 struct sk_buff_head bf_pending; 451 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first; 452 u32 ba[WME_BA_BMP_SIZE >> 5]; 453 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0; 454 bool rc_update = true, isba; 455 struct ieee80211_tx_rate rates[4]; 456 struct ath_frame_info *fi; 457 int nframes; 458 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH); 459 int i, retries; 460 int bar_index = -1; 461 462 skb = bf->bf_mpdu; 463 hdr = (struct ieee80211_hdr *)skb->data; 464 465 tx_info = IEEE80211_SKB_CB(skb); 466 467 memcpy(rates, bf->rates, sizeof(rates)); 468 469 retries = ts->ts_longretry + 1; 470 for (i = 0; i < ts->ts_rateindex; i++) 471 retries += rates[i].count; 472 473 rcu_read_lock(); 474 475 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2); 476 if (!sta) { 477 rcu_read_unlock(); 478 479 INIT_LIST_HEAD(&bf_head); 480 while (bf) { 481 bf_next = bf->bf_next; 482 483 if (!bf->bf_state.stale || bf_next != NULL) 484 list_move_tail(&bf->list, &bf_head); 485 486 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0); 487 488 bf = bf_next; 489 } 490 return; 491 } 492 493 an = (struct ath_node *)sta->drv_priv; 494 tid = ath_get_skb_tid(sc, an, skb); 495 seq_first = tid->seq_start; 496 isba = ts->ts_flags & ATH9K_TX_BA; 497 498 /* 499 * The hardware occasionally sends a tx status for the wrong TID. 500 * In this case, the BA status cannot be considered valid and all 501 * subframes need to be retransmitted 502 * 503 * Only BlockAcks have a TID and therefore normal Acks cannot be 504 * checked 505 */ 506 if (isba && tid->tidno != ts->tid) 507 txok = false; 508 509 isaggr = bf_isaggr(bf); 510 memset(ba, 0, WME_BA_BMP_SIZE >> 3); 511 512 if (isaggr && txok) { 513 if (ts->ts_flags & ATH9K_TX_BA) { 514 seq_st = ts->ts_seqnum; 515 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); 516 } else { 517 /* 518 * AR5416 can become deaf/mute when BA 519 * issue happens. Chip needs to be reset. 520 * But AP code may have sychronization issues 521 * when perform internal reset in this routine. 522 * Only enable reset in STA mode for now. 523 */ 524 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION) 525 needreset = 1; 526 } 527 } 528 529 __skb_queue_head_init(&bf_pending); 530 531 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad); 532 while (bf) { 533 u16 seqno = bf->bf_state.seqno; 534 535 txfail = txpending = sendbar = 0; 536 bf_next = bf->bf_next; 537 538 skb = bf->bf_mpdu; 539 tx_info = IEEE80211_SKB_CB(skb); 540 fi = get_frame_info(skb); 541 542 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) || 543 !tid->active) { 544 /* 545 * Outside of the current BlockAck window, 546 * maybe part of a previous session 547 */ 548 txfail = 1; 549 } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) { 550 /* transmit completion, subframe is 551 * acked by block ack */ 552 acked_cnt++; 553 } else if (!isaggr && txok) { 554 /* transmit completion */ 555 acked_cnt++; 556 } else if (flush) { 557 txpending = 1; 558 } else if (fi->retries < ATH_MAX_SW_RETRIES) { 559 if (txok || !an->sleeping) 560 ath_tx_set_retry(sc, txq, bf->bf_mpdu, 561 retries); 562 563 txpending = 1; 564 } else { 565 txfail = 1; 566 txfail_cnt++; 567 bar_index = max_t(int, bar_index, 568 ATH_BA_INDEX(seq_first, seqno)); 569 } 570 571 /* 572 * Make sure the last desc is reclaimed if it 573 * not a holding desc. 574 */ 575 INIT_LIST_HEAD(&bf_head); 576 if (bf_next != NULL || !bf_last->bf_state.stale) 577 list_move_tail(&bf->list, &bf_head); 578 579 if (!txpending) { 580 /* 581 * complete the acked-ones/xretried ones; update 582 * block-ack window 583 */ 584 ath_tx_update_baw(sc, tid, seqno); 585 586 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) { 587 memcpy(tx_info->control.rates, rates, sizeof(rates)); 588 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok); 589 rc_update = false; 590 } 591 592 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 593 !txfail); 594 } else { 595 if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) { 596 tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP; 597 ieee80211_sta_eosp(sta); 598 } 599 /* retry the un-acked ones */ 600 if (bf->bf_next == NULL && bf_last->bf_state.stale) { 601 struct ath_buf *tbf; 602 603 tbf = ath_clone_txbuf(sc, bf_last); 604 /* 605 * Update tx baw and complete the 606 * frame with failed status if we 607 * run out of tx buf. 608 */ 609 if (!tbf) { 610 ath_tx_update_baw(sc, tid, seqno); 611 612 ath_tx_complete_buf(sc, bf, txq, 613 &bf_head, ts, 0); 614 bar_index = max_t(int, bar_index, 615 ATH_BA_INDEX(seq_first, seqno)); 616 break; 617 } 618 619 fi->bf = tbf; 620 } 621 622 /* 623 * Put this buffer to the temporary pending 624 * queue to retain ordering 625 */ 626 __skb_queue_tail(&bf_pending, skb); 627 } 628 629 bf = bf_next; 630 } 631 632 /* prepend un-acked frames to the beginning of the pending frame queue */ 633 if (!skb_queue_empty(&bf_pending)) { 634 if (an->sleeping) 635 ieee80211_sta_set_buffered(sta, tid->tidno, true); 636 637 skb_queue_splice_tail(&bf_pending, &tid->retry_q); 638 if (!an->sleeping) { 639 ath_tx_queue_tid(sc, txq, tid); 640 641 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY)) 642 tid->ac->clear_ps_filter = true; 643 } 644 } 645 646 if (bar_index >= 0) { 647 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index); 648 649 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq)) 650 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq); 651 652 ath_txq_unlock(sc, txq); 653 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1)); 654 ath_txq_lock(sc, txq); 655 } 656 657 rcu_read_unlock(); 658 659 if (needreset) 660 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR); 661 } 662 663 static bool bf_is_ampdu_not_probing(struct ath_buf *bf) 664 { 665 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu); 666 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE); 667 } 668 669 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq, 670 struct ath_tx_status *ts, struct ath_buf *bf, 671 struct list_head *bf_head) 672 { 673 struct ieee80211_tx_info *info; 674 bool txok, flush; 675 676 txok = !(ts->ts_status & ATH9K_TXERR_MASK); 677 flush = !!(ts->ts_status & ATH9K_TX_FLUSH); 678 txq->axq_tx_inprogress = false; 679 680 txq->axq_depth--; 681 if (bf_is_ampdu_not_probing(bf)) 682 txq->axq_ampdu_depth--; 683 684 if (!bf_isampdu(bf)) { 685 if (!flush) { 686 info = IEEE80211_SKB_CB(bf->bf_mpdu); 687 memcpy(info->control.rates, bf->rates, 688 sizeof(info->control.rates)); 689 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok); 690 } 691 ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok); 692 } else 693 ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok); 694 695 if (!flush) 696 ath_txq_schedule(sc, txq); 697 } 698 699 static bool ath_lookup_legacy(struct ath_buf *bf) 700 { 701 struct sk_buff *skb; 702 struct ieee80211_tx_info *tx_info; 703 struct ieee80211_tx_rate *rates; 704 int i; 705 706 skb = bf->bf_mpdu; 707 tx_info = IEEE80211_SKB_CB(skb); 708 rates = tx_info->control.rates; 709 710 for (i = 0; i < 4; i++) { 711 if (!rates[i].count || rates[i].idx < 0) 712 break; 713 714 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) 715 return true; 716 } 717 718 return false; 719 } 720 721 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf, 722 struct ath_atx_tid *tid) 723 { 724 struct sk_buff *skb; 725 struct ieee80211_tx_info *tx_info; 726 struct ieee80211_tx_rate *rates; 727 u32 max_4ms_framelen, frmlen; 728 u16 aggr_limit, bt_aggr_limit, legacy = 0; 729 int q = tid->ac->txq->mac80211_qnum; 730 int i; 731 732 skb = bf->bf_mpdu; 733 tx_info = IEEE80211_SKB_CB(skb); 734 rates = bf->rates; 735 736 /* 737 * Find the lowest frame length among the rate series that will have a 738 * 4ms (or TXOP limited) transmit duration. 739 */ 740 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX; 741 742 for (i = 0; i < 4; i++) { 743 int modeidx; 744 745 if (!rates[i].count) 746 continue; 747 748 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) { 749 legacy = 1; 750 break; 751 } 752 753 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 754 modeidx = MCS_HT40; 755 else 756 modeidx = MCS_HT20; 757 758 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 759 modeidx++; 760 761 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx]; 762 max_4ms_framelen = min(max_4ms_framelen, frmlen); 763 } 764 765 /* 766 * limit aggregate size by the minimum rate if rate selected is 767 * not a probe rate, if rate selected is a probe rate then 768 * avoid aggregation of this packet. 769 */ 770 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy) 771 return 0; 772 773 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX); 774 775 /* 776 * Override the default aggregation limit for BTCOEX. 777 */ 778 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen); 779 if (bt_aggr_limit) 780 aggr_limit = bt_aggr_limit; 781 782 if (tid->an->maxampdu) 783 aggr_limit = min(aggr_limit, tid->an->maxampdu); 784 785 return aggr_limit; 786 } 787 788 /* 789 * Returns the number of delimiters to be added to 790 * meet the minimum required mpdudensity. 791 */ 792 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid, 793 struct ath_buf *bf, u16 frmlen, 794 bool first_subfrm) 795 { 796 #define FIRST_DESC_NDELIMS 60 797 u32 nsymbits, nsymbols; 798 u16 minlen; 799 u8 flags, rix; 800 int width, streams, half_gi, ndelim, mindelim; 801 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 802 803 /* Select standard number of delimiters based on frame length alone */ 804 ndelim = ATH_AGGR_GET_NDELIM(frmlen); 805 806 /* 807 * If encryption enabled, hardware requires some more padding between 808 * subframes. 809 * TODO - this could be improved to be dependent on the rate. 810 * The hardware can keep up at lower rates, but not higher rates 811 */ 812 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) && 813 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) 814 ndelim += ATH_AGGR_ENCRYPTDELIM; 815 816 /* 817 * Add delimiter when using RTS/CTS with aggregation 818 * and non enterprise AR9003 card 819 */ 820 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) && 821 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE)) 822 ndelim = max(ndelim, FIRST_DESC_NDELIMS); 823 824 /* 825 * Convert desired mpdu density from microeconds to bytes based 826 * on highest rate in rate series (i.e. first rate) to determine 827 * required minimum length for subframe. Take into account 828 * whether high rate is 20 or 40Mhz and half or full GI. 829 * 830 * If there is no mpdu density restriction, no further calculation 831 * is needed. 832 */ 833 834 if (tid->an->mpdudensity == 0) 835 return ndelim; 836 837 rix = bf->rates[0].idx; 838 flags = bf->rates[0].flags; 839 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0; 840 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0; 841 842 if (half_gi) 843 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity); 844 else 845 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity); 846 847 if (nsymbols == 0) 848 nsymbols = 1; 849 850 streams = HT_RC_2_STREAMS(rix); 851 nsymbits = bits_per_symbol[rix % 8][width] * streams; 852 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE; 853 854 if (frmlen < minlen) { 855 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ; 856 ndelim = max(mindelim, ndelim); 857 } 858 859 return ndelim; 860 } 861 862 static struct ath_buf * 863 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq, 864 struct ath_atx_tid *tid, struct sk_buff_head **q) 865 { 866 struct ieee80211_tx_info *tx_info; 867 struct ath_frame_info *fi; 868 struct sk_buff *skb; 869 struct ath_buf *bf; 870 u16 seqno; 871 872 while (1) { 873 *q = &tid->retry_q; 874 if (skb_queue_empty(*q)) 875 *q = &tid->buf_q; 876 877 skb = skb_peek(*q); 878 if (!skb) 879 break; 880 881 fi = get_frame_info(skb); 882 bf = fi->bf; 883 if (!fi->bf) 884 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 885 else 886 bf->bf_state.stale = false; 887 888 if (!bf) { 889 __skb_unlink(skb, *q); 890 ath_txq_skb_done(sc, txq, skb); 891 ieee80211_free_txskb(sc->hw, skb); 892 continue; 893 } 894 895 bf->bf_next = NULL; 896 bf->bf_lastbf = bf; 897 898 tx_info = IEEE80211_SKB_CB(skb); 899 tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT; 900 901 /* 902 * No aggregation session is running, but there may be frames 903 * from a previous session or a failed attempt in the queue. 904 * Send them out as normal data frames 905 */ 906 if (!tid->active) 907 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU; 908 909 if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) { 910 bf->bf_state.bf_type = 0; 911 return bf; 912 } 913 914 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR; 915 seqno = bf->bf_state.seqno; 916 917 /* do not step over block-ack window */ 918 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) 919 break; 920 921 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) { 922 struct ath_tx_status ts = {}; 923 struct list_head bf_head; 924 925 INIT_LIST_HEAD(&bf_head); 926 list_add(&bf->list, &bf_head); 927 __skb_unlink(skb, *q); 928 ath_tx_update_baw(sc, tid, seqno); 929 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0); 930 continue; 931 } 932 933 return bf; 934 } 935 936 return NULL; 937 } 938 939 static bool 940 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq, 941 struct ath_atx_tid *tid, struct list_head *bf_q, 942 struct ath_buf *bf_first, struct sk_buff_head *tid_q, 943 int *aggr_len) 944 { 945 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4) 946 struct ath_buf *bf = bf_first, *bf_prev = NULL; 947 int nframes = 0, ndelim; 948 u16 aggr_limit = 0, al = 0, bpad = 0, 949 al_delta, h_baw = tid->baw_size / 2; 950 struct ieee80211_tx_info *tx_info; 951 struct ath_frame_info *fi; 952 struct sk_buff *skb; 953 bool closed = false; 954 955 bf = bf_first; 956 aggr_limit = ath_lookup_rate(sc, bf, tid); 957 958 do { 959 skb = bf->bf_mpdu; 960 fi = get_frame_info(skb); 961 962 /* do not exceed aggregation limit */ 963 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen; 964 if (nframes) { 965 if (aggr_limit < al + bpad + al_delta || 966 ath_lookup_legacy(bf) || nframes >= h_baw) 967 break; 968 969 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 970 if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) || 971 !(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) 972 break; 973 } 974 975 /* add padding for previous frame to aggregation length */ 976 al += bpad + al_delta; 977 978 /* 979 * Get the delimiters needed to meet the MPDU 980 * density for this node. 981 */ 982 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen, 983 !nframes); 984 bpad = PADBYTES(al_delta) + (ndelim << 2); 985 986 nframes++; 987 bf->bf_next = NULL; 988 989 /* link buffers of this frame to the aggregate */ 990 if (!fi->baw_tracked) 991 ath_tx_addto_baw(sc, tid, bf); 992 bf->bf_state.ndelim = ndelim; 993 994 __skb_unlink(skb, tid_q); 995 list_add_tail(&bf->list, bf_q); 996 if (bf_prev) 997 bf_prev->bf_next = bf; 998 999 bf_prev = bf; 1000 1001 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q); 1002 if (!bf) { 1003 closed = true; 1004 break; 1005 } 1006 } while (ath_tid_has_buffered(tid)); 1007 1008 bf = bf_first; 1009 bf->bf_lastbf = bf_prev; 1010 1011 if (bf == bf_prev) { 1012 al = get_frame_info(bf->bf_mpdu)->framelen; 1013 bf->bf_state.bf_type = BUF_AMPDU; 1014 } else { 1015 TX_STAT_INC(txq->axq_qnum, a_aggr); 1016 } 1017 1018 *aggr_len = al; 1019 1020 return closed; 1021 #undef PADBYTES 1022 } 1023 1024 /* 1025 * rix - rate index 1026 * pktlen - total bytes (delims + data + fcs + pads + pad delims) 1027 * width - 0 for 20 MHz, 1 for 40 MHz 1028 * half_gi - to use 4us v/s 3.6 us for symbol time 1029 */ 1030 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen, 1031 int width, int half_gi, bool shortPreamble) 1032 { 1033 u32 nbits, nsymbits, duration, nsymbols; 1034 int streams; 1035 1036 /* find number of symbols: PLCP + data */ 1037 streams = HT_RC_2_STREAMS(rix); 1038 nbits = (pktlen << 3) + OFDM_PLCP_BITS; 1039 nsymbits = bits_per_symbol[rix % 8][width] * streams; 1040 nsymbols = (nbits + nsymbits - 1) / nsymbits; 1041 1042 if (!half_gi) 1043 duration = SYMBOL_TIME(nsymbols); 1044 else 1045 duration = SYMBOL_TIME_HALFGI(nsymbols); 1046 1047 /* addup duration for legacy/ht training and signal fields */ 1048 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 1049 1050 return duration; 1051 } 1052 1053 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi) 1054 { 1055 int streams = HT_RC_2_STREAMS(mcs); 1056 int symbols, bits; 1057 int bytes = 0; 1058 1059 usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 1060 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec); 1061 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams; 1062 bits -= OFDM_PLCP_BITS; 1063 bytes = bits / 8; 1064 if (bytes > 65532) 1065 bytes = 65532; 1066 1067 return bytes; 1068 } 1069 1070 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop) 1071 { 1072 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi; 1073 int mcs; 1074 1075 /* 4ms is the default (and maximum) duration */ 1076 if (!txop || txop > 4096) 1077 txop = 4096; 1078 1079 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20]; 1080 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI]; 1081 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40]; 1082 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI]; 1083 for (mcs = 0; mcs < 32; mcs++) { 1084 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false); 1085 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true); 1086 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false); 1087 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true); 1088 } 1089 } 1090 1091 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, 1092 struct ath_tx_info *info, int len, bool rts) 1093 { 1094 struct ath_hw *ah = sc->sc_ah; 1095 struct ath_common *common = ath9k_hw_common(ah); 1096 struct sk_buff *skb; 1097 struct ieee80211_tx_info *tx_info; 1098 struct ieee80211_tx_rate *rates; 1099 const struct ieee80211_rate *rate; 1100 struct ieee80211_hdr *hdr; 1101 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 1102 u32 rts_thresh = sc->hw->wiphy->rts_threshold; 1103 int i; 1104 u8 rix = 0; 1105 1106 skb = bf->bf_mpdu; 1107 tx_info = IEEE80211_SKB_CB(skb); 1108 rates = bf->rates; 1109 hdr = (struct ieee80211_hdr *)skb->data; 1110 1111 /* set dur_update_en for l-sig computation except for PS-Poll frames */ 1112 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control); 1113 info->rtscts_rate = fi->rtscts_rate; 1114 1115 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) { 1116 bool is_40, is_sgi, is_sp; 1117 int phy; 1118 1119 if (!rates[i].count || (rates[i].idx < 0)) 1120 continue; 1121 1122 rix = rates[i].idx; 1123 info->rates[i].Tries = rates[i].count; 1124 1125 /* 1126 * Handle RTS threshold for unaggregated HT frames. 1127 */ 1128 if (bf_isampdu(bf) && !bf_isaggr(bf) && 1129 (rates[i].flags & IEEE80211_TX_RC_MCS) && 1130 unlikely(rts_thresh != (u32) -1)) { 1131 if (!rts_thresh || (len > rts_thresh)) 1132 rts = true; 1133 } 1134 1135 if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) { 1136 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1137 info->flags |= ATH9K_TXDESC_RTSENA; 1138 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { 1139 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1140 info->flags |= ATH9K_TXDESC_CTSENA; 1141 } 1142 1143 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 1144 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040; 1145 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 1146 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI; 1147 1148 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI); 1149 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH); 1150 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE); 1151 1152 if (rates[i].flags & IEEE80211_TX_RC_MCS) { 1153 /* MCS rates */ 1154 info->rates[i].Rate = rix | 0x80; 1155 info->rates[i].ChSel = ath_txchainmask_reduction(sc, 1156 ah->txchainmask, info->rates[i].Rate); 1157 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len, 1158 is_40, is_sgi, is_sp); 1159 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC)) 1160 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC; 1161 continue; 1162 } 1163 1164 /* legacy rates */ 1165 rate = &common->sbands[tx_info->band].bitrates[rates[i].idx]; 1166 if ((tx_info->band == IEEE80211_BAND_2GHZ) && 1167 !(rate->flags & IEEE80211_RATE_ERP_G)) 1168 phy = WLAN_RC_PHY_CCK; 1169 else 1170 phy = WLAN_RC_PHY_OFDM; 1171 1172 info->rates[i].Rate = rate->hw_value; 1173 if (rate->hw_value_short) { 1174 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 1175 info->rates[i].Rate |= rate->hw_value_short; 1176 } else { 1177 is_sp = false; 1178 } 1179 1180 if (bf->bf_state.bfs_paprd) 1181 info->rates[i].ChSel = ah->txchainmask; 1182 else 1183 info->rates[i].ChSel = ath_txchainmask_reduction(sc, 1184 ah->txchainmask, info->rates[i].Rate); 1185 1186 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah, 1187 phy, rate->bitrate * 100, len, rix, is_sp); 1188 } 1189 1190 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */ 1191 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit)) 1192 info->flags &= ~ATH9K_TXDESC_RTSENA; 1193 1194 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */ 1195 if (info->flags & ATH9K_TXDESC_RTSENA) 1196 info->flags &= ~ATH9K_TXDESC_CTSENA; 1197 } 1198 1199 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb) 1200 { 1201 struct ieee80211_hdr *hdr; 1202 enum ath9k_pkt_type htype; 1203 __le16 fc; 1204 1205 hdr = (struct ieee80211_hdr *)skb->data; 1206 fc = hdr->frame_control; 1207 1208 if (ieee80211_is_beacon(fc)) 1209 htype = ATH9K_PKT_TYPE_BEACON; 1210 else if (ieee80211_is_probe_resp(fc)) 1211 htype = ATH9K_PKT_TYPE_PROBE_RESP; 1212 else if (ieee80211_is_atim(fc)) 1213 htype = ATH9K_PKT_TYPE_ATIM; 1214 else if (ieee80211_is_pspoll(fc)) 1215 htype = ATH9K_PKT_TYPE_PSPOLL; 1216 else 1217 htype = ATH9K_PKT_TYPE_NORMAL; 1218 1219 return htype; 1220 } 1221 1222 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf, 1223 struct ath_txq *txq, int len) 1224 { 1225 struct ath_hw *ah = sc->sc_ah; 1226 struct ath_buf *bf_first = NULL; 1227 struct ath_tx_info info; 1228 u32 rts_thresh = sc->hw->wiphy->rts_threshold; 1229 bool rts = false; 1230 1231 memset(&info, 0, sizeof(info)); 1232 info.is_first = true; 1233 info.is_last = true; 1234 info.txpower = MAX_RATE_POWER; 1235 info.qcu = txq->axq_qnum; 1236 1237 while (bf) { 1238 struct sk_buff *skb = bf->bf_mpdu; 1239 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1240 struct ath_frame_info *fi = get_frame_info(skb); 1241 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR); 1242 1243 info.type = get_hw_packet_type(skb); 1244 if (bf->bf_next) 1245 info.link = bf->bf_next->bf_daddr; 1246 else 1247 info.link = (sc->tx99_state) ? bf->bf_daddr : 0; 1248 1249 if (!bf_first) { 1250 bf_first = bf; 1251 1252 if (!sc->tx99_state) 1253 info.flags = ATH9K_TXDESC_INTREQ; 1254 if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) || 1255 txq == sc->tx.uapsdq) 1256 info.flags |= ATH9K_TXDESC_CLRDMASK; 1257 1258 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) 1259 info.flags |= ATH9K_TXDESC_NOACK; 1260 if (tx_info->flags & IEEE80211_TX_CTL_LDPC) 1261 info.flags |= ATH9K_TXDESC_LDPC; 1262 1263 if (bf->bf_state.bfs_paprd) 1264 info.flags |= (u32) bf->bf_state.bfs_paprd << 1265 ATH9K_TXDESC_PAPRD_S; 1266 1267 /* 1268 * mac80211 doesn't handle RTS threshold for HT because 1269 * the decision has to be taken based on AMPDU length 1270 * and aggregation is done entirely inside ath9k. 1271 * Set the RTS/CTS flag for the first subframe based 1272 * on the threshold. 1273 */ 1274 if (aggr && (bf == bf_first) && 1275 unlikely(rts_thresh != (u32) -1)) { 1276 /* 1277 * "len" is the size of the entire AMPDU. 1278 */ 1279 if (!rts_thresh || (len > rts_thresh)) 1280 rts = true; 1281 } 1282 1283 if (!aggr) 1284 len = fi->framelen; 1285 1286 ath_buf_set_rate(sc, bf, &info, len, rts); 1287 } 1288 1289 info.buf_addr[0] = bf->bf_buf_addr; 1290 info.buf_len[0] = skb->len; 1291 info.pkt_len = fi->framelen; 1292 info.keyix = fi->keyix; 1293 info.keytype = fi->keytype; 1294 1295 if (aggr) { 1296 if (bf == bf_first) 1297 info.aggr = AGGR_BUF_FIRST; 1298 else if (bf == bf_first->bf_lastbf) 1299 info.aggr = AGGR_BUF_LAST; 1300 else 1301 info.aggr = AGGR_BUF_MIDDLE; 1302 1303 info.ndelim = bf->bf_state.ndelim; 1304 info.aggr_len = len; 1305 } 1306 1307 if (bf == bf_first->bf_lastbf) 1308 bf_first = NULL; 1309 1310 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info); 1311 bf = bf->bf_next; 1312 } 1313 } 1314 1315 static void 1316 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq, 1317 struct ath_atx_tid *tid, struct list_head *bf_q, 1318 struct ath_buf *bf_first, struct sk_buff_head *tid_q) 1319 { 1320 struct ath_buf *bf = bf_first, *bf_prev = NULL; 1321 struct sk_buff *skb; 1322 int nframes = 0; 1323 1324 do { 1325 struct ieee80211_tx_info *tx_info; 1326 skb = bf->bf_mpdu; 1327 1328 nframes++; 1329 __skb_unlink(skb, tid_q); 1330 list_add_tail(&bf->list, bf_q); 1331 if (bf_prev) 1332 bf_prev->bf_next = bf; 1333 bf_prev = bf; 1334 1335 if (nframes >= 2) 1336 break; 1337 1338 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q); 1339 if (!bf) 1340 break; 1341 1342 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1343 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) 1344 break; 1345 1346 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1347 } while (1); 1348 } 1349 1350 static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq, 1351 struct ath_atx_tid *tid, bool *stop) 1352 { 1353 struct ath_buf *bf; 1354 struct ieee80211_tx_info *tx_info; 1355 struct sk_buff_head *tid_q; 1356 struct list_head bf_q; 1357 int aggr_len = 0; 1358 bool aggr, last = true; 1359 1360 if (!ath_tid_has_buffered(tid)) 1361 return false; 1362 1363 INIT_LIST_HEAD(&bf_q); 1364 1365 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q); 1366 if (!bf) 1367 return false; 1368 1369 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1370 aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU); 1371 if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) || 1372 (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) { 1373 *stop = true; 1374 return false; 1375 } 1376 1377 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1378 if (aggr) 1379 last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf, 1380 tid_q, &aggr_len); 1381 else 1382 ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q); 1383 1384 if (list_empty(&bf_q)) 1385 return false; 1386 1387 if (tid->ac->clear_ps_filter || tid->an->no_ps_filter) { 1388 tid->ac->clear_ps_filter = false; 1389 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1390 } 1391 1392 ath_tx_fill_desc(sc, bf, txq, aggr_len); 1393 ath_tx_txqaddbuf(sc, txq, &bf_q, false); 1394 return true; 1395 } 1396 1397 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta, 1398 u16 tid, u16 *ssn) 1399 { 1400 struct ath_atx_tid *txtid; 1401 struct ath_txq *txq; 1402 struct ath_node *an; 1403 u8 density; 1404 1405 an = (struct ath_node *)sta->drv_priv; 1406 txtid = ATH_AN_2_TID(an, tid); 1407 txq = txtid->ac->txq; 1408 1409 ath_txq_lock(sc, txq); 1410 1411 /* update ampdu factor/density, they may have changed. This may happen 1412 * in HT IBSS when a beacon with HT-info is received after the station 1413 * has already been added. 1414 */ 1415 if (sta->ht_cap.ht_supported) { 1416 an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + 1417 sta->ht_cap.ampdu_factor)) - 1; 1418 density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density); 1419 an->mpdudensity = density; 1420 } 1421 1422 /* force sequence number allocation for pending frames */ 1423 ath_tx_tid_change_state(sc, txtid); 1424 1425 txtid->active = true; 1426 *ssn = txtid->seq_start = txtid->seq_next; 1427 txtid->bar_index = -1; 1428 1429 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf)); 1430 txtid->baw_head = txtid->baw_tail = 0; 1431 1432 ath_txq_unlock_complete(sc, txq); 1433 1434 return 0; 1435 } 1436 1437 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid) 1438 { 1439 struct ath_node *an = (struct ath_node *)sta->drv_priv; 1440 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid); 1441 struct ath_txq *txq = txtid->ac->txq; 1442 1443 ath_txq_lock(sc, txq); 1444 txtid->active = false; 1445 ath_tx_flush_tid(sc, txtid); 1446 ath_tx_tid_change_state(sc, txtid); 1447 ath_txq_unlock_complete(sc, txq); 1448 } 1449 1450 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc, 1451 struct ath_node *an) 1452 { 1453 struct ath_atx_tid *tid; 1454 struct ath_atx_ac *ac; 1455 struct ath_txq *txq; 1456 bool buffered; 1457 int tidno; 1458 1459 for (tidno = 0, tid = &an->tid[tidno]; 1460 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) { 1461 1462 ac = tid->ac; 1463 txq = ac->txq; 1464 1465 ath_txq_lock(sc, txq); 1466 1467 if (!tid->sched) { 1468 ath_txq_unlock(sc, txq); 1469 continue; 1470 } 1471 1472 buffered = ath_tid_has_buffered(tid); 1473 1474 tid->sched = false; 1475 list_del(&tid->list); 1476 1477 if (ac->sched) { 1478 ac->sched = false; 1479 list_del(&ac->list); 1480 } 1481 1482 ath_txq_unlock(sc, txq); 1483 1484 ieee80211_sta_set_buffered(sta, tidno, buffered); 1485 } 1486 } 1487 1488 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an) 1489 { 1490 struct ath_atx_tid *tid; 1491 struct ath_atx_ac *ac; 1492 struct ath_txq *txq; 1493 int tidno; 1494 1495 for (tidno = 0, tid = &an->tid[tidno]; 1496 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) { 1497 1498 ac = tid->ac; 1499 txq = ac->txq; 1500 1501 ath_txq_lock(sc, txq); 1502 ac->clear_ps_filter = true; 1503 1504 if (ath_tid_has_buffered(tid)) { 1505 ath_tx_queue_tid(sc, txq, tid); 1506 ath_txq_schedule(sc, txq); 1507 } 1508 1509 ath_txq_unlock_complete(sc, txq); 1510 } 1511 } 1512 1513 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, 1514 u16 tidno) 1515 { 1516 struct ath_atx_tid *tid; 1517 struct ath_node *an; 1518 struct ath_txq *txq; 1519 1520 an = (struct ath_node *)sta->drv_priv; 1521 tid = ATH_AN_2_TID(an, tidno); 1522 txq = tid->ac->txq; 1523 1524 ath_txq_lock(sc, txq); 1525 1526 tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor; 1527 1528 if (ath_tid_has_buffered(tid)) { 1529 ath_tx_queue_tid(sc, txq, tid); 1530 ath_txq_schedule(sc, txq); 1531 } 1532 1533 ath_txq_unlock_complete(sc, txq); 1534 } 1535 1536 void ath9k_release_buffered_frames(struct ieee80211_hw *hw, 1537 struct ieee80211_sta *sta, 1538 u16 tids, int nframes, 1539 enum ieee80211_frame_release_type reason, 1540 bool more_data) 1541 { 1542 struct ath_softc *sc = hw->priv; 1543 struct ath_node *an = (struct ath_node *)sta->drv_priv; 1544 struct ath_txq *txq = sc->tx.uapsdq; 1545 struct ieee80211_tx_info *info; 1546 struct list_head bf_q; 1547 struct ath_buf *bf_tail = NULL, *bf; 1548 struct sk_buff_head *tid_q; 1549 int sent = 0; 1550 int i; 1551 1552 INIT_LIST_HEAD(&bf_q); 1553 for (i = 0; tids && nframes; i++, tids >>= 1) { 1554 struct ath_atx_tid *tid; 1555 1556 if (!(tids & 1)) 1557 continue; 1558 1559 tid = ATH_AN_2_TID(an, i); 1560 1561 ath_txq_lock(sc, tid->ac->txq); 1562 while (nframes > 0) { 1563 bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q); 1564 if (!bf) 1565 break; 1566 1567 __skb_unlink(bf->bf_mpdu, tid_q); 1568 list_add_tail(&bf->list, &bf_q); 1569 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1570 if (bf_isampdu(bf)) { 1571 ath_tx_addto_baw(sc, tid, bf); 1572 bf->bf_state.bf_type &= ~BUF_AGGR; 1573 } 1574 if (bf_tail) 1575 bf_tail->bf_next = bf; 1576 1577 bf_tail = bf; 1578 nframes--; 1579 sent++; 1580 TX_STAT_INC(txq->axq_qnum, a_queued_hw); 1581 1582 if (an->sta && !ath_tid_has_buffered(tid)) 1583 ieee80211_sta_set_buffered(an->sta, i, false); 1584 } 1585 ath_txq_unlock_complete(sc, tid->ac->txq); 1586 } 1587 1588 if (list_empty(&bf_q)) 1589 return; 1590 1591 info = IEEE80211_SKB_CB(bf_tail->bf_mpdu); 1592 info->flags |= IEEE80211_TX_STATUS_EOSP; 1593 1594 bf = list_first_entry(&bf_q, struct ath_buf, list); 1595 ath_txq_lock(sc, txq); 1596 ath_tx_fill_desc(sc, bf, txq, 0); 1597 ath_tx_txqaddbuf(sc, txq, &bf_q, false); 1598 ath_txq_unlock(sc, txq); 1599 } 1600 1601 /********************/ 1602 /* Queue Management */ 1603 /********************/ 1604 1605 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 1606 { 1607 struct ath_hw *ah = sc->sc_ah; 1608 struct ath9k_tx_queue_info qi; 1609 static const int subtype_txq_to_hwq[] = { 1610 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE, 1611 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK, 1612 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI, 1613 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO, 1614 }; 1615 int axq_qnum, i; 1616 1617 memset(&qi, 0, sizeof(qi)); 1618 qi.tqi_subtype = subtype_txq_to_hwq[subtype]; 1619 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT; 1620 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT; 1621 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT; 1622 qi.tqi_physCompBuf = 0; 1623 1624 /* 1625 * Enable interrupts only for EOL and DESC conditions. 1626 * We mark tx descriptors to receive a DESC interrupt 1627 * when a tx queue gets deep; otherwise waiting for the 1628 * EOL to reap descriptors. Note that this is done to 1629 * reduce interrupt load and this only defers reaping 1630 * descriptors, never transmitting frames. Aside from 1631 * reducing interrupts this also permits more concurrency. 1632 * The only potential downside is if the tx queue backs 1633 * up in which case the top half of the kernel may backup 1634 * due to a lack of tx descriptors. 1635 * 1636 * The UAPSD queue is an exception, since we take a desc- 1637 * based intr on the EOSP frames. 1638 */ 1639 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1640 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE; 1641 } else { 1642 if (qtype == ATH9K_TX_QUEUE_UAPSD) 1643 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE; 1644 else 1645 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | 1646 TXQ_FLAG_TXDESCINT_ENABLE; 1647 } 1648 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi); 1649 if (axq_qnum == -1) { 1650 /* 1651 * NB: don't print a message, this happens 1652 * normally on parts with too few tx queues 1653 */ 1654 return NULL; 1655 } 1656 if (!ATH_TXQ_SETUP(sc, axq_qnum)) { 1657 struct ath_txq *txq = &sc->tx.txq[axq_qnum]; 1658 1659 txq->axq_qnum = axq_qnum; 1660 txq->mac80211_qnum = -1; 1661 txq->axq_link = NULL; 1662 __skb_queue_head_init(&txq->complete_q); 1663 INIT_LIST_HEAD(&txq->axq_q); 1664 spin_lock_init(&txq->axq_lock); 1665 txq->axq_depth = 0; 1666 txq->axq_ampdu_depth = 0; 1667 txq->axq_tx_inprogress = false; 1668 sc->tx.txqsetup |= 1<<axq_qnum; 1669 1670 txq->txq_headidx = txq->txq_tailidx = 0; 1671 for (i = 0; i < ATH_TXFIFO_DEPTH; i++) 1672 INIT_LIST_HEAD(&txq->txq_fifo[i]); 1673 } 1674 return &sc->tx.txq[axq_qnum]; 1675 } 1676 1677 int ath_txq_update(struct ath_softc *sc, int qnum, 1678 struct ath9k_tx_queue_info *qinfo) 1679 { 1680 struct ath_hw *ah = sc->sc_ah; 1681 int error = 0; 1682 struct ath9k_tx_queue_info qi; 1683 1684 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum); 1685 1686 ath9k_hw_get_txq_props(ah, qnum, &qi); 1687 qi.tqi_aifs = qinfo->tqi_aifs; 1688 qi.tqi_cwmin = qinfo->tqi_cwmin; 1689 qi.tqi_cwmax = qinfo->tqi_cwmax; 1690 qi.tqi_burstTime = qinfo->tqi_burstTime; 1691 qi.tqi_readyTime = qinfo->tqi_readyTime; 1692 1693 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) { 1694 ath_err(ath9k_hw_common(sc->sc_ah), 1695 "Unable to update hardware queue %u!\n", qnum); 1696 error = -EIO; 1697 } else { 1698 ath9k_hw_resettxqueue(ah, qnum); 1699 } 1700 1701 return error; 1702 } 1703 1704 int ath_cabq_update(struct ath_softc *sc) 1705 { 1706 struct ath9k_tx_queue_info qi; 1707 struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon; 1708 int qnum = sc->beacon.cabq->axq_qnum; 1709 1710 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi); 1711 1712 qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) * 1713 ATH_CABQ_READY_TIME) / 100; 1714 ath_txq_update(sc, qnum, &qi); 1715 1716 return 0; 1717 } 1718 1719 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq, 1720 struct list_head *list) 1721 { 1722 struct ath_buf *bf, *lastbf; 1723 struct list_head bf_head; 1724 struct ath_tx_status ts; 1725 1726 memset(&ts, 0, sizeof(ts)); 1727 ts.ts_status = ATH9K_TX_FLUSH; 1728 INIT_LIST_HEAD(&bf_head); 1729 1730 while (!list_empty(list)) { 1731 bf = list_first_entry(list, struct ath_buf, list); 1732 1733 if (bf->bf_state.stale) { 1734 list_del(&bf->list); 1735 1736 ath_tx_return_buffer(sc, bf); 1737 continue; 1738 } 1739 1740 lastbf = bf->bf_lastbf; 1741 list_cut_position(&bf_head, list, &lastbf->list); 1742 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 1743 } 1744 } 1745 1746 /* 1747 * Drain a given TX queue (could be Beacon or Data) 1748 * 1749 * This assumes output has been stopped and 1750 * we do not need to block ath_tx_tasklet. 1751 */ 1752 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq) 1753 { 1754 ath_txq_lock(sc, txq); 1755 1756 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1757 int idx = txq->txq_tailidx; 1758 1759 while (!list_empty(&txq->txq_fifo[idx])) { 1760 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]); 1761 1762 INCR(idx, ATH_TXFIFO_DEPTH); 1763 } 1764 txq->txq_tailidx = idx; 1765 } 1766 1767 txq->axq_link = NULL; 1768 txq->axq_tx_inprogress = false; 1769 ath_drain_txq_list(sc, txq, &txq->axq_q); 1770 1771 ath_txq_unlock_complete(sc, txq); 1772 } 1773 1774 bool ath_drain_all_txq(struct ath_softc *sc) 1775 { 1776 struct ath_hw *ah = sc->sc_ah; 1777 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1778 struct ath_txq *txq; 1779 int i; 1780 u32 npend = 0; 1781 1782 if (test_bit(ATH_OP_INVALID, &common->op_flags)) 1783 return true; 1784 1785 ath9k_hw_abort_tx_dma(ah); 1786 1787 /* Check if any queue remains active */ 1788 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1789 if (!ATH_TXQ_SETUP(sc, i)) 1790 continue; 1791 1792 if (!sc->tx.txq[i].axq_depth) 1793 continue; 1794 1795 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum)) 1796 npend |= BIT(i); 1797 } 1798 1799 if (npend) 1800 ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend); 1801 1802 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1803 if (!ATH_TXQ_SETUP(sc, i)) 1804 continue; 1805 1806 /* 1807 * The caller will resume queues with ieee80211_wake_queues. 1808 * Mark the queue as not stopped to prevent ath_tx_complete 1809 * from waking the queue too early. 1810 */ 1811 txq = &sc->tx.txq[i]; 1812 txq->stopped = false; 1813 ath_draintxq(sc, txq); 1814 } 1815 1816 return !npend; 1817 } 1818 1819 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 1820 { 1821 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum); 1822 sc->tx.txqsetup &= ~(1<<txq->axq_qnum); 1823 } 1824 1825 /* For each acq entry, for each tid, try to schedule packets 1826 * for transmit until ampdu_depth has reached min Q depth. 1827 */ 1828 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq) 1829 { 1830 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1831 struct ath_atx_ac *ac, *last_ac; 1832 struct ath_atx_tid *tid, *last_tid; 1833 struct list_head *ac_list; 1834 bool sent = false; 1835 1836 if (txq->mac80211_qnum < 0) 1837 return; 1838 1839 spin_lock_bh(&sc->chan_lock); 1840 ac_list = &sc->cur_chan->acq[txq->mac80211_qnum]; 1841 spin_unlock_bh(&sc->chan_lock); 1842 1843 if (test_bit(ATH_OP_HW_RESET, &common->op_flags) || 1844 list_empty(ac_list)) 1845 return; 1846 1847 spin_lock_bh(&sc->chan_lock); 1848 rcu_read_lock(); 1849 1850 last_ac = list_entry(ac_list->prev, struct ath_atx_ac, list); 1851 while (!list_empty(ac_list)) { 1852 bool stop = false; 1853 1854 if (sc->cur_chan->stopped) 1855 break; 1856 1857 ac = list_first_entry(ac_list, struct ath_atx_ac, list); 1858 last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list); 1859 list_del(&ac->list); 1860 ac->sched = false; 1861 1862 while (!list_empty(&ac->tid_q)) { 1863 1864 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, 1865 list); 1866 list_del(&tid->list); 1867 tid->sched = false; 1868 1869 if (ath_tx_sched_aggr(sc, txq, tid, &stop)) 1870 sent = true; 1871 1872 /* 1873 * add tid to round-robin queue if more frames 1874 * are pending for the tid 1875 */ 1876 if (ath_tid_has_buffered(tid)) 1877 ath_tx_queue_tid(sc, txq, tid); 1878 1879 if (stop || tid == last_tid) 1880 break; 1881 } 1882 1883 if (!list_empty(&ac->tid_q) && !ac->sched) { 1884 ac->sched = true; 1885 list_add_tail(&ac->list, ac_list); 1886 } 1887 1888 if (stop) 1889 break; 1890 1891 if (ac == last_ac) { 1892 if (!sent) 1893 break; 1894 1895 sent = false; 1896 last_ac = list_entry(ac_list->prev, 1897 struct ath_atx_ac, list); 1898 } 1899 } 1900 1901 rcu_read_unlock(); 1902 spin_unlock_bh(&sc->chan_lock); 1903 } 1904 1905 void ath_txq_schedule_all(struct ath_softc *sc) 1906 { 1907 struct ath_txq *txq; 1908 int i; 1909 1910 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 1911 txq = sc->tx.txq_map[i]; 1912 1913 spin_lock_bh(&txq->axq_lock); 1914 ath_txq_schedule(sc, txq); 1915 spin_unlock_bh(&txq->axq_lock); 1916 } 1917 } 1918 1919 /***********/ 1920 /* TX, DMA */ 1921 /***********/ 1922 1923 /* 1924 * Insert a chain of ath_buf (descriptors) on a txq and 1925 * assume the descriptors are already chained together by caller. 1926 */ 1927 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 1928 struct list_head *head, bool internal) 1929 { 1930 struct ath_hw *ah = sc->sc_ah; 1931 struct ath_common *common = ath9k_hw_common(ah); 1932 struct ath_buf *bf, *bf_last; 1933 bool puttxbuf = false; 1934 bool edma; 1935 1936 /* 1937 * Insert the frame on the outbound list and 1938 * pass it on to the hardware. 1939 */ 1940 1941 if (list_empty(head)) 1942 return; 1943 1944 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA); 1945 bf = list_first_entry(head, struct ath_buf, list); 1946 bf_last = list_entry(head->prev, struct ath_buf, list); 1947 1948 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n", 1949 txq->axq_qnum, txq->axq_depth); 1950 1951 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) { 1952 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]); 1953 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH); 1954 puttxbuf = true; 1955 } else { 1956 list_splice_tail_init(head, &txq->axq_q); 1957 1958 if (txq->axq_link) { 1959 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr); 1960 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n", 1961 txq->axq_qnum, txq->axq_link, 1962 ito64(bf->bf_daddr), bf->bf_desc); 1963 } else if (!edma) 1964 puttxbuf = true; 1965 1966 txq->axq_link = bf_last->bf_desc; 1967 } 1968 1969 if (puttxbuf) { 1970 TX_STAT_INC(txq->axq_qnum, puttxbuf); 1971 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 1972 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n", 1973 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc); 1974 } 1975 1976 if (!edma || sc->tx99_state) { 1977 TX_STAT_INC(txq->axq_qnum, txstart); 1978 ath9k_hw_txstart(ah, txq->axq_qnum); 1979 } 1980 1981 if (!internal) { 1982 while (bf) { 1983 txq->axq_depth++; 1984 if (bf_is_ampdu_not_probing(bf)) 1985 txq->axq_ampdu_depth++; 1986 1987 bf_last = bf->bf_lastbf; 1988 bf = bf_last->bf_next; 1989 bf_last->bf_next = NULL; 1990 } 1991 } 1992 } 1993 1994 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 1995 struct ath_atx_tid *tid, struct sk_buff *skb) 1996 { 1997 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1998 struct ath_frame_info *fi = get_frame_info(skb); 1999 struct list_head bf_head; 2000 struct ath_buf *bf = fi->bf; 2001 2002 INIT_LIST_HEAD(&bf_head); 2003 list_add_tail(&bf->list, &bf_head); 2004 bf->bf_state.bf_type = 0; 2005 if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) { 2006 bf->bf_state.bf_type = BUF_AMPDU; 2007 ath_tx_addto_baw(sc, tid, bf); 2008 } 2009 2010 bf->bf_next = NULL; 2011 bf->bf_lastbf = bf; 2012 ath_tx_fill_desc(sc, bf, txq, fi->framelen); 2013 ath_tx_txqaddbuf(sc, txq, &bf_head, false); 2014 TX_STAT_INC(txq->axq_qnum, queued); 2015 } 2016 2017 static void setup_frame_info(struct ieee80211_hw *hw, 2018 struct ieee80211_sta *sta, 2019 struct sk_buff *skb, 2020 int framelen) 2021 { 2022 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2023 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key; 2024 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2025 const struct ieee80211_rate *rate; 2026 struct ath_frame_info *fi = get_frame_info(skb); 2027 struct ath_node *an = NULL; 2028 enum ath9k_key_type keytype; 2029 bool short_preamble = false; 2030 2031 /* 2032 * We check if Short Preamble is needed for the CTS rate by 2033 * checking the BSS's global flag. 2034 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used. 2035 */ 2036 if (tx_info->control.vif && 2037 tx_info->control.vif->bss_conf.use_short_preamble) 2038 short_preamble = true; 2039 2040 rate = ieee80211_get_rts_cts_rate(hw, tx_info); 2041 keytype = ath9k_cmn_get_hw_crypto_keytype(skb); 2042 2043 if (sta) 2044 an = (struct ath_node *) sta->drv_priv; 2045 2046 memset(fi, 0, sizeof(*fi)); 2047 fi->txq = -1; 2048 if (hw_key) 2049 fi->keyix = hw_key->hw_key_idx; 2050 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0) 2051 fi->keyix = an->ps_key; 2052 else 2053 fi->keyix = ATH9K_TXKEYIX_INVALID; 2054 fi->keytype = keytype; 2055 fi->framelen = framelen; 2056 2057 if (!rate) 2058 return; 2059 fi->rtscts_rate = rate->hw_value; 2060 if (short_preamble) 2061 fi->rtscts_rate |= rate->hw_value_short; 2062 } 2063 2064 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate) 2065 { 2066 struct ath_hw *ah = sc->sc_ah; 2067 struct ath9k_channel *curchan = ah->curchan; 2068 2069 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) && 2070 (chainmask == 0x7) && (rate < 0x90)) 2071 return 0x3; 2072 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) && 2073 IS_CCK_RATE(rate)) 2074 return 0x2; 2075 else 2076 return chainmask; 2077 } 2078 2079 /* 2080 * Assign a descriptor (and sequence number if necessary, 2081 * and map buffer for DMA. Frees skb on error 2082 */ 2083 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, 2084 struct ath_txq *txq, 2085 struct ath_atx_tid *tid, 2086 struct sk_buff *skb) 2087 { 2088 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2089 struct ath_frame_info *fi = get_frame_info(skb); 2090 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2091 struct ath_buf *bf; 2092 int fragno; 2093 u16 seqno; 2094 2095 bf = ath_tx_get_buffer(sc); 2096 if (!bf) { 2097 ath_dbg(common, XMIT, "TX buffers are full\n"); 2098 return NULL; 2099 } 2100 2101 ATH_TXBUF_RESET(bf); 2102 2103 if (tid && ieee80211_is_data_present(hdr->frame_control)) { 2104 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG; 2105 seqno = tid->seq_next; 2106 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT); 2107 2108 if (fragno) 2109 hdr->seq_ctrl |= cpu_to_le16(fragno); 2110 2111 if (!ieee80211_has_morefrags(hdr->frame_control)) 2112 INCR(tid->seq_next, IEEE80211_SEQ_MAX); 2113 2114 bf->bf_state.seqno = seqno; 2115 } 2116 2117 bf->bf_mpdu = skb; 2118 2119 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 2120 skb->len, DMA_TO_DEVICE); 2121 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) { 2122 bf->bf_mpdu = NULL; 2123 bf->bf_buf_addr = 0; 2124 ath_err(ath9k_hw_common(sc->sc_ah), 2125 "dma_mapping_error() on TX\n"); 2126 ath_tx_return_buffer(sc, bf); 2127 return NULL; 2128 } 2129 2130 fi->bf = bf; 2131 2132 return bf; 2133 } 2134 2135 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb, 2136 struct ath_tx_control *txctl) 2137 { 2138 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2139 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2140 struct ieee80211_sta *sta = txctl->sta; 2141 struct ieee80211_vif *vif = info->control.vif; 2142 struct ath_vif *avp; 2143 struct ath_softc *sc = hw->priv; 2144 int frmlen = skb->len + FCS_LEN; 2145 int padpos, padsize; 2146 2147 /* NOTE: sta can be NULL according to net/mac80211.h */ 2148 if (sta) 2149 txctl->an = (struct ath_node *)sta->drv_priv; 2150 else if (vif && ieee80211_is_data(hdr->frame_control)) { 2151 avp = (void *)vif->drv_priv; 2152 txctl->an = &avp->mcast_node; 2153 } 2154 2155 if (info->control.hw_key) 2156 frmlen += info->control.hw_key->icv_len; 2157 2158 /* 2159 * As a temporary workaround, assign seq# here; this will likely need 2160 * to be cleaned up to work better with Beacon transmission and virtual 2161 * BSSes. 2162 */ 2163 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { 2164 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) 2165 sc->tx.seq_no += 0x10; 2166 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); 2167 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no); 2168 } 2169 2170 if ((vif && vif->type != NL80211_IFTYPE_AP && 2171 vif->type != NL80211_IFTYPE_AP_VLAN) || 2172 !ieee80211_is_data(hdr->frame_control)) 2173 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 2174 2175 /* Add the padding after the header if this is not already done */ 2176 padpos = ieee80211_hdrlen(hdr->frame_control); 2177 padsize = padpos & 3; 2178 if (padsize && skb->len > padpos) { 2179 if (skb_headroom(skb) < padsize) 2180 return -ENOMEM; 2181 2182 skb_push(skb, padsize); 2183 memmove(skb->data, skb->data + padsize, padpos); 2184 } 2185 2186 setup_frame_info(hw, sta, skb, frmlen); 2187 return 0; 2188 } 2189 2190 2191 /* Upon failure caller should free skb */ 2192 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb, 2193 struct ath_tx_control *txctl) 2194 { 2195 struct ieee80211_hdr *hdr; 2196 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2197 struct ieee80211_sta *sta = txctl->sta; 2198 struct ieee80211_vif *vif = info->control.vif; 2199 struct ath_frame_info *fi = get_frame_info(skb); 2200 struct ath_vif *avp = NULL; 2201 struct ath_softc *sc = hw->priv; 2202 struct ath_txq *txq = txctl->txq; 2203 struct ath_atx_tid *tid = NULL; 2204 struct ath_buf *bf; 2205 bool queue; 2206 int q, hw_queue; 2207 int ret; 2208 2209 if (vif) 2210 avp = (void *)vif->drv_priv; 2211 2212 if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) 2213 txctl->force_channel = true; 2214 2215 ret = ath_tx_prepare(hw, skb, txctl); 2216 if (ret) 2217 return ret; 2218 2219 hdr = (struct ieee80211_hdr *) skb->data; 2220 /* 2221 * At this point, the vif, hw_key and sta pointers in the tx control 2222 * info are no longer valid (overwritten by the ath_frame_info data. 2223 */ 2224 2225 q = skb_get_queue_mapping(skb); 2226 hw_queue = (info->hw_queue >= sc->hw->queues - 2) ? q : info->hw_queue; 2227 2228 ath_txq_lock(sc, txq); 2229 if (txq == sc->tx.txq_map[q]) { 2230 fi->txq = q; 2231 if (++txq->pending_frames > sc->tx.txq_max_pending[q] && 2232 !txq->stopped) { 2233 ieee80211_stop_queue(sc->hw, hw_queue); 2234 txq->stopped = true; 2235 } 2236 } 2237 2238 queue = ieee80211_is_data_present(hdr->frame_control); 2239 2240 /* Force queueing of all frames that belong to a virtual interface on 2241 * a different channel context, to ensure that they are sent on the 2242 * correct channel. 2243 */ 2244 if (((avp && avp->chanctx != sc->cur_chan) || 2245 sc->cur_chan->stopped) && !txctl->force_channel) { 2246 if (!txctl->an) 2247 txctl->an = &avp->mcast_node; 2248 info->flags &= ~IEEE80211_TX_CTL_PS_RESPONSE; 2249 queue = true; 2250 } 2251 2252 if (txctl->an && queue) 2253 tid = ath_get_skb_tid(sc, txctl->an, skb); 2254 2255 if (info->flags & (IEEE80211_TX_CTL_PS_RESPONSE | 2256 IEEE80211_TX_CTL_TX_OFFCHAN)) { 2257 ath_txq_unlock(sc, txq); 2258 txq = sc->tx.uapsdq; 2259 ath_txq_lock(sc, txq); 2260 } else if (txctl->an && queue) { 2261 WARN_ON(tid->ac->txq != txctl->txq); 2262 2263 if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) 2264 tid->ac->clear_ps_filter = true; 2265 2266 /* 2267 * Add this frame to software queue for scheduling later 2268 * for aggregation. 2269 */ 2270 TX_STAT_INC(txq->axq_qnum, a_queued_sw); 2271 __skb_queue_tail(&tid->buf_q, skb); 2272 if (!txctl->an->sleeping) 2273 ath_tx_queue_tid(sc, txq, tid); 2274 2275 ath_txq_schedule(sc, txq); 2276 goto out; 2277 } 2278 2279 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 2280 if (!bf) { 2281 ath_txq_skb_done(sc, txq, skb); 2282 if (txctl->paprd) 2283 dev_kfree_skb_any(skb); 2284 else 2285 ieee80211_free_txskb(sc->hw, skb); 2286 goto out; 2287 } 2288 2289 bf->bf_state.bfs_paprd = txctl->paprd; 2290 2291 if (txctl->paprd) 2292 bf->bf_state.bfs_paprd_timestamp = jiffies; 2293 2294 ath_set_rates(vif, sta, bf); 2295 ath_tx_send_normal(sc, txq, tid, skb); 2296 2297 out: 2298 ath_txq_unlock(sc, txq); 2299 2300 return 0; 2301 } 2302 2303 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2304 struct sk_buff *skb) 2305 { 2306 struct ath_softc *sc = hw->priv; 2307 struct ath_tx_control txctl = { 2308 .txq = sc->beacon.cabq 2309 }; 2310 struct ath_tx_info info = {}; 2311 struct ieee80211_hdr *hdr; 2312 struct ath_buf *bf_tail = NULL; 2313 struct ath_buf *bf; 2314 LIST_HEAD(bf_q); 2315 int duration = 0; 2316 int max_duration; 2317 2318 max_duration = 2319 sc->cur_chan->beacon.beacon_interval * 1000 * 2320 sc->cur_chan->beacon.dtim_period / ATH_BCBUF; 2321 2322 do { 2323 struct ath_frame_info *fi = get_frame_info(skb); 2324 2325 if (ath_tx_prepare(hw, skb, &txctl)) 2326 break; 2327 2328 bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb); 2329 if (!bf) 2330 break; 2331 2332 bf->bf_lastbf = bf; 2333 ath_set_rates(vif, NULL, bf); 2334 ath_buf_set_rate(sc, bf, &info, fi->framelen, false); 2335 duration += info.rates[0].PktDuration; 2336 if (bf_tail) 2337 bf_tail->bf_next = bf; 2338 2339 list_add_tail(&bf->list, &bf_q); 2340 bf_tail = bf; 2341 skb = NULL; 2342 2343 if (duration > max_duration) 2344 break; 2345 2346 skb = ieee80211_get_buffered_bc(hw, vif); 2347 } while(skb); 2348 2349 if (skb) 2350 ieee80211_free_txskb(hw, skb); 2351 2352 if (list_empty(&bf_q)) 2353 return; 2354 2355 bf = list_first_entry(&bf_q, struct ath_buf, list); 2356 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data; 2357 2358 if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) { 2359 hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA; 2360 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 2361 sizeof(*hdr), DMA_TO_DEVICE); 2362 } 2363 2364 ath_txq_lock(sc, txctl.txq); 2365 ath_tx_fill_desc(sc, bf, txctl.txq, 0); 2366 ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false); 2367 TX_STAT_INC(txctl.txq->axq_qnum, queued); 2368 ath_txq_unlock(sc, txctl.txq); 2369 } 2370 2371 /*****************/ 2372 /* TX Completion */ 2373 /*****************/ 2374 2375 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, 2376 int tx_flags, struct ath_txq *txq) 2377 { 2378 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2379 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2380 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data; 2381 int padpos, padsize; 2382 unsigned long flags; 2383 2384 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb); 2385 2386 if (sc->sc_ah->caldata) 2387 set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags); 2388 2389 if (!(tx_flags & ATH_TX_ERROR)) 2390 /* Frame was ACKed */ 2391 tx_info->flags |= IEEE80211_TX_STAT_ACK; 2392 2393 padpos = ieee80211_hdrlen(hdr->frame_control); 2394 padsize = padpos & 3; 2395 if (padsize && skb->len>padpos+padsize) { 2396 /* 2397 * Remove MAC header padding before giving the frame back to 2398 * mac80211. 2399 */ 2400 memmove(skb->data + padsize, skb->data, padpos); 2401 skb_pull(skb, padsize); 2402 } 2403 2404 spin_lock_irqsave(&sc->sc_pm_lock, flags); 2405 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) { 2406 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK; 2407 ath_dbg(common, PS, 2408 "Going back to sleep after having received TX status (0x%lx)\n", 2409 sc->ps_flags & (PS_WAIT_FOR_BEACON | 2410 PS_WAIT_FOR_CAB | 2411 PS_WAIT_FOR_PSPOLL_DATA | 2412 PS_WAIT_FOR_TX_ACK)); 2413 } 2414 spin_unlock_irqrestore(&sc->sc_pm_lock, flags); 2415 2416 __skb_queue_tail(&txq->complete_q, skb); 2417 ath_txq_skb_done(sc, txq, skb); 2418 } 2419 2420 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 2421 struct ath_txq *txq, struct list_head *bf_q, 2422 struct ath_tx_status *ts, int txok) 2423 { 2424 struct sk_buff *skb = bf->bf_mpdu; 2425 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2426 unsigned long flags; 2427 int tx_flags = 0; 2428 2429 if (!txok) 2430 tx_flags |= ATH_TX_ERROR; 2431 2432 if (ts->ts_status & ATH9K_TXERR_FILT) 2433 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; 2434 2435 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE); 2436 bf->bf_buf_addr = 0; 2437 if (sc->tx99_state) 2438 goto skip_tx_complete; 2439 2440 if (bf->bf_state.bfs_paprd) { 2441 if (time_after(jiffies, 2442 bf->bf_state.bfs_paprd_timestamp + 2443 msecs_to_jiffies(ATH_PAPRD_TIMEOUT))) 2444 dev_kfree_skb_any(skb); 2445 else 2446 complete(&sc->paprd_complete); 2447 } else { 2448 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags); 2449 ath_tx_complete(sc, skb, tx_flags, txq); 2450 } 2451 skip_tx_complete: 2452 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't 2453 * accidentally reference it later. 2454 */ 2455 bf->bf_mpdu = NULL; 2456 2457 /* 2458 * Return the list of ath_buf of this mpdu to free queue 2459 */ 2460 spin_lock_irqsave(&sc->tx.txbuflock, flags); 2461 list_splice_tail_init(bf_q, &sc->tx.txbuf); 2462 spin_unlock_irqrestore(&sc->tx.txbuflock, flags); 2463 } 2464 2465 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 2466 struct ath_tx_status *ts, int nframes, int nbad, 2467 int txok) 2468 { 2469 struct sk_buff *skb = bf->bf_mpdu; 2470 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2471 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2472 struct ieee80211_hw *hw = sc->hw; 2473 struct ath_hw *ah = sc->sc_ah; 2474 u8 i, tx_rateindex; 2475 2476 if (txok) 2477 tx_info->status.ack_signal = ts->ts_rssi; 2478 2479 tx_rateindex = ts->ts_rateindex; 2480 WARN_ON(tx_rateindex >= hw->max_rates); 2481 2482 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 2483 tx_info->flags |= IEEE80211_TX_STAT_AMPDU; 2484 2485 BUG_ON(nbad > nframes); 2486 } 2487 tx_info->status.ampdu_len = nframes; 2488 tx_info->status.ampdu_ack_len = nframes - nbad; 2489 2490 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 && 2491 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) { 2492 /* 2493 * If an underrun error is seen assume it as an excessive 2494 * retry only if max frame trigger level has been reached 2495 * (2 KB for single stream, and 4 KB for dual stream). 2496 * Adjust the long retry as if the frame was tried 2497 * hw->max_rate_tries times to affect how rate control updates 2498 * PER for the failed rate. 2499 * In case of congestion on the bus penalizing this type of 2500 * underruns should help hardware actually transmit new frames 2501 * successfully by eventually preferring slower rates. 2502 * This itself should also alleviate congestion on the bus. 2503 */ 2504 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN | 2505 ATH9K_TX_DELIM_UNDERRUN)) && 2506 ieee80211_is_data(hdr->frame_control) && 2507 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level) 2508 tx_info->status.rates[tx_rateindex].count = 2509 hw->max_rate_tries; 2510 } 2511 2512 for (i = tx_rateindex + 1; i < hw->max_rates; i++) { 2513 tx_info->status.rates[i].count = 0; 2514 tx_info->status.rates[i].idx = -1; 2515 } 2516 2517 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1; 2518 } 2519 2520 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 2521 { 2522 struct ath_hw *ah = sc->sc_ah; 2523 struct ath_common *common = ath9k_hw_common(ah); 2524 struct ath_buf *bf, *lastbf, *bf_held = NULL; 2525 struct list_head bf_head; 2526 struct ath_desc *ds; 2527 struct ath_tx_status ts; 2528 int status; 2529 2530 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n", 2531 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum), 2532 txq->axq_link); 2533 2534 ath_txq_lock(sc, txq); 2535 for (;;) { 2536 if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) 2537 break; 2538 2539 if (list_empty(&txq->axq_q)) { 2540 txq->axq_link = NULL; 2541 ath_txq_schedule(sc, txq); 2542 break; 2543 } 2544 bf = list_first_entry(&txq->axq_q, struct ath_buf, list); 2545 2546 /* 2547 * There is a race condition that a BH gets scheduled 2548 * after sw writes TxE and before hw re-load the last 2549 * descriptor to get the newly chained one. 2550 * Software must keep the last DONE descriptor as a 2551 * holding descriptor - software does so by marking 2552 * it with the STALE flag. 2553 */ 2554 bf_held = NULL; 2555 if (bf->bf_state.stale) { 2556 bf_held = bf; 2557 if (list_is_last(&bf_held->list, &txq->axq_q)) 2558 break; 2559 2560 bf = list_entry(bf_held->list.next, struct ath_buf, 2561 list); 2562 } 2563 2564 lastbf = bf->bf_lastbf; 2565 ds = lastbf->bf_desc; 2566 2567 memset(&ts, 0, sizeof(ts)); 2568 status = ath9k_hw_txprocdesc(ah, ds, &ts); 2569 if (status == -EINPROGRESS) 2570 break; 2571 2572 TX_STAT_INC(txq->axq_qnum, txprocdesc); 2573 2574 /* 2575 * Remove ath_buf's of the same transmit unit from txq, 2576 * however leave the last descriptor back as the holding 2577 * descriptor for hw. 2578 */ 2579 lastbf->bf_state.stale = true; 2580 INIT_LIST_HEAD(&bf_head); 2581 if (!list_is_singular(&lastbf->list)) 2582 list_cut_position(&bf_head, 2583 &txq->axq_q, lastbf->list.prev); 2584 2585 if (bf_held) { 2586 list_del(&bf_held->list); 2587 ath_tx_return_buffer(sc, bf_held); 2588 } 2589 2590 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2591 } 2592 ath_txq_unlock_complete(sc, txq); 2593 } 2594 2595 void ath_tx_tasklet(struct ath_softc *sc) 2596 { 2597 struct ath_hw *ah = sc->sc_ah; 2598 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs; 2599 int i; 2600 2601 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 2602 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i))) 2603 ath_tx_processq(sc, &sc->tx.txq[i]); 2604 } 2605 } 2606 2607 void ath_tx_edma_tasklet(struct ath_softc *sc) 2608 { 2609 struct ath_tx_status ts; 2610 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2611 struct ath_hw *ah = sc->sc_ah; 2612 struct ath_txq *txq; 2613 struct ath_buf *bf, *lastbf; 2614 struct list_head bf_head; 2615 struct list_head *fifo_list; 2616 int status; 2617 2618 for (;;) { 2619 if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) 2620 break; 2621 2622 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts); 2623 if (status == -EINPROGRESS) 2624 break; 2625 if (status == -EIO) { 2626 ath_dbg(common, XMIT, "Error processing tx status\n"); 2627 break; 2628 } 2629 2630 /* Process beacon completions separately */ 2631 if (ts.qid == sc->beacon.beaconq) { 2632 sc->beacon.tx_processed = true; 2633 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK); 2634 2635 ath_chanctx_event(sc, NULL, 2636 ATH_CHANCTX_EVENT_BEACON_SENT); 2637 ath9k_csa_update(sc); 2638 continue; 2639 } 2640 2641 txq = &sc->tx.txq[ts.qid]; 2642 2643 ath_txq_lock(sc, txq); 2644 2645 TX_STAT_INC(txq->axq_qnum, txprocdesc); 2646 2647 fifo_list = &txq->txq_fifo[txq->txq_tailidx]; 2648 if (list_empty(fifo_list)) { 2649 ath_txq_unlock(sc, txq); 2650 return; 2651 } 2652 2653 bf = list_first_entry(fifo_list, struct ath_buf, list); 2654 if (bf->bf_state.stale) { 2655 list_del(&bf->list); 2656 ath_tx_return_buffer(sc, bf); 2657 bf = list_first_entry(fifo_list, struct ath_buf, list); 2658 } 2659 2660 lastbf = bf->bf_lastbf; 2661 2662 INIT_LIST_HEAD(&bf_head); 2663 if (list_is_last(&lastbf->list, fifo_list)) { 2664 list_splice_tail_init(fifo_list, &bf_head); 2665 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH); 2666 2667 if (!list_empty(&txq->axq_q)) { 2668 struct list_head bf_q; 2669 2670 INIT_LIST_HEAD(&bf_q); 2671 txq->axq_link = NULL; 2672 list_splice_tail_init(&txq->axq_q, &bf_q); 2673 ath_tx_txqaddbuf(sc, txq, &bf_q, true); 2674 } 2675 } else { 2676 lastbf->bf_state.stale = true; 2677 if (bf != lastbf) 2678 list_cut_position(&bf_head, fifo_list, 2679 lastbf->list.prev); 2680 } 2681 2682 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2683 ath_txq_unlock_complete(sc, txq); 2684 } 2685 } 2686 2687 /*****************/ 2688 /* Init, Cleanup */ 2689 /*****************/ 2690 2691 static int ath_txstatus_setup(struct ath_softc *sc, int size) 2692 { 2693 struct ath_descdma *dd = &sc->txsdma; 2694 u8 txs_len = sc->sc_ah->caps.txs_len; 2695 2696 dd->dd_desc_len = size * txs_len; 2697 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len, 2698 &dd->dd_desc_paddr, GFP_KERNEL); 2699 if (!dd->dd_desc) 2700 return -ENOMEM; 2701 2702 return 0; 2703 } 2704 2705 static int ath_tx_edma_init(struct ath_softc *sc) 2706 { 2707 int err; 2708 2709 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE); 2710 if (!err) 2711 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc, 2712 sc->txsdma.dd_desc_paddr, 2713 ATH_TXSTATUS_RING_SIZE); 2714 2715 return err; 2716 } 2717 2718 int ath_tx_init(struct ath_softc *sc, int nbufs) 2719 { 2720 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2721 int error = 0; 2722 2723 spin_lock_init(&sc->tx.txbuflock); 2724 2725 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf, 2726 "tx", nbufs, 1, 1); 2727 if (error != 0) { 2728 ath_err(common, 2729 "Failed to allocate tx descriptors: %d\n", error); 2730 return error; 2731 } 2732 2733 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf, 2734 "beacon", ATH_BCBUF, 1, 1); 2735 if (error != 0) { 2736 ath_err(common, 2737 "Failed to allocate beacon descriptors: %d\n", error); 2738 return error; 2739 } 2740 2741 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work); 2742 2743 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 2744 error = ath_tx_edma_init(sc); 2745 2746 return error; 2747 } 2748 2749 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an) 2750 { 2751 struct ath_atx_tid *tid; 2752 struct ath_atx_ac *ac; 2753 int tidno, acno; 2754 2755 for (tidno = 0, tid = &an->tid[tidno]; 2756 tidno < IEEE80211_NUM_TIDS; 2757 tidno++, tid++) { 2758 tid->an = an; 2759 tid->tidno = tidno; 2760 tid->seq_start = tid->seq_next = 0; 2761 tid->baw_size = WME_MAX_BA; 2762 tid->baw_head = tid->baw_tail = 0; 2763 tid->sched = false; 2764 tid->active = false; 2765 __skb_queue_head_init(&tid->buf_q); 2766 __skb_queue_head_init(&tid->retry_q); 2767 acno = TID_TO_WME_AC(tidno); 2768 tid->ac = &an->ac[acno]; 2769 } 2770 2771 for (acno = 0, ac = &an->ac[acno]; 2772 acno < IEEE80211_NUM_ACS; acno++, ac++) { 2773 ac->sched = false; 2774 ac->clear_ps_filter = true; 2775 ac->txq = sc->tx.txq_map[acno]; 2776 INIT_LIST_HEAD(&ac->tid_q); 2777 } 2778 } 2779 2780 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an) 2781 { 2782 struct ath_atx_ac *ac; 2783 struct ath_atx_tid *tid; 2784 struct ath_txq *txq; 2785 int tidno; 2786 2787 for (tidno = 0, tid = &an->tid[tidno]; 2788 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) { 2789 2790 ac = tid->ac; 2791 txq = ac->txq; 2792 2793 ath_txq_lock(sc, txq); 2794 2795 if (tid->sched) { 2796 list_del(&tid->list); 2797 tid->sched = false; 2798 } 2799 2800 if (ac->sched) { 2801 list_del(&ac->list); 2802 tid->ac->sched = false; 2803 } 2804 2805 ath_tid_drain(sc, txq, tid); 2806 tid->active = false; 2807 2808 ath_txq_unlock(sc, txq); 2809 } 2810 } 2811 2812 #ifdef CONFIG_ATH9K_TX99 2813 2814 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb, 2815 struct ath_tx_control *txctl) 2816 { 2817 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2818 struct ath_frame_info *fi = get_frame_info(skb); 2819 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2820 struct ath_buf *bf; 2821 int padpos, padsize; 2822 2823 padpos = ieee80211_hdrlen(hdr->frame_control); 2824 padsize = padpos & 3; 2825 2826 if (padsize && skb->len > padpos) { 2827 if (skb_headroom(skb) < padsize) { 2828 ath_dbg(common, XMIT, 2829 "tx99 padding failed\n"); 2830 return -EINVAL; 2831 } 2832 2833 skb_push(skb, padsize); 2834 memmove(skb->data, skb->data + padsize, padpos); 2835 } 2836 2837 fi->keyix = ATH9K_TXKEYIX_INVALID; 2838 fi->framelen = skb->len + FCS_LEN; 2839 fi->keytype = ATH9K_KEY_TYPE_CLEAR; 2840 2841 bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb); 2842 if (!bf) { 2843 ath_dbg(common, XMIT, "tx99 buffer setup failed\n"); 2844 return -EINVAL; 2845 } 2846 2847 ath_set_rates(sc->tx99_vif, NULL, bf); 2848 2849 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr); 2850 ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum); 2851 2852 ath_tx_send_normal(sc, txctl->txq, NULL, skb); 2853 2854 return 0; 2855 } 2856 2857 #endif /* CONFIG_ATH9K_TX99 */ 2858