1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/dma-mapping.h> 18 #include "ath9k.h" 19 #include "ar9003_mac.h" 20 21 #define BITS_PER_BYTE 8 22 #define OFDM_PLCP_BITS 22 23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1) 24 #define L_STF 8 25 #define L_LTF 8 26 #define L_SIG 4 27 #define HT_SIG 8 28 #define HT_STF 4 29 #define HT_LTF(_ns) (4 * (_ns)) 30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */ 31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */ 32 #define TIME_SYMBOLS(t) ((t) >> 2) 33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18) 34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2) 35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18) 36 37 38 static u16 bits_per_symbol[][2] = { 39 /* 20MHz 40MHz */ 40 { 26, 54 }, /* 0: BPSK */ 41 { 52, 108 }, /* 1: QPSK 1/2 */ 42 { 78, 162 }, /* 2: QPSK 3/4 */ 43 { 104, 216 }, /* 3: 16-QAM 1/2 */ 44 { 156, 324 }, /* 4: 16-QAM 3/4 */ 45 { 208, 432 }, /* 5: 64-QAM 2/3 */ 46 { 234, 486 }, /* 6: 64-QAM 3/4 */ 47 { 260, 540 }, /* 7: 64-QAM 5/6 */ 48 }; 49 50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 51 struct ath_atx_tid *tid, struct sk_buff *skb); 52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, 53 int tx_flags, struct ath_txq *txq, 54 struct ieee80211_sta *sta); 55 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 56 struct ath_txq *txq, struct list_head *bf_q, 57 struct ieee80211_sta *sta, 58 struct ath_tx_status *ts, int txok); 59 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 60 struct list_head *head, bool internal); 61 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 62 struct ath_tx_status *ts, int nframes, int nbad, 63 int txok); 64 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 65 struct ath_buf *bf); 66 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, 67 struct ath_txq *txq, 68 struct ath_atx_tid *tid, 69 struct sk_buff *skb); 70 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb, 71 struct ath_tx_control *txctl); 72 73 enum { 74 MCS_HT20, 75 MCS_HT20_SGI, 76 MCS_HT40, 77 MCS_HT40_SGI, 78 }; 79 80 /*********************/ 81 /* Aggregation logic */ 82 /*********************/ 83 84 static void ath_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb) 85 { 86 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 87 struct ieee80211_sta *sta = info->status.status_driver_data[0]; 88 89 if (info->flags & (IEEE80211_TX_CTL_REQ_TX_STATUS | 90 IEEE80211_TX_STATUS_EOSP)) { 91 ieee80211_tx_status(hw, skb); 92 return; 93 } 94 95 if (sta) 96 ieee80211_tx_status_noskb(hw, sta, info); 97 98 dev_kfree_skb(skb); 99 } 100 101 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq) 102 __releases(&txq->axq_lock) 103 { 104 struct ieee80211_hw *hw = sc->hw; 105 struct sk_buff_head q; 106 struct sk_buff *skb; 107 108 __skb_queue_head_init(&q); 109 skb_queue_splice_init(&txq->complete_q, &q); 110 spin_unlock_bh(&txq->axq_lock); 111 112 while ((skb = __skb_dequeue(&q))) 113 ath_tx_status(hw, skb); 114 } 115 116 void ath_tx_queue_tid(struct ath_softc *sc, struct ath_atx_tid *tid) 117 { 118 struct ieee80211_txq *queue = 119 container_of((void *)tid, struct ieee80211_txq, drv_priv); 120 121 ieee80211_schedule_txq(sc->hw, queue); 122 } 123 124 void ath9k_wake_tx_queue(struct ieee80211_hw *hw, struct ieee80211_txq *queue) 125 { 126 struct ath_softc *sc = hw->priv; 127 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 128 struct ath_atx_tid *tid = (struct ath_atx_tid *) queue->drv_priv; 129 struct ath_txq *txq = tid->txq; 130 131 ath_dbg(common, QUEUE, "Waking TX queue: %pM (%d)\n", 132 queue->sta ? queue->sta->addr : queue->vif->addr, 133 tid->tidno); 134 135 ath_txq_lock(sc, txq); 136 ath_txq_schedule(sc, txq); 137 ath_txq_unlock(sc, txq); 138 } 139 140 static struct ath_frame_info *get_frame_info(struct sk_buff *skb) 141 { 142 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 143 BUILD_BUG_ON(sizeof(struct ath_frame_info) > 144 sizeof(tx_info->rate_driver_data)); 145 return (struct ath_frame_info *) &tx_info->rate_driver_data[0]; 146 } 147 148 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno) 149 { 150 if (!tid->an->sta) 151 return; 152 153 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno, 154 seqno << IEEE80211_SEQ_SEQ_SHIFT); 155 } 156 157 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta, 158 struct ath_buf *bf) 159 { 160 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates, 161 ARRAY_SIZE(bf->rates)); 162 } 163 164 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq, 165 struct sk_buff *skb) 166 { 167 struct ath_frame_info *fi = get_frame_info(skb); 168 int q = fi->txq; 169 170 if (q < 0) 171 return; 172 173 txq = sc->tx.txq_map[q]; 174 if (WARN_ON(--txq->pending_frames < 0)) 175 txq->pending_frames = 0; 176 177 } 178 179 static struct ath_atx_tid * 180 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb) 181 { 182 u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK; 183 return ATH_AN_2_TID(an, tidno); 184 } 185 186 static int 187 ath_tid_pull(struct ath_atx_tid *tid, struct sk_buff **skbuf) 188 { 189 struct ieee80211_txq *txq = container_of((void*)tid, struct ieee80211_txq, drv_priv); 190 struct ath_softc *sc = tid->an->sc; 191 struct ieee80211_hw *hw = sc->hw; 192 struct ath_tx_control txctl = { 193 .txq = tid->txq, 194 .sta = tid->an->sta, 195 }; 196 struct sk_buff *skb; 197 struct ath_frame_info *fi; 198 int q, ret; 199 200 skb = ieee80211_tx_dequeue(hw, txq); 201 if (!skb) 202 return -ENOENT; 203 204 ret = ath_tx_prepare(hw, skb, &txctl); 205 if (ret) { 206 ieee80211_free_txskb(hw, skb); 207 return ret; 208 } 209 210 q = skb_get_queue_mapping(skb); 211 if (tid->txq == sc->tx.txq_map[q]) { 212 fi = get_frame_info(skb); 213 fi->txq = q; 214 ++tid->txq->pending_frames; 215 } 216 217 *skbuf = skb; 218 return 0; 219 } 220 221 static int ath_tid_dequeue(struct ath_atx_tid *tid, 222 struct sk_buff **skb) 223 { 224 int ret = 0; 225 *skb = __skb_dequeue(&tid->retry_q); 226 if (!*skb) 227 ret = ath_tid_pull(tid, skb); 228 229 return ret; 230 } 231 232 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid) 233 { 234 struct ath_txq *txq = tid->txq; 235 struct sk_buff *skb; 236 struct ath_buf *bf; 237 struct list_head bf_head; 238 struct ath_tx_status ts; 239 struct ath_frame_info *fi; 240 bool sendbar = false; 241 242 INIT_LIST_HEAD(&bf_head); 243 244 memset(&ts, 0, sizeof(ts)); 245 246 while ((skb = __skb_dequeue(&tid->retry_q))) { 247 fi = get_frame_info(skb); 248 bf = fi->bf; 249 if (!bf) { 250 ath_txq_skb_done(sc, txq, skb); 251 ieee80211_free_txskb(sc->hw, skb); 252 continue; 253 } 254 255 if (fi->baw_tracked) { 256 ath_tx_update_baw(sc, tid, bf); 257 sendbar = true; 258 } 259 260 list_add_tail(&bf->list, &bf_head); 261 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0); 262 } 263 264 if (sendbar) { 265 ath_txq_unlock(sc, txq); 266 ath_send_bar(tid, tid->seq_start); 267 ath_txq_lock(sc, txq); 268 } 269 } 270 271 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 272 struct ath_buf *bf) 273 { 274 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 275 u16 seqno = bf->bf_state.seqno; 276 int index, cindex; 277 278 if (!fi->baw_tracked) 279 return; 280 281 index = ATH_BA_INDEX(tid->seq_start, seqno); 282 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 283 284 __clear_bit(cindex, tid->tx_buf); 285 286 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) { 287 INCR(tid->seq_start, IEEE80211_SEQ_MAX); 288 INCR(tid->baw_head, ATH_TID_MAX_BUFS); 289 if (tid->bar_index >= 0) 290 tid->bar_index--; 291 } 292 } 293 294 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 295 struct ath_buf *bf) 296 { 297 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 298 u16 seqno = bf->bf_state.seqno; 299 int index, cindex; 300 301 if (fi->baw_tracked) 302 return; 303 304 index = ATH_BA_INDEX(tid->seq_start, seqno); 305 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 306 __set_bit(cindex, tid->tx_buf); 307 fi->baw_tracked = 1; 308 309 if (index >= ((tid->baw_tail - tid->baw_head) & 310 (ATH_TID_MAX_BUFS - 1))) { 311 tid->baw_tail = cindex; 312 INCR(tid->baw_tail, ATH_TID_MAX_BUFS); 313 } 314 } 315 316 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq, 317 struct ath_atx_tid *tid) 318 319 { 320 struct sk_buff *skb; 321 struct ath_buf *bf; 322 struct list_head bf_head; 323 struct ath_tx_status ts; 324 struct ath_frame_info *fi; 325 int ret; 326 327 memset(&ts, 0, sizeof(ts)); 328 INIT_LIST_HEAD(&bf_head); 329 330 while ((ret = ath_tid_dequeue(tid, &skb)) == 0) { 331 fi = get_frame_info(skb); 332 bf = fi->bf; 333 334 if (!bf) { 335 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq, NULL); 336 continue; 337 } 338 339 list_add_tail(&bf->list, &bf_head); 340 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0); 341 } 342 } 343 344 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq, 345 struct sk_buff *skb, int count) 346 { 347 struct ath_frame_info *fi = get_frame_info(skb); 348 struct ath_buf *bf = fi->bf; 349 struct ieee80211_hdr *hdr; 350 int prev = fi->retries; 351 352 TX_STAT_INC(sc, txq->axq_qnum, a_retries); 353 fi->retries += count; 354 355 if (prev > 0) 356 return; 357 358 hdr = (struct ieee80211_hdr *)skb->data; 359 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY); 360 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 361 sizeof(*hdr), DMA_TO_DEVICE); 362 } 363 364 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc) 365 { 366 struct ath_buf *bf = NULL; 367 368 spin_lock_bh(&sc->tx.txbuflock); 369 370 if (unlikely(list_empty(&sc->tx.txbuf))) { 371 spin_unlock_bh(&sc->tx.txbuflock); 372 return NULL; 373 } 374 375 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list); 376 list_del(&bf->list); 377 378 spin_unlock_bh(&sc->tx.txbuflock); 379 380 return bf; 381 } 382 383 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf) 384 { 385 spin_lock_bh(&sc->tx.txbuflock); 386 list_add_tail(&bf->list, &sc->tx.txbuf); 387 spin_unlock_bh(&sc->tx.txbuflock); 388 } 389 390 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf) 391 { 392 struct ath_buf *tbf; 393 394 tbf = ath_tx_get_buffer(sc); 395 if (WARN_ON(!tbf)) 396 return NULL; 397 398 ATH_TXBUF_RESET(tbf); 399 400 tbf->bf_mpdu = bf->bf_mpdu; 401 tbf->bf_buf_addr = bf->bf_buf_addr; 402 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len); 403 tbf->bf_state = bf->bf_state; 404 tbf->bf_state.stale = false; 405 406 return tbf; 407 } 408 409 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf, 410 struct ath_tx_status *ts, int txok, 411 int *nframes, int *nbad) 412 { 413 u16 seq_st = 0; 414 u32 ba[WME_BA_BMP_SIZE >> 5]; 415 int ba_index; 416 int isaggr = 0; 417 418 *nbad = 0; 419 *nframes = 0; 420 421 isaggr = bf_isaggr(bf); 422 if (isaggr) { 423 seq_st = ts->ts_seqnum; 424 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); 425 } 426 427 while (bf) { 428 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno); 429 430 (*nframes)++; 431 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index))) 432 (*nbad)++; 433 434 bf = bf->bf_next; 435 } 436 } 437 438 439 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq, 440 struct ath_buf *bf, struct list_head *bf_q, 441 struct ieee80211_sta *sta, 442 struct ath_atx_tid *tid, 443 struct ath_tx_status *ts, int txok) 444 { 445 struct ath_node *an = NULL; 446 struct sk_buff *skb; 447 struct ieee80211_tx_info *tx_info; 448 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf; 449 struct list_head bf_head; 450 struct sk_buff_head bf_pending; 451 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first; 452 u32 ba[WME_BA_BMP_SIZE >> 5]; 453 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0; 454 bool rc_update = true, isba; 455 struct ieee80211_tx_rate rates[4]; 456 struct ath_frame_info *fi; 457 int nframes; 458 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH); 459 int i, retries; 460 int bar_index = -1; 461 462 skb = bf->bf_mpdu; 463 tx_info = IEEE80211_SKB_CB(skb); 464 465 memcpy(rates, bf->rates, sizeof(rates)); 466 467 retries = ts->ts_longretry + 1; 468 for (i = 0; i < ts->ts_rateindex; i++) 469 retries += rates[i].count; 470 471 if (!sta) { 472 INIT_LIST_HEAD(&bf_head); 473 while (bf) { 474 bf_next = bf->bf_next; 475 476 if (!bf->bf_state.stale || bf_next != NULL) 477 list_move_tail(&bf->list, &bf_head); 478 479 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, ts, 0); 480 481 bf = bf_next; 482 } 483 return; 484 } 485 486 an = (struct ath_node *)sta->drv_priv; 487 seq_first = tid->seq_start; 488 isba = ts->ts_flags & ATH9K_TX_BA; 489 490 /* 491 * The hardware occasionally sends a tx status for the wrong TID. 492 * In this case, the BA status cannot be considered valid and all 493 * subframes need to be retransmitted 494 * 495 * Only BlockAcks have a TID and therefore normal Acks cannot be 496 * checked 497 */ 498 if (isba && tid->tidno != ts->tid) 499 txok = false; 500 501 isaggr = bf_isaggr(bf); 502 memset(ba, 0, WME_BA_BMP_SIZE >> 3); 503 504 if (isaggr && txok) { 505 if (ts->ts_flags & ATH9K_TX_BA) { 506 seq_st = ts->ts_seqnum; 507 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); 508 } else { 509 /* 510 * AR5416 can become deaf/mute when BA 511 * issue happens. Chip needs to be reset. 512 * But AP code may have sychronization issues 513 * when perform internal reset in this routine. 514 * Only enable reset in STA mode for now. 515 */ 516 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION) 517 needreset = 1; 518 } 519 } 520 521 __skb_queue_head_init(&bf_pending); 522 523 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad); 524 while (bf) { 525 u16 seqno = bf->bf_state.seqno; 526 527 txfail = txpending = sendbar = 0; 528 bf_next = bf->bf_next; 529 530 skb = bf->bf_mpdu; 531 tx_info = IEEE80211_SKB_CB(skb); 532 fi = get_frame_info(skb); 533 534 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) || 535 !tid->active) { 536 /* 537 * Outside of the current BlockAck window, 538 * maybe part of a previous session 539 */ 540 txfail = 1; 541 } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) { 542 /* transmit completion, subframe is 543 * acked by block ack */ 544 acked_cnt++; 545 } else if (!isaggr && txok) { 546 /* transmit completion */ 547 acked_cnt++; 548 } else if (flush) { 549 txpending = 1; 550 } else if (fi->retries < ATH_MAX_SW_RETRIES) { 551 if (txok || !an->sleeping) 552 ath_tx_set_retry(sc, txq, bf->bf_mpdu, 553 retries); 554 555 txpending = 1; 556 } else { 557 txfail = 1; 558 txfail_cnt++; 559 bar_index = max_t(int, bar_index, 560 ATH_BA_INDEX(seq_first, seqno)); 561 } 562 563 /* 564 * Make sure the last desc is reclaimed if it 565 * not a holding desc. 566 */ 567 INIT_LIST_HEAD(&bf_head); 568 if (bf_next != NULL || !bf_last->bf_state.stale) 569 list_move_tail(&bf->list, &bf_head); 570 571 if (!txpending) { 572 /* 573 * complete the acked-ones/xretried ones; update 574 * block-ack window 575 */ 576 ath_tx_update_baw(sc, tid, bf); 577 578 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) { 579 memcpy(tx_info->control.rates, rates, sizeof(rates)); 580 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok); 581 rc_update = false; 582 if (bf == bf->bf_lastbf) 583 ath_dynack_sample_tx_ts(sc->sc_ah, 584 bf->bf_mpdu, 585 ts, sta); 586 } 587 588 ath_tx_complete_buf(sc, bf, txq, &bf_head, sta, ts, 589 !txfail); 590 } else { 591 if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) { 592 tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP; 593 ieee80211_sta_eosp(sta); 594 } 595 /* retry the un-acked ones */ 596 if (bf->bf_next == NULL && bf_last->bf_state.stale) { 597 struct ath_buf *tbf; 598 599 tbf = ath_clone_txbuf(sc, bf_last); 600 /* 601 * Update tx baw and complete the 602 * frame with failed status if we 603 * run out of tx buf. 604 */ 605 if (!tbf) { 606 ath_tx_update_baw(sc, tid, bf); 607 608 ath_tx_complete_buf(sc, bf, txq, 609 &bf_head, NULL, ts, 610 0); 611 bar_index = max_t(int, bar_index, 612 ATH_BA_INDEX(seq_first, seqno)); 613 break; 614 } 615 616 fi->bf = tbf; 617 } 618 619 /* 620 * Put this buffer to the temporary pending 621 * queue to retain ordering 622 */ 623 __skb_queue_tail(&bf_pending, skb); 624 } 625 626 bf = bf_next; 627 } 628 629 /* prepend un-acked frames to the beginning of the pending frame queue */ 630 if (!skb_queue_empty(&bf_pending)) { 631 if (an->sleeping) 632 ieee80211_sta_set_buffered(sta, tid->tidno, true); 633 634 skb_queue_splice_tail(&bf_pending, &tid->retry_q); 635 if (!an->sleeping) { 636 ath_tx_queue_tid(sc, tid); 637 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY)) 638 tid->clear_ps_filter = true; 639 } 640 } 641 642 if (bar_index >= 0) { 643 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index); 644 645 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq)) 646 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq); 647 648 ath_txq_unlock(sc, txq); 649 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1)); 650 ath_txq_lock(sc, txq); 651 } 652 653 if (needreset) 654 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR); 655 } 656 657 static bool bf_is_ampdu_not_probing(struct ath_buf *bf) 658 { 659 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu); 660 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE); 661 } 662 663 static void ath_tx_count_airtime(struct ath_softc *sc, 664 struct ieee80211_sta *sta, 665 struct ath_buf *bf, 666 struct ath_tx_status *ts, 667 u8 tid) 668 { 669 u32 airtime = 0; 670 int i; 671 672 airtime += ts->duration * (ts->ts_longretry + 1); 673 for(i = 0; i < ts->ts_rateindex; i++) { 674 int rate_dur = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc, i); 675 airtime += rate_dur * bf->rates[i].count; 676 } 677 678 ieee80211_sta_register_airtime(sta, tid, airtime, 0); 679 } 680 681 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq, 682 struct ath_tx_status *ts, struct ath_buf *bf, 683 struct list_head *bf_head) 684 { 685 struct ieee80211_hw *hw = sc->hw; 686 struct ieee80211_tx_info *info; 687 struct ieee80211_sta *sta; 688 struct ieee80211_hdr *hdr; 689 struct ath_atx_tid *tid = NULL; 690 bool txok, flush; 691 692 txok = !(ts->ts_status & ATH9K_TXERR_MASK); 693 flush = !!(ts->ts_status & ATH9K_TX_FLUSH); 694 txq->axq_tx_inprogress = false; 695 696 txq->axq_depth--; 697 if (bf_is_ampdu_not_probing(bf)) 698 txq->axq_ampdu_depth--; 699 700 ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc, 701 ts->ts_rateindex); 702 703 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data; 704 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2); 705 if (sta) { 706 struct ath_node *an = (struct ath_node *)sta->drv_priv; 707 tid = ath_get_skb_tid(sc, an, bf->bf_mpdu); 708 ath_tx_count_airtime(sc, sta, bf, ts, tid->tidno); 709 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY)) 710 tid->clear_ps_filter = true; 711 } 712 713 if (!bf_isampdu(bf)) { 714 if (!flush) { 715 info = IEEE80211_SKB_CB(bf->bf_mpdu); 716 memcpy(info->control.rates, bf->rates, 717 sizeof(info->control.rates)); 718 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok); 719 ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts, 720 sta); 721 } 722 ath_tx_complete_buf(sc, bf, txq, bf_head, sta, ts, txok); 723 } else 724 ath_tx_complete_aggr(sc, txq, bf, bf_head, sta, tid, ts, txok); 725 726 if (!flush) 727 ath_txq_schedule(sc, txq); 728 } 729 730 static bool ath_lookup_legacy(struct ath_buf *bf) 731 { 732 struct sk_buff *skb; 733 struct ieee80211_tx_info *tx_info; 734 struct ieee80211_tx_rate *rates; 735 int i; 736 737 skb = bf->bf_mpdu; 738 tx_info = IEEE80211_SKB_CB(skb); 739 rates = tx_info->control.rates; 740 741 for (i = 0; i < 4; i++) { 742 if (!rates[i].count || rates[i].idx < 0) 743 break; 744 745 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) 746 return true; 747 } 748 749 return false; 750 } 751 752 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf, 753 struct ath_atx_tid *tid) 754 { 755 struct sk_buff *skb; 756 struct ieee80211_tx_info *tx_info; 757 struct ieee80211_tx_rate *rates; 758 u32 max_4ms_framelen, frmlen; 759 u16 aggr_limit, bt_aggr_limit, legacy = 0; 760 int q = tid->txq->mac80211_qnum; 761 int i; 762 763 skb = bf->bf_mpdu; 764 tx_info = IEEE80211_SKB_CB(skb); 765 rates = bf->rates; 766 767 /* 768 * Find the lowest frame length among the rate series that will have a 769 * 4ms (or TXOP limited) transmit duration. 770 */ 771 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX; 772 773 for (i = 0; i < 4; i++) { 774 int modeidx; 775 776 if (!rates[i].count) 777 continue; 778 779 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) { 780 legacy = 1; 781 break; 782 } 783 784 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 785 modeidx = MCS_HT40; 786 else 787 modeidx = MCS_HT20; 788 789 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 790 modeidx++; 791 792 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx]; 793 max_4ms_framelen = min(max_4ms_framelen, frmlen); 794 } 795 796 /* 797 * limit aggregate size by the minimum rate if rate selected is 798 * not a probe rate, if rate selected is a probe rate then 799 * avoid aggregation of this packet. 800 */ 801 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy) 802 return 0; 803 804 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX); 805 806 /* 807 * Override the default aggregation limit for BTCOEX. 808 */ 809 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen); 810 if (bt_aggr_limit) 811 aggr_limit = bt_aggr_limit; 812 813 if (tid->an->maxampdu) 814 aggr_limit = min(aggr_limit, tid->an->maxampdu); 815 816 return aggr_limit; 817 } 818 819 /* 820 * Returns the number of delimiters to be added to 821 * meet the minimum required mpdudensity. 822 */ 823 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid, 824 struct ath_buf *bf, u16 frmlen, 825 bool first_subfrm) 826 { 827 #define FIRST_DESC_NDELIMS 60 828 u32 nsymbits, nsymbols; 829 u16 minlen; 830 u8 flags, rix; 831 int width, streams, half_gi, ndelim, mindelim; 832 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 833 834 /* Select standard number of delimiters based on frame length alone */ 835 ndelim = ATH_AGGR_GET_NDELIM(frmlen); 836 837 /* 838 * If encryption enabled, hardware requires some more padding between 839 * subframes. 840 * TODO - this could be improved to be dependent on the rate. 841 * The hardware can keep up at lower rates, but not higher rates 842 */ 843 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) && 844 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) 845 ndelim += ATH_AGGR_ENCRYPTDELIM; 846 847 /* 848 * Add delimiter when using RTS/CTS with aggregation 849 * and non enterprise AR9003 card 850 */ 851 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) && 852 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE)) 853 ndelim = max(ndelim, FIRST_DESC_NDELIMS); 854 855 /* 856 * Convert desired mpdu density from microeconds to bytes based 857 * on highest rate in rate series (i.e. first rate) to determine 858 * required minimum length for subframe. Take into account 859 * whether high rate is 20 or 40Mhz and half or full GI. 860 * 861 * If there is no mpdu density restriction, no further calculation 862 * is needed. 863 */ 864 865 if (tid->an->mpdudensity == 0) 866 return ndelim; 867 868 rix = bf->rates[0].idx; 869 flags = bf->rates[0].flags; 870 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0; 871 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0; 872 873 if (half_gi) 874 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity); 875 else 876 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity); 877 878 if (nsymbols == 0) 879 nsymbols = 1; 880 881 streams = HT_RC_2_STREAMS(rix); 882 nsymbits = bits_per_symbol[rix % 8][width] * streams; 883 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE; 884 885 if (frmlen < minlen) { 886 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ; 887 ndelim = max(mindelim, ndelim); 888 } 889 890 return ndelim; 891 } 892 893 static int 894 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq, 895 struct ath_atx_tid *tid, struct ath_buf **buf) 896 { 897 struct ieee80211_tx_info *tx_info; 898 struct ath_frame_info *fi; 899 struct ath_buf *bf; 900 struct sk_buff *skb, *first_skb = NULL; 901 u16 seqno; 902 int ret; 903 904 while (1) { 905 ret = ath_tid_dequeue(tid, &skb); 906 if (ret < 0) 907 return ret; 908 909 fi = get_frame_info(skb); 910 bf = fi->bf; 911 if (!fi->bf) 912 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 913 else 914 bf->bf_state.stale = false; 915 916 if (!bf) { 917 ath_txq_skb_done(sc, txq, skb); 918 ieee80211_free_txskb(sc->hw, skb); 919 continue; 920 } 921 922 bf->bf_next = NULL; 923 bf->bf_lastbf = bf; 924 925 tx_info = IEEE80211_SKB_CB(skb); 926 tx_info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT | 927 IEEE80211_TX_STATUS_EOSP); 928 929 /* 930 * No aggregation session is running, but there may be frames 931 * from a previous session or a failed attempt in the queue. 932 * Send them out as normal data frames 933 */ 934 if (!tid->active) 935 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU; 936 937 if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) { 938 bf->bf_state.bf_type = 0; 939 break; 940 } 941 942 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR; 943 seqno = bf->bf_state.seqno; 944 945 /* do not step over block-ack window */ 946 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) { 947 __skb_queue_tail(&tid->retry_q, skb); 948 949 /* If there are other skbs in the retry q, they are 950 * probably within the BAW, so loop immediately to get 951 * one of them. Otherwise the queue can get stuck. */ 952 if (!skb_queue_is_first(&tid->retry_q, skb) && 953 !WARN_ON(skb == first_skb)) { 954 if(!first_skb) /* infinite loop prevention */ 955 first_skb = skb; 956 continue; 957 } 958 return -EINPROGRESS; 959 } 960 961 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) { 962 struct ath_tx_status ts = {}; 963 struct list_head bf_head; 964 965 INIT_LIST_HEAD(&bf_head); 966 list_add(&bf->list, &bf_head); 967 ath_tx_update_baw(sc, tid, bf); 968 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0); 969 continue; 970 } 971 972 if (bf_isampdu(bf)) 973 ath_tx_addto_baw(sc, tid, bf); 974 975 break; 976 } 977 978 *buf = bf; 979 return 0; 980 } 981 982 static int 983 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq, 984 struct ath_atx_tid *tid, struct list_head *bf_q, 985 struct ath_buf *bf_first) 986 { 987 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4) 988 struct ath_buf *bf = bf_first, *bf_prev = NULL; 989 int nframes = 0, ndelim, ret; 990 u16 aggr_limit = 0, al = 0, bpad = 0, 991 al_delta, h_baw = tid->baw_size / 2; 992 struct ieee80211_tx_info *tx_info; 993 struct ath_frame_info *fi; 994 struct sk_buff *skb; 995 996 997 bf = bf_first; 998 aggr_limit = ath_lookup_rate(sc, bf, tid); 999 1000 while (bf) 1001 { 1002 skb = bf->bf_mpdu; 1003 fi = get_frame_info(skb); 1004 1005 /* do not exceed aggregation limit */ 1006 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen; 1007 if (nframes) { 1008 if (aggr_limit < al + bpad + al_delta || 1009 ath_lookup_legacy(bf) || nframes >= h_baw) 1010 goto stop; 1011 1012 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1013 if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) || 1014 !(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) 1015 goto stop; 1016 } 1017 1018 /* add padding for previous frame to aggregation length */ 1019 al += bpad + al_delta; 1020 1021 /* 1022 * Get the delimiters needed to meet the MPDU 1023 * density for this node. 1024 */ 1025 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen, 1026 !nframes); 1027 bpad = PADBYTES(al_delta) + (ndelim << 2); 1028 1029 nframes++; 1030 bf->bf_next = NULL; 1031 1032 /* link buffers of this frame to the aggregate */ 1033 bf->bf_state.ndelim = ndelim; 1034 1035 list_add_tail(&bf->list, bf_q); 1036 if (bf_prev) 1037 bf_prev->bf_next = bf; 1038 1039 bf_prev = bf; 1040 1041 ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf); 1042 if (ret < 0) 1043 break; 1044 } 1045 goto finish; 1046 stop: 1047 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu); 1048 finish: 1049 bf = bf_first; 1050 bf->bf_lastbf = bf_prev; 1051 1052 if (bf == bf_prev) { 1053 al = get_frame_info(bf->bf_mpdu)->framelen; 1054 bf->bf_state.bf_type = BUF_AMPDU; 1055 } else { 1056 TX_STAT_INC(sc, txq->axq_qnum, a_aggr); 1057 } 1058 1059 return al; 1060 #undef PADBYTES 1061 } 1062 1063 /* 1064 * rix - rate index 1065 * pktlen - total bytes (delims + data + fcs + pads + pad delims) 1066 * width - 0 for 20 MHz, 1 for 40 MHz 1067 * half_gi - to use 4us v/s 3.6 us for symbol time 1068 */ 1069 u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen, 1070 int width, int half_gi, bool shortPreamble) 1071 { 1072 u32 nbits, nsymbits, duration, nsymbols; 1073 int streams; 1074 1075 /* find number of symbols: PLCP + data */ 1076 streams = HT_RC_2_STREAMS(rix); 1077 nbits = (pktlen << 3) + OFDM_PLCP_BITS; 1078 nsymbits = bits_per_symbol[rix % 8][width] * streams; 1079 nsymbols = (nbits + nsymbits - 1) / nsymbits; 1080 1081 if (!half_gi) 1082 duration = SYMBOL_TIME(nsymbols); 1083 else 1084 duration = SYMBOL_TIME_HALFGI(nsymbols); 1085 1086 /* addup duration for legacy/ht training and signal fields */ 1087 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 1088 1089 return duration; 1090 } 1091 1092 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi) 1093 { 1094 int streams = HT_RC_2_STREAMS(mcs); 1095 int symbols, bits; 1096 int bytes = 0; 1097 1098 usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 1099 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec); 1100 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams; 1101 bits -= OFDM_PLCP_BITS; 1102 bytes = bits / 8; 1103 if (bytes > 65532) 1104 bytes = 65532; 1105 1106 return bytes; 1107 } 1108 1109 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop) 1110 { 1111 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi; 1112 int mcs; 1113 1114 /* 4ms is the default (and maximum) duration */ 1115 if (!txop || txop > 4096) 1116 txop = 4096; 1117 1118 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20]; 1119 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI]; 1120 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40]; 1121 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI]; 1122 for (mcs = 0; mcs < 32; mcs++) { 1123 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false); 1124 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true); 1125 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false); 1126 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true); 1127 } 1128 } 1129 1130 static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf, 1131 u8 rateidx, bool is_40, bool is_cck) 1132 { 1133 u8 max_power; 1134 struct sk_buff *skb; 1135 struct ath_frame_info *fi; 1136 struct ieee80211_tx_info *info; 1137 struct ath_hw *ah = sc->sc_ah; 1138 1139 if (sc->tx99_state || !ah->tpc_enabled) 1140 return MAX_RATE_POWER; 1141 1142 skb = bf->bf_mpdu; 1143 fi = get_frame_info(skb); 1144 info = IEEE80211_SKB_CB(skb); 1145 1146 if (!AR_SREV_9300_20_OR_LATER(ah)) { 1147 int txpower = fi->tx_power; 1148 1149 if (is_40) { 1150 u8 power_ht40delta; 1151 struct ar5416_eeprom_def *eep = &ah->eeprom.def; 1152 u16 eeprom_rev = ah->eep_ops->get_eeprom_rev(ah); 1153 1154 if (eeprom_rev >= AR5416_EEP_MINOR_VER_2) { 1155 bool is_2ghz; 1156 struct modal_eep_header *pmodal; 1157 1158 is_2ghz = info->band == NL80211_BAND_2GHZ; 1159 pmodal = &eep->modalHeader[is_2ghz]; 1160 power_ht40delta = pmodal->ht40PowerIncForPdadc; 1161 } else { 1162 power_ht40delta = 2; 1163 } 1164 txpower += power_ht40delta; 1165 } 1166 1167 if (AR_SREV_9287(ah) || AR_SREV_9285(ah) || 1168 AR_SREV_9271(ah)) { 1169 txpower -= 2 * AR9287_PWR_TABLE_OFFSET_DB; 1170 } else if (AR_SREV_9280_20_OR_LATER(ah)) { 1171 s8 power_offset; 1172 1173 power_offset = ah->eep_ops->get_eeprom(ah, 1174 EEP_PWR_TABLE_OFFSET); 1175 txpower -= 2 * power_offset; 1176 } 1177 1178 if (OLC_FOR_AR9280_20_LATER && is_cck) 1179 txpower -= 2; 1180 1181 txpower = max(txpower, 0); 1182 max_power = min_t(u8, ah->tx_power[rateidx], txpower); 1183 1184 /* XXX: clamp minimum TX power at 1 for AR9160 since if 1185 * max_power is set to 0, frames are transmitted at max 1186 * TX power 1187 */ 1188 if (!max_power && !AR_SREV_9280_20_OR_LATER(ah)) 1189 max_power = 1; 1190 } else if (!bf->bf_state.bfs_paprd) { 1191 if (rateidx < 8 && (info->flags & IEEE80211_TX_CTL_STBC)) 1192 max_power = min_t(u8, ah->tx_power_stbc[rateidx], 1193 fi->tx_power); 1194 else 1195 max_power = min_t(u8, ah->tx_power[rateidx], 1196 fi->tx_power); 1197 } else { 1198 max_power = ah->paprd_training_power; 1199 } 1200 1201 return max_power; 1202 } 1203 1204 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, 1205 struct ath_tx_info *info, int len, bool rts) 1206 { 1207 struct ath_hw *ah = sc->sc_ah; 1208 struct ath_common *common = ath9k_hw_common(ah); 1209 struct sk_buff *skb; 1210 struct ieee80211_tx_info *tx_info; 1211 struct ieee80211_tx_rate *rates; 1212 const struct ieee80211_rate *rate; 1213 struct ieee80211_hdr *hdr; 1214 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 1215 u32 rts_thresh = sc->hw->wiphy->rts_threshold; 1216 int i; 1217 u8 rix = 0; 1218 1219 skb = bf->bf_mpdu; 1220 tx_info = IEEE80211_SKB_CB(skb); 1221 rates = bf->rates; 1222 hdr = (struct ieee80211_hdr *)skb->data; 1223 1224 /* set dur_update_en for l-sig computation except for PS-Poll frames */ 1225 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control); 1226 info->rtscts_rate = fi->rtscts_rate; 1227 1228 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) { 1229 bool is_40, is_sgi, is_sp, is_cck; 1230 int phy; 1231 1232 if (!rates[i].count || (rates[i].idx < 0)) 1233 continue; 1234 1235 rix = rates[i].idx; 1236 info->rates[i].Tries = rates[i].count; 1237 1238 /* 1239 * Handle RTS threshold for unaggregated HT frames. 1240 */ 1241 if (bf_isampdu(bf) && !bf_isaggr(bf) && 1242 (rates[i].flags & IEEE80211_TX_RC_MCS) && 1243 unlikely(rts_thresh != (u32) -1)) { 1244 if (!rts_thresh || (len > rts_thresh)) 1245 rts = true; 1246 } 1247 1248 if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) { 1249 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1250 info->flags |= ATH9K_TXDESC_RTSENA; 1251 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { 1252 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1253 info->flags |= ATH9K_TXDESC_CTSENA; 1254 } 1255 1256 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 1257 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040; 1258 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 1259 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI; 1260 1261 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI); 1262 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH); 1263 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE); 1264 1265 if (rates[i].flags & IEEE80211_TX_RC_MCS) { 1266 /* MCS rates */ 1267 info->rates[i].Rate = rix | 0x80; 1268 info->rates[i].ChSel = ath_txchainmask_reduction(sc, 1269 ah->txchainmask, info->rates[i].Rate); 1270 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len, 1271 is_40, is_sgi, is_sp); 1272 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC)) 1273 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC; 1274 1275 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, 1276 is_40, false); 1277 continue; 1278 } 1279 1280 /* legacy rates */ 1281 rate = &common->sbands[tx_info->band].bitrates[rates[i].idx]; 1282 if ((tx_info->band == NL80211_BAND_2GHZ) && 1283 !(rate->flags & IEEE80211_RATE_ERP_G)) 1284 phy = WLAN_RC_PHY_CCK; 1285 else 1286 phy = WLAN_RC_PHY_OFDM; 1287 1288 info->rates[i].Rate = rate->hw_value; 1289 if (rate->hw_value_short) { 1290 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 1291 info->rates[i].Rate |= rate->hw_value_short; 1292 } else { 1293 is_sp = false; 1294 } 1295 1296 if (bf->bf_state.bfs_paprd) 1297 info->rates[i].ChSel = ah->txchainmask; 1298 else 1299 info->rates[i].ChSel = ath_txchainmask_reduction(sc, 1300 ah->txchainmask, info->rates[i].Rate); 1301 1302 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah, 1303 phy, rate->bitrate * 100, len, rix, is_sp); 1304 1305 is_cck = IS_CCK_RATE(info->rates[i].Rate); 1306 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, false, 1307 is_cck); 1308 } 1309 1310 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */ 1311 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit)) 1312 info->flags &= ~ATH9K_TXDESC_RTSENA; 1313 1314 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */ 1315 if (info->flags & ATH9K_TXDESC_RTSENA) 1316 info->flags &= ~ATH9K_TXDESC_CTSENA; 1317 } 1318 1319 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb) 1320 { 1321 struct ieee80211_hdr *hdr; 1322 enum ath9k_pkt_type htype; 1323 __le16 fc; 1324 1325 hdr = (struct ieee80211_hdr *)skb->data; 1326 fc = hdr->frame_control; 1327 1328 if (ieee80211_is_beacon(fc)) 1329 htype = ATH9K_PKT_TYPE_BEACON; 1330 else if (ieee80211_is_probe_resp(fc)) 1331 htype = ATH9K_PKT_TYPE_PROBE_RESP; 1332 else if (ieee80211_is_atim(fc)) 1333 htype = ATH9K_PKT_TYPE_ATIM; 1334 else if (ieee80211_is_pspoll(fc)) 1335 htype = ATH9K_PKT_TYPE_PSPOLL; 1336 else 1337 htype = ATH9K_PKT_TYPE_NORMAL; 1338 1339 return htype; 1340 } 1341 1342 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf, 1343 struct ath_txq *txq, int len) 1344 { 1345 struct ath_hw *ah = sc->sc_ah; 1346 struct ath_buf *bf_first = NULL; 1347 struct ath_tx_info info; 1348 u32 rts_thresh = sc->hw->wiphy->rts_threshold; 1349 bool rts = false; 1350 1351 memset(&info, 0, sizeof(info)); 1352 info.is_first = true; 1353 info.is_last = true; 1354 info.qcu = txq->axq_qnum; 1355 1356 while (bf) { 1357 struct sk_buff *skb = bf->bf_mpdu; 1358 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1359 struct ath_frame_info *fi = get_frame_info(skb); 1360 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR); 1361 1362 info.type = get_hw_packet_type(skb); 1363 if (bf->bf_next) 1364 info.link = bf->bf_next->bf_daddr; 1365 else 1366 info.link = (sc->tx99_state) ? bf->bf_daddr : 0; 1367 1368 if (!bf_first) { 1369 bf_first = bf; 1370 1371 if (!sc->tx99_state) 1372 info.flags = ATH9K_TXDESC_INTREQ; 1373 if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) || 1374 txq == sc->tx.uapsdq) 1375 info.flags |= ATH9K_TXDESC_CLRDMASK; 1376 1377 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) 1378 info.flags |= ATH9K_TXDESC_NOACK; 1379 if (tx_info->flags & IEEE80211_TX_CTL_LDPC) 1380 info.flags |= ATH9K_TXDESC_LDPC; 1381 1382 if (bf->bf_state.bfs_paprd) 1383 info.flags |= (u32) bf->bf_state.bfs_paprd << 1384 ATH9K_TXDESC_PAPRD_S; 1385 1386 /* 1387 * mac80211 doesn't handle RTS threshold for HT because 1388 * the decision has to be taken based on AMPDU length 1389 * and aggregation is done entirely inside ath9k. 1390 * Set the RTS/CTS flag for the first subframe based 1391 * on the threshold. 1392 */ 1393 if (aggr && (bf == bf_first) && 1394 unlikely(rts_thresh != (u32) -1)) { 1395 /* 1396 * "len" is the size of the entire AMPDU. 1397 */ 1398 if (!rts_thresh || (len > rts_thresh)) 1399 rts = true; 1400 } 1401 1402 if (!aggr) 1403 len = fi->framelen; 1404 1405 ath_buf_set_rate(sc, bf, &info, len, rts); 1406 } 1407 1408 info.buf_addr[0] = bf->bf_buf_addr; 1409 info.buf_len[0] = skb->len; 1410 info.pkt_len = fi->framelen; 1411 info.keyix = fi->keyix; 1412 info.keytype = fi->keytype; 1413 1414 if (aggr) { 1415 if (bf == bf_first) 1416 info.aggr = AGGR_BUF_FIRST; 1417 else if (bf == bf_first->bf_lastbf) 1418 info.aggr = AGGR_BUF_LAST; 1419 else 1420 info.aggr = AGGR_BUF_MIDDLE; 1421 1422 info.ndelim = bf->bf_state.ndelim; 1423 info.aggr_len = len; 1424 } 1425 1426 if (bf == bf_first->bf_lastbf) 1427 bf_first = NULL; 1428 1429 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info); 1430 bf = bf->bf_next; 1431 } 1432 } 1433 1434 static void 1435 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq, 1436 struct ath_atx_tid *tid, struct list_head *bf_q, 1437 struct ath_buf *bf_first) 1438 { 1439 struct ath_buf *bf = bf_first, *bf_prev = NULL; 1440 int nframes = 0, ret; 1441 1442 do { 1443 struct ieee80211_tx_info *tx_info; 1444 1445 nframes++; 1446 list_add_tail(&bf->list, bf_q); 1447 if (bf_prev) 1448 bf_prev->bf_next = bf; 1449 bf_prev = bf; 1450 1451 if (nframes >= 2) 1452 break; 1453 1454 ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf); 1455 if (ret < 0) 1456 break; 1457 1458 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1459 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 1460 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu); 1461 break; 1462 } 1463 1464 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1465 } while (1); 1466 } 1467 1468 static int ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq, 1469 struct ath_atx_tid *tid) 1470 { 1471 struct ath_buf *bf = NULL; 1472 struct ieee80211_tx_info *tx_info; 1473 struct list_head bf_q; 1474 int aggr_len = 0, ret; 1475 bool aggr; 1476 1477 INIT_LIST_HEAD(&bf_q); 1478 1479 ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf); 1480 if (ret < 0) 1481 return ret; 1482 1483 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1484 aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU); 1485 if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) || 1486 (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) { 1487 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu); 1488 return -EBUSY; 1489 } 1490 1491 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1492 if (aggr) 1493 aggr_len = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf); 1494 else 1495 ath_tx_form_burst(sc, txq, tid, &bf_q, bf); 1496 1497 if (list_empty(&bf_q)) 1498 return -EAGAIN; 1499 1500 if (tid->clear_ps_filter || tid->an->no_ps_filter) { 1501 tid->clear_ps_filter = false; 1502 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1503 } 1504 1505 ath_tx_fill_desc(sc, bf, txq, aggr_len); 1506 ath_tx_txqaddbuf(sc, txq, &bf_q, false); 1507 return 0; 1508 } 1509 1510 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta, 1511 u16 tid, u16 *ssn) 1512 { 1513 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1514 struct ath_atx_tid *txtid; 1515 struct ath_txq *txq; 1516 struct ath_node *an; 1517 u8 density; 1518 1519 ath_dbg(common, XMIT, "%s called\n", __func__); 1520 1521 an = (struct ath_node *)sta->drv_priv; 1522 txtid = ATH_AN_2_TID(an, tid); 1523 txq = txtid->txq; 1524 1525 ath_txq_lock(sc, txq); 1526 1527 /* update ampdu factor/density, they may have changed. This may happen 1528 * in HT IBSS when a beacon with HT-info is received after the station 1529 * has already been added. 1530 */ 1531 if (sta->ht_cap.ht_supported) { 1532 an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + 1533 sta->ht_cap.ampdu_factor)) - 1; 1534 density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density); 1535 an->mpdudensity = density; 1536 } 1537 1538 txtid->active = true; 1539 *ssn = txtid->seq_start = txtid->seq_next; 1540 txtid->bar_index = -1; 1541 1542 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf)); 1543 txtid->baw_head = txtid->baw_tail = 0; 1544 1545 ath_txq_unlock_complete(sc, txq); 1546 1547 return 0; 1548 } 1549 1550 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid) 1551 { 1552 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1553 struct ath_node *an = (struct ath_node *)sta->drv_priv; 1554 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid); 1555 struct ath_txq *txq = txtid->txq; 1556 1557 ath_dbg(common, XMIT, "%s called\n", __func__); 1558 1559 ath_txq_lock(sc, txq); 1560 txtid->active = false; 1561 ath_tx_flush_tid(sc, txtid); 1562 ath_txq_unlock_complete(sc, txq); 1563 } 1564 1565 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc, 1566 struct ath_node *an) 1567 { 1568 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1569 struct ath_atx_tid *tid; 1570 int tidno; 1571 1572 ath_dbg(common, XMIT, "%s called\n", __func__); 1573 1574 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) { 1575 tid = ath_node_to_tid(an, tidno); 1576 1577 if (!skb_queue_empty(&tid->retry_q)) 1578 ieee80211_sta_set_buffered(sta, tid->tidno, true); 1579 1580 } 1581 } 1582 1583 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an) 1584 { 1585 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1586 struct ath_atx_tid *tid; 1587 struct ath_txq *txq; 1588 int tidno; 1589 1590 ath_dbg(common, XMIT, "%s called\n", __func__); 1591 1592 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) { 1593 tid = ath_node_to_tid(an, tidno); 1594 txq = tid->txq; 1595 1596 ath_txq_lock(sc, txq); 1597 tid->clear_ps_filter = true; 1598 if (!skb_queue_empty(&tid->retry_q)) { 1599 ath_tx_queue_tid(sc, tid); 1600 ath_txq_schedule(sc, txq); 1601 } 1602 ath_txq_unlock_complete(sc, txq); 1603 1604 } 1605 } 1606 1607 1608 static void 1609 ath9k_set_moredata(struct ath_softc *sc, struct ath_buf *bf, bool val) 1610 { 1611 struct ieee80211_hdr *hdr; 1612 u16 mask = cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1613 u16 mask_val = mask * val; 1614 1615 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data; 1616 if ((hdr->frame_control & mask) != mask_val) { 1617 hdr->frame_control = (hdr->frame_control & ~mask) | mask_val; 1618 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 1619 sizeof(*hdr), DMA_TO_DEVICE); 1620 } 1621 } 1622 1623 void ath9k_release_buffered_frames(struct ieee80211_hw *hw, 1624 struct ieee80211_sta *sta, 1625 u16 tids, int nframes, 1626 enum ieee80211_frame_release_type reason, 1627 bool more_data) 1628 { 1629 struct ath_softc *sc = hw->priv; 1630 struct ath_node *an = (struct ath_node *)sta->drv_priv; 1631 struct ath_txq *txq = sc->tx.uapsdq; 1632 struct ieee80211_tx_info *info; 1633 struct list_head bf_q; 1634 struct ath_buf *bf_tail = NULL, *bf = NULL; 1635 int sent = 0; 1636 int i, ret; 1637 1638 INIT_LIST_HEAD(&bf_q); 1639 for (i = 0; tids && nframes; i++, tids >>= 1) { 1640 struct ath_atx_tid *tid; 1641 1642 if (!(tids & 1)) 1643 continue; 1644 1645 tid = ATH_AN_2_TID(an, i); 1646 1647 ath_txq_lock(sc, tid->txq); 1648 while (nframes > 0) { 1649 ret = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, 1650 tid, &bf); 1651 if (ret < 0) 1652 break; 1653 1654 ath9k_set_moredata(sc, bf, true); 1655 list_add_tail(&bf->list, &bf_q); 1656 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1657 if (bf_isampdu(bf)) 1658 bf->bf_state.bf_type &= ~BUF_AGGR; 1659 if (bf_tail) 1660 bf_tail->bf_next = bf; 1661 1662 bf_tail = bf; 1663 nframes--; 1664 sent++; 1665 TX_STAT_INC(sc, txq->axq_qnum, a_queued_hw); 1666 1667 if (an->sta && skb_queue_empty(&tid->retry_q)) 1668 ieee80211_sta_set_buffered(an->sta, i, false); 1669 } 1670 ath_txq_unlock_complete(sc, tid->txq); 1671 } 1672 1673 if (list_empty(&bf_q)) 1674 return; 1675 1676 if (!more_data) 1677 ath9k_set_moredata(sc, bf_tail, false); 1678 1679 info = IEEE80211_SKB_CB(bf_tail->bf_mpdu); 1680 info->flags |= IEEE80211_TX_STATUS_EOSP; 1681 1682 bf = list_first_entry(&bf_q, struct ath_buf, list); 1683 ath_txq_lock(sc, txq); 1684 ath_tx_fill_desc(sc, bf, txq, 0); 1685 ath_tx_txqaddbuf(sc, txq, &bf_q, false); 1686 ath_txq_unlock(sc, txq); 1687 } 1688 1689 /********************/ 1690 /* Queue Management */ 1691 /********************/ 1692 1693 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 1694 { 1695 struct ath_hw *ah = sc->sc_ah; 1696 struct ath9k_tx_queue_info qi; 1697 static const int subtype_txq_to_hwq[] = { 1698 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE, 1699 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK, 1700 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI, 1701 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO, 1702 }; 1703 int axq_qnum, i; 1704 1705 memset(&qi, 0, sizeof(qi)); 1706 qi.tqi_subtype = subtype_txq_to_hwq[subtype]; 1707 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT; 1708 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT; 1709 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT; 1710 qi.tqi_physCompBuf = 0; 1711 1712 /* 1713 * Enable interrupts only for EOL and DESC conditions. 1714 * We mark tx descriptors to receive a DESC interrupt 1715 * when a tx queue gets deep; otherwise waiting for the 1716 * EOL to reap descriptors. Note that this is done to 1717 * reduce interrupt load and this only defers reaping 1718 * descriptors, never transmitting frames. Aside from 1719 * reducing interrupts this also permits more concurrency. 1720 * The only potential downside is if the tx queue backs 1721 * up in which case the top half of the kernel may backup 1722 * due to a lack of tx descriptors. 1723 * 1724 * The UAPSD queue is an exception, since we take a desc- 1725 * based intr on the EOSP frames. 1726 */ 1727 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1728 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE; 1729 } else { 1730 if (qtype == ATH9K_TX_QUEUE_UAPSD) 1731 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE; 1732 else 1733 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | 1734 TXQ_FLAG_TXDESCINT_ENABLE; 1735 } 1736 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi); 1737 if (axq_qnum == -1) { 1738 /* 1739 * NB: don't print a message, this happens 1740 * normally on parts with too few tx queues 1741 */ 1742 return NULL; 1743 } 1744 if (!ATH_TXQ_SETUP(sc, axq_qnum)) { 1745 struct ath_txq *txq = &sc->tx.txq[axq_qnum]; 1746 1747 txq->axq_qnum = axq_qnum; 1748 txq->mac80211_qnum = -1; 1749 txq->axq_link = NULL; 1750 __skb_queue_head_init(&txq->complete_q); 1751 INIT_LIST_HEAD(&txq->axq_q); 1752 spin_lock_init(&txq->axq_lock); 1753 txq->axq_depth = 0; 1754 txq->axq_ampdu_depth = 0; 1755 txq->axq_tx_inprogress = false; 1756 sc->tx.txqsetup |= 1<<axq_qnum; 1757 1758 txq->txq_headidx = txq->txq_tailidx = 0; 1759 for (i = 0; i < ATH_TXFIFO_DEPTH; i++) 1760 INIT_LIST_HEAD(&txq->txq_fifo[i]); 1761 } 1762 return &sc->tx.txq[axq_qnum]; 1763 } 1764 1765 int ath_txq_update(struct ath_softc *sc, int qnum, 1766 struct ath9k_tx_queue_info *qinfo) 1767 { 1768 struct ath_hw *ah = sc->sc_ah; 1769 int error = 0; 1770 struct ath9k_tx_queue_info qi; 1771 1772 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum); 1773 1774 ath9k_hw_get_txq_props(ah, qnum, &qi); 1775 qi.tqi_aifs = qinfo->tqi_aifs; 1776 qi.tqi_cwmin = qinfo->tqi_cwmin; 1777 qi.tqi_cwmax = qinfo->tqi_cwmax; 1778 qi.tqi_burstTime = qinfo->tqi_burstTime; 1779 qi.tqi_readyTime = qinfo->tqi_readyTime; 1780 1781 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) { 1782 ath_err(ath9k_hw_common(sc->sc_ah), 1783 "Unable to update hardware queue %u!\n", qnum); 1784 error = -EIO; 1785 } else { 1786 ath9k_hw_resettxqueue(ah, qnum); 1787 } 1788 1789 return error; 1790 } 1791 1792 int ath_cabq_update(struct ath_softc *sc) 1793 { 1794 struct ath9k_tx_queue_info qi; 1795 struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon; 1796 int qnum = sc->beacon.cabq->axq_qnum; 1797 1798 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi); 1799 1800 qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) * 1801 ATH_CABQ_READY_TIME) / 100; 1802 ath_txq_update(sc, qnum, &qi); 1803 1804 return 0; 1805 } 1806 1807 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq, 1808 struct list_head *list) 1809 { 1810 struct ath_buf *bf, *lastbf; 1811 struct list_head bf_head; 1812 struct ath_tx_status ts; 1813 1814 memset(&ts, 0, sizeof(ts)); 1815 ts.ts_status = ATH9K_TX_FLUSH; 1816 INIT_LIST_HEAD(&bf_head); 1817 1818 while (!list_empty(list)) { 1819 bf = list_first_entry(list, struct ath_buf, list); 1820 1821 if (bf->bf_state.stale) { 1822 list_del(&bf->list); 1823 1824 ath_tx_return_buffer(sc, bf); 1825 continue; 1826 } 1827 1828 lastbf = bf->bf_lastbf; 1829 list_cut_position(&bf_head, list, &lastbf->list); 1830 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 1831 } 1832 } 1833 1834 /* 1835 * Drain a given TX queue (could be Beacon or Data) 1836 * 1837 * This assumes output has been stopped and 1838 * we do not need to block ath_tx_tasklet. 1839 */ 1840 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq) 1841 { 1842 rcu_read_lock(); 1843 ath_txq_lock(sc, txq); 1844 1845 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1846 int idx = txq->txq_tailidx; 1847 1848 while (!list_empty(&txq->txq_fifo[idx])) { 1849 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]); 1850 1851 INCR(idx, ATH_TXFIFO_DEPTH); 1852 } 1853 txq->txq_tailidx = idx; 1854 } 1855 1856 txq->axq_link = NULL; 1857 txq->axq_tx_inprogress = false; 1858 ath_drain_txq_list(sc, txq, &txq->axq_q); 1859 1860 ath_txq_unlock_complete(sc, txq); 1861 rcu_read_unlock(); 1862 } 1863 1864 bool ath_drain_all_txq(struct ath_softc *sc) 1865 { 1866 struct ath_hw *ah = sc->sc_ah; 1867 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1868 struct ath_txq *txq; 1869 int i; 1870 u32 npend = 0; 1871 1872 if (test_bit(ATH_OP_INVALID, &common->op_flags)) 1873 return true; 1874 1875 ath9k_hw_abort_tx_dma(ah); 1876 1877 /* Check if any queue remains active */ 1878 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1879 if (!ATH_TXQ_SETUP(sc, i)) 1880 continue; 1881 1882 if (!sc->tx.txq[i].axq_depth) 1883 continue; 1884 1885 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum)) 1886 npend |= BIT(i); 1887 } 1888 1889 if (npend) { 1890 RESET_STAT_INC(sc, RESET_TX_DMA_ERROR); 1891 ath_dbg(common, RESET, 1892 "Failed to stop TX DMA, queues=0x%03x!\n", npend); 1893 } 1894 1895 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1896 if (!ATH_TXQ_SETUP(sc, i)) 1897 continue; 1898 1899 txq = &sc->tx.txq[i]; 1900 ath_draintxq(sc, txq); 1901 } 1902 1903 return !npend; 1904 } 1905 1906 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 1907 { 1908 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum); 1909 sc->tx.txqsetup &= ~(1<<txq->axq_qnum); 1910 } 1911 1912 /* For each acq entry, for each tid, try to schedule packets 1913 * for transmit until ampdu_depth has reached min Q depth. 1914 */ 1915 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq) 1916 { 1917 struct ieee80211_hw *hw = sc->hw; 1918 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1919 struct ieee80211_txq *queue; 1920 struct ath_atx_tid *tid; 1921 int ret; 1922 1923 if (txq->mac80211_qnum < 0) 1924 return; 1925 1926 if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) 1927 return; 1928 1929 ieee80211_txq_schedule_start(hw, txq->mac80211_qnum); 1930 spin_lock_bh(&sc->chan_lock); 1931 rcu_read_lock(); 1932 1933 if (sc->cur_chan->stopped) 1934 goto out; 1935 1936 while ((queue = ieee80211_next_txq(hw, txq->mac80211_qnum))) { 1937 bool force; 1938 1939 tid = (struct ath_atx_tid *)queue->drv_priv; 1940 1941 ret = ath_tx_sched_aggr(sc, txq, tid); 1942 ath_dbg(common, QUEUE, "ath_tx_sched_aggr returned %d\n", ret); 1943 1944 force = !skb_queue_empty(&tid->retry_q); 1945 ieee80211_return_txq(hw, queue, force); 1946 } 1947 1948 out: 1949 rcu_read_unlock(); 1950 spin_unlock_bh(&sc->chan_lock); 1951 ieee80211_txq_schedule_end(hw, txq->mac80211_qnum); 1952 } 1953 1954 void ath_txq_schedule_all(struct ath_softc *sc) 1955 { 1956 struct ath_txq *txq; 1957 int i; 1958 1959 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 1960 txq = sc->tx.txq_map[i]; 1961 1962 spin_lock_bh(&txq->axq_lock); 1963 ath_txq_schedule(sc, txq); 1964 spin_unlock_bh(&txq->axq_lock); 1965 } 1966 } 1967 1968 /***********/ 1969 /* TX, DMA */ 1970 /***********/ 1971 1972 /* 1973 * Insert a chain of ath_buf (descriptors) on a txq and 1974 * assume the descriptors are already chained together by caller. 1975 */ 1976 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 1977 struct list_head *head, bool internal) 1978 { 1979 struct ath_hw *ah = sc->sc_ah; 1980 struct ath_common *common = ath9k_hw_common(ah); 1981 struct ath_buf *bf, *bf_last; 1982 bool puttxbuf = false; 1983 bool edma; 1984 1985 /* 1986 * Insert the frame on the outbound list and 1987 * pass it on to the hardware. 1988 */ 1989 1990 if (list_empty(head)) 1991 return; 1992 1993 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA); 1994 bf = list_first_entry(head, struct ath_buf, list); 1995 bf_last = list_entry(head->prev, struct ath_buf, list); 1996 1997 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n", 1998 txq->axq_qnum, txq->axq_depth); 1999 2000 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) { 2001 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]); 2002 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH); 2003 puttxbuf = true; 2004 } else { 2005 list_splice_tail_init(head, &txq->axq_q); 2006 2007 if (txq->axq_link) { 2008 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr); 2009 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n", 2010 txq->axq_qnum, txq->axq_link, 2011 ito64(bf->bf_daddr), bf->bf_desc); 2012 } else if (!edma) 2013 puttxbuf = true; 2014 2015 txq->axq_link = bf_last->bf_desc; 2016 } 2017 2018 if (puttxbuf) { 2019 TX_STAT_INC(sc, txq->axq_qnum, puttxbuf); 2020 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 2021 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n", 2022 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc); 2023 } 2024 2025 if (!edma || sc->tx99_state) { 2026 TX_STAT_INC(sc, txq->axq_qnum, txstart); 2027 ath9k_hw_txstart(ah, txq->axq_qnum); 2028 } 2029 2030 if (!internal) { 2031 while (bf) { 2032 txq->axq_depth++; 2033 if (bf_is_ampdu_not_probing(bf)) 2034 txq->axq_ampdu_depth++; 2035 2036 bf_last = bf->bf_lastbf; 2037 bf = bf_last->bf_next; 2038 bf_last->bf_next = NULL; 2039 } 2040 } 2041 } 2042 2043 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 2044 struct ath_atx_tid *tid, struct sk_buff *skb) 2045 { 2046 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2047 struct ath_frame_info *fi = get_frame_info(skb); 2048 struct list_head bf_head; 2049 struct ath_buf *bf = fi->bf; 2050 2051 INIT_LIST_HEAD(&bf_head); 2052 list_add_tail(&bf->list, &bf_head); 2053 bf->bf_state.bf_type = 0; 2054 if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) { 2055 bf->bf_state.bf_type = BUF_AMPDU; 2056 ath_tx_addto_baw(sc, tid, bf); 2057 } 2058 2059 bf->bf_next = NULL; 2060 bf->bf_lastbf = bf; 2061 ath_tx_fill_desc(sc, bf, txq, fi->framelen); 2062 ath_tx_txqaddbuf(sc, txq, &bf_head, false); 2063 TX_STAT_INC(sc, txq->axq_qnum, queued); 2064 } 2065 2066 static void setup_frame_info(struct ieee80211_hw *hw, 2067 struct ieee80211_sta *sta, 2068 struct sk_buff *skb, 2069 int framelen) 2070 { 2071 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2072 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key; 2073 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2074 const struct ieee80211_rate *rate; 2075 struct ath_frame_info *fi = get_frame_info(skb); 2076 struct ath_node *an = NULL; 2077 enum ath9k_key_type keytype; 2078 bool short_preamble = false; 2079 u8 txpower; 2080 2081 /* 2082 * We check if Short Preamble is needed for the CTS rate by 2083 * checking the BSS's global flag. 2084 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used. 2085 */ 2086 if (tx_info->control.vif && 2087 tx_info->control.vif->bss_conf.use_short_preamble) 2088 short_preamble = true; 2089 2090 rate = ieee80211_get_rts_cts_rate(hw, tx_info); 2091 keytype = ath9k_cmn_get_hw_crypto_keytype(skb); 2092 2093 if (sta) 2094 an = (struct ath_node *) sta->drv_priv; 2095 2096 if (tx_info->control.vif) { 2097 struct ieee80211_vif *vif = tx_info->control.vif; 2098 if (vif->bss_conf.txpower == INT_MIN) 2099 goto nonvifpower; 2100 txpower = 2 * vif->bss_conf.txpower; 2101 } else { 2102 struct ath_softc *sc; 2103 nonvifpower: 2104 sc = hw->priv; 2105 2106 txpower = sc->cur_chan->cur_txpower; 2107 } 2108 2109 memset(fi, 0, sizeof(*fi)); 2110 fi->txq = -1; 2111 if (hw_key) 2112 fi->keyix = hw_key->hw_key_idx; 2113 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0) 2114 fi->keyix = an->ps_key; 2115 else 2116 fi->keyix = ATH9K_TXKEYIX_INVALID; 2117 fi->keytype = keytype; 2118 fi->framelen = framelen; 2119 fi->tx_power = txpower; 2120 2121 if (!rate) 2122 return; 2123 fi->rtscts_rate = rate->hw_value; 2124 if (short_preamble) 2125 fi->rtscts_rate |= rate->hw_value_short; 2126 } 2127 2128 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate) 2129 { 2130 struct ath_hw *ah = sc->sc_ah; 2131 struct ath9k_channel *curchan = ah->curchan; 2132 2133 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) && 2134 (chainmask == 0x7) && (rate < 0x90)) 2135 return 0x3; 2136 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) && 2137 IS_CCK_RATE(rate)) 2138 return 0x2; 2139 else 2140 return chainmask; 2141 } 2142 2143 /* 2144 * Assign a descriptor (and sequence number if necessary, 2145 * and map buffer for DMA. Frees skb on error 2146 */ 2147 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, 2148 struct ath_txq *txq, 2149 struct ath_atx_tid *tid, 2150 struct sk_buff *skb) 2151 { 2152 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2153 struct ath_frame_info *fi = get_frame_info(skb); 2154 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2155 struct ath_buf *bf; 2156 int fragno; 2157 u16 seqno; 2158 2159 bf = ath_tx_get_buffer(sc); 2160 if (!bf) { 2161 ath_dbg(common, XMIT, "TX buffers are full\n"); 2162 return NULL; 2163 } 2164 2165 ATH_TXBUF_RESET(bf); 2166 2167 if (tid && ieee80211_is_data_present(hdr->frame_control)) { 2168 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG; 2169 seqno = tid->seq_next; 2170 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT); 2171 2172 if (fragno) 2173 hdr->seq_ctrl |= cpu_to_le16(fragno); 2174 2175 if (!ieee80211_has_morefrags(hdr->frame_control)) 2176 INCR(tid->seq_next, IEEE80211_SEQ_MAX); 2177 2178 bf->bf_state.seqno = seqno; 2179 } 2180 2181 bf->bf_mpdu = skb; 2182 2183 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 2184 skb->len, DMA_TO_DEVICE); 2185 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) { 2186 bf->bf_mpdu = NULL; 2187 bf->bf_buf_addr = 0; 2188 ath_err(ath9k_hw_common(sc->sc_ah), 2189 "dma_mapping_error() on TX\n"); 2190 ath_tx_return_buffer(sc, bf); 2191 return NULL; 2192 } 2193 2194 fi->bf = bf; 2195 2196 return bf; 2197 } 2198 2199 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb) 2200 { 2201 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2202 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2203 struct ieee80211_vif *vif = info->control.vif; 2204 struct ath_vif *avp; 2205 2206 if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)) 2207 return; 2208 2209 if (!vif) 2210 return; 2211 2212 avp = (struct ath_vif *)vif->drv_priv; 2213 2214 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) 2215 avp->seq_no += 0x10; 2216 2217 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); 2218 hdr->seq_ctrl |= cpu_to_le16(avp->seq_no); 2219 } 2220 2221 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb, 2222 struct ath_tx_control *txctl) 2223 { 2224 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2225 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2226 struct ieee80211_sta *sta = txctl->sta; 2227 struct ieee80211_vif *vif = info->control.vif; 2228 struct ath_vif *avp; 2229 struct ath_softc *sc = hw->priv; 2230 int frmlen = skb->len + FCS_LEN; 2231 int padpos, padsize; 2232 2233 /* NOTE: sta can be NULL according to net/mac80211.h */ 2234 if (sta) 2235 txctl->an = (struct ath_node *)sta->drv_priv; 2236 else if (vif && ieee80211_is_data(hdr->frame_control)) { 2237 avp = (void *)vif->drv_priv; 2238 txctl->an = &avp->mcast_node; 2239 } 2240 2241 if (info->control.hw_key) 2242 frmlen += info->control.hw_key->icv_len; 2243 2244 ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb); 2245 2246 if ((vif && vif->type != NL80211_IFTYPE_AP && 2247 vif->type != NL80211_IFTYPE_AP_VLAN) || 2248 !ieee80211_is_data(hdr->frame_control)) 2249 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 2250 2251 /* Add the padding after the header if this is not already done */ 2252 padpos = ieee80211_hdrlen(hdr->frame_control); 2253 padsize = padpos & 3; 2254 if (padsize && skb->len > padpos) { 2255 if (skb_headroom(skb) < padsize) 2256 return -ENOMEM; 2257 2258 skb_push(skb, padsize); 2259 memmove(skb->data, skb->data + padsize, padpos); 2260 } 2261 2262 setup_frame_info(hw, sta, skb, frmlen); 2263 return 0; 2264 } 2265 2266 2267 /* Upon failure caller should free skb */ 2268 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb, 2269 struct ath_tx_control *txctl) 2270 { 2271 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2272 struct ieee80211_sta *sta = txctl->sta; 2273 struct ieee80211_vif *vif = info->control.vif; 2274 struct ath_frame_info *fi = get_frame_info(skb); 2275 struct ath_softc *sc = hw->priv; 2276 struct ath_txq *txq = txctl->txq; 2277 struct ath_atx_tid *tid = NULL; 2278 struct ath_node *an = NULL; 2279 struct ath_buf *bf; 2280 bool ps_resp; 2281 int q, ret; 2282 2283 ps_resp = !!(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE); 2284 2285 ret = ath_tx_prepare(hw, skb, txctl); 2286 if (ret) 2287 return ret; 2288 2289 /* 2290 * At this point, the vif, hw_key and sta pointers in the tx control 2291 * info are no longer valid (overwritten by the ath_frame_info data. 2292 */ 2293 2294 q = skb_get_queue_mapping(skb); 2295 2296 if (ps_resp) 2297 txq = sc->tx.uapsdq; 2298 2299 if (txctl->sta) { 2300 an = (struct ath_node *) sta->drv_priv; 2301 tid = ath_get_skb_tid(sc, an, skb); 2302 } 2303 2304 ath_txq_lock(sc, txq); 2305 if (txq == sc->tx.txq_map[q]) { 2306 fi->txq = q; 2307 ++txq->pending_frames; 2308 } 2309 2310 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 2311 if (!bf) { 2312 ath_txq_skb_done(sc, txq, skb); 2313 if (txctl->paprd) 2314 dev_kfree_skb_any(skb); 2315 else 2316 ieee80211_free_txskb(sc->hw, skb); 2317 goto out; 2318 } 2319 2320 bf->bf_state.bfs_paprd = txctl->paprd; 2321 2322 if (txctl->paprd) 2323 bf->bf_state.bfs_paprd_timestamp = jiffies; 2324 2325 ath_set_rates(vif, sta, bf); 2326 ath_tx_send_normal(sc, txq, tid, skb); 2327 2328 out: 2329 ath_txq_unlock(sc, txq); 2330 2331 return 0; 2332 } 2333 2334 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2335 struct sk_buff *skb) 2336 { 2337 struct ath_softc *sc = hw->priv; 2338 struct ath_tx_control txctl = { 2339 .txq = sc->beacon.cabq 2340 }; 2341 struct ath_tx_info info = {}; 2342 struct ath_buf *bf_tail = NULL; 2343 struct ath_buf *bf; 2344 LIST_HEAD(bf_q); 2345 int duration = 0; 2346 int max_duration; 2347 2348 max_duration = 2349 sc->cur_chan->beacon.beacon_interval * 1000 * 2350 sc->cur_chan->beacon.dtim_period / ATH_BCBUF; 2351 2352 do { 2353 struct ath_frame_info *fi = get_frame_info(skb); 2354 2355 if (ath_tx_prepare(hw, skb, &txctl)) 2356 break; 2357 2358 bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb); 2359 if (!bf) 2360 break; 2361 2362 bf->bf_lastbf = bf; 2363 ath_set_rates(vif, NULL, bf); 2364 ath_buf_set_rate(sc, bf, &info, fi->framelen, false); 2365 duration += info.rates[0].PktDuration; 2366 if (bf_tail) 2367 bf_tail->bf_next = bf; 2368 2369 list_add_tail(&bf->list, &bf_q); 2370 bf_tail = bf; 2371 skb = NULL; 2372 2373 if (duration > max_duration) 2374 break; 2375 2376 skb = ieee80211_get_buffered_bc(hw, vif); 2377 } while(skb); 2378 2379 if (skb) 2380 ieee80211_free_txskb(hw, skb); 2381 2382 if (list_empty(&bf_q)) 2383 return; 2384 2385 bf = list_last_entry(&bf_q, struct ath_buf, list); 2386 ath9k_set_moredata(sc, bf, false); 2387 2388 bf = list_first_entry(&bf_q, struct ath_buf, list); 2389 ath_txq_lock(sc, txctl.txq); 2390 ath_tx_fill_desc(sc, bf, txctl.txq, 0); 2391 ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false); 2392 TX_STAT_INC(sc, txctl.txq->axq_qnum, queued); 2393 ath_txq_unlock(sc, txctl.txq); 2394 } 2395 2396 /*****************/ 2397 /* TX Completion */ 2398 /*****************/ 2399 2400 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, 2401 int tx_flags, struct ath_txq *txq, 2402 struct ieee80211_sta *sta) 2403 { 2404 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2405 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2406 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data; 2407 int padpos, padsize; 2408 unsigned long flags; 2409 2410 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb); 2411 2412 if (sc->sc_ah->caldata) 2413 set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags); 2414 2415 if (!(tx_flags & ATH_TX_ERROR)) { 2416 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) 2417 tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED; 2418 else 2419 tx_info->flags |= IEEE80211_TX_STAT_ACK; 2420 } 2421 2422 if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) { 2423 padpos = ieee80211_hdrlen(hdr->frame_control); 2424 padsize = padpos & 3; 2425 if (padsize && skb->len>padpos+padsize) { 2426 /* 2427 * Remove MAC header padding before giving the frame back to 2428 * mac80211. 2429 */ 2430 memmove(skb->data + padsize, skb->data, padpos); 2431 skb_pull(skb, padsize); 2432 } 2433 } 2434 2435 spin_lock_irqsave(&sc->sc_pm_lock, flags); 2436 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) { 2437 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK; 2438 ath_dbg(common, PS, 2439 "Going back to sleep after having received TX status (0x%lx)\n", 2440 sc->ps_flags & (PS_WAIT_FOR_BEACON | 2441 PS_WAIT_FOR_CAB | 2442 PS_WAIT_FOR_PSPOLL_DATA | 2443 PS_WAIT_FOR_TX_ACK)); 2444 } 2445 spin_unlock_irqrestore(&sc->sc_pm_lock, flags); 2446 2447 ath_txq_skb_done(sc, txq, skb); 2448 tx_info->status.status_driver_data[0] = sta; 2449 __skb_queue_tail(&txq->complete_q, skb); 2450 } 2451 2452 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 2453 struct ath_txq *txq, struct list_head *bf_q, 2454 struct ieee80211_sta *sta, 2455 struct ath_tx_status *ts, int txok) 2456 { 2457 struct sk_buff *skb = bf->bf_mpdu; 2458 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2459 unsigned long flags; 2460 int tx_flags = 0; 2461 2462 if (!txok) 2463 tx_flags |= ATH_TX_ERROR; 2464 2465 if (ts->ts_status & ATH9K_TXERR_FILT) 2466 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; 2467 2468 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE); 2469 bf->bf_buf_addr = 0; 2470 if (sc->tx99_state) 2471 goto skip_tx_complete; 2472 2473 if (bf->bf_state.bfs_paprd) { 2474 if (time_after(jiffies, 2475 bf->bf_state.bfs_paprd_timestamp + 2476 msecs_to_jiffies(ATH_PAPRD_TIMEOUT))) 2477 dev_kfree_skb_any(skb); 2478 else 2479 complete(&sc->paprd_complete); 2480 } else { 2481 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags); 2482 ath_tx_complete(sc, skb, tx_flags, txq, sta); 2483 } 2484 skip_tx_complete: 2485 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't 2486 * accidentally reference it later. 2487 */ 2488 bf->bf_mpdu = NULL; 2489 2490 /* 2491 * Return the list of ath_buf of this mpdu to free queue 2492 */ 2493 spin_lock_irqsave(&sc->tx.txbuflock, flags); 2494 list_splice_tail_init(bf_q, &sc->tx.txbuf); 2495 spin_unlock_irqrestore(&sc->tx.txbuflock, flags); 2496 } 2497 2498 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 2499 struct ath_tx_status *ts, int nframes, int nbad, 2500 int txok) 2501 { 2502 struct sk_buff *skb = bf->bf_mpdu; 2503 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2504 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2505 struct ieee80211_hw *hw = sc->hw; 2506 struct ath_hw *ah = sc->sc_ah; 2507 u8 i, tx_rateindex; 2508 2509 if (txok) 2510 tx_info->status.ack_signal = ts->ts_rssi; 2511 2512 tx_rateindex = ts->ts_rateindex; 2513 WARN_ON(tx_rateindex >= hw->max_rates); 2514 2515 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 2516 tx_info->flags |= IEEE80211_TX_STAT_AMPDU; 2517 2518 BUG_ON(nbad > nframes); 2519 } 2520 tx_info->status.ampdu_len = nframes; 2521 tx_info->status.ampdu_ack_len = nframes - nbad; 2522 2523 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 && 2524 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) { 2525 /* 2526 * If an underrun error is seen assume it as an excessive 2527 * retry only if max frame trigger level has been reached 2528 * (2 KB for single stream, and 4 KB for dual stream). 2529 * Adjust the long retry as if the frame was tried 2530 * hw->max_rate_tries times to affect how rate control updates 2531 * PER for the failed rate. 2532 * In case of congestion on the bus penalizing this type of 2533 * underruns should help hardware actually transmit new frames 2534 * successfully by eventually preferring slower rates. 2535 * This itself should also alleviate congestion on the bus. 2536 */ 2537 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN | 2538 ATH9K_TX_DELIM_UNDERRUN)) && 2539 ieee80211_is_data(hdr->frame_control) && 2540 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level) 2541 tx_info->status.rates[tx_rateindex].count = 2542 hw->max_rate_tries; 2543 } 2544 2545 for (i = tx_rateindex + 1; i < hw->max_rates; i++) { 2546 tx_info->status.rates[i].count = 0; 2547 tx_info->status.rates[i].idx = -1; 2548 } 2549 2550 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1; 2551 2552 /* we report airtime in ath_tx_count_airtime(), don't report twice */ 2553 tx_info->status.tx_time = 0; 2554 } 2555 2556 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 2557 { 2558 struct ath_hw *ah = sc->sc_ah; 2559 struct ath_common *common = ath9k_hw_common(ah); 2560 struct ath_buf *bf, *lastbf, *bf_held = NULL; 2561 struct list_head bf_head; 2562 struct ath_desc *ds; 2563 struct ath_tx_status ts; 2564 int status; 2565 2566 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n", 2567 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum), 2568 txq->axq_link); 2569 2570 ath_txq_lock(sc, txq); 2571 for (;;) { 2572 if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) 2573 break; 2574 2575 if (list_empty(&txq->axq_q)) { 2576 txq->axq_link = NULL; 2577 ath_txq_schedule(sc, txq); 2578 break; 2579 } 2580 bf = list_first_entry(&txq->axq_q, struct ath_buf, list); 2581 2582 /* 2583 * There is a race condition that a BH gets scheduled 2584 * after sw writes TxE and before hw re-load the last 2585 * descriptor to get the newly chained one. 2586 * Software must keep the last DONE descriptor as a 2587 * holding descriptor - software does so by marking 2588 * it with the STALE flag. 2589 */ 2590 bf_held = NULL; 2591 if (bf->bf_state.stale) { 2592 bf_held = bf; 2593 if (list_is_last(&bf_held->list, &txq->axq_q)) 2594 break; 2595 2596 bf = list_entry(bf_held->list.next, struct ath_buf, 2597 list); 2598 } 2599 2600 lastbf = bf->bf_lastbf; 2601 ds = lastbf->bf_desc; 2602 2603 memset(&ts, 0, sizeof(ts)); 2604 status = ath9k_hw_txprocdesc(ah, ds, &ts); 2605 if (status == -EINPROGRESS) 2606 break; 2607 2608 TX_STAT_INC(sc, txq->axq_qnum, txprocdesc); 2609 2610 /* 2611 * Remove ath_buf's of the same transmit unit from txq, 2612 * however leave the last descriptor back as the holding 2613 * descriptor for hw. 2614 */ 2615 lastbf->bf_state.stale = true; 2616 INIT_LIST_HEAD(&bf_head); 2617 if (!list_is_singular(&lastbf->list)) 2618 list_cut_position(&bf_head, 2619 &txq->axq_q, lastbf->list.prev); 2620 2621 if (bf_held) { 2622 list_del(&bf_held->list); 2623 ath_tx_return_buffer(sc, bf_held); 2624 } 2625 2626 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2627 } 2628 ath_txq_unlock_complete(sc, txq); 2629 } 2630 2631 void ath_tx_tasklet(struct ath_softc *sc) 2632 { 2633 struct ath_hw *ah = sc->sc_ah; 2634 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs; 2635 int i; 2636 2637 rcu_read_lock(); 2638 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 2639 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i))) 2640 ath_tx_processq(sc, &sc->tx.txq[i]); 2641 } 2642 rcu_read_unlock(); 2643 } 2644 2645 void ath_tx_edma_tasklet(struct ath_softc *sc) 2646 { 2647 struct ath_tx_status ts; 2648 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2649 struct ath_hw *ah = sc->sc_ah; 2650 struct ath_txq *txq; 2651 struct ath_buf *bf, *lastbf; 2652 struct list_head bf_head; 2653 struct list_head *fifo_list; 2654 int status; 2655 2656 rcu_read_lock(); 2657 for (;;) { 2658 if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) 2659 break; 2660 2661 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts); 2662 if (status == -EINPROGRESS) 2663 break; 2664 if (status == -EIO) { 2665 ath_dbg(common, XMIT, "Error processing tx status\n"); 2666 break; 2667 } 2668 2669 /* Process beacon completions separately */ 2670 if (ts.qid == sc->beacon.beaconq) { 2671 sc->beacon.tx_processed = true; 2672 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK); 2673 2674 if (ath9k_is_chanctx_enabled()) { 2675 ath_chanctx_event(sc, NULL, 2676 ATH_CHANCTX_EVENT_BEACON_SENT); 2677 } 2678 2679 ath9k_csa_update(sc); 2680 continue; 2681 } 2682 2683 txq = &sc->tx.txq[ts.qid]; 2684 2685 ath_txq_lock(sc, txq); 2686 2687 TX_STAT_INC(sc, txq->axq_qnum, txprocdesc); 2688 2689 fifo_list = &txq->txq_fifo[txq->txq_tailidx]; 2690 if (list_empty(fifo_list)) { 2691 ath_txq_unlock(sc, txq); 2692 break; 2693 } 2694 2695 bf = list_first_entry(fifo_list, struct ath_buf, list); 2696 if (bf->bf_state.stale) { 2697 list_del(&bf->list); 2698 ath_tx_return_buffer(sc, bf); 2699 bf = list_first_entry(fifo_list, struct ath_buf, list); 2700 } 2701 2702 lastbf = bf->bf_lastbf; 2703 2704 INIT_LIST_HEAD(&bf_head); 2705 if (list_is_last(&lastbf->list, fifo_list)) { 2706 list_splice_tail_init(fifo_list, &bf_head); 2707 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH); 2708 2709 if (!list_empty(&txq->axq_q)) { 2710 struct list_head bf_q; 2711 2712 INIT_LIST_HEAD(&bf_q); 2713 txq->axq_link = NULL; 2714 list_splice_tail_init(&txq->axq_q, &bf_q); 2715 ath_tx_txqaddbuf(sc, txq, &bf_q, true); 2716 } 2717 } else { 2718 lastbf->bf_state.stale = true; 2719 if (bf != lastbf) 2720 list_cut_position(&bf_head, fifo_list, 2721 lastbf->list.prev); 2722 } 2723 2724 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2725 ath_txq_unlock_complete(sc, txq); 2726 } 2727 rcu_read_unlock(); 2728 } 2729 2730 /*****************/ 2731 /* Init, Cleanup */ 2732 /*****************/ 2733 2734 static int ath_txstatus_setup(struct ath_softc *sc, int size) 2735 { 2736 struct ath_descdma *dd = &sc->txsdma; 2737 u8 txs_len = sc->sc_ah->caps.txs_len; 2738 2739 dd->dd_desc_len = size * txs_len; 2740 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len, 2741 &dd->dd_desc_paddr, GFP_KERNEL); 2742 if (!dd->dd_desc) 2743 return -ENOMEM; 2744 2745 return 0; 2746 } 2747 2748 static int ath_tx_edma_init(struct ath_softc *sc) 2749 { 2750 int err; 2751 2752 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE); 2753 if (!err) 2754 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc, 2755 sc->txsdma.dd_desc_paddr, 2756 ATH_TXSTATUS_RING_SIZE); 2757 2758 return err; 2759 } 2760 2761 int ath_tx_init(struct ath_softc *sc, int nbufs) 2762 { 2763 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2764 int error = 0; 2765 2766 spin_lock_init(&sc->tx.txbuflock); 2767 2768 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf, 2769 "tx", nbufs, 1, 1); 2770 if (error != 0) { 2771 ath_err(common, 2772 "Failed to allocate tx descriptors: %d\n", error); 2773 return error; 2774 } 2775 2776 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf, 2777 "beacon", ATH_BCBUF, 1, 1); 2778 if (error != 0) { 2779 ath_err(common, 2780 "Failed to allocate beacon descriptors: %d\n", error); 2781 return error; 2782 } 2783 2784 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 2785 error = ath_tx_edma_init(sc); 2786 2787 return error; 2788 } 2789 2790 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an) 2791 { 2792 struct ath_atx_tid *tid; 2793 int tidno, acno; 2794 2795 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) { 2796 tid = ath_node_to_tid(an, tidno); 2797 tid->an = an; 2798 tid->tidno = tidno; 2799 tid->seq_start = tid->seq_next = 0; 2800 tid->baw_size = WME_MAX_BA; 2801 tid->baw_head = tid->baw_tail = 0; 2802 tid->active = false; 2803 tid->clear_ps_filter = true; 2804 __skb_queue_head_init(&tid->retry_q); 2805 INIT_LIST_HEAD(&tid->list); 2806 acno = TID_TO_WME_AC(tidno); 2807 tid->txq = sc->tx.txq_map[acno]; 2808 2809 if (!an->sta) 2810 break; /* just one multicast ath_atx_tid */ 2811 } 2812 } 2813 2814 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an) 2815 { 2816 struct ath_atx_tid *tid; 2817 struct ath_txq *txq; 2818 int tidno; 2819 2820 rcu_read_lock(); 2821 2822 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) { 2823 tid = ath_node_to_tid(an, tidno); 2824 txq = tid->txq; 2825 2826 ath_txq_lock(sc, txq); 2827 2828 if (!list_empty(&tid->list)) 2829 list_del_init(&tid->list); 2830 2831 ath_tid_drain(sc, txq, tid); 2832 tid->active = false; 2833 2834 ath_txq_unlock(sc, txq); 2835 2836 if (!an->sta) 2837 break; /* just one multicast ath_atx_tid */ 2838 } 2839 2840 rcu_read_unlock(); 2841 } 2842 2843 #ifdef CONFIG_ATH9K_TX99 2844 2845 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb, 2846 struct ath_tx_control *txctl) 2847 { 2848 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2849 struct ath_frame_info *fi = get_frame_info(skb); 2850 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2851 struct ath_buf *bf; 2852 int padpos, padsize; 2853 2854 padpos = ieee80211_hdrlen(hdr->frame_control); 2855 padsize = padpos & 3; 2856 2857 if (padsize && skb->len > padpos) { 2858 if (skb_headroom(skb) < padsize) { 2859 ath_dbg(common, XMIT, 2860 "tx99 padding failed\n"); 2861 return -EINVAL; 2862 } 2863 2864 skb_push(skb, padsize); 2865 memmove(skb->data, skb->data + padsize, padpos); 2866 } 2867 2868 fi->keyix = ATH9K_TXKEYIX_INVALID; 2869 fi->framelen = skb->len + FCS_LEN; 2870 fi->keytype = ATH9K_KEY_TYPE_CLEAR; 2871 2872 bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb); 2873 if (!bf) { 2874 ath_dbg(common, XMIT, "tx99 buffer setup failed\n"); 2875 return -EINVAL; 2876 } 2877 2878 ath_set_rates(sc->tx99_vif, NULL, bf); 2879 2880 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr); 2881 ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum); 2882 2883 ath_tx_send_normal(sc, txctl->txq, NULL, skb); 2884 2885 return 0; 2886 } 2887 2888 #endif /* CONFIG_ATH9K_TX99 */ 2889