1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/dma-mapping.h> 18 #include "ath9k.h" 19 #include "ar9003_mac.h" 20 21 #define BITS_PER_BYTE 8 22 #define OFDM_PLCP_BITS 22 23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1) 24 #define L_STF 8 25 #define L_LTF 8 26 #define L_SIG 4 27 #define HT_SIG 8 28 #define HT_STF 4 29 #define HT_LTF(_ns) (4 * (_ns)) 30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */ 31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */ 32 #define TIME_SYMBOLS(t) ((t) >> 2) 33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18) 34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2) 35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18) 36 37 38 static u16 bits_per_symbol[][2] = { 39 /* 20MHz 40MHz */ 40 { 26, 54 }, /* 0: BPSK */ 41 { 52, 108 }, /* 1: QPSK 1/2 */ 42 { 78, 162 }, /* 2: QPSK 3/4 */ 43 { 104, 216 }, /* 3: 16-QAM 1/2 */ 44 { 156, 324 }, /* 4: 16-QAM 3/4 */ 45 { 208, 432 }, /* 5: 64-QAM 2/3 */ 46 { 234, 486 }, /* 6: 64-QAM 3/4 */ 47 { 260, 540 }, /* 7: 64-QAM 5/6 */ 48 }; 49 50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 51 struct ath_atx_tid *tid, struct sk_buff *skb); 52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, 53 int tx_flags, struct ath_txq *txq, 54 struct ieee80211_sta *sta); 55 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 56 struct ath_txq *txq, struct list_head *bf_q, 57 struct ieee80211_sta *sta, 58 struct ath_tx_status *ts, int txok); 59 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 60 struct list_head *head, bool internal); 61 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 62 struct ath_tx_status *ts, int nframes, int nbad, 63 int txok); 64 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 65 struct ath_buf *bf); 66 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, 67 struct ath_txq *txq, 68 struct ath_atx_tid *tid, 69 struct sk_buff *skb); 70 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb, 71 struct ath_tx_control *txctl); 72 73 enum { 74 MCS_HT20, 75 MCS_HT20_SGI, 76 MCS_HT40, 77 MCS_HT40_SGI, 78 }; 79 80 /*********************/ 81 /* Aggregation logic */ 82 /*********************/ 83 84 static void ath_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb) 85 { 86 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 87 struct ieee80211_sta *sta = info->status.status_driver_data[0]; 88 89 if (info->flags & (IEEE80211_TX_CTL_REQ_TX_STATUS | 90 IEEE80211_TX_STATUS_EOSP)) { 91 ieee80211_tx_status(hw, skb); 92 return; 93 } 94 95 if (sta) 96 ieee80211_tx_status_noskb(hw, sta, info); 97 98 dev_kfree_skb(skb); 99 } 100 101 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq) 102 __releases(&txq->axq_lock) 103 { 104 struct ieee80211_hw *hw = sc->hw; 105 struct sk_buff_head q; 106 struct sk_buff *skb; 107 108 __skb_queue_head_init(&q); 109 skb_queue_splice_init(&txq->complete_q, &q); 110 spin_unlock_bh(&txq->axq_lock); 111 112 while ((skb = __skb_dequeue(&q))) 113 ath_tx_status(hw, skb); 114 } 115 116 void ath_tx_queue_tid(struct ath_softc *sc, struct ath_atx_tid *tid) 117 { 118 struct ieee80211_txq *queue = 119 container_of((void *)tid, struct ieee80211_txq, drv_priv); 120 121 ieee80211_schedule_txq(sc->hw, queue); 122 } 123 124 void ath9k_wake_tx_queue(struct ieee80211_hw *hw, struct ieee80211_txq *queue) 125 { 126 struct ath_softc *sc = hw->priv; 127 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 128 struct ath_atx_tid *tid = (struct ath_atx_tid *) queue->drv_priv; 129 struct ath_txq *txq = tid->txq; 130 131 ath_dbg(common, QUEUE, "Waking TX queue: %pM (%d)\n", 132 queue->sta ? queue->sta->addr : queue->vif->addr, 133 tid->tidno); 134 135 ath_txq_lock(sc, txq); 136 ath_txq_schedule(sc, txq); 137 ath_txq_unlock(sc, txq); 138 } 139 140 static struct ath_frame_info *get_frame_info(struct sk_buff *skb) 141 { 142 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 143 BUILD_BUG_ON(sizeof(struct ath_frame_info) > 144 sizeof(tx_info->status.status_driver_data)); 145 return (struct ath_frame_info *) &tx_info->status.status_driver_data[0]; 146 } 147 148 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno) 149 { 150 if (!tid->an->sta) 151 return; 152 153 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno, 154 seqno << IEEE80211_SEQ_SEQ_SHIFT); 155 } 156 157 static bool ath_merge_ratetbl(struct ieee80211_sta *sta, struct ath_buf *bf, 158 struct ieee80211_tx_info *tx_info) 159 { 160 struct ieee80211_sta_rates *ratetbl; 161 u8 i; 162 163 if (!sta) 164 return false; 165 166 ratetbl = rcu_dereference(sta->rates); 167 if (!ratetbl) 168 return false; 169 170 if (tx_info->control.rates[0].idx < 0 || 171 tx_info->control.rates[0].count == 0) 172 { 173 i = 0; 174 } else { 175 bf->rates[0] = tx_info->control.rates[0]; 176 i = 1; 177 } 178 179 for ( ; i < IEEE80211_TX_MAX_RATES; i++) { 180 bf->rates[i].idx = ratetbl->rate[i].idx; 181 bf->rates[i].flags = ratetbl->rate[i].flags; 182 if (tx_info->control.use_rts) 183 bf->rates[i].count = ratetbl->rate[i].count_rts; 184 else if (tx_info->control.use_cts_prot) 185 bf->rates[i].count = ratetbl->rate[i].count_cts; 186 else 187 bf->rates[i].count = ratetbl->rate[i].count; 188 } 189 190 return true; 191 } 192 193 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta, 194 struct ath_buf *bf) 195 { 196 struct ieee80211_tx_info *tx_info; 197 198 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 199 200 if (!ath_merge_ratetbl(sta, bf, tx_info)) 201 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates, 202 ARRAY_SIZE(bf->rates)); 203 } 204 205 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq, 206 struct sk_buff *skb) 207 { 208 struct ath_frame_info *fi = get_frame_info(skb); 209 int q = fi->txq; 210 211 if (q < 0) 212 return; 213 214 txq = sc->tx.txq_map[q]; 215 if (WARN_ON(--txq->pending_frames < 0)) 216 txq->pending_frames = 0; 217 218 } 219 220 static struct ath_atx_tid * 221 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb) 222 { 223 u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK; 224 return ATH_AN_2_TID(an, tidno); 225 } 226 227 static int 228 ath_tid_pull(struct ath_atx_tid *tid, struct sk_buff **skbuf) 229 { 230 struct ieee80211_txq *txq = container_of((void*)tid, struct ieee80211_txq, drv_priv); 231 struct ath_softc *sc = tid->an->sc; 232 struct ieee80211_hw *hw = sc->hw; 233 struct ath_tx_control txctl = { 234 .txq = tid->txq, 235 .sta = tid->an->sta, 236 }; 237 struct sk_buff *skb; 238 struct ath_frame_info *fi; 239 int q, ret; 240 241 skb = ieee80211_tx_dequeue(hw, txq); 242 if (!skb) 243 return -ENOENT; 244 245 ret = ath_tx_prepare(hw, skb, &txctl); 246 if (ret) { 247 ieee80211_free_txskb(hw, skb); 248 return ret; 249 } 250 251 q = skb_get_queue_mapping(skb); 252 if (tid->txq == sc->tx.txq_map[q]) { 253 fi = get_frame_info(skb); 254 fi->txq = q; 255 ++tid->txq->pending_frames; 256 } 257 258 *skbuf = skb; 259 return 0; 260 } 261 262 static int ath_tid_dequeue(struct ath_atx_tid *tid, 263 struct sk_buff **skb) 264 { 265 int ret = 0; 266 *skb = __skb_dequeue(&tid->retry_q); 267 if (!*skb) 268 ret = ath_tid_pull(tid, skb); 269 270 return ret; 271 } 272 273 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid) 274 { 275 struct ath_txq *txq = tid->txq; 276 struct sk_buff *skb; 277 struct ath_buf *bf; 278 struct list_head bf_head; 279 struct ath_tx_status ts; 280 struct ath_frame_info *fi; 281 bool sendbar = false; 282 283 INIT_LIST_HEAD(&bf_head); 284 285 memset(&ts, 0, sizeof(ts)); 286 287 while ((skb = __skb_dequeue(&tid->retry_q))) { 288 fi = get_frame_info(skb); 289 bf = fi->bf; 290 if (!bf) { 291 ath_txq_skb_done(sc, txq, skb); 292 ieee80211_free_txskb(sc->hw, skb); 293 continue; 294 } 295 296 if (fi->baw_tracked) { 297 ath_tx_update_baw(sc, tid, bf); 298 sendbar = true; 299 } 300 301 list_add_tail(&bf->list, &bf_head); 302 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0); 303 } 304 305 if (sendbar) { 306 ath_txq_unlock(sc, txq); 307 ath_send_bar(tid, tid->seq_start); 308 ath_txq_lock(sc, txq); 309 } 310 } 311 312 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 313 struct ath_buf *bf) 314 { 315 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 316 u16 seqno = bf->bf_state.seqno; 317 int index, cindex; 318 319 if (!fi->baw_tracked) 320 return; 321 322 index = ATH_BA_INDEX(tid->seq_start, seqno); 323 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 324 325 __clear_bit(cindex, tid->tx_buf); 326 327 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) { 328 INCR(tid->seq_start, IEEE80211_SEQ_MAX); 329 INCR(tid->baw_head, ATH_TID_MAX_BUFS); 330 if (tid->bar_index >= 0) 331 tid->bar_index--; 332 } 333 } 334 335 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 336 struct ath_buf *bf) 337 { 338 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 339 u16 seqno = bf->bf_state.seqno; 340 int index, cindex; 341 342 if (fi->baw_tracked) 343 return; 344 345 index = ATH_BA_INDEX(tid->seq_start, seqno); 346 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 347 __set_bit(cindex, tid->tx_buf); 348 fi->baw_tracked = 1; 349 350 if (index >= ((tid->baw_tail - tid->baw_head) & 351 (ATH_TID_MAX_BUFS - 1))) { 352 tid->baw_tail = cindex; 353 INCR(tid->baw_tail, ATH_TID_MAX_BUFS); 354 } 355 } 356 357 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq, 358 struct ath_atx_tid *tid) 359 360 { 361 struct sk_buff *skb; 362 struct ath_buf *bf; 363 struct list_head bf_head; 364 struct ath_tx_status ts; 365 struct ath_frame_info *fi; 366 int ret; 367 368 memset(&ts, 0, sizeof(ts)); 369 INIT_LIST_HEAD(&bf_head); 370 371 while ((ret = ath_tid_dequeue(tid, &skb)) == 0) { 372 fi = get_frame_info(skb); 373 bf = fi->bf; 374 375 if (!bf) { 376 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq, NULL); 377 continue; 378 } 379 380 list_add_tail(&bf->list, &bf_head); 381 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0); 382 } 383 } 384 385 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq, 386 struct sk_buff *skb, int count) 387 { 388 struct ath_frame_info *fi = get_frame_info(skb); 389 struct ath_buf *bf = fi->bf; 390 struct ieee80211_hdr *hdr; 391 int prev = fi->retries; 392 393 TX_STAT_INC(sc, txq->axq_qnum, a_retries); 394 fi->retries += count; 395 396 if (prev > 0) 397 return; 398 399 hdr = (struct ieee80211_hdr *)skb->data; 400 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY); 401 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 402 sizeof(*hdr), DMA_TO_DEVICE); 403 } 404 405 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc) 406 { 407 struct ath_buf *bf = NULL; 408 409 spin_lock_bh(&sc->tx.txbuflock); 410 411 if (unlikely(list_empty(&sc->tx.txbuf))) { 412 spin_unlock_bh(&sc->tx.txbuflock); 413 return NULL; 414 } 415 416 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list); 417 list_del(&bf->list); 418 419 spin_unlock_bh(&sc->tx.txbuflock); 420 421 return bf; 422 } 423 424 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf) 425 { 426 spin_lock_bh(&sc->tx.txbuflock); 427 list_add_tail(&bf->list, &sc->tx.txbuf); 428 spin_unlock_bh(&sc->tx.txbuflock); 429 } 430 431 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf) 432 { 433 struct ath_buf *tbf; 434 435 tbf = ath_tx_get_buffer(sc); 436 if (WARN_ON(!tbf)) 437 return NULL; 438 439 ATH_TXBUF_RESET(tbf); 440 441 tbf->bf_mpdu = bf->bf_mpdu; 442 tbf->bf_buf_addr = bf->bf_buf_addr; 443 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len); 444 tbf->bf_state = bf->bf_state; 445 tbf->bf_state.stale = false; 446 447 return tbf; 448 } 449 450 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf, 451 struct ath_tx_status *ts, int txok, 452 int *nframes, int *nbad) 453 { 454 u16 seq_st = 0; 455 u32 ba[WME_BA_BMP_SIZE >> 5]; 456 int ba_index; 457 int isaggr = 0; 458 459 *nbad = 0; 460 *nframes = 0; 461 462 isaggr = bf_isaggr(bf); 463 if (isaggr) { 464 seq_st = ts->ts_seqnum; 465 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); 466 } 467 468 while (bf) { 469 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno); 470 471 (*nframes)++; 472 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index))) 473 (*nbad)++; 474 475 bf = bf->bf_next; 476 } 477 } 478 479 480 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq, 481 struct ath_buf *bf, struct list_head *bf_q, 482 struct ieee80211_sta *sta, 483 struct ath_atx_tid *tid, 484 struct ath_tx_status *ts, int txok) 485 { 486 struct ath_node *an = NULL; 487 struct sk_buff *skb; 488 struct ieee80211_tx_info *tx_info; 489 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf; 490 struct list_head bf_head; 491 struct sk_buff_head bf_pending; 492 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first; 493 u32 ba[WME_BA_BMP_SIZE >> 5]; 494 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0; 495 bool rc_update = true, isba; 496 struct ieee80211_tx_rate rates[4]; 497 struct ath_frame_info *fi; 498 int nframes; 499 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH); 500 int i, retries; 501 int bar_index = -1; 502 503 skb = bf->bf_mpdu; 504 tx_info = IEEE80211_SKB_CB(skb); 505 506 memcpy(rates, bf->rates, sizeof(rates)); 507 508 retries = ts->ts_longretry + 1; 509 for (i = 0; i < ts->ts_rateindex; i++) 510 retries += rates[i].count; 511 512 if (!sta) { 513 INIT_LIST_HEAD(&bf_head); 514 while (bf) { 515 bf_next = bf->bf_next; 516 517 if (!bf->bf_state.stale || bf_next != NULL) 518 list_move_tail(&bf->list, &bf_head); 519 520 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, ts, 0); 521 522 bf = bf_next; 523 } 524 return; 525 } 526 527 an = (struct ath_node *)sta->drv_priv; 528 seq_first = tid->seq_start; 529 isba = ts->ts_flags & ATH9K_TX_BA; 530 531 /* 532 * The hardware occasionally sends a tx status for the wrong TID. 533 * In this case, the BA status cannot be considered valid and all 534 * subframes need to be retransmitted 535 * 536 * Only BlockAcks have a TID and therefore normal Acks cannot be 537 * checked 538 */ 539 if (isba && tid->tidno != ts->tid) 540 txok = false; 541 542 isaggr = bf_isaggr(bf); 543 memset(ba, 0, WME_BA_BMP_SIZE >> 3); 544 545 if (isaggr && txok) { 546 if (ts->ts_flags & ATH9K_TX_BA) { 547 seq_st = ts->ts_seqnum; 548 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); 549 } else { 550 /* 551 * AR5416 can become deaf/mute when BA 552 * issue happens. Chip needs to be reset. 553 * But AP code may have sychronization issues 554 * when perform internal reset in this routine. 555 * Only enable reset in STA mode for now. 556 */ 557 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION) 558 needreset = 1; 559 } 560 } 561 562 __skb_queue_head_init(&bf_pending); 563 564 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad); 565 while (bf) { 566 u16 seqno = bf->bf_state.seqno; 567 568 txfail = txpending = sendbar = 0; 569 bf_next = bf->bf_next; 570 571 skb = bf->bf_mpdu; 572 tx_info = IEEE80211_SKB_CB(skb); 573 fi = get_frame_info(skb); 574 575 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) || 576 !tid->active) { 577 /* 578 * Outside of the current BlockAck window, 579 * maybe part of a previous session 580 */ 581 txfail = 1; 582 } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) { 583 /* transmit completion, subframe is 584 * acked by block ack */ 585 acked_cnt++; 586 } else if (!isaggr && txok) { 587 /* transmit completion */ 588 acked_cnt++; 589 } else if (flush) { 590 txpending = 1; 591 } else if (fi->retries < ATH_MAX_SW_RETRIES) { 592 if (txok || !an->sleeping) 593 ath_tx_set_retry(sc, txq, bf->bf_mpdu, 594 retries); 595 596 txpending = 1; 597 } else { 598 txfail = 1; 599 txfail_cnt++; 600 bar_index = max_t(int, bar_index, 601 ATH_BA_INDEX(seq_first, seqno)); 602 } 603 604 /* 605 * Make sure the last desc is reclaimed if it 606 * not a holding desc. 607 */ 608 INIT_LIST_HEAD(&bf_head); 609 if (bf_next != NULL || !bf_last->bf_state.stale) 610 list_move_tail(&bf->list, &bf_head); 611 612 if (!txpending) { 613 /* 614 * complete the acked-ones/xretried ones; update 615 * block-ack window 616 */ 617 ath_tx_update_baw(sc, tid, bf); 618 619 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) { 620 memcpy(tx_info->control.rates, rates, sizeof(rates)); 621 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok); 622 rc_update = false; 623 if (bf == bf->bf_lastbf) 624 ath_dynack_sample_tx_ts(sc->sc_ah, 625 bf->bf_mpdu, 626 ts, sta); 627 } 628 629 ath_tx_complete_buf(sc, bf, txq, &bf_head, sta, ts, 630 !txfail); 631 } else { 632 if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) { 633 tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP; 634 ieee80211_sta_eosp(sta); 635 } 636 /* retry the un-acked ones */ 637 if (bf->bf_next == NULL && bf_last->bf_state.stale) { 638 struct ath_buf *tbf; 639 640 tbf = ath_clone_txbuf(sc, bf_last); 641 /* 642 * Update tx baw and complete the 643 * frame with failed status if we 644 * run out of tx buf. 645 */ 646 if (!tbf) { 647 ath_tx_update_baw(sc, tid, bf); 648 649 ath_tx_complete_buf(sc, bf, txq, 650 &bf_head, NULL, ts, 651 0); 652 bar_index = max_t(int, bar_index, 653 ATH_BA_INDEX(seq_first, seqno)); 654 break; 655 } 656 657 fi->bf = tbf; 658 } 659 660 /* 661 * Put this buffer to the temporary pending 662 * queue to retain ordering 663 */ 664 __skb_queue_tail(&bf_pending, skb); 665 } 666 667 bf = bf_next; 668 } 669 670 /* prepend un-acked frames to the beginning of the pending frame queue */ 671 if (!skb_queue_empty(&bf_pending)) { 672 if (an->sleeping) 673 ieee80211_sta_set_buffered(sta, tid->tidno, true); 674 675 skb_queue_splice_tail(&bf_pending, &tid->retry_q); 676 if (!an->sleeping) { 677 ath_tx_queue_tid(sc, tid); 678 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY)) 679 tid->clear_ps_filter = true; 680 } 681 } 682 683 if (bar_index >= 0) { 684 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index); 685 686 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq)) 687 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq); 688 689 ath_txq_unlock(sc, txq); 690 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1)); 691 ath_txq_lock(sc, txq); 692 } 693 694 if (needreset) 695 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR); 696 } 697 698 static bool bf_is_ampdu_not_probing(struct ath_buf *bf) 699 { 700 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu); 701 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE); 702 } 703 704 static void ath_tx_count_airtime(struct ath_softc *sc, 705 struct ieee80211_sta *sta, 706 struct ath_buf *bf, 707 struct ath_tx_status *ts, 708 u8 tid) 709 { 710 u32 airtime = 0; 711 int i; 712 713 airtime += ts->duration * (ts->ts_longretry + 1); 714 for(i = 0; i < ts->ts_rateindex; i++) { 715 int rate_dur = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc, i); 716 airtime += rate_dur * bf->rates[i].count; 717 } 718 719 ieee80211_sta_register_airtime(sta, tid, airtime, 0); 720 } 721 722 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq, 723 struct ath_tx_status *ts, struct ath_buf *bf, 724 struct list_head *bf_head) 725 { 726 struct ieee80211_hw *hw = sc->hw; 727 struct ieee80211_tx_info *info; 728 struct ieee80211_sta *sta; 729 struct ieee80211_hdr *hdr; 730 struct ath_atx_tid *tid = NULL; 731 bool txok, flush; 732 733 txok = !(ts->ts_status & ATH9K_TXERR_MASK); 734 flush = !!(ts->ts_status & ATH9K_TX_FLUSH); 735 txq->axq_tx_inprogress = false; 736 737 txq->axq_depth--; 738 if (bf_is_ampdu_not_probing(bf)) 739 txq->axq_ampdu_depth--; 740 741 ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc, 742 ts->ts_rateindex); 743 744 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data; 745 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2); 746 if (sta) { 747 struct ath_node *an = (struct ath_node *)sta->drv_priv; 748 tid = ath_get_skb_tid(sc, an, bf->bf_mpdu); 749 ath_tx_count_airtime(sc, sta, bf, ts, tid->tidno); 750 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY)) 751 tid->clear_ps_filter = true; 752 } 753 754 if (!bf_isampdu(bf)) { 755 if (!flush) { 756 info = IEEE80211_SKB_CB(bf->bf_mpdu); 757 memcpy(info->control.rates, bf->rates, 758 sizeof(info->control.rates)); 759 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok); 760 ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts, 761 sta); 762 } 763 ath_tx_complete_buf(sc, bf, txq, bf_head, sta, ts, txok); 764 } else 765 ath_tx_complete_aggr(sc, txq, bf, bf_head, sta, tid, ts, txok); 766 767 if (!flush) 768 ath_txq_schedule(sc, txq); 769 } 770 771 static bool ath_lookup_legacy(struct ath_buf *bf) 772 { 773 struct sk_buff *skb; 774 struct ieee80211_tx_info *tx_info; 775 struct ieee80211_tx_rate *rates; 776 int i; 777 778 skb = bf->bf_mpdu; 779 tx_info = IEEE80211_SKB_CB(skb); 780 rates = tx_info->control.rates; 781 782 for (i = 0; i < 4; i++) { 783 if (!rates[i].count || rates[i].idx < 0) 784 break; 785 786 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) 787 return true; 788 } 789 790 return false; 791 } 792 793 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf, 794 struct ath_atx_tid *tid) 795 { 796 struct sk_buff *skb; 797 struct ieee80211_tx_info *tx_info; 798 struct ieee80211_tx_rate *rates; 799 u32 max_4ms_framelen, frmlen; 800 u16 aggr_limit, bt_aggr_limit, legacy = 0; 801 int q = tid->txq->mac80211_qnum; 802 int i; 803 804 skb = bf->bf_mpdu; 805 tx_info = IEEE80211_SKB_CB(skb); 806 rates = bf->rates; 807 808 /* 809 * Find the lowest frame length among the rate series that will have a 810 * 4ms (or TXOP limited) transmit duration. 811 */ 812 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX; 813 814 for (i = 0; i < 4; i++) { 815 int modeidx; 816 817 if (!rates[i].count) 818 continue; 819 820 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) { 821 legacy = 1; 822 break; 823 } 824 825 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 826 modeidx = MCS_HT40; 827 else 828 modeidx = MCS_HT20; 829 830 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 831 modeidx++; 832 833 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx]; 834 max_4ms_framelen = min(max_4ms_framelen, frmlen); 835 } 836 837 /* 838 * limit aggregate size by the minimum rate if rate selected is 839 * not a probe rate, if rate selected is a probe rate then 840 * avoid aggregation of this packet. 841 */ 842 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy) 843 return 0; 844 845 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX); 846 847 /* 848 * Override the default aggregation limit for BTCOEX. 849 */ 850 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen); 851 if (bt_aggr_limit) 852 aggr_limit = bt_aggr_limit; 853 854 if (tid->an->maxampdu) 855 aggr_limit = min(aggr_limit, tid->an->maxampdu); 856 857 return aggr_limit; 858 } 859 860 /* 861 * Returns the number of delimiters to be added to 862 * meet the minimum required mpdudensity. 863 */ 864 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid, 865 struct ath_buf *bf, u16 frmlen, 866 bool first_subfrm) 867 { 868 #define FIRST_DESC_NDELIMS 60 869 u32 nsymbits, nsymbols; 870 u16 minlen; 871 u8 flags, rix; 872 int width, streams, half_gi, ndelim, mindelim; 873 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 874 875 /* Select standard number of delimiters based on frame length alone */ 876 ndelim = ATH_AGGR_GET_NDELIM(frmlen); 877 878 /* 879 * If encryption enabled, hardware requires some more padding between 880 * subframes. 881 * TODO - this could be improved to be dependent on the rate. 882 * The hardware can keep up at lower rates, but not higher rates 883 */ 884 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) && 885 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) 886 ndelim += ATH_AGGR_ENCRYPTDELIM; 887 888 /* 889 * Add delimiter when using RTS/CTS with aggregation 890 * and non enterprise AR9003 card 891 */ 892 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) && 893 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE)) 894 ndelim = max(ndelim, FIRST_DESC_NDELIMS); 895 896 /* 897 * Convert desired mpdu density from microeconds to bytes based 898 * on highest rate in rate series (i.e. first rate) to determine 899 * required minimum length for subframe. Take into account 900 * whether high rate is 20 or 40Mhz and half or full GI. 901 * 902 * If there is no mpdu density restriction, no further calculation 903 * is needed. 904 */ 905 906 if (tid->an->mpdudensity == 0) 907 return ndelim; 908 909 rix = bf->rates[0].idx; 910 flags = bf->rates[0].flags; 911 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0; 912 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0; 913 914 if (half_gi) 915 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity); 916 else 917 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity); 918 919 if (nsymbols == 0) 920 nsymbols = 1; 921 922 streams = HT_RC_2_STREAMS(rix); 923 nsymbits = bits_per_symbol[rix % 8][width] * streams; 924 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE; 925 926 if (frmlen < minlen) { 927 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ; 928 ndelim = max(mindelim, ndelim); 929 } 930 931 return ndelim; 932 } 933 934 static int 935 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq, 936 struct ath_atx_tid *tid, struct ath_buf **buf) 937 { 938 struct ieee80211_tx_info *tx_info; 939 struct ath_frame_info *fi; 940 struct ath_buf *bf; 941 struct sk_buff *skb, *first_skb = NULL; 942 u16 seqno; 943 int ret; 944 945 while (1) { 946 ret = ath_tid_dequeue(tid, &skb); 947 if (ret < 0) 948 return ret; 949 950 fi = get_frame_info(skb); 951 bf = fi->bf; 952 if (!fi->bf) 953 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 954 else 955 bf->bf_state.stale = false; 956 957 if (!bf) { 958 ath_txq_skb_done(sc, txq, skb); 959 ieee80211_free_txskb(sc->hw, skb); 960 continue; 961 } 962 963 bf->bf_next = NULL; 964 bf->bf_lastbf = bf; 965 966 tx_info = IEEE80211_SKB_CB(skb); 967 tx_info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT | 968 IEEE80211_TX_STATUS_EOSP); 969 970 /* 971 * No aggregation session is running, but there may be frames 972 * from a previous session or a failed attempt in the queue. 973 * Send them out as normal data frames 974 */ 975 if (!tid->active) 976 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU; 977 978 if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) { 979 bf->bf_state.bf_type = 0; 980 break; 981 } 982 983 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR; 984 seqno = bf->bf_state.seqno; 985 986 /* do not step over block-ack window */ 987 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) { 988 __skb_queue_tail(&tid->retry_q, skb); 989 990 /* If there are other skbs in the retry q, they are 991 * probably within the BAW, so loop immediately to get 992 * one of them. Otherwise the queue can get stuck. */ 993 if (!skb_queue_is_first(&tid->retry_q, skb) && 994 !WARN_ON(skb == first_skb)) { 995 if(!first_skb) /* infinite loop prevention */ 996 first_skb = skb; 997 continue; 998 } 999 return -EINPROGRESS; 1000 } 1001 1002 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) { 1003 struct ath_tx_status ts = {}; 1004 struct list_head bf_head; 1005 1006 INIT_LIST_HEAD(&bf_head); 1007 list_add(&bf->list, &bf_head); 1008 ath_tx_update_baw(sc, tid, bf); 1009 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0); 1010 continue; 1011 } 1012 1013 if (bf_isampdu(bf)) 1014 ath_tx_addto_baw(sc, tid, bf); 1015 1016 break; 1017 } 1018 1019 *buf = bf; 1020 return 0; 1021 } 1022 1023 static int 1024 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq, 1025 struct ath_atx_tid *tid, struct list_head *bf_q, 1026 struct ath_buf *bf_first) 1027 { 1028 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4) 1029 struct ath_buf *bf = bf_first, *bf_prev = NULL; 1030 int nframes = 0, ndelim, ret; 1031 u16 aggr_limit = 0, al = 0, bpad = 0, 1032 al_delta, h_baw = tid->baw_size / 2; 1033 struct ieee80211_tx_info *tx_info; 1034 struct ath_frame_info *fi; 1035 struct sk_buff *skb; 1036 1037 1038 bf = bf_first; 1039 aggr_limit = ath_lookup_rate(sc, bf, tid); 1040 1041 while (bf) 1042 { 1043 skb = bf->bf_mpdu; 1044 fi = get_frame_info(skb); 1045 1046 /* do not exceed aggregation limit */ 1047 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen; 1048 if (nframes) { 1049 if (aggr_limit < al + bpad + al_delta || 1050 ath_lookup_legacy(bf) || nframes >= h_baw) 1051 goto stop; 1052 1053 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1054 if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) || 1055 !(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) 1056 goto stop; 1057 } 1058 1059 /* add padding for previous frame to aggregation length */ 1060 al += bpad + al_delta; 1061 1062 /* 1063 * Get the delimiters needed to meet the MPDU 1064 * density for this node. 1065 */ 1066 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen, 1067 !nframes); 1068 bpad = PADBYTES(al_delta) + (ndelim << 2); 1069 1070 nframes++; 1071 bf->bf_next = NULL; 1072 1073 /* link buffers of this frame to the aggregate */ 1074 bf->bf_state.ndelim = ndelim; 1075 1076 list_add_tail(&bf->list, bf_q); 1077 if (bf_prev) 1078 bf_prev->bf_next = bf; 1079 1080 bf_prev = bf; 1081 1082 ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf); 1083 if (ret < 0) 1084 break; 1085 } 1086 goto finish; 1087 stop: 1088 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu); 1089 finish: 1090 bf = bf_first; 1091 bf->bf_lastbf = bf_prev; 1092 1093 if (bf == bf_prev) { 1094 al = get_frame_info(bf->bf_mpdu)->framelen; 1095 bf->bf_state.bf_type = BUF_AMPDU; 1096 } else { 1097 TX_STAT_INC(sc, txq->axq_qnum, a_aggr); 1098 } 1099 1100 return al; 1101 #undef PADBYTES 1102 } 1103 1104 /* 1105 * rix - rate index 1106 * pktlen - total bytes (delims + data + fcs + pads + pad delims) 1107 * width - 0 for 20 MHz, 1 for 40 MHz 1108 * half_gi - to use 4us v/s 3.6 us for symbol time 1109 */ 1110 u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen, 1111 int width, int half_gi, bool shortPreamble) 1112 { 1113 u32 nbits, nsymbits, duration, nsymbols; 1114 int streams; 1115 1116 /* find number of symbols: PLCP + data */ 1117 streams = HT_RC_2_STREAMS(rix); 1118 nbits = (pktlen << 3) + OFDM_PLCP_BITS; 1119 nsymbits = bits_per_symbol[rix % 8][width] * streams; 1120 nsymbols = (nbits + nsymbits - 1) / nsymbits; 1121 1122 if (!half_gi) 1123 duration = SYMBOL_TIME(nsymbols); 1124 else 1125 duration = SYMBOL_TIME_HALFGI(nsymbols); 1126 1127 /* addup duration for legacy/ht training and signal fields */ 1128 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 1129 1130 return duration; 1131 } 1132 1133 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi) 1134 { 1135 int streams = HT_RC_2_STREAMS(mcs); 1136 int symbols, bits; 1137 int bytes = 0; 1138 1139 usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 1140 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec); 1141 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams; 1142 bits -= OFDM_PLCP_BITS; 1143 bytes = bits / 8; 1144 if (bytes > 65532) 1145 bytes = 65532; 1146 1147 return bytes; 1148 } 1149 1150 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop) 1151 { 1152 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi; 1153 int mcs; 1154 1155 /* 4ms is the default (and maximum) duration */ 1156 if (!txop || txop > 4096) 1157 txop = 4096; 1158 1159 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20]; 1160 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI]; 1161 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40]; 1162 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI]; 1163 for (mcs = 0; mcs < 32; mcs++) { 1164 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false); 1165 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true); 1166 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false); 1167 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true); 1168 } 1169 } 1170 1171 static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf, 1172 u8 rateidx, bool is_40, bool is_cck) 1173 { 1174 u8 max_power; 1175 struct sk_buff *skb; 1176 struct ath_frame_info *fi; 1177 struct ieee80211_tx_info *info; 1178 struct ath_hw *ah = sc->sc_ah; 1179 1180 if (sc->tx99_state || !ah->tpc_enabled) 1181 return MAX_RATE_POWER; 1182 1183 skb = bf->bf_mpdu; 1184 fi = get_frame_info(skb); 1185 info = IEEE80211_SKB_CB(skb); 1186 1187 if (!AR_SREV_9300_20_OR_LATER(ah)) { 1188 int txpower = fi->tx_power; 1189 1190 if (is_40) { 1191 u8 power_ht40delta; 1192 struct ar5416_eeprom_def *eep = &ah->eeprom.def; 1193 u16 eeprom_rev = ah->eep_ops->get_eeprom_rev(ah); 1194 1195 if (eeprom_rev >= AR5416_EEP_MINOR_VER_2) { 1196 bool is_2ghz; 1197 struct modal_eep_header *pmodal; 1198 1199 is_2ghz = info->band == NL80211_BAND_2GHZ; 1200 pmodal = &eep->modalHeader[is_2ghz]; 1201 power_ht40delta = pmodal->ht40PowerIncForPdadc; 1202 } else { 1203 power_ht40delta = 2; 1204 } 1205 txpower += power_ht40delta; 1206 } 1207 1208 if (AR_SREV_9287(ah) || AR_SREV_9285(ah) || 1209 AR_SREV_9271(ah)) { 1210 txpower -= 2 * AR9287_PWR_TABLE_OFFSET_DB; 1211 } else if (AR_SREV_9280_20_OR_LATER(ah)) { 1212 s8 power_offset; 1213 1214 power_offset = ah->eep_ops->get_eeprom(ah, 1215 EEP_PWR_TABLE_OFFSET); 1216 txpower -= 2 * power_offset; 1217 } 1218 1219 if (OLC_FOR_AR9280_20_LATER && is_cck) 1220 txpower -= 2; 1221 1222 txpower = max(txpower, 0); 1223 max_power = min_t(u8, ah->tx_power[rateidx], txpower); 1224 1225 /* XXX: clamp minimum TX power at 1 for AR9160 since if 1226 * max_power is set to 0, frames are transmitted at max 1227 * TX power 1228 */ 1229 if (!max_power && !AR_SREV_9280_20_OR_LATER(ah)) 1230 max_power = 1; 1231 } else if (!bf->bf_state.bfs_paprd) { 1232 if (rateidx < 8 && (info->flags & IEEE80211_TX_CTL_STBC)) 1233 max_power = min_t(u8, ah->tx_power_stbc[rateidx], 1234 fi->tx_power); 1235 else 1236 max_power = min_t(u8, ah->tx_power[rateidx], 1237 fi->tx_power); 1238 } else { 1239 max_power = ah->paprd_training_power; 1240 } 1241 1242 return max_power; 1243 } 1244 1245 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, 1246 struct ath_tx_info *info, int len, bool rts) 1247 { 1248 struct ath_hw *ah = sc->sc_ah; 1249 struct ath_common *common = ath9k_hw_common(ah); 1250 struct sk_buff *skb; 1251 struct ieee80211_tx_info *tx_info; 1252 struct ieee80211_tx_rate *rates; 1253 const struct ieee80211_rate *rate; 1254 struct ieee80211_hdr *hdr; 1255 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 1256 u32 rts_thresh = sc->hw->wiphy->rts_threshold; 1257 int i; 1258 u8 rix = 0; 1259 1260 skb = bf->bf_mpdu; 1261 tx_info = IEEE80211_SKB_CB(skb); 1262 rates = bf->rates; 1263 hdr = (struct ieee80211_hdr *)skb->data; 1264 1265 /* set dur_update_en for l-sig computation except for PS-Poll frames */ 1266 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control); 1267 info->rtscts_rate = fi->rtscts_rate; 1268 1269 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) { 1270 bool is_40, is_sgi, is_sp, is_cck; 1271 int phy; 1272 1273 if (!rates[i].count || (rates[i].idx < 0)) 1274 break; 1275 1276 rix = rates[i].idx; 1277 info->rates[i].Tries = rates[i].count; 1278 1279 /* 1280 * Handle RTS threshold for unaggregated HT frames. 1281 */ 1282 if (bf_isampdu(bf) && !bf_isaggr(bf) && 1283 (rates[i].flags & IEEE80211_TX_RC_MCS) && 1284 unlikely(rts_thresh != (u32) -1)) { 1285 if (!rts_thresh || (len > rts_thresh)) 1286 rts = true; 1287 } 1288 1289 if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) { 1290 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1291 info->flags |= ATH9K_TXDESC_RTSENA; 1292 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { 1293 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1294 info->flags |= ATH9K_TXDESC_CTSENA; 1295 } 1296 1297 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 1298 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040; 1299 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 1300 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI; 1301 1302 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI); 1303 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH); 1304 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE); 1305 1306 if (rates[i].flags & IEEE80211_TX_RC_MCS) { 1307 /* MCS rates */ 1308 info->rates[i].Rate = rix | 0x80; 1309 info->rates[i].ChSel = ath_txchainmask_reduction(sc, 1310 ah->txchainmask, info->rates[i].Rate); 1311 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len, 1312 is_40, is_sgi, is_sp); 1313 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC)) 1314 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC; 1315 if (rix >= 8 && fi->dyn_smps) { 1316 info->rates[i].RateFlags |= 1317 ATH9K_RATESERIES_RTS_CTS; 1318 info->flags |= ATH9K_TXDESC_CTSENA; 1319 } 1320 1321 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, 1322 is_40, false); 1323 continue; 1324 } 1325 1326 /* legacy rates */ 1327 rate = &common->sbands[tx_info->band].bitrates[rates[i].idx]; 1328 if ((tx_info->band == NL80211_BAND_2GHZ) && 1329 !(rate->flags & IEEE80211_RATE_ERP_G)) 1330 phy = WLAN_RC_PHY_CCK; 1331 else 1332 phy = WLAN_RC_PHY_OFDM; 1333 1334 info->rates[i].Rate = rate->hw_value; 1335 if (rate->hw_value_short) { 1336 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 1337 info->rates[i].Rate |= rate->hw_value_short; 1338 } else { 1339 is_sp = false; 1340 } 1341 1342 if (bf->bf_state.bfs_paprd) 1343 info->rates[i].ChSel = ah->txchainmask; 1344 else 1345 info->rates[i].ChSel = ath_txchainmask_reduction(sc, 1346 ah->txchainmask, info->rates[i].Rate); 1347 1348 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah, 1349 phy, rate->bitrate * 100, len, rix, is_sp); 1350 1351 is_cck = IS_CCK_RATE(info->rates[i].Rate); 1352 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, false, 1353 is_cck); 1354 } 1355 1356 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */ 1357 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit)) 1358 info->flags &= ~ATH9K_TXDESC_RTSENA; 1359 1360 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */ 1361 if (info->flags & ATH9K_TXDESC_RTSENA) 1362 info->flags &= ~ATH9K_TXDESC_CTSENA; 1363 } 1364 1365 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb) 1366 { 1367 struct ieee80211_hdr *hdr; 1368 enum ath9k_pkt_type htype; 1369 __le16 fc; 1370 1371 hdr = (struct ieee80211_hdr *)skb->data; 1372 fc = hdr->frame_control; 1373 1374 if (ieee80211_is_beacon(fc)) 1375 htype = ATH9K_PKT_TYPE_BEACON; 1376 else if (ieee80211_is_probe_resp(fc)) 1377 htype = ATH9K_PKT_TYPE_PROBE_RESP; 1378 else if (ieee80211_is_atim(fc)) 1379 htype = ATH9K_PKT_TYPE_ATIM; 1380 else if (ieee80211_is_pspoll(fc)) 1381 htype = ATH9K_PKT_TYPE_PSPOLL; 1382 else 1383 htype = ATH9K_PKT_TYPE_NORMAL; 1384 1385 return htype; 1386 } 1387 1388 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf, 1389 struct ath_txq *txq, int len) 1390 { 1391 struct ath_hw *ah = sc->sc_ah; 1392 struct ath_buf *bf_first = NULL; 1393 struct ath_tx_info info; 1394 u32 rts_thresh = sc->hw->wiphy->rts_threshold; 1395 bool rts = false; 1396 1397 memset(&info, 0, sizeof(info)); 1398 info.is_first = true; 1399 info.is_last = true; 1400 info.qcu = txq->axq_qnum; 1401 1402 while (bf) { 1403 struct sk_buff *skb = bf->bf_mpdu; 1404 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1405 struct ath_frame_info *fi = get_frame_info(skb); 1406 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR); 1407 1408 info.type = get_hw_packet_type(skb); 1409 if (bf->bf_next) 1410 info.link = bf->bf_next->bf_daddr; 1411 else 1412 info.link = (sc->tx99_state) ? bf->bf_daddr : 0; 1413 1414 if (!bf_first) { 1415 bf_first = bf; 1416 1417 if (!sc->tx99_state) 1418 info.flags = ATH9K_TXDESC_INTREQ; 1419 if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) || 1420 txq == sc->tx.uapsdq) 1421 info.flags |= ATH9K_TXDESC_CLRDMASK; 1422 1423 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) 1424 info.flags |= ATH9K_TXDESC_NOACK; 1425 if (tx_info->flags & IEEE80211_TX_CTL_LDPC) 1426 info.flags |= ATH9K_TXDESC_LDPC; 1427 1428 if (bf->bf_state.bfs_paprd) 1429 info.flags |= (u32) bf->bf_state.bfs_paprd << 1430 ATH9K_TXDESC_PAPRD_S; 1431 1432 /* 1433 * mac80211 doesn't handle RTS threshold for HT because 1434 * the decision has to be taken based on AMPDU length 1435 * and aggregation is done entirely inside ath9k. 1436 * Set the RTS/CTS flag for the first subframe based 1437 * on the threshold. 1438 */ 1439 if (aggr && (bf == bf_first) && 1440 unlikely(rts_thresh != (u32) -1)) { 1441 /* 1442 * "len" is the size of the entire AMPDU. 1443 */ 1444 if (!rts_thresh || (len > rts_thresh)) 1445 rts = true; 1446 } 1447 1448 if (!aggr) 1449 len = fi->framelen; 1450 1451 ath_buf_set_rate(sc, bf, &info, len, rts); 1452 } 1453 1454 info.buf_addr[0] = bf->bf_buf_addr; 1455 info.buf_len[0] = skb->len; 1456 info.pkt_len = fi->framelen; 1457 info.keyix = fi->keyix; 1458 info.keytype = fi->keytype; 1459 1460 if (aggr) { 1461 if (bf == bf_first) 1462 info.aggr = AGGR_BUF_FIRST; 1463 else if (bf == bf_first->bf_lastbf) 1464 info.aggr = AGGR_BUF_LAST; 1465 else 1466 info.aggr = AGGR_BUF_MIDDLE; 1467 1468 info.ndelim = bf->bf_state.ndelim; 1469 info.aggr_len = len; 1470 } 1471 1472 if (bf == bf_first->bf_lastbf) 1473 bf_first = NULL; 1474 1475 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info); 1476 bf = bf->bf_next; 1477 } 1478 } 1479 1480 static void 1481 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq, 1482 struct ath_atx_tid *tid, struct list_head *bf_q, 1483 struct ath_buf *bf_first) 1484 { 1485 struct ath_buf *bf = bf_first, *bf_prev = NULL; 1486 int nframes = 0, ret; 1487 1488 do { 1489 struct ieee80211_tx_info *tx_info; 1490 1491 nframes++; 1492 list_add_tail(&bf->list, bf_q); 1493 if (bf_prev) 1494 bf_prev->bf_next = bf; 1495 bf_prev = bf; 1496 1497 if (nframes >= 2) 1498 break; 1499 1500 ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf); 1501 if (ret < 0) 1502 break; 1503 1504 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1505 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 1506 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu); 1507 break; 1508 } 1509 1510 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1511 } while (1); 1512 } 1513 1514 static int ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq, 1515 struct ath_atx_tid *tid) 1516 { 1517 struct ath_buf *bf = NULL; 1518 struct ieee80211_tx_info *tx_info; 1519 struct list_head bf_q; 1520 int aggr_len = 0, ret; 1521 bool aggr; 1522 1523 INIT_LIST_HEAD(&bf_q); 1524 1525 ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf); 1526 if (ret < 0) 1527 return ret; 1528 1529 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1530 aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU); 1531 if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) || 1532 (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) { 1533 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu); 1534 return -EBUSY; 1535 } 1536 1537 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1538 if (aggr) 1539 aggr_len = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf); 1540 else 1541 ath_tx_form_burst(sc, txq, tid, &bf_q, bf); 1542 1543 if (list_empty(&bf_q)) 1544 return -EAGAIN; 1545 1546 if (tid->clear_ps_filter || tid->an->no_ps_filter) { 1547 tid->clear_ps_filter = false; 1548 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1549 } 1550 1551 ath_tx_fill_desc(sc, bf, txq, aggr_len); 1552 ath_tx_txqaddbuf(sc, txq, &bf_q, false); 1553 return 0; 1554 } 1555 1556 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta, 1557 u16 tid, u16 *ssn) 1558 { 1559 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1560 struct ath_atx_tid *txtid; 1561 struct ath_txq *txq; 1562 struct ath_node *an; 1563 u8 density; 1564 1565 ath_dbg(common, XMIT, "%s called\n", __func__); 1566 1567 an = (struct ath_node *)sta->drv_priv; 1568 txtid = ATH_AN_2_TID(an, tid); 1569 txq = txtid->txq; 1570 1571 ath_txq_lock(sc, txq); 1572 1573 /* update ampdu factor/density, they may have changed. This may happen 1574 * in HT IBSS when a beacon with HT-info is received after the station 1575 * has already been added. 1576 */ 1577 if (sta->deflink.ht_cap.ht_supported) { 1578 an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + 1579 sta->deflink.ht_cap.ampdu_factor)) - 1; 1580 density = ath9k_parse_mpdudensity(sta->deflink.ht_cap.ampdu_density); 1581 an->mpdudensity = density; 1582 } 1583 1584 txtid->active = true; 1585 *ssn = txtid->seq_start = txtid->seq_next; 1586 txtid->bar_index = -1; 1587 1588 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf)); 1589 txtid->baw_head = txtid->baw_tail = 0; 1590 1591 ath_txq_unlock_complete(sc, txq); 1592 1593 return 0; 1594 } 1595 1596 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid) 1597 { 1598 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1599 struct ath_node *an = (struct ath_node *)sta->drv_priv; 1600 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid); 1601 struct ath_txq *txq = txtid->txq; 1602 1603 ath_dbg(common, XMIT, "%s called\n", __func__); 1604 1605 ath_txq_lock(sc, txq); 1606 txtid->active = false; 1607 ath_tx_flush_tid(sc, txtid); 1608 ath_txq_unlock_complete(sc, txq); 1609 } 1610 1611 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc, 1612 struct ath_node *an) 1613 { 1614 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1615 struct ath_atx_tid *tid; 1616 int tidno; 1617 1618 ath_dbg(common, XMIT, "%s called\n", __func__); 1619 1620 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) { 1621 tid = ath_node_to_tid(an, tidno); 1622 1623 if (!skb_queue_empty(&tid->retry_q)) 1624 ieee80211_sta_set_buffered(sta, tid->tidno, true); 1625 1626 } 1627 } 1628 1629 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an) 1630 { 1631 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1632 struct ath_atx_tid *tid; 1633 struct ath_txq *txq; 1634 int tidno; 1635 1636 ath_dbg(common, XMIT, "%s called\n", __func__); 1637 1638 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) { 1639 tid = ath_node_to_tid(an, tidno); 1640 txq = tid->txq; 1641 1642 ath_txq_lock(sc, txq); 1643 tid->clear_ps_filter = true; 1644 if (!skb_queue_empty(&tid->retry_q)) { 1645 ath_tx_queue_tid(sc, tid); 1646 ath_txq_schedule(sc, txq); 1647 } 1648 ath_txq_unlock_complete(sc, txq); 1649 1650 } 1651 } 1652 1653 1654 static void 1655 ath9k_set_moredata(struct ath_softc *sc, struct ath_buf *bf, bool val) 1656 { 1657 struct ieee80211_hdr *hdr; 1658 u16 mask = cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1659 u16 mask_val = mask * val; 1660 1661 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data; 1662 if ((hdr->frame_control & mask) != mask_val) { 1663 hdr->frame_control = (hdr->frame_control & ~mask) | mask_val; 1664 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 1665 sizeof(*hdr), DMA_TO_DEVICE); 1666 } 1667 } 1668 1669 void ath9k_release_buffered_frames(struct ieee80211_hw *hw, 1670 struct ieee80211_sta *sta, 1671 u16 tids, int nframes, 1672 enum ieee80211_frame_release_type reason, 1673 bool more_data) 1674 { 1675 struct ath_softc *sc = hw->priv; 1676 struct ath_node *an = (struct ath_node *)sta->drv_priv; 1677 struct ath_txq *txq = sc->tx.uapsdq; 1678 struct ieee80211_tx_info *info; 1679 struct list_head bf_q; 1680 struct ath_buf *bf_tail = NULL, *bf = NULL; 1681 int sent = 0; 1682 int i, ret; 1683 1684 INIT_LIST_HEAD(&bf_q); 1685 for (i = 0; tids && nframes; i++, tids >>= 1) { 1686 struct ath_atx_tid *tid; 1687 1688 if (!(tids & 1)) 1689 continue; 1690 1691 tid = ATH_AN_2_TID(an, i); 1692 1693 ath_txq_lock(sc, tid->txq); 1694 while (nframes > 0) { 1695 ret = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, 1696 tid, &bf); 1697 if (ret < 0) 1698 break; 1699 1700 ath9k_set_moredata(sc, bf, true); 1701 list_add_tail(&bf->list, &bf_q); 1702 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1703 if (bf_isampdu(bf)) 1704 bf->bf_state.bf_type &= ~BUF_AGGR; 1705 if (bf_tail) 1706 bf_tail->bf_next = bf; 1707 1708 bf_tail = bf; 1709 nframes--; 1710 sent++; 1711 TX_STAT_INC(sc, txq->axq_qnum, a_queued_hw); 1712 1713 if (an->sta && skb_queue_empty(&tid->retry_q)) 1714 ieee80211_sta_set_buffered(an->sta, i, false); 1715 } 1716 ath_txq_unlock_complete(sc, tid->txq); 1717 } 1718 1719 if (list_empty(&bf_q)) 1720 return; 1721 1722 if (!more_data) 1723 ath9k_set_moredata(sc, bf_tail, false); 1724 1725 info = IEEE80211_SKB_CB(bf_tail->bf_mpdu); 1726 info->flags |= IEEE80211_TX_STATUS_EOSP; 1727 1728 bf = list_first_entry(&bf_q, struct ath_buf, list); 1729 ath_txq_lock(sc, txq); 1730 ath_tx_fill_desc(sc, bf, txq, 0); 1731 ath_tx_txqaddbuf(sc, txq, &bf_q, false); 1732 ath_txq_unlock(sc, txq); 1733 } 1734 1735 /********************/ 1736 /* Queue Management */ 1737 /********************/ 1738 1739 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 1740 { 1741 struct ath_hw *ah = sc->sc_ah; 1742 struct ath9k_tx_queue_info qi; 1743 static const int subtype_txq_to_hwq[] = { 1744 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE, 1745 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK, 1746 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI, 1747 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO, 1748 }; 1749 int axq_qnum, i; 1750 1751 memset(&qi, 0, sizeof(qi)); 1752 qi.tqi_subtype = subtype_txq_to_hwq[subtype]; 1753 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT; 1754 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT; 1755 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT; 1756 qi.tqi_physCompBuf = 0; 1757 1758 /* 1759 * Enable interrupts only for EOL and DESC conditions. 1760 * We mark tx descriptors to receive a DESC interrupt 1761 * when a tx queue gets deep; otherwise waiting for the 1762 * EOL to reap descriptors. Note that this is done to 1763 * reduce interrupt load and this only defers reaping 1764 * descriptors, never transmitting frames. Aside from 1765 * reducing interrupts this also permits more concurrency. 1766 * The only potential downside is if the tx queue backs 1767 * up in which case the top half of the kernel may backup 1768 * due to a lack of tx descriptors. 1769 * 1770 * The UAPSD queue is an exception, since we take a desc- 1771 * based intr on the EOSP frames. 1772 */ 1773 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1774 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE; 1775 } else { 1776 if (qtype == ATH9K_TX_QUEUE_UAPSD) 1777 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE; 1778 else 1779 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | 1780 TXQ_FLAG_TXDESCINT_ENABLE; 1781 } 1782 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi); 1783 if (axq_qnum == -1) { 1784 /* 1785 * NB: don't print a message, this happens 1786 * normally on parts with too few tx queues 1787 */ 1788 return NULL; 1789 } 1790 if (!ATH_TXQ_SETUP(sc, axq_qnum)) { 1791 struct ath_txq *txq = &sc->tx.txq[axq_qnum]; 1792 1793 txq->axq_qnum = axq_qnum; 1794 txq->mac80211_qnum = -1; 1795 txq->axq_link = NULL; 1796 __skb_queue_head_init(&txq->complete_q); 1797 INIT_LIST_HEAD(&txq->axq_q); 1798 spin_lock_init(&txq->axq_lock); 1799 txq->axq_depth = 0; 1800 txq->axq_ampdu_depth = 0; 1801 txq->axq_tx_inprogress = false; 1802 sc->tx.txqsetup |= 1<<axq_qnum; 1803 1804 txq->txq_headidx = txq->txq_tailidx = 0; 1805 for (i = 0; i < ATH_TXFIFO_DEPTH; i++) 1806 INIT_LIST_HEAD(&txq->txq_fifo[i]); 1807 } 1808 return &sc->tx.txq[axq_qnum]; 1809 } 1810 1811 int ath_txq_update(struct ath_softc *sc, int qnum, 1812 struct ath9k_tx_queue_info *qinfo) 1813 { 1814 struct ath_hw *ah = sc->sc_ah; 1815 int error = 0; 1816 struct ath9k_tx_queue_info qi; 1817 1818 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum); 1819 1820 ath9k_hw_get_txq_props(ah, qnum, &qi); 1821 qi.tqi_aifs = qinfo->tqi_aifs; 1822 qi.tqi_cwmin = qinfo->tqi_cwmin; 1823 qi.tqi_cwmax = qinfo->tqi_cwmax; 1824 qi.tqi_burstTime = qinfo->tqi_burstTime; 1825 qi.tqi_readyTime = qinfo->tqi_readyTime; 1826 1827 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) { 1828 ath_err(ath9k_hw_common(sc->sc_ah), 1829 "Unable to update hardware queue %u!\n", qnum); 1830 error = -EIO; 1831 } else { 1832 ath9k_hw_resettxqueue(ah, qnum); 1833 } 1834 1835 return error; 1836 } 1837 1838 int ath_cabq_update(struct ath_softc *sc) 1839 { 1840 struct ath9k_tx_queue_info qi; 1841 struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon; 1842 int qnum = sc->beacon.cabq->axq_qnum; 1843 1844 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi); 1845 1846 qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) * 1847 ATH_CABQ_READY_TIME) / 100; 1848 ath_txq_update(sc, qnum, &qi); 1849 1850 return 0; 1851 } 1852 1853 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq, 1854 struct list_head *list) 1855 { 1856 struct ath_buf *bf, *lastbf; 1857 struct list_head bf_head; 1858 struct ath_tx_status ts; 1859 1860 memset(&ts, 0, sizeof(ts)); 1861 ts.ts_status = ATH9K_TX_FLUSH; 1862 INIT_LIST_HEAD(&bf_head); 1863 1864 while (!list_empty(list)) { 1865 bf = list_first_entry(list, struct ath_buf, list); 1866 1867 if (bf->bf_state.stale) { 1868 list_del(&bf->list); 1869 1870 ath_tx_return_buffer(sc, bf); 1871 continue; 1872 } 1873 1874 lastbf = bf->bf_lastbf; 1875 list_cut_position(&bf_head, list, &lastbf->list); 1876 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 1877 } 1878 } 1879 1880 /* 1881 * Drain a given TX queue (could be Beacon or Data) 1882 * 1883 * This assumes output has been stopped and 1884 * we do not need to block ath_tx_tasklet. 1885 */ 1886 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq) 1887 { 1888 rcu_read_lock(); 1889 ath_txq_lock(sc, txq); 1890 1891 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1892 int idx = txq->txq_tailidx; 1893 1894 while (!list_empty(&txq->txq_fifo[idx])) { 1895 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]); 1896 1897 INCR(idx, ATH_TXFIFO_DEPTH); 1898 } 1899 txq->txq_tailidx = idx; 1900 } 1901 1902 txq->axq_link = NULL; 1903 txq->axq_tx_inprogress = false; 1904 ath_drain_txq_list(sc, txq, &txq->axq_q); 1905 1906 ath_txq_unlock_complete(sc, txq); 1907 rcu_read_unlock(); 1908 } 1909 1910 bool ath_drain_all_txq(struct ath_softc *sc) 1911 { 1912 struct ath_hw *ah = sc->sc_ah; 1913 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1914 struct ath_txq *txq; 1915 int i; 1916 u32 npend = 0; 1917 1918 if (test_bit(ATH_OP_INVALID, &common->op_flags)) 1919 return true; 1920 1921 ath9k_hw_abort_tx_dma(ah); 1922 1923 /* Check if any queue remains active */ 1924 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1925 if (!ATH_TXQ_SETUP(sc, i)) 1926 continue; 1927 1928 if (!sc->tx.txq[i].axq_depth) 1929 continue; 1930 1931 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum)) 1932 npend |= BIT(i); 1933 } 1934 1935 if (npend) { 1936 RESET_STAT_INC(sc, RESET_TX_DMA_ERROR); 1937 ath_dbg(common, RESET, 1938 "Failed to stop TX DMA, queues=0x%03x!\n", npend); 1939 } 1940 1941 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1942 if (!ATH_TXQ_SETUP(sc, i)) 1943 continue; 1944 1945 txq = &sc->tx.txq[i]; 1946 ath_draintxq(sc, txq); 1947 } 1948 1949 return !npend; 1950 } 1951 1952 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 1953 { 1954 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum); 1955 sc->tx.txqsetup &= ~(1<<txq->axq_qnum); 1956 } 1957 1958 /* For each acq entry, for each tid, try to schedule packets 1959 * for transmit until ampdu_depth has reached min Q depth. 1960 */ 1961 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq) 1962 { 1963 struct ieee80211_hw *hw = sc->hw; 1964 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1965 struct ieee80211_txq *queue; 1966 struct ath_atx_tid *tid; 1967 int ret; 1968 1969 if (txq->mac80211_qnum < 0) 1970 return; 1971 1972 if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) 1973 return; 1974 1975 ieee80211_txq_schedule_start(hw, txq->mac80211_qnum); 1976 spin_lock_bh(&sc->chan_lock); 1977 rcu_read_lock(); 1978 1979 if (sc->cur_chan->stopped) 1980 goto out; 1981 1982 while ((queue = ieee80211_next_txq(hw, txq->mac80211_qnum))) { 1983 bool force; 1984 1985 tid = (struct ath_atx_tid *)queue->drv_priv; 1986 1987 ret = ath_tx_sched_aggr(sc, txq, tid); 1988 ath_dbg(common, QUEUE, "ath_tx_sched_aggr returned %d\n", ret); 1989 1990 force = !skb_queue_empty(&tid->retry_q); 1991 ieee80211_return_txq(hw, queue, force); 1992 } 1993 1994 out: 1995 rcu_read_unlock(); 1996 spin_unlock_bh(&sc->chan_lock); 1997 ieee80211_txq_schedule_end(hw, txq->mac80211_qnum); 1998 } 1999 2000 void ath_txq_schedule_all(struct ath_softc *sc) 2001 { 2002 struct ath_txq *txq; 2003 int i; 2004 2005 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 2006 txq = sc->tx.txq_map[i]; 2007 2008 spin_lock_bh(&txq->axq_lock); 2009 ath_txq_schedule(sc, txq); 2010 spin_unlock_bh(&txq->axq_lock); 2011 } 2012 } 2013 2014 /***********/ 2015 /* TX, DMA */ 2016 /***********/ 2017 2018 /* 2019 * Insert a chain of ath_buf (descriptors) on a txq and 2020 * assume the descriptors are already chained together by caller. 2021 */ 2022 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 2023 struct list_head *head, bool internal) 2024 { 2025 struct ath_hw *ah = sc->sc_ah; 2026 struct ath_common *common = ath9k_hw_common(ah); 2027 struct ath_buf *bf, *bf_last; 2028 bool puttxbuf = false; 2029 bool edma; 2030 2031 /* 2032 * Insert the frame on the outbound list and 2033 * pass it on to the hardware. 2034 */ 2035 2036 if (list_empty(head)) 2037 return; 2038 2039 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA); 2040 bf = list_first_entry(head, struct ath_buf, list); 2041 bf_last = list_entry(head->prev, struct ath_buf, list); 2042 2043 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n", 2044 txq->axq_qnum, txq->axq_depth); 2045 2046 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) { 2047 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]); 2048 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH); 2049 puttxbuf = true; 2050 } else { 2051 list_splice_tail_init(head, &txq->axq_q); 2052 2053 if (txq->axq_link) { 2054 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr); 2055 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n", 2056 txq->axq_qnum, txq->axq_link, 2057 ito64(bf->bf_daddr), bf->bf_desc); 2058 } else if (!edma) 2059 puttxbuf = true; 2060 2061 txq->axq_link = bf_last->bf_desc; 2062 } 2063 2064 if (puttxbuf) { 2065 TX_STAT_INC(sc, txq->axq_qnum, puttxbuf); 2066 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 2067 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n", 2068 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc); 2069 } 2070 2071 if (!edma || sc->tx99_state) { 2072 TX_STAT_INC(sc, txq->axq_qnum, txstart); 2073 ath9k_hw_txstart(ah, txq->axq_qnum); 2074 } 2075 2076 if (!internal) { 2077 while (bf) { 2078 txq->axq_depth++; 2079 if (bf_is_ampdu_not_probing(bf)) 2080 txq->axq_ampdu_depth++; 2081 2082 bf_last = bf->bf_lastbf; 2083 bf = bf_last->bf_next; 2084 bf_last->bf_next = NULL; 2085 } 2086 } 2087 } 2088 2089 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 2090 struct ath_atx_tid *tid, struct sk_buff *skb) 2091 { 2092 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2093 struct ath_frame_info *fi = get_frame_info(skb); 2094 struct list_head bf_head; 2095 struct ath_buf *bf = fi->bf; 2096 2097 INIT_LIST_HEAD(&bf_head); 2098 list_add_tail(&bf->list, &bf_head); 2099 bf->bf_state.bf_type = 0; 2100 if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) { 2101 bf->bf_state.bf_type = BUF_AMPDU; 2102 ath_tx_addto_baw(sc, tid, bf); 2103 } 2104 2105 bf->bf_next = NULL; 2106 bf->bf_lastbf = bf; 2107 ath_tx_fill_desc(sc, bf, txq, fi->framelen); 2108 ath_tx_txqaddbuf(sc, txq, &bf_head, false); 2109 TX_STAT_INC(sc, txq->axq_qnum, queued); 2110 } 2111 2112 static void setup_frame_info(struct ieee80211_hw *hw, 2113 struct ieee80211_sta *sta, 2114 struct sk_buff *skb, 2115 int framelen) 2116 { 2117 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2118 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key; 2119 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2120 const struct ieee80211_rate *rate; 2121 struct ath_frame_info *fi = get_frame_info(skb); 2122 struct ath_node *an = NULL; 2123 enum ath9k_key_type keytype; 2124 bool short_preamble = false; 2125 u8 txpower; 2126 2127 /* 2128 * We check if Short Preamble is needed for the CTS rate by 2129 * checking the BSS's global flag. 2130 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used. 2131 */ 2132 if (tx_info->control.vif && 2133 tx_info->control.vif->bss_conf.use_short_preamble) 2134 short_preamble = true; 2135 2136 rate = ieee80211_get_rts_cts_rate(hw, tx_info); 2137 keytype = ath9k_cmn_get_hw_crypto_keytype(skb); 2138 2139 if (sta) 2140 an = (struct ath_node *) sta->drv_priv; 2141 2142 if (tx_info->control.vif) { 2143 struct ieee80211_vif *vif = tx_info->control.vif; 2144 if (vif->bss_conf.txpower == INT_MIN) 2145 goto nonvifpower; 2146 txpower = 2 * vif->bss_conf.txpower; 2147 } else { 2148 struct ath_softc *sc; 2149 nonvifpower: 2150 sc = hw->priv; 2151 2152 txpower = sc->cur_chan->cur_txpower; 2153 } 2154 2155 memset(fi, 0, sizeof(*fi)); 2156 fi->txq = -1; 2157 if (hw_key) 2158 fi->keyix = hw_key->hw_key_idx; 2159 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0) 2160 fi->keyix = an->ps_key; 2161 else 2162 fi->keyix = ATH9K_TXKEYIX_INVALID; 2163 fi->dyn_smps = sta && sta->deflink.smps_mode == IEEE80211_SMPS_DYNAMIC; 2164 fi->keytype = keytype; 2165 fi->framelen = framelen; 2166 fi->tx_power = txpower; 2167 2168 if (!rate) 2169 return; 2170 fi->rtscts_rate = rate->hw_value; 2171 if (short_preamble) 2172 fi->rtscts_rate |= rate->hw_value_short; 2173 } 2174 2175 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate) 2176 { 2177 struct ath_hw *ah = sc->sc_ah; 2178 struct ath9k_channel *curchan = ah->curchan; 2179 2180 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) && 2181 (chainmask == 0x7) && (rate < 0x90)) 2182 return 0x3; 2183 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) && 2184 IS_CCK_RATE(rate)) 2185 return 0x2; 2186 else 2187 return chainmask; 2188 } 2189 2190 /* 2191 * Assign a descriptor (and sequence number if necessary, 2192 * and map buffer for DMA. Frees skb on error 2193 */ 2194 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, 2195 struct ath_txq *txq, 2196 struct ath_atx_tid *tid, 2197 struct sk_buff *skb) 2198 { 2199 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2200 struct ath_frame_info *fi = get_frame_info(skb); 2201 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2202 struct ath_buf *bf; 2203 int fragno; 2204 u16 seqno; 2205 2206 bf = ath_tx_get_buffer(sc); 2207 if (!bf) { 2208 ath_dbg(common, XMIT, "TX buffers are full\n"); 2209 return NULL; 2210 } 2211 2212 ATH_TXBUF_RESET(bf); 2213 2214 if (tid && ieee80211_is_data_present(hdr->frame_control)) { 2215 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG; 2216 seqno = tid->seq_next; 2217 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT); 2218 2219 if (fragno) 2220 hdr->seq_ctrl |= cpu_to_le16(fragno); 2221 2222 if (!ieee80211_has_morefrags(hdr->frame_control)) 2223 INCR(tid->seq_next, IEEE80211_SEQ_MAX); 2224 2225 bf->bf_state.seqno = seqno; 2226 } 2227 2228 bf->bf_mpdu = skb; 2229 2230 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 2231 skb->len, DMA_TO_DEVICE); 2232 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) { 2233 bf->bf_mpdu = NULL; 2234 bf->bf_buf_addr = 0; 2235 ath_err(ath9k_hw_common(sc->sc_ah), 2236 "dma_mapping_error() on TX\n"); 2237 ath_tx_return_buffer(sc, bf); 2238 return NULL; 2239 } 2240 2241 fi->bf = bf; 2242 2243 return bf; 2244 } 2245 2246 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb) 2247 { 2248 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2249 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2250 struct ieee80211_vif *vif = info->control.vif; 2251 struct ath_vif *avp; 2252 2253 if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)) 2254 return; 2255 2256 if (!vif) 2257 return; 2258 2259 avp = (struct ath_vif *)vif->drv_priv; 2260 2261 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) 2262 avp->seq_no += 0x10; 2263 2264 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); 2265 hdr->seq_ctrl |= cpu_to_le16(avp->seq_no); 2266 } 2267 2268 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb, 2269 struct ath_tx_control *txctl) 2270 { 2271 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2272 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2273 struct ieee80211_sta *sta = txctl->sta; 2274 struct ieee80211_vif *vif = info->control.vif; 2275 struct ath_vif *avp; 2276 struct ath_softc *sc = hw->priv; 2277 int frmlen = skb->len + FCS_LEN; 2278 int padpos, padsize; 2279 2280 /* NOTE: sta can be NULL according to net/mac80211.h */ 2281 if (sta) 2282 txctl->an = (struct ath_node *)sta->drv_priv; 2283 else if (vif && ieee80211_is_data(hdr->frame_control)) { 2284 avp = (void *)vif->drv_priv; 2285 txctl->an = &avp->mcast_node; 2286 } 2287 2288 if (info->control.hw_key) 2289 frmlen += info->control.hw_key->icv_len; 2290 2291 ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb); 2292 2293 if ((vif && vif->type != NL80211_IFTYPE_AP && 2294 vif->type != NL80211_IFTYPE_AP_VLAN) || 2295 !ieee80211_is_data(hdr->frame_control)) 2296 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 2297 2298 /* Add the padding after the header if this is not already done */ 2299 padpos = ieee80211_hdrlen(hdr->frame_control); 2300 padsize = padpos & 3; 2301 if (padsize && skb->len > padpos) { 2302 if (skb_headroom(skb) < padsize) 2303 return -ENOMEM; 2304 2305 skb_push(skb, padsize); 2306 memmove(skb->data, skb->data + padsize, padpos); 2307 } 2308 2309 setup_frame_info(hw, sta, skb, frmlen); 2310 return 0; 2311 } 2312 2313 2314 /* Upon failure caller should free skb */ 2315 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb, 2316 struct ath_tx_control *txctl) 2317 { 2318 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2319 struct ieee80211_sta *sta = txctl->sta; 2320 struct ieee80211_vif *vif = info->control.vif; 2321 struct ath_frame_info *fi = get_frame_info(skb); 2322 struct ath_softc *sc = hw->priv; 2323 struct ath_txq *txq = txctl->txq; 2324 struct ath_atx_tid *tid = NULL; 2325 struct ath_node *an = NULL; 2326 struct ath_buf *bf; 2327 bool ps_resp; 2328 int q, ret; 2329 2330 ps_resp = !!(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE); 2331 2332 ret = ath_tx_prepare(hw, skb, txctl); 2333 if (ret) 2334 return ret; 2335 2336 /* 2337 * At this point, the vif, hw_key and sta pointers in the tx control 2338 * info are no longer valid (overwritten by the ath_frame_info data. 2339 */ 2340 2341 q = skb_get_queue_mapping(skb); 2342 2343 if (ps_resp) 2344 txq = sc->tx.uapsdq; 2345 2346 if (txctl->sta) { 2347 an = (struct ath_node *) sta->drv_priv; 2348 tid = ath_get_skb_tid(sc, an, skb); 2349 } 2350 2351 ath_txq_lock(sc, txq); 2352 if (txq == sc->tx.txq_map[q]) { 2353 fi->txq = q; 2354 ++txq->pending_frames; 2355 } 2356 2357 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 2358 if (!bf) { 2359 ath_txq_skb_done(sc, txq, skb); 2360 if (txctl->paprd) 2361 dev_kfree_skb_any(skb); 2362 else 2363 ieee80211_free_txskb(sc->hw, skb); 2364 goto out; 2365 } 2366 2367 bf->bf_state.bfs_paprd = txctl->paprd; 2368 2369 if (txctl->paprd) 2370 bf->bf_state.bfs_paprd_timestamp = jiffies; 2371 2372 ath_set_rates(vif, sta, bf); 2373 ath_tx_send_normal(sc, txq, tid, skb); 2374 2375 out: 2376 ath_txq_unlock(sc, txq); 2377 2378 return 0; 2379 } 2380 2381 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2382 struct sk_buff *skb) 2383 { 2384 struct ath_softc *sc = hw->priv; 2385 struct ath_tx_control txctl = { 2386 .txq = sc->beacon.cabq 2387 }; 2388 struct ath_tx_info info = {}; 2389 struct ath_buf *bf_tail = NULL; 2390 struct ath_buf *bf; 2391 LIST_HEAD(bf_q); 2392 int duration = 0; 2393 int max_duration; 2394 2395 max_duration = 2396 sc->cur_chan->beacon.beacon_interval * 1000 * 2397 sc->cur_chan->beacon.dtim_period / ATH_BCBUF; 2398 2399 do { 2400 struct ath_frame_info *fi = get_frame_info(skb); 2401 2402 if (ath_tx_prepare(hw, skb, &txctl)) 2403 break; 2404 2405 bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb); 2406 if (!bf) 2407 break; 2408 2409 bf->bf_lastbf = bf; 2410 ath_set_rates(vif, NULL, bf); 2411 ath_buf_set_rate(sc, bf, &info, fi->framelen, false); 2412 duration += info.rates[0].PktDuration; 2413 if (bf_tail) 2414 bf_tail->bf_next = bf; 2415 2416 list_add_tail(&bf->list, &bf_q); 2417 bf_tail = bf; 2418 skb = NULL; 2419 2420 if (duration > max_duration) 2421 break; 2422 2423 skb = ieee80211_get_buffered_bc(hw, vif); 2424 } while(skb); 2425 2426 if (skb) 2427 ieee80211_free_txskb(hw, skb); 2428 2429 if (list_empty(&bf_q)) 2430 return; 2431 2432 bf = list_last_entry(&bf_q, struct ath_buf, list); 2433 ath9k_set_moredata(sc, bf, false); 2434 2435 bf = list_first_entry(&bf_q, struct ath_buf, list); 2436 ath_txq_lock(sc, txctl.txq); 2437 ath_tx_fill_desc(sc, bf, txctl.txq, 0); 2438 ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false); 2439 TX_STAT_INC(sc, txctl.txq->axq_qnum, queued); 2440 ath_txq_unlock(sc, txctl.txq); 2441 } 2442 2443 /*****************/ 2444 /* TX Completion */ 2445 /*****************/ 2446 2447 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, 2448 int tx_flags, struct ath_txq *txq, 2449 struct ieee80211_sta *sta) 2450 { 2451 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2452 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2453 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data; 2454 int padpos, padsize; 2455 unsigned long flags; 2456 2457 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb); 2458 2459 if (sc->sc_ah->caldata) 2460 set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags); 2461 2462 if (!(tx_flags & ATH_TX_ERROR)) { 2463 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) 2464 tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED; 2465 else 2466 tx_info->flags |= IEEE80211_TX_STAT_ACK; 2467 } 2468 2469 if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) { 2470 padpos = ieee80211_hdrlen(hdr->frame_control); 2471 padsize = padpos & 3; 2472 if (padsize && skb->len>padpos+padsize) { 2473 /* 2474 * Remove MAC header padding before giving the frame back to 2475 * mac80211. 2476 */ 2477 memmove(skb->data + padsize, skb->data, padpos); 2478 skb_pull(skb, padsize); 2479 } 2480 } 2481 2482 spin_lock_irqsave(&sc->sc_pm_lock, flags); 2483 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) { 2484 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK; 2485 ath_dbg(common, PS, 2486 "Going back to sleep after having received TX status (0x%lx)\n", 2487 sc->ps_flags & (PS_WAIT_FOR_BEACON | 2488 PS_WAIT_FOR_CAB | 2489 PS_WAIT_FOR_PSPOLL_DATA | 2490 PS_WAIT_FOR_TX_ACK)); 2491 } 2492 spin_unlock_irqrestore(&sc->sc_pm_lock, flags); 2493 2494 ath_txq_skb_done(sc, txq, skb); 2495 tx_info->status.status_driver_data[0] = sta; 2496 __skb_queue_tail(&txq->complete_q, skb); 2497 } 2498 2499 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 2500 struct ath_txq *txq, struct list_head *bf_q, 2501 struct ieee80211_sta *sta, 2502 struct ath_tx_status *ts, int txok) 2503 { 2504 struct sk_buff *skb = bf->bf_mpdu; 2505 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2506 unsigned long flags; 2507 int tx_flags = 0; 2508 2509 if (!txok) 2510 tx_flags |= ATH_TX_ERROR; 2511 2512 if (ts->ts_status & ATH9K_TXERR_FILT) 2513 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; 2514 2515 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE); 2516 bf->bf_buf_addr = 0; 2517 if (sc->tx99_state) 2518 goto skip_tx_complete; 2519 2520 if (bf->bf_state.bfs_paprd) { 2521 if (time_after(jiffies, 2522 bf->bf_state.bfs_paprd_timestamp + 2523 msecs_to_jiffies(ATH_PAPRD_TIMEOUT))) 2524 dev_kfree_skb_any(skb); 2525 else 2526 complete(&sc->paprd_complete); 2527 } else { 2528 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags); 2529 ath_tx_complete(sc, skb, tx_flags, txq, sta); 2530 } 2531 skip_tx_complete: 2532 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't 2533 * accidentally reference it later. 2534 */ 2535 bf->bf_mpdu = NULL; 2536 2537 /* 2538 * Return the list of ath_buf of this mpdu to free queue 2539 */ 2540 spin_lock_irqsave(&sc->tx.txbuflock, flags); 2541 list_splice_tail_init(bf_q, &sc->tx.txbuf); 2542 spin_unlock_irqrestore(&sc->tx.txbuflock, flags); 2543 } 2544 2545 static void ath_clear_tx_status(struct ieee80211_tx_info *tx_info) 2546 { 2547 void *ptr = &tx_info->status; 2548 2549 memset(ptr + sizeof(tx_info->status.rates), 0, 2550 sizeof(tx_info->status) - 2551 sizeof(tx_info->status.rates) - 2552 sizeof(tx_info->status.status_driver_data)); 2553 } 2554 2555 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 2556 struct ath_tx_status *ts, int nframes, int nbad, 2557 int txok) 2558 { 2559 struct sk_buff *skb = bf->bf_mpdu; 2560 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2561 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2562 struct ieee80211_hw *hw = sc->hw; 2563 struct ath_hw *ah = sc->sc_ah; 2564 u8 i, tx_rateindex; 2565 2566 ath_clear_tx_status(tx_info); 2567 2568 if (txok) 2569 tx_info->status.ack_signal = ts->ts_rssi; 2570 2571 tx_rateindex = ts->ts_rateindex; 2572 WARN_ON(tx_rateindex >= hw->max_rates); 2573 2574 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 2575 tx_info->flags |= IEEE80211_TX_STAT_AMPDU; 2576 2577 BUG_ON(nbad > nframes); 2578 } 2579 tx_info->status.ampdu_len = nframes; 2580 tx_info->status.ampdu_ack_len = nframes - nbad; 2581 2582 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1; 2583 2584 for (i = tx_rateindex + 1; i < hw->max_rates; i++) { 2585 tx_info->status.rates[i].count = 0; 2586 tx_info->status.rates[i].idx = -1; 2587 } 2588 2589 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 && 2590 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) { 2591 /* 2592 * If an underrun error is seen assume it as an excessive 2593 * retry only if max frame trigger level has been reached 2594 * (2 KB for single stream, and 4 KB for dual stream). 2595 * Adjust the long retry as if the frame was tried 2596 * hw->max_rate_tries times to affect how rate control updates 2597 * PER for the failed rate. 2598 * In case of congestion on the bus penalizing this type of 2599 * underruns should help hardware actually transmit new frames 2600 * successfully by eventually preferring slower rates. 2601 * This itself should also alleviate congestion on the bus. 2602 */ 2603 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN | 2604 ATH9K_TX_DELIM_UNDERRUN)) && 2605 ieee80211_is_data(hdr->frame_control) && 2606 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level) 2607 tx_info->status.rates[tx_rateindex].count = 2608 hw->max_rate_tries; 2609 } 2610 } 2611 2612 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 2613 { 2614 struct ath_hw *ah = sc->sc_ah; 2615 struct ath_common *common = ath9k_hw_common(ah); 2616 struct ath_buf *bf, *lastbf, *bf_held = NULL; 2617 struct list_head bf_head; 2618 struct ath_desc *ds; 2619 struct ath_tx_status ts; 2620 int status; 2621 2622 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n", 2623 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum), 2624 txq->axq_link); 2625 2626 ath_txq_lock(sc, txq); 2627 for (;;) { 2628 if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) 2629 break; 2630 2631 if (list_empty(&txq->axq_q)) { 2632 txq->axq_link = NULL; 2633 ath_txq_schedule(sc, txq); 2634 break; 2635 } 2636 bf = list_first_entry(&txq->axq_q, struct ath_buf, list); 2637 2638 /* 2639 * There is a race condition that a BH gets scheduled 2640 * after sw writes TxE and before hw re-load the last 2641 * descriptor to get the newly chained one. 2642 * Software must keep the last DONE descriptor as a 2643 * holding descriptor - software does so by marking 2644 * it with the STALE flag. 2645 */ 2646 bf_held = NULL; 2647 if (bf->bf_state.stale) { 2648 bf_held = bf; 2649 if (list_is_last(&bf_held->list, &txq->axq_q)) 2650 break; 2651 2652 bf = list_entry(bf_held->list.next, struct ath_buf, 2653 list); 2654 } 2655 2656 lastbf = bf->bf_lastbf; 2657 ds = lastbf->bf_desc; 2658 2659 memset(&ts, 0, sizeof(ts)); 2660 status = ath9k_hw_txprocdesc(ah, ds, &ts); 2661 if (status == -EINPROGRESS) 2662 break; 2663 2664 TX_STAT_INC(sc, txq->axq_qnum, txprocdesc); 2665 2666 /* 2667 * Remove ath_buf's of the same transmit unit from txq, 2668 * however leave the last descriptor back as the holding 2669 * descriptor for hw. 2670 */ 2671 lastbf->bf_state.stale = true; 2672 INIT_LIST_HEAD(&bf_head); 2673 if (!list_is_singular(&lastbf->list)) 2674 list_cut_position(&bf_head, 2675 &txq->axq_q, lastbf->list.prev); 2676 2677 if (bf_held) { 2678 list_del(&bf_held->list); 2679 ath_tx_return_buffer(sc, bf_held); 2680 } 2681 2682 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2683 } 2684 ath_txq_unlock_complete(sc, txq); 2685 } 2686 2687 void ath_tx_tasklet(struct ath_softc *sc) 2688 { 2689 struct ath_hw *ah = sc->sc_ah; 2690 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs; 2691 int i; 2692 2693 rcu_read_lock(); 2694 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 2695 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i))) 2696 ath_tx_processq(sc, &sc->tx.txq[i]); 2697 } 2698 rcu_read_unlock(); 2699 } 2700 2701 void ath_tx_edma_tasklet(struct ath_softc *sc) 2702 { 2703 struct ath_tx_status ts; 2704 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2705 struct ath_hw *ah = sc->sc_ah; 2706 struct ath_txq *txq; 2707 struct ath_buf *bf, *lastbf; 2708 struct list_head bf_head; 2709 struct list_head *fifo_list; 2710 int status; 2711 2712 rcu_read_lock(); 2713 for (;;) { 2714 if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) 2715 break; 2716 2717 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts); 2718 if (status == -EINPROGRESS) 2719 break; 2720 if (status == -EIO) { 2721 ath_dbg(common, XMIT, "Error processing tx status\n"); 2722 break; 2723 } 2724 2725 /* Process beacon completions separately */ 2726 if (ts.qid == sc->beacon.beaconq) { 2727 sc->beacon.tx_processed = true; 2728 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK); 2729 2730 if (ath9k_is_chanctx_enabled()) { 2731 ath_chanctx_event(sc, NULL, 2732 ATH_CHANCTX_EVENT_BEACON_SENT); 2733 } 2734 2735 ath9k_csa_update(sc); 2736 continue; 2737 } 2738 2739 txq = &sc->tx.txq[ts.qid]; 2740 2741 ath_txq_lock(sc, txq); 2742 2743 TX_STAT_INC(sc, txq->axq_qnum, txprocdesc); 2744 2745 fifo_list = &txq->txq_fifo[txq->txq_tailidx]; 2746 if (list_empty(fifo_list)) { 2747 ath_txq_unlock(sc, txq); 2748 break; 2749 } 2750 2751 bf = list_first_entry(fifo_list, struct ath_buf, list); 2752 if (bf->bf_state.stale) { 2753 list_del(&bf->list); 2754 ath_tx_return_buffer(sc, bf); 2755 bf = list_first_entry(fifo_list, struct ath_buf, list); 2756 } 2757 2758 lastbf = bf->bf_lastbf; 2759 2760 INIT_LIST_HEAD(&bf_head); 2761 if (list_is_last(&lastbf->list, fifo_list)) { 2762 list_splice_tail_init(fifo_list, &bf_head); 2763 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH); 2764 2765 if (!list_empty(&txq->axq_q)) { 2766 struct list_head bf_q; 2767 2768 INIT_LIST_HEAD(&bf_q); 2769 txq->axq_link = NULL; 2770 list_splice_tail_init(&txq->axq_q, &bf_q); 2771 ath_tx_txqaddbuf(sc, txq, &bf_q, true); 2772 } 2773 } else { 2774 lastbf->bf_state.stale = true; 2775 if (bf != lastbf) 2776 list_cut_position(&bf_head, fifo_list, 2777 lastbf->list.prev); 2778 } 2779 2780 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2781 ath_txq_unlock_complete(sc, txq); 2782 } 2783 rcu_read_unlock(); 2784 } 2785 2786 /*****************/ 2787 /* Init, Cleanup */ 2788 /*****************/ 2789 2790 static int ath_txstatus_setup(struct ath_softc *sc, int size) 2791 { 2792 struct ath_descdma *dd = &sc->txsdma; 2793 u8 txs_len = sc->sc_ah->caps.txs_len; 2794 2795 dd->dd_desc_len = size * txs_len; 2796 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len, 2797 &dd->dd_desc_paddr, GFP_KERNEL); 2798 if (!dd->dd_desc) 2799 return -ENOMEM; 2800 2801 return 0; 2802 } 2803 2804 static int ath_tx_edma_init(struct ath_softc *sc) 2805 { 2806 int err; 2807 2808 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE); 2809 if (!err) 2810 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc, 2811 sc->txsdma.dd_desc_paddr, 2812 ATH_TXSTATUS_RING_SIZE); 2813 2814 return err; 2815 } 2816 2817 int ath_tx_init(struct ath_softc *sc, int nbufs) 2818 { 2819 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2820 int error = 0; 2821 2822 spin_lock_init(&sc->tx.txbuflock); 2823 2824 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf, 2825 "tx", nbufs, 1, 1); 2826 if (error != 0) { 2827 ath_err(common, 2828 "Failed to allocate tx descriptors: %d\n", error); 2829 return error; 2830 } 2831 2832 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf, 2833 "beacon", ATH_BCBUF, 1, 1); 2834 if (error != 0) { 2835 ath_err(common, 2836 "Failed to allocate beacon descriptors: %d\n", error); 2837 return error; 2838 } 2839 2840 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 2841 error = ath_tx_edma_init(sc); 2842 2843 return error; 2844 } 2845 2846 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an) 2847 { 2848 struct ath_atx_tid *tid; 2849 int tidno, acno; 2850 2851 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) { 2852 tid = ath_node_to_tid(an, tidno); 2853 tid->an = an; 2854 tid->tidno = tidno; 2855 tid->seq_start = tid->seq_next = 0; 2856 tid->baw_size = WME_MAX_BA; 2857 tid->baw_head = tid->baw_tail = 0; 2858 tid->active = false; 2859 tid->clear_ps_filter = true; 2860 __skb_queue_head_init(&tid->retry_q); 2861 INIT_LIST_HEAD(&tid->list); 2862 acno = TID_TO_WME_AC(tidno); 2863 tid->txq = sc->tx.txq_map[acno]; 2864 2865 if (!an->sta) 2866 break; /* just one multicast ath_atx_tid */ 2867 } 2868 } 2869 2870 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an) 2871 { 2872 struct ath_atx_tid *tid; 2873 struct ath_txq *txq; 2874 int tidno; 2875 2876 rcu_read_lock(); 2877 2878 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) { 2879 tid = ath_node_to_tid(an, tidno); 2880 txq = tid->txq; 2881 2882 ath_txq_lock(sc, txq); 2883 2884 if (!list_empty(&tid->list)) 2885 list_del_init(&tid->list); 2886 2887 ath_tid_drain(sc, txq, tid); 2888 tid->active = false; 2889 2890 ath_txq_unlock(sc, txq); 2891 2892 if (!an->sta) 2893 break; /* just one multicast ath_atx_tid */ 2894 } 2895 2896 rcu_read_unlock(); 2897 } 2898 2899 #ifdef CONFIG_ATH9K_TX99 2900 2901 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb, 2902 struct ath_tx_control *txctl) 2903 { 2904 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2905 struct ath_frame_info *fi = get_frame_info(skb); 2906 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2907 struct ath_buf *bf; 2908 int padpos, padsize; 2909 2910 padpos = ieee80211_hdrlen(hdr->frame_control); 2911 padsize = padpos & 3; 2912 2913 if (padsize && skb->len > padpos) { 2914 if (skb_headroom(skb) < padsize) { 2915 ath_dbg(common, XMIT, 2916 "tx99 padding failed\n"); 2917 return -EINVAL; 2918 } 2919 2920 skb_push(skb, padsize); 2921 memmove(skb->data, skb->data + padsize, padpos); 2922 } 2923 2924 fi->keyix = ATH9K_TXKEYIX_INVALID; 2925 fi->framelen = skb->len + FCS_LEN; 2926 fi->keytype = ATH9K_KEY_TYPE_CLEAR; 2927 2928 bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb); 2929 if (!bf) { 2930 ath_dbg(common, XMIT, "tx99 buffer setup failed\n"); 2931 return -EINVAL; 2932 } 2933 2934 ath_set_rates(sc->tx99_vif, NULL, bf); 2935 2936 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr); 2937 ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum); 2938 2939 ath_tx_send_normal(sc, txctl->txq, NULL, skb); 2940 2941 return 0; 2942 } 2943 2944 #endif /* CONFIG_ATH9K_TX99 */ 2945